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ilaontroduction

Thie thsoretical introduction was meant to be an intensive
course covering a scant two days and is therefors lacking in
completeness. My intention was mainly to explain all those
things vhich every FEM user should have heard at least once
in order to be able to cope with certain contingencies which
might arise in application.

This present version is a pilot version and therefore open to
suggestions of improvement which the author will be happy to
consider in order to ensure continually improving quality of
this manual,
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MATRIX _METHODS

A matrix i3 defined as being roctangular a: ray of figures
or symbols "arranged in lines and columns. This configuration
is turnod into a matrix by the addition of square brackets,

Assuming a matrix to have m lines and n columns it is shown

as followst

-

- Qt» ;‘:‘
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Let mo underline the fsct that tho numbor of 1ines (m) 1s
always named first., Therofore, ‘\ is & (mxn) matrix.

In the follcwing chapters menijion will oiten be made of line

or column matrices or vectors. Assumifig m = 1 we have a
i m o ctoy.

A"’ l.an Qq - - au *e 'Qm]
If, however, we assuro n = 1 we have a

Solumn matrix or o column vector.

A:{Q" Q, -.. Qg+ QM} = |ay

— e W
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There are some special matrices which I should like to mention
briefly at this Jjuncture,

Uy ¢ 0 O
sz O’ O .1J s 0 proe
A = 1 .y vided that idJ
; . 1w O
“‘,") . t L { | and LT is not
Sﬁfﬂﬂe LT U] O in each case

An alternative notation would be
]

A = rau Ay Uy, *A“J

Identity Matyrigx

Thie matrix is a special case of diagonal matrix defined
above. In the case of a 3 x ) matrix, for instance, we have

10 0] N
L= 1o=)t 1 1] |

(%4

Vhenever all entries (or eclements) of a matrix which are not
equal to zero are arranged around the main diagonal the des-
ignation 'band matrix' applies. For instunces

Qy &y 0 (¢ +» + *+ 0 o |
Qpoay 0 L 0 v
A = C 0 dg Gy + - 9 0
(Mxw) C 0 Upaw:e » 0 0
t ¢ ¢ ¢ + v Qeng g qu-l.w
L c (] ' : &um-i Qa.w




ILrinnpgular Ma trizx
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A matrix is called cither an upper (U) or a lower (L) tri-
angular mnirix If all its oloments situated cilthor abovo or
below the main diagonal arc oqual to zero,

Gu 0 0 - - 0
Ay 0, 0

.
- [} [ ] [} L] [ ]

(==

L =
(A %)

L“'H Clug, ** Quy
Bymameoetricaqgl Mo tr i x

1

In o symmotrical wmalrix nj’ is nlwnys nqual to n“.‘ In lincar

slructural mechanics, tor instance, all atiffnoss matricos are
saymmotric,

Transmnpnosed M at rix

A tranaposcd matrix is produced by oxchanging lines for cole

umny, as for instanco

Qe Oy Oy

A=Gu

(243) Q11 Qg

Thus, n transposed malrix is

n1i Q;q

4
A = (M @y
(3x2) | lyq Gy

(A) - A

and, in Lthe case of symmotric milrlicen,

Moroover,
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Hypecr- or Supermaoetr icos

Largor matrices of, for instance, the size of 5,000 x 5%,000

containing 25,000 cntrics nocessarily have to be subdividod
into smnller matrices, such as

A Qyy | G A A
A = | Gy Qu:ﬂn = I 11

(3%3) |----- - - A
O31 Qg | Gy 3l An

developing into

Lo oy
Aﬂ ’ qu

¢ .
(2#1) 94 011

{0'3 Qu}
(1 1)

Au‘ lau C‘n] A72 = [ q“]

(1x2) (1x1)

This subdivision into submntrices can, of course, be donoe in

soveral stages. ASKA, for one, provides 73 stogoes,

Label

Ni

0,1 0Q

l 2 Matricos of snwme
V Numerical matricos
/ / I through IV

I T -

Molrix of adrossres
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If we apply this example to the 3 x 37 hypermatrix A mentioned
trix III would be ou [
above, matrix III wou e our Aﬂ [ Qq, QnJ

Celculatlions Involving Matricos

In calculation it is possible to treat matrices Just likeo
you usually trcat numcrical data. In the following, we give
the definitions required for our purpose,

Kauality

A=8

moans that for all i and J n, = b

J i4°

Addition and Sybtraction
1r A"'BBC

then

(:1J = a?lJ + b.lJ
In tho casc of subt-action, consoquently, we have

€14 % 4 = byy
Bﬂt:l‘ ugltinlicgglon

If a matrix is to be multipliod Gy a factor c every single
entry must be multipliod by ¢, o.g.

cA = [caif]
In multiplying two matrices it is a conditio sinc qua non that
their dimensions be compatible. If, for instanco, (mxn)matrix
A 1s to be multiplicd by (oxp) mutrix ‘ it is requisite
that n = o, i.c. the number of lines n contained in A must

be cqual to the number of columns o contaihed in b .

Thus,
=

(WX ") (oxp) (wxp)

Ci'l' = Z Qir by

r:l

and




A simple txample would be

Wy U, G, E ‘ ,
‘ ‘ ‘l \’11 by bn
CPYR TR UTY

L}
- y U | )
= 1«.111 bﬂ U L-‘121 Ty D3y ’
Qurbeg + €ap bag 4 Qg by
If all single entraies (o, Moo I),H nnd “.’.’L‘b'n) are repgardoed
as sub-mntrices this vxampic is also applicable to sub-matrices.
Solution o' Lincar Maltrix Egquatious in Static Probloms
For reasons of cconomy linecar matrix eguations occurring in
strucbitral mechanics are solved by solving the coeffloient
matrix (u.(}. the stiftness matrix) instead ot by a ¢renuine
tnversion of the ma)rix coneerned, as the former way nrceese
sltates the Least aumber of nomerical oporations, There are
varlous matrix reduction technigqnes whose applicability has
boen estadlished, Tu ARKA, Chalesky's Leoclmd jue is used on
symmelric matrices (ebf. oo R, Zinmib b, "Matrizen vt ihre
toechniachen Anwendimigen”, Springer=Vortar), CrF. also fipgs
1.1, 1.2, 1.1 and t.h,
The Concept _of® ASKA
. v ]
¥ .
! 1
m tome | Alioy :A-H:nu .
L] v -1 .
L ! ]
teve) . =
I ‘ . l ] Stann, Disperiven
® Addrerses ; ! Data Type .
- Addiens of tave) 3 k
| Stonsge Formot
Yo °u~1(ul Sheuchue bevel )
@ Addrenes E':; fomt, llm.':(,ul Sunchee Leval 2 ’
pid b fdaw i ol Chactar evel
C
_ - YTAL 7] v ot o v
. . . v e on .
@ Number( i - . ) . { - f"""’ Bochig Storenge
Actuatl Data iSubmatrces) Descriptor Block
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! : Fig, 1,1 Hypermatrices
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Choleski Decomposition

Forward Substitution

Level } Y, y, : h: - Z“I.uh Y, Uy k‘: b z"u“t

. .
L *vi ° Z Vi Vi

O]

Fig. !.’s Rocursive Choleski Factorbzat ion
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ELASTICT Y EQUATIONS TN STAT o3

There are three basic conditions used in static problems to

cestablish the requlslioe systems of oquat ionsg

= Equitibeium or stalic consistoneyy
= Kinematic conslstoucys

~ Stress-straln relalions,

Static and/or Kinemntic conditions occur among boundaury cone
ditions as well, One possible occurrence of static and kinoe
matic boundary conditlons 1a best illustrated by means of a

hollow bhox,

rigidly
nmounted

ripid ond plutoe

At 7z = 0 the hollow box is rigidly mounted. The weob is in-
finttely sUIIT Ltowards deformabious in ibs plane bul allows
detormations perpendicular o its-plane. flove are the bound-

ary condifionsg
U= vasews=0, l.o, kinewictic conditions only,

UEZ = O, loev, static condifion,

Kinomatlc
condillion

a%ﬂ = O, applying to voriical walls, }

6‘/3‘ = O, opplyineg o horlzontal witlls,
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& = D W (3.6)

(this really being applicable only to minor displacoments
with Dbnjng defined as in oquation (2.2)).

