TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

07550
11) 至

Butr. LITLTMD
IT/Mo.234/1
13 July 1977
[mblim

1 Inited Natiom Industrial Developmant Onmmiedtu..

Interresional Brport Orem Neoting em Oemputer Applicatione and Hedern Englmearlas in thahlat Manuraoturing Induptiry

Warsand, Polend, 19 - 29 Eeptember 1977

[^0]
Contnntis

Intreduosion iv
1 Matrix Mothods 1
2 Elasticity Squations in stalica 7
3 Enorigy Theorems 12
4 Idealization - Structural Mudul and Elomonta 18
5 Llement Stiflnoss 22
6 Solecting Suitable Elemontis 30
7 The Displacemont Method 30
8 Elasticity Equitions in Dynamics 30
9 Tho Principle of Virtual Work Appliod to Dymamic Prolsicms 33
10) Mass Mutrlecs 57
11 Vibrations and Dymomic Rosponse 60)
12 Non-Linoar Probloms 65

Introduction

Thie theoretical introduction was meant to be an intensive course coverinc a sant two days and is therefore lacking in completenese. My intention was mainly to explain ali those thince which every PEM ueer should have heard at least once In order to be able to cope with certain contingencies which micht arise in application.

Thie present vereion is pilot version and therefore open to euccestions of improvement which the author will be happy to consider in order to enaure continually improving quality of this manual.

1 MARTY METHODS
A matrix $1 ;$ defined as being : rectangular al ray of figures or symbols arranged in lines and columns. This configuration is turned into matrix by the addition of square brackets. Assuming a matrix to have m lines and n column it is shown as follows:

Let mo underline the fact that tho number of inge (m) 10 always named first. Therefore, A is a (man) matrix.

In the follciang chapters mention will often be made of line or column matrices or vectors. Assuming $m=1$ we have a line matrix or a line rector.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{1 j}
\end{array} \cdot a_{14}\right]
$$

If, however, we assume $n=1$ we have a colum matrix or a colum vector.

$$
=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{11} \\
\vdots \\
a_{m 4}
\end{array}\right]
$$

There are some special matrices which I should like to mention briefly at this juncture.

$a_{1 j}=0$ proviced that 1 pl and a_{11} is not 0 in each case

An alternative notation would be

$$
\left.A=\int u_{11} u_{11} \quad u_{51} \quad u_{44}\right]
$$

Identity Mat rif

This matrix is a special case of diagonal matrix defined above. In the case of 3×3 matrix, for instance, we have

$$
I_{z}=\left[\begin{array}{ll}
1 & 6 \\
1 & 6 \\
9,4 & 6 \\
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

MandMantin

Whenever all entries (or elements) or a matrix which are not equal to zero are arranged around the main diagonal the deeignition 'band matrix' applies. For instance:

A matrix is called olther all uppor (U) or a lower (L) triangular matrix if nil its oluments oftuated oithor abovo or below the main diagonal are oqual to zero.

$$
L=\left[\begin{array}{cccccc}
a_{141} & 0 & 0 & \cdot & \cdot & 0 \\
a_{21} & a_{i 2} & 0 & \cdot & \cdot & 0 \\
\cdot & \vdots & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n i} & & \cdot & a_{n n}
\end{array}\right]
$$

In n symmetrical matrix "f, is always ioqual to aji: In ilnuar
 nymotric.

Trnngnoged Mantrx

A cranaposed mitrix is protuced by oxchanging lines for columne, as for finstatheo

$$
\underset{(2 \times 3)}{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Thum, n tranaposed matrix is

Moronver,

$$
A^{t}=\left|\begin{array}{ll}
n_{1 i} & a_{11} \\
a_{12} & a_{12} \\
a_{13} & a_{13}
\end{array}\right|
$$

and, in the cone or symmotric matricen,

$$
A^{\prime} \quad \because A
$$

Largor matrices of, for instance, the wizo of 5,000 $\times 5,000$ containing 25,000 entries nocessarily have to be subdividod into smaller matricos, such as

$$
\begin{aligned}
& \underset{(3 \times 3)}{A}=\left[\begin{array}{ll:l}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{21} & a_{1} \\
\hdashline a_{33} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{A}_{11} & A_{12} \\
\boldsymbol{A}_{21} & A_{12}
\end{array}\right] \\
& \underset{(2 \times 2)}{\boldsymbol{A}_{1}}=\left[\begin{array}{ll}
a_{110} & a_{12} \\
a_{212} & a_{12}
\end{array}\right] \quad \underset{(2 \times 1)}{\boldsymbol{A}_{12}}=\left[\begin{array}{ll}
a_{13} & a_{23}
\end{array}\right\}
\end{aligned}
$$

$$
\underset{(x 21)}{\underset{(x 21}{ } \boldsymbol{A}_{21}}\left[\begin{array}{ll}
a_{31} & a_{32}
\end{array}\right] \quad \underset{(4 \times 21}{ } \boldsymbol{A}_{21}=\left[\begin{array}{l}
a_{35}
\end{array}\right]
$$

This subdivision into submitices call, of course, be dono in severni stices. ASKA, for onc, providos 3 sticiges.

Labol

Milerix ot adresmon

Matricos of sume

Numerical matricon
I throurgh IV

If we apply this example to the 3×3 hypormatrix A mentioned above, matrix III would be our $A_{21}=\left[\begin{array}{ll}a_{31} & a_{32}\end{array}\right]$

In calculation it is possible to treat matrices just like you usually treat numerical data. In the following, we give the definitions required for our purpose.

Sapidity

$$
A=B
$$

moans that for all i and $j a_{i j}=b_{i j}$.
Addition and Subtraction

If

$$
A+B=C
$$

then

$$
c_{i j}=a_{i j}+b_{i j}
$$

In tho case of abs action, collsoquentiy, we have

$$
c_{i j}=a_{1 j}-b_{j j}
$$

Matrix Multiplication

If a matrix is to be multiplied by a factor ovary angie entry must be multipliod by $c, 0 . E$.

$$
C A=\left[C a_{i j}\right]
$$

In multiplying two matrices it is a condition sine qua non that their dimensions bo compatible. If, for instance, (man)matrix Ais to bo mulifilicd by (op) matrix it ia requisite that $n=0,1 . e$. the number of lines n continined $\ln A$ must be equal to the number of columns o contained in B.
Thus,
and

$$
\begin{aligned}
& (m \times x)(\text { (op) })_{(n \times p)}^{B} \\
& c_{i j}=\sum_{r=1}^{0} a_{i r} b_{r j} \quad i=1,1, \cdots ; j=1, \ldots P
\end{aligned}
$$

A simple example, would be

$$
\begin{aligned}
& \left\{\begin{array}{lll}
a_{11} & u_{12} & a_{13} \\
a_{121} & a_{1 i} & a_{13}
\end{array}\right\}\left\{\begin{array}{lll}
b_{11} & b_{21} & b_{31}
\end{array}\right\} \\
& = \\
& \begin{cases}c_{11} & b_{11}+a_{12} h_{21}+a_{13} b_{31}\end{cases} \\
&
\end{aligned}
$$

Solution wi Lincir Milvix timintions in Stalic problems

 States the laast momior of nomaricial opriations. Thore are varjous matrix reducdion Lechmidma: whose applicability hats

 1.1, 1. \therefore, 1. ami 1.4.

Tho Cuncord of AikA

Pli. 1.1

Eif. Recursive Sub-Matrix Technique

Lis._1.2 Hypermatrices

Symmetic Positive Delimice Hypermatria Q $^{\text {B }}$

Uppee Itrangulat Hypermatria 0

Fing inh Rocursive Choloski Fincoorinition

2. ELASTICL Y GOUATIONG TN STAT C:

There aro throe biste cornditions ueded in stiolic probloms tos ostablish tho reglifalic sy:times of muationsa

1

$$
0
$$

$$
\circ
$$

1
-

- Killomatie conslatomeyt
- Strese-straln rolialinma.

Static and/or kinomilic comifitions oceur amone boundiery conditions as woll. OtI possiblo accurronce of stalic and kinnmatic boundary conilitoms la best lliustratod by moans of a hollow box.

At $z=0$ life hollow box is rigidlly moundiod. The wob is in-

 ary condiliont:
$y=0$
$u=v=w=0$, i.d. kincmatily comolitions only.
$2=4$

$$
\begin{aligned}
& \sigma_{22}=0,1, \cdots, N 1: 1 \mathrm{ic} \text { conlilion. } \\
& \text { durey }=0 \text {, ipplyilir to voritical walls. } \\
& \partial w / \partial x=0, \text { ipplyine: to horlzontial wills:. }\} \quad \begin{array}{l}
\text { Kinomitice } \\
\text { conditiont }
\end{array}
\end{aligned}
$$

then

$$
\begin{equation*}
\varepsilon=D u \tag{2.6}
\end{equation*}
$$

(thim roaliy botite applicablo only to minor diaplacomenta with boing dofined as in oquation (2.2)).

This domonstraton that it is nocoseary to know the dieplacea ment vector V^{1} in ovory point in order to duncribe comploteiy the etate of displacemont in a goneral 3-D continuum.

Kinomatic consialoncy can bo dofined vorbmily as followis

A Etalo of displacomont la to be doomed kinematicaliy conststent whonever notethbourines parte notifor diverge nor ponotrate one natitior after deformation.

For Lincar-elastic matorials lione relations can be oxproseed ns rollows

$$
\begin{equation*}
\theta=5 \tag{2.7}
\end{equation*}
$$

with
E represonting $\quad 6 \times 6$ elameicity matrix roflecting the material properiles of the matorial concorned; ninisotropic bohiaviour is nol rilled out. Mils matifitin positivoly dofinilo. (Incomprossiblo matorials constitute an exception.)

