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ïntrffuçH9H 

This  theoretical   introduction was meant  to bo an intona iva 
eourao covering a  acant two days and is tharofora lacking In 
completeness.  My  intention waa mainly to explain all  thoaa 
things which every PEN user  should have heard  at  leaat  one« 
in order to be able  to  cope  with  certain contingencies which 
Might  arise  In application. 

Thia  present  vera ion  is a pilot  version and  therefore open  to 
suggest ions of improvement which the author will be happy to 
consider in order  to ensure continually improving quality of 
thia  manual. 
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1     MATRIX MBTHOffg 

A    Matrix i j  defined a« being- ».   rectangular ai ray of figure» 

or symbols arranged in line« and column». Thi»  configuration 

la  turnod into a matrix by the addition of equare breeketa. 

Aaauming a matrix to have m linea and n columna  it  ia shown 
aa  follows i 

A' 
(VA fi *) 

*w &«, • '  '  ^li   * -   • ^t* 

**< bn - . . o,4 - .  - aiiv 

. » • • 

t * « a> 

Hi ü¿ 

keif 

ÏI 

cu 

ti.IV 

a, «* 

Lot me underline  the fact  that  thti numb or of linea  (m) la 
always named  first.  Therofore,   A    la a  (mxn) matrix. 

In  the  following  chapters weiuion vili  oiten be made of line 
or column matrices or vectora.  Assuming m «  1  we have a 

line matrix or a line vector. 

A« K Qu • •   o,4 • • • Q,*] 
Ift however, we assumo n « 1 we have a 

colman mut ri* qr a column vector. 

Û2Î 

A-ft«    Q;- V l*i f- 
<**4 
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Thar* are  some special matrices which I should like to Mention 
briefly at  this juncture. 

Diagonal    Metri» 

A  - 

Uff 

0 *ij • ° Pr0" 
vidod that lsfj 

and •li la not 

O In each caso 

4 

An alternative notation would be 

A s ion an «,, u^J 
Identity Metri« 

This Matrix is a special case of diagonal Matrix defined 

above. In the case of a J x  3 Matrix, for instance, we have 

L 
i  0  o 

Í   0 
»y»   i 

= [li   fj 

lini  Haw 

Whenever all entries (or elements) of a matrix which are not 

equal to aero are arranged around the Main diagonal the des- 

ignation 'band matrix' applies. Por instuneei 

'    0 

(***) 

«III «U °       v   • 

Q/i % 0   l   • 

C   û a« c^ - 

C    0 <**%%«• 

c   c   c X   . 
0   c   o   c   • 

0 

0 

0 

Ü 

0 

0 

*«-l."-1   **>l.* 
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T r t  M  n  /r u   1  ..  r    M a   t   r i   x 

A matrix   i*  called either nit upper  (u)   or a lower  (L)   tri- 

angular matrix  if nil   its   olemont»  situatoti oilhor abovo or 
below   tho  mnln  diaconal   arc   equal   to   zero. 

1 

L = 
(tfX*) 

QrH      0      0       '       •      Ü 

ttM    Ciuk »     QMH 

»¥••. otrlcnl     Matrix 

In n  symmetrical  iiuitrlx   nl)   is  .Uway«   „qunl   to n.j.'  In  llnour 

structural   mechanics,   for   'i nutation,   nil   nlltTnon«  mulrice« »ro 
«ymmetrlc. 

-t- r  n   n   H   pug«  d       H_¿i jt_r_ t_x 

A  transponed     matrix   i»   produced by oxchanßlnß lino«   lor col- 
USUIM,   am   Tor   i 114lonco 

A- 
(2<3J 

ThUM, n transponed matrix is 

AN 
Moroovi»r, 

*«  a,i  a,* 

ûM aai at% 

ftU     fttl 

Û«     Elia 

(A)   »  A 
and,   In   tlio  cane  of »yminntrir  (nutrire*, 

A1 
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Hvnnr-     or    Supormotrt 

Largor matrice« of, for ina lauco, the M I v.a of 5,000 x 5,000 

containing 23,000 entries necessarily huvo to bo aubcJividod 
into  smaller  matrices,   such   as 

A 
(3*3) 

On     Q,z  ¡ On 

ftn    Qu ! Gin •— 

AJí    í» ! û» 

A„   A n 
n 

developing  into 

Gii    on 

IIA) I?"   H An = {û<3    Qu} 
(2*0 

This subdivision into subnin trices car», of course, bo dono in 

Bovornl stages. AS KA, for one, próvido» 1 utages. 

A 

A, A •» 

»< 

1 i 
X 

Label 

Matrix   of  adren*««» 

Matrice»   of  Baino 

Numerical  mu tri reu 

I   through  IV 

I 

J 



r 
If we apply   this oxamplo   to  tho  3  x  3 hypomwtrix A «ontionad 
above,  matrix   III would be  our     A     *( Ù        Q    ] 

1,2     Calculation«     Involving    Ma   trico» 

In calculation  it   is   possible  to   treat   matrices  Juat  liko 

you usually  treat  numerical  data.   In  tho  following,   we giva 
tho definitions  required   for our  purpose. 

gammy 

A = B 
moans  that  for all  i  and  J  a.,  m b... 

Addition   nnrt   Subtraction 

If 

then 
A*- B-C 

In  tho casr  of subtraction,   coitsoquently,  we have 

Matrix  Multiplication 

If n matrix   is   to bo multiplied    By 

entry must   bo   multiplied  by c,   o.g. 
a  factor c  every single 

cA =   [eay] 
In multiplyinc  two matrices   it  is  a  conditio  sino qua non  thut 

tholr dimensions bo  compatible.   If,   for Instance,   (mxn)matrix 

A   i»  to  bo  multipliod  by   (oxp)   matrix '%  it   is  requisite 
that n>o,   i.e.   the   number of linos  n   coutnined   in ß^  must 
bo  equal   to   the number or  columns   o  contained   in  &   . 

""•     A   B  « C 
and (*>••)  (0*P)       (»KP) 

0 

*      PH" 
J 
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A   simplo  t'xumplc   wouLd   lu.» 

tt 11 U •£ '*j {K   ta ^iii 
_ —* 

-[¡H bf,.f üii^i * tritai 

IT  ali   silici»«   r-nt ri er.   ((?.(,.   a      »   b.M   and   n0,,b      )   nie»   rej;urrimi 

ns   sub-mntriées   Ihi«   exemple   IH   ¡ilsu   appi I cablo   to  .sub-mutricoH 

Solution   »!'   Linear   Matrix   KguaHoiis    in   Sl.it ic   Problema 

For   nuisons   ol*   inniiuiny   linear   matrix   equations   occurring,   in 

Hi rue turai   mochan i es   ¡ire   solved   by   solving   the   coelT I c I out 

matrix   (o.ß.    the   slil'tnoss   matrix)    instead   ol'   by   a   genuino 

inversion   of    tlie   matrix   concerned,   as    the   form or   way   noe.es- 

si tatcH   tho    toast   iiunibor   ni'   numerical   operation:-.   There  uro 

vnrJous   matrix   reduction   tt elmi <¡u< :.   whoso   appi i rain l i I y   has 

born   ossla'-l i shod.    In  ASKA,   Clmli-sky's   lodili! juo   is   used   on 

Symmetrie  iimlrltt'a   (rl*.   v.r.-   It.    '/umidii I.,    "Matrizen   und   ihre 

tochn Ischen   Anwendungen",   Spr i iif.or-Vor I af:) .   CT.   also   fif;.M 

1.1,   i.::,   i. 'i  nnd   i .h. 

The  Conrciil    »I'  ASKA 

Slot ut,   ()*tpeitl*0n 

Ootu if fit 

Ailrfffn ol l«v*l 3 

jifw,i<|# ^ otmot 

VfucHif* L*»«l 7 

Mop o> Pa*i#% 
Ol < "'   ni o#« 

Actual Oaia (Subentrici»*) Desenptof Bloch 

r\L- »-* 
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Sufematrictt 

< 

AcetM       Ltvtl ] Level 2 

Matru of AddrtttM 

•» 

4—   . 

--+- 

 _ 

•I 
i 

Level 1  

» - 

*~ 

Hypttmalni 

tip..   1*^ Récuraive Sub-Matrix Technique 

"% 

'band* eymmetrÌoa.1 

rectangular 

e 
diagonal * packed*   ayaaaetrieal 

»,. 

»11 

»3, 

•*1 

5 A» A« 
Au «II 

•ll" *«•«* A«BH* **•»• AH°4 
Multiplication 

Storage fornata 

ti*.   <•**    Hyperaintricca 
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it 

III 

n        nut 

w 
Nuit L 

Symmtlric PMHIV» Definite 
Hypermatru K 

Opp« TnanijuMr 
Hypcrmairu || 

K > y'u 

U«tl2    U! U.i 

Ltvel t 

CHoleski Oetomposition 

ZF 
Forward Substitution 

F£ S 

Fig.   |.h  R«u:utv< i v«> Clto1.«»»ki   Km-lori.'/a* ion 



2•      PLASTICI' Y   K(jtJA1 IONS   TK   STA]   CS 

Thoro  are   throe  basic   comi it i mis   u- -.««ri   in   aiuti e   problem»   tu 

ostabllsli   Mio   militisi I««   systems   ol"  cquut ionisi 

- Ktpi i li be i UHI  nr   ML;II. ir   < una l M teiiey | 

- Kinematic    con» I s t. entry t 

- Sl.roMs-st iii ì n   relation*. 

Statin  imd/ur  kinematic,   condii i OIIH  occur  nmong boundary   con- 

ditions' ris   well.   Onr  po.sHiblo  occurrence  of   static  and  kino- 

mntic   boundary   comlU.iuns   is   bos»    illustratoci   by m«»nns   of  a 

hollow box. 

í'iá <t(* i if*—•** 

rigidly 
mounted 

ri/: ii.1   orni   pin to 

At   •/.   u  0   tin«   hollow  box    t*   ri/: irli y   mounted.   The   wob   is   in- 

finitely  stiff   toward*   ili'TonimUiiiifi   in   its   plane  but  allow« 

deform.it ions   perpendicular   to   its-plane,   floro   nre   the   bound- 

nry   comí i t i <>ii;< i 

MÛ 

U   «   v   s  w  =   O,    l.o.   kinematic   comi i I ion.s   only. 

y.  m 

cj^2  "  °'   i•,>,   •*»*•'•'»«:   cundí I ion. 