This domonstrates that it is necossary to know the displaces
ment vector l‘ in every point in order to duscribe complote-

ly the state of displacemont in a goneral 3-D continuum,

Kinomatic consistoncy can be defined verbally as follows:
A stato of displacoment is to be dcocomed
kinematically consistent whenever noighe

bouring parts nceither diverge nor peno-

trate one anothor after detformation.

S tros s - Strain Relotiongs

For lincar-elastic materials (hese relations can be oxe

prossed as followss

v - E‘ 2.7)

with E; representing a 6 x 6 eclasticity matrix roflecting
the material properties of the material concorned; aniso-
tropic behaviour is nol rinled out, This matrix is positive-
ly defintte, (Inqomproaslhln matoerinls constlitute an ox-
ception.)

Applying Hooko's Law, we have
1=y 3 y 0 0O

et

-y v U TR T
E 1-v

(9
E S (e (1-29) 1:2v

8
)

12y
fsrnnhe}ﬂsth. 2

E being Young's modulus and v belng Poisson's Constant.
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For isotropic materials in which heat expansion is ¢ 1al in
all direct’ons eoquation (2.7) ran Le expanded as followss

@ =Eeg+al ET - EGI (2.9)

with @ constitutlng the heat transfor coefticient, T repe
resenting temperaturce altleration, tl being the 6 x 1 col=-
umn vector of initial strains and

E -3yl 1 -1 0 0o] o

Equation (2.9) makes it possible to arrive at totsl strains "‘
by multiplying both the right and the left side byl"'(l.-.
the lnverted matrix of E, E" E ;-.Ib ).

é‘ = 5‘1 - - 4T E-fET.’_ el (2.11)

or

gl‘ é‘ + ‘1_ + QI (2.12)
with

-1
‘f = E L (olastic strains) (2.13)

& 9T {1 1 1 0 00]

‘1 b (&x: 51“ Eln. flly zfyt iJlAS . (2.15%)
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1 v v 0 (o) o 7
1 -~ 06 o0 o
* |E'L=;1 1 0] o O
& 241¢v) o O
20) 0O
" Z(""T)J

(2.16)



2.1 g tagtic Cons i s toency

In the case ol a three-dimensional continuum the equilibrium

or static-consistency conditions can be defined as followss

Do+w -0 (21

with roprescnting the 3 x 6 matrix of diltrorential operators,

(2.2)

\ v
1]
o o Y
o Y

oYY o

YW o ©
Ly e
v

and ropresenting the 3 x 1 column vector of volume forces,

w - {LU; uTJ L"z} 2.9)

We can state generally that

, all forces acting internally and I

externally mus<t be balanced,

he}
13

Kilnemwmantic Consistonecely

This type of consistency is geomelric in naturce, If wo doe-
fine all deformations of a continuum causoed by external loads

or tomperature gradients by means of Lho displacement vector
u = {u,\ u\, u[} 2.h) .

and tho appropriate strain vector '

& -{sa 5, 5, b G En]
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- th =

If we now take into account the fact that external work must

always be bnlanced by ilnterna. work, we have

W= wd Sw*-dut

Theretfore,

furtduwdv+ (B0 dF - foldgdV oo

[udardy <[etSBJF - [etded
v F v

&

vigp tunldl Wori

In the caursce of the caplanntions of the ecnorpgy theorems glven
above we have assmmed that displacements occurred becanse of
real loads. This Yimitalion, however, ts not neceasary, The
cquat ions given above demonstrato thal d‘W and &M can be
exproeasaod independently of d“P il (_'\‘T . Therofore, It ja

possilile to soloclt an exprossion of vivinal work, such as

Ubf(.()w

the only condition betag thal 8“ is a kinemalicatly consistont

dolformatlion,

An clastic body is comstderod Lo bhe in equilibrivm under any

glven load, including temperatnre laads, if

W= &U )

can be applicd Lo any jndividnal vivtual displacement 5“ ol

a kinemictically consistont <tate of displacomont, This cequal-

fou represent: the principle of viviual work., 1 can be do-

fined as follows:
Extornal virtunl work caused by externnl toads aml
involving virtunal diaplacements is oqual to internal virtual
work poerforined by .«IHrn,us and davolvins virtunl stratas
pravided that the stresses arve statically constisteont

with the outer loods,
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ENERGY THEOREMS

In 1954, Professor J,. H. Arvgyris stated in his book, 'Enorgy
Theoroms und Structurnl Analysis' that all onergy thcoroms

can be reduced Lo two baslce princlpless

= The principle of virtual work (or of virtual dise-
placement ) and

= The principle of complementary virtual work (or ot
virtuul forces).

Those two principles constitule the basis of tho strain ene
ergy mcthod employed In structural mechanics.

To begin with, we shall deal merely with minor displacoements
or straina, with all eoquatious vcenrring representin: lincar
behaviour (t.e. all equations can be utded Logother),This
does not mean, however, that we can deal with strogss=atrain
relations only, to the exclusion of all othersy we presup-
pose, however, thal all relatlons changroe only monotonously.,
This makes clear that, althonph strains and dlsplacomonts

may be supoerimnosed this {s not nlways possible with strosses,

Morecover, there is a speciflic ipproach to nach problem.

To bogin with, lot us deal with n =D body under the followe
ing loadss
Balancing volmume forces; Q& (per unit volum:)
Surfuace forcesy 4 (per unit arca)
Singular lorcoes.
R

Looking at Lhe displacoment dia,zsram
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the change Ja work §W cou now Le cxpressod as
-~ - 1) 4 *
SW = Kdau -+ 23 Rdu
' or, if Ligher-order nembors are left out, ns
o
1) ™ [0 Voo '.": Q A t g
AW = Rdu = G,V Sw 4V« J‘éc?udf
t [
In complomentary work, of covise, the following sppliess
v (L0 J ked |o
SwWh- udR: o durdve | W dQdF
1

-

: r
We can eatabllsh sltiar 2qurtions to oxpress the strain

energy (U and UV )s

o Sl Tl

T LA y / u p
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Let ur apply thias princliple to a 1little oxample id order to
confirm our idcas,

]
Y : oL . — Y }
iy oA -_1_!____,“:”_,'\1—‘-‘ T el W
RY Veumw | s, ! f
e .——-ai
t

Our exnmplo is a staically dotermined latticework structure

in which the force excrted on the rod 1.2 is tuo he dotor-
mined. Qur sclocted viptnal displacement Sw poermits only
of a kinomntically consisatont =hortoning of rod 1.2, All
other rods are not subjectod to any aiteration of thoeir

respective load states,
. 4
Vortical displacement under load R ist Su El.

Shortening of the rod 1.2 iag Alﬂ_

h o W\ _ 4w
A‘u."-"'g“(-ﬁs*bz = -du biba

The rod force to be determinoed istg Ml '

We now apply Lhe principle of virtual work by

@ &
'chu—h___- Nyg, L

or

Reb
”n="ﬁ\'i
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3.2 The Unit Lond M~ t hod

A special version of the principle mationed above is called

the unit load method, Later on, this method 1s used very ‘

frequently in compiling elomont matrices.

Instead of a random load, a singular force 1s now applied In

the direction of the displacement to be determinedg

14w - "’Q‘GAV (3.5)
4

In this equation,

!

