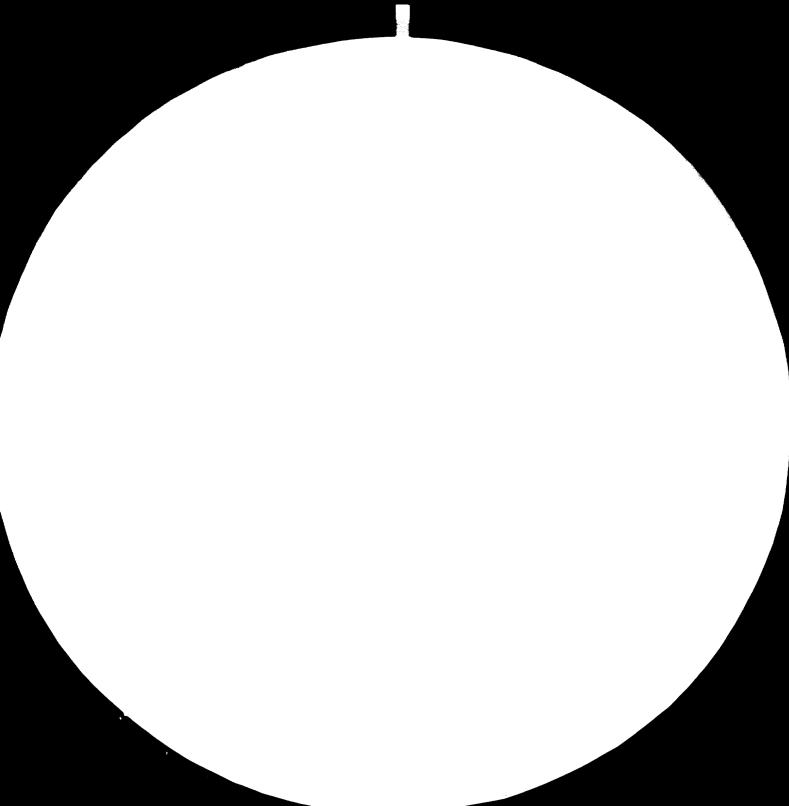


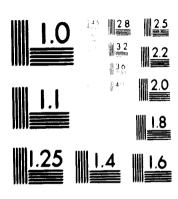
OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

MICROCOPY RESOLUTION TEST CHART NATIONAL ROBBERS OF COMPANY DRIVED TO

CHEM SYSTEMS INTERNATIONAL LTD.

28 ST. JAMES'S SQUARE, LONDON SW1Y 4JH.

Telephone: 01-839 4652

Telex: 916636

FEASIBILITY STUDY FOR THE PRODUCTION OF PESTICIDES AND INSECTICIDES IN KUWAIT

10542

FINAL REPORT

Prepared for
UNITED NATIONAL INDUSTRIAL DEVELOPMENT ORGANISATION
by
CHEM SYSTEMS INTERNATIONAL LIMITED

002002

May 1981

CONTENTS

لسبية اسية لسبة لمست

CONTENTS

SECTION	DESCRIPTION	
I	SUMMARY AND RECOMMENDATIONS	I-1
	1. Introduction	I-1
	2. Pesticide Market	I-1
	3. Process technology	I-4
	4. Organization and Manpower	I - 5
	5. Implementation plan	I - 7
	Financial analysis and recommendations	I - 9
	7. Diversification	I-13
II	EACKGROUND TO WORLD PESTICIDE INDUSTRY	II-1
III	THE PESTICIDE MARKET IN SELECTED ARAB STATES	III-1
IV	EGYPT	IV-1
•	1. Agricultural Sector	IV-1
	2. Pesticide Business	IV-3
	3. Pesticide Consumption	IV-5
v	THE SUDAN	V-1
	1. Agricultural Sector	V-1
	2. Pesticide Business	V- 5
	3. Pesticide Consumption	V - 8
vī	SYRIA	VI-1
	1. Agricultural Sector	VI-1
	2. Pesticide Business	VI-2
	3. Pesticide Consumption	VI-3

CHEM SYSTEMS INTERNATIONAL LTD.

VII	IRAQ	VII-1
	1. Agricultural Sector	VII-1
	2. Pesticide Business	VII-2
	3. Pesticide Consumption	VII-2
VIII	JORDAN	VIII-1
	1. Agricultural Sector	VIII-1
	2. Pesticide Business	VIII-2
	3. Pesticide Consumption	VIII-3
IX	KUWAIT	IX-1
	1. Agricultural Sector	1X-1
	2. Pesticide Business	IX-1
•	3. Pesticide Consumption	IX-1
×	SAUDI ARABIA	Х - .
	1. Agricultural Sector	X+ .
	2. Pesticide Business	X-4
	3. Pesticide Consumption	X-4
XI	OMAN AND THE UNITED ARAB EMIRATES	XI-1
	1. Agricultural Sector	XI-1
XII	FUTURE PESTICIDE CONSUMPTION	XII-1
	1. Egypt and the Sudan	XII-2
	2. Syria, Iraq and Jordan	XII-3
	3. Kuwait and Saudi Arabia	XII-4
	4. Oman and the United Arab Emirates	XII-5
	5. Total Market 1978 to 1988	XII-5

CHEM SYSTEMS INTERNATIONAL LTD.

XIIX	PESTICIDE PRODUCTION PLANT- DEFINITION	XIII-1
xıv	MANUFACTURING TECHNOLOGY AND ECONOMICS	XIV-1
	1. Design basis	XIV-l
	2. Manufacturing processes	XIV-4
	2.1. 0,0 Dimethyldithiophosphoric acid	XIV-4
	2.2. Ethyl Maleate	XIV-10
	2.3. Malathion	XIV-17
	2.4. N-methylchloroacetamide	XIV-24
	2.5. Dimethoate	XIV-31
	2.6. Maneb-Zineb	SE-VIX
	2.7. 2,4 D amine salt	XIV-48
	2.8. Offsite Facilities	XIV-57
	3. Organisation and Manpower	XIV-61
	3.1. Project Implementation	KIV-61
	3.2. Permanent Manpower requirements	XIV-67
	4. Financial analysis	XIV-69
	4.1. Introduction	XIV-69
	4.2. Malathion	XIV-69
	4.3. Dimethoate	XIV-74
	4.4. Maneb-zineb	XIV-76
	4.5. 2,4 D amine salt	XIV-78
	5. Implementation plan	08 - VIX
	5.1. Introduction	08-VIX
	5.2. Definition of project basis	XIV-3'0
	5.3. Plant design and construction	XIV-82
	5.4. Establishing corporate organization and external felations	XIV-83

6.1 Equipment list- 0,0 Dimethyldithiophosphoric acid 6.2 Equipment list- Ethyl Maleate 6.3 Equipment list- Malathion 6.4 Equipment list- N-methylchloroacetamide 6.5 Equipment list- Dimethoate 6.6 Equipment list- Maneb/Zineb 6.7 Equipment list- 2,4 D amine salt 6.8 Equipment list- Offsite facilities Annex 1 Revised Costs of production sheets Annex 2 Safety

Annex 3 Packaging

I - SUMMARY and RECOMMENDATIONS

1 - INTRODUCTION

This report covers a study carried out under UNIDO contract number 79/35 TF/KUW/76/001 concerning the feasibility for the production of various pesticides in Kuwait.

The study area was defined as Egypt, Sudan, Syria, Iraq, Jordan, Saudi Arabia, Kuwait, Oman and the United Arab Emirates. The products covered in the study were grouped under three basic classifications: Insecticides, Fungicides and Herbicides.

The fieldwork was carried out during March and April 1979 and covered all of the above noted countries with the exception of the Oman and the UAE.

In the execution of the fieldwork, official government agencies and pesticide suppliers were contacted. The assistance provided by the multinational pesticide producers and suppliers was most useful in the completion of the study.

In the report the term "estimated" when used in relation to pesticide usage refers to a volume that was arrived at by discussion with suppliers, and government agencies taking into account official import and tender statistics etc.

2 - PESTICIDE MARKET

The pesticide market (insecticides, fungicides and herbicides) in the area of study was estimated to total 38 500 metric tons active ingredient in 1978. The market was dominated by Egypt and the Sudan which accounted for 78 percent of total consumption. The only other significant area was Iraq, Syria and Jordan making as for nearly 18 percent of the total. Kuwait and Saudi Alabia made up four percent or so of the total.

In terms of product, the major pesticides were fungicides 50 percent and insecticides 46 percent. Herbicides were relatively insignificant with only about four percent of the

Although insecticides are used in all the regions to a greater or lesser extent, fungicide consumption is concentrated in Egypt; this country alone accounts for 78 percent of the total use in 1978. The Sudan has negligible fungicide requirements due to the hot dry climate. Iraq, Syria and Jordan account for 15 percent of total fungicide use. Herbicide consumption is concentrated in Egypt and the Sudan, these two countries account for 94 percent of use.

In the regions under consideration, there is no production of active ingredients, with the possible exception of mineral oils in Egypt. All active materials are imported into the region, in the majority of cases as finished product. However formulation of certain simple pesticides is carried out in Egypt and the Sudan. Repackaging and dilution of concentrates for local and export use is also carried out in Kuwait and Saudi Arabia.

Demand for pesticides is forecast to rise from the current level of 38500 metric tons through 45 700 metric tons in 1983 to about 54 000 metric tons by 1988. Fungicides and insecucides will remain the major products with each accounting for nearly 50 percent of demand.

Although the pesticide market is highly complex. With a vast number of active ingredients being formulated into an even greater number of products for use, an analysis of the products used leads to a listing of major active materials used in the region. The dominant active ingredients with their estimated offtake in 1983 and 1988 are outlined in the following table.

TABLE I-1

FORECAST CONSUMPTION OF MAJOR PESTICIDE MATERIALS

IN STUDY AREA FOR 1983 AND 1988

(metric tons active ingredient)

		19	983	<u> </u>	958
INSECTICIDES					
Organophosphorous	Dimethoate	1	630	2	17
	Malathion	1	380	1	84
	Chlorpyriphos- ethyl	1	000	1	34
	Dichlorvos		750	1	CO
	Triazophos		690		92
	Phosphamidon		500		67
	Parathions		310		42
Organohalogen	DDT	3	080	2	800
	Endosulphan		660		600
	Chlordane		440		400
Carbamates	Carbaryl	1	120	1	57
Others	Mineral Oils	7	000	8	CC
FUNGICIDES					
Inorganic	Sulphur	21	630	25	07
Organics	Dithiocarbamates		630		77
HERBICIDES					
Aryloxyacids	2,4 D amines		520		60
Benzene	Nitrofene		460	شحين	56
	TOTAL	4 4	800	4	e 7

Although rodenticides are used in rarge volumes of finished product, the low concentration of active material, plus the large number of complex materials used precludes any consideration for local manufacture.

The feasibility of the local production of the major pesticides of each class was estimated. The production schemes actually analyzed are listed below:

- Insecticides: 0,0 dimethyldithiophosphoric acid (

 Ethyl maleate

 0,0 dimethyldithiophosphoric acid (

 N-methylchloroacetamide

 Dimethoate
- Fungicides: Dithiocarbamates Maneb/Zineb

Taking into account the estimated offtake in 1983 and 1985 presented in Table I-1, the following design capacities wares selected:

- . Malathion: 2000 metric tons per year (technical product)
- . Dimethoate: 2500 metric tons per year (technical product)
- . Maneb/Zineb: 1000 metric tons per year (technical product)
- . 2,4 D acid: 600 metric tons per year (equivalent to 720 metric tons of 2,4D-DMA salt per year)

3 - PROCESS TECHNOLOGY

The overall pesticides plant is divides into 9 sections as follows:

Section 100 - 0,0 dimethyldithiophosphoric acid production unit

Section 200 - Ethylmaleate production unit

Section 300 - Malathion production unit

Section 400 - N-methyl hloroacecamide production unit

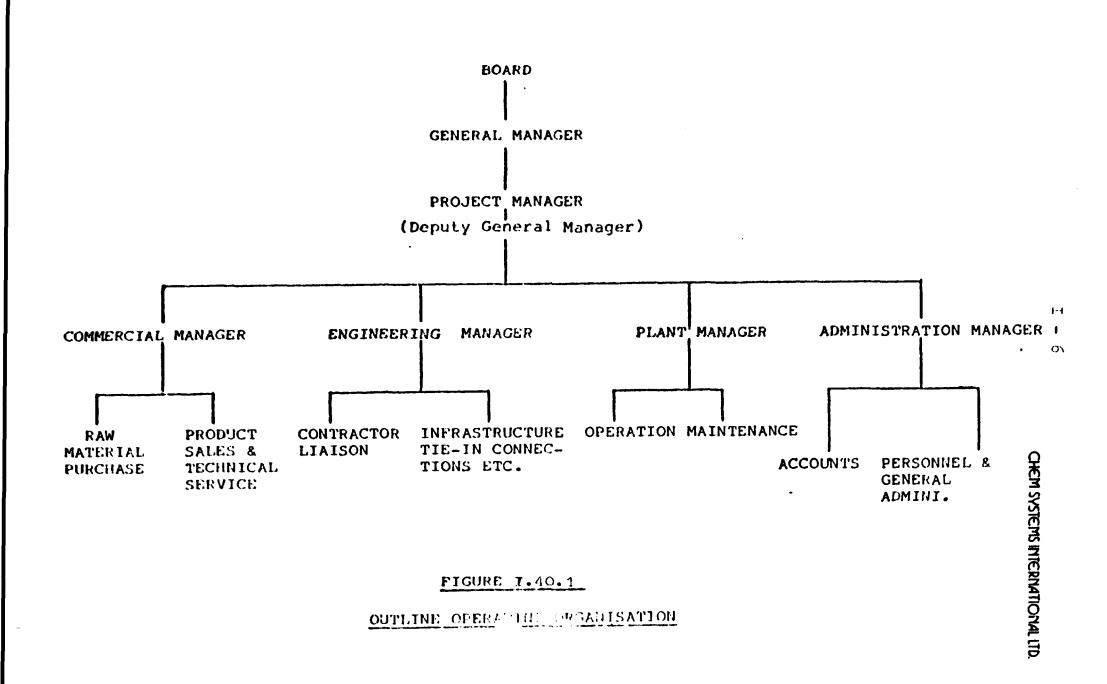
Section 500 - Dimethoate production unit

Section 600 - Maneb/Zineb production unit

Section 700 - 2,4 D- Dimethylamine salt production unit

Section 800 - storage

Section 900 - waste treatment unit


This plant is designed like most multipurpose fine chemical plants, i.e. the products are made batchwise and are processed in corrosion resistant, agitated, jacketed reactors. The products are not made campaignwise (the capacities are too large), however the pieces of equipment selected are quite flexible and almost any fine chemical or agrochemical product can be manufactured in this plant.

4 - ORGANIZATION and MANPOWER

Once the fundamental decisions on the project are taken (eg plant location and size) it is recommended that a full—time Project Manager be appointed, with a "steering committee" from the parties concerned to assist in the many detail matters which have to be arranged. The Project Manager should also have appropriate expert support and advice.

This structure of Project Manager plus steering committee should be adequate until the point of full approval for plant design and construction. From that time, establishment of the full operating organisation should commence. Figure I-40.1 shows the organisation recommended. It is expected that the Project Manager will remain with the project until hand-over by the contractor, and it is recommended that he should also have the title of Deputy General Manager with appropriate decision-making authority.

The estimated permanent manpower requirement is presented in Chapter 3, Section XIV.

5 - IMPLEMENTATION PLAN

The overall schedule will be influenced by many activities other than design and construction, i.e. final site selection, product mix, ...

Definition of the project basis is the first step. This will involve partnership agreement (if any), final product mix, financial structure, choice of process route,

To achieve earliest practical implementation, it is recommended that the contractor be selected on the basis of general experience and capability, together with manhour rates, fees etc. The contract should be of the "convertable" type where the owner has the option to convert to a lump sum basis following preparation of a definitive estimate. This approach greatly reduces bidding time and costs and means that selection can proceed in parallel with preparation of process design by the licensor.

Assuming the above procedure is followed, the following is the earliest timing of the major events:

EARLIEST TIMING OF KEY EVENTS

Event	Earliest Date
 Select Process Licence(s) and award contract for basic design package 	May 1982
 Select Contractor (Fee/convertable contract basis) 	Sept 1982
. Completion of Definitive Estimate	Jan 1983
 Go-ahead for detail design and construction 	March 1983
. Mechanical completion	March 1985
. Completion of commissioning	Sept 1985

6 - FINANCIAL ANALYSIS and RECOMMENDATION

In this feasibility study, preliminary economic/financial evaluations have been undertaken for the following purposes:

- To identify a short list of pesticides and insecticides which could be manufactured locally.
- To provide an overall plant capital cost estimate
- To appraise the financial viability of the venture

In these evaluations, the basic assumption is that the proposed plan will be competing in Arab markets with supplies from Europe. Performance data and Capital cost estimates developed in the course of the design work were adjusted for a Middle Eastern location (based on Chem System's experience of detailed cost estimate analysis in various countries of the world).

The local cost of the various raw materials and active inquedients was taken at the current European level. The shipping cost was not taken into account, since it was felt that for fairly large supply contracts, most suppliers would adjust their landed prices to the current European prices.

The analysis of the minimum sales prices (at zero ROI- see Table I.6.1) and of the European sales prices of the active ingredients show that no positive netback can be generated by just selling bulk active ingredients to local formulators.

This is mainly due to the high cost of raw materials, the small production scale and the fact that a new plant has to compete with old, completely depreciated plants in Western Europe and USA.

However a closer analysis of the European sales prices of the formulated products sold to distributors shows that a sizable margin exists for two of the four products selected:

Malathion and Dimethoate

Therefore, it seems that selling formulated Malathion and Dimethoate in small containers (10 liters for instance) to local distributors might be a profitable venture.

The only pending problem is the formulation plant. Formulated Malathion and Dimethoate are primarily sold as liquid solutions containing 400 to 500 g of active ingredient per liter. These pesticide formulation processes are mainly batch mixing operations. Packaging is described in Annex 3.

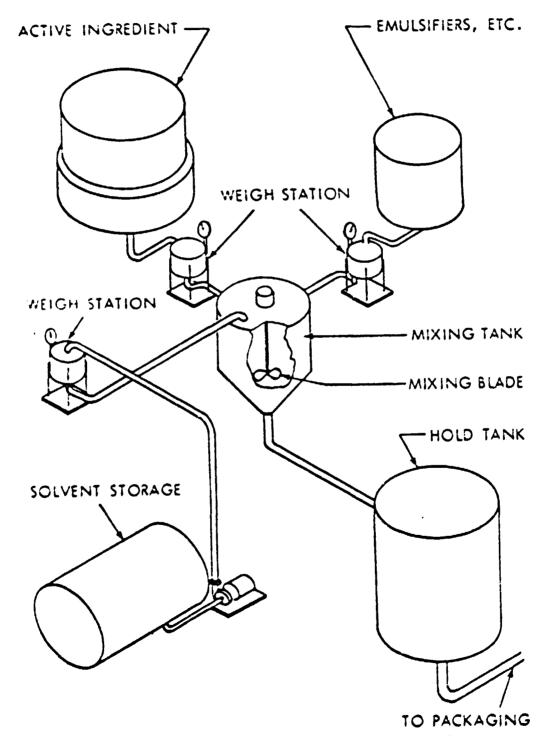
The desired active ingredient, the appropriate carrier or solvent, and the necessary additives are blended and milled in the ratios needed to give the desired active ingredient concentration and physical properties in the finished product.

An example of a liquid formulation plant is given in Figure I.6.1. The active ingredient is proportioned into a mixing tank with the correct amounts of solvent, such as xylène and emulsifying agent, and blended. Both weight and volume measurements are used to achieve the desired proportions.

The finished batch is normally stored in either the mixing tank or a hold tank until the material can be analyzed to ensure that it meets specifications.

As far as costs are concerned, the capital cost of a liquid formulation plant is less than a million US dollars and the formulation cost should not exceed 0.80-1.00 dollar per kg 100% active ingredient (with simple solvents like xylene and for 4500 metric tons/year of 100% active ingredients).