/ty      *  "•   "IM'lyin/í   to   vortical,   walls. s 

*7*K     " °»   "PPlylnr:  lu  horizontal   walls.     / 

Ki nomai I c 
cou«) I t loti 

^.J 
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than 

a- DM. (a.*) 

(thin   rnally beiut; applicable? only   to  minor displacements 

with   n being defined  as   in   equation   (2.2)). 

This domon*traten thai it in nocosnury to know the displace« 

ment vector \J^ in every point in order to describe completo« 

ly  the   stato  oT displacement   in a  ßonrral   3-D continuum. 

Kinematic   consistency nan bo defined  verbally as  follows i 

A   stnto  of diaplncomont   is   to  be doomed 
klnftmutirally  connistent   whenever neigh- 

bouring partH   neither divergo   nor  peno- 

trnto  one  nnothor  after  deformation. 

2.3    Stress     -    Strain     Relations 

Por  linonr-elasti c  materials   those   relations   ran be  o*- 
prossed   as   follow«« 

<r ~ rt (2.7) 

with £   representing n  6   x   6  elasticity matrix  reflecting 

tho material   properties   of   the material   concerned|   aniso- 

tropic   behaviour   is  noi    ruled   out.   This   matrix   ìH   positivo- 

ly definiti',   (incompressible materials   constitute  uu  ex- 
ception. ) 

Applying  Hookn's   Law,   we  have 

•f-v     s      V 

I "(f'^M-ZY) 

0       0      0 

f-v     v      o       ü      o 

k££    0      0 
L2ùL    ,. 

/-2v 

!.«) 

£    being Younc's  modulus   ami  y    beiiiC  l'oissoii's  Constant. 

-J 
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For  isotropic  innterinla   in which hoaL  expansion  IH  e    ml   in 

• il  direct' on«   equation   (2.7)   ''an b«  oxpandod  a«  follow»! 

0* = Pa «• *T E,. - Est (a.9) 

with f( constituí ing the hoat transfer coof ficiont, T rep- 

resenting temperature alteration, £* being tho 6x1 col- 

man  vector of   initial   H trains   and 

ET 
m ÎTI7 i "1   "1   " 1    °  ° ô] í2,t0) 

Equation  (2.9)   makes   it  possible   to  arrivo  at   total  atraina   fi 

by multiplying  both   tho  right   and   tho  left   sido by £      (i.e. 

the   Inverted  matrix  of     {• f    £"^ £»   r-T ). 

**=* £V -*Tir'ET+ tx (2.11) 

or 

^     êt  *    *r +  *! (»•«» 

with 

rv (olastlc   strains)   (2.13) 

»r   -*T^     1     1     o    0  0] (a.1%] 

^1     *    [   %tt    ^    ^   £|*y   ¿Jyi   ^} (2.15) 
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fl± -s 

-•v •v       0       0      O 

1 ->      0       ü      0 

4       0      o     0 
2(-nv)    o      0 

?ím)   0 

*(•••>) 

(2.16) 

~*t 
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1  Statin  Consistency 

In the case of a three-dimensional continuum the equilibrium 

or static-consistency condition» can be defined am   follows! 

Dta + UT =0 (2.1) 

with  representing tho J x 6 matrix of differential operator«, 

1_ 

0 

0 

0 

o 

o 

=-       0      5- 5* 
0 

0 

*y 

à. 
è2 

3L 

(2.2) 

and       representing   the   l   x   1   column  vector of  volume;   forccM. 

a/ {ctrx   or     LVJZ^ (2.3) 

Wo enn stntc generally that 

all forces nr.il.ni;   internally nnd 

ox terna 11 y must be balanced. I 
2.2     K   i   n   e  in   a   tie     C   o   n   H    I   s   Lent LJL 

This   type   oí   consistency   js   peonie I r i ••    in   nature.   If   wo  do- 

fine  nil   do format ions   of   a   coul I nuuin  caused  by  external   loud* 

or   temperature   (*rndLeniH   by   means   of   the   displacement   vector 

U '  {öx    «.,     LI/] 
and   tlio  appropriate  strain  vector 

(2.'») 

* "f*~ S (,t i,  i>t   fn]     <=-•»: 

J 
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If we  now  hake   Into   account   tho   fact   that  oxtoriml   work must 

always   be  balanced   by  intorno,    work,   wo  havo 

¿W*oV   U   (SU/'-iu* 
There foro, 

3. 1     Virtual     W  o   r * 

In  the   cour.s o   of   *hr   nxpl ana I i ims  of   tho  onotvjy   thooroiiM   ijlvon 

above   wo  hnvc   assumon   th.it   «I i spine «»mon t.s   occurred   bocauso   of 

roal   lnod-i.   Th I ^   1 IniMil ¡mi,   however,    is   nul    norosMory.   Tlio 

equations   i;lviin   above   (lemons i rn te   th;it dW   a nil    0t4 <'»"   bo 

expressed   i ndopendon I I y   of c3 T*     und   ^\ T  .   Therefore,    Il     if« 

poHslVili'   to   si'lcrl,   nu   r \ pr"ss I <»n   ot    virtual    woi'k,    «urli   as 

Uf<? 
the   only   coud i tlun   brin/*   that   (f|^ 

do format i on . 

a   k inoiun 1.1 en I 1 y  con» Intoni 

An  clastic   body   is   cons Ldorod    to   be   in   equilibrium   undor   any 

ßlvoti   load,   InclurU.iií', * ompiTaluro   louis,    il' 

«rw - «SU ('.») 

can bo   appi i CMI   to   any   Individual    virtuul   displacement   0%4   "T 

«   kinomatic.il ly   oon.si.Hlon!    slate   of   displacement.   This   oquul- 

toii   ropri'sotits   Ilio   principio   of   Virtual   work.   It   ran  bo   do- 

rinoci   a»   I'o 11 own! 

BxtnrnaJ    virtual  work   nmni>il   by   oxlornal    toads   and 

involving,  virtual  d I :ipl ncoinont s   is   pipía I.   to   Internal   vLrtual 

work   por forinoli   by  stress   am'   Involving   virtual   »trains 

provldod   that   I ln>   strego*   aro   .statically  conn I »«ton I 

with  Cm   out or   lomls. 
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3.     ENERGY  THKOREMS 

In   195*»,   Professor J.   H.   Ar^yri»   statoci   in  hi M book,   *Energy 

Thooroms   und   Structural   Analysis'    that   all   om«rcy   theorems 

can  bo   reduced   to   two  basic   prinel pics i 

- The   principle   ol'  vi riunì   work   (or  of   virtuul  dis- 

placement )|   and 

- Tho   principio  of  complementary  virtuul   work   (or of 

virtuul   forco«). 

The«o   two   principio»  constitute   tho bnnis   of   tho strain on- 

orßy method  employed   In  struclurul  mechanics. 

To  bptfln   with,   wo   .shall   deal   mo rol y  with  minor d I ^placements 

or  «train!«,   with  all   equations   occurring  represent i n/;  l intuir 

bohavlour   ( i . !>.   (ill   oquu t i oris   can   bo   addod    I o^e thor ) .Til i .s 

does   not   moan,   hnwevor,    that   wo   can  doal   with   si ress-a Ira i ti 

relations   only,   to   tho  exclusion   ol'  all   othersj   wo   presup- 

pone,   however,    that   all   roialloriH   change   only   monotonously. 

This   mukös   clear   thut,   a] tIiour.li   strains   and   dIsplacomunts 

may   bo   superimposed   this   I A   mit   always   possi hi o  with   stresses. 

Moreover,    there   is  a   sprciric  approach   to   »uich  problem. 

To  botfin   with,   lot  us   deal   with   a   ')-D b«>dy under  the   Collow- 
inc  Loadst 

Bninuring volume forconi  C^"  (per unit velum.«) 
Surface fumes f £   ( uor unlt nroa) 

Singular To ret; s. 
* 

Looking   at   tho   dis pin comen I   diagram 

km VJU 

?W/-Ui 

 J 
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the  clinn<;c   in  wor!<     &V   c;«u  now   LP   «jxproMHod a» 

or,   If  I. Itflmr-ordcr  npr:i>i»rs   nrn   left   out,   ns 

In compi'.'mtMiiary  w«»rk,   or  <MJI»-.\««P,    tin»  following applies! 

We  can o» tab I I »h   HìKIMìI:-  • ijuc L 1 «.HIM   to  expresa   the  strain 

onrrcy  (U and V* )t 

cr 

SS^^VV^JZ 
X / 

a * 

'// 

ST*£ 

.._  iZj 

* sr <k 

*« fe 
^ 

«su - (Vii^'/ 

<j'tf-  jÄ^Td!/ 
V 

W-   — J 
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Lei UP apply thi.-t principio to a little »xample in ordnr tu 

confirm our idcus. 

*M Hb*i 

Our example  i*   a   statically determino-l   Int.tlcowork  structure 

In which   the   forco   exerted  on   the   roil   1.2   Is   tu  be deter- 

mined.   Our  Boloctml  virtuni   d I spiucement oU   pormi te  only 

of a kinumnt Lcally   consislonl.   -hort.onlnu  of   rod   1.2.   All 

other  rod«  aro   not   «ulijfmt.ml   to  any  alteration  of   t-holr 

respective   load   stutns. 

Vorticnl  displacement  under   load R  ist     ¿j^    r 

Shortening of   the   rod   1 .2 iat  ¿S t \L 

^--Mi'lY--*«^ 
The rod force to be do term i nod I. H i Mi 

We now apply thu principle of virtual work by 

or 
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3.2     The     Unit     Load     Method 

A  special   voralon   of   Uto  principle  motioned  nbovc   Is   called 

the   unit   lon«l  method.   Later   on,    thl«  method   I»   used   very 

frequently   In  compiling   element   inn trieos. 

Instead  of  a  random  loud,   u   singular   force   1«   now applied   In 

the   direction  of   the displacement   to  bo   dei.nrininceli 

li*  -   fo-ícl^ fi.'») 

In   this  equation, 

OU/      "  di*plnrcmon*   ln   ^nc  direction   of  the   loari| 
C «   true   (or  reñí )   Htm In   voclorf 

M»'      •   utress   vector,   which   IH  morel.y   required   to  be  in 

balance  with   the   load. 