Applyint Honki's Law, wo live

For inotropic materials in which heat expansion in e al in all directions equation (2.7) can be expanded an follows

$$
a^{\circ}=E E+\times T E E_{T}-E E I
$$

with \mathcal{C} constituting the hot transfer coefiticiont, T representing temperature alteration, $\mathcal{C}_{\mathcal{L}}$ being tho 6×1 colum n vector of initial strains and

$$
E_{T}=\frac{E}{1-2 \gamma}\{-1-1-10000\}(2.10)
$$

Equation (2.9) makes it possible to arrive at total strains \boldsymbol{S}_{4} by multiplying; both the right and the left side by $\boldsymbol{f}^{-4}(1.0$. the Inverted matrix of $\left.E, E^{-1} E=I_{6}\right)$.

$$
E_{B}=E^{-1}-\alpha T E^{-1} E_{r}+B_{I} \quad(2.11)
$$

or

$$
B_{E}=E_{F}+B_{T}+B_{I}
$$

with

$$
\begin{aligned}
& S_{E}=E^{-1} \quad \text { (plastic strains) (2.13) } \\
& 3<-\alpha T\left\{\begin{array}{lllll}
1 & 1 & 0 & 0
\end{array}\right\} \quad(2.14) \\
& \varepsilon_{I}=\left\{\xi_{y_{x x}} \xi_{I_{y}} \varepsilon_{I_{22}} \varepsilon_{I_{x y}} \varepsilon_{j y z} \xi_{j x}\right\}
\end{aligned}
$$

In the case of a threedilmonsional conlinumm the equilibrium or static-consistency conditions can be defined as follows

$$
\begin{equation*}
D^{t} \sigma+w=0 \tag{2.1}
\end{equation*}
$$

with roprosenting the 3×6 matrix or difforential oporatore,

$$
D^{t}=\left[\begin{array}{cccccc}
\frac{\partial}{3 x} & 0 & 0 & \frac{z}{3 y} & 0 & \frac{2}{32} \tag{2.2}\\
0 & \frac{\partial}{y y} & 0 & \frac{y y}{y x} & \frac{y}{3 z} & 0 \\
0 & 0 & \frac{z}{3 z} & 0 & \frac{3 y}{y} & \frac{z}{3 x}
\end{array}\right]
$$

and reprenentilf the 3×1 column vector of volume forces.

$$
u=\left\{\omega_{x} \quad \operatorname{los}_{y} \quad \omega_{z}\right\}
$$

Wo can state gencrilly that

$$
\begin{aligned}
& \text { all forcos acting intornally nund } \\
& \text { oxternally mast br bulanced. }
\end{aligned}
$$

This typr of consistolley is frometric in maturo. If wo doFine all doformations of a comlinumin calisod by external loada or tomporature bradionts by moins of Lho displacoment voctor

$$
\Delta_{0}=\left\{a_{x} \quad u_{y} \quad u_{z}\right\}
$$

and tho approprinta strain vartor

$$
\Leftrightarrow=\left\{\varepsilon_{x x} \varepsilon_{y y} \varepsilon_{22} \varepsilon_{x y} \varepsilon_{y z} \varepsilon_{z_{x}}\right\} \quad(2.5)
$$

If we now take intu nccount tho fact that ioxtornal work must always be bulanced by tuterna. work, we havo

$$
\delta W=\delta u \text { und } \delta W^{*}=\delta u^{*}
$$

Thurefore,
3.1 Virtun 1 Worn

In the eanrso of the explanationts of the anorgy thoorem: fiven above we have asshmod thit displacomenta necurred becalise of roal ladt. This 1 limililioll, howrior, is mot nocossary. The equat ions divin above demonsiratio that. diw alla du emn be

$$
u_{v}+f u
$$

the only conlition belifi linat dity in klimmationtly consiatont. doformatiolt.
 Elven loni, incluclinf lomineratirn lamis, if

$$
\begin{equation*}
d W=d! \tag{1.3}
\end{equation*}
$$

 rined as follows:

Extornal viriunt work camsori by oxtormal loade alil
 work performerl by stross ame involvilit: virtumb strathes provilud that thir strosacs alo statlally colstationt with tion outor loats.
3. ENERGY TILIOREMS

In 1954, Profossor J. H. Argyris statod in his book, 'Enorey Theoroms und Structurnl Analysis' that all onorfy thcoroms can be roducerl io two basle princlpinss

- The principlo of virtinal work (or of virtual diesplacament); and
- The principle of comilomentary vibtabl. work (or of virtual forcos).

These two principlos conalitule the basif of tho strain enorey method employod in structural mechanies.

To betin with, wo shall doal meroly with minor displacomente or stroins, with all equalions oconrrimp represconlimf linear behaviour (l.e. all equations can br alloded toercher). This dons not monn, however, fhat we call leal with stresseatrain relntions only, to the exclusion of all others; we presuppose, howevir, thal all roliflone chaltire only monotonnusiy. This makes clear that, allhohyth strains and displiacrmonts may be supurimposod this is not always posinthln with stroserse Moronver, thore is a specific approach lo meli problem.

To becin with, lot us deal with a $3-\mathrm{D}$ body under the following loades

Balancing volumi forres; (per unlt volimin)
Surfice foreas; (e) (por unltarca)
Sjnigular lorcos.

Looking at the di:splacoment din,riann

the clungife ju weris δW cais nuw Le uxpremsod as

$$
\dot{W}=\text { Níl } r \quad 3 d p d u
$$

or, if lifghor-aracr marisios aro left out, ns

$$
J W=R d u=\int_{i}, d d u d V+\int_{s} \phi^{*} \delta d d F
$$

In complamentary work, of corient, the following appliest

We can ostablisti whatla: ryuitions to oxpress tho strain enorey (U and U^{Y}):

$$
\begin{aligned}
& \delta u=\int_{v} \sigma^{t} \leq \cdot x \\
& \delta U^{*}=\int_{y}^{2} e_{4}^{t} 0_{0}-d y^{\prime}
\end{aligned}
$$

- 15 -

Let un apply thia principlo to a litto oxample in ordor to confirm our ideas.

Our exmaplo is a statically dotorininol latiteowork etrictiare In which the foree exirtol on tho roil 1.2 is to be dotermined. Ou: solocted virtinal displiacoment d'U prormite only of akinematically consistoni thortanlat of rod 1.2 . All other rods are not subjoctod to ally aileralion or thoir reapective load stalis.

Vortionl displacomont undor loid R is: $\delta u \frac{a}{b_{1}}$
Shortoning of the rod 1.2 is: $\quad \Delta \mathbb{1}_{12}$

$$
\Delta l_{12}=-d u\left(\frac{h}{b_{1}}+\frac{h}{b_{2}}\right)=-d u \frac{i h}{b_{1} b_{2}}
$$

The rod rorec to be delcrinibod is: M_{2}

We nuw apply the principlo or virtual work by

$$
\operatorname{Rdu} \frac{a}{b_{1}}=-N_{12} d n \frac{2 h}{b_{1} b_{2}}
$$

-9

$$
N_{12}=-\frac{R_{a} b_{2}}{l h}
$$

3.2 The Unit Loan MAt H nd

A special vorsioll of tho pritnefple motioncil above is called the unit load method. Later on, this method is used vary frequently in compiling rlomont matrices.

Instead of a random load, a singular force is now applied in the direction of the displacement to be determined:

$$
\begin{equation*}
1 d u=\int_{v} \sigma \varepsilon d v \tag{3.4}
\end{equation*}
$$

In this equation, $d_{u}^{\prime}=d i s p l n c e m e n t$ in the direction of the load;

The following exemplifies the application of the unit load method:

The displacement u occurring at the tip of tho boom is to tr determined.

The treo etpaina ares

$$
\begin{array}{ll}
\varepsilon_{z z}=\frac{R}{E I_{1}}\left(z-\frac{l}{2}\right) y & \text { fix } \frac{1}{2}<z<l \\
\varepsilon_{z z}=0 & \text { fir } 0<z<\frac{l}{2}
\end{array}
$$

The atros: voctory

$$
\sigma_{z 2}=\frac{1 \cdot z}{I_{x}} y
$$

Therefore, the diuplecoment can be determinod by

$$
\begin{aligned}
& \text { 1.u }=\int_{V} \sigma \varepsilon d V=\int_{F}\left[\int_{y / 2}^{1} \frac{R}{E I_{x}}\left(z \cdot \frac{1}{2}\right) z d z\right] \frac{1}{\tilde{L}_{x}} y^{2} d F \\
& \text { 1.u }=\frac{R}{E I_{x}}\left[\frac{z^{3}}{3}=\frac{1 z^{2}}{4}\right]_{1 / 2}^{l}=\frac{5}{48} \frac{R I^{3}}{E I_{x}}
\end{aligned}
$$

4. IDFALIZATION - STRUCTURAL MDDEL AND ELEMENTS

The most important step of the matrix method in structural mechanics 18 to dotermine tho p'ygicil or mathomatical model of the structure. If the displincoment method is usod, this model will rulfil overywhere tho condltion of kinomatic conststency but will fir most "asos be statically consistont only In the nodes. (conditlons arr roversed if the dual mothod the rurce method - is usal.)