In conclusion, the likely netbacks for a "formulated Malathion/ Dimethoate" plant are as follows:


		US cents/kg A.I	. (100%)
		Malathion	Dimethoate
•	Minimum calculated transfer price (zero ROI)	241.62	392.37
•'	Minimum formulation cost (zero ROI)	100.00	100.00
•	Minimum formulated sales price Sales expenses	341.62	492.37
•	European sales price (formu- lated product)	988.00	868.00
•	Maximum Netback (without sales expenses)	646.38	375.63

The total investment for melathion and dimethoate plants (and the intermediates required) is \$14.37 million (see section XIV) plus say one million dollars for a formulation plant of the type depicted in figure I.6.1.

The yearly gross profit at full capacity for <u>formulated</u> melathion and dimethoate will be of the order of \$22 million, and hence a pay-out time of less than one year can be expected. A more sophisticated analysis is not justified in view of the uncertainties in establishing raw material and sales prices. Nevertheless, even allowing for a reasonable rate of sales build-up over the first few years of operation, normal levels of selling costs, overheads, depreciation etc, a pay-out time of the order of one year should be achieved.

It is recommended that the project comprising formulated melathion and dimethoate be investigated in more detail with respect to a joint venture with an existing producer or a licence agreement comprising technical and selling assistance.

FIGURE 1.6.1
LIQUID FORMULATION PROCESS

Source: Toxaphene Bulletin 621, Synthetics Department, Hercules, Inc., Wilmington, Delaware

TABLE 1.6.1

CAPITAL AND OPERATING COST ESTIMATES- Pesticide plant

Dimethoate

Zineb

2,4 D, DMA salt

(Third quarter 1979 US dollars)

Location: Kuweit

Malathion

Product:

Capacity: (metric tons/year)	2000	2500	1000	720 DMA salt or 600 2,4 D acid
Overal: fixed investment: (million US dollars)	23.3	(includes intermediate unit: see chapter 2)	s production	on units-breakdown per
Production costs (US cents per kg	at eff	ective annual capacity)		
. Raw materials	173.46	258.50	122.73	137.14
. Utilities	1.64	13.30	4.05	5.36
• Operating costs	18.66	23.07	60.62	62.36
• Overhead expenses	31.91	45.30	123.21	105.18
• Cost of production	225.67	340.17	310.61	310.04
. Return on Investment			-	-
. Interest on working capital(10%	8.70	12.96	10.40	10.42
 Minimum sales price (X% tech- nical product) 	234.37	353.13	321.01	320.46 per kg of salt
product purity-X% weight	9 7 %	90%	92 %	83 % acid
minimum sales price (based on 100% product)	241.62	392.37	348.92	384.55 per kg acid equivalent
European sales price (100% AI-bulk)	179.00	305.00	217.00	325.00
 European sales price (100% AI.)(formulated product equi- valent) 	988.00	868.00	280.00	392-400

Annex 1 shows revised costs figures. Variations are so small (0 to 1 % max depending on product) that they do not affect the financial analysis and recommendation.

7 - DIVERSIFICATION

It can be objected that Malathion and Dimethoate, production of which is analyzed here, and for which a profitability is formed here if formulation is included, are mature products.

But their manufacturing would provide a good basis for diversification into more modern specialties.

They are both based on dimethyldithiophosphoric acid which is therefore manufactured on an already reasonably large scale. This compound or its diethyl analog is also the basis for many other organophosphorous insecticides where various moieties are coupled to it.

For example Phosalone, a successful product for which a licence has been recently acquired by the USSR for building a large plant is based on diethyldithiophosphoric acid plus chloromethyl-chlorobenzoxazolone, itself resulting from condensation reactions between aminophenol, urea and formaldehyde.

The coupling between such a second moiety and dimethylthiophosphoric acid is a condensation reaction similar to the ones leading to malathion or dimethoate and could be carried out in the facilities which have been provided here.

Other families which have a significant market in the countries studied here could not provide a basis for satisfactory expansion.

The chlorocompounds have been banned in industrialized countries, but large plants are existing there which can easily serve all export markets still available.

Carbaryl and more generally all carbamates are related to phosgene chemistry which is a very special chemistry. Moreover, phosgene transportation is severely restricted, and starting from derivatives such as chloroformates would be uneconomical due to high prices for these already sophisticated compounds.

II BACKGROUND TO WORLD PESTICIDE INDUSTRY

Agricultural pesticides comprise insecticides, fungicides and herbicides, those used in Public Health usually include insecticides and rodenticides.

The estimated value of pesticide sales in 1978/79 worldwide was about US\$8 000 million, of which nearly 40 percent was made in North America and 16 percent in Western Europe. Nearly 80 percent of pesticides originate from the 20 large chemical concerns, such as Bayer, Ciba-Geigy, Shell, Monsanto, etc. In 1976/77 Bayer's sales of pesticides were of the order of US\$1 100 million, and those of Ciba-Geigy at US\$860 million.

The big chemical corporations produce: original patented compounds, originating from their pesticide research facilities and patent lapsed or non patented pesticides, called commodity products, utilising intermediates produced by another division within the company. The producers after proving the usefulness of their products in the field market them internationally through, (depending on the country), wholly or part owned subsidiaries, or national distributors in countries where they have no subsidiary. Other producers of pesticide technical materials include: small manufacturers of commodity products, pharmaceutical companies, and heavy chemical manufacturers. All manufacturers formulate technical materials into finished products ready for use. Some producers sell technical materials and concentrates for formulation by other companies.

There are currently some 500 pesticide compounds, of which about 200 are in regular use, each one in the form of between one and twenty different formulations.

The usual distribution route is from the manufacturer to:

i local subsidiary company or local national distributor, in each country, who will buy the formulated product, or buy technical material and formulate locally

- ii dealers, cooperatives, or buying groups
- iii farmers, growers and estates.

However there are exceptions to this generalisation including:

- i manufacturers selling to traders, merchants, exporters and importers
- ii sales on tender made directly to a Government authority or other important buyers. Large tenders attract low priced competition.

Manufacturers can control the pricing of patented products, with profit, more easily than on commodity products. For patented products they are concerned with the cost/price/benefit of the products compared to that of other products, but for commodity products their concern is with competitors' pricing of the same product. There is an international price for most commodity pesticides, particularly for those which are made and sold by more than two companies. For example phenoxy herbicides, parathions, and dithiocarbamates.

Before selling a product is it usually obligatory to register it with the appropriate national authorities. There are two types of tests and trials which must be undertaken and the results submitted to the authorities which are:

- i toxicoligical data regarding the behaviour of the chemical in animals, crops, soils and water
- pests, diseases and weeds in the crops in which the product is to be used. In most countries local field trials must be performed to assess the effectiveness under local conditions. In some cases the local national authorities carry out these field trials before granting registration.

Although there is an international price for commodity pesticides and discounts are often made for large volume purchases, potential speciality products, while under patent, are normally controlled by the originator, in addition marketing and distribution is also controlled by the originator. Speciality products are distributed normally through closed channels, which are often the subsidiary companies of the originator and/or exclusive distributors. The manufacturer may and does offer the same speciality product at different prices to different countries dependent upon local circumstances, where the only problem the manufacturer seeks to prevent is an intermediary in one country buying at dealer or trade prices in another country, and selling the product in a third country at a price competitive to national distributors. Product registration, country by country, has tended to limit traders switching formulated products from one country to another.

Sales of pesticides in Western Europe in 1978 were estimated to be of the order of US\$1 300 million. The major consumers were France, West Germany and Italy accounting for 26 percent, 21 percent and 15 percent respectively. Other significant consuming countries were Spain, the United Kingdom, Scandinavia and Benelux each accounting for about 7 to 8 percent of total sales. Estimates of the relative importance of sales volumes by country are outlined in the following table.

TABLE II.1

RELATIVE IMPORTANCE OF WESTERN EUROPEAN SALES VOLUMES-1978

Country	Percentage of Total Sales
France	26
West Germany	21
Italy	15
Spain	9
United Kingdom	8
Scandinavia	7
Benelux	6
Austria/Switzerland	3
Others	
Total	100

Overall sales of pesticides were split as shown in the following table.

TABLE II.2.

RELATIVE IMPORTANCE OF PESTICIDE SALES BY TYPE, WESTERN EUROPE-1978

<u>Type</u>	Percentage (of_	Tota1	Sales
Herbicides	;	55		
Fungicides	;	28		
Insecticides	<u>.</u>	<u> 17</u>		
Tota1	10	00		

Although herbicides dominated total sales, about twice as large as fungicides on a value basis, the split in consumption varied from region to region as shown below for selected countries.

TABLE II.3.

RELATIVE IMPORTANCE OF PESTICIDE SALES BY TYPE FOR SELECTED COUNTRIES-1978

(percentage of total sales)

Country	<u>Herbicides</u>	<u>Fungicides</u>	Insecticides
Scandinavia	80	10	10
United Kingdom	75	14	11
West Germany	66	26	8
Italy	36	39	25
Greece	36	31	33

The Western European pesticide business is well covered by a number of domestic producers. Major producers, in alphabetical order are listed below.

TABLE II.4.

MAJOR WESTERN EUROPEAN PESTICIDE PRODUCERS

BASF	West Germany
Bayer	West Germany
Ciba-Geigy	Switzerland
Fisons	United Kingdom
Hoechst	West Germany
ICI (Plant Protection)	United Kingdom
Montedison	Italy
Pepro	France
Procida	France
Rhone-Poulenc	France
Sandoz	Switzerland
Schering	West Germany
She11	United Kingdom

In addition, the Western European market is serviced by imports from, for example, the USA. The Western European companies are also involved in worldwide export sales.

III THE PESTICIDE MARKET IN SELECTED ARAB STATES

The states selected for this study were Egypt, Sudan, Iraq, Syria, Jordan, Kuwait, Saudi Arabia, Oman and the United Arab Emirates. Because of the geography, climate, cropping patterns and pesticide consumption, certain countries fall into natural groups. These groups were delineated as follows:

- i Egypt and the Sudan
- ii Syria, Iraq and Jordan
- iii Kuwait and Saudi Arabia
- iv Oman and the United Arab Emirates

In 1978 total pesticide consumption was estimated to be about 38 000 metric tons active ingredient. Fungicides accounted for 50 percent of use, and insecticides 46 percent. Herbicides accounted for just under 4 percent. Estimates of the relative importance of the various pesticides is outlined in the following table.

TABLE III.1.

THE PESTICIDE MARKET IN SELECTED ARAB STATES-1978

Pesticide	Thousand metric tons	Percent of Total		
	Active Material	Consumption		
Fungicides	19.4	50.3		
Insecticides	17.7	46.0		
Herbicides	1.4	<u>3.7</u>		
Total	38.5	100.0		

When the market is analysed on a geographical basis it can be seen that Egypt and the Sudan account for 78 percent of consumption, the next most significant area, Iraq, Syria and Jordan make up nearly 18 percent. The relative importance of the various regions are shown in the table below.

TABLE III.2.

PESTICIDE CONSUMPTION BY TYPE AND REGION-1978

(thousand metric tons active ingredient)

Region	Fungicides	<u>Insecticides</u>	<u>Herbicides</u>	Total	Percent of
			9	onsumpti	on <u>Total</u>
					Consumption
Egypt, Sudan	15.18	13.39	1.33	29.90	77.7
Iraq, Syria, Jor	dan 2.88	3.82	0.08	6.78	17.6
Kuwait, Saudi Ar	abia 1.30 *	0.41	-	1.71	4.4
Oman, UAE	0.01	0.10	_	0.11	0.3
Total	19.37	17.72	1.41	38.50	100.0

^{*} of which 1 200 metric tons is elemental sulphur

<u>Insecticides</u>

In volume terms the major insecticides used in the areas under study are mineral oils accounting for 35 percent of the market, closely followed by the organophosphorous derivatives with 32 percent share. Organohalogens make up 26 percent of use. Estimates of volume offtake by region by family of products are shown below.

TABLE III.3.

CONSUMPTION OF INSECTICIDES BY FAMILY BY REGION-1978

(metric tons active ingredient)

Region	<u>Organo</u> phosphorou	Organo s halogen	<u>Carbamates</u>	Mineral Oils	<u>Others</u>	Total
Egypt, Sudan	3 866	2 368 *	785	6 000	366	13 385
Iraq, Syria, Jor	dan 1 404	2 294	48	69	7	3 822
Kuwait, Saudi Ar	abia 239	-	106	1	67	413
Oman, UAE	32	2	6	60	_ 2	102
Total	5 541	4 664	945	6 130	442	17 722
Market Share Per	cent 32	26	5	35	2	100

^{*} negligible in Egypt

Estimates of consumption by type of pesticide for the various families are outlined in the following tables.

TABLE III.4.

CONSUMPTION OF ORGANOPHOSPHOROUS INSECTICIDE BY REGION-1978 (metric tons active ingredient)

	Egypt,	Iraq, Syria	<u>Kuwait</u>	<u>Oman</u>	
	Sudan	<u>Jordan</u>	Saudi Arabia	<u>UAE</u>	<u>Total</u>
Dimethoate	1 076	32	40	7	1 155
Malathion	302	606	54	8	970
Chlorpyriphos-ethy	1 695	-	1	-	696
Dichlorvos	-	500	51	5	556
Triazophos	500	2	•	•	502
Phosphamidon	350	-	-	-	350
Parathions	208	19	1	-	228
Phospholan Phospholan	155	-	-	-	155
Trichlorfon	47	25	75	7	154
Monocrotophos	90	7	-	-	97
Diazinon	-	90	-	-	90
Mephospholan	89	-	-	-	89
Thiometron	85	-	-	-	85
Phenthoate	71	-	-	-	71
Formothion	57	10	-	-	67
Dicrotophos	56	-	-	-	56
Demeton-s-methyl	22	30	-	-	52
Profenophos	19	- .	-		19
Pyrimiphos-methyl	-	2	-	5	7
Methamidophos	-	4	-	-	4
Others	44	<u>77</u>	<u>17</u>	-	138
Total	3 866	1 404	239	32	5 541

TABLE III.5.

CONSUMPTION OF ORGANOHALOGEN INSECTICIDES BY REGION-1978

(metric tons active ingredient)

	Egypt,	Iraq, Syria	<u>Kuwait</u>	<u>Oman</u>	
	Sudan	<u>Jordan</u>	<u>Saudi Arabia</u>	UAE	Total
_				_	
DDT	1 540	1 560	-	2	3 102
Endosulphan	637	20	-	-	657
Chlordane	1	458	-	-	459
ВНС	60	183	-	-	243
Endrin	82	2	-	-	84
Heptachlore	40	-	-	-	40
Toxaphene	-	40	-	-	40
Dieldrin	8	-	-	-	8
Others		31	-	-	31
Total	2 368	2 294	-	2	4 664

TABLE III.6.

CONSUMPTION OF OTHER INSECTICIDES BY REGION-1978

(metric tons active ingredient)

	Egypt, Sudan	Iraq, Syria Jordan	<u>Kuwait</u> Saudi Arabia	<u>Cman</u> <u>UAE</u>	Total
Carbamates		·			
Carbaryl	616	32	106	6	760
Methomy1	166	10	-	-	176
Others	3	_6		<u>-</u>	_ 9
Total	785	48	106	6	945
<u>Others</u>					
Dicofo1	224	-	12	•	236
Pyrethroids	142	•	25	•	167
Mineral Oils	6 000	69	1	60	6 130
Others		_7	<u>30</u>	_2	39
Total	6 366	76	68	62	6 572

When the consumption data is analysed in detail, it can be seen that within each family certain products are consumed in relatively large volumes. Estimates of the tonnages involved by product type are aggregated in the following table.

TABLE III.7.

CONSUMPTION OF MAJOR INSECTICIDES IN ARAB STATES-1978 (metric tons active ingredient)

<u>Organophosphorous</u>	
Dimethoate	1 155
Malathion	970
Chlorpyriphos-ethyl	696
Dichlorvos	556
Triazophos	502
Phosphamidon	350
Parathions	228
Total	4 457
<u>Organohalogen</u>	
DDT	3 102
Endosulphan	657
Chlordane	459
ВНС	243
Tota1	4 461
Carbamates	
Carbaryl	760
<u>Others</u>	
Dicofol	236
Mineral Oils	6 130
Total	6 366
Total	16 044

Fungicides

The major fungicide utilised in the regions under investigation is sulphur, which accounts for 96 percent of the total market. Dithiocarbamates make up for nearly three percent. Estimates of volume offtake by region by type of fungicide are shown below.

TABLE III.8.

CONSUMPTION OF FUNGICIDES BY FAMILY BY REGION -1978 (metric tons active ingredient)

Region	<u>Sulphur</u>	Dithiocarbamates	Copper	<u>Others</u>	<u>Tota</u> 1
Egypt, Sudan	14 910	131	85	55	15 181
Iraq, Syria, Jordan	2 540	311	9	20	2 880
Kuwait, Saudi Arabia	1 201	75	-	20	1 296
Oman, UAE	10	-	-	-	10
Total	18 661	517	94	95	19 367
Market Share Percent	96.3	2.7	0.5	0.5	100

Estimates of consumption by type of material are shown in the following table.

TABLE III.9.

(metric tons active ingredient)

	Egypt,	Iraq, Syria	<u>Kuwait</u>	<u>Oman</u>	•
	Sudan	<u>Jordan</u>	Saudi Arabia	<u>UAE</u>	Total
Sulphur	14 910	2 540	1 201	10	18 661
Dithiocarbamates	131	311	75	-	517
Dichloran	27	•	•	-	27
Copper Salts	85	9	-	-	94
Others	28	20	20	-	68
Total	15 181	2 880	1 296	10	19 367

Herbicides

The herbicide market is dominated by the aryloxyacids, -2,4 D amines which account for 32 percent of total consumption. The next most significant family is benzene derivatives, in this case nitrofene which accounts for nearly 27 percent of total use. Although the "others" category is large with nearly 23 percent of the market, this sector includes a number of specialised materials used in low volumes. Estimates of volume offtake by region by family of product are shown below.

TABLE III.10.

CONSUMPTION OF HERBICIDES BY FAMILY BY REGION-1978 (metric tons active material)

Region	2,4D	Benzene	<u>Urea</u>	Carbamates	<u>Others</u>	<u>Total</u>
Egypt, Sudan	420	375	152	106	274	1 327
Iraq, Syria, Jordan	29	-	-	~	46	75
Kuwait, Saudi Arabia)	-	•	•	-	-	-
Oman, UAE)						
Total	449	375	152	106	320	1 402
Market Share Percent	32	26.8	10.8	7.6	22.8	100

Estimates of consumption by type of fungicide for the various families are shown in the table below.

TABLE III.11.

CONSUMPTION OF HERBICIDES BY TYPE BY REGION-1978

(metric tons active ingredient)

	<u>Egypt,</u> <u>Sudan</u>	<u>Iraq, Syria</u> <u>Jordan</u>	Kuwait, Saudi Arabia Oman, UAE	<u>Total</u>
Aryloxyacids				
2,4D amines	420	29	-	449
Benzene				
Nitrofene	375	-	-	375
Urea				
Fluometuron	152	-	-	152
<u>Carbamates</u>				
Molinate	76	-	-	76
Drepamon	30	-	-	30
<u>Diazines</u>				
Bentazone	48	-	-	48
Organohalogen				
Dalapon	45	-	-	45
<u>Others</u>				,
Propanil	25	12	•	37
Trifluraline	•	16	-	16
Ametryne	15	-	-	15
Paraquat	-	15	-	15
Others				
(inc not specifi	ed) <u>141</u>	_3	•	144
Total	1 327	75	•	1 402

Rodenticides

Rats pose health and food loss problems in all the countries under investigation. Needless to say the various national authorities are aware of this problem and large quantities of rodenticides are imported for pest control. However most of the modern rodenticides commonly used are formulated at very low levels of concentration, often less than one percent active ingredient, and consequently the total volume of the various active ingredients employed is minimal. In addition several types of active material are used, such as warfarin, zinc phosphide, red squill, sulphur quinoxiline, and coumatetralin etc.

Fumigants are also used in grain stores for pest control and the main product employed is methyl bromide, about 250 metric tons in the region. Small volumes of aluminium phosphide are also used.