The   following  exemplil' ios   the   application  of  the  unit   loud 

methodi 

The   displacement  u occurring   at   the   tip   of   the   beam   Is   to 

b<«  do termi nod. 

..J 
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Th» %rmm tira int arci 

£" ' ñ,i*-íh 

Si, •• o •ti 

Th« «irosa vociori 

JUS 
! 

i 

«•• £v 
Th»r«fore, the dÍHplacnmenl can be dclorminod by 

r 

ill . JVt «*• « J   [§,('• IH' 

— *   El,l3   -H" L - JÍEk 
h 

1 ^ JF 
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h.      IDEALIZATION - STRUCTURAL MODKL AND ELEMENTS 

The most important slup oí' tin. matrix method In structural 

mechanics is to nVt.rrml.np the pVysimil or mathematical modol 

of thr structure IT the displacement method is used, this 

model will fulfil ovprywhrro the condition of kinematic con- 

sistency but will in mos I. • < ases bo statically consistent only 

in the nodos. (Conditions are rcvcrsocl If thr dun! inrthod - 

the forco mot, h od - is used.) 
, <, 

The modol   is   devised  by   subd 1 vidi n/;   the  structure   into  a   fin- 

ite  number  of   finito  elements.   Kinematic   consistency   is   a   pre- 

requisite   for  onrh   element ,   whereas   statin   consistency  ffon- 

ornlly   is   required   only  o I    thr   nodal   points   of  onch   rlemrnt. 

In  srann   strucl.urrs,   '•,/;.   simple   framework   structures,   do fin Inf; 

a   physical   morlel    Is   very   easy,    whereas   three-diitioris lonnl   struc- 

turrs   In  most   cases   re<|Ulrr   sum«-  t;twiipr<>ni i s<>   solutions.   Sub- 

dividing   a   structure 'Into   finite   rimirili»   is   somewhat   dif- 

ficult.   Only   a   constant   user   of   this   method   will   bo   able   to 

circumvent    these   difficulties   economically,    successful1 y, 

and   in   accordane«'   with   eiift i iieor i n<;  requirements.   Ilrf'innrrs 

are  most I)    inclined   to  work   r. r   toe   hastily.   Always   krrp   In 

minti   thr   fact   thnt    it   Is   not   Ihr   structure   itsrll'   which   Is 

computed   but   morrly   a   model   selected   for   the   purpose.   Mis- 

takes   commit tod   In   devis in/;   Ihr   model,    such   as   faulty   boundary 

conditions,   may   produre   a   compirtel y   erroneous   result.   Should 

the   error   be   found   out   later   you   will   have   spent   a    lot.   of 

money   without    be In/;  able   to   show   some th In/;   for   It.    Should 

the   error   rrmain  undiscovered,    which    is   perfectly   possible 

if   thr   engineers   concerned   are    Inexperienced,   malfunctions 

in   the   finished   struc lure   may   cause   a    lot   of   expense.    It     Is, 

therefore,   our  opinion   that    there   should   he   no  unnecessary 

compromises   when  devi s La/;   thr   model .   The  determination   to 

snvo  DM   1,()()().-   in   iiioiï^hours   may   cost   I en   I lines   as   much    In 

alterations   which  may  be   found   necessary   later  on. 

Assumili/;   thnt   the   appropr i a te   model   has   been   defined   we   now 

onter   the   second   difficult   phase,    that   of   check i u/;   the   re- 

sults.   Iterr,    too,   wr   inert   a   number   of   unexpected   surprises 

which   in  most,   cases   can  bo   overcome   throu/;h   experience. 

J 
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Bnforc  gninß ciny   furtlmr   II   i.-,   pi'u'j.ihLy   .>i>-tt    i.o   oxpluln 

briefly   th-» major  clmmrtoi't«! 1RS   of   l.lu<   FJiii'i-  Elomont 

Neihod   (FK-M).   Thu   IULHIWHI,;  ii^urni   .  <IMV   ..   <i inphruf;iii  ho in/; 

calculated   accordliiß   lo   1.1m   CIIH.SICI]   itwlljoi!   (i.o.,   rho 

finite   cliff eronce   motltntl)   utul   .-irrn^iM ¡i¿v   lu   WiM. 

CLASSICAL  THEORY 

1  Mat horn« 11 CU 1   Mud o I 

2  Probi fin 

Dof ini ti. ti 

W 

\ 

fr 

.S 

9kw 

o il •! 

riHITE ELEMENT THEORY 
n 

1   Idonlino«!   Model 

r<r-> V 

., ^ A^-^ 

v 

2 Probi oui  Definition 
H, 

*T 

¡<„ «'i,- 

in 

•          « 

fi 

• 

> 
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Tile   figuro*   show   that   with   Mio   rlnHsicnl   mut Mori   Mio  dia- 

phragm's  deformation  is  expressed  by   iho  writ-known bihnr- 

monic  equntion,   which   In  turn   I.s   a   Puliation   «»r   the   two   coor- 

dinates   x  and   y.   Moreover,    the  deformation  w   (x,y)   IH  depen- 

dent   on   the   load   Imposed  p   (x,y).   I)  doline»      the  materiel 

and  geometric   properties  of   the  d inphra/;m.   Now,    If  you  wont 

to  define   the   sume  ri La pli rn cm   by  means   of  n   FliM model   it   Is 

first   described   by a   finito   number   of   nodes   loin I od   In   the 

contro  of   the  dluplmiftm  pi uno.   Those   nodes   (often   oaliad  a 

mesh)   are   then   connected   by   a   corresponding   number   of  bond- 

ing  elements,   thus  cons11 I ut In«  n   completo  model   or   the  dia- 

phragm.   The   external   load  defined   by   p(x,y)    in   the   classical 

method  can  be   incorporated   Into   the   FEM  model   only   as  a  nodal 

load   (Rj).   These   nodal   loads   must   bo   kInemuticaliy   consistent 

with   the   actual    surface   load.   Tho   load    Is   to   be   doomed   kino- 

matically   cotnl.s'.rnl    if   Urn   work   performed   a;-»   nodal    point 

displacement   by   the  nodal   point    loads,    l.e.2*i   R,r   ,   is 

equal   to   the   work   performed   as   correspond i rift   internal   dis- 

placements    In   the   element    itself   by   I he   distributed   surface 

loads.   An   example   to   explain   this   point   will    bo   (j'ven   in 

chapter 7« 

Once   the   external   load   is   defined   1% i noma t i en 1 1 y   consistent 

the   stiffness   matrices   of  each   Individual   element     n[  are 

compi Lui   (c\\   also  cha pi er   ">).   Thï<   individual   stiffness  mat- 

rices   are   then   used   to   compose   the   global   stiffness   matrix 

(  K   )   °f   Mie   fluito   elomeuf   structure.    The   linear   system   of 

equations   pertaining   to   the    CI ni I e-o lenient   model    «elected 

now   read«   ns 

K* (it.i) 

Wtth   this   equation   established    II    should   be   clear   once  and 

Tor  all   that   general in«   the   «lobai    stiffness   matrix   Kin 

the   paramount   factor  in   the   soloctim  of   the   correct   phys- 

ical   iiodcl.   As   has   been  IRI.MI t toned   before,    the   global   stiff- 
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ne«»  matrix   is  compost!  or   the   added  entries   rofjardin/ç   the 

individual   elements   { •&{   ).   Conaequently,   the  quality of   tho 
Model   «elected   ( 1. o. ¡^   )  depends  mainly on   tho   typo  of   olo- 

ments   (diaphragms,   discs,   beams)   nvailnbio   to   the model 1 ine 

engineer.   Ono might   almost   say   that   tho  larger  tho  number 

of   element   types   available   to   tho   engineer   tho   botter  ho   will 

bo  able   to  ndapt  his  model   to   the  actual   physical   condition«. 

(Our  ASKA   system  offor?  about    «iO  different   typoa   of  clement.) 

Engineers   who  UBO   FEM  only   sporadically maintain   that   such   n 

wide   rango  of  el omenta   is  only   apt   to   cause   confusion.   Thi« 

view,   howovor,   is   caused  by   tho   fact   that   this   particular 

typo   of  user doe»   not   know  enough  about   tho   facts  and  problems 

of  correct  FEM application.   (For   instance»   IKOSS  huvo   solved 

problems   requiring  more   than   IO   different   typos   of  element 
to  ensure  a   sufficiently  accurate  model.) 

In  conclusion  1   should   1 i ko   to   strass  nguin   that 

bogìnners   in   tho  use  of   the   Finite  Element 

Method   should   never  attempt    in  a   sort   of   valiant 

effort   to  compute  alone  any   structure  which   Is 
actually   to  bo   erected   Inter   on. 

Although  expérience   «ni ned  by   work! ne  on  one's   own  is  most 
valuable   it   is   too   costly   in   terms  of money  and   timel 

W 
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ELEMENT   STIFFNESS 

The   Htcn-i Tic-moo   of   hnvin/ï f;uod   rinàto   elementa   to  be   uà od 

a»   components  whoii  modellili,;  n   nlvon   sl.rucLun-   in   theory 

has   nlrondy   boon   underl i nod   in   tin?   procod i n{;  chapter.    In 

view   ol*   I ho   Tart    Hint   ;i   malti Iudo   .il*   o Ionio ut   types   ha«   nl- 

ro.itly   booti   dosLTtb.Mi    in   1 ¡ tora turo    il    only   romains   l'or   us 

to  mon ti on   Hi«-  way   in   which  an   <> I. onion t   sl.ilTnoai is  cnnoraiud, 

Generally  speaking,    th-ro  ¡ito   several   wuys   by  which  to  arrivo 

ot  an  olemont   atifTncs*  matrix» 

1) Unit   load   method   or  unit   dlaplaeomont   mot hod. 

2) Cast i.«.! iun i '.s   Thooron. 

l)   Solví IIí;   rol n vaut    dilToronl.ini   equations. 

'" )   IiiviM'sloii   o!'   ("loxibilJty   matrix. 

OC  all    t.ho  method*   motil i »ned   al.ovo  molliod   1)   |.H   most   generally 

omployod   (cf.   also   equation   ().'»))   Iinunimu   it   HIIOWH   ulL   aliiT- 

nnsans   (i.o.    forros)   to   bo  do i orni i nod   in   tlo>   dtroctlun   of* 

thp   prode I orminoti   unit   d j spi .n ronton I M . 