The model is devised by subdividinf the structure into a finite number of finito oloments. Kinomatie consistency is a prorequistie fur anch clement, whorais statie conslstency generally is requitred only at the nolnt points of onch clemont.
 a physteal murlel is vory oasy, whorois thron-dimonstumat etructurcs in most dasos require sums compromiso solutions. Subdividinf a stricime into rinito oloments is somowhat. difflcult. Onfy a constallt lisor ot thls methol will lin ablu lo circumbent those difilculifes ocomomically, shecessfully,
 are most is inclinod lo work fir tol hatilly. Always koop in mind tho fact that it is not tho struction liself which is computad but meroly n model solnetod for tho purpose. Mistakes commiltod lu dovisinf lin moilol, such as fialty bourndary conditions, may produre a completaly orioncous rosuli. Should tho error bo fommitut lalot yout will have spent a lut of moncy without bring ahle to show somethillir for lt. Slaula
 If the atyrineors concornod ard itoxporioneod, mal remetions

 compromlsos whan dovishime tho mochol. Tha dol.orminitlon fo

 onter the socond difricult phasor, lhat of elocekinf the rosults. llere, too, we liocot it numbor of uncexpocted surprises which in most casiss can be ovoroome thromfli experlonce.
 briefly th. major chnfarioris: les ol fho Finite Elomont
 calculated accordint to lho elassleal mintaod (i.e., tho rinite differonce mothoil) illi icromitate to jill.

CLASS TCAL TIIRORY

1 Mathematical Modol

2 Problom
Doilniticn

$$
\frac{\partial^{4} w}{\partial x^{4}}+\frac{B}{2,}+\cdots \frac{1}{\theta}
$$

FIMITE FLENENT THEORY

2 Probloun De:Inition

$$
\left[\begin{array}{c}
\mu_{1} \\
?_{2} \\
\vdots \\
i_{n}
\end{array}\right]=\left[\begin{array}{cccc}
i_{n} & i_{2} & \cdots & k_{i n} \\
k_{i n} & i_{n} & \cdots & k_{n n} \\
1 & \vdots & & \\
n_{n} & i_{n} & \cdots & k_{n n}
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\vdots \\
p_{n}
\end{array}\right]
$$

The figures show that with the elnssical mollood the diaphragm's deformatian is oxpressed by tho woll-known biharmontc equation, which lin turn ls it firiction or the i wo coordinates x nad y. Moroover, the deformation $w(x, y)$ La depondent on the load imposed $p(x, y)$. D dofinos the material and geometric propertites of tho dinphiaitu. Now, if you want to define the same diaphrofin by moans of a FEM model it is first described by a rinlte mumber of modes lorated in the contre of the diuphrifm plator. Those nodes (often collad a mesh) are thon connectod by a eorrospotidilif nuintier of bolldInf elements, thus constilnting a complote model of the dite phragm. The extermal load derined by $p(x, y)$ fin the ciassteal method can to Incorporatod luto the FEM modol only as a nodal lond (R_{f}). Tlieso nudial Inatis inust be kIncmatically consistent with the actual rurlace load. Tho 1 oad 1 s to bo doomed kinematically conjas ant it life work performod as molal polnt dinplacrmont by tion noint point loads, l.o. $\sum R_{i} r_{i}$, is equal to the work pertormed as corrospomillify thtornal displacements in tha eloment itsolf by tho distiritutiol nurfaco luads. An exampla to explain this polinl will be of vell in chaptor 7.

Once the external load in derined hinemalicaliy cometenter

$$
R=\left\{R_{1} R_{2} \cdots R_{n}\right\}
$$

 (K) of the rinito ofrmont atimeturo. The litucar systom of
 now roils as

$$
\begin{equation*}
M P=R \tag{4.1}
\end{equation*}
$$

With this equatlon establifined ll slonid bo clar onco and for ali that cencriating the fiothal stiffures matrix $K_{t=1}$ Che parimount lactor th the solociion of the correct plyse teal model. As lias bern mentionod boliore, the Giobal stift-
nose matrix is composind of the added ontrios refirdinf the individual oloments (\mathcal{K}_{i}). Cunsequently, the quality of tho model selectod (1.0. K°) depends mainly on the typo of oloments (diaphragms, discs, beans) available to the modeliing ongineer. One mieht almost say that the larecer the number of olement lypes availible to the enfincor the better ho will be able to ndapt his model to the actimi phyaleal cunditiong. (Our ASKA systom orfors aboul \quad o difrorent types of cloment.) Engineors who uso FEM ouly sporadically maintain that such n wide rango of elomentis is only apt to causc concuston. This viow, howovor, is calused by tho fact that this particular type of user doos not know enough about the facts and probloms of correct FEM application. (For instances TKOSS havo solvod problems requiring more than 10 difroront types of clomont to onsure a surficiontiy acrurate modol.)

In conclusion 1 slomid liko to stress ngain that

Althoufth experience goined by workitig on one'm own is most valuable it is too costly in lerms of money and timel

The significatice of havimf ford finito chments to be usod as compononts when modnlitige 0 fiven struchiod in theory has alrendy hooll halorlinod ill tho pooroding chapler. In Vhow of the fart that a millitude ot oloment typos has atready limon doseribad if iflorature it only remains for us to mention tha waty in witicis ath oioment stifincos ts feneraled.

Generally sparakitr, llore are soveral wiys by which to arrivo at an olement stiffness matrix:

1) Unit 1 oad motiod or unti displacoment mothod.
2) Castlifliani's Theormin.
3) Salvinf: rolovalt difformitial oquitions.
4) Jnvarsion of Ploxibility matirix.

Of all thr mothots mentionol athor method 1) is most gonorally
 nessos (j.e. forcosi) to bo dolerminod in tho diroction ur the predotarmincd unit djuplicements.
lot us consling an casy axamplo (a cantilovor beank) In ordor to Improve our understandinff of lind playsteal sifinificance of the term 'stilifnoss'.

The figura above shows thil folly derreos of frearlon (i.e. the same number of link nowns lised in tho displacement method) are rully surficiont to account for all kinematic possibilitios.

$$
\boldsymbol{\omega}=\left\{\begin{array}{llll}
r_{1} & r_{2} & r_{3} & r_{4} \tag{3.1}
\end{array}\right\}
$$

 and b) as well an the fiobal stifilooss matrix K nro symmetric matriros (prour by mails of Betili's Theorcm). Thoree rore,

Furthermore, the nob-sinfitar fiolal elifinnas matixix \mathbb{K} must neconsarily be a (4×4) igpe of matrix, l.o. ite dimonston must be equil to tho number of maknowns.

Lot us first consifier elnment a findividumily.

 dige boundary comditiolis, cloment a lias four deßrees of frece dom. It would bo posmbibe, of course, to incorporate the axlal force of llin rod liy way or an addilional decred of frecdom, lat this la nol relovant to our problam. To differentintid botwron tho olament frealoms andithose on tho elabil

$$
\begin{equation*}
S_{u}=\left\{f_{1} \quad j: f: \quad f_{y}\right\}_{a} \tag{7.3}
\end{equation*}
$$

 I.c. voctor

$$
h_{1 j}=\left\{\begin{array}{llll}
i_{111} & k_{1+2} & i_{113} & i_{14} \tag{1.11}
\end{array}\right\}
$$

 all other end or nodnl potints.

(Noter $\left.\rho_{z}^{\prime}=0.\right)$
Tho physical olenificabce of the individunc lif is that lhoy ropresont the netunt forcos rofiliref to gencrate tho displacomont $f_{1}=1$ only.

Now, the unfit displacoment method (cr. atwo aquation (j.4) definine the analufolis unil 1 oad molhod) can be uned to nrrive at tho forcos (i.c. stiffuessos) to bo delormined.

$$
\begin{equation*}
1 k_{i j}=\int_{i} \pi_{i} \varepsilon_{j} d V \tag{5.5}
\end{equation*}
$$

If wo apply this procealario lo fit we litive:

$$
1 k_{n}=\int_{v} \sigma_{1} \varepsilon_{1} d v
$$

σ_{d} noroly being required to geo statically balanced.

$$
v=3\left(\frac{2}{l}\right)^{2}-2\left(\frac{2}{l}\right)^{3}
$$

In accordance with the general beam theory,

$$
\begin{aligned}
& \sigma=\frac{M}{I} y=E v^{\prime \prime} y \\
& \varepsilon=v^{\prime \prime} y
\end{aligned}
$$

Moreover,

$$
v^{n}=\frac{d^{2} v}{d z^{2}}=\frac{12}{l^{2}}\left(\frac{1}{2}-\frac{\pi}{2}\right)
$$

(5.6)
and therofore

$$
\psi_{11}=\int_{F}\left[\int_{0}^{1} E\left(v^{\prime \prime}\right)^{2} d_{2}\right] y^{2} d F
$$

Now we knew that

$$
I_{A}=\int_{F} y^{2} d F
$$

which givos us a afficient basin to solvo tho foilowing intogral.

$$
\underline{h_{H}}=E T \int^{h}(v i)^{2} d \tau=12 \frac{E I}{4}
$$

Furthermore,

$$
k_{22}=k_{11}
$$

 way.

$$
k_{33}=h_{44}=4 \frac{E I}{b_{4}}
$$

Now, in ordor to arivive at $\mathbb{K} 13$, for inktance, the mode of dieplacement of tho beain must, be defiged in corrospondonce with $\mathrm{S}_{8}=1$.

$$
v_{3}=-P\left(\frac{z}{l}\right)^{2}\left[1-\frac{z}{l}\right]
$$

Conntraclockwing rolation is durincit uf negativo.