IV EGYPT

1. Agricultural Sector

The entire arable land available is of the order of 5.5 million feddans (one feddan equals 4 200 square metres). The extension of this area through reclamation has been slow, difficult and costly. The increasing pressure of people on the land has led to an intensification of cultivation, almost without parallel anywhere. Dams, barrages, pumps and an intricate network of canals and drains bring perennial irrigation to almost the whole area. The strict pursuit of crop rotation, lavish use of commercial fertiliser and pesticides, and the patient application of manual labour, not only make multiple cropping possible, but also raise land yields to except onally high levels. By using multiple cropping techniques the total area cultivated in 1978 was about 12.0 million feddans. Land reclamation should lead to an increase of 1.0 million feddans in agricultural area by the early 1980s, which in turn with the use of multiple cropping patterns will lead to an increase in cultivated area of about 2.0 million feddans.

The major crops grown in terms of land area are clover, maize, wheat, cotton, rice and vegetables. Estimates of current crop areas are shown in the following table. By 1980 a new crop, sugar beet will account for a further 50 000 feddans.

TABLE IV.1.

MAIN CROP AREAS - EGYPT 1978

Crop	Thousand Feddans
Clover	2 863
Maize	2 238
Wheat	1 381
Rice	1 031
Barley	114
Cotton	1 189
Flax	69
Soya Beans	82
Ground Nuts	31
Ses ame	23
Sunflower	9
Vegetables	952
Broad Beans	239
Onions	65
Lentils	36
Green Beans	33
Lupinus	6
Orchards	338
Sugar Cane	249
Plants for Perfumes and Essences	64
Total	11 012

Agricultural land in Egypt is farmed by government supervised cooperatives and private farmers. Cotton being a major export earner is controlled by the government, land areas are specified by the State, and also the spray programmes for pest control.

Growth in the agricultural sector is hampered by lack of good arable land, and special attention is being paid to increasing the area. In view of the fact that the land to be reclaimed is often arid desert, reclamation is a costly process requiring substantial capital outlays and the question has to be asked whether new investment should not be directed to the development of manufacturing industry instead, where returns to the scarce capital may well be higher. An interesting recent development has been the proposed irrigation of land area near Cairo to grow vegetables under the control of Pepsi-Cola Inc of the USA. This farming venture appears to be a quid pro quo, for permission by the Egyptian Government to permit the US company to set up a bottling plant. As far as known initial trials appear to be running well. The technique (to be used by Pepsi-Cola) involving the use of pivot irrigation systems appears to have found favour with the government which is thinking of extending the area by several thousand feddans.

2. Pesticide Business

The use of agrochemicals is controlled by the government in two ways:

- i all products used in Egypt must be cleared by the Ministry of Agriculture, after three years of trials, and the products selected must be cost effective, and
- ii all products are imported on an annual open tender put out by The Tenders Department, Buying Committee of the Ministry of Agriculture. The Ministry of Agriculture allocates the necessary foreign exchange to permit the imports, but uistribution is covered by the Agriculture Credit Bank which gives credit to farmers to enable them to purchase the necessary spray chemicals.

The 1954 Act restricted the importation and marketing of pesticides to State owned companies, such as The Tractor and Engineering Company.

Foreign companies choose their representative from amongst these governmental companies, who submit their offers (including commission) against tenders issued by the Buying Committee of the Ministry of Agriculture. Although no active materials are produced in Egypt (except some mineral oils) there is some local formulation by companies owned by the Ministry of Industry.

Kaffr El Zayat which formulates methyl parathion, dimethoate, malathion, kalthane, karathane, ekatin, 2,4D and micronised sulphur, and repacks other products such as Sevin and Saturn etc.

Aba Zabal, a small concern formulates 2,4D and zinc phosphides.

As agriculture plays a very important role in the country's economy the Ministry of Agriculture produces a recommended treatment schedule for most crops. In the case of cotton the Ministry obliges the growers to use pesticides as and when necessary. For other crops the use of pesticides is left to the grower. The treatment schedule put out by the Ministry of Agriculture outlines the approved products, the application rate per feddan, the recommended number of applications per growing season by crop and disease. There appears to be no rigid treatment schedule for weed control, as this is left entirely to the farmer. Promotion of the use of herbicides appears to rest with the supplying companies. Consumption of herbicides is rising steadily as farmers realise the effectiveness of the products, coupled with the rise in wage rates. 2,4D and other hormone types are not freely used, due to overspray affecting other crops. These types of herbicides are however used by the Ministry of Irrigation for the control of water hyancinth.

Although pesticides are used to a greater or lesser degree on all crops, the most important in terms of pesticide use are cotton, maize and soya beans.

In Egypt, crops are divided into three basic categories:

i General Crops: cotton, rice, soya beans, wheat, etc

ii Orchards: citru

citrus, table grapes, mangos, pears, etc

iii Vegetables:

tomatoes, potatoes, broad beans, water melons, peas,

onions etc

The major problems affecting these groups of crops are as follows:

General Cro's

Leafworms, Bollworms, Aphids, Spiders, Nematodes

Leafspot, Powdery Mildew, Downey Mildew, Anthracrose, Blast, Scabs

Orchards

Scales, Mites, Bugs, Mediterranean Fly, Stem Borers, Nematodes

Powdery Mildew, Downey Mildew, Leafspot, Anthracrose

Vegetables

Cotton Leaf Worms, Cut Worms, Aphids, Spiders, White Fly, Thrips

Powdery Mildew, Downey Mildew, Anthracrose, Blight, Rust

Although weeds are treated in all crops to a greater or lesser extent, some farmers do not spray, because the weeds are used as fodder for animals, and hence have an economic value in general agriculture.

3. Pesticide Consumption

In 1978 estimated consumption of pesticides was of the order of 25 000 metric tons active ingredient. Fungicides accounted for about 60 percent of use, with insecticides and herbicides making up for 38 percent and 2 percent respectively. However in the fungicide sector nearly 15 000 metric tons or 60 percent of total pesticide volume was accounted for by inorganics, mainly sulphur. The following table outlines the relative importance of the various pesticide types.

TABLE IV.2.

PESTICIDE CONSUMPTION-EGYPT 1978

(percentage of total consumption)

Fungicides	60
Insecticides	38
Herbicides	_2
Total	100

Insecticides

Within the insecticide sector the dominant product was mineral oil, accounting for an estimated 6 000 metric tons. The next most significant groups were organophosphorous derivatives with nearly 2 300 metric tons and carbamates accounting for 700 metric tons active ingredient. Estimates of insecticide consumption by type are shown below.

L

TABLE IV.3.

INSECTICIDE CONSUMPTION BY TYPE-EGYPT 1978 (metric tons active ingredient)

Organophosphorous Chlamaminhae other	695
Chlorpyriphos-ethyl	500
Triazophos Dimethoate	350
Parathion, ethyl and methyl	168
Phospholan	155
Malathion	112
Mephospholan	89
Phenthoate	71
Dicrotophos	56
Trichlorfon	47
Profenofos	19
Others	<u>4</u> 2 266
Total	2 200
Carbamates	
Carbaryl	531
Methomyl	164
Total	69 5
<u>uarbinols</u>	
Dicofol	224
Pyrethroids	
Fenviralate	81
Others	61
Total	142
<u>Organohalogen</u>	
Endrin	82
<u>Others</u>	
Mineral Oil	6 000
Total Insecticide	9 40
local insecticide	J 40.

Fungicides

In volume terms fungicide consumption was the largest category standing at nearly 15 200 metric tons active material. However the inorganics; sulphur dust and wettable powder plus small amounts of copper salts accounted for nearly 15 000 metric tons. The second most significant group was the dithiocarbamates at 130 metric tons. Estimates of fungicide consumption by type are outlined below.

TABLE IV.4.

FUNGICIDE CONSUMPTION BY TYPE-EGYPT 1978 (metric tons active ingredient)

<u>Inorganics</u>

Sulphur	14 910
Copper oxychloride (as copper)	60
Total	14 970

<u>Dithiocarbamates</u>

Organohalogen

Dichloran	27
- · · · · · · · · · · · · · · · · · · ·	~ · · · · · · · · · · · · · · · · · · ·

Others 28

Total Fungic	ifde 15	156
--------------	---------	-----

<u>Herbicides</u>

Herbicide offtake was the smallest category standing at about 370 metric tons. Herbicide consumption is low because weeds are often removed by hand, the government does not force growers to use them, and possibly most important is farmers often use the weeds as an additional source of fodder for cattle. Most significant materials are the aryloxyacids and carbamates each accounting for about 120 metric tons. Estimates of herbicide consumption by type are shown below.

TABLE IV.5.

HERBICIDE CONSUMPTION BY TYPE-EGYPT 1978

(metric tons active ingredient)

Aryloxyacids 2,4D	120
Carbamates	
Molinate	76
Drepamon	30
EPTC	5
Total	111
<u>Diazines</u>	
Bentazone	48
<u>Urea</u>	
Fluometuron	32
<u>Others</u>	
Propanil Propanil	25
Ametryne	15
Others	21
Total	61
Total Herbicide	372

V THE SUDAN

1. Agricultural Sector

Cultivable land area was estimated to be of the order of 200 million feddans (one feddan equals 4 200 square metres). About 10 percent of the cultivable land is used in agriculture, with some four million feddans under irrigation. Half of this area is in the Gezira scheme (with its Managil extension), and the rest is irrigated by the flood waters of two small rivers in eastern Sudan, Gash and Baraka, by the flood waters of the Nile and by pumps.

The major crops grown in terms of land area are sorghum, sesame, groundnuts, cotton and maize. Estimates of current crop areas are shown in the following table.

TABLE V.1.

MAIN CROP AREAS-SUDAN 1978

Crop	Thousand Feddans
Wheat	899
Maize	146
Rice	19
Sorghum	6 500
Millet	500
Sesame	1 850
Groundnuts	1 750
Castor	51
Sugar Cane	88
Vegetables and Fruic	155
Cotton	1 217
Kenaf	5
Others	5
Total	13 185

Sudanese agricultural land is farmed by State Corporations and private farmers. The State Corporations manage and farm large areas of land and are in the process of developing and irrigating large tracts for the production of staple crops in several regions - see below.

i The Gezira Scheme

This corporation is responsible for over 1.6 million feddans of crops, which include cereals, groundnuts, sorghum, cotton and vegetables. Estimates of cropped area are shown in the following table.

TABLE V.2.

CROPPED AREA-GEZIRA SCHEME 1978

Crop	Thousand Feddans
Cotton	588
Wheat	435
Rice	16
Dura (Sorghum)	300
Groundnuts	216
Vegetables	Variable

ii The Rahad Scheme

This scheme is being developed in two phases:

Phase I 300 000 feddans, of which 150 000 feddans is in operation with the remainder starting production during the 1979/80 season. In Phase I the crops are rotated and the cropping pattern is as follows:

Cotton	140 000 feddans
Groundnuts	93 000 feddans
Vegetables	20 000 feddans
Fallow	47 000 feddans

<u>Phase II</u> comprises 520 000 feddans, and is due to be in production during the period 1980-1985.

iii The Public Agricultural Corporation

This corporation includes rain fed, irrigated land and other state schemes such as the White and Blue Nile Corporations. Regions under the auspices of the PAC include the following:

El Girba
Suki
Gash and Tokar Deltas
Nuba Mountains
Northern Provinces
Equatorial Provinces
White and Blue Nile Schemes

The PAC produces many crops for local sales and exports, however the main crop is cotton, short staple (in the rain fed areas), and medium and long staple (in the irrigated areas). Total known crop patterns are as follows:

PUBLIC AGRICULTURAL CORPORATION CROP PATTERN-1978
(thousand feddans)

	<u>Total</u>	Total Rotated	Cotton	<u>Wheat</u>	Groundnuts	Dura	Sesame	<u>Dukhun</u>
Girba	450	110	110	110	110	-	-	-
Suki	90	85	40	70	40	-	2	-
Gash	700	250	50	•	-	35	36	-
Torka	406	70	50	-	-	75	36	-
Nuba M	Nountain:	S						
1	5 000	80	325	-	60	300	100	35

iv The General Corporation for Mechanisation

This corporation controls some 400 000 feddans, including Public Sector demonstration farms. The Corporation has a five year plan to fertilise nearly 3.0 million feddans in the Public and Private Sectors. The regions involved in this plan include:

Kabala Province	874 000 feddans
South Blue Nile	1 028 000 feddans
South Kordofan	559 000 feddans
Upper Nile Province	410 000 feddans
Darfour	110 000 feddans
Total	2 981 000 feddans

v Sugar Production Schemes

In addition cane sugar production is being expanded with new refineries, either planned or in the construction phase. Estimates of the crop area and refinery status are shown in the following table.

TABLE V.4.

CURRENT AND PLANNED SUGAR CANE PRODUCTION (thousand feddans)

Region	<u>Area</u>	Refinery Status
Guneid	21	Operating
Khasham El Girba	27	Operating
West Sennar	40	Operating
Kenana	100	Under Test
Hajar-as-Salaya	17	Under Test
Melut	19	Under Construction
Mangalla	17	Project

2. Pesticide Business

The use of spray chemicals is controlled by the Government in two ways:

- i all products used in the Sudan must be cleared by the Pest and Disease Committee, and
- ii all products are imported by the State on the basis of an international tender published once a year

The international pesticide tender is put together by The Supplies
Department of The Sudan Gezira Board at Barakat. This Board takes the
requests from the other Boards and collects them on the basis of the
products required and mode and place of delivery. In the tender there are
many products which have similar activity and hence there are "either/or"
categories, so the whole tender is never filled as such.

In addition to the normal agricultural pests there exists the so called National Problems, which are dealt with by the Plant Protection Adminstration, these problems include:

- i Birds Quelea Quelea
- ii Locusts
- iii Water Hyacinth
- iv Storage Pests

Pesticides are sold and distributed in the Sudan by local companies and foreign suppliers through their own branch offices often with research backup facilities. Although no active materials are produced in the Sudan there is some local formulation by:

Shell Chemical Company at Maringan (Gezira) producing mainly liquid emulsifiable concentrates such as Dieldrin, DDT, Chlordane and Dichlorvos

Sudanese Chemical Corporation at Khartoum producing mainly dusting powder formulations such as BHC and DDT

Farmers Training Guide at Khartoum (a private company currently distributing pesticides) plans to build a formulating plant in the near future

Outside of the normal pesticide selling business, three companies; Ciba-Geigy, Shell and Rhone-Poulenc, have so called package deals with cotton growing establishments. The company with a package deal guarantees the crop yield and supplies its own chemicals and machinery (often aircraft). Products used in the package deal are not included in the annual tender. The most important package deal company is Ciba-Geigy. The areas under the control of the various companies is set out below.

TABLE V.5.

AREA TEATED BY PACKAGE DEAL COMPANIES-SUDAN COTTON 1978

Company	Thousand Feddans
Ciba-Geigy	180
She11	15
Rhone-Poulenc	15

The package deal scheme is now in its second season, and it is planned to extend coverage to larger areas, however, some or all of the companies have lost money in the last season.

Pesticides consumed in the Sudan are used mainly on cotton and wheat, and are predominantly insecticides and herbicides. Use of fungicides is low * because the hot, dry climate tends to reduce the incidence of fungal infection. The following section outlines the major pests affecting crops, and shows the type of product used for its control.

* The 1978/79 and 1979/80 tenders do not list any fungicide.

Seed dressing, BHC, Aldrin

DDT and any systemic

Cotton

Termites

Jassids

Systemic organophosphorous, Dimethoate, White Fly Monocrotophos TOO Flea Beetle American Bollworm DDT Pink Bollworm Hostathion Sevin, Endosulphan, Monocrotophos Egyptian Bollworm Endosulphan, Monocrotophos, Sevin Egyptian Leafworm Aphids Dimethoate Mercury based seed dressing Black Arm Sorghum Black Smut Seed dressing, Thiram Seed dressing, BHC, Aldrin Termites Not much trouble Stem Borer Aphids Not treated Birds Quilotox (Lebaycid) Sugar Cane Important, but not treated very much Smut Sesame Blood Disease Try to grow resistant varieties Groundnuts Leaf Spot Not treated Fumigation with methyl bromide Aspergillis Flavas Maize Termites No treatment Stem Borers No treatment Date Palms Scales White oil emulsions, some systemics Vegetables Powdery Mildew Thiocarbamates Dimethoate, Malathion Aphids Wheat Aphids Organophosphorous and systemics Birds Quilotox Rice Aphids No treatment Kenaf Flea Beetle) treated together with) for example DDT Ammerican Bollworm Millet Termites Seed dressing BHC Smut Not much treatment Birds **Quilotox**

In addition, depending on the year, most crops can suffer attack from locusts and grasshoppers. Locust control is exercised by the Plant Protection Administration.

Herbicides are used on certain crops, the major single material is 2,4D amine salt. Other more sophisticated and specific products such as Cotoran, Ronstar, Saturn, Stomp, Toke and Basagran are being used in increasing quantities.

3. Pesticide Consumption

In 1978 estimated consumption of pesticides was of the order of 4 960 metric tons active ingredient. Insecticides accounted for about 80 percent of use, with herbicides making up for nearly 20 percent of the total, see following table.

TABLE V.6.

PESTICIDE CONSUMPTION-SUDAN 1978 (percentage of total consumption)

Insecticides	80.0
Fungicides	0.5
Herbicides	<u> 19.5</u>
Total	100.0

Insecticides

Within the insecticide sector the dominant products are the organohalogen derivatives accounting for about 2 300 metric tons active material followed by organophosphorous derivatives making up for about 1 600 metric tons; carbamates are insignificant at 90 metric tons. Estimates of insecticide consumption by type are shown below.

TABLE V.7.

INSECTICIDE CONSUMPTION BY TYPE-SUDAN 1978

(metric tons active ingredient)

<u>Organohalogen</u>

1 540
637
60
40
8
1
2 286

Organophosphorous

Dimethoate	726
Phosphamidon	350
Malathion	190
Monocrotophos	90
Thiometron	85
Formothion	57
Demeton-s-methyl	22
Parathions	40
0thers	40
Total	1 600

Carbamates

Carbary1	85
Carbofuran	3
Methomyl	_2
Total	90

Total	Insecticide	3 886

Fungicides

Due to the high temperature and low humidity prevailing in the Sudan, the incidence of fungal infection in very low and consequently very little fungicides are used - about 25 metric tons active material in 1978, mainly inorganics such as copper compounds.

Herbicides

Benzene

Consumption of herbicides was estimated to be of the order of 960 metric tons active material in 1978, the major products were benzene derivatives, 375 metric tons, aryloxyacids 300 metric tons and urea derivatives 120 metric tons - see following table.

TABLE V.8.

HERBICIDE CONSUMPTION BY TYPE-SUDAN 1978 (metric tors active ingredient)

Nitrofene	375
Aryloxyacids 2,4D amines	300
<u>Urea</u> Fluometuron	120
Organohalogens Dalapon	45
Others Various Total Herbicide	<u>115</u> 955

The more sophisticated and specific herbicides have only been used to any extent in the last two to three years. 2,4D salts are used mainly to control water hyacinth, a continuing problem in the Sudan. The other herbicides are used in general cropping programmes.

In addition to the above noted materials, about 350 metric tons of seed dressings are used per year. These materials are usually based on organomercury/organohalogen mixtures. Methyl bromide fumigation is used in storage facilities. Rodents which cause widespread problems are controlled with warfarin and zinc phosphide based materials. The Weaver bird is controlled with Quilotox (fenthion), an insecticide with avian toxicity.

VI SYRIA

1. Agricultural Sector

Agriculture is still the mainstay of the Syrian economy in spite of the existence of a traditionally strong trading sector and relatively successful efforts at industrialisation in recent years. It accounts for about one-fifth of the GDP and employs two-thirds of the labour force. The main areas of cultivation are a narrow strip of land along the coast from the Lebanese to the Turkish frontiers which is extremely fertile and produces fruit, olives, tobacco and cotton. East of this strip lies the northward continuation of the Lebanon range of mountains, which falls sharply on the east to the Orontes river valley whose marshes were recently reclaimed to form one of Syria's most fertile areas. This valley joins in central Syria the 160 kilometre wide steppe-plain which runs from the Jordanian borders northeastwards towards the Euphrates valley and is separated from the plains' northern reaches by a range of hills. The plain is traditionally Syria's major agricultural area, producing mainly grains. The importance of this plain is being rivalled by the Jezira area which lies between the Euphrates in Syria and the Tigris in Iraq. The Jezira only came into its own in the early 1950s when large scale cotton cultivation was introduced in former pasture lands. This area will vastly increase in importance on the completion of long term irrigation and land reclamation projects linked with the Euphrates dam project.