Lot u« consider un easy example (a conl.Ll.ovpr beam) in ordor 

to Improve our uiulcr« lund in,; o(* tho physical ai|-til ricniicr of 
tho   torm   • ail t'fnoas •. 

,)     ei. 
,, 

"f U.    *< 

r. 

£*i 
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The  figure   iibovo   shows   tlm L   four  decree«   or  freodoin   (l.o.   the 

nunio numbn,-   „f unfcnovms   used   in   tlm  displacement  method)   aro 

fully  sufficient   to  account   for  ull   kinematic   posaibil 11 loa. 

T «{',   'i   rz   <\ (i.i) 

Moreover,   both   tho   stirrnosH  mat ri ees a¿ and  ê^ (el «.«mont   a 

and  b)   a»   well   ns   th«>   global   stllTnoss  matrix   ¡(  are   Sym- 

metrie matrices   (proor  by IIICUIIH   of  1U«tU. »s  Theorem).   There- 
fore, 

Kj    '"   KJt *,J «.        r   K   - (5.2) 

Furthermore,    the  noii-s insular global   «liri'nosiH  matrix    X 

must   neconMnrily  be  a   ( ¿4   x   >l )   typo   of  matrix,   i.e.   it«   di«en. 

8 i on  must   bo   equal   to   the   number  of   unknowns. 

Lot   us   Tirât   eons I tier   element   a   individually. 

K> ft* 
*r* hi 

Winn  considered   In   11. ¡ s   manner,    I.e.   <l J .«rojpi r-l I nK  th-   oxlut- 

ine boumlnry   condition*,   element   a   has   Tour  decrees  „1"   free- 

dom.   It   would   bo   possible,   or   «-ourse,    to   incorporate   tho 

nxinl   force   or   tin«   roil   by   way   or   an   additional   decree   of 

freedom,   but    this   is   no«    relevant   to   our   problem.   To  di fror- 

en tinte   between   MM-   e I omen L   free us   and   tlu.se  on   the   gluuul 

level   ( f*   )   wt,   use   the   Greek   letter   • Rhu •     In   lower   rase. 

In  order   to   lin.l   the   liest   line  „r  our  sii lines« mnlrixft., 
I.e.   vert or 

*Jj   s 1 ^11    liil    ki\   V\i\ 

it   IH  merely   necessary   to   earry   out   a   unit    «llsplareinen t    in 
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the diroct Ion of dot;ree   of  freedom    Ji ' while   liiwnoblli vtintf 

all  other   »nd or nodnl   point«. 

^ 

8'1 

(Hotel   p|       - 0.) 

Tito phynicnl   8 Ign i IMcorn-o of  the  J mf* vidian l   jffj    Is   I hut   limy 

represent    the  not'tint    Toreen  required   to   (ronerntc   the   displace 

ment j1    •   1   only. 

Now,   the   UTiit  rli sptaremotit   methud   (cf.   IIIHO  equation   ('J.'») 

defininc   tlie  annlu^ou^   uniL  loud  method)   enti bo   UHCH   to nr- 

rivo ut   tho   fore OH   (i.n.   »I iffuessos )   to   bo dotermlnod. 

(5.5) 

If we  apply   this  pronodiiro  to    fat    we  Imv». 

*'« * (*¡f<M 
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*'J     ••rely being required   to be  statically balanced. 

»•' I -~^ 
r-^fMif 

In accordane« with tho general beam theory» 

H        e « 

Moreover i 

•ii 'f(i-n e».«) 

•ltd thurofore 

y *dF 

w _^ 
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Now v« know tha t 

V- f yMF 
which givos  us   a »ufXlcient  bn«in  to solvo  tho following  *••»* 
togrnl. 

ß„ «nf(u;)lJï • ^^ 

Furthermore, 

**2     *     ^f| 

It   la ea«y to  determine  the  fore«  w**(* ** ft« )  in » einUlar SV "**. 
way, 

Now, in order to arrive at * 12 i for instance* tit* Mode of 
displacement of tho beam mu»i be defined in correspondence 
Wlth  fm    m   1 . 

^-ni)[H] 
Countrr-clockwlno  rotntjun   is durinoti  t\r  negativo. 



Now«   the   lntn/;r¡iJ   road»« 

As 

U4 « foT£ia/=jaK')«)ar 
r v 

(J.T) 

Conaoquont ly, 
ft 

¿li4-Ei|(an(t-?^--t| 
Tho entrinn »till nilnn Inf? rrom olomont stlffnon* matrix et ^ 

to bo detormlnnd run bo found by way oí' a similar procedure 

For compi o In no s M ' snko wo ^ i v o you below tho ontiro mal I* 

portnJnln« to nlnmont n. To arrivo ut ihn matrix for olemout 

b you moroly roplnco ¿- by ¿. nnrl I  by I, . w • M b 

4 
•11 11 -it, ft 

PI. « If, -if. 

c <f« "jtf 
*g*. tfj 

(%«> 

PI ou ne  noto   that   tho  ma tri*   shown  nbovn  rlon»   not   tuko   Into 

account any  shonr do To i-mutj oris . 

As  all   «tirrnoHs   nutrios   oC   tin-  global  matrix   K   can  bo  g*%n- 

eratod  by  s Implo  addition  o I*   tho   Individual   nlomonl   stiff- 

ness  matrix   compoiionl*     (i.o.   lu ÍC+ and 4^)   tho  h x  h  wcrt- 

rlx   K   can   bo   compiimi   inanità I ly.   To   doopon   thi>   uporntor's 

Lnslftht   this   proroduro   run  bo   llJuslrotod   by   tho   lo I low Inf? 
ftßuro. 

.J 
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The   f'Lfptro   MIIOWH   Huit   ml. ry  (J       corroMpuiid in/?  to   rrocdoM f0 

in arrivod   ci«,   by  adii I n«  up   I h<>   I wo  oniric»   (  4L. L     und 

V   rl«| )t      »   which   moans 

The  romain in/;  ontrir-i  »re   arri voi»  fil.   An  a   s ¡m i J ari.y  »Implo 

manner,   Tor   instano»   ^^J =   (  &*|)i • 

To convince I lioso win» aro tint compi o I ol y «uro about tin» cur» 

roclnPHH or 111 I s procedure we «lemons t cal.o bo low how, Tor ox« 

ampio,    tin»   en I ry   concerned   can   in»   calculated   directly. 

Pot*   thin   purpose,    w<»  assume    C-   «   1 . 

 J 
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Tke resultant fore» K12 can be simply determined by super- 

pesitlon of supports. 

Therefore, 

K^C^^M^ 
Considerine «lenient stiffnesses it is obvious that 

it-   kV(k\ 
«hieh again gives us the same result. 
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6   S3L3CTING SUIT/, ,*: I:Lr.i^TS 

Oivon thé . argo üir-b-j^ of «lomarit types to be found in lit- • 

arature it"is not alwayj easy to decide what type of element 

to use (to profjra',1 :.n.~) a PKM program. I «hall not make an 

attempt to submit (vicar proposals in tri3 matter - the opin- 

ions held by pxr»>rti; ar-? foi tco divergent for that. I shall 

merely state a i tv ìT .-»o'-trnt findings. 

For each elomrnt a i!f:i'or::a.irn rode i.3 to bo selected. In 

doing so, Ivo re  .r-r'tts ?rr of major importance from the 

theoretical point <ii' vicvi 

- Comf i >te- n is 

- Kim.-.-'.tio c ••: 

<f tl-.o ccforrration modet 

iicL^'ic/ of -ho olemont boundaries. 

To jnsurri corr.-j-, r ->,. - si •.. at -'.on of all movements of a rigid 

body, moroovc?,  t i- r-.r-ioite that the sum of all inter- 

polation furctio us r.T'v.yir.rc to each point of the element 

range be eqral to o-\c     .~f, for instance, the vector field 

U,   of tV» c'">—1M ;      .ii,in p tvo-dimensional element 

aro exoroppod as 

.hen, neccsiurily, 

(6.1) 

%' 

í * ï' 

e (6.2) 

Let us now, f o .• E i. Licity's, :?ako, merely consider poly- 

nomial déformation UCÎU3 of lagrrngo•a type (i.e. having 

no derivations a:-. "m^Joms) applied to triangular and rect- 

angular elcTcrts '..•!-.«-jh w« ¿.sòume to have membrane  stiff* 

nesses only. 

Triangular r.o.rbr.v  ¡.ic, M«t.o ~ called TRIM's in ASKA ter- 

minology - hava « ;r->ai. ^'VPI.IP^P in that thoir displace- 

ment modo can be ;;;.-i-va-Pù nv t ronple'o polynomial. This 

means that tho furct nr.ul variation is independent of linear 

coordinate t-r-nsfc r • ¿v; Lor.s . 

W 
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Zf «• désignât« til« order of th« displacement 
following figure give«  a «;ooot survey. 

•od«« toy p tM 

Tk« figure »how» that,   for instano«,   in the oase of TUM 3 
(i.e.  thro« nodo«) th« vector «ntri««  of tl  Cx,y) ar« 

u, « $* +f,y +£ 

Th««« six parameters J^'    ar« arriv«d ±t by using th« givon 
six possibl« nodal point displac«m«nt«   to s«t  up six »guation« 
which th«n can bo solv«d in a mor« or l«ss almpl« manner. 

Representing quadrangular elements  - OUAM in A8KA parlano« - 
in th« saa« aann«r as above,  the figure Is 

0UAM4 

OUAM« 

-J 
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On the one hand, the members of the p  order of this dis- 
placement mode are complete, but they also contain poly- 
nomial merr.oers up to the 2p  order. This means losing the 

Invariant rotation property. 

To demonstrate the advantages of higher-order eloments we 

give the example of a cantilever beam below. 