= displncement in the direction of the loady
w
E\ = true (or red1) strain veclorg

v = stress vector, which 1s morely required to be in
balance with the load,

The following exemplifties the application of the unit load
methods

- 1
4
L

The displacement u occurring at the tip of Lhe beam is to

be dotermined,

e — \.i
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The trap straines arcs

R
& E'I"(z-{)\‘ F:.« g"?"(

Ell = 0 E‘-' O‘-,‘g

The stress voctor

e )

UG = i‘f‘\f

Therefore, the displacoment can be doterminnd by

.
u - fvz dv/ = f [(‘g‘(bg)z(lz] .%,ngu:
) F'h
( )
MR Th g R
1_&‘_‘ _EBI-JI{E:-R{ J’/‘z 4§ £l
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The most important slep of the malrix method In structural
mechanics is to determine the phrysienl or mithematical model
of the structurce., If the displacement method 1s used, this
model will fulfil overywhore fhe condltion of kinematic con-
sistency but will I mostl: rases be staticoully culls-l;t.ont only

in the nodes. (Conditlons ave roversed Lf the dunl method -

the force method -~ 1s used,)

8
The model is devised by subdividing the structure into a fin-
ite number of f{ilnlte eloments, Kinematic consistency is a pro-
requistite for cach element, whereas static consistency gen-
erally 1is required only at the nodal polnts of each element,
In some gtructures, o.e,. simple framework structnres, del'ining
a physical model 1s vory casy, whercas three-dimensional struc-
tures in most cases require some compromise solutions. Sub-
dividing a stracinve Into finite oloments is somowhat dlf-
flcult. Only a constant nsor ol this wmethod will be able to
circumvent thesce difClicultles cconomlically, sunccessfully,
and In accordance with engineocoring requirements, Bogimoers
are mosatly inclined Lo work fir too hastlily, Alwitys keop Iin
mind the Tact that 1t is not thoe structave Jtsel! which 1s
computed but merely a model sclected for the purpose, Mls-
takes comuitted In devising 1he model, such as faulty boundary
condl Lions, may produce i completely orvoncous reosult, Should
the error bLe found oul lalter you will have spent a Lot of
money without bLeliy, able to show somethhiyr for 1L, Shauld
the error remain mndiscovered, which 1s portectly possible
if the engrineers concerned are jvexpericnced, malfunctions
in the fiuished stranctnree mav coanse a Lot ol expensce. Tt Is,
therefore, our opinion Lthat thore should he o unnocessary
comproml ses whien dovislog the modoel, The deltermination Lo
save DM 1,000,.- in manhonrs mity coxt ten times as much bn

alterations whiich may be fornd wecessary lator on,

Assuming that Lhe appropriate model has heen dolllned we now
enter the sccond difrtecult phaso, fhat of checkinge the ro-
sults, lere, too, we mweet o numbor of uncxpected surpriscs

which in most cases can be overcome throngh experience,




Bafore going uny further it 4~ prohably boest Lo oxplain
briefly th» major charactoris!ics ol Lhe Finite Elomont
Method (FEM). The foiiowing yagures Chow o dioaphragm neing
calculated according to Lhe classical wothiod (i.0., the

finite difference method) and accovding to FEN,
CLASSTCAL TIIEORY

1 Mathematical Modol

2 Problem

By oy ﬂlz)
* P se R S S T § L2 — : L
Def'initi.n 3 xl Age I s

FINITE FLEMENT THEORY

1 Idealized Model

2 Problowm Delinition {R h] r? . r
‘n "u‘ - tee ‘ In ‘
') “'. L N
i Ve l z "‘4" *a Kon ':I
! L R.'. ’ ' '\"u. ":.2 t ﬂ.’.a ["n




The figures show that with the classical mothod the dia-
phragm’s deformatian is expressed Ly the well-known bihare
monic equntion, which In turn Is a function of the two coor-
dinates x and y. Morcover, the deformation w (x,y) is depon-
dent on the load imposed p (x,y). D detines the material
and geometric properties of Lho diaphvagm. Now, If you want
to define the same diaphrogm by means of a FEM model §t is
first described by a finlte number ol nodes located In the
contre of the diaphragm planc, Those nodes (often callad a
mcsh) are then conneccted by a correspondingeg number of bLonde
ing elements, thus constilnttng a complele model of the diane
phragm. The external load defined by p(x,y) in the classical
method can be Incorporated 1unto the FEM modol only as a nodal
load (Ri.)' Theso nodal loads must be kinemautically consistent
with the sctual surface toad. The load 1s to be deemed kine-
matically consistent i€ Lhe work performed as nodal polnt
displacement Ly Lhe nodal point loads, 1.e. 2 R‘ri, is
equal to the work pertormed as corresponding intornal dis-
placements In the eloment Itself by the diskributad surfnee
loads. An oxample to cxplain this poinl will be given in

chapter 7.

Once the external load Is deflned kinoma Llcally consistent

R={R\Rz' "R.,}
the stifrness matrices of cach individanl ol swent *i. are
compilod (ct. also chapier 5). This Individual atiCfness mnte
rices are thou used to compose the global stififmess matrlx
( K ) of the finite element stroe ture. The lincar syslem of

oquatlions pertalning to the Yinilo-cloment moded snloctod

now rocds as

Ke = R (h.1)

With thia equatlun established i1 shhonld be eloar oneo and
for all that generating the global stiCfness matelx K is )
the paramount factor in the seloction of the correct pliys=

fecal =model. As has been mentioned boelore, the global stifrt-




ness matrix Is composerd of the :dded ontrios regarding the
individual clemenis (&t ). Cunsequently, the quality of tho
model smelected (i.e, k) depends mainly on the typo of elo-
ments (diaphragms, discs, boams) available to the modelling
engineer. One might almost say that the larger the number

of element types available to the engincor the better he will
be able to adupt his model to the actunl physical conditions,
(Our ASKA system ofters aboul 50 different typces of clomont.)
Engineers who uso FEM ouly sporadically maintain thaot such a
wide rango of elements is only apl to cause confusion. This
view, howover, is causcd by thoe fact that this particular
type of user docs not know enough abont the facts and probloms
of correct FEM applicution. (For instance: TKOSS have solved
problems rcquiring more than 10 diffoerent types of elemoent

to ensurc a sufficiently accurate model,)
In conclusion 1 shonld like to stress again that

boginners in the use of the Finite Eloment
Method shoinld never attempt in a sort of valiant
efforl to compute alonc any structurce which ls

actually to be erocted later on,

Although experience gninoed by working on one'a own {s mowst

valuable it is too costly in terms of money and timel

e



ELEMENT STIFFNESS

The significance of having puod Findtoe clements to be usod
as components when modelling o glven struclture in theory
has already been underlined in the precedin chapler, In
view of the fact that o mnltitude ot eloment types has al-
roady been described in fiterature it only remains for us

to mention the way in wirichh an cleomont stiltnoss s trnerat ed,

Genernlly speaking, thore are several waovs by which to arrive

at an element stLilffness malrixg

1) Unit load method or unit displacement meothod.
2) Castlgliuni ‘s Theorom.,
')) Solving retovant dil'forentinl cquations,

W) Toversion or flexibility malrix,

O all the methods mentioned above method 1) is most gencrally
employed (cf. also cquation (3.0)) becanso 1L shows all stifr-
nesses (i,co. forces) to be determined in the direction of

the predetermined unit di splacement s,

Let us conslier an casy example (a cantilever beam) In ovdor

to improve onr understanding o’ Lhe physical signirficance of

N,

LN P N YL V'N

the term ‘stiffness?,

l Croment o . flhemest »
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The figure above shows that fonr deggrees of freodom (t.e. the
same numbe of unknowns nsed in the dlsplacenent method) arce

fully sufficient to account for all kinematic posslibjlitios,
= (5.1)
W= { Y\ Vt V3 Yiilf

Morcover, both the stiftness matricces “ anrl “ (cloment a
and b) as well as the global stirfuess matrix K are syme
metric matrires (prou[‘ by means ot Detills Theorem). Theore-
fore,

‘ , |
&..‘ E fﬁ; wn | l/("1 = K (5.2)

Farthermore, the non-singnlar Fglobal <tirfnras matrix K
must necessarily be a (4 x t) tLype of matrix, l.c. its dimene

slon must be equnl Lo the number of nnknowns,

Lot us first consider clement o individunlly.,

4 ﬂ.f |
g's ! 0:5 1

When consideored in this manner, i.c. disregarding the exlst-

ing boundary conditions, clement a has Cour doprees of froe-
dom. Tt would be possible, of course, to incorperate the
axial force of the rod by way of «n addititonal degree of
frecdom, but this Is not relevant to our problem. To dlffore
entiale boetween the element freodoms and those on Lthe global

level (PP ) we uxe the Greok letter YRio' Lu lower case.