The major products after cotton and cereals are tobacco, sugar beet, sesame, olives, grapes, figs, apricots, apples, melon, pistachio nuts, walnuts, lentils, chick peas, vetch, broad beans, tomatoes, onions, garlic, potatoes, egg plant, and other soft vegetables. Stockraising is another important branch of agriculture.

Estimates of major crop areas are shown in the following table.

TABLE VI.1.

MAIN CROP AREAS-SYRIA 1978

Crop	Thousand Hectares
Wheat	1 530
Barley	1 020
Maize	20
Sesame	45
Millet	26
Lentils	180
Chick Peas	75
Beans	25
Other Pulses	75
Cotton	200
Groundnuts	14
Sunflower	4
Roots and Tubers	11
Vegetables	180
01ives	150
Fruit	100
Nuts	na

2. Pesticide Business

Pesticides are supplied by Private Sector companies and the Public Sector, Ministry of Agriculture and Agrarian Reform. The split in supply is about 50/50 between private and public enterprises. In the private sector there are about five importing companies acting on behalf of foreign producers. All products brought in by the private sector are used by farmers, but only about 50 percent imported by the Ministry gets used, the remainder is wasted due to poor government storage facilities. All imports made by the private sector are registered by the Ministry of Agriculture, however such statistical records tend to be inaccurate as there is considerable smuggling of materials into Syria from the Lebanon and Jordan.

3. <u>Pesticide Consumption</u>

In 1978 pesticide consumption was estimated to be of the order of 1 430 metric tons active material. Fungicides accounted for about 71 percent of total volume. Insecticides and herbicides made up 27 percent and 2 percent respectively. Although fungicide consumption stood at just over 1 000 metric tons, 860 metric tons was accounted for by sulphur. Estimates of the breakout in pesticide consumption are shown in the following table.

TABLE VI.2.

<u>PESTICIDE CONSUMPTION-SYRIA 1978</u> (percentage of total consumption)

Fungicides	70.7
Insecticides	26.8
Herbicides	2.5
	100.0

<u>Insecticides</u>

In the insecticide sector the dominant family of products is the organohalogen derivatives accounting for 380 metric tons active material. The main product is DDT. Organophosphorous derivatives are the second most important group making up about 90 metric tons active material. Estimates of insecticide consumption by type are shown below.

TABLE VI.3.

INSECTICIDE CONSUMPTION BY TYPE-SYRIA 1978

(metric tons active ingredient)

<u>Organohalogen</u>

DDT	160
ВНС	33
Endosulphan	20
Chlordane	8
Toxaphene	40
Others	19
Total	280

Organophosphorous

Dimethoate	24
Trichlorfon	20
Parathion	10
Malathion	6
Others	<u>30</u>
Total	90

<u>Others</u>

Carbamates	4
Mineral Oils	9
Total	13
	- militari di lima
Total Insecticide	383

Fungicides

Fungicide consumption, in terms of active ingredient, is dominated by inorganic sulphur. Sulphur accounts for 85 percent of total fungicide volume. Dithiocarbamates make up 14 percent of total volume. The remaining one percent includes small amounts of copper oxychloride and aromatic derivatives. Estimates of fungicide consumption by type are shown below.

TABLE VI.4.

FUNGICIDE CONSUMPTION BY TYPE-SYRIA 1978

(metric tons active ingredient)

Inorganics

Sulphur	855
Copper Compounds	5
Total	860

Organics

Dithiocarbamates	140
Others	10
Total	150

		-	
Total	Fungicide	1	010

Herbicides

This minor sector accounting for about 35 metric tons active material is dominated by aryloxyacids, 2,4D type materials. 2,4D accounts for 77 percent of total herbicide use. Gther herbicides include dicamba and trifluraline etc. Estimates of herbicide consumption by type are shown below.

TABLE VI.5.

HERBICIDE CONSUMPTION BY TYPE-SYRIA 1978

(metric tons active ingredient)

2,4D derivatives	27
Others including dicamba and trifluraline etc	_8
Total Herbicide	35

VII IRAQ

1. Agricultural Sector

Agriculture is the main source of employment and, next to oi!, the most important sector. Although the 1974/79 development plan gave high priority to the oil industry, agriculture remains important; the aim is to produce an agricultural surplus for export by reducing dependence on weather conditions and solving the salinity problems which affect irrigated land.

The land tenure system is extremely complex embracing privately owned land, public land (mainly desert), waqfs (religious endowments) and three types of government owned land. By far the greater part of registered land is that which is government owned and previously without established tenancy.

The general system of cultivation is fallow farming, crop rotations are rare. The farm worker is concerned primarily with subsistence and grows crops and keeps animals to provide for himself and his family. Cash crops are grown by plantation farmers and peasant proprietors. The largest and most commonly grown crops are barley and wheat. Together with lentils and linseed they constitute the main winter crops. Summer crops are much smaller, but in recent years have shown increases in size. The principal summer crops includes, rice, dates, tobacco and sesame. Cotton is also grown on a small scale in central Iraq. Around the major towns a comparatively sophisticted market gardening organisation has developed.

Estimates of major crop areas are shown in the following table.

TABLE VII.1.

MAIN CROP AREAS-IRAQ 1978

Crop	Thousand Hectares
Wheat	1 300
Barley	700
Rice	63
Maize	30
Lentils	53
Beans	42
Chick Peas	15
Sesame	13
Sunflower	11
Cotton	26
Vegetables	113
Grapes	20
Other Fruits and Olives	na
Tobacco	17
Sugar Cane	4
Sugar Beet	3

2. Pesticide Business

The agrochemical business is 100 percent state controlled, all imports are initiated by the Directorate General for Agricultural Supplies in Baghdad.

3. Pesticide Consumption

In 1978 pesticide consumption was estimated to be about 4 600 metric ton active material. Insecticides accounted or 72 percent of consumption and fungicides 27 percent. In the fungicide sector, sulphur accounted for 1 100 metric tons active material. Estimates of the breakout in pesticide consumption are shown in the following table.

TABLE VII.2.

PESTICIDE CONSUMPTION-IRAQ 1978

(percentage of total consumption)

Insecticides	72.2
Fungicides	27.0
Herbicides	0.8
Total	100.0

Insecticides

In the insecticide sector, the dominant family of products is organohalogen derivatives accounting for 60 percent of consumption. The next most significant category with 39 percent of the market is organophosphorous derivatives. The main organohalogen derivatives are DDT 1 400 metric tons, chlordane 450 metric tons and BHC 160 metric tons. In the organophosphorous sector the main products are malathion and dichlorvos accounting for 600 metric tons and 500 metric tons respectively. Estimates of insecticide consumption by type are shown below.

TABLE VII.3.

INSECTICIDE CONSUMPTION BY TYPE-IRAO 1978

(metric tons active ingredient)

Organohalogen

DDT	1 400
Chlordane	450
ВНС	150
Aldrin	6
0thers	4
Total	2 010

Organophosphorous

Malathion	600
Dichlorvos	500
Diazinon	90
Demeton-s-methyl	30
Formothion	10
Dimethoate	5
Others	45
Total	1 280

Carbamates

Carbaryl	30
Total Insecticide	3 320

Fungicides

The fungicide market is dominated by the inorganic material, sulphur, accounting for nearly 90 percent of the total in 1978. The remainder is accounted for by dithiocarbamates, mainly mancozeb. Estimates of the breakout in consumption by type are shown below.

TABLE VII.4.

FUNGICIDE CONSUMPTION BY TYPE-IRAQ 1978

(metric tons active ingredient)

Sulphur	1 100
Dithiocarbamates	140
Total Fungicide	1 240

Herbicides

Herbicide consumption is insignificant at 36 metric tons active material. Demand for herbicides appears to be solely for specialised materials, as outlined in the following table.

TABLE VII.5.

HERBICIDE CONSUMPTION BY TYPE-IRAQ 1978

(metric tons active ingredient)

Paraquat	15
Propanil	12
Trifluraline	8
Others	_1
Total Herbicide	36

VIII JORDAN

1. Agricultural Sector

Agriculture is the most important sector of the economy accounting for 20 percent of the gross domestic product and employing about 40 percent of the total labour force. Great improvements were achieved in the years prior to the 1967 war, but the war and the consequent instability in the East Bank resulted in almost complete disruption.

On the West Bank, the land is poor but well farmed, and at least until 1967 most of the cultivable land was cultivated, and about one-third of the area was sown with fruit and vegetables. On the East Bank, methods of farming have been less developed, and much of the land has suffered from erosion. The shortage of capital has been an obstacle to extensive irrigation and even to terracing; further development depends on the realisation of international schemes or irrigation.

In overall terms Jordanian land utilisation can be split out as follows:

TABLE VIII.1.

LAND UTILISATION-JORDAN 1978

(thousand hectares)

Pastures	7 500
Arable	1 070
Forest	125

The major crops grown, in terms of land area are cereals, tomatoes, courgettes, cucumbers, aubergines and pulses. Estimates of current crop areas are shown in the following table.

TABLE VIII.2.

MAIN CROP AREAS-JORDAN 1978

Crop		<u>Hectares</u>
Wheat	·	140 000
Barley		30 000
Tomatoes		10 000
Courgettes		5 000
Cucumbers		5 000
Aubergines		3 500
Lentils		21 000
Green Beans		3 500
Chick Peas		2 000
Broad Beans		1 000
Potatoes		1 500
Peppers		1 000
Grapes		5 000
Melons		4 000
Tobacco		4 000
Citrus)	
Bananas)	na
01ives)	

Farming is a 100 percent private sector business.

2. Pesticide Business

Pesticide supply and distribution is entirely in the private sector, although import licences must be granted by the Plant Protection Department of the Ministry of Agriculture. The Plant Protection Department also provides technical assistance to farmers and growers. Agrochemicals are imported by local Jordanian companies which represent the foreign producers. It is not unusual for an importing company to represent several competing suppliers.

3. Pesticide Consumption

In 1978 estimated consumption of pesticides was about 750 metric tons active ingredient. Fungicides accounted for some 84 percent of total volume, with insecticides making up 15.5 percent. Herbicides were insignificant at less then one percent. Although fungicide consumption stood at 630 metric tons, inorganics dominated by sulphur, accounted for 585 metric tons. Estimates of the breakout in pesticide consumption are shown in the following table.

TABLE VIII.3.

PESTICIDE CONSUMPTION-JORDAN 1978 (percentage of total consumption)

Fungicides	84.0
Insecticides	15.5
Herbicides	0.5
Total	100.0

Insecticides

In the insecticide sector the dominant family of products is the organophosphorous derivatives accounting for 34 metric tons active material, followed by carbamates with 13 metric tons. In the "others" sector mineral oils accounted for 60 metric tons. Estimates of insecticide consumption by type are shown below.

TABLE VIII.4.

INSECTICIDE CONSUMPTION BY TYPE-JORDAN 1978 (metric tons active ingredient)

<u>Organophosphorous</u>	
Parathions	9 7 5 4 3 2 2 2 2
Monocrotophos	7
Trichlorfon	5
Methamidophos	4
Dimethoate	3
Pyrimiphos-methyl	2
Triazophos	2
Others	24
Total	34
Carbamates	
Methomyl	10 2 1
Carbaryl	2
Propoxur	1
Others	<u>1</u> 14
Total	14
<u>Organohalogen</u>	
Endrin	2 2 4
Others	<u>2</u>
Total	4
<u>Others</u>	
Mineral Oils	60
Propargite	3
Cyhexatin	2
Others	3 2 2 67
Total	6/
T.L.1 Incombinida	119
Total Insecticide	113

Fungicides

Fungicides accounted for 630 metric tons active material in 1978, with 585 metric tons being various forms of the inorgnic material, sulphur. The only significant organic derivative family was dithiocarbamate at 31 metric tons. Estimates of consumption by type are shown below.

TABLE VIII.5.

FUNGICIDE CONSUMPTION BY TYPE-JORDAN 1978

(metric tons active ingredient)

Inorganics

Sulphur	585
Copper Salts (as copper)	4
Total	589

<u>Organics</u>

Total Fungicide

Dithiocarbamates	31
Others	<u>10</u>
Total	41

Herbicides

Consumption of herbicides amounted to 4 metric tons active material in 1978, 50 percent of which was accounted for by 2,4D salts. Estimates of use by type are shown below.

630

TABLE VIII.6.

HERBICIDE CONSUMPTION BY TYPE-JORDAN 1978

(metric tons active ingredient)

2,4D Salts	2
Urea Derivatives	1
Bipyridal and Others	1
Total Herbicide	4

IX KUWAIT

1. Agricultural Sector

Owing to the present lack of water little food is produced in Kuwait, except for some vegetables and melons. The vast majority of food consumed in Kuwait has to be imported. The Government has done much to encourage animal husbandry amongst the Bedouin, and has interests in experimental farming projects. In the private sector there is a growing poultry and dairy industry.

2. Pesticide Business

Because of the insignificant size of the agricultural sector the majority of all pesticides are used for public health business. All insecticides and rodenticides purchased by public sector concerns in Kuwait must be approved by The Unit for Study and Control of Insects and Rodents, a department of the Ministry of Public Health. This department is probably the largest public sector buyer of pesticides. All requirements for public health programmes are submitted through the Ministry to the Central Tenders Committee.

Although no active materials are produced in Kuwait, many concentrates are imported and reformulated by the Ministry of Public Health, and in addition the Sharhan Company formulates and packs aerosols for sale on the domestic and export markets.

3. Pesticide Consumption

In 1978 pesticide consumption was estimated to be about 11 metric tons active material. About 7 metric tons of which was used in public health applications, the remainder was consumed in the agricultural sector.

In the agricultural sector all but 0.5 metric tons active ingredient was accounted for by insecticides. The 0.5 metric tons was sulphur, used as a fungicide. No herbicides appear to be used. Organophosphorous materials dominated the business, with parathions and dichlorvos being the main materials. Organohalogens were insignificant. In addition about 0.7 metric tons of mineral oil was used. Estimates of pesticide consumption are shown below.

TABLE IX.1.

CONSUMPTION OF PESTICIDES BY TYPE IN AGRICULTURE-KUWAIT 1978 (metric tons active ingredient)

Insecticides

Organohalogen	0.2
Organophosphorous	
Parathion	1.0
Dichlorvos	1.0
Malathion	0.6
Mineral Oils	0.7
Fungicides	
Sulphur	0.5
Total Pesticide	4.0

In the public health sector pesticides are used to combat houseflies, mosquitos, fleas, lice, cockroaches and rodents.

Houseflies are controlled by two main methods - spraying and fogging. In spraying a 1.5 percent emulsion of dimethoate is employed. The solution is made up locally from an imported 50 percent emulsion concentrate. For fogging, dichlorvos, synergised with natural pyrethrum and piperonylbutoxide is used. However there is a trend away from this mixture to another formulaton based on one percent dichlorvos plus synthetic pyrethroids. The new formulation will be applied using ultra low volume equipment.

Mosquitos are controlled using a larvaecide such as Dursban 40 percent (chlorpyriphos-ethyl).

Fleas are combatted by the dusting of rat burrows with such products as lindane and diazinon, but there is a move to the use of Baygon propoxure one percent (2-iso-propoxyphenyl-N-methyl carbamate). There is no programme for lice control, treatment is carried out as and when required.

Cockroaches only pose problems in hospitals and hotels. The usual material employed is Baygon 10 percent. The product is imported as a 20 percent concentrate and let down to 10 percent locally.

Rodents (mainly rats) are controlled by the use of acute rodenticides and anticoagulants. Acute rodenticides include zinc phosphide two percent plus bait and red squill used at 0.033 percent and 0.5 percent concentrations. Anticoagu nts used include sulphur quinoxiline 0.025 percent and coumatet in 0.75 percent. All materials, with the exception of coumatet in are imported as concentrates and let down to the required concentr on locally. Estimates of the various pesticides used in the public heath sector are outlined in the following table.

TABLE IX.2.

CONSUMPTION OF PESTICIDES BY TYPE IN PUBLIC HEALTH-KUWAIT 1978 (metric tons active ingredient)

Insecticides

Dichlorvos	2.5
Dimethoate	2.0
Piperonyl Butoxide	1.4
Chlorpyriphos-ethyl	0.7
Propoxure	0.3
Pyrethrum	0.2

Rodenticides

Various	0.1
Total Pesticides	7.2

X SAUDI ARABIA

1. Agricultural Sector

Cultivation is confined to oases and to irrigated regions comprising a mere 0.2 percent of the total land area. The remaining agricultural land is used for low grade grazing. The chief crops cultivated on irrigated or cultivated soil are: sorghum, wheat, millet, tomatoes, water melons, barley and maize, whilst fruits of several varieties, particularly dates, grow in abundance in oases. Production of wheat, which, after dates, was the second largest crop, provided only 25 percent of requirements in the early 1970s. However experiments with new wheat varieties, undertaken in collaboration with the FAO have shown that the yield can be doubled.

The Government has recognised the importance of developing agriculture as a means of reducing the dependence on imported food, and as a means of diversifying the economy and of raising rural living standards. Scarcity of water constitutes the main factor limiting agricultural development, and the Government has launched an ambitious programme to overcome the obstacle. Execution of this programme which includes surveys for underground water resources, construction of dams, irrigation and drainage networks, combined with distribution of fallow land, settlement of Bedouin and the introduction of mechanisation – is aimed at the eventual raising of agricultural production to the level of near self sufficiency in food. Consequently, budgetary allocations for the agricultural sector have increased several times since the mid 1960s.

In Saudi Arabia agricultural crop patterns are conveniently divided into two main sectors, permanent and temporary. Permanent crops include dates and grapes, etc, whilst temporary crops include cereals, vegetables and fodder crops grown on irrigated and non irrigated land during the Winter and Summer seasons. Total crop area is of the order of 5.9 million Donums in 1975/76 (one Donum equals 1 000 square metres). Estimates of crop areas are shown in Table X.1 and Table X.2 below.

TABLE X.1.

AREA OF PERMANENT CROPS 1976/76

Стор	<u>Donum</u>
Dates	604 131
Grapes	44 681
Citrus	. 34 496
Trees	32 514
Total	715 822

TABLE X.2.

AREA OF TEMPORARY CROPS 1975/76

(donums)

	M	<u>inter</u>	Summer	
Crop	Irrigated	Not	Irrigated Not	Total
		Irrigated	Irrigated	
Wheat	573 089	164 368	-	737 457
Barley	79 025	17 277		96 302
Maize	2 043	70 203	23 418 998	96 662
Sorghum	41 748	1 754 652	189 715 1 033 146	3 019 261
Millet	10 6 85	184 134	17 416 116 522	328 757
Sesame	1 189	23 518	792 12 592	38 091
Tomatoes	65 745	-	93 266 -	159 011
Potatoes	2 011	•		2 011
Onions	44 745	-		44 745
Carrots	3 267	-		3 267
0kra	12 757	68		12 825
Egg Plant	6 018	-	25 812 -	31 830
Squash	17 356	68	9 235 -	26 659
Melons	-	-	8 331 -	8 331
Water Melons	-	-	118 615 5 982	124 597
Other Vegetables	26 792	136	42 342 -	69 270
Alfalfa	-	~	94 734 -	94 734
Other Fodder	24 790	185 599	36 612 1 890	248 891
Total	91: 260	2 400 023	660 288 7 171 130	5 142 701

2. Pesticide Business

The Saudi pesticide business can be divided into two sections - Agriculture and Public Health.

The agricultural market is split into public tenders and private buying. In the early 1960s about 95 percent of the agricultural chemicals were bought by the Ministry of Agriculture which provided them free to the farmers. However, with the subsequent growth in the agricultural sector, the quantities provided by the Ministry fell below demand and consequently the volume of private buying rose. At the present time the market is split about 50/50 between public and private buying.

The public health sector is split into two sections - Ministry of Municipalities and Ministry of Health. Most materials used in the public health sector are bought on annual tenders. The major problems dealt with in the public health sector are flies and mosquitos, followed by eye irritant insects with cause Trachoma and rodents especially in the ports of Jeddah and Dammam.