.M -30 _» >0 _4t .SO ^ii ,C0 _6t _7Q _7S JO Jli  JO J% JOO JOS 

.^f'-A-4-4--è--J-4-l--l--|.a-4--l-4-4-4-.4.-l-4-^-i»o*   e «1 
'"lTTT,ll'lllll'llllT 

áf^-p^^ir-+-"-'--!--ir,i--l-ri-t-í--1'-{-^-l-f-' 
++++i-+-¡--M4-M-f-M-]-4-i-r- 
-6—o. 4» 

I   I 
X J L -L-¿- 

6     11     II    ?1    2*   31    36   ti      j   Si    f>   61    <>5   71    76   II    66   (1     1*    101 

102     C « 1 

 * •*' 

l «10 

t 

A 

S    •  J 

s t-2-c •   5x2x1  ti 

.TI      12 3 

Load cas«   1 Load  caso  2 Load cas»  3 
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Tho   idealizations   and   olomont   typo»   scine tori  are 

TRIM 3 OU AM A      TRIM 6 QUAM 9 

> p       'O        o        0 

I        ft      o 

All   idealizations   contain   tho   samo  number  of unknowns   -   16'». 

Norrovcr,   it   is   s implo   to dot ormino  thnt   tho  analytical 

values   of   tho   throo   load  casos   at   tho   froe   end   of   tho   beam 

are  n«   To 1lows« 

Load   cano   1 

Oí Xjc a; 

°fr * ^ s 

AX 
o 

b°fflti 9"»° 

*    O- 

h?ntì cnP° J 

^ -«{ 
Ty» -  J^ 

overywtioro 

Tlio values calculated For the various models aro list od in 

table 6.1. A Tow comments tliereioj 

In load case 1 all el eine ni M apply oq.unl.ly well, a thi.il/; which 

was clear II'o m tin start. The load produce» n constant stress 

everywhere in the beam, which is why il is sufficient to use 

tho simplest element TIU'M '1 will eh enable« you to calculate 

exactly a   uni l'orni stress field. Please noti« that the exist- 
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Inf loading pattern »  i.e.   th« stras« distribution axpaetad 
should  bo  takan  into account  whan solacting tha  alaaents. 
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In   load   case   2  you  oxporlcncn   your   tirsi   ri i »appointments   with 

FEM.   This   is   not   caused  by   tin»  method bring  bad   but  by   tho 

way   in  which   tho  existing  shear  load   (i.e.   the   distributed 

loud)   has   been   replaced   by   corresponding  nodal   forces I   Whon 

determining   tho  nodal   loads   only  one   tlnonr   variât, Lon  between 

tho   corner  nodes  was   assumed. 

1* 

qdy = S0 * -3.-. q0 = M • t 

¿d^nK 
The   figuro   above»   shows   quite   clearly   that   a   QUAM-'»   IdealJzat. 

ion   gives   a   bettor   approximation   to   the   existing  parabolic 

load   than   that   of  an   equivalent   TRTM-6   ideal iza Hon.   This 

should  make   you  consider   tin»   significance  of  making   correct 

comparisons.   By   the   way»   This   particular  fault   only  appeal 

close   to   the   nodal   loads«    the   results   obtained   one   element 

layer  away   from   the   free   end   are   very   satisfactory. 

irs 

Node   No. 5 15 25 35 45 55 65 75 85 95 105 

Anal. 90 81 72 6 3 54 45 3 6 27 18 9 0 

TRIM 6 91.87 31.51 72.78 63. 76 54.76 4 5.76 36.76 27. 76 18. 76 9.74 1.5! 

QUAM  9 J1.95 32.47 72.11 6 3.00 53.99 44 .99 35.99 26.99 17.99 8.92 0.11 

/ 

Table 6.,?  01 s tri but ion olC 
xx i ti load case 2. 

 J 
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Fiß.   6.1   show?)  an additional   comparison,   demonstrating un- 

equivocal, /   that  merely  increasing   tho  number  or unknowns   in 

•Implo  elements,   such  us  TRIM J,   does  not  moan  that   tho  re-• 

suits  obtained  will  bo   of   the   samo  quality as   thoso   obtained 

by   the uso   ci'  highcr-ordor  elements,   such ns  TRIM 6.   General- 

ly  speaking   it   is  better   to   use  one  TRIM-6  oloment   rather 

than   the   equivalent  TRIM-3   model,   i.e.   h  TRIM-3  olernents. 

Mantion  should  also be made   oT  the  fact   that   similar  con- 

siderations   may apply   to   three-dimensional   oloments   as  wellt 
cf.   Fi«.   6.2.   Despite   tho   fact   that   this   example does  not 

/leid an  exact   /alno   it   is   possiblo   to guoss  at   this  value, 

basine  tho   guoss  on  tho  boundary properties  of   the  displace- 
ment rothocl. 

Finally,   permit  me   to  warn  against   the   combined  uso   of dif- 

foront   typos   of  elements   which «re   incompatible  as   far as 
!tinomatic   consistency is   concornod. 

Incompatibility  in kins« 
innMc   consistency. 
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li I />• 12in J! 
2 T I 
^ 

f «tin 
-il— 

•H 
/«A8in 

Typical idealization 

£ .30000 ksi 

v « 0.25 

Q » 40 kip 

-* • -AT • »«•"»it 

Fig.   6.1  a Cantilever beam  subjected  to   transverse  load 

Data  and   typical   idealization 

* 

QU AMC 9       TRIMC6 

ZI A 
QUAM 4        TRIM 3 

0UAMC9 
TRIMC6 
QUAM 4 

TRIM 3 

400 600 800 

Number of degrees  of  freedom 
Fiar.   6.,l   b Cantilever beam subjected   to  transverse  load 

Accuracy of   final  displacement  w    obtainod  by var- 
ious methods   of  idealization 

U-  J 
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HEXE! 

1.3 

$  1.2 

1.1 

1.0 «MO"3 

0.9 

0.8 

d.7 _       1       I       1      •<      l   • 

HEXEC27 

HEXEI 

HEXEC27 

200 400        eoo 

Number  of  freedoms 

Fisi.   6.2 Short   cantilever support  subjected  to  transverso 
load. 
Final   displacements  w.   obtained by various method« 
of idealization. 
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7     THE  DISPLACEMENT METHOD 

Thin chapter is intended to bo a briof introduction to the 

displacement method. (Detailed introductions are contained 

in  several   publications   other   thnn   this.) 

As  has   been   montioncd  beforo   this mothod   implios  gonerating 

an equivalent   physical   model   of  the   structure by   tying  to- 

gether  various  and  often   différant,  elements  at   their  nodal 

points.   Tho   unknowns   of   this  model  are   the  displacements  de- 

fined   by means of matrix   r*   ,   incorporating all  existing 

boundary  conditions  and   other limitations. 

Loads,   such  as  temperature  loads,  manufacturing  faults,   and 

water  pressure are defined  at   the pertinent  nodes   in matrix 

K   in  u   kinematically   consistent  manner.   The entries   in 

the  load  matrix  correspond  with   the   selected  direction*   of 

the  unknowns    f*    ,   so   that,   work may  be   expressed  as   follows i 

Work R^ - ¿R 
We have   seen  boforo,  in  equation  (*».!),   how to  writo   tho 

linear  system of equations   constituting   the  link-betweon 
r\   and   IT   i 

Kv«R (7.1) 

Let us   first   of all,   howovor,   consider an  element   whoso 

displacement   processes   have  been defined   by  its  deformation 

Mode.   Kinematic  nodal   point  displacements   of  this   clement 

•ro  designated  by  vector   J    ,   and   tho   nodal   point   loads  cor> 

responding   to f    uro designated as   P  (the  Greek  letter, 

capital   «Rho').   It   is   obvious,   then,    that   in ouch  element 

M« (7.2) 

Mote   tho  similarity of   this   cquution   to   (7.1). 

(7.2)   can   be  expanded   to   take   in all   n-elemeñt«   simultaneously! 

(7.3) 

 J 



-   lio  - 

Obviously,   in  this  cuse both Pand  J art hypomatric«» (hyper 
column vec  ors,   properly speaking), 

tho element  stiffnesses  bein/j contained  iti a hyperdiagonal 
Matrix 

I-I"«, V-t-fcJ 
The displacement modo  allows  u   clear definition of   the  dis- 

plácomonts  occurring within  tue  oloment  ond at  its  boundaries. 

u-rr (7.1) 

Tho  strains   caused by  thia   deformation  can be  cxprossod as 
follows   (cf.   also  equation   (2.6))i 

Tho  itroasos ^J",are   (cf.   also  equa ti off (2.9))i 

O"- EIí-í,),- o; <7-6) 

with Q£ donienatine ««y posniblo initial stress. 

In chaptor 2, montiosi was mudo of tho volume forces W (cf. 

equations (2.1) and (2.Í)), and in chaptor 3.1 wo desig- 

na tod surface forcoH by 3 . 
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Using the  principle of virtual work (of.   3.2)  we may now sat 
up th« following equations,   assuming a virtual displacement Jt % 

«i-ff (7.7) 

Equation (3.3) shows that in the casa of virtual displacement 

tha equilibrium of all external and internal work (• F ) i« 

safaguardadt cf. also equation (3.1)1 

ff+(Xi«réV+(ii[fh¿f -JêWv ~ o   (71) 

In this aquation,  index  'p<   designates  the part of surface 
P subjected to   f   .   Inserting equations   (7.3)*   (7.6)  and 
(7.7)  into  equation  (7.8),   we have 

However,   the equations given above have  to be  satisfied eon- 
earning any random virtual  displacement! 

F-VV WSr (7.*) 

where 

A ^jYtfeofd (7.10) 

represents   the  element   stiffness matri; 
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Moreover, 

(7.11) 

Those equations (7.11) represent the procedura required to 

compute kinematically consistent nodal loads out of dis- 

tributed loads. Should the procoduro not be kinematically 

consistent the results obtained arc auro to be faulty. 

For simplicity's sake, let us define 

& = V V S* r *P (7.12) 

If ve now compare (7-3) to (7.9) we find immediately that 

F * P - S (7.13) 

This should suffice to pxplain equation (7.3). Possibly we 

Should itrftst- p^ari tao .'act Lliat (7. '))   merely satisfies 

the condition of statically consistent equilibrium at the 

nodal points only¡ it is, therefore, quite possible that we 

may find local discrepancies. Moreover, all matrices K« 

necessarily singular, containing as they do some rigid 

body displacements. 