¢ = {.j' T g’..}k (5.7)

In ordor to rind the rjrst ) ine ol our stift'noss mnt.rix“
L., vector

4
'hj ) {(’\1\ "'tl (’-c\ t”?HS (n.h)

it 1s merely necessary to carry onl a unit disaplacemont 1in



the dirnct ton of dosres of froedom ¥4 whilo temobidlixsing
all other end or nodal points,

(Notes f{! = 0.)

Tho physical significonce of the individual "; is that thoy
reprosent the actunl forces required to genernte the displace-
ment f“ = 1 only,

Now, the unit displacoment method (cf. also equation (13.4)
defining the analogous unitl load method) can be used Lo ar-

rive at tho forces (i.o. stiffnesses) to be dotermined,

f‘zij = i‘f%’d‘/ (5.5)

If we apply Lhis procedare Lo ,{" woe have

e

1‘11 h [O;fqd‘/
1 4

———tie— —
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U} merely being regquired to tze statically balanced.

!
2 3 y w
ot | ..-\_Jy

o \by VD
4 z
r-3(f)-2(3)
In accordance with the general beam theory,
M ]
o= _—I-" - £ U':‘

£y

Mereover,
1, -
n U‘ "‘Z l - ‘ + O
and therofore
! .
- " \2 -
in’ “ (W)Jl]/“r
F 0
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Now we know ‘that
. 1
.[‘ = L \/ JF

which givos us a sufficient basis to solve the fuilowing in-
togral.

&-
fy ~EL [0 - 2 5

Furthermore,

"2 B eﬂ

It is eusy to deotermine the force “3(- ‘.~) in a similar
vay.

43;"&\" zl"%

Now, in order to arrive al &l: y for inrtance, the mode of
displacement of the beam must be defiged in corrospondonce
with ” s 1,

w0 (2 [1-%]

Counter-clockwisn rotation is dofined ar nogativo,



Now, the intepgral reads

"’ I P
V;‘-'- ,_}1. - -(-('1" EZ) (5.7)

Consequently, ’ '\

by by e (G20 )y -

E—— —me—

i

The entricea still misslng from elewent stiffneoss mairix “

to be determined can Le tound by wiy of o similar procedure.

For completeness' sake wo glve you below Lhe entlre mal-{x
portalning to olement a, To arrive al Lhe matrix for elemont

b you meroly roplace !‘ by lb and l:l by lb'

12 2 44 Gh]

9, ~Lf.
& . E_I_‘_ 42, wdz u&\z -
a2 e, -#, (5.8)
1

g

d

Ploase note that Lhe malrlx shown above doos not lLakoe into

ncecount any shoear deformations,

As all stiftness ontrios o' the plobid matrlx K can be gen-
erated by simple addition off the lndividual elemont stiff=
ness matrix components  (t.e. in "‘ i ‘b) thoe b x h mot-
rix k can be complled manually, To decpen thoe operntor's
Ilnsipght this procodure can be LlInstrated by the Pollowing
fipguroe,



N

{ Sl

181 @t
fxt T w =), 4 Ll ®

3 )¢

The figure shows Lhat ontry &“ corvespondin to Crecdom €,
is arrived at Ly adding up tite two entries ( *“ Ja uamd
(*.. Jo » which means

Kip = ((‘?l>« ! (&")5 = 4 (E(%)\ ! L(—%)s

The romaining cenlries are arrived al n o similarly simplo

mianner, for instance K“ = | &“)L
To convince tiose wito ave not complotely sure abontl the coure
recluoss of titls procedare we demonstrate below how, lor oxe-

ample, the entry coucerned can be eateulated diroectly,

For thiis purpose, woe assume (2 = 1,
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The resultant force K12 can be simply detsrmined by super-
position of supports,

7 PO
b 3

! Eehn-u \é 't - ; -
4

Therefore,

w,
»
Lt |

I.)~
Comsidering element stiffnesses it is obvious that

%ll h (&Sq)d N ,M{\)b

which again gives us the same result.

“»

oot - s

-
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SILICTING SUITA. B JLF.IRNAS

Givon the -axrge nu-har of »alemant types to be found in lite-
erature it 's no*t alway: ecusy to decide what type of element
to use (to prograw a.~) & FEM program. I shall not make an
attempt to suomi® clcor proposals in this matter - the opine-
ions held by expert: aire foi tco divergent for that. I shall

merely state a e inportont vindings.

For each elameat a Jderorta_icn mode i3 to be selected. In
doing so, Lwo 1n. “rarirts 2re of major importance from the
theoretical noint of vicus

- Comrinte 2:8 2f tle ceforration modet

- Kinqsitie comsicimniey of the clement boundaries.

To snsura coryrec’ =y isti.aticn of all movements of a rigid
body, morcovc-, "% iz v-arisite that the sum of all inter-
nolation furctious sy yirs to each point of the clement
range be eqrali t» one  Xf, [or instance, the vector field
tL or the dis-Th0e oL widin e two-dimensional element
are expressed ns ToVlows

- [ =
. . - A,
N OPRPAEE o 8% ‘,‘I)Q‘.“ (6.1)
' ] 1 Ld
L-
“hen, necessuril-,
o

1 ’

/?"' KA f:"’«:“‘/\; = ’;' (6.2)

£ =i

Let us nnw, fo. ¢ licity's sake, merely consider poly~

nomial deformaticn =mcdos of lagrenge's iype (i.e. having

no derivations a. “rriloms) annlied to triangular and rect-

angular elcrarts vhi.i we assume to have membrane stiffe
nesses only.

Triangular ricirbra © Lio.ts ~ called TRIM's in ASKA tere
minology - have a ;rnal Lovanta=e in that their displace~-
nent mode can tTe .. rosced ar ¢ complete poI;nomiul. This
means that the funct enol variation is indopendent of linear

coordinate t-=nsfcr-artlons.

S
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If we designate the order of the displacement modes ‘Y P the
following figure gives a gooi survey.

™M3 pel .
i ENIW,
M P

The figure shows that, for instance, in the case of TRINM 3
(1.0. three nodee) the vector entriee of U (l.‘) are

- +
U = ?Qx ?’7 (‘
uy * % x ¢ ﬂ.y r %
Theee #ix parametsrs .ﬂ' are arrived gt by using the given
six possible nodal point displacemente to set up six equations

which then can be solved in a more or lsss simpls manner.

Representing quadrangular elemsnts - QUAM in ASKA parlance -
in the same manner as above, the figure is

QUAME
ouAMY
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On the one hand, the members of the pth order of this dis-

placement mode arc complete, but they alaso contain poly-
nomial memvers up to the 2pth order. This means losing the

invariant rotation property.

To demonstrate the advantages of higher-order eloments we

give the example of a cantilever beam below.
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The idealizations and ecloment typoes scelectod are

TRIM3 QUAMSL  TRIMG QUAMS

All idealizatlons contain the same number of unknowns - 16/,
Morcover, it is simple to determine that the analytical
valucs of the three load cases at the froe end of the beam

are as followst
Liond case 1

U’x‘xgo';-=42
U;Y:'I;\l: (0

(1] 8o
Uex = "-J;‘/ = O~
";Y = - Ho

ad caace

everywhore

The values calculated for the various models are listod in
table 6,1, A tew coments theretos

In load case 1 all cloments apply equally well, a thing which
was clear from the start, The load produces a constant stross
everywhere in the beam, whiich is why 1t is .::l‘l‘ivl.nnl, to nse
) the simptest cloment TRIM Y which enables yon to calenlate

exactly a uniform stress fficld, Pleoase note thalt the oxiste
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the stress distribution expected -

should be taken into account when selecting the elements.
-]

. 0 zt | 81v9°sq4 o 0 0 0 zt | 6 WVNO

o N

o

Vo, 0 0 z1 | szy'sq o 0 o | o | a 9 WINL

-
' 0 o frzes 6vZ1 94 o© 9 0 0 1 % WVNO
;
2 68vc-| szvi fr9o-s| 6Li6°td o 0 0 0 1 € WINL
2
M 0 0 zZ1 S 9- 0 0 0 0 A | santeA Ted1j3AL]jeuy
-t
b Ax LK I=k Lx LK x Ax J ¥ xx
: O o) g ool Tb| T} "ol
-
M { oses pwo] 2 aswed pwol i esud pwoy juemdTa Jo adLyl
i