Products used in Saudi Arabia are either imported direct or supplied by local companies acting as agents for overseas producers. Although no active materials are produced in Saudi Arabia, there is a local formulation plant owned by Coopers (Wellcome) and local interests running on imported technical materials. The company basically dilutes and repackages pesticides for sale in the Kingdom.

3. Pesticide Consumption

In 1978 pesticide consumption totalled about 1 700 metric tons active material. All but 40 metric tons was used in the agricultural sector. Fungicides accounted for an estimated 1 300 metric tons or 76 percent of total consumption, however, of this volume 1 200 metric tons was accounted for by sulphur. Herbicide consumption was negligible. Estimates of the relative importance of pesticide types are shown in the table below.

TABLE X.3.

PESTICIDE CONSUMPTION-SAUDI ARABIA 1978

(percentage of total consumption)

Fungicides 76
Insecticides 24
Herbicides neg
Total Pesticide 100

Insecticides

In the insecticide sector the dominant family of products are organophosphorous derivatives accounting for 230 metric tons active material. The next most important group being carbamates, with 106 metric tons active material. Estimates of consumption by type of product for agricultural and public health use are shown in the following two tables.

TABLE X.4.

CONSUMPTION OF INSECTICIDES BY TYPE IN AGRICULTURE-SAUDI ARABIA 1978 (metric tons active ingredient)

Organophosphorous	
Trichlorfon	75
Malathion	53
Dichlorvos	47
Dimethoate	<u>38</u>
Total	213
Carbamates	
Carbaryl	106
Sulphones	
Tetradifon	13
Carbinols	

Dicofol	12
<u>Others</u>	17
Total Insecticides	361

TABLE X.5.

CONSUMPTION OF INSECTICIDES BY TYPE IN PUBLIC HEALTH-SAUDI ARABIA 1978 (metric tons active ingredient)

Pyrethroids	25
Organophosphorous	<u>17</u>
Total Insecticides	42

Fungicides

Consumption of fungicides in 1978 accounted for nearly 1 300 metric tons active material. However 1 200 metric tons was accounted for by elemental sulphur in dusting and wettable powder forms. The only significant organic materials were dithiocarbamates accounting for 75 metric tons active material.

TABLE X.6.

CONSUMPTION OF FUNGICIDES BY TYPE-SAUDI ARABIA 1978

(metric tons active ingredient)

Inorganics

Sulphur	1 200
Organics	
Dithiocarbamates	75
Others	<u>20</u>
Total	95
Total Fungicides	1 295

Herbicides

Negligible quantities of herbicides are used.

Rodenticides

About 1 000 metric tons of rodenticides are used in the ports of Jeddah and Damman. The products are usually of the anticoagulant type such as warfarin, coumatetryl and sulfaquinoxalin and accounted for 5 metric tons active ingredient.

XI OMAN AND THE UNITED ARAB EMIRATES

1. Agricultural Sector

In the Oman about 70 percent of the working population is engaged in agriculture. Although the Sultanate's long term plans for development foresee a considerable increase in agricultural production – at present subsistence farming dominates. Because of the limited rainfall and wide variations in rainfall from one year to another, farming is heavily dependent on irrigation. In the oases water is supplied by underground water channels, and on the coast irrigation is by pump from wells. About half of the estimated 36 000 hectares under cultivation are planted with dates. Other crops include lucerne, limes, mangoes, melons and bananas. Onions, tomatoes and cucumbers are being grown in increasing quantities. Some wheat is also grown in the interior. The Department of Agriculture runs several experimental farms and extension centres to promote agricultural production. In the Dhofar region which enjoys monsoon rains, cattle are raised on the hills; and coconut palms, and a wide range of vegetables are grown on the coastal plain.

The economy of the UAE is totally dominated by oil production. The increase in wealth has led to an expansion in the financial and commercial sectors. The UAE leaders have been anxious to diverisfy the economy, so the traditional activities of fishing and agriculture have been encouraged and modernisation projects undertaken to improve yields. However due to the very arid condition agriculture has yet to become a significant sector of the economy.

In 1978 total pesticide consumption in the Oman was estimated to be about 50 metric tons active ingredient, all but 10 metric tons were insecticides used in agriculture and public health. The main products used were the organophosphorous derivatives. Sulphur dust was used as a fungicide. Rodenticides probably accounted for no more than 0.5 to 1.0 metric tons of active material. Estimates of pesticide consumption are shown below.

TABLE XI.1.

CONSUMPTION OF PESTICIDES BY TYPE-OMAN 1978

(metric tons active ingredient)

Insecticides

Malathion	8
Trichlorfon	7
Dimethoate	7
Pirimiphos-methyl	5
Dichlorvos	5
Carbaryl	6

Fungicides

Sulphur	10
---------	----

Rodenticides

Various	0.5
Total Pesticides	48.5

Herbicide consumption appears to be negligible.

In the UAE all pesticides are used in the public health sector. Consumption in 1978 was estimated to total just over 60 metric tons active material. The main product appears to be mineral oil, used as a mosquito larvaecide. Estimates of consumption of pesticide by type are shown below.

TABLE XI.2.

CONSUMPTION OF PESTICIDES BY TYPE-UAE 1978

(metric tons active ingredient)

Mineral Oils	60
DDT	2
Others	_2
Total Pesticides	64

Herbicide, fungicide and rodenticide consumption is of negligible importance.

XII FUTURE PESTICIDE CONSUMPTION

Total demand for pesticides in the regions under investigation is forecast to rise from the 1978 level of 38 500 metric tons active material to nearly 54 000 metric tons active material by 1988. The major pesticides used will continue to be fungicides and insecticides each accounting for nearly 50 percent of total volume. Herbicides will remain relatively insignificant in volume terms with about four percent of the market. Estimates of the total market are shown below.

TABLE XII.1.

FORECAST TOTAL PESTICIDE DEMAND IN ARAB STATES-1978 TO 1988 (thousand tons active ingredient)

	1978	1983	1988
Fungicides	19.4	22.5	26.1
Insecticides	17.7	21.5	25.6
Herbicides	1.4	1.7	2.1
Total	38.5	45.7	53.8

More detailed information including estimates of forecast consumption by major product are outlined in the following pages.

1. Egypt and the Sudan

Both Egypt and the Sudan have approximately the same cropped area, 11 million and 13 million feddans respectively. Cropping patterns are broadly similar leading to similar pest control techniques. In both countries cotton and cereals are major crops. The only exception to this broad generalisation of similarity is in the use of fungicides. Due to the dry climate experienced in the Sudan incidence of fungal attack is quite low, and use of fungicides is virtually non existent. On the other hand in Egypt about 60 percent of total pesticide active ingredient is accounted for by fungicides. However it should be noted that of the 15 200 metric tons of fungicide used in 1978 nearly 15 000 metric tons was accounted for by elemental sulphur.

It would be fair to state that Egyptian agriculture is more sophisticated in use of pesticides than the Sudanese, and hence a larger variety and volume of products are used in Egypt than in the Sudan. In both countries the Government exercises control over the types and volumes of products imported and used. In Egypt the Minstry of Agriculture actually states what products should be used on the controlled area of cotton planted. Herbicides appear to be of secondary importance in both countries, basically because insect and spiders cause the greatest nuisance, and weeds can easily be removed by hand. In some cases farmers actually use the weeds as an additional source of fodder for the animals.

In both countries lack of land is hampering agricultural production. The lack of cultivable land is due to lack of water, and not finite area. Both countries have embarked on large schemes for irrigation, but such projects require considerable capital outlays and also take time. Cropped areas are however being steadily expanded in Egypt and the Sudan.

Future growth in pesticide consumption will be geared mainly to the increase in cropped area. In addition a greater offtake of pesticides will also stem from an increase in the use of pesticides on crops that receive little or no treatment. However increased pesticide use in these areas will depend heavily on farmers' attitudes and more aggressive selling by the suppliers. Farmers have to be persuaded that expenditure on pesticides can be justified on the basis of increased yield. Education on the attributes of pesticides will also lead to an increase in usage. According to the suppliers operating in Egypt and the Sudan, more farmers are moving over to an increased use of pesticides and a gradual and continuous growth in offtake is foreseen. Perhaps one of the rapidly growing sectors is in the use of specialised herbicides, this is particularly true of the Sudan, where newer more specialised products have only been used for the last couple of growing seasons. 2,4D salts have however not lost out in volume terms. The newer products are additional and not replacements. Egypt, where the more specialised materials have been used for some time, is still showing an increase in consumption. This is due at least in part to farmers using herbicides in place of hand weeding which is now getting to be expensive.

2. Syria, Iraq and Jordan

Although these three countries have dissimilar cropped areas. Syria 3.7 million ha, Iraq 2.5 million ha, and Jordan 0.25 million ha, the major crops in each country are similar ie cereals, pulses, and vegetables. Cotton is however significant in Syria.

Iraq dominates the pesticide buisness in this sub-region with 68 percent of total use. Syria and Jordan account for 21 percent and 11 percent respectively. When the market is analysed on a product basis it can be seen that of the total 6 780 metric tons active ingredient consumed in 1978 insecticides make up 56 percent, fungicides 43 percent and herbicides one percent.

In the insecticide sector the dominant products are organohalogen derivatives and organophosphorous materials accounting for 2 300 metric tons and 1 400 metric tons respectively. Fungicide consumption is dominated by sulphur with 2 540 metric tons, followed by dithiocarbamates at 310 metric tons active material.

Over the years pesticide consumption has increased as farmers and growers have strived to increase production. Growth in use is expected to continue, but will depend not only on the education of farmers to use pesticides but also on injection of capital to improve and increase farm land, and in Iraq for example to encourage the farmers away from subsistence farming to producing more crops for sale. In Syria a market gardening sector has been started to flourish around the large conurbations, where farmers and growers sell their produce.

3. Kuwait and Saudi Arabia

Pesticide consumption in these two states is at a relatively low level because of the small size of the agricultural sector. Saudi Arabian agricultural pesticide consumption appears significant at first sight at about 1 700 metric tons active ingredient, however, of this total, 1 200 metric tons was accounted for by sulphur for use as a fungicide. Insecticides accounted for nearly 400 metric tons active material. In comparison demand for all pesticides in Kuwait amounted to not much more than 12 metric tons active material. About 50 percent of this was used in public health programmes. Saudi Arabian public health sector accounted for just over 40 metric tons active material. Herbicide consumption in both countries was virtually non existent.

Growth in pesticide use is expected to increase steadily, but real rapid growth will depend on the extension of agricultural activities. This will take time due to the formidable problems associated with the lack of water in the region. Demand for pesticides in the public health sector will probably not move ahead very rapidly, because the market is already well covered and has been for some time. In the public health sector, although the volumes of formulated products used are high, the proportion of contained active material is very low, so it would require an enormous growth in the market to make any significant change in the volume of active materials employed.

4. Oman and the United Arab Emirates

Pesticide consumption in these two countries was estimated to be about nearly 120 metric tons active material, 60 metric tons of which was accounted for by mineral oil used as a mosquito larvaecide in the United Arab Emirates. In the Oman all but 10 metric tons of the total of 50 metric tons active ingredient were insecticides used in agriculture and public health control. The remaining 10 metric tons were fungicides, in this case sulphur, used in agriculture.

This sub-region is similar to Kuwait and Saudi Arabia, having minimum agricultural outlets for pesticides, but significant, in local terms, public health requirements. Growth in public health outlets will continue, but as stated earlier, the actual volume of active ingredient employed is small. Demand for pesticides in agriculture in the Oman could rise steadily if plans to modernise agriculture and move farmers away from subsistence farming can be achieved.

5. Total Market 1978 to 1988

As the basic objective of this study is to identify products that could be produced in Kuwait to serve the Arab market, the future growth in demand was estimated on the basis of the total market and not segmented down to countries or sub-regions.

Forecasting future demand for pesticides on total active ingredient basis can be very misleading because application rates vary with the materials being used. Some products for example require a higher rate of application per unit area than others to achieve the same result. A move to more active materials could actually lead to a decrease in the total volume of active ingredient employed, when in fact total control has been increased.

Over the years pesticides have been developed and more and more sophisticated and specialised materials are appearing in the market place. Some of these materials displace the older types, and in some cases, some of the old traditional materials drop out of favour, due to disease resistance or are banned because of toxicity considerations. This is especially true for the organohalogen insecticides. In Egypt demand for organohalogen insecticides has virtually disappeared from the agricultural scene, and in the Sudan, demand has decreased in absolute terms over the last few years. The decrease in the use of organohalogen insecticides has been made up for by an increase in the use of organophosphorous derivatives and to a lesser degree carbamates.

Forecasting pesticide consumption on a year by year basis is fraught with difficulty beacuse consumption from year to year depends on the incidence of disease which in turn often depends on climatic variations. In addition, in countries like Egypt and the Sudan the quantity of pesticides available does depend on the availability of foreign exchange to buy them. It is believed however that both these countries, and others like them with foreign exchange problems recognise the need for pesticides and will do their utmost to buy the necessary products.

Because no reliable statistics exist for the recent past, simple extrapolation of past trends cannot be made to evaluate the future growth mode. Growth forecasts presented in this section are based on discussions held with major suppliers in the region, and other experts in Western Europe.

Within each category only the major products have been isolated because of volume considerations, and also these products tend to be the older types where patents have run out or are running out. New products are under patent restriction and the companies owning the patents are most reluctant to consider licensing agreements. In fact licensing of new products can be ruled out and the know-how available for purchase is confined to the older well tried products.

<u>Insecticides</u>

On a total active ingredient basis the volume of insecticides is forecast to rise from the 1978 level of 17 700 metric tons through 21 500 metric tons in 1983 to around 25 600 metric tons by 1988. During the period consumption of all insecticides with the exception of organohalogen derivatives is expected to increase. Organohalogen derivatives are forecast to remain static, and could even decline in the long term, although the products are cheap and effective for locust control. The decrease in the relative importance of the organohalogens will be offset by the increase in use of other materials.

Estimates of demand growth by family of products are shown below.

FORECAST CONSUMPTION OF INSECTICIDES BY FAMILY IN ARAB STATES 1978 TO 1988

(metric tons active ingredient)

TABLE XII.2.

	1978	1983	1988		
Organophosphorous	5 541	7 780	10 390		
Organohalogen	4 664	4 600	4 200		
Carbamates	945	1 390	1 950		
Mineral Oils	6 130	7 600	8 000		
Others	442	<u>700</u>	1 030		
Total	17 722	21 470	25 570		

More detailed estimates by type of product are shown in the following table.

TABLE XII.3. FORECAST CONSUMPTION OF MAJOR INSECTICIDES IN ARAB STATES 1978 TO 1988 (metric tons active ingredient)

	1978	1979	1980	1981	1982	1983	1988
Organophosphorous							
Dimethoate	1 155	1 235	1 322	1 415	1 514	1 630	2 170
Malathion	970	1 040	1 116	1 198	1 285	1 380	1 840
Chlorpyriphos-et	hy1 696	748	804	864	929	1 000	1 340
Dichlorvos	556	590	627	666	707	750	1 000
Triazophos	502	535	570	607	647	690	920
Phosphamidon	350	376	404	433	466	500	670
Parathions	228	242	257	273	290	310	420
Others	1 084	1 158	1 238	1 323	1 414	1 520	2 030
Ouranahalasan							
Organohalogen DDT	3 102	3 096	3 092	3 088	3 084	3 080	2 800
	657	3 096 660	3 092 660	660	660	660	600
Endosulphan		454	450	447	444	440	400
Chlordane	459 243	454 236	450 232	228	224 224	220	200
BHC Othors	243	238 200	200	200	200	200	200
Others	203	200	200	200	200	200	200
Carbamates							
Carbaryl	760	820	886	957	1 033	1 120	1 570
Others	185	200	215	232	250	270	380
Mineral Oil	6 130	6 295	6 465	6 640	6 820	7 000	8 000
Others	442	484	530	581	638	700	1 030
Total	17 722	18 369	19 068	19 812	20 605	21 470	25 570

Fungicides

Demand for fungicides in forecast to rise from the 1978 level of 19 400 metric tons active ingredient through 22 500 metric tons in 1983 to 26 100 metric tons by 1988. Sulphur will remain the major material with over 95 percent of the market. Dithiocarbamates will be the only significant organic material with a market share of about three percent. Estimates of consumption of fungicide by type for the period under review are shown in the following table.

TABLE XII.4.

FORECAST CONSUMPTION OF MAJOR FUNGICIDES IN ARAB STATES 1978 TO 1988 (metric tons active ingredient)

	<u>1978</u>	1979	1980	1981	1982	1983	1988
Inorganics							
Sulphur	18 661	19 220	19 780	20 390	21 000	21 630	25 070
Copper Salts *	94	97	99	103	106	108	120
Organics							
Dithiocarbamates	51 <i>7</i>	537	560	580	605	630	770
Others	95	100	105	110	115	120	150
Total	19 367	19 954	20 544	21 183	21 826	22 488	26 110

^{*} mainly copper oxychloride expressed as copper

<u>Herbicides</u>

1

This minor sector of the pesticide market is expected to grow from about 1 400 metric tons active material in 1978 to just over 2 000 metric tons in 1988. Although 2,4D amines will remain the major material, other more specialised materials will be used in larger volumes. The share attributable to 2,4D will fall from the 1978 level of 32 percent to 29 percent by 1988. Most of the growth in demand will arise in Egypt and the Sudan, especially for the newer more specialised products. Estimates of future consumption by herbicide type are shown in the following table.

TABLE XII.5.

FORECAST CONSUMPTION OF MAJOR HERBICIDES IN ARAB STATES 1978 TO 1988

(metric tons active ingredient)

	1978	1979	1980	1981	1982	1983	1988
2,4D amines	449	460	475	490	505	520	600
Nitrofene	375	390	405	420	440	460	560
Fluometuron	152	158	164	170	178	185	225
Carbamates	106	110	115	120	124	130	160
Others	320	336	353	370	388	405	530
Total	1 402	1 454	1 512	1 570	1 635	1 700	2 075

XIII- PESTICIDE PRODUCTION PLANT - DEFINITION

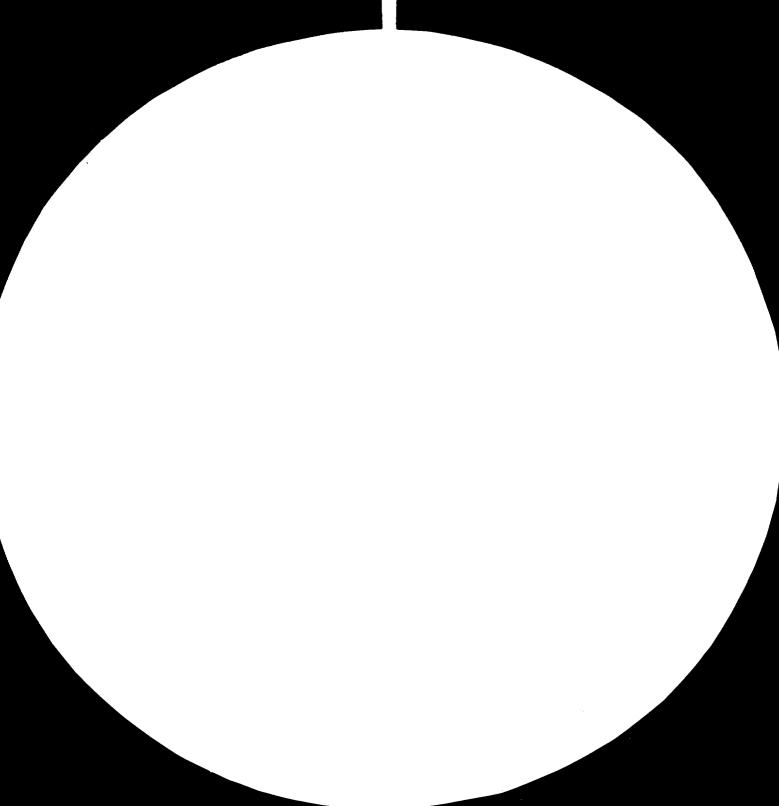
The pesticide market (insecticides, fungicides and herbicides) in the area of study is forcasted to rise from the current level of 38500 metric tons through 45 700 tons to about 54 000 metric tons by 1988.