The next step is to expand our element-level considerations 

of above to the global level. To do so, we first of all— 

have"to establish a connection between Q  element displace- 

ments and f global displacements. For this purpose we use 

a simple transformation or connection matrix which, roferring 

to an element f , reads 

J« • . V <7.1«i) 



litis aquation can bo   sot  up for all  element«   in a manner 
similar  to  that   of   (7.2)  and  (7.3)   above i 

? = a* (7.15) 

Provided   thai,  we Uovo   dori ned  the   same  direction of   the de- 
traes of freedom  for all  g   and   f   ,    ft merely  containa an- 
trias reading   1   and   is   therofore   corresponding  to a  Bool's 
Matrix. 

If ve now apply  the  principle of virtual  work,   designating 
t>y  A  the external  global  nodal  loads,   wa can  set up  tha 
following equation   (cf.   also equation  (7*13))t 

Using aquations   (7.13)  and  (7.15),   wa have 

Y*** (P-»   - *k<* 

(T.16) 

(7.17) 

Since, however, oquution (7.17) must apply to any random 

virtual displacement we now hnvo 

ak(P-sv« a - (7.18) 

Wa  now take into account  oquution   (7.3) 

Jffcar « Ä+afS 
and finally, we come back to (cf. (k.%)  or (7.1) 

(7.19) 

in which case 

K - a'U 
(7.20) 
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and 

R « Q+ a*S (7.21) 

Til«   congruent   transformation demon 3 t ral od   in oquation   (7«20) 

is«   of  course,   hover prrformod   us a  puro multiplication of 

Matrices   In   ihn  caso of  large-scale  probloms.   In   such  case», 

algorithms   (direct  atiffness  method)   are used which   permit 

adding   the   individual  olomont   entries  diroctly into   tho glo- 

bal   stiffness  matrix. 

IV 

é>4 
(7.22) 

In »out large-scale problem«, matrix £ will bo subdivided 

Into hyper-column vectors as well. 

I» 
Total number c1 unknowns i 

•l •l *l •.-1 "l 

¡ 

1 

m 

sum of   the  global   doyroim   of  froodom of ull   oloments. 

1   -  hyper-coluwn vectors  of hypormatrix 
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This moans that the sum of the global stiffness matrix now 

reads (      (    v\ 

K «5 2S ÄIU. (7.23) 

Equation (7.22) applies automatically to all smaller-scale 

problems in which / • 1. Figures 7.1 and 7.2 indicate this 

procedure. 

Having set up tho system of equations (7.l) ve can now pro- 

ceed to apply Cholesky's method to solvo th« simultaneous 

equations. (Cf. Pig. 1.4) We have to see to it, however, that 

matrix K i« »">*• singular« this we avoid by establishing 

proper boundary conditions, including suppression of rigid- 

body movements, which guarantees that matrix K   will romain 

non-singular from the very start. 

Having successfully solved tho equation system we now know 

the displacements P    , which enables us to determino tho 

•tresses &  by means of equation (7.6). 

In view of the large «calo of tho problems which are often 

to be calculated those- days Mie enjir.^r in charge must have 

available an automatic substructuring-technique. It is for 

this reason that we shall briefly go over this procedure now. 

To begin with, tho displacement matrix is subdivided into 

two submutrices» 

r-ft   rE} (7.2U) 

with T^, containing  the   local  freedoms,   i.e.   all  degrees  of 

freedom located within a   substructure. T*g   dosignates  the 

external  freedoms  representing  tho connecting freedoms  ÔT 

the  existing substructures.   Now,   the  global  matrix  l\    is 

subdivided according   to   equation  (7.24)i 

kL (7.23) 
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From there, wo so on to set up the following individual 

equations 

.-t -J X - KLLRL - KLLKLEY| (7.26) 

\Kff~ KlE KLL K^jY* * *e~ KtsKlLRl 
(7.27) 

Aa alternative notation of tho latter equation would be 

»U - I, (7.a§) 

Pleaso noto the similarity between this equation and (7.1). 

(7.28) shows that a substructure may easily be regarded aa 

a super-element. Therefore it is possible to calculate the 

problem in severul stages (recursive substructure technique). 

Finally, r should like to mertion tho fact i Hat proscribed 

displacements Tp and suppressed displacements Vf may be ^Tf 

handled in a manner similar to that shown above .""The manner 

of subdivision usod in the ASKA system is shown belowi 

Kr >R I 
-.'- 

I <i 

P '» 

l     t p    s '»•• 

K« 

< 

< < 
•^ 

L"= ». 

< *,', < j »<« ", 

L 
E 
P 
S 

Local dpRroes of freedom (slave unknowns) 
External decrees of freedom (master unknowns) 
Proscribed decree« of freedom iboundaryTîondltIons| 
Suppressed decrees of freedom (boundary conditions) 

u- 
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There aro many advantages   to  the   substructuring technique. 

Firatlv.   it  permits  subdividing  a  complicated   structure   into 

easily handled  components.   Secondly,   it   allows  for generat- • 

ing geometrically similar  substructures which do  not  neces- 

sitate  calculating  the  whole  problem over again  from  the 

start.   Thirdly,   it  affords   the   expedient,   should modificat- 

ions  become  desirabl«,   of defining as  substructures minor 

areas   in which alterations   in  the   conplicated   structure   are 

expected   to  occur.   In   this  case,   only  these  modified struc- 

tures have  to be re-calculated   (i.e. K|f   )i   with all  un- 

modified  substructures  already  solved.  In a number of cases 

this   procedure will help   to  save   a  lot  of machine   time. 

Fourthly,   it   increases  materially  the  system's  general   flex- 

ibility of application,   especially if unusual  boundary  con- 

ditions,   such as  sliding  effects   within a  structure,   should 

become desirable. 
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ILASTICITY EQUATIONS IN DYNAMICS 

The- finite-element method is excellently applicable to dyn- 

amic problems as well. To do so, it is merely necessary to 

expand the linear-static equation 

Kr= R 
correspondingly. Hero, we can mako profitable use of the term 

•kinematically equivalent load' established in chapter 7. In 

accordance with d'Alembort's principle it is possible to re- 

ducá a dynamic problem to a static problem by introducing 

negativi* mass accelerations as fictitious forces. Thus, ill 

the pince of the distributed loads per unit volume we us« 

d'Alembert'» forces (cf. (3.1)). 

In thi s cas«, M  represents mass density and 

(8.1) 

(«.a) 
Si 

represents local acceleration Applying equation (7.4), we 

have 

• « 

(8.3) 
UT,   =- "/ff 

If we now introduce equation (8.3) into equation (7.11). 

using § i w* arrive at the quasi-static nodal forcos to 

be determined 

P    —/>f*fJ/f 
or 

(8.U) 

 j 
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in which CRIO 

VW =  {/f'f dV (8.J) 

represents   tho kinematic-consistent maus  matrix of a  sub- 

structure. 

The dynamic  equilibri urn of  a  discrotised   structure can be 

expressed as   follow«! 

Rj* Rf* R. - Rit) J> 5 
<•.«> 

In this case, 

1\ *  • »aas   forces) 

P      • dnmpi lift f orco» I 

P      •  elastic  rr»rcp». 

Elastic   forces  have uirouely   boon defined   in «quullon   (7»l) 

as 

Re'    Kf («.7) 

Based on  »J' Alembert • '« PrincLplo,   mass   forces may uo  oxprossod 

similarly   to   j.nti Lvliiuul   olowont«  (cf.   equation (8.4)), 

R-t = Mv 
(8.a) 

with M    roproB on tinti '-ho  M truc turc» s  6l«»bQl mu*H »«<«*ix. 

¿_J 
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Finally,  In oaao of viaoou* danpinc the damping foro«* may 
bo o*pro««ed •• follows, 

R>- c* (i.9) 

with  Ç repraaencing tho global  damping matrix. 

With tho aid  of equation«   (B~.k)t   (8.5),   (8.6),   (8.7) and 
(8.9), «a car  now axpraaa   tho iotal diaplaaament aquation 
••Plying to tho entire e true turo  to read, 

Mi8* e> • Kr «  Rit) 
(8.10) 

ft now become* noconsary to defino tho two matrice* M and 

C » Uiing tho principle of virtual work. 

 ~J 
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9     THE  PRINCIPLE  OF  VIRTUAL WORK APPLIED TO  DYNAMIC   PROBLEMS 

To begin with,   let   us   consider  an  elastic  body deformed by 

dynamic  forces.   WP may aasume   that  within a  specific  time 

interval   tho  displacement  vector  Gl0 will  be   ¡subjected   to 

a certain amount   of virtual  alteration 

U,=   H. + CÎM, (9.1) 

The virtual displacement factor cf 14   is  infinitesimal a« well 

as  consistent  with  the given boundary conditions  of  the  total 

structure.   The  virtual displacement mentioned  above causes 

consistent  virtual  strains, «Tí    ,   which can be  used  to cal- 

culate  the momentary alterations   of  strain  energy ¿U{   .   In 

a dynamic  process,   the  external  virtual  work,   therefore,   con- 

sists  of  the  work of  the volume   forces,(Hf ),   tho  surface 

forces  ( f   ),   tho  singular  forces   ( P ),   and  of  inertia,  dis- 

regarding damping as a matter  of expediency.   Applying  the 

principle  of virtual  work,   we have   (cf.   equation  (7.8) 

¿U    * ÄW; -  f/ííu'üd/      _   (,.2) 
in which case  the  strain energy ia 

i 
and 

» f 
with e#   containing the virtual nodal displacement» per- 

taining to   r   (cf.   equation   (J.k)). 

J 
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Werk must be the sum«, both on the «lament lavai ( f,P   ) 

and on the global level ( r, <3 ) (cf. oquation (7.16)). 

ij*?io «¿Vût*) (9.3) 

We can extract àf r  from equation (9.1»), 

extraot #W¡ from equation (9.2) 

and, finally, ¿U; from oquation (9.3) 

New, it follows from equations (7.**) and (7.15) that 

and that, if W   is non-variable over*time, 

Ü- f {   -   fair !'•'! 

Moreover,  equation (7.5)  shows  that 

* - Dü - D{f * Df A* 

Applying equations   (9.6) and (9.7),   wo have 

(9.7) 

J 
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£r**M ' Stt¡W<r¿v'+£TtJMstffaMr 
Y 

- (Tr^a'frurc(|/ - ¿Vji» àf 

With  ér   representing a  virtunl displacement,  we apply 

•quation  {7.6)   tu arrivo at 

<*.•» 

the definition of ¿V(t) being derived from équation (7«<2). 