Now, the inloprial reade

An

$$
1 h_{13}=\int_{v} i_{1} \varepsilon_{3} d V=\int_{v}^{i} E\left[\left(u_{1}^{\prime \prime}\right)\left(v_{3}^{\prime \prime}\right) d t\right.
$$

$$
\begin{equation*}
V_{3}^{\prime \prime}=\frac{d^{2} \sqrt{3}}{d i^{2}}=-\frac{2}{1}\left(1-\frac{3}{2} 2\right) \tag{5.7}
\end{equation*}
$$

Connequent. 1 y,

$$
\underline{h_{11}}=\underline{h_{11}}=-E 1 \frac{24}{b^{2}}\left(\frac{1}{(1-2}-\frac{2}{2}\right)\left(1-\frac{1}{2}\right) d_{2}=-6 \frac{6 i}{e^{2}}
$$

 to be determinod call le founcl by way of a similar procodure.
for compldelless' sake wo five youl bolow the entife matifix porthininf to oloment. 1. To arrivo al. Lhe matirix for olemant b you meroly roplice bo by C_{6} and L_{i} by L_{b}.

$$
k_{a}=\frac{E I_{a}}{l_{a}^{3}}\left[\begin{array}{cccc}
12 & 12 & -1 l_{a} & 6 l_{a} \tag{5,N}\\
12 & c l_{a} & -6 l_{a} \\
& 4 l_{a}^{2} & -2 l_{a}^{2} \\
\text { sym. } & & 4 l_{a}^{2}
\end{array}\right]
$$

Ploase nota that tho malirix shown aloovo doos not lako into necount any slome arpormilifolis.

As all stifincos ontries oi the riolmi matrix K call bo erolt-

 rix K can bo compliod manimily. To docoon tho oporitor's
 fimure.

 ts arrived al by indilite up lime two ortirios (that anel ($\left.\boldsymbol{h}_{\boldsymbol{m}}\right)_{0}$, which mealls

$$
K_{11}=\left(k_{i 2}\right)_{4}+\left(k_{11}\right)_{b}=12\left[\left(\frac{E L}{i^{1}}\right)_{4}+\left(\frac{E I}{\rho^{3}}\right)_{b}\right]
$$

 mallione, for linslancer $K_{4 y}=\left(K_{4+4}\right)_{b}$.

 amplo, thr antry concormei call breatenlatod diroctiy.

For Lits illipu:s", wa assumi $r_{2}=1$.

The resultant force K_{12} can be simply determined by superposition of supports.

Therefore,

$$
K_{p_{2}}=i_{n}^{\because}+V_{b}^{\prime}=-b\left(\frac{E I}{p^{2}}\right)+6\left(\frac{6 i}{b^{2}}\right)
$$

Considering element stiffnesses it is obvious that

$$
V_{12}=\left(k_{g 4}\right)_{i}+\left(f_{j_{3}}\right)_{b}
$$

watch again gives us the same result.

Givon the -azge nehar or elonsit types to be found in lit-. erature it tis not alway fisy to decide what type of element to use (to proeran an,) a FEM program. I shall not make an attempt to suimi alcer proposals in tris matter - the opinfons held by expart: as: fus too divercent for that. I shall nerely state a icif in ontiat findings.

For each elmant a deinmaran mode is to be selected. In
 theoretica? point , oi vic:is

- Comi i~le o, of t'oo ceforration modef
- Kirmartic craisirnsf of the olement boundaries.
 body, moreover, $\because i=: r i s i t e$ that the sum of all interpolation furctious $\because y y_{r}$ fo each point of the element range be eqriai th orir $\overline{i f}$, for instance, the vector field U6 of tise cis. are expreseet as an : oxs

Ghen, necessediry

Let us now, fo: s'icity's sake, merely consider polynomial deformation nidoz of aigrfngo's type (i.e. having no derivations $a:$ "ercions) anglied to triangular and rect-
 nesses only.

Trianculur nicriura e cie.. itts -. callod TRIM's in ASKA terminology - have a, jnat ivontege the that their displacoment mode can ie : iomoce ns e complete polynomial. This means that tho fu:cet onal vari:ition is indopendent of linear coordinate intmser, arions.

If we designate the order of the displacement modes by the following figure gives a sod survey.

The figure shows that, for instance, in the case of TRIM 3 (1.e. three mode) the vector entries of $U(x, y)$ are

$$
\begin{aligned}
& u_{x}=\phi_{1} x+\varphi_{2} y+q_{1} \\
& u_{y}=\phi_{4} x+\varphi_{5} y+46
\end{aligned}
$$

These ix parameters \mathscr{F}_{i} are arrived gt by using the given els possible nodal point displacement to set up ix equations which then can be solved in a more or less dimple manner.

Representing quadrangular elements - OUAM in ABM parlance in the same manner as above, the figure is

On the one hand, the members of the $p^{\text {th }}$ order of this displacement mode are complete, but they also contain polynomial menders up to the $2 p^{\text {th }}$ order. This means losing the invariant rotation property.

To demonstrate the advantages of higher-order elements we give the example of a cantilever beam below.

$$
t=\cdot 5
$$

$$
A=t \cdot 2 \cdot c=5 \times 2 \times 1=1
$$

$$
i_{i z}=\frac{1}{12}\left((2 c)^{?}=\frac{1}{3}\right.
$$

Load case 1

Load case 2

Load case 3

The idealizations and olement types selectod are

TRIM3 QUAM4 TRIM6 QUAM9

A11 idealizations contain the same number of unknowns - 164. Morrover, it is simple to detormine that the analytical values of the threo load casos at the froe ond of tho beam are as follows:

Lonit case 1

$$
\begin{aligned}
& \sigma_{x x}=\sigma_{0}=12 \\
& \sigma_{y y}=\sigma_{x y}=0
\end{aligned}
$$

Lond case:

$$
\begin{aligned}
& J_{x x}=J_{y y}=0 \\
& J_{x y}=-4.5
\end{aligned}
$$

Lond caso 3

$$
\left.\begin{array}{l}
\sigma_{x x}=12 \frac{y}{c} \\
\sigma_{y y}=\sigma_{x y}=0
\end{array}\right\}
$$

everywhore

The valuos calculatod for the various models are listod in tabla 6.1. A fow commonls fherolos
In lond crese 1 all aloments apply equally woll, a lifirif which was clour dom the start. The load produces a constant strass ovarywhorn in thr beall, witich is why $1 t$ is surficiont to liso
 exactiy a uniform stross rivid. Ploase nold thit the oxist-

Inc loading paticrn .- i.e. the etrese distribution expected should be taken into account when eelecting the elemente.

Type of element	Load case 1			Load case 2			Load case 3		
	$\sigma_{x x}$	$\sigma_{y y}$	$\sigma_{x y}$	$\sigma_{x x}$	$\sigma_{y y}$	$\sigma_{x y}$	$\int_{y=0}^{x}$	$\sigma_{y y}$	$\sigma_{x y}$
Analytical values	12	0	0	0	0	-4.5	12	0	0
TRTM 3	12	0	0	0	0	-3.9179	5.6622	. 7425	. 3489
OUAM 4	12	0	0	0	0	-4.12!9	8.7215	0	0
TRIM 6	12	0	0	0	0	-5.428	12	0	0
QUAM 9	12	0	0	0	0	-5.6418	12	0	0

Table 6.1 Comparison of elements at the free end of the beam.

In lond case 2 you oxperience your firsl disappointments with FEM. This is not caused by tho method boing hiad but by tho way in which the existing shear load (i.e. the distributed load) has been replaced by correspondint; nodil forces: Whon determintilf the nodal loads only ond lifoar variation between the corner nodes was assumed.

The figure above shows quito cloarly that a quAM-f idealization gives a better approxlmation to the existints parabolice lond than that of an cquivalent TRTM-G idealization. This should make you consider thr significance of making correct comparlsons. By tho way: This particular fault only appoars close to tho nodal loads: the rosulis oftalnod one element layer away from the froo and are very satisfactory.

Node No.	5	15	25	35	45	55	65	75	85	95	105
Anal.	90	81	72	63	54	45	36	27	18	9	0
TRIM 6	91.8781 .5172 .78	63.76	54.7645 .76	36.76	27.76	18.76	9.74	1.55			
QUAM 9	91.9582 .4772 .1163 .00	53.9944 .99	35.99	26.99	17.99	8.92	0.11				

Tablo 6.? Distrjbultom of $\sigma_{x x}$ In loid case 2.

Fig. 6.1 siows an additional comparison, domonstrating unequivocal: f that merely increasinfs the number of unknowne in eimple elements, auch as TRIM 3, does not moan that tho re-. sults obtalned will bo of the same quality as thoso oblinined by the use al^{\prime} iiffer-order clements, such as TRIM 6. Genoral1y speaifing it is botier to use olle TRIM-6 olument rathor than the equivaiont TRIM-3 model, i.e. 4 TRIM- 3 olements.

Mention should also be marie of the fact that similar considerations miry apply to three-dimonsional eloments as well: cf. Fif. 6.2. Leapito tho fact that this examplo does not field an exact valio it is possiblo to guess at this valuo, isasine the guoss on the boundary properties of the dieplacesent rethoc.

Finally, permit me to warn arfalinst the combined uso of difreront types of eloments which are incompatiblo as far as :inomatic consistency is concornod.

Incompatibility in kinemn'ic consisloncy.

Typical idealization

Fige 6,1 Cantilever beam subjected to transverse load Data and typical idealization

OUAM4

 TRIM 3

Number of degrees of freedom
Fice 6,1 b Cantilever beam subjected to transvorse load Accuracy of rinal displacement w_{1} obtainod by various methods of idealization

Fire 6.2 Short cantilever apport subfected to transverse load.
 Final displacements w_{1} obtained by various methods of idealization.