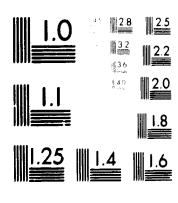
Although the market is made of a large number of various active ingredients, it is necessary to concentrate on the dominant products and to evaluate the feasibility of their production in a plant located in Kuwait.

The forecast consumption of the selected products (see Table I-1) is presented below:

Forecast consumption of major pesticides metric tons of active incredients (1988)

•	Insecticides	:	-	Dimethoate	2	170


- Malathion 1 840


• Fungicides : - Dithiocarbamates 770

• Herbicides : - 2,4 D amines 600

The above mentioned active ingredients will be produced batchwise in the multipurpose chemical plant defined in the following chapters.

XIV- MANUFACTURING TECHNOLOGY AND ECONOMICS

1 - DESIGN BASIS

1.1 - PLANT LOCATION

Kuwait - Shuaiba Area Authority

1.2 - PRODUCTS SELECTED AND PLANT CAPACITY

• Insecticides : • Dimethoate: 2500 metric tons/year (technical

product)

• Malathion : 2000 metric tons/year (technical

product)

• Fungicides : • Dithiocarbamates : 1000 metric tons/year

(technical Maneb or Zineb)

. Herbicides : . 2,4 D acid: 600 metric tons/year (technical

product)

2,4 D-Dimethylamine salt: 720 metric tons/

year (technical product)

1.3 - PLANT DESIGN

The plant is designed like most multipurpose fine chemical plants, i.e. the products are made batchwise and are processed in corrosion resistant agitated, jacketed reactors.

The capacity of the various units is too large to have all the products made compaignwise in the same pieces of equipment, however, the processing systems (batch reactor, overhead condensing equipment and receivers) are quite flexible and almost any fine chemical or agrochemical can be produced in these pieces of equipment.

The overall plant is divided into 9 sections as follows:

Section 100: 0,0 Dimethyldithiophosphoric acid production unit

Section 200: Ethyl maleate production unit

Section 300: Malathion production unit

Section 400: N-methylchloroacetamide production unit

Section 500: Dimethoate production unit Section 600: Maneb/Zineb production unit

Section 700: 2,4 dichlorophenoxyacetic acid-amine salt

production unit

Section 800: Storage

Section 900: Waste treatment unit

The production facilities are installed inside four different buildings so as to avoid cross-contamination of active ingredients of different groups.

The units are arranged as presented herebelow:

Building A: sections 100, 200 and 300

Building B: sections 400 and 500

Building C : section 600 Building D : section 700

1.4 - OFFSITE FACILITIES

Storage capacity: - Raw materials: 15 days *
 - Final products: 30 days

The liquid raw materials are supplied in shipping containers (owned by the company or the raw material manufacturer) and stored in fixed storage tanks.

The final products are packaged within the production facility and stored in ground level warehouses.

All the solids in 25 kg bags or the liquids in 200 l drums are received, stored and shipped on pallets. These pallets are stocked on 2 levels and are handled by fork lift trucks. Some of these fork lift trucks have to be designed for hazardous areas.

The overall warehouse area required is fairly large since it was estimated at 2000 m2. Good storage practices dictate that different pesticides be stored separately, or at least in well marked locations within a warehouse. Moreover, special case has to be taken to keep herbicides well segregated from fungicides and insecticides.

• In revised economics annexed to the final report Annex 1, both raw materials and products storage capacites have been expanded to 3 months.

• <u>effluents</u>: the liquid wastes containing toxic substances are collected in separate sewers and are treated in a neutralization-decantation section.

The liquid organic wastes are incinerated and the gaseous streams are treated in caustic scrubbers or burned (H_2S) .

• <u>Utilities</u>: the utilities necessary for operating the processing units (steam, glycol, cooling water, inert gas, power, ...) are assumed to be available at the plant site. They are purchased from the public or private company running the industrial development area.

1.5 - SAFETY PRACTICES .

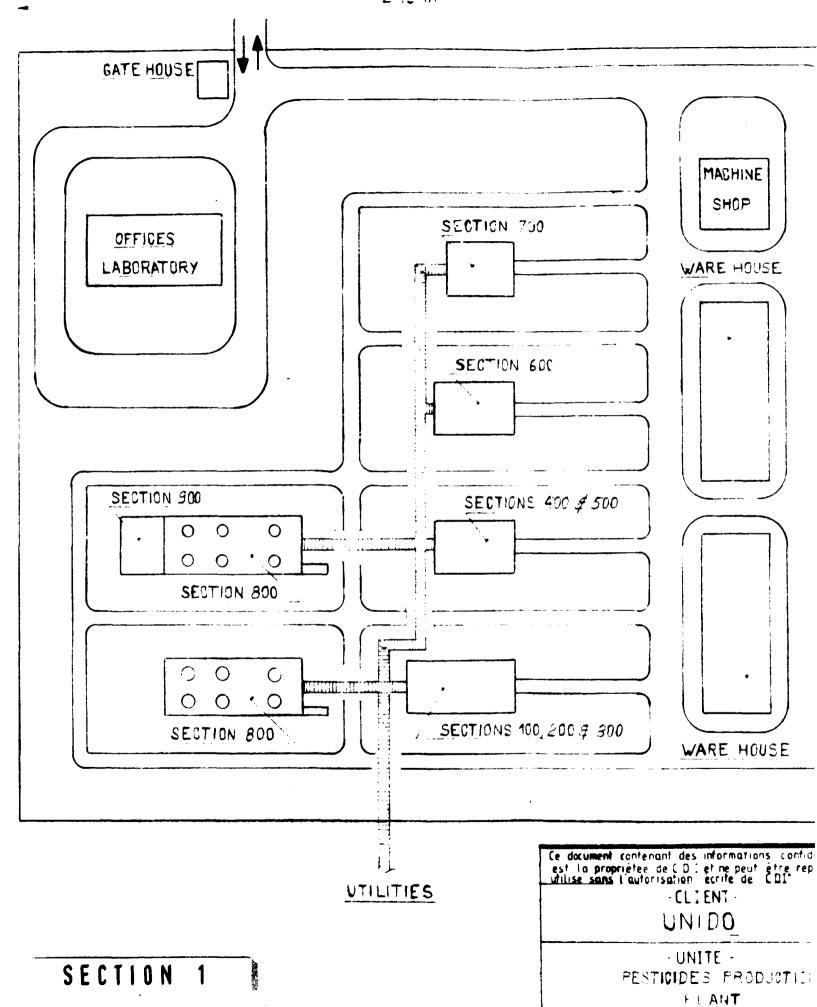
Safety practices are designed for both the protection of the workers and the containment of toxic chemicals. Coveralls, boots, gloves, respiratory devices are used to protect production workers. In addition, exhaust ventilation systems are used in all the production buildings. Medical facilities have to be provided.

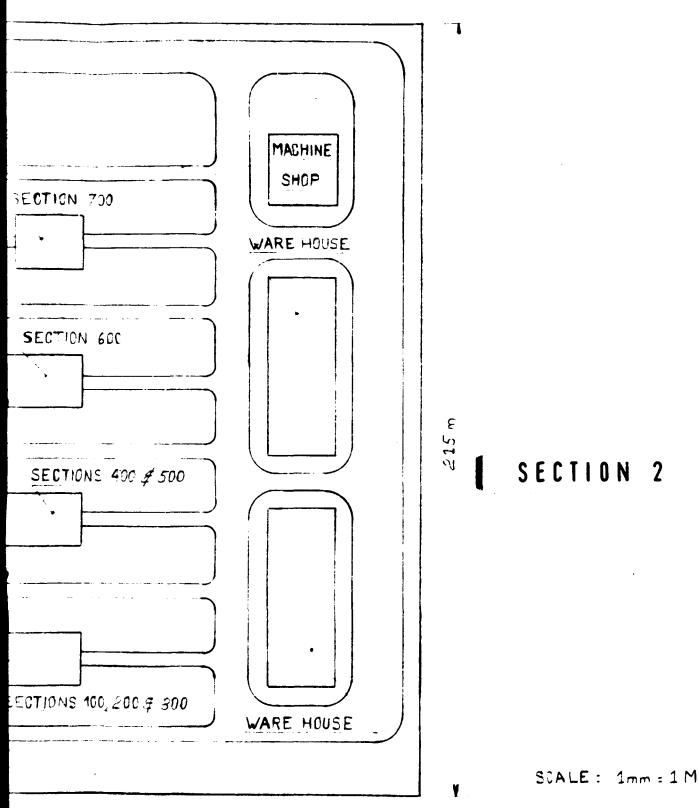
As far as the containment practices are concerned, the production and bulk storage area are diked.

1.6 - SERVICES

In the total investment estimation, the services are included in the offsite battery limits capital cost. The Items included in the capital estimate are:

- offices, laboratories
- firefighting equipment
- medical facilities
- lunchrooms, change rooms, recreational facilities
- gatehouse, parking lots.


1.7 - PLOT PLAN


Figure 6002-I-001 is an overall plot plan of the production facilities.

The entire plant is located within a 245x215 meters rectangle i.e. requires an area of 5.3 hectares (or 13. acres)

The safety aspects are more fully described in Annex 2.

CHEM SYSTEMS INTERNATIONAL LTD.

Ce document contenant des informations confidentielles est la propriétée de CD: et ne peut être reproduit ou idilise sans l'autorisation écrité de CDI:

-CLIENT:

UNIDO

-UNITE
PESTICIDES PRODUCTION

FI ANT

2- MANUFACTURING PROCESSES *

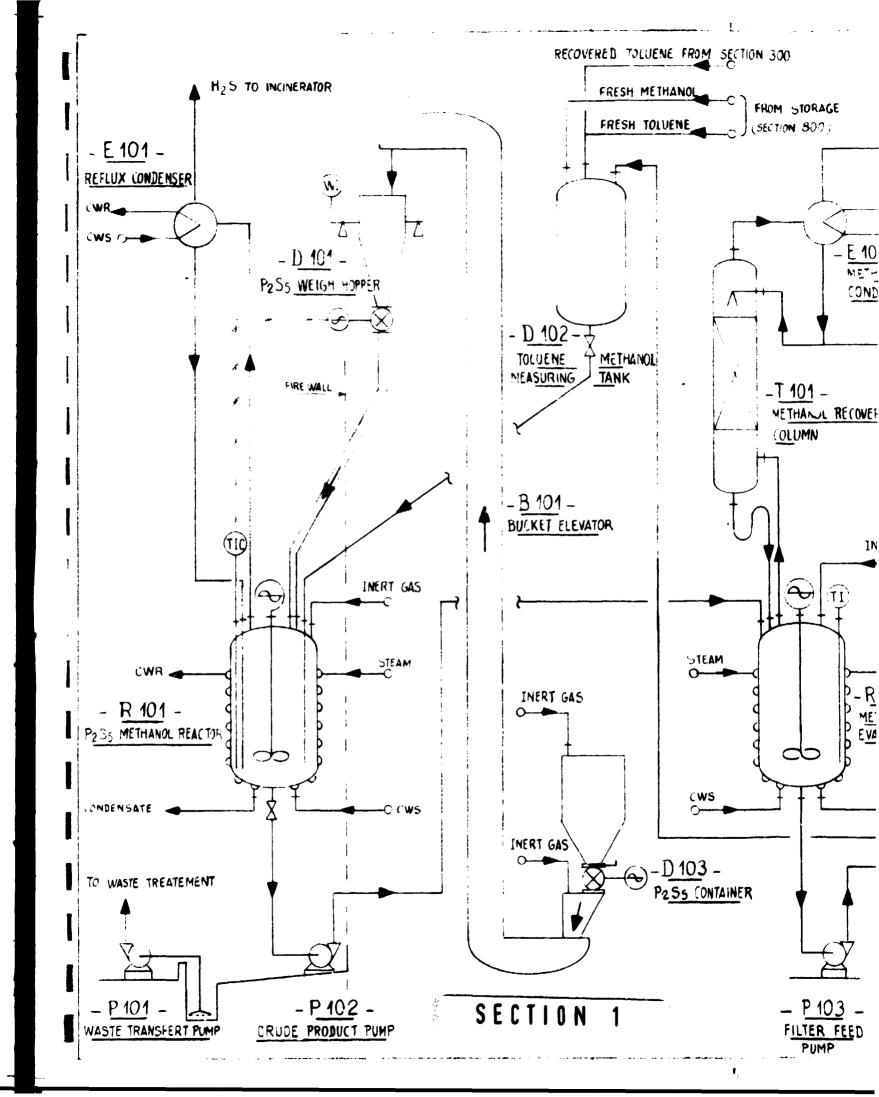
2.1 - 0,0 DIMETHYLDITHIOPHOSPHORIC ACID

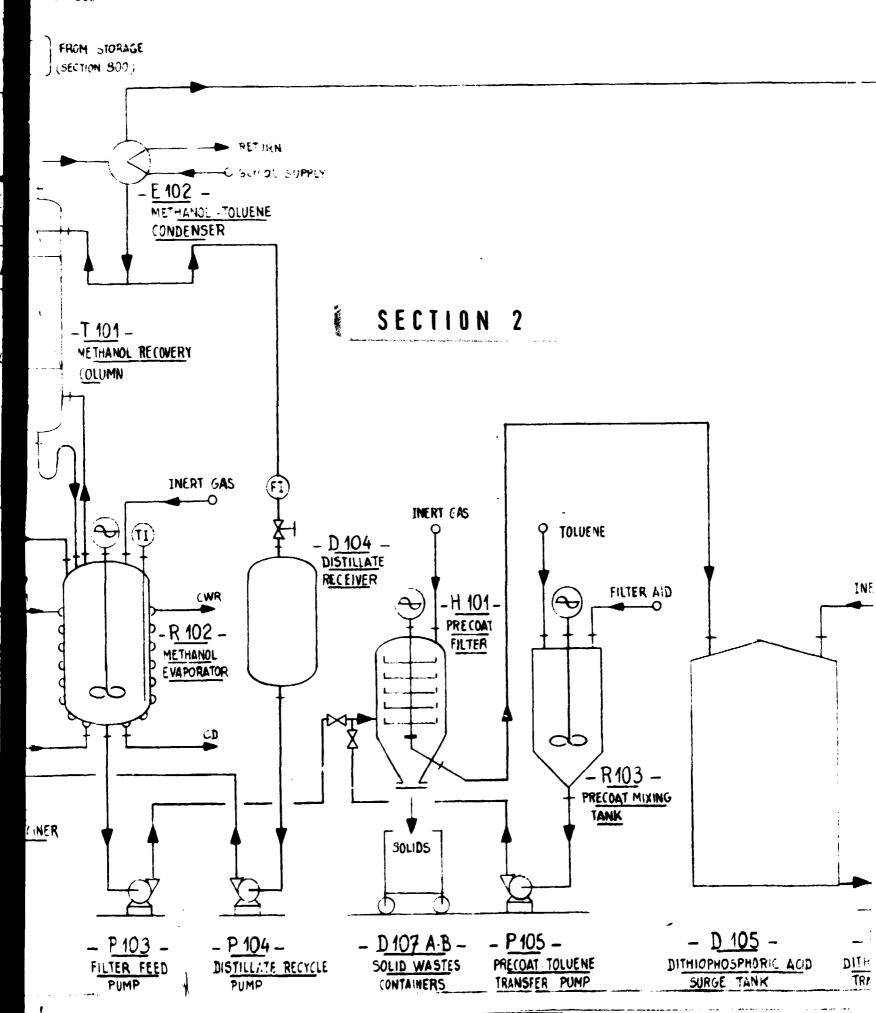
2.11 Background and Chemistry

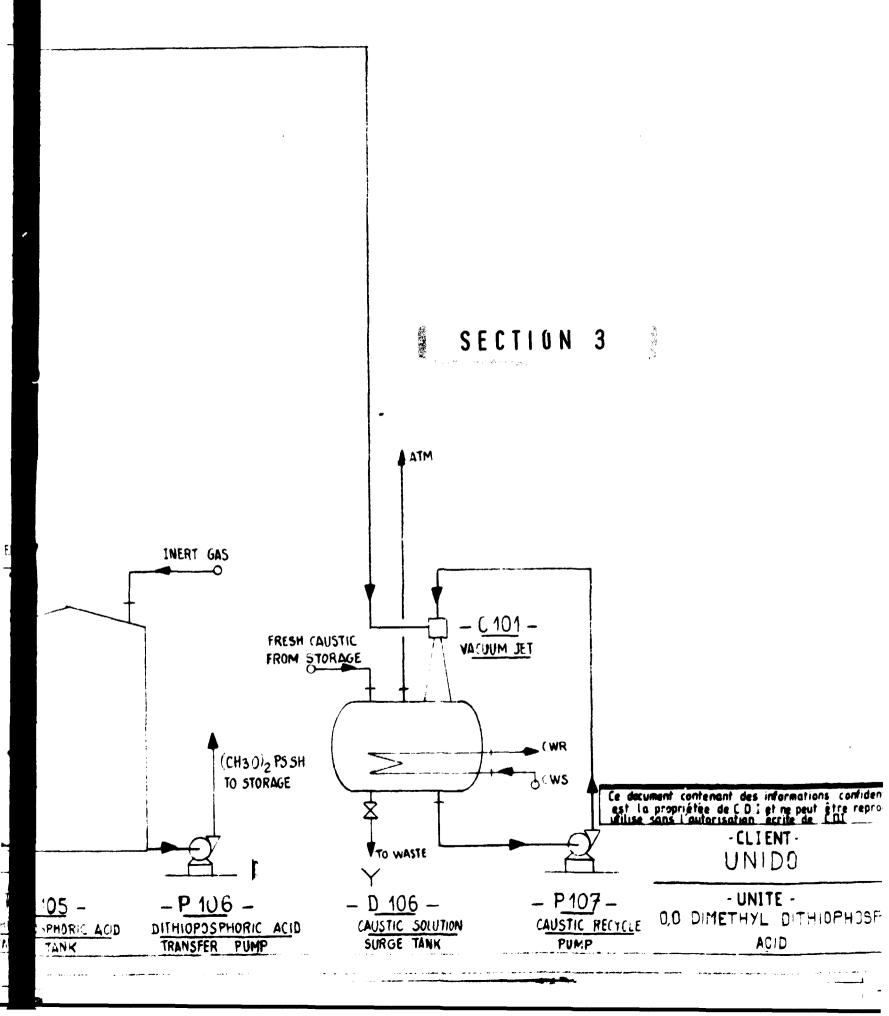
0,0 Dimethyldithiophosphoric acid is the phosphorus compound used in the production of organophosphorous insecticides such as malathion and dimethoate.

The chemical reaction is fairly straightforward, i.e. phosphorus pentasulfide is reacted with methanol in a solvent like toluene. However, phosphorus pentasulfide must be added carefully, because of the highly exothermic nature of the reaction.

Hydrogen sulfide, formed as a by product, is sent to an incinerator where it is burned with much excess air and disharged as SO_2 in the atmosphere.


The biggest problem of 0,0 Dimethyldithiophosphoric acid production is safety and in order to keep the reaction under control, good temperature measurements and effective interlock systems are required. Moreover, the reactors have to be installed inside reinforced concrete block cubicles.


2.12 Process Design and Economics


Figure 6002-PX-100 is a flow sheet for the batch production of 0,0 Dimethyldithiophosphoric acid by the reaction of methanol with phosphorus pentasulfide. The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule. According to the following production schedule, 4-6 hours- batches per day can be carried out.

- * The safety aspects are more fully described in Annex 2.
- See revised costs of production in Annex 1.

CHEM SYSTEMS INTERNATIONAL LTD.