If we now insert into this equation 

Rit) -Q(o + aM»ui (9.9) 

in n mann or similnr to that omployod 4n oquntlon (7.21) and 

if, after thut, wo uno cquuMons (7.I0) and (8.5), oquatlon 

(9«8) now  reads 

a'nvart a^ar - RiO (P.10) 

In comparison   to   (8.7)   nnd   (H.tf),   an ni temutivi»  notation 

would bo 

Mr - Kr - Rit) (9.11t 

in which  cnao, 

M «   aim a (9.12) 

and,   |\   boln¿; dorinoci  as   In   oquuiinu   (7 ••-'>)), 

K - a'fca 
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Tha>,4 .•j^tfiji run bo go nor« tod la a simllur manner, 

C - ac« <».t3) 

v representing  the  individual   viscous damping Matrices  of 

the elements.   In ' cases  of a true turai damping of an actual 

•truetura»   it  is  not nlwayw  easy  to arrive at   the  properti« 

of «atri«   Q    .   In many CHSOS proportional damping is as- 
sumed, using 

C *«K^M (9.uy 

V« should mention, however, that tho damping characteristics 

of «ateríais and structures are still obscured by many open 

questiona which can only be answnrod by Jntonsive experi- 

stentine and roeonrch. 
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io   MAgg MATRICE? 

Th« kinem&wically consistant mass matrix (oftsn called  Äqui- 
valent masi matrix)  of an «lament can be dsrived from th« 
following equation  (cf.   also equution  (8.5))» 

va « J>ffcf ¿V (10.1) 

th« relation between tho displacements (¿within and at the 

boundaries of an element, on th« on« hand and tho nodal dis- 

placements f     of th« element on the other being expr«ss«d 

as follows (cf. equation (7.*0) - 

U ff (10.2) 

Generally, dynamic processes do not havo a clear matrix 

applicable to the ontir« struetur«. However, discretising th« 

structure into individual elements yields an approximation 

to the actual dynamic processes which may b« doemed satisfac- 

tory in most practical casos. 

In this chapter, w« shall use one typ« of «lament - TRIM 3 - 

to follow tho simplo proceduro of compiling a corresponding 

mass matrix. First of all, we simply-assuma that the «lament 

is aligned in the following fashion relativ« to the global 

axes x and y. 

Using, non-dimensional coordinate«« ( Í %  ) w« arrive «,£ 

* 

4 2   3 

[X     M-JO   $1 

 J 
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Tho displacements ocurring within tho element towards tho 

direction or x, designated as If..  , are 

with 

?* '{fa'   $*-.,&*} 
Given a coni tant thickness t, it is now simple to calculate PU 

Resolving tho integral yields 

*« -Mk 
%A   1 

A  Z1 

A A Z 

with f   representing .the area of the  element. 

Generally,  however,   an element's  orientation relative   to 
the global  axes will not  be as  we have assumed above.  To 
compensato  for  this,   the method  of polar coordinates  Is 
ussd in practice.  This  system of  coordinates fe,to is defined 
In the following figure. 

«.'S-i 

s \t»**WV 

%*1*A\> 
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The figura chova  that,  using polar coordinates,   wo have 

Furthermore, 

(IO.*) 

ao that Jacob!'M Transformation betweon tho polar and the» 

cartosian coordinates now read« as follows) 

S>X^ _à?^ m  ¿ft 
(10.3) 

Conssquently, we can simply us« aquation ( 10.1), givon a oon- 

atant thickness tt "" 

1 1 

m-/fffîtl3MlM (10.6) 

Obviously, siatrix (10.6) given abovo applies both to the x 

and y direction. 

*-è/,F 
2 A A 

A 2 4 

A    A    t 
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11  VIBRATIONS AND DYNAMIC RESPONSE 

In this chapter ve shall deal with «mall-scale harmonio vib* 

rations having « finito numbor of Unknowns. Without damping» 

I.e. with C • 0, oscillatory vibrations aro bound to con- 

tinue forever - an impossible thing to happen in practico, 

of course. Those oscillatory movements occur only in certain 

specific, frequencies, reflecting certain specific states of 

deformation, which is why they are often called 'character- 

istic modes ' . 

Basically, two different types of oscillation are possiblet 

- Free oscillations| and 

- Forced oscillations. 

For completonoss* sake, let us ropeat tho total displacement 

aquation of a global structure (B.10)i 

Mr + O -r Kr * RM <n.i) 

Generally  speaking,   thore  are   two  possible  ways   to solve 

this   system  of  equation»! 

- Modul   suporpos-i tion   thnoromt   and 

- Direct   integration. 

TI» e foriDor mo (hod is often usod for problems oxpected to in- 

volve minor amplitudes only. Thus, tho displacement vector 

is expressed as a linear function of tho characteristic mode 

by moans of modal amplitudes. This process yields a simple 

uncoupled equation for each modo of the structuro. After 

solving each individual oquation the final result is arrived 

at by superposition. To do so, we first have to find the 

natural frequencies nnd their natural modes. Tho equation 

we nood in this caso is (frei> oscillation, undnmpod) 

Mi*+ Kr -  0 (11.2) 

This   equation  expresses   a  simple  harmonic   oscillation.   The 

displacement   vector  can  be   simply  expressed  as   follow»! 

r = ^elurt ("••" 
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Insertine aquation (11.3) into (i 1.2), wo nava 

(K-i^M)^- 0 (11.») 

thus expressing what is fsnarally tarmad  the  'general lin- 
aar ai«anvalus problem',   scalar 6/   baine the eigenvalue and 
4j   being the matching eigenvector.  This last equation is 

also often called  charateriatic  equation. 

Often  it is necessary and/or desirable,   for reasons of econ- 
omy and numerical handineaa,   to reduce  the number of global 
degrees of freedom.  This  is done- by subdividing the dispiace« 
ment vector into  two distinct types of freedoms, 

- master degrees of freedom YJL •  and 
-  alava degrees of freedom Y2 

r • [ Yj   nJ (11.3) 

This method is often called the 'static condenaation method*. 

Correaponding to the splitting of T*  matrices fC and M are 

subdivided aa well. 

K* 
"u Kjm 

*r- K «wj 
(11.«) 

Mr 
MeJ  M*n 

>lj*»v M 
(11.7) 
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Now, we présupposa that «lav« degrees of freedom are depen- 

dent on masttr freedoms. 

T 
I 

rm ;   «i =Ti^ (n.I) 

and that the frequency equation thus reduced or condensed 

na« reads 

(K-^n)r^- o (11.9) 

with K *nd M being the condensed stiffness and mass «at- 

ri« respectively. These two matrices can be found by equal- 

lainff kinetic energy (KE) and strain energy (St) of the 

structure concerned. 

"•   ¿VKr -JriKC (11.10) 

».    ir'M^-f^.Mf^ (ILIO 

Now we use equation ( 11.8) to determine If and n • 

l#f*-W*   11K(T    fl* (11.13) 
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But, aa those aquation« apply to auf' *• muât havo 

K  -K^TtlC*KJr*'Ttfcir (11.i») 

H « Mfcwt T
l Hk« r .MJ * T* H«T      <"•'»> 

Wow va hava to find tha traili format ion matrix, T • Por thia 

pur posa we assuma that our alava degrees of freedom f0^  ara 

äqual to those freedoms which are bound to oocur In a atruc- 

tura not subjected to any load except in correspondence with 

tha prescribed displacements TJL • 

o 
(11.16) 

or 

K*Y5 + K*Xw *   ° (11.17) 

which again gives 

(11.1») 

U- 
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If  we  comparo   this   to  equation   (11.8)   our  f    now  ronda  CIM 

*•» K~1   K i (11.19) T    *•••- ^d4 ^ i MTV 

If wo now combine equations (11.1.'.') and (ll.l'l) wo huv« 

K  -/ KWIM; • Kj^Ky Kj^ 
( 11.20) 

Mote   the  roaombLnncu   to   equation   (7.27).   Tho  oquutinn  /¡ivcii 

above  »how«   that   voc'Lor T^¿    »iny  bo   regarded  ns  ¡in   internal 

degrcn  of   freedom.   Tho   condensed  inn s M   Hint rix  wns   «loj'imul   in 

(11.15).   Wo   should   note,   however,    Mi« í    although   the   atrillo 

condensation 'of   tho  global    s< il'rnoss  inni rix  K   represents 

a   mathematically   exact   procedure   tho   corrompimi) i n/ï   prooeaa 

Of   condensing   ninas   matrix   M   llorosa I In toa   iii.ik i tìf,   additional 

aaaumptioua   concerning  d I aplacéntenla. 

When  applyinc  direct   i ni o/yra t i on   lo   aolvo   ot|uiitLon   (II.I) 

it   ia   not   necessary   to   »ulve   Ilio   o i j;onvn 1110   problem,   ¡1 

procosa   which   obviously,   uiulor   cori nifi   o i reuma I ancos ,    la 

apt   to   consumo   n   loi   o I'  machino   timo.   Moroovor,   "Hila   molhoil 

ia   applicable   to   non-linear   problems   «a   wo 1 1..   Th.I .s   mollimi 

impilo»   splitting  up   (lio   rosponai»   procesa   by   lini lo  dllTor- 

oncea   In   timo.   Tho   response   nt   I lie   end   of   the   l'irai,   rinite 

step   Is   calculated   on   tho   Imsis   »r   the   initial   situai ion  aa 

woll   fia   tile   load   durillo   the   lirai    slop«   The   results    thua 

ubAilinud   at    the   end   of   each   step   are    then   used   as   all    hill in] 

basis   for  calculating   the   subsequent    atop.   Describing   the 

entire   ranfye   of  methods,   each   with   ita   specific   advantages 

and   with  a   following  ol"  advocates,   would   j;o  beyond   the   acupe 

of   this   paper. 

..._J 
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12   IWf-LIWIAR PR9BLCM8 

Qenerally «peaking there are  two  kinds of non-linear prob- 

loma, 

- non-linear material behaviour (elasto-plastic phe- 

nomena ),   and 

- non-linear geometrical  phenomena. 

Problems  combining both kind»  of   phenomena  still  present  us 

with well-nigh insurmountable  obstacles  in solving practical 

engineering problems. 