In load case 2 you experience your ftirst disappointments with
FEM. This s not caused by the method being bad but by the
way in which the existing shear load (i.c. the distributed
load) has been replaced by corresponding nodal forcess Whon
determining the nodal loads only one lineoar variation between

the corner nodes was assumed.,

The figurce above shows quite clearly that a QUAM=A idenlizat-
ion gives « better approximation to the existing parabolic
load than that of an cqulvalent TRTM-6 ideallizat4on. This
should makec you consider Lhe significance of makling correct
comparisons, By the wayt This particular fault only appcecars
close to the nodal loadst the results obtalned one element

layer away from the free end are very satisfactory.,

Node No.| g 15| 251 351 45| 55| 65| 75 |85 95 | 105

Anal, 90 81 712 673 54 45 36 27 {18 9 //

TRIM 6 bl.87Fl.5|72.7863.7654.76&5.7&36.7@27.76!8.76 9.74 1.5

QUAM 9 91.9582.4772.llb3.0053.99r4.9935.9926.9917.99 8.92 0.11

Table 6,2 Distribution UYG;X In load cnse 2




————

Fig., 6.1 shows an additional comparison, demonstrating une
equivocal. y Lthat merely increasing the number ol unknowns in

simple elements, auch as TRIM 3, does not mean that the re-:

3ults obtained will be of the same quality as those obtained .
by the use c) higher-order clements, such as TRIM 6., Genoral-

ly speaking it Is betler to use one TRIM=6 oloment rather

than the equivalont TRIM=3 model, i.e. 4 TRIM=3 olements.

Hantion should also be made of the fact that similar con-
slderations mny apply to three-dimensional eloments as wolly
cf. Fig. 6.2, Cespito tho fact that this example does not
sield an exact value it is possibloe to guess at this valuo,

basing the guoss on the boundary properties of the displaco-
ment rethod,

Finally, permit me to warn appainst the combined uso of dif=-
feront types of clements which are incompatible as far as

%inomatic consistency is concernod.

Incompatibility in kine-
mn'ic consisloncy,

o
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Fig, §,l § Cantilever beam subjected to transverse load

Data and typical idealization
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Fig. §,1 b Cantilever beam subjected to transverse load

Accuracy of final displacement v, obtained by vara
ious methods of idcalization
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Ligs 6.2 Short cantilever support subjected to transverse
' ' load.

Final displacements v, obtained by various methods
of idealization,




7 I:ﬂE DISPIACEMENT METHOD

This chapter is intended to be a brief introduction to the
displacoment method., (Dctailed introductions are contained

in several publications other than this.)

As has been mentionced bLefore this mothod implios gonerating
an equivalent physical model of the structure by tying to-
gether various and often different elements at their nodal
points. The unknowns of this model are the displacements de=~

fined by means of matrix M , incorporating all existing
boundary conditions aud other limitations.

Loads, such as temperature loads, manufacturing faults, and
water pressure are defined at the pertinent nodes in matrix
in a kincmatically consistent manner. The entries in
the load matrix correspond with the selected directions of

the unknowns P , so that work may be expresscd as followsg

Work = Rtr = 'tR

We have seun beforo, in equation (4.1), how to write the

linear system of equations consti tuting the link-between
and P -

Kr =R

Let us first of all, however, consider an element whose
displacement processvs have been defined by its deformation
mode. Kinomatic nodal point displacements of this element
are dosignated by vector $ , and the nodal point loads cor-
responding to @ uro designated as P (the Greck lotter,
capital 'Rho'). It Is obLvious, then, that In ecuch eloment

P - &ege (1.2)

Note tho simllarity of this equation to (7.1).

(7..'.’) can be expanded to take in all neeloments simul tnncouslyy

P = *j. (7.3)




- 4o -

Obviously, in this cuse both Pand ’ are hypormatrices (hyper
column vec.ors, properly speak.ng),

PR R-R R
g = 1@ 91 g‘ ...r"i

tho olement stiffnesses being contained in a hyperdiagonal

matrix &-[&1 &2.”ee.“en"

The displacoment mode allows a clear definition of the dise
pl&'comonta occurring within tne cloment and at its boundaries.

u’??i O w

The strains caused by this deformation can be exprossed as
follows (cf. also equation (2.6)):

& = Du=De¢¢ (7-3)

The strosses (Mare (cf. also equatiof (2.9));

T=Fe-¢p+ @ (7:6)

with Q designating any possible initial stress.
In chaptor 2, mention was mado of the volume forces W (cf.

equations (2.1) and (2.7)), ond in chaptor 3.1 we dosig-
nated surface forcos by § .
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Using the principle of virtual work (of. 3.2) we may now set
up the following equations, sssuming a virtual displacement f ]

W = ?§ - (7.7)

Bquation (3.3) shows that in_the case of virtual displacement
the equilibrium of all ‘external and internal work (s ) is
safeguarded; cf. also equation (3.1)3

iy i s - [l = 0
v Fo Y

In this equation, index 'p' designates the part of surface
¥ subjected to ; . Inserting equations (7.5), (7.6) and
(7.7) into equation (7.8), we have

i'F = }tf?tDt[E(DQg-GI)a- e]dv

-'g’fh"wd\/ - !tff,:{r‘“: ‘

Rowever, the equations given above have to be satisfied con-
corﬁing any random virtual displacement:

F= '&? - S&" Sg- Sv-’sl’

(7.9)

wlori

= J’ep‘D"E Dedv _ (7.10)
4

represents the elomnent stiffncss matris,

— e o




Moreover,

3 = J(‘Prjh'x av
S+ | @D v

4

S - | guds (71
S = i 'f § IF

r

These equations (7.11) represent the procedure required to
compute kinematically conai tent nodul loads out of dise
tributed loads. Should the procedurc not be kinematically
consistent the results obtained are sure to be faulty.

For simplicity's sake, let us define
= + t
5 = .c-lfl” So.; Sv Sp (7.12)
If we now compare (7.3) to (7.9) we find immediately that

F - P-8 (7.13)

This should suffice to explain equation {7.3). Possibly we
should stress ~7a'n the Juct that {7.3; merely satisfios
the condition of statically consistent equilibrium at the
nodal points only: it s, thaerefore, quite possible that we
may find local discrebancies. Moreover, all matrices ‘k.
necessarily singular, containing as they do some rigid
body displacements.

The next step is to cxpand our elcmeat-level considerations
of above to the global lcvel. To do so, we first of all—
have to establish a connection between g element displace-

ments and p global displacements. For this purpose we use

a simple transformation or cornection matrix which, referring

to an olcment'(' s, Treads

ge = _acyv (7.14)




This equation can be set up for all elements in a manner
similar to that of (7.2) and (7.3) above:

¢ = av (7.15)

Provided that. we have defined the same direction of the de=-

grees of freedom for all g and o , & morely contains en-
tries reading 1 and is therefore corresponding to a Bool's
Natrix.

If we now apply the principle of virtual work, designating
by ‘ the external global nodal loads, we can set up the
following equation (cf. also equation (7.13))s

:tF = *t Q (7.16)
Ueing equations (7.13) and (7.15), we have
vat (P-S) - v Q (7.17)

8ince, however, cquation (7.17) must apply to any random
virtual displacement we now have

a (P-9) = Q@ - (7.18)
We nov take into account oquation (7.3)

adkay = G+ &S (7.19)

and finally, we come bLack to (cf. (4.1) or (7.1)

in which case KV‘ - R

K = atka

(7.20)
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and

-4

‘The congruont transformation demonstratod in oquatioen (7.20)
is, of course, never performed us a pure multiplication of
matrices in the case of large-scale probloms.

R=-Q-as

(7.21)

In such cases,

algorithms (direct stiffncss method) are used which permit

adding tho individual cloment entries diroctly into the glo-

bal ‘atiffness matrix,

K=> atk.a,
e-1

(7.22)

In most large-scale probloms, matrix ‘l will bLe subdividoed
into hyper=column vectors as well.

i"“

- ewe wn wm

Total number ¢' unknowns

—

-

t-1

—

m = sum of Lhie global degrees of froedom of all cloments.