SECTION 4

Ce decument contenent des informations confidentielles
ast la propriétée de C D : et ne peut être reproduit ou
d'illise sans l'autorisation acrité de ED

- CLIENTUNIDO

- P107 - - UNITE CAUSTIC RECYCLE
PUMP

ACID

ACID

CE decument contenent des informations confidentielles
ast la propriétée de C D : et ne peut être reproduit ou
42 rue Legendre PARIS 17° Tel 766-29-10

- SECTION 100

FIGURE
6002 - PX - 100

jenr prod

TABLE 2.12.1

0.0 DIMETHYLDITHIOPHOSPHORIC ACID PRODUCTION SCHEDULE

Operation	Time	Item n°
- Toluene is charged into reactor	1/2 hr	R101
 Methanol is charged into reactor and mixture is heated to 70-74°C 	1/2 hr	R101
 Phosphorus pentasulfide is slowly added under tempera- ture control 	1 1/2 hrs	R101
 Reaction mixture is maintained at 82°C 	2 to 3 hrs	R101
- Reaction mixture is transfered to methanol evaporator	1/2 hr	R101/R102
 Excess methanol and toluene are distilled under slight vacuum (760-220 mmHg) 	2 hrs	R102
- Mixture is cooled down to 50°C	1 hr	R102
- Mixture is filtered and trans- fered to storage	2 hrs	R102/H101

Phosphorus pentasulfide solids (crystal size \leq 1 mm) are added to an agitated, jacketed glass lined reactor containing a boiling methanol toluere mixture (T= 70-74°C). Since the reaction is exothermic, the solids are carefully added under temperature control. Moreover, cooling water is circulated through the reactor jacket to keep the temperature at 82°C. The mixture is kept at this temperature for 2-3 additional hours. H₂S produced is passed through a graphite reflux condenser and is sent to an incinerator.

The reaction mixture is then pumped to the methanol evaporation system which is made of an agitated, jacketed glass lined reactor and a packed column.

Methanol-Toluene azeotrope is distilled under slight vacuum (minimum absolute pressure: 220 mmHg) so as to keep the product solution at 80-85°C.

Methanol is totally vaporized, whereas some toluene is left with the acid (acid concentration at the end of the distillation step: 60 to 65 weight percent).

The distillate is collected in a receiver for recycle to the next batch.

The acid solution is cooled to 50°C by circulating cooling water through the reactor jacket.

In order to eliminate the traces of solids which might still be in the toluene-acid mixture, the solution is pumped through a precoat filter and collected in a surge tank. This mixture is then analyzed prior to its transfer to storage.

The solids recovered in the filter are removed mechanically, decontaminated with NaOH and buried with lye in an approved landfill.

The inside battery limits capital costs for a 3100 metric tons per year 0,0 dimethyldithiophosphoric acid plant is estimated at 1.33 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital cost are summarized in Table 2.12.2. Specifications of the individual pieces of equipment are shown in appendix 3.1.

TABLE 2.12.2

INSIDE BATTERY LIMITS CAPITAL COST

O,O DIMETHYLDITHIOPHOSPHORIC ACID

3100 metric tons/ yr

KUWEIT LOCATION - Third quarter of 1979

	1000 US Dollars
- Purchased Equipment	381
- Equipment handling	26
- Concrete and Steel	30
- Piping	111
- Instrumentation	88
- Electrical	60
- Insulation, paint and Misc.	50
- Buildings	181
- Direct cost	927
- Engineering	93
- Field construction, overhead & profit	185
- Base plant cost	1205
- Contingencies (including Contractors fee of 3%).	121
Inside Battery Limits Capital Cost	1326

TABLE 2.12.3

O,O DIMETHYLDITHIOPHOSPHORIC ACID PRODUCTION UNIT- SECTION 100 CAPITAL SUMMARY

BASIS		Million
-Location	: KÚ WEIT Inside battery limits	1.33
-Capacity	. Third quarter 1979 Outside battery limits	1.02
-capacity	3100 metric tons perTotal fixed investment	2.35
1 ·	yr Working Capital*	1.35

-ON-Stream Time: 8,000 hours per yr

PRODUCTION COST SUMMARY

. RAW MATERIALS	Units	•	.Annuel .cost,\$M	Cents per kg
Phosphorus Pentasulfide,kg	0.7960	108.24	2,671,000	
Methanol, kg	0.4911	21.00	320,000	
Solvents and chemicals			68,000	
Total raw materials UTILITES			3,059,000	98.68
	0.00025	700.0	5,430	
	0.0252	1.0 7100.0	800 1 7, 610	
1	0.00008	1.0	750	•
Total utilities		•	24,590	0.79
Labor, 10 men @\$16,000/y	r 2 men	per shift	160,000	
Supervision,5men c\$22,000)/yr1 man	per shift	110,000	
Maint., material & Labor 6% Total operating cost	6 of ISBL	,	<u>80,000</u> 350,000	11.29
OVERHEAD EXPENSES			330,000	* * * C >
Direct Overhead 4	10 %(lab		108,000	
General plant overhead 6	55 % Ope.	rating cost	s 227,000	
Insurance, property taxes Depreciation		al invest. al invest.	35,300 235,000	
Total overhead expense	:S		605,300	19.53
TOTAL COST OF PRODUCTION			4,038,890	130.29
BY-PRODUCT CREDIT				
Total by-product	credit			

Total by-product credit

NET COST OF PRODUCTION Return on Investment 30% Total Interest on Working Capital 10% Sales Expenses	investment 705,000	130, 29
TRANSFER PRICE	4.878.890	157.38

(*equivalent to four months production costs)

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE	AFFAIRE NUMERO	REV
EST LA PROPRIETE DE COS ET NE PEUT ETRE REPRODUIT	6002 100	1
I OU UTILISE SANS L'AUTOPISATION ECRITE DE CDI	100	1

The cost of production of 0,0 dimethyldithicphosphoric acid from this facility is estimated at 130.29 $\rlap/$ 2 /kg. Component costs are shown in Table 2.12.3. The transfer price, including a 30 percent pretax return on investment and a 10% interest on working capital, is 157.38 $\rlap/$ 2 /kg. This is based on a phosphorus pentasulfide cost of 108.24 $\rlap/$ 2 /kg.

The structure of the cost of production is presented in table 2.12.4

TABLE 2.12.4 O,O DIMETHYLDITHIOPHOSPHORIC ACID

COST OF PRODUCTION BREAKDOWN

• Raw materials	75.7%
• Utilities	0.6%
• Operating costs	8.7%
. Overhead expenses	15.0%

Total cost of production 100.0 %

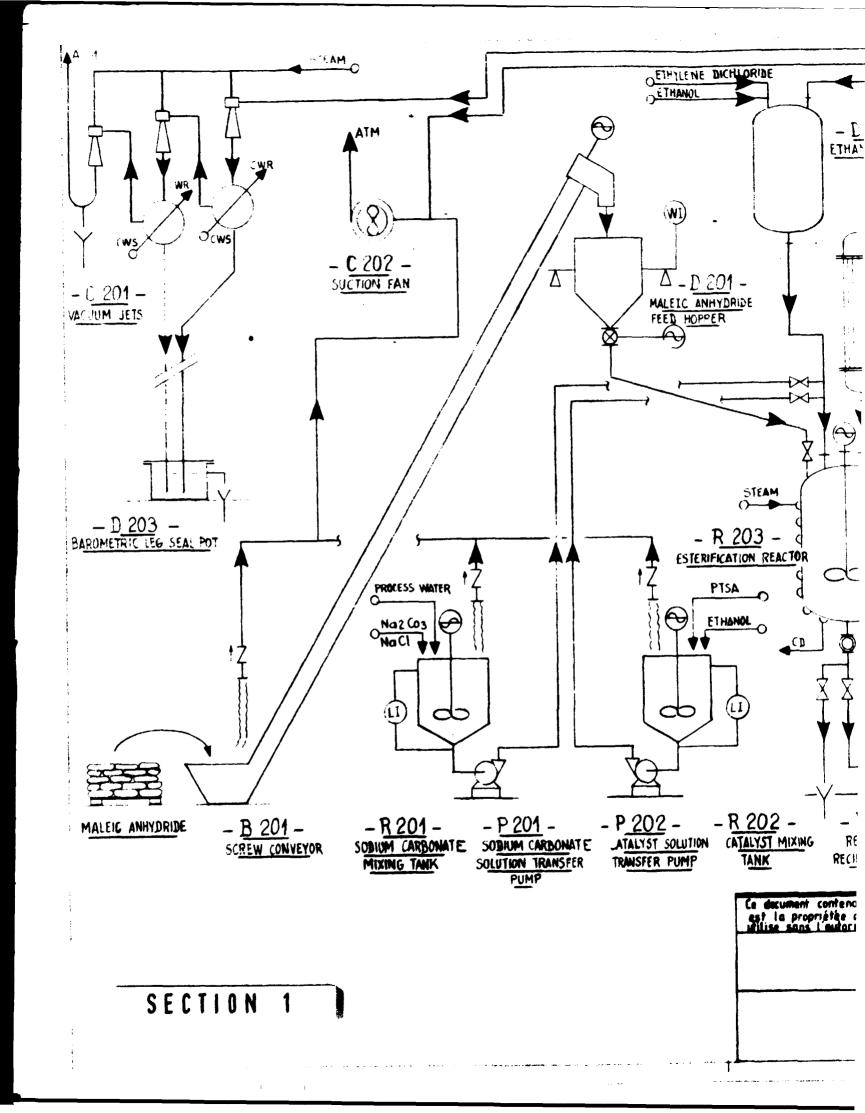
The cost of production and the transfer price are not very sensitive to capital cost, since a 20% increase of the capital cost would only increase the cost of production of $2.61 \, \text{d} / \text{kg}$ (i.e. 2%) and the transfer price of $7.23 \, \text{d} / \text{kg}$ (i.e. 4.6%). The cost of phosphorus pentasulfide accounts for 66% of the cost of production and for 55% of the transfer price.

It is, therefore, of paramount importance to find a reliable and low cost source of phosphorus pentasulfide.

2.2 - ETHYL MALEATE

2.21 Background and Chemistry

Ethyl maleate is an intermediate used in the production of malathion. The manufacturing process consists of reacting ethyl alcohol with maleīc anhydride in a suitable solvent such as ethylene dichloride.


This reaction is a very standard esterification catalyzed by acids like sulfuric acid or p.toluene sulfonic acid (PTSA). In order to minimize corrosion and to reduce product degradation, PTSA is usually selected.

The above mentioned reaction is an equilibrium and water has to be removed so as to get high conversion yields. This is achieved by solvents like ethylene dichloride or chloroform, which form ternary azeotrope with water and ethanol.

2.22 Process design and Economics

Figure 6002-PX-200 is a flow sheet for the batch production of ethyl maleate by the reaction of ethyl alcohol with maleIc anhydride. The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule.

According to the following production schedule, 1 batch per day can be carried out.

M

SECTION

TABLE 2.22.1
ETHYL MALEATE PRODUCTION SCHEDULE

Operation	Time	Item n°
 Ethanol and ethylene dichloride (fresh and recovered)are charged into reactor 	1.0 hr	R 203
 MaleIc anhydride flakes are charged into reactor and steam is opened into jacket 	3/4 hr	R 203
- Catalyst is charged into reactor	1/4 hr	R 203
- Mixture is kept boiling by falling film evaporator and water is conti- nuously removed from reaction mix- ture. System pressure is slowly decreased in order to keep the bubble point of the reaction mixture below 130°C	5.0 hrs	R 203
 Excess ethanol and ethylene dichlo- ride are distilled under vacuum 	3.0 hrs	R 203/D205
 Crude product is cooled down to 50°C 	2.0	R 203
 Sodium carbonate salt solution is pumped into reactor and the two immiscible phases are thoroughly mixed 	1/2 hr	R 203
 Agitator is stopped, heavy aqueous phase is decanted and drained 	1.0 hr	R 203
 Salt solution is pumped into reactor and the two immiscible phases are thoroughly mixed 	1/2 hr	R 203
 Agitator is stopped, heavy aqueous phase is decanted and drained 	1.0	R 203
 Washed product is distilled under vacuum 	8 1/2 hrs	R203/D206
- Final product is pumped to storage	1/2 hr	D 206

Ethanol and ethylene dichloride recovered from the previous batch are added to an agitated, jacketed reactor. Fresh ethanol and ethylene dichloride are then charged into the reactor to make up for the solvents lost and/or consumed during the preceding batch. The agitator is started and steam is opened into the reactor jacket. Maleïc anhydride flakes are charged into the reactor and the recirculation pump is started as soon as anhydride is completely dissolved. Steam is opened into the shell side of the falling film evaporator and finally the catalyst (PTSA) is added to the mixture. The initial boiling point of the reaction mixture under atmospheric pressure is around 70°C however, as the reaction proceeds, ethanol is consumed, and the boiling point rises. System pressure is therefore slowly reduced to keep the solution boiling at a maximum temperature of 130°C. The ethanol/ethylene dichloride/ water vapors are condensed overhead and the heterogeneous distillate is allowed to decant in the reflux drum. The waterrich light phase is discarded and the ethylene dichloride-rich heavy phase is refluxed.

The time required to reach very high yields (98-99%) is around 5 hours.

Excess ethanol and ethylene dichloride are distilled under vacuum and the circulatingq pump is stopped. The reactor jacket is purged and crude ethyl maleate is cooled down to 50°C by circulating cooling water through the jacket. In order to remove the catalyst, a sodium carbonate solution is pumped into the agitated mixture. The agitator is stopped and the heavy aqueous phase is drained to waste. The neutralized organic mixture is then washed by a sodium chloride solution which is also discarded. The organic phase is heated up and distilled under vacuum. Distilled ethyl maleate is finally pumped to storage. Overall ethyl maleate yield (based on maleīc anhydride) is around 90%.

The inside battery limits capital costs for a 1100 metric tons per year ethyl maleate plant is estimated at 1.24 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital cost are summarized in Table 2.22.2. Specifications of the individual pieces of equipment are shown in appendix 3.2.

The cost of production of ethyl maleate from this facility is estimated at 189.06 \rlap/c /kg. Component costs are shown in table 2.22.3. The transfer price, including a 30 percent return on investment, before income taxes, is 238.97 \rlap/c /kg. This figure is based on a maleïc anhydride cost of 118 \rlap/c /kg.

The structure of the cost of production is presented in table 2.22.4.

The cost of production and the transfer price are not very sensitive to capital cost, since a 20% increase of the total fixed investment would only increase the cost of production of 5.58 \not c /kg (i.e. 2.9%) and the transfer price of 14.49 \not c /kg (i.e. 6.1%).

The cost of ethanol accounts for 27.2% of the cost of production and for 21.6% of the transfer price. Similarly, maleïc anhydride cost accounts for 39.4% of the cost of production and for 31.2% of the transfer price.

TABLE 2.22.2

INSIDE BATTERY LIMITS CAPITAL COSTS

ETHYL MALEATE

1100 metric tons/yr

KUWEIT LOCATION - Third quarter of 1979

	1000 US dollars
- Purchased equipment	399
- Equipment handling	24
- Concrete and steel	34
- Piping	112
- Instrumentation	50
- Electrical	. 40
- Insulation, paint and misc.	32
- Building	176
- Direct cost	867
- Engineering	87
- Field construction, overhead & Profit	173
- Base plant oost	1127
- Contingencies (including contractors fee of 3%)	113
Inside battery limits capital costs	1240

TABLE 2.22.3

ETHYL MALEATE PRODUCTION UNIT- SECTION 200

CAPITAL SUMMARY

BASIS		Million
-Location	: KUWEIT Inside battery limits	1.24
-Capacity	 Third quarter 1979 Outside battery limits 1100 metric tons perTotal fixed investment 	1.60
Ì		0.69
OM Shares	yr Working Capital*	

-ON-Stream Time: 8,000 hours per yr

PRODUCTION COST SUMMARY

RAW MATERIALS	Units	, Price ¢/unit	Annuel cost, \$M	Cents per kg
Ethanol,kg Maleic anhydride Catalyst,solvents and chemicals	0.6905 0.6312	74.6 118.0	566.700 819,300 71,000	
Total raw materials UTILITES			1,457,000	132,46
Steam, 150psig, metricton Cooling water, m3 Power, KwH Process water, m3	0.0029 0.1340 0.0523 0.0013	700.0 1.0 1.0 19.0	22,400 1.500 600 300	
Total utilities OPERATING COSTS Labor, 7,5 men @\$16,000/1	yr1,5 men	per shift	24,800	2,25
Supervision,1 man @\$22,00 Maint.,material &Labor 6 Total operating cost	O/yr1 man % of ISBL	overall,	22,000 74,400 216,400	19,67
General plant overhead Insurance, property taxes	51.5% tot	rating cost	56,800 140,700 24,000 160,000	
Total overhead expense	2 S	1	381,500	34,68
TOTAL COST OF PRODUCTION BY-PRODUCT CREDIT	·	1	2,079,700	189,06
Total by-product	t credit		2,079,700	189,06
NET COST OF PRODUCTION Return on Investment 30% Interest on Working Capit Sales Expenses	Total in tal 10% wo	vestment orking capi	480,000 t. 69,000	
TRANSFER PRICE			2,628,700	238,97
(*equivalent to four months	producti	on costs)		

	بيي نمبر بيرون مرادرات جسر بيروي		
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE	AFFAIRE	NUMERO RE	EV
OU UTILISE SANS L'AUTORISATION ECRITE DE COI	6002		
OU UTILISE SANS CAUTORISATION ECALLE OF CO.			

TABLE 2.22.4

ETHYL MALEATE

Cost of production breakdown

• Raw materials	70.1 %
• Utilities	1.2 %
• Operating costs	10.4 %
• Overhead expenses	18.3 %
Total cost of production	on 100.0 %

The costs of ethanol and maleïc anhydride are the most significant factors of the cost of production. The price of maleïc anhydride is closely related to unsaturated polyester demand and varies widely and rapidly. It is therefore very important to find reliable maleïc anhydride suppliers.

2.3 - MALATHION

2.31 Background and Chemistry

Malathion or 0,0 Dimethylphosphorodithioate of diethyl mercapto succinate is a nonsystemic insecticide and acaricide having a fairly low mammalion toxicity. This very safe insecticide is a liquid of low volatily, which can cause skin irritation when its diethyl fumarate content is around 1 to 4 percent by weight. Malathion was developed by American Cyanamid which is one of the major producers.