Again,   we  solve   these  problems  by  splitting  them up into 

small  steps,   each step presupposing a linear  processi   this 

is,   in other words,   an iterative   approach. 

Moreover,   let me mention the  fact   that  the  superposition   theo- 

rem  is not applicable  to non-linear problems,   which means   that 

if wc  have several  load cases  we  have to deal   separately with 

each  individual  global  load  case. 

The   scope  of  these brief remarks   does not  afford an oppotuni- 

ty  to deal  thoroughly with  these  non-linear  processes.   I   shall 

merely attempt   to giv* a brief  survey? 

W 9  Fl I Linear    Material    Properties 

If we are dealing with non-linear material properties we mere« 

ly have to modify linear equation (7.6). Ve repeat this equat- 

ion below as a  reminder. 

<t = E(fc- ìT>->«ì (12.1) 

A general  non-linear  stress-strain relation  can be formâTly 
expressed as  followst 

F«r,ti ^ o (12.2) 

As   the  compatibility  equation   (7*5)  is  applicable  hero,   we 
havo 

e - Du - D^J (12.3) 
A 
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to take into  account as  well  as  tho  requisite conditions of 
•quilibrium.   Its   is  obvious,   therefore,   that we  shall   find 

the  Solution of   the non-linear  problem   (l2.2)   provided  a) 

that   we modify one  or more of   the matrices £ , 0*    and ßx   of 

equation   (12.1)   and b)   that  we  can  find   a   solution  to   equat- 
ion  (7.1) 

Kr -  K (12.1») 

in which the  stresses  9    and  strains f  obtained will   satis- 
fy equation   (12.2). 

To be on the safe side it should be mentioned that there is 

virtually ho theorem guaranteed to provide an exact or cor- 

rect solution to a non-linear problem. It is therefore per- 

fectly possible to obtain incorrect results in spite of the 

fact that all necessary conditions, such as equilibrium, 

displacement consistency, and a correct stress-strain relat- 
ion were fulfilled. 

To obtain  a   solution  it   is always necessary to employ  an  iter- 
ation method.  According  to whichever matrix, F , 6^    or  £    , 

is modified,   the   iteration process   is   either called 

- Method of  tangential  stiffness—(  S  ),  or 
- Method of   initial   strain  (  ££   ),   or 

- Method of   initial   stress   ( (T    ) • 

The  tangential  stiffness method is  applicable  to all   elasto- 

plastic problems.   The  matrix   is  generated   in a manner  simi- 

lar  to  that   described   in  chapter 7   in   connection with   the 

elastic stiffness   matrix  (equation  7.10). 

^   - JVtfFtXfJ/ (12.5) 

V 
In this case, f represents   the  pertinent   elasto-plastic 

material  properties which a user of ASKA,    for example,   would 
have   to define beforehand,  Then,   we   simply have 

KT - a^a (12.6) 

._ J 
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This  method   necessitates   calculating  the tangential   stiff- 

ness  matrix  anew  at  every  step   and,   far worse  than   this,   it 

also  necessitates   solving another system of   linear  equations 

•very   time.   Although application of  the substructure  tech- 

nique,   with   only  some parts  of   the  structure   showing plastic 

behaviour,   renders   the  entire   process  much more  economical 

there   is  general   ag;eeirent   ihat   the   initial   load  method   (i.e. 

initial   strain or   initial   stress  method)  is   more   favourable. 

The   initial   load  ir.othod may be   expressed aa   follows   (cf. 

(7.21)   and   (12.4) ) t 

V    ''^A-^ (12.7) 

with A   »   of   course,   representing an  increment  of   the vector. 

Matching initial   iord3 -j^    CP:I   then be used   to  simulate  any 

modification   of   the elastic  stiffness matrix.   In dealing with 

•lasto-plastic  problems  wo now  use  equation   (12.7)»   In  this 

case,   Kg   is   resolved orly once.   We merely  calculate  the  ex- 
tent   of plaotic   strain  i-.t   oach   step. 

Using  ini   ial   loads  implies  certain difficulties.   The  incre- 

ment   of  each   lor.d   '"Ctor V>A     rr.ust  be  derived   from   the  plastic 
strain  increment   vbicli  in   ;urn   is derived from  KA .   On  the 

other hand   it   is   inpcssible  to   calculate plastic   strain  with- 

out  knowing   the   str«ss   increment.  To   solve   this  dilemma  we 

have   the   two   methods  of   initial   3train and   initial   stress. 

Initial   stress has   an advantage   over   the initial   strain meth- 

od  in   that   it   is   applicable  to   calculating   ideal   plastic   pro- 

cesses   as   well)   otherwise,   both  methods  are  more   or less   equal 

(ideal   plastic   orocesses   can  also be  dealt   with by means   of. 

the   tangential   stiffness  matrix   method,  by   the way.) 

Non    -    Lin  o  o  r    O  o omotric    Processes 

This   term  descritas  al.1,   procapses   in   the  course   of  which   the 

geometry  of   a   structure   changos   under  load   t-a an   extent   which 

rulos   out   the   a-isuv.ption   of an   equilibrium   existing  in  the 

deformed  structure,   implying  that   there is   a  non-linear  rel- 

 > 
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ation between  stresses and  strains.  With each  iterative step 

it  is   therefore nocoasary   to  formulato  anew   the  conditions 

ofequilibrium;   this  despite  tne   fact   that   the  scope of  strains 

continues  small and   that   there   is  no  presumption of linear 

material  behaviour.   Processes   presuming small-scale  strain and 

linear  material  behaviour  are  often  celled   ' lar/re-acalo dis- 
placements«. 

At each   iterative  step .of  a large-scale displacement  the non- 

linear  stress-strain relation causea  a  change  in  the element 

matrices K     •   Modification of  the  element  stiffness matrix 

is de s iena ted  by 4i ß .  We   can,   therefore,   express   the total 
matrix %   as   follows t 

- K * K     t to 
(12.8) 

with ^|    representing the   elastic   portion of   the matrix   (cf. 

equation  (7.10)).  The matrix A &   is  often called  the geomet- 

ric stiffness   of  an   element.   This  matrix  is   not  merely de- 

pendent   on  the  geometry but   is   also a   function of  the  stres- 
ses within   the  element. 

A  simple   erample: 

Two rods  are   connected by  a  Joint.   Clearly,   there   is no  stiff- 

ness in   the   direction  of   the  load r\    while   the  structure  is 

still   in  its   initial   position,   i.e.   with  the   rods  horizontal. 

Equilibrium  will  only bo   restored  after a  vertical  displace- 
ment X   has   taken place. 

R - -   2S 
» 

r - K> 
Geometrie  stiffness,   thorofore,   is 

j 
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Tho   H/vum*«  HIIUWII  Im low   iituHlriil.n  nrttHhnr «xfimpli*.   A   I'lunw 

demoni   IH   »lib JIM: toil   !.<>  i)   |)i>rpnn<)lrul¡»r   furro   N.   Uiud.T   Hi I.H 

luiiri,   ndili I lonn L   larw-rfRnti«  iH api .irt<mrnl M   uro   l'iirci'H   l, rann* 

viTMoly   Lo   I.IIP   rinnen   (   (/j (  Ç   ). 

I»* 

tu   litrw-Hfjili« «M spIfM'oMii'iil H,   Mu?   l'orco  will   ni. 4*1 rnl   «un- 

ti nu««   in   ils  H ri binili   <| i >•<<<'M on n I on;;. Ilio  x   «xi H.   Thin  «IVOH 

ri HO   tu  H  moHiiMii   Nu. 

f/^ 

a OH* M- 
#—» 

w 

111 i H   Monmiil  must,   in-   bul impeli. 

I 
.-•v 

'/  

V 

t JA 
*— 

'•j^- 
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Now ve have 

Of eourte, both moment« mu»t be equal. 

/ 

If wo now add  the  vectors of N and Ny tho load   ia  affala ex- 
erted along thè  flanco.   Equilibrium  le roetorcd. 

and.   thoreforo, 

j    ^ 

Lot  us no« coneldor  tho  llnour-elustic procosiea,   l.o.   tho 
•«nll-tcalo  strain».   Strain  along  tlin   Clango   le ¿>xproe«od a« 

Si 
itij 

lJ       ft 
ftfj-tft) 

'/ 

tho corresponding  Torco boliw; A,   wLtli Mio flanco  urea romain- 
inn constant. 

IHiw wo can oetablieh  tho ontiro sUffnc«» matrix. 

*-*,•*. 
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N . 
xt 

N . 
y> 

N . 
*l 

AE 

1    0    -1 

0   0     0 

-1    0 

0   0 

1 

0 J 

V. 

ul 
V. 

•v 

0   0   0   0 ui 
0    10-1 vl 

0   0   0   0 u. 1 
0-101 vi 1 

or «It«,   expressed am. metrico», 

N=(feE* tyu = leu. 

Generally speaking  It   is possible   to  compilo a geometric  ©1« 

omont  stifrnoss   for  onch elcmont.   Knowing both   4t.   and   4(ü 

the  olomont   is   subjoctod  to  a  small   finito displacement   in- 

crement.   Now,   thi-  load   vector   r*    can be  expressed  us   (cf. 
equation  (y.j))i 

?A * fcf4«(V **)%* (12.9) 

Moreovor,   virtual  work  can bo oxprossod   to  road 

if R* *  ft P* 
According  to  equution   (7.15)t 

i   TA Í - <* 
•o   that 

RA«rfPa«Aè(I^V«VK*,â 
(12.10) 

-jj 



-   72  - 

Thie   equation  is  a moro  approximution,   but   il.  «row« more 

accurate   the smaller both R4 und tA   aro.   In larßo-sculo di«. 

placement   problem»  it   is  unfortunately necessary   to  compilo 

anow   the   global   stlffnoss matrix  and   to  «olvu   tho  llnoar 

system  of  oquution«   lutur.   It   is  very difficult   to make any 

roliablo   statomnnt  concerning  the«  acalo  of  tho  load   incre- 

ments.   Each problem must  be   consldorod  individually  to  en- 

sure   thatAdts  pocullarlties  aro--'takon into account,   always 
remaining sensitivo  to  practical  considerations. 

In conclusion,  I should liko to remark that  tho  largo-scale 
diaplacoment method  can also be uaed  to solvo  stability 
problems. \ , 

•J*- 
a 
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