1 « hyper-column voctors of.hypormntrlx a
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This moans that the sum of the global stiffness matrix now

reads { ¢ n
K =223 aka.
J=1 =1 €1 t77e 'J (7.23)
Equation (7.22) applies automatically to all smaller-scale
problems in which € = 1. Figures 7.1 and 7.2 indicate this
procedure.

Having set up tho system of equations (7.1) we can now pro-
ceed to apply Cholesky's method to ndlvo the simul tanceous
equations. (Cf.. Fig. 1.4) We have to see to i%, however, that
matrix K is not singulari: this we avoid by establishing
proper boundary conditions, including suppression of rigid-
body movements, which guarantees that malrix K will roemain
non-li;’lgular from the very start,

Having successfully solved the equation system we now know
the displacements P , which enables us to determine theo
stresses & by means of equation (7.6).

In view of the large scalce of the problems which are of ten
to be calculated tiicsc days *he engirnccr in char@fe must haveo
available an automatic substructuring=technique. It is for

this reason that we shall briefly go over this procedurc nov.

To begin with, the displacement matrix is subdivided into
two submatrices:

Y = {TL V'E} (7.24)

with Y containing the local freedoms, i.e. all degrees of
freedom locatod within a substructure. Vg dosignates the
external frcedoms reprosenting the connecting freedoms oOF
the existing substructures. Now, the global matrix K is
subdivided according to equation (7.2u4)3

K, Kuj " -RLT —
LKEL KEF_ Y RE

. J e

(7.25)
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Prom there, we go on to set up the following individual
squations

-1 -1
Yf. = KLLRL - KLLKLEWE (7.26)

(K- kKK n = R - KLKIR,

An alternative notation of the lattcr equation would be

&'} = if (7.28)

Pleaso note the similarity between this oquation and (7.1).

(7.28) shows that a substructure may easily be regarded as
a super-element. Therofore it is possible to calculate the
problem in several stages (recursive substructure technique).

Pinally, T’ should like to mertion the fact that prescribed
displacementis 1‘" and suppressed displacements 11 may be T‘.’
handled in a manner similar to that shown above,”Thc manner
of subdivision usced in the ASKA system is shown belowy

Ke:R 1

P R
'
“ll 'Il Ku "‘n .l E
b - }_. S U,
t t
“l’ (14 K” KH .' s
! \ '
K“ L K,, Ko R, S

Local deproes of freoedom (slave unknowns)

Extornal degroes of freocdom (master unknowns)
Prescribed depgrees of freoedom iboundnry‘ﬂundltlono;
Supprossed degrees of freedom (boundary conditliona

Lome




- 49 -

There arc many advantages to the substructuring technique.

Firstly, it permits subdividing a complicatecd structure into

easily handled components. Secondly, it 2llows for generat- -
ing goometiically similar substructures which do not neces-
sitate calculating the whole problem over again from the
start. Thirdly, it affords the expedient, should modificat~
jons become desirable, of defining as substructures minor
areas in which alterations in the comiicated structure are
expected to occur. In this ggse, only these modified struc-
tures have to be re-calculated (i.e. K;: ), with all un-
modifiéd substructures already solved. In a number of cases
this procedure vill help to save - a lot of machine time.
Iourthly, it increases materially thc system's goneral flex-
ibility of application, especially if unusuanl boundary con-
ditions, such as sliding effects within a structure, should
brcome desirable.




The. finite-element method is excellently applicable to dyn--

amic probléms as well. To do so, it is merely necessary to

expand the linear-static equation

Ky = R

corraespondingly. Here, we can make profitable use of the term
'kinematically equivalent 1o;d' established in chapter 7. In
accordance with d'Alembort's principle it is possible to re-
duce a dynamic problem to a static problem by introducing
negative mass aécelerations as fictitious forces. Thus, in
the plnce of the distributed loads per unit volume we use
d'Alembert's forces {cf. (3.1)).

W, = -/“J- (8.1)

In this case, /44 represents mass donsity and

U = g}:ﬁ (8.2)

represents local acceleration Applying equation (7.4), we

wI = ./a‘{f (8.3)

If we now introduce equation (8.3) into equation (7.11),
using Sv y we arrive at the quasi-static nodal forces to
be determined

B~ ptiedt

or

PI ="ﬁ\§ (8.4)

—




in which case

m = [uqiedv (5.
4

ropresents tho kinematic-consistent mass matrix of a sub-
structure,

The dynamic equilibrium of a discreotizod structure can Le
expressed as follows!

Rxﬁ' RD + Rs = R“:) | (8.6)

In this case,

RI = mass forcesi
R. s damping forcesy

R’ s olastic forces,

Elastic forces hiave ulready boen defined in equagion (7.1)
as

R, = Ky (8.7)

Basod on d'Alembert's Principlo, mass f'orces may br oxprossod
similarly to individunl cloments (cf. equation (8.4)),

R1 = M&: (8-8)

with M roprosonting Lhe structurce's global muss matirix.
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Pinally, in case of viscous dumping the damping forces may
bo oxprested ss follows,

R,= Cv (8.9) .

with c represencing the global damping matrix.

Vith the aid of oquations (8.4), (8.5), (8.6), (8.7) and
(8.9), we cnr now express the total displacement equation
applying to thn enfira siructuro to read,

(8.10)

Mié+Cr + Kre = RI)

It now becomes necossary to define the two matricos "IM
c y using tho principle of virtual work.



—
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9 IHE PRINCIPLE OF VIRTUAL WORK APPLIED TO DYNAMIC PRODLENS

To begin with, let us consider an elastic Lody deformed by )
dynamic fo;*ces. We may assume that within a specific time

interval the displacement vector u-o will be 3ubjected to
a certain amount of virtual alteration

u, = Ut du (9.1)

The virtual displacement factord M is infinitesimal se well
as consis‘tent u'ith the given boundary conditions of the total
structure. The virtual displacement mentioned above causes
consistent virtual strains, c(‘l‘ s which can be used to cale
culate the momentary alterations of strain enerxrgy Ju‘ . In

a dynamic proccss, the external virtual work, therefore, con-
sists of the work of the volume rorces,{® ), the surface
forcos (! ), the aingular forces ( P ), and of inertia, dis-
regarding damping as a matter of expediency. Applying the
principle of virtual work, we have (cf. equation (7.8)

in which case the estrain energy is =

T fc“&td' v (9.3)

dw; = YMWAW Put“hg’” (5.4)

with " containing the virtual nodal displacements psr-
taining to P (ef. equation (7.4)).
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Vork must be the sume, both on the elument level ( §, ’ )
and on the global level ( P, a ) (ef. oquation (7.16)).

. szP(n =det Q) (9.3)
Ve can extract 53 P from equation (9.4),
Set@t) = é‘w S‘wa'd\/ j&’u"{dr

extraot W from equation (9.2)

St QL) = Qu; + (,wu,av fé’u‘w‘dt/

fc_(’u“dr

and, finally, 6“, from oquation (9.3)
- LA o dv
Now, it follows from equations (7.4) and (7.15) that

W= g = qar
and that, if , is non-variable over™time,
W = ’e - qas‘,‘. (9.6)

Moreover, equation (7.5) shows that

& =Dy - Dqg - Deav (9.7)

Applying equations (9.6) and (9.7), we have




Sriqu) » &¢[algTa dv- Srfudppr it

_ {pt f a‘fu}'ch/ - St f 2'¢'p oF

Vith ‘r representing a virtual displacewent, we apply
equation (7.6) to arrive at =

Qlt) - a*f/ffJVa?‘f a‘!q‘b‘t Dedvar
| - &S(t) {9.9)

the definition of Slt) being dorivod from ejuation (7.12).