7 THE DISPLACEMENT METHOD

This chapter is intended to be a brief introduction to the . displacement method. (Detailed introductions are contained in several publications other than this.)

As has been mentioned before this method implies generating an equivalent physical model of the structure by tying toether various and often different element .s al their nodal points. Tho unknowns of this model are the displacements defined by means of matrix N, incorporating all existing boundary conditions and other limitations.

Loads, such as temperature loads, manufacturing faults, and water pressure are defined at the pertinent nodes in matrix in a kinematically consistent manner. The entries in the load matrix correspond with the selected directions of the unknowns F, so that work may be expressed as follows

We have sean before, in equation (4.1), how to write the linear system of equations constituting the link between R and P :

$$
\begin{equation*}
K r=R \tag{7.1}
\end{equation*}
$$

Let us first of all, howovor, consider an olement whoso displacement processes have bern defined by its deformation mode. Kinematic nodal point displacements of this element are designated by vector S, and tho nodal point loads corresponding to S bro designated as P (the Greek letter, capital 'Rho'). It ls obvious, then, that in each element.

$$
\begin{equation*}
p_{e}=k_{e} \rho_{e} \tag{7.2}
\end{equation*}
$$

Note tho similarity or this equation to (7.1).
(7.2) can be expanded to take in all n-elomiitis simultnneousiys

$$
\begin{equation*}
P=k \rho \tag{7.3}
\end{equation*}
$$

Obviousiy, in this case both Pand ρ nre hypormatrices (hypor column vec ors, properly speaking),

$$
\begin{aligned}
& \rho=\left\{P_{1} P_{2} \cdots P_{t} \cdots P_{n}\right\} \\
& \rho=\left\{\rho_{1} \rho_{2} \cdots \rho_{2} \cdots \rho_{n}\right\}
\end{aligned}
$$

tho olement stiffnesses boinf contained in a hypordiagonal matrix

$$
k=\left\lceil k_{1} k_{2} \cdots k_{e} \cdots k_{n}\right\rfloor
$$

The displacoment mode allows a clear definition of the displacoments occurrine within the cloment and al its boundaries.

$$
\begin{equation*}
u=\varphi \rho \tag{7.4}
\end{equation*}
$$

The etrains caused by this deformation can be exproseod as followe (cr. also equation (2.6)):

$$
\begin{equation*}
\varepsilon=D u_{0}=D \varphi \rho \tag{7.5}
\end{equation*}
$$

The etrosses (are (cf. also equatiof (2.9)):

$$
\begin{equation*}
\sigma=E\left(\varepsilon-\varepsilon_{\mathbf{I}}\right)+\sigma_{0} \tag{7.6}
\end{equation*}
$$

with 6 designating any possible initial strese.

In chaptor 2 , mention was mado of tho volumo forcos \boldsymbol{W} (er. oquations (2.1) and (2.3)), and in chaptor 3.1 ve designated aurface forcos by $\$$.

Using the principle of virtual work (of. 3.2) we may now set up the following equations, assuming a virtual displacement $\%$

$$
\begin{equation*}
\tilde{u}=\phi \tilde{\rho} \tag{7,7}
\end{equation*}
$$

Equation (3.3) shows that in_ the case of virtual displacement the equilibrium of all external and internal work (e F) is eafeguardedi cf. also equation (3.1):

$$
\begin{equation*}
\boldsymbol{\beta}^{t} F+\int_{V} \tilde{u}^{t} \omega d V+\int_{F_{p}} \tilde{u}_{p}^{t} \oint_{p} d F-\int_{V} \varepsilon^{t} \sigma d V=0 \tag{7.8}
\end{equation*}
$$

In this equation, index ' p ' designates the part of surface F subjected to $\frac{\mathbf{8}}{\mathbf{6}}$. Inserting equations (7.5), (7.6) and (7.7) into equation (7.8), we have

$$
\begin{aligned}
\boldsymbol{\rho}^{t}= & \boldsymbol{\xi}^{t} \int_{V} \varphi^{t} D^{t}\left[E\left(D \varphi \rho-\varepsilon_{z}\right)+\sigma\right] d V \\
& -\boldsymbol{\rho}^{t} \int \varphi_{V}^{t} \omega d V-\boldsymbol{\zeta}^{t} \int_{i_{p}}^{t} \oint_{\rho} d F
\end{aligned}
$$

However, the equations given above have to be satisfied concorning any random virtual displacement:

$$
\begin{equation*}
F=k_{\rho}-S_{r_{r}}-S_{r_{r}}-S_{r}-S_{r} \tag{7.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi^{\prime}=\int \varphi^{2} D^{t} E D \varphi d v \tag{7.10}
\end{equation*}
$$

represents the oloment stiffness matrix.

Moreover,

$$
\begin{align*}
& S_{\varepsilon_{1}}=\int_{,} \varphi^{\prime} J^{f} E a_{\mathrm{I}} d v \\
& S_{\sigma_{0}}=-\int_{v} \varphi^{t} D^{t} \sigma_{0} d V \\
& S_{v}=\int \varphi^{t} \omega r d v \tag{7.11}\\
& S_{p}=\int_{F_{r}} \phi_{r}^{t} \Phi_{p} d F
\end{align*}
$$

These equations (7.11) represent the procedure required to compute kinematically consistent nodal loads out of distributed loads. Should the procedure not be kinematically consistent the results obtained are sure to be faulty.

For simplicity's sake, let us define

$$
\begin{equation*}
s=s_{\varepsilon_{t}}+s_{\sigma_{i}} \cdot s_{r} \cdot s_{p} \tag{7.12}
\end{equation*}
$$

If we now compare (7.3) to (7.9) we find immediately that

$$
\begin{equation*}
F=P-S \tag{7.13}
\end{equation*}
$$

This should suffice to explain equation (7.3). Possibly we should stress fat: lite tact ital (7.3) merely satisfies the condition of statically consistent equilibrium at the nodal points only: it $: s$, therefore, quite possible that we may find local discrepancies. Moreover, all matrices Ka necessarily singular, containing as they do some rigid body displacements.

The next step is to repand our elemeat-level considerations of above to the global level. To do so, we first of allhave to establish a connection between $\boldsymbol{\rho}$ element displacements and \boldsymbol{r} global displacements. For this purpose we use a simple transformation or connection matrix which, referring to an element 'f', reads

$$
\begin{equation*}
S_{s}=a_{e} \tag{7.14}
\end{equation*}
$$

This equation can be set up for all olemonto in a manner similar to that of (7.2) and (7.3) above

$$
\begin{equation*}
\rho=2 r \tag{7,15}
\end{equation*}
$$

Provided that we have defined the same direction of the de-
 tries reading 1 and is therefore corresponding to a Boot's Matrix.

If we now apply the principle of virtual work, designating by A the external global nodal loads, we can aet up the following equation (cf. also equation (7.13)):

$$
\begin{equation*}
\rho^{t} \beta=x^{t} C \tag{7.16}
\end{equation*}
$$

Using equations (7.13) and (7.15), we have

$$
\begin{equation*}
\operatorname{rtg}^{t}(P-S)=p^{t} P \tag{7.17}
\end{equation*}
$$

since, however, equation (7.17) must apply to any random virtual displacement we now have

$$
\begin{equation*}
e^{t}(P-S)=r \tag{7.18}
\end{equation*}
$$

We now take into account equation (7.3)

$$
\begin{equation*}
\alpha^{t} k a r=Q+\mathbf{a}^{\mathbf{t}} \mathbf{S} \tag{7.19}
\end{equation*}
$$

and finally, we come back to (cr. (4.1) or (7.1)
in which case

$$
K r=R
$$

$$
K=a^{t} k a
$$

and

The congruont transformation demonstratiod in oquation (7.20) 18, of course, nevar performad us a pure multiplication of matrices in tho case of large-scale probloms. In such cases, alcorithms (dirert stiffncss method) are used which permit adding the individual element entries diroctly into the global etiffness matrix.

$$
\begin{equation*}
K=\sum_{e=1}^{n} a_{e}^{t} k_{e} a_{e} \tag{7.22}
\end{equation*}
$$

In mont large-scale probloms, matrix will bu subdivided into hyper-column vectors as well.

mesum of the clobad degroes of frondon of all elomenta.

1 - hyper-columil voctors of hyperthatiplx

This means that the sum of the global stiffness matrix now reads

$$
\begin{equation*}
K=\sum_{j=1}^{1} \sum_{i=1}^{n} \sum_{e=1}^{n} a_{i}^{t} k_{e} a_{e j} \tag{7.23}
\end{equation*}
$$

Equation (7.22) applies automatically to all smaller-scale problems in which $2=1$. Figures 7.1 and 7.2 indicate this procedure.

Having set up tho system of equations (7.1) we can now proceed to apply Cholesky's method to solve the simultaneous equations. (Cf. Fig. 1.4) We have to see to i\%, however, that matrix K is not singulars this we avoid by establishing proper boundary conditions, including suppression of rigidbody movements, which guarantees that matrix K will roman non-singular from the very start.

Having successfully solved the equation system we now know the displacements P, which enables us to determine tho stresses σ by means of equation (7.6).

In view of the large scale of the problems which are of ten ta be calculated tics days the charier in charge must have available an automatic substructuring-iechniclue. It is for this reason that we shall briefly go over this procedure now.