If we now insert intn this equation

Ri) = Q) + atS(H\ (9.9)

in a mannor similar to that employed &n equation (7.21) and
if, after that, we use cquatlons (7.10) and (8.5), equation
(9.8) now rcads

atmat+ akar = Rt} .o

In comparison to (8.7) and (8.8), an altornative notation
would he

MY: + Kr = R(k) (2.119

in which casoe,

M= aima (9.12)

and, K beling derined as in equation (7.20),

K = atha
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nw\‘w:qtrix can bo gonorated in a similur mannor,

|:'7'-:‘ C = atc a (9.13)

c ropresonting the individual viscous damping matrices of
the slehénts., In' cises of structural demping of an actual
structure, it is not always Emsy to arrive at the proher'tio-
of matrix c + In many cusos proportionul damping is as-

(9.14)

Ve should mention, however, that tho damping charactoristics
of materials and structures are still obscured by many opon
questiona wvhich can only be answarod by intonsive experi-

menting and research,




10 NASS MATRICES

The. kinema.ically consistent maee matrix (often calied equi-
valent masé matrix) of an element can be derived from the
following equation (cf. also squation (8.5)),

m = l‘/“?t?&/ (10.1)

the relation between the displacements lb within and at the
boundaries of an elemeni on the one hand and the nodal dis-
placements § of the element on the other being expreesed
ae follows (cf. equation (7.4)) .

u = Q? | (10.2)

Generally, dynamic procesees do not have a clear matrix
applicable to the oentire etructure. However, discretizing the
structure into individual eloments yields an approximation

to the actual dynamic processes which may be decamed satisfac-
tory in most practical cascs.

Ir this chapter, we shall use one type of element - TRIM ] -
to follow the simple procedurc of compiling a corresponding
mass matrix., First of all, we eimply assume that the element
is aligned in the following fashion relative to the global
axes x and Yy,

Y14

ty

(] 3| §
€y X

Using non-dimensional coordinates ( S'z ) we arrive at

2 3

® ‘[; (1- §) §] .

PRORPUSIS €
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The displacements ocurring within the element towards tho
direction of x, designated as um , are

.. ‘uxwi = 'qn g;‘ ‘)ﬂels
with |

{S/x( ?)(2. 93(3}

Given a constant thickness t. it is now simple to calculate W}

11.

.y [fpdxdy =utt,, [ f,,,,,m;

Rosolving tho integral yieldn

- 24 1
| I
Lo : . 442

with F representing the area of the elemont,

Generally, however, an element's orieatation relative to
the global axes will not be as we have assumed above. To
compensate for this, the method of polar coordinates is
ueed in practice. This system of coordinates g,zia defined
in the following figure.

—



The figure shows that, using polar coordinates, we have

@, = [U-6) §y S0l o

Purthermore,

Ax = X, +§(";1"l"32)

\, =Y K $(yn 1 'fu)

(10.4)

80 that Jacobi's Transformation betweon the polar and the
cartosian coordinates nov reada os follows:

Consequently, we can simply use equation (10.1), givon a con-

stant thickness ¢t -

{4
m ’/‘{II,}‘“J(”Y)H“! (10.6)

Obviously, matrix (10.6) given above applies both to the x

and y direction,

2 1
4
M= ;2/“‘ F ‘: j:
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In this chapter we shall deal with small-scale harmonic vibe
rations having u'finite number of unknowns, Without damping,
i.0., with c = 0, oscillatory vibrations are bound to cone
tinue forever - an impossible thing to happen in practice,
of course. These oscillatory movements occur only in certain
specific frequencies, roflecting certain specific states of
deformation, which is why th;y are often called 'character-
istic modes'.

Basically, two different typss of oscillation are possibles
- Free oscillations; and '
‘= Porced oscillations,
For completonoss' sako, lct us ropeat the total displacoement
equation of a global structurc (8.10)s

M¥¢ + Cr ~ Kr = RIt) (11.1) |

Generally speaking, thore are two possible ways to solve
this system of oquationsg

- Modil superposition theoroms and

= Direct integration,
The formor mothod is often usod for problems oxpocted to ine
volve minor amplitudes only. Thus, the displacement vector
is oexpreasod as u linear function of tho churacteristic mode
by means of modul nmplitudés. This process yields a simple
uncoupled equation for cach mode of the structuro. After
solving each individual oquation the final result is arrived
at Ly superposition, To do so, we first have to find the
natural frequencies and their natural modes. Tho equation
we noed in this caso is (frec oscillation, undamped)

M¥+ Ke = O (11.2)

This equation expresses o stuplo harmonic oscillation. The

displacoment voctor can Lo sinply expressod as followassg

Yy = qlfi

o;ur* (11.9)



Inserting equation (11.3) inte (11.2), we have
(K -w"M)Qz 0 (11.4)

thus expressing what is generally termed the 'general lin-
ear eigenvalue problem', scalar W. being the eigenvalue and
'Vi being the matching eigenvector. This last equation is
also often called charateristic equation.

Often it is necessary and/or desirable, for reasons of econ-
omy and numerical handiness, to reduce the number of global
degrees of frooc.lom. This is done by subdividing the displace-
ment vector into two distinct types of freedoms,

- master degrees of freedom ‘Pm y and

- slave degrees of freedom ‘Y': .

vl v (o

This method is often called the 'static condensation method’',

Corresponding to the splitting of ™ matrices K and ” are
subdivided as well.

-

Ki K

dm

K

= (11.6)
‘_s\'"' Knn
M, M,
PP am (11.7)
M= 1.
Sy M,
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Now, we presuppose that slave degrees of freedom are depen-
dent on mastsr freedoms. '

| E“‘Y‘m ; Y =T Y, (11.8)

and that the frequency equation thus reduced or condensed
nov reads C
~ 2 ~
(K-w'M)y, = 0

with “ and " being ths condsnsed stiffness and mass mate-
rix respectively. These two matrices can be found by equal-
ising kinetic energy (KE) and strain snergy (SE) of the
structure concernsd. '

(11.9)

8!- %rtKr - é V:"er (11.10)

™

- KB = ii‘thr‘ i".‘:," '.‘m (11.11)
Now we use equation (11.8) to determime i and ﬁ .

vef g, - piE (Tt TiM{T TiRo v



!
|
|
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But, as those oquations apply to 1111:' ve must have

K = Kur TH, + KT+ TR (1t

ﬁ = M,,.! TtM:.a '.nJ + T i (11.13)

Now we have to find the transformation matrix, T . For this
purpose wve assume that our slave degrees of !‘r--doil‘!"‘ are
equal to those freedoms which are bound to occur in a struc-
ture not subjected to any load except in correspondence with
the prescribed displacements T’m .

Ky ki) [w] [0]

=1 (11.16)

%“' KI,".‘I b'm R

or

K&V:, + K‘Jm b 0, (11.17)

which again gives

|
Y, -K“Ksm"w (11.18)
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If we compare this to equation (11.8) ourT now rouds as

v . .

-4 ' '
T = Kdﬂ KJW | (11.l|«)) .

h

If wo now combine cquations (11.12) and (11.1h) we huve

~ \ t -4 | (11.20)
K = Kmm ) KJMK‘.U KJ\\,\ | o

|
i
I

I

~ e

Note the rosemblance to cquation (l..17). The cquulion given
nﬁ'c;v'e' shows that vector T’d miay be ropgardal as an internal
dogrcn"bf‘ frecdom, The condensed mass matrix was definod In
(11.15). We should note, howeroer, that althousgh the statie
condensation ‘of the irlobal stit'rnéss matrix K roproesents

a mathematicolly exactl procedure the corresponding procoss
of condensing mass malrix M noecesslitates makingg addtbionnl

assumptions concerning displacoemonts,

When applying direct integration to solve ecquation (11.1)
it in not necessary to solve the olgonvalne problem, o
process whieclh obviously, under cectain clrenmsiances, s
apt to eonsumce i Lot of wmachine time., Morcover, tltls moethod
is applicuble to non-Linear problems as well, This nethod
tmplics splitting up the response process by tintte differ-
ences in time. The response ot the end of the Flrst Clolle
stop 18 calenlated on the basis of the inltial situatlon s
woll as Lthe load darig: the Pirst step. The resalts thas
abdalned at the ond of cach step are then wsed as an taitiod
basis for calculating the subsequent step, Descrlbingg the
entire range of melbods, each wilh its speoclile advantapgos
and with a followlmy of advocates, wouldd o beyond Lhe scope

of this puper.

JRPURUU P ¥
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12 NON-LINEAR PROBLEMS

Generally speaking there are two kinds of non-linear probe-
lems, i '

= non-linear material behaviour (elasto-plastic phe-

nomena), and

- non-linear geometrical phenomena.
Problems combining both kind; of phenomena still present us
with well-nigh insurmountable obstacles in sulving practical
engineering problems.

Again, we solve these problems by splitting them up into
small steps, each step presupposing a linear process; this
is, in other words, an iterative approach.

Moreover, let me mention the fact that the superposition theoe~
rem is not applicable to non-linear problems, which means that
if we have several load cases we have to deal separately with
each individual global load case.

The scope of these brief remarks does not afford an oppotuni=-
ty to deal thoroughly with these non-linear processes. I shall
merely attempt to give a brief survey®

If we are dealing with non-linear material properties we mere~
ly have to modify linear equation (7.6). We repeat this equat-
ion below as a reminder,

¢ = E(e-&)+0T, (12.1)

A general non-linear stress-strain relation can be formally
expressed as followss

F(G',e) = 0 (12.2)

As the compatibility equation (7.5) is applicable here, we

avo e _ Du . qu

(12.3)

v
—



to take into account as well as the requisite c'dnditi.ons" of
squilibrium. Its is obvious, therefore, that we shall find
thé solution of the non-linear problem (12.2) provided a)
that we mo&ify one or more of the matrices E ’ ". and (‘ of
squation (12.1) and b) thdt we can find a solution to equat-
ion (7.1)

Ke = R (12.4)

in which the stresses “ and strains f obtained will satis-
fy equation (12.2).

To be on the safe side it should be mentioned that there is
virtually no theorem guaranteed to provide an exact or corQ
rect solution to a non-linear problem. It is therefore per-
fectly possible to obtain incorrect results in spite of the
fact that all necessary conditions, such as equilibrium.'
displacement consistency, and a correct stress-strain relate
ion were fulfilled.

To obtain a solution it is always necessary to employ an itere
ation method. According to whichever matrix, £ , a: or C: ’
"is modified, the iteration process is either calted

- Method of tangential stiffness<-( E ), or

= Method of initial strain ( §, ), or

= Method of initial stress (6‘. ).
The tangential stiffness method is applicable to all elasto-
plastic problems. The matrix is generated in a manner li.mi-
lar to that described in chapter 7 in connection with the
elastic stiffness matrix (equation 7.10). |

{T = [‘PtDtF D?d\/ (12.5)
v

In this case, F represents the pertinent elnsto-plaatic
material properties which a user of ASKA, for example, would
have to define beforehand, Then, we simply have

KT - al:&ra i (12.6)
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This method necessitates celculating the tangential stiff-
ness matrix anew at every step and, far worse than this, it
also necessitates solving another system of linear equations
every time.- Although application of the substructure tech-
nique, with only some parts of the structure showing plastic
behaviour, renders the entire process much more economical
there is general agcreerent that the initial load method (i.e.

initial strain or initial stress method) is more favourable,

The initial load method may be expressed as follows (cf.
(7.21) anda (12.4)):

‘e
RA = E\E V; -+ BtJA (12.7)
with 4 , of course, representing an increment of the vector.
Matching initial loeds "!ﬁ:‘:x cenl then be used to simulate any
modification of tiie clastic stiffness matrix. In dealing with
elasto-plastic p-rblems we now use equation (12.7). In this
case, K! is resolved orly once. We merely calculate the ex-~
tent of plastic st-ain =t ~ach step.

Using ini ial loads ir?xp] ies cortain difficulties. The incre-
ment of each load voctor\:_:b must be derived fro;l the plastic
strain increment ivhich in curn is derived from R° « On the
other hand it is inpessivle to calculate plastic strain withe
out knowing the s:iress increment. To solve this dilemma we

have the two mettods of initial strain and initial stress.

Initial stress has an advantage over the initial strain meth-
od in that it is applicable to calculating ideal plastic pro-
cesses as well; othervise, beth methods are more or less equal.
(Ideal plastir nrocesses can also be decalt with by means of.
the tangertial stiffness matrix method, by the way.)

Nomn - Lincor Geometric Processes

This term descrites ull processes in the course of which the
geometry of a structure changes under load ta an extent which

rules out the assuv:ption of an equilibrium existing in the

. deformed structure, implying that therc is a non-1inecar rel-
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ation between stresses and strains. With each iterative step

it is therefore necessary to formulate ancw the conditions

of equilibrium; this despite tne fact that the scope of strains
continues small and that there is no presumption of linear

material behaviour. Processes presuming small-scale strain and

linear material behaviour are often called 'larpe-ycale dis- .

placements'.

At each iterative step .of a iarge-scale displacement the none
linear stress-strain relation causes a change in the element
matrices k « Modification of the element stiffness matrix
is designated by "(p . We cen, therefore, express the total
matrix * as follows:

‘& = &E + {(ﬁ (12.8)

with &‘ representing the elastic portion of the matrix (ecf.
equation (7.10)). The matrixkp is often called the geomet-
ric stiffness of an element. This matrix is not merely de-

pendent on the geometry but is also a function of the stres-
ses within the element.

A simpl samploe: K -
simple erample —— ? ﬂ: / s
f S==x ==
o~ ~ _ - B
-~ R~

Two rods are connected by a joint., Clearly, there is no atiff-
ness in the direction cf the load {4 while the structure is
still in its initial position, i.e. with the rods horizontal.
Equilibrium will only be restored after a vertical displace-
ment ¥ has taken place.

R""Z‘Zg‘”"’(n”

> '

Geometric stiffness, thorefore, is

Ky = %

s




) . v e e
- () = ’

The Tigures shown below illustente wnother example, A Plange
elomont Ls subjocted Lo a porpendicular foree No Undoer this

Lovd, additiunnl larpgeescile displacoments are Forced transe

versely l.n-l»lu' I'lLangoe ( lth ).

| N
/} . b
N o—-‘/ i

P/<}'-=='——-=-£‘-4 "—‘?A/—-J—px

In lurpgeoescale displacoments, the tarce will ot First cons
tioue In 1tx original diveclion alonpggthe 8 axis. This rives

rise Lo u mument No,

This moment smst be hadanced,
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or conroo,'bo.th moments must be equal,

Ma = A{"V

Now we have

l ot = Gy

and, thercfore,

If we now 'udd the vectors of N and Ny the load is again exe
ortod along the flango. Equilibrium is reostored.

$ii
// g VY
N

Let us now considor the lincar-elastic procosies, i.0, the

llnll--culo -tralnu. strnin along the flange is _pxprol-od as

E.. z ﬂ, = {
J fo‘j (3/

tho corrosponding force bLoing A, with the flange area romuine
ing constant,

- < AE
S“ AE[‘J ?:; (“I 'ut')

Now we can establish the entirc stiffncas matrix.

":'&Er e‘c,
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N'J 1 0 -1 0T Ui 0 0 O 0‘1 \J‘T
Nl ag |00 00} v g ooy,
N il 0 1 o vy Yilo 0 o of u
N . 00 0 0 V. 0-1 01 Vv
y: X 4 L L J 1 i.
e e r— e N
hl “E{ W '4k|b W

orgq}oo, exprossed as matricos,
N?"(*E* kn)“ = ‘(\&

Generally speaking it is possible to compilo a goometric cl-
omont stiffness for each elemont. Knowing both ‘, and &“
the eloment is subjected to a small finito displacement in-
crement, Now, the toad vector F: can be oxpreossed as (ct'.
equatlion (7.5))s

P= ke - ,“‘r* ki) (12.9)
Morcovor, virtual work can be oxpressed to rocad

*:Ra'fta

According to equation (7.15%),

t t <t
;= Y, A
so that

Ry = &'F = a(h+k)ar, - Ky,

(12.10)

R,- Kv,




This equation is a mere approximation, but it grows more
accurate the smaller both R‘ und ¥y are. In largo-scale disg-
placoment problems it is unfortunately necessary to compilo'
anow the global stiffnoss matrix and to solve tho lincar
systom of oquations later. It is very difficult to mako any
roliable statomont concerning the scale of tho load incro=-
ments. Each problom must be considerod individually to en-
sure that:dts poculib&ities are’ takon into dccount, nlﬁays
remaining sensitive to practical considoerations.

In conclusion, I should like to remark that the largo-scale

displacement mothod can also be used to solvo stability
probloms., Lo __— ' L4

[N ¢ . * [P

R

.

-y