To begin with, the displacement matrix is subdivided into two submatrices:

$$
\begin{equation*}
\gamma_{F}=\left\{Y_{L} \quad Y_{E}\right\} \tag{7.24}
\end{equation*}
$$

with H_{L} containing the local freedoms, iso. all degrees of freedom located within a substructure. Th designates the external freedoms representing the connecting freedoms $\boldsymbol{\sigma}$ the existing substructures. Now, the global matrix K is subdivided according to equation (7.24):

$$
\left[\begin{array}{ll}
K_{L L} & K_{I E} \\
K_{E L} & K_{E E}
\end{array}\right]\left[\begin{array}{l}
r_{L} \\
\gamma_{E}
\end{array}\right]=\left[\begin{array}{l}
R_{L} \\
R_{E}
\end{array}\right]-
$$

- 4ri-

Fig. 7.3

$$
-48=
$$

From there, wo go on to set up the following individual equations

$$
\begin{align*}
& W_{L}=M_{L L}^{-1} M_{L}-M_{L}^{-1} M_{L E} B_{E} \\
& \left(H_{E E}-M_{L E}^{t} M_{L}^{-1} M_{L E}\right) N_{E}=M_{E}-N_{L E}^{t} M_{L}^{-1} M_{L} \tag{7.27}
\end{align*}
$$

An alternative notation of the latter equation would be

$$
\begin{equation*}
\text { NF E }_{N E}=\text { FF }_{F} \tag{7.28}
\end{equation*}
$$

Please note the similarity between this equation and (7.1).
(7.28) shows that a substructure may easily be regarded as a euper-element. Therefore it is possible to calculate the problem in several stages (recursive substructure technique).

Finally, r should like to mertion the fact that prescribed displacements \mathcal{F}_{P} and suppressed displacements \mathcal{T}_{3} may bo \mathcal{T} handled in a manner similar to that shown above, The manner of subdivision used in the ASKA system is shown below i

[^1]There are many advnntages to the substructuring technique. Cratiy, it permits subdividing a complicatec structure into easily handled components. Secondly, it allows for generat-• ing geometrically similar substructures which do not necessitate calculating the whole problem over again from the start. Thirdly, it afforis the expedient, should modifications become desirable, of defining as substructures minor areas in which alterations in the comicated structure arn expected to occur. In this case, only these modified structutes have to be re-calculated (i.e. Kif), with all unmodified substructures already solved. In a number of cases this procedure vill help to save a lot of machine time. Lourthly, it increases materially the system's goneral flexibility of application, especially if unusual boundary conditions, such as sliding effects within a structure, should bncome desirable.

8 MMASTTCITY EQUATIONS IN DYNAMICS

The finite-element method is excellently applicable to dyneamice problems as well. To do so, it is merely necessary to expand the linear-static equation

$$
K_{r}=R
$$

correspondingly. Here, we can make profitable use of the term 'kinematically equivalent load' established in chapter 7. In accordance with d'Alembort's principle it is possible to reduce a dynamic problem to a static problem by introducing negative mass accelerations as fictitious forces. Thus, in the place of the distributed loads per unit volume we use d'Alembert's forces (cf. (3.1)).

$$
\begin{equation*}
\omega_{I}=-\mu i \dot{i} \tag{8,1}
\end{equation*}
$$

In this case, μ represents mass density and

$$
\begin{equation*}
i=\frac{\partial^{2} u}{\partial t^{2}} \tag{8,2}
\end{equation*}
$$

represents local acceleration Applying equation (7.4), we have

$$
\begin{equation*}
\omega_{I}=-\mu \varphi \ddot{\rho} \tag{8.3}
\end{equation*}
$$

If wo now introduce equation (8.3) into equation (7.11), using S_{V}, we arrive at the quasi-static nodal forces to be determined

$$
P_{I}=-\int_{V} \mu \phi^{t} \varphi d / \ddot{\rho}
$$

or

$$
\begin{equation*}
P_{I}=-i n \ddot{\rho} \tag{8.4}
\end{equation*}
$$

In which case

$$
\begin{equation*}
m=\int_{V} \mu \phi^{t} \phi d v \tag{8.5}
\end{equation*}
$$

ropresente tho kinematic-consistent mase matrix or a ubetructure.

The dynainic equilibrium of a discrotizod structure cen be expressed as follows:

$$
R_{I}+R_{D}+R_{S}=R_{1}(t) \quad \text { (8.6) }
$$

In this case,

$$
\begin{aligned}
& R_{I}=\text { mass forcesi } \\
& R_{0}=\text { damping rorcoss } \\
& R_{s} \text { = olastic forces. }
\end{aligned}
$$

Elastic forces hive ulready boen defined in aqualion (7.1) as

$$
\begin{equation*}
R_{s}=M N \tag{8.7}
\end{equation*}
$$

Basod on ('Alomberi's Principlo, mass forces may bn oxproseed similarly to individual elomonte (cf. equation (8.4)).

$$
\begin{equation*}
R_{I}=M i \ddot{i} \tag{8.8}
\end{equation*}
$$

with M roprosonting inc etricture'g clobal muse matrix.

Finaliy, in casc of viscoun dumping the damping forces may be oxproseed ea followe,

$$
\begin{equation*}
R_{0}=C \dot{\theta} \tag{8.9}
\end{equation*}
$$

with C represencing the global damping matrix.
With the aid of oquations (8.4), (8.5), (8.6), (8.7) and (0.9), we car now express the total displacement equation applying to tho ontire alructuro to read,

$$
\begin{equation*}
M r+C r+K r=R(t) \tag{8,10}
\end{equation*}
$$

It now becomes neconsery to definu the two matricea M and (. ueing tho principle of virtial work.

9 THE PRINCIPLE OF VIRTUAL YORK APPLIED TO DYNAMIC PROBLEMS

To begin with, let us consider an elastic body deformed by dynamic forces. We may assume that within a specific time interval the displacement vector U_{0}, will be subjected to a certain amount of virtual alteration

$$
\begin{equation*}
u_{1}=u_{0}+d u_{0} \tag{9.1}
\end{equation*}
$$

The virtual displacement factor \mathbb{C} is infinitesimal as well as consistent with the given boundary conditions of the total structure. The virtual displacement mentioned above causes consistent virtual strains, $d \mathcal{F}$, which can be used to calculate the momentary alterations of strain energy δu_{i}. In a dynamic process, the external virtual work, therefore, consits of the work of the volume forces, ($\boldsymbol{N}^{\boldsymbol{F}}$), the surface forces ($($), tho singular forces (P), and of inertia, disregarding damping as matter of expediency. Applying the principle of virtual work, we have (cr. equation (7.8)

$$
\delta u_{i}=\delta w_{i}-\int_{V} \mu \delta u^{t} \ddot{u}_{i} d V-
$$

in which case the train energy is -

$$
\begin{equation*}
\delta u_{i}=\int_{v} \operatorname{re}^{\sigma} \sigma d v \tag{9.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d W_{i}=\int_{r} \delta u^{t} w d V+\int_{F} d u^{t} \oint d F+d \rho^{ \pm} P \tag{9.4}
\end{equation*}
$$

with containing the virtual nodal displacements pertraining to (cf. equation (7.4)).

Work must be the same, both on the element level (S, P) and on the global level (r, \mathcal{A}) (cf. equation (7.16)).

$$
\begin{equation*}
d \rho^{t P}(t)=d n^{t} Q(t) \tag{9.5}
\end{equation*}
$$

Wo can extract $\delta S^{t} P$ from equation (9.4),

$$
\delta r^{t} Q(t)=\delta W_{i}-\int_{V} \delta u^{t} w d V-\int_{F} \delta u^{t} d d F
$$

extract δW_{i} from equation (9.2)

$$
\begin{aligned}
d r^{t} Q(t)=\delta u_{i}+\int_{v} \mu \delta u^{t} \ddot{u}_{p} d V & -\int_{v} \delta u^{t} u r d V \\
& -\int_{f} \delta u^{t} \delta d F
\end{aligned}
$$

and, finally, δU_{i} from equation (9.3)

$$
d U_{i}=\int_{V} \delta e^{b} \theta d V
$$

Now, $1 t$ follows from equations (7.4) and (7.15) that

$$
u=\varphi \cdot \rho=\phi a r
$$

and that, if P is non-variable overtime,

$$
\begin{equation*}
\ddot{u}=0 \ddot{\theta}=\dot{\theta} \tag{9.6}
\end{equation*}
$$

Moreover, equation (7.5) shows that

$$
\begin{equation*}
B=D H=D C P=D O \tag{9.7}
\end{equation*}
$$

Applying equations (9.6) and (9.7), we have

$$
\begin{aligned}
\delta r^{t} Q(t)= & \delta r^{t} \int_{r}^{\prime} a^{t} \varphi^{t} D^{t} \sigma d V+\delta r^{t} \int_{r} \mu a^{t} \varphi^{t} \varphi a d V \ddot{r} \\
& -\delta r_{V}^{t} \int_{V}^{t} \phi^{t} \omega d V-\delta r^{t} \int_{F}^{t} \phi^{t} \varphi d F
\end{aligned}
$$

With SF repreaenting a virtuni diaplacoment, we apply equation (7.6) to'arrive at -

$$
\begin{gathered}
Q(t)=\mathbf{a}^{t} \int_{r} \mu \varphi \rho d \sqrt{2} \ddot{r}+a^{t} \int_{r} \varphi^{t} \nabla^{t} t \text { Dpdvar } \\
-a^{t} S(t)
\end{gathered}
$$

the definition of $\boldsymbol{S}(t)$ veine dorivod from ecjuation (7.12).

If wo now insert into this oquation

$$
\begin{equation*}
R(t)=Q(t)+a^{t} S(t) \tag{9.9}
\end{equation*}
$$

in a minnor similar to that mployod an oquation (7.ai) and if, after that, we laso equations (7.10) and (8.5), oquation (9.8) now reads

$$
a^{t} m a \ddot{r}+a^{t} k a r=R(t) \quad(9.10)
$$

In comparison to (8.7) and ($H .8$), an nitornativie notntion would be

$$
M \ddot{r}+K r=R(t)
$$

in which caso,

$$
\begin{equation*}
M=a^{t} m a \tag{0.12}
\end{equation*}
$$

and, K beinc delined as in oquation (7.80),

$$
k=a^{t} k a
$$

Thajemphantrix onn bo conoralied in a imllur, mannor,

$$
\begin{equation*}
C=a^{t} c a \tag{9.13}
\end{equation*}
$$

C represonling the individual viscous damping matriçes of the eletonte. In ccises of structural dampine of an actual etructure, it is not niwayn onny to arrive at the propertiee of matrix 6 . In many chacos proportional dampincs is auelemed, uaing

$$
\begin{equation*}
\text { Ya, 的, } 3 \tag{9.14}
\end{equation*}
$$

We ehould mention, however, that tho damplng charactoristioe of materials and structures are still obscured by many opon questiona wich can ouly be answered by intonsive oxperimonting and romearch.

The kinematically consistent moe matrix (often called equipvalont mass matrix) of an element can be derived from the following equation (cf. also equation (8.5)),

$$
\begin{equation*}
m=\int_{V} \mu \varphi^{t} \varphi d V \tag{10.1}
\end{equation*}
$$

the relation between the displacements 11 within and at the boundaries of an element on the one hand and the nodal displacements f of the element on the other being expreesed ae follows (cf. equation (7.4)).

$$
\begin{equation*}
u=9 \tag{10.2}
\end{equation*}
$$

Generally, dynamic procesees do not have a clear matrix applicable to the entire etructure. However, discretizinc the structure into individual elements yields an approximation to the actual dynamic processes which may be deemed satisface tory in most practical cases.

In this chapter, we shall use one type of element - TRIM 3 to follow the simple procedure of compiling a corresponding mass matrix. First of all, we imply assume that the element is aligned in the following fashion relative to the global axes x and y.

Using non-dimensional coordinates (ξ, η) we arrive at

$$
\phi_{n}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
\kappa & (1-\xi) & \xi
\end{array}\right] .
$$

The displacements ocurring within the element towards the direction of x, designated as $U_{x n}$, are

$$
u_{\lambda n}=\theta_{n} \rho_{x} l_{23} l_{13}
$$

with

$$
g_{x}=\left\{S_{x 1} S_{x 2} S_{x 3}\right\}
$$

Given a constant thickness t, it is now simple to calculate m

$$
m_{x}=\mu t \int \varphi^{2} \varphi d x d y=\mu t t_{13} l_{13} \int^{1} \int_{1}^{1-\xi} \varphi_{n}^{k} \varphi_{n} d \xi d \xi
$$

Resolving the integral yield e.

$$
W_{k}=\mu t \frac{F}{12}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

with F representing the area of the element.

Generally, however, an element's orientation relative to the global axes will not be as we have assumed above. To compensate for this, the method of polar coordinates is Led in practice. This system of coordinates $\mathcal{G}, \mathcal{q}^{i s}$ defined in the following figure.

$$
\text { - } 59 \text { - }
$$

The figure show that, using polar coordinates, we have

$$
\varphi_{n}=[(1-\xi) \quad \xi y \quad \xi(4-y)] \quad(10.3)
$$

Furthermore,

$$
\begin{align*}
& x=x_{1}+\xi\left(x_{31}-\eta x_{32}\right) \\
& y=y_{1}+\xi\left(y_{31}-\eta y_{32}\right) \tag{10.4}
\end{align*}
$$

so that Jacobi's Transformation betweon the polar and tho cartesian coordinates now reade an follows:

$$
J(x, y)=\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta}-\frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}=2 F \xi \quad(10.5)
$$

Consequently, we can simply use equation (10.1), given a col--ant thickness t_{i}

$$
\begin{equation*}
m=\mu \tag{10.6}
\end{equation*}
$$

Obviously, matrix (10.6) given above applies both to the x and y direction.

$$
m=\frac{1}{12} \mu t F\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

11 VIBRATIONS AND DYNAMIC RESPONSE

In this chapter we shall deal with amall-scale harmonic vibe rations having a finite number of unknowns. Without damping, 1.o. with $C=0$, oscillatory vibrations ara bound to contine forever - an impossible thing to happen in practice, of course. These oscillatory movements occur only in certain specific. frequencies, reflecting certain specific states of deformation, which is why they are often called 'characterfistic modes'.

Basically, two different types of oscillation are possible

- Free oscillations; and
- Forced oscillations.

For completeness' saki, let us repeat tho total displacement equation of a global structure (8.10):

$$
\begin{equation*}
M \ddot{r}+C \dot{r}+K r=R(t) \tag{11.1}
\end{equation*}
$$

Generally speaking, there are two possible ways to solve this system of equations:

- Modal superposition theorem; and
- Direct integration.

The former molhod is often used for problems oxpocted to invalve minor amplitudes only. Thus, the displacement vector is expressed as a linear function of tho characteristic mode by means of modal amplitudes. This process yields a simple uncoupled equation for each mode of the structure. After solving each individual equation the final result is arrived at by superposition. To do so, we first have to find the natural froquenctos and their natural modes. The equation we mod in this case is (fer oscillation, undamped)

$$
\begin{equation*}
M \ddot{r}+K r=0 \tag{11.2}
\end{equation*}
$$

This equation expresses a simple harmonic oscillation. The displacement vector can bo simply expressed as follows

$$
\begin{equation*}
r=q e^{i \omega t} \tag{11.3}
\end{equation*}
$$

Insertincequation (11.3) into (11.2), we have

$$
\begin{equation*}
\left(K-w^{2} M\right) q=0 \tag{11.4}
\end{equation*}
$$

thus expressing what is generally termed the 'general inear eigenvalue problem', scalar W_{i} being the eigenvalue and qi being the matching eigenvector. This last equation is also often called charateristic equation.

Often it is necessary and/or desirable, for reasons of economb and numerical handiness, to reduce the number of global degrees of freedom. This is done by subdividing the displacemont vector into two distinct types of freedoms,

- master degrees of freedom Y_{m}, and
-slave decrees of freedom ref.

$$
\begin{equation*}
Y=\left[Y_{d} \quad Y_{m}\right] \tag{11.5}
\end{equation*}
$$

This method is often called the 'static condensation method'.

Corresponding to the splitting of \mathcal{F} matrices K and M are subdivided as well.

$$
K=\left[\begin{array}{ll}
K_{d \alpha} & K_{d m} \\
s_{y} w & K_{m m}
\end{array}\right]
$$

(11.6)

$$
M=\left[\begin{array}{ll}
M_{4 t} & M_{m} \tag{11.7}\\
s_{y} m \cdot & M_{m}
\end{array}\right]
$$

Mow, we presuppose that slave degrees of freedom are deponedent on master freedoms.

$$
r=\left[\begin{array}{l}
T \tag{11.8}\\
I
\end{array}\right] r_{m} ; \quad r_{d}=T r_{m}
$$

and that the frequency equation thus reduced or condensed now reads

$$
\begin{equation*}
\left(\tilde{\mathbf{K}}-\omega^{2} \tilde{M}\right) r_{m}=0 \tag{11.9}
\end{equation*}
$$

with \mathbb{K} and $\underset{M}{N}$ being the condensed stiffness and mae matsix respectively. These two matrices can be found by equalling kinetic energy (KE) and strain anergy (se) of the structure concerned.

$$
\begin{align*}
& \text { ir. } \frac{1}{2} r^{t} K r=\frac{1}{2} r_{m}^{t} \tilde{K} r_{m} \tag{11.10}\\
& \text { u. - } \frac{1}{2} \dot{r}^{t} \boldsymbol{M} \dot{r}=\frac{1}{2} \dot{r}_{n}^{t} \tilde{M} \dot{m}_{m}
\end{align*}
$$

Wat, as those equations apply to all γ_{m} we must have

$$
\begin{aligned}
& \tilde{K}=K_{m m}+T^{t} K_{m d}^{t}+K_{m d} T+T^{t} K_{1 T} \quad \quad(11.14) \\
& \tilde{M}=M_{m N_{v}}+T^{t} M_{m d}^{t}+M_{m d} T+T^{t} M_{d d} T \quad(11.15)
\end{aligned}
$$

Now we have to find the transformation matrix, T. For this purpose we assume that our slave degrees of freedom Pp are equal to those freedoms which are bound to occur in a struccure not subjected to any load except in correspondence with the prescribed displacements T_{m}.
(11.16)
or

$$
K_{d} r_{d}+K_{d} r_{m}=
$$

mich again gives

$$
\begin{equation*}
r_{0}=-K_{2}^{2} k_{2}^{2} k_{m} r_{m} \tag{11.18}
\end{equation*}
$$

If we compare this to oquation (11.8) our fow ronis thes

$$
\begin{equation*}
T_{i}=-K_{d d}^{-1} K_{d m} \tag{11.19}
\end{equation*}
$$

If wo now combline aquations ($11.1:$) and ($11.1 /$) we huvo

$$
\begin{equation*}
\tilde{K}=K_{m m}-K_{d m}^{t} K_{13}^{-1} K_{d m} \tag{11.8:80}
\end{equation*}
$$

Note the rosomblance to mpution (7.:?) Tho equation fivin above shows that voctor \mathcal{F}_{d} may be rorniolial as an liformal degreo of frociom. The condionsodimastmirix was dojined in (11.15). We should note, howoror, fhat althourti the stinte condcosation of tho relobial stiflincis lliatrix K ropresentes a mathomatically canct procidura the corrospolidinf procerse
 assumptions concorninf ilspliaremonts.

When applying diroct inlofration to solva orfuillon (11.1)

 step is calculatorl on lha hisis of tho inflial stitation an

 of thite pupor.

```
Generally speaking there are two kinds of non-linear prob-
lems,
```

- non-linear material behaviour (elasto-plastic phonomen), and
- nonlinear geometrical phenomena.

Problems combining both kinds of phenomena still present us with well-nigh insurmountable obstacles in solving practical engineering problems.

Again, we solve these problems by splitting them up into small steps, each step presupposing a linear process; this is, in other words, an iterative approach.

Moreover, let me mention the fact that the superposition therem is not applicable to non-ilnear problems, which means that if we have several load cases we have to deal separately with each individual global load case.

The scope of these brief remarks does not afford an oppotunity to deal thoroughly with these nonlinear processes. I shall merely attempt to give a brief survey:

Mon-Linearmaterial proportion

If we are dealing with non-linear material properties we merery have to modify linear equation (7.6). We repeat this equalion below as reminder.

$$
\begin{equation*}
\sigma=E\left(\varepsilon-\varepsilon_{I}\right)+\sigma_{0} \tag{12.1}
\end{equation*}
$$

A central non-linear stress-strain relation can be formally expressed as follows:

$$
\begin{equation*}
F(\sigma, \varepsilon)=0 \tag{12.2}
\end{equation*}
$$

As the compatibility equation (7.5) is applicable here, we have

$$
\begin{equation*}
\varepsilon=D u=D \varphi \rho \tag{12.3}
\end{equation*}
$$

to take into account as well as the requisite conditions of equilibrium. Its is obvious, therefore, that we shall find the solution of the non-linear problem (12.2) provided a) that we modify one or more of the matrices E, \mathcal{O}_{6} and f_{2} of equation (12.1) and b) that we can find a solution to equateion (7.1)

$$
\begin{equation*}
K r=R \tag{12.4}
\end{equation*}
$$

in which the stresses f and strains obtained will satesfy equation (12.2).

To be on the safe side it should be mentioned that there is virtually no theorem guaranteed to provide an exact or correct solution to a non-linear problem. It is therefore perfectly possible to obtain incorrect results in spite of the fact that all necessary conditions, such as equilibrium, displacement consistency, and correct stress-strain relateion were fulfilled.

To obtain solution it is always necessary to employ an toration method. According to whichever matrix, $\boldsymbol{E}, \boldsymbol{O}_{0}$ or $\mathcal{E}_{\mathcal{E}}$, is modified, the iteration process is either called

- Method of tangential stiffness -(E), or
- Method of initial strain (ε_{z}), or
- Method of initial stress (σ_{0}).

The tangential stiffness method is applicable to all elastoplastic problems. The matrix is generated in manner simplar to that described in chapter 7 in connection with the elastic stiffness matrix (equation 7.10).

$$
\begin{equation*}
A_{T}=\int_{V} \varphi^{t} D^{t} p D+d V \tag{12.5}
\end{equation*}
$$

In this case, \mathcal{F} represents the pertinent elasto-plastic material properties which a user of ASKA, for example, would have to define beforehand, Then, we simply have

$$
\begin{equation*}
K_{T}=a^{t} \xi_{T} a \tag{12.6}
\end{equation*}
$$

This method necessitates calculating the tangential siffness matrix anew at every step and, far worse than this, it also necessitates solving another system of linear equations every time. Although application of the substructure technique, with only some parts of the structure showing plastic behaviour, renders the entire process much more economical there is general egreerent that the initial load method (i.e. initial strain or initial stress method) is more favourable.

The initial load nethod may be expressed as follows (cf. (7.21) and (12.4)):

$$
\begin{equation*}
F_{\Delta}=V_{E} V_{A}+2 t_{A} \tag{12.7}
\end{equation*}
$$

with 4 , of course, representing an increment of the vector. Matching initial loors fía cen then be used to simulate any modification of tiie clastic stiffness matrix. In dealing with - Lasto-plastic p-rblems we now use equation (12.7). In this case, Ka_{a} is resolvod orly once. We merely calculate the oxtent of plastic strain et nach step.

Using ini ial loads implies cortain difficulties. The increment of each locd ?octor is must be derived from the plastic strain increment whici in urn is derived from R_{Δ}. On the other hand it is irpcssiulo to calculate plastic strain without knowing the stions isicrement. To solve this dilemma we have the two metrods of initial strain and initial stress.

Initial stress has an advantage over the initial strain method in that it is applicable to calculating ideal plastic processes as well; 0 thewise, both methods are more or less equal. (Ideal plastir nrocesses can also be dealt with by means of the tangential stiffness matrix method, by the way.)

This term deserites all processes in the course of which the geometry of a structive changes undor load to an extent which rules out the assuption of an cquilibrium oxisting in the deformed structure, implying that there is a non-linear rel-
action between stresses and strains. With each iterative step it is therefore necessary to formulate anew the conditions of equilibrium; this despite the fact that the scope of strains continues small and that there is no presumption of linear material behaviour. Processes presuming small-scale strain and linear material behaviour are often called larre-scaledisplacements '.

At each iterative step of a Iarge-scale displacement the nonlinear stress-strain relation causes a change in the element matrices \mathbb{k}. Modification of the element stiffness matrix is designated by $\mathcal{K} \boldsymbol{N}$. We can, therefore, express the total matrix k as follows:

$$
\begin{equation*}
k=l_{E}+k_{E} \tag{12.8}
\end{equation*}
$$

with Representing the elastic portion of the matrix (cf. equation (7.10)). The matrix $\boldsymbol{K}_{\boldsymbol{\sigma}}$ is often called the geometrice stiffness of an element. This matrix is not merely dependent on the geometry but is also a function of the stree sos within the element.

A simple e: ample:

Two rods are connected by a joint. Clearly, there is no stiffness in the direction of the load ff while the structure is still in its initial position, ice. with the rods horizontal. Equilibrium will only be restored after a vertical displacemont r has taken place.

$$
R=\frac{2 S}{l} r=K_{L} r
$$

Geometric stiffness, therefore, is

$$
K_{\tau}=\frac{2 S}{l}
$$

 vernoly lio llin lilunere (V_{i}, y_{i}).

 riat Lo it momertit. No.

Or course, both momenta moat be equal.

$$
N a=N_{y} i_{i j}
$$

Mow we have

$$
a=l_{i j} \operatorname{tg} \alpha=v_{i}-v_{i}
$$

and, therefore,

$$
N_{y}=\frac{1}{l_{i j}}\left(V_{j} \cdot V_{i}\right)
$$

If we now add the vectors of N and $N y$ the load 1 a again oxortod along the range. Equilibrium is restored.

Let we now consider the lincur-elantic processes, iso. the amill-scale strains. Strain along tho flange is sxprosiod as

$$
\varepsilon_{i j}=\frac{\Delta e_{i j}}{e_{i j}}=\frac{\left(u_{j}-u_{i}\right)}{e_{i j}}
$$

tho corrospondine force bolls A, with the flange urea romaineing constant.

$$
S_{i j}=A E \varepsilon_{i j}=\frac{A E}{l_{i j}}\left(u_{j}-u_{i}\right)
$$

Now we can oulabilali the entire stiffness matrix.

$$
k=k_{E}+k_{G}
$$

- 71 -
or 0100, expressed an matrices,

$$
N=\left(k_{E}+k_{L}\right) u=k u
$$

Generally speaking it is possible to compile a eoomotric clmont stiffness for each element. Knowing both \boldsymbol{k}_{f} and $\mathcal{R}_{\mathbf{B}}$ the oloment is subjected to a small initio displacement incement. Now, the load vector P_{Δ} can be expressed as (ct. equation (1.3)):

$$
\left.P_{\Delta}=k \rho_{\Delta}=\left(k_{E}+k_{E}\right) \rho_{\Delta} \quad \text { - } 12.9\right)
$$

Moreover, virtual work can be oxpressod to read

$$
r_{\Delta}^{t} R_{\Delta}=\rho_{\Delta}^{t} P_{\Delta}
$$

According to equation (7.15),

$$
\rho_{\Delta}^{t}=r_{A}^{t} a^{t}
$$

$s 0$ that

$$
\begin{gather*}
R_{\Delta}=a^{t} P_{\Delta}=a^{t}\left(k_{F}+k_{B}\right) a r_{\Delta}=K r_{\Delta} \\
R_{\Delta}=K r_{\Delta} \tag{12,10}
\end{gather*}
$$

Thie equation is a mero approximation, but II. prows more accurate the smallor both R_{Δ} and P_{Δ} aro. In largo-scalodieplacoment problems it is unfortunately necussary to compilo anow the global stiffness mutrix and to solve tho linoar systom of oquations later. It is vory dirficult to mako any roliable statumont concerning the scale of tho load increments. Each problom must be considerod individualiy to eneure thatifts poculiarities are takon into account, nivays remaining sensitive to practical considerations.

In conclusion, I should like to remark that the largo-ecale dieplacement mathod can also be used to solvo atability problems.

$C-I 23$

[^0]:

 has been ropectuod witheut formel ciltitng.
 $2.77-4780$

[^1]: L - Local defroen of froerlom (slave unknowns)
 E External doprons of freciom (master unknowns)
 P - Prescribed decrees of Prcedum (boundary Conditions)
 s- Suppressed degrees of freedom (boundary conditions)