Malathion is produced by reacting 0,0 dimethyldithiophosphoric acid with diethyl maleate:

(CH₃0)
$$=$$
 SH + $=$ HC-C-OC₂H₅ $=$ (CH₃0) $=$ CH₂-C-OC₂H₅ $=$ CH₂-C-OC₂H₅

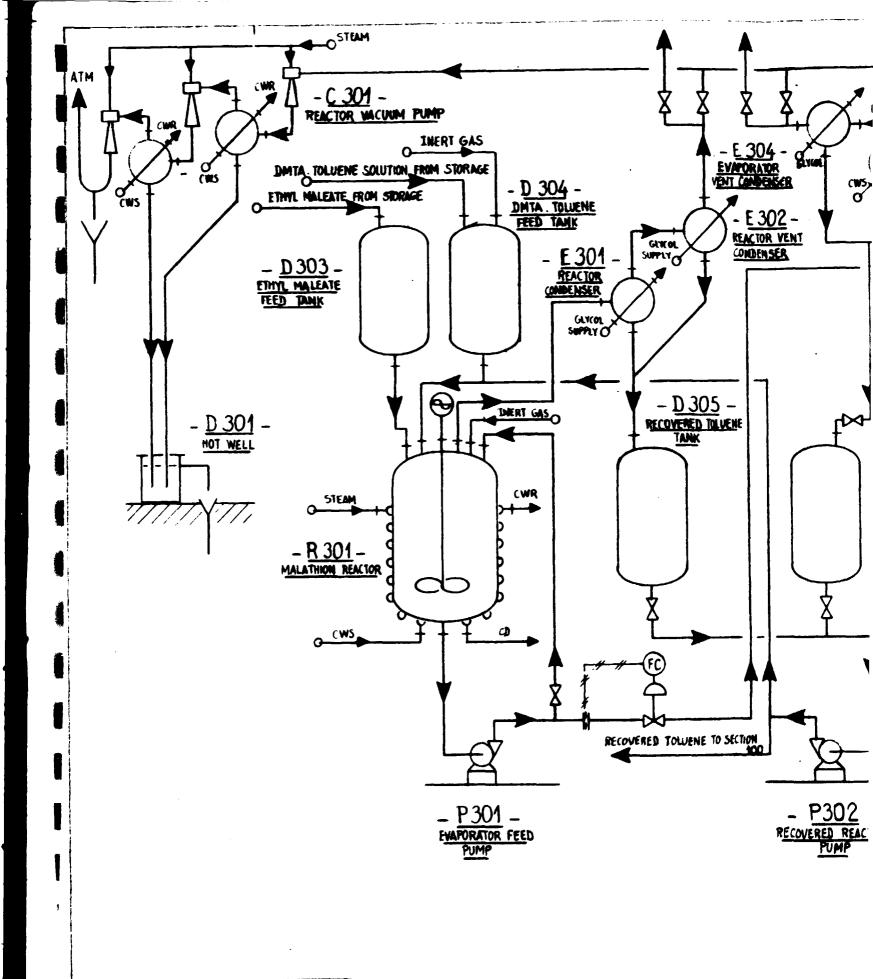
O,Odimethyldithio- Diethyl phosphoric acid maletate

Malathion

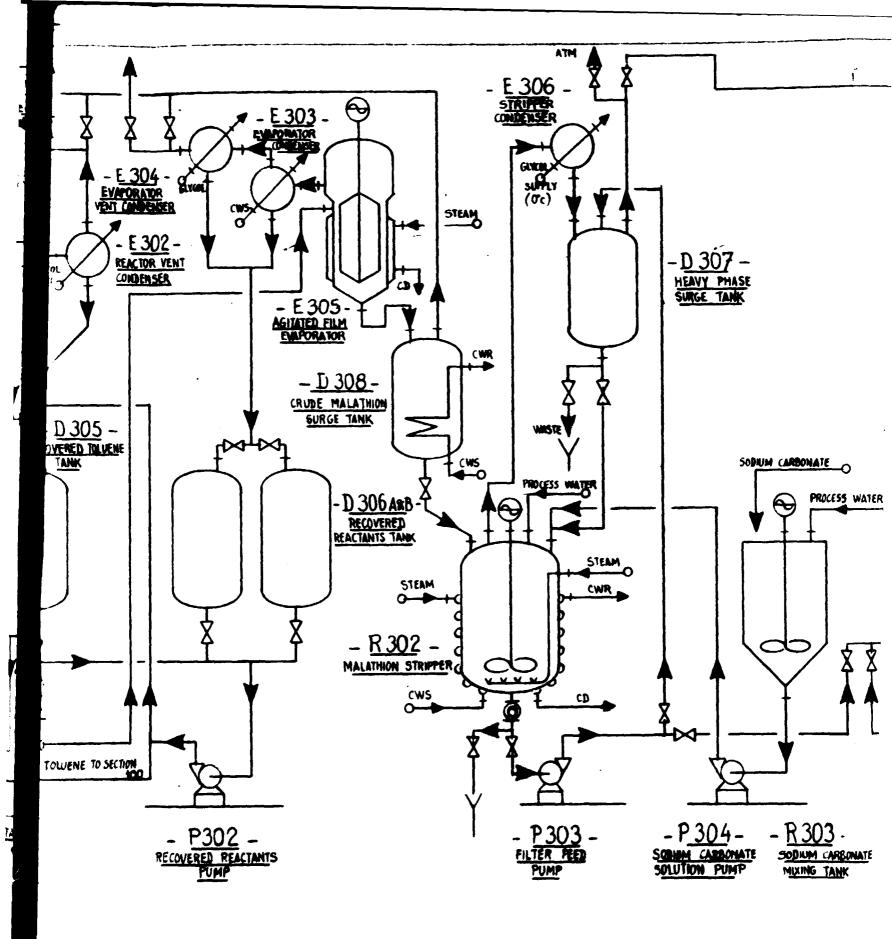
In order to get a very low diethyl fumarate content, American Cyanamid improved the production process (see US Patent n° 3,463,841 - Aug 26,1969) by stripping off the conconverted reactants in a wiped film evaporator. This process is indeed very efficient since the conversion yield is around 94% (based on diethyl maleate).

2.32 Process design and Economics

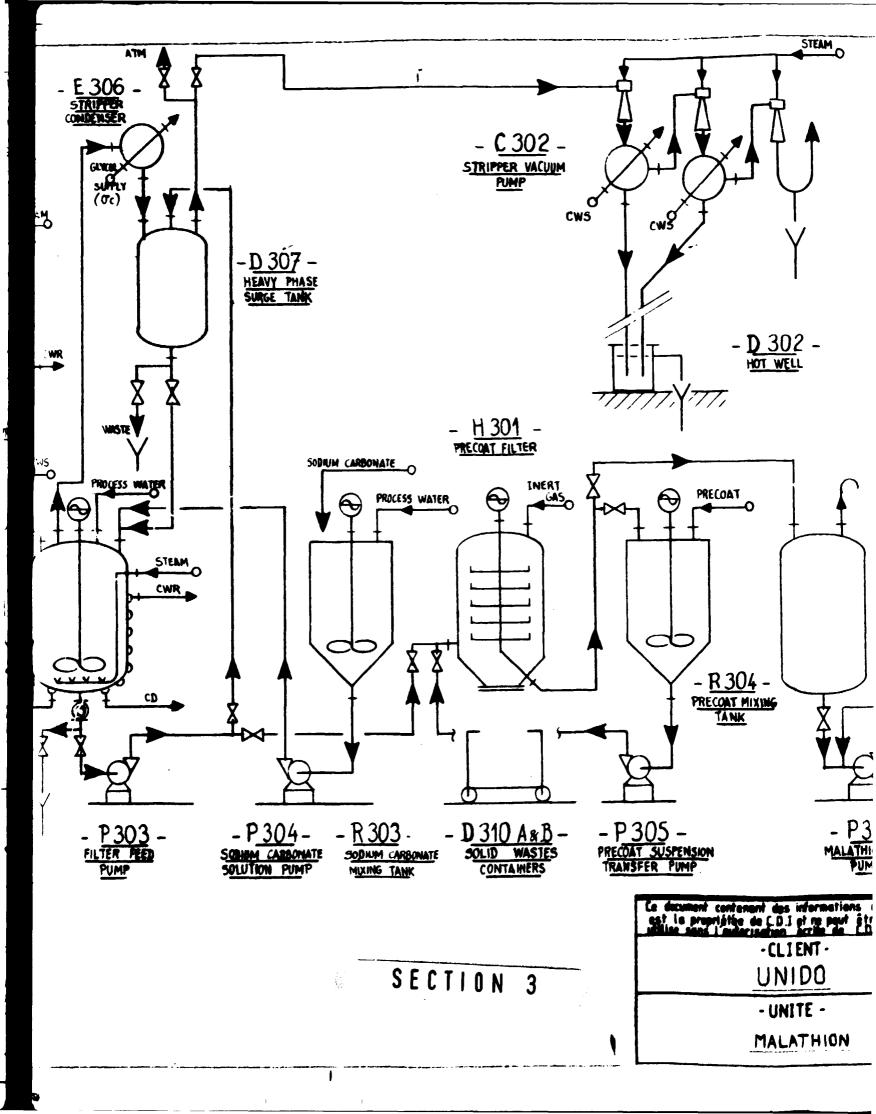
Figure 6002-PX-300 is a flowsheet for the batch production of malathion by the reaction of diethyl maleate with 0,0 dimethyl-dithiophosphoric acid in toluene. The design is based on three shifts per day, 7 days per week, 8000 hours per year schedule. The process in itself is based on the patent mentioned previously.


According to the following production schedule, 2x12 hours batches per day can be carried out.

CHEM SYSTEMS INTERNATIONAL LTD.


٠

5 S


•



SECTION 1

SECTION 2

1.5

Ce document contenent des informations confidentielles est la propriétée de CDJ et ne pout être reproduit au Milles sons l'autorisées parille de CDJ	CHIMIE DEVELOPPEMENT INTERNATIONAL 42 rue Lagandre PARIS 17º- Tel 766-29-10 -
-CLIENT - UNIDO	SECTION 300
- UNITE -	FIGURE
MALATHION	6002 · PX · 300 .

1

TABLE 2.32.1 MALATHION PRODUCTION SCHEDULE

Operation	Time	Item n°
- Diethyl maleate is charged into reactor	0,5 hr	R 301
 Recovered reactants from previous batch are charged into reactor 	0,5 hr	R 301
 Dithiophosphoric acid solution is charged into reactor 	0,5 hr	R 301
- Reaction mixture is heated to 90- 91°C	1,5 hr	R 301
 Temperature is maintained for three hours and pressure is reduced to 20 mmHg 	3,0 hrs	R 301
- Mixture is cooled to about 71°C	1,0 hr	R 301
 Unconverted reactants are vapori- zed in agitated film evaporator- crude product is recovered in vacuum surge tank 	4,0 to 5,0 hrs	R301/D308
- Crude product is cooled in surge tank	1,0 hr	308 D
 Crude product and sodium carbonate solution are charged into second reactor 	0,5 hr	R 302
- Agitation is stopped and heavy organic phase is allowed to decant	1,0 hr	R 302
 Organic phase is transfered to sure tank and aqueous phase is sent to waste 	ge 0,75 hr	R302/D30
- Crude product and wash water are charged into reactor	0,5 hr	R 302
 Agitation is stopped and heavy organic phase is allowed to decant 	1,0 hr	R 302
 Organic phase is transferred to sure tank and aqueous phase is sent to waste 	ge 0,75 hr	R302/D30
- Organic phase is transfered into reactor	0,5 hr	D307/R30
 Malathion is steam stripped at 50°C under vacuum (25 mmHg) malathion is cooled after steam stripping 	C 4,0 hrs	R 302
 Malathion is pumped through a preceding filter and recovered is a surge tag 		H301/D30

Recovered reactants from the previous batch and 0,0 dimethyl-dithiophosphoric acid solution (62% in toluene) are added to an agitated, jacketed reactor containing diethyl maleate (molas ratio: 1.02 to 1.1 moles dithiophosphoric acid per mole of diethylmaleate).

As soon as the reactants are well mixed, temperature is raised to 90-91°C. The condensation reaction is carried out at that temperature and it takes approximately 3 hours to convert 75%-90% of the reactants. During the reaction the absolute pressure of the reactor is slowly reduced to 20 mmHg and most of the toluene is vaporized. At the end of this 3-hour period, the mixture is cooled to about 70-71°C and is pumped under flow control to an agitated falling film evaporator, where most unconverted reactants are vaporized (Temperature:150°C Pressure: 10-12 mmHg).

Crude product is collected in a vacuum surge tank fitted with a cooling coil. The recovered reactants are recycled to the next batch. The crude product is charged into an agitated vessel, with a sodium carbonate solution. The heterogeneous mixture is thoroughly mixed and the acidic impurities are washed out of the organic phase. The two phases are separated and the organics are subjected to a water wash.

The washed malathion is then steam-stripped at 25 mmHg and 50°C in the same agitated vessel.

When the stripping is complete, cooling water is circulated through the vessel jacket in order to cool the product.

The organics vaporized during the stripping operation are not recovered, but are sent to waste.

The dry purified malathion is pumped through a precoat filter and collected in a surge tank. The product is analyzed and finally charged into drums. In general, the product contains less than 0,5% diethyl fumarate.

The inside battery limits capital costs for a 2000 metric tons per year malathion plant is estimated at 1.72 million dollard (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital cost are summarized in Table 2.32.2. Specifications of the individual pieces of equipment are shown in appendix 3.3.

The cost of production of technical malathion (purity: 97% by weight) from this facility is estimated at 260.53 ¢ /kg. Component costs are shown in Table 2.32.3. The transfer price, including a 30% return on investment (before income taxes) and a 10% interest on working capital, is 306.73 ¢ /kg.

This is based on diethyl maleate and dithiophosphoric transfer prices calculated in the preceding chapters.

TABLE 2.32.2

INSIDE BATTERY LIMITS CAPITAL COST

MALATHION

2000 metric tons/yr

KUWEIT LOCATION - Third quarter of 1979

,	1000 US dollars
- Purchased equipment	478
- Equipment handling	32
- Concrete and steel	38
- Piping	206
- Instrumentation	100
- Electrical	74
- Insulation, paint and Misc.	46
- Buildings	225
- Direct cost	1199
- Engineering	120
- Field construction, overhead & Profi	t 240
- Base plant cost , ·	. 1559
- Contingencies (including contractors fee of 3%)	161
Inside battery limits capital cost	1720

TABLE 2.32.3

MALATHION PRODUCTION UNIT-SECTION 300 CAPITAL SUMMARY

CAPITAL SUMMARY				
BASIS		CAPITAL INV		\$ Million
-Location : KUWEIT Inside battery limits 1.72 Capacity Third quarter 1979 Outside battery limits 0.78				
-Capacity : Inird quar 2000 metric	tons per	Total fixed	investment	2.50
yr		Working Cap	ital•	1.74
-ON-Stream Time: 8,000 hours	per yr			
PRODUCT	ION COST	SUMMARY		
·	. Units	, Price	. Annuel .	Cents
RAW MATERIALS	per kg	• •	cost,\$M	per kg
Dimethyldithiophosphoric acid , kg	0,5004	157.38	1,575,100	•
Ethyl maleate, kg Solvents and Chemicals	0,5380	238.97	2,571,400	
Total raw materials			4,166,500	208.32
- UTILITES				
Steam, 150psig, metricton	0,0012	700,0	16,800	
Cooling water, m3	0,0429		900	
Glycol(-20°C),10 ⁶ kcal Power, KwH	0,0001 0,0346	7100,0 1,0	14,200 700	
Process water, m3	0,0004	19,0	200	
Total utilities		•	32,800	1,64
Labor, 10 men @\$16,000/	yr ₂ men	per shift	160,000	
Supervision,5 men @ \$22,00 Maint.,material &Labor 6 Total operating cost	00/yr1 man 5% of ISBI	per shift	110,000 103,200 373,200	. 18,66
OVERHEAD EXPENSES				20,00
Direct Overhead	40 %(lab		108,000	
General plant overhead			s 242,600	
Insurance, property taxe Depreciation	10 % tot	al invest.	37,500	
Total overhead expens	_	.di investo	250,000	-
· ·	,		638,100	31,91
BY-PRODUCT CREDIT			5,210,600	260,53
,				
Total by-produc	t cradit			
NET COST OF PRODUCTION			E 240 C00	260 53
Return on Investment 309 Interest on Working Capi Sales Expenses	% Total in tal 10% wo	nvestment orking capi	5,210,600 750,000 t. 174,000	260,53
TRANSFER PRICE 97% Techni	.cal produ	ict	6.134.600	306,73
(*equivalent to four months production costs)				
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PEV EST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT OU 1711 ISE SANS L'AUTORISATION FORITE DE C.D.I.				

OU UTILISE SANS L'AUTORISATION ECRITE DE C'DI

CHEM SYSTEMS INTERNATIONAL LTD.

The structure of the cost of production is presented in Table 2.32.4

TABLE 2.32.4

TECHNICAL MALATHION (97%)

COST OF PRODUCTION BREAKDOWN

- Raw materials	80.0 %
- Utilities	0.6.%
- Operating costs	7.2 %
- Overhead expenses	12.2 %
Total cost of production	100.0 %

The cost of production and the transfer price are not very sensitive to capital cost, since a 20% increase of the capital cost would only increase the cost of production of $4.58 \not \epsilon$ /kg (i.e. 1.8%) and the transfer price of $12.23 \not \epsilon$ /kg (i.e. 4.0%).

The cost of dimethyldithiophosphoric acid accounts for 30.2% of the cost of production and diethyl maleate accounts for 49.3 % of the cost of production.

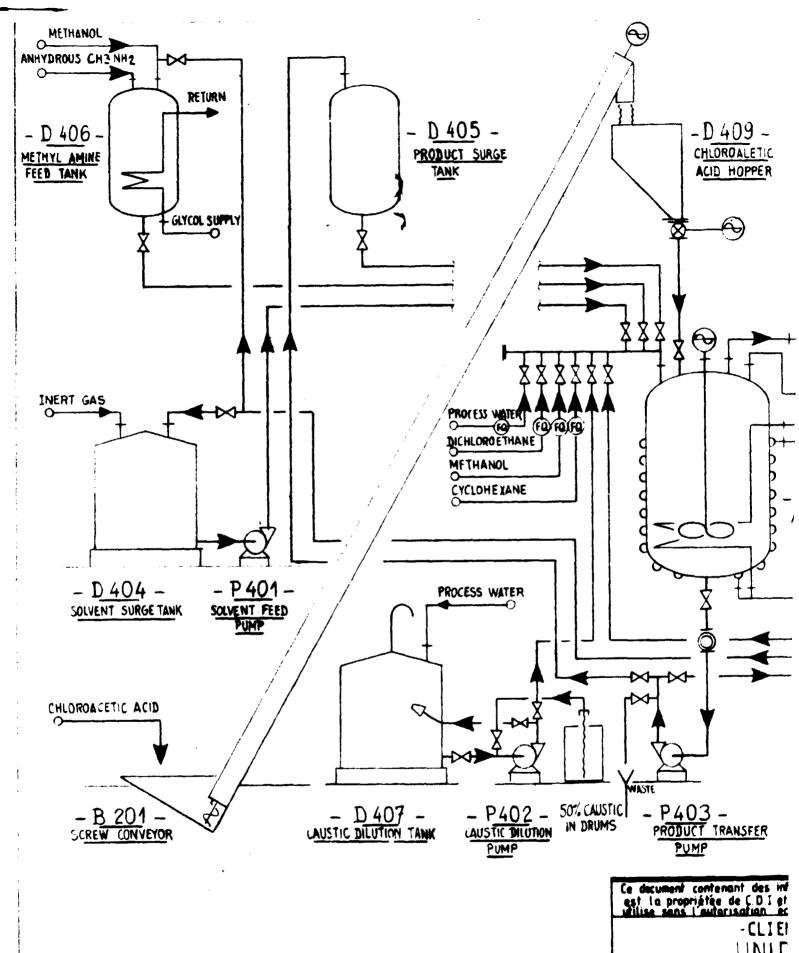
The most significant factors of the cost of production are, once again, the raw materials.

2.4 - N-METHYLCHLOROACETAMIDE

2.41 Background and Chemistry

N-methylchloroacetamide is one intermediate used in the production of Dimethoate.

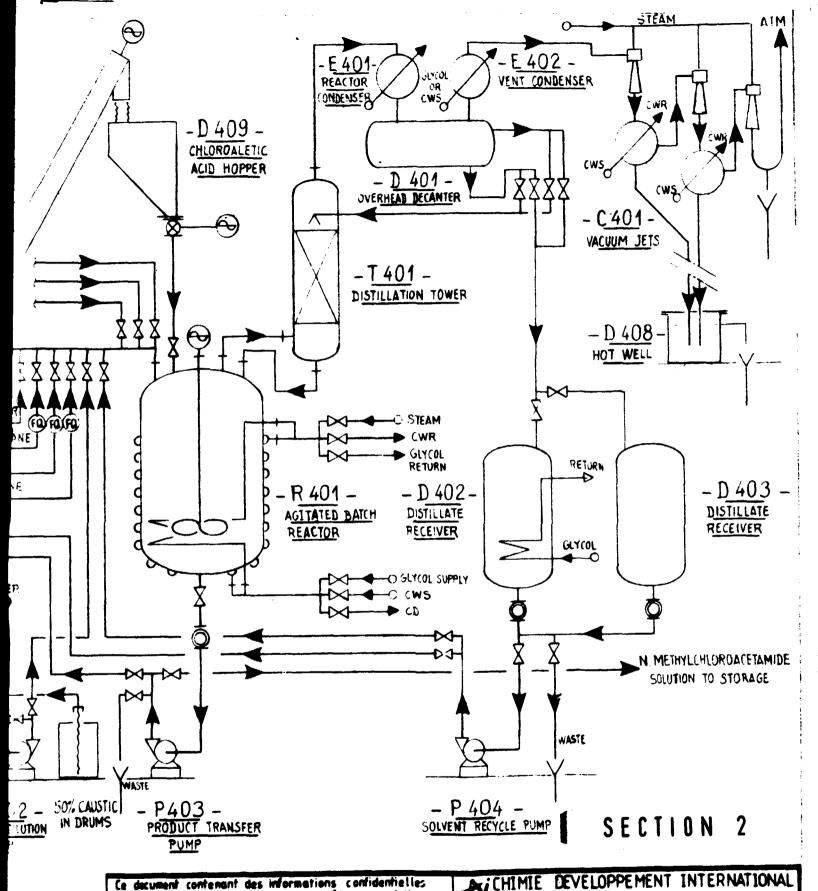
This compound is produced in a two-step process involving monochloroacetic acid, methanol and monomethylamine.


In the first step, monochloroacetic acid is esterified by methanol. This intermediate is then reacted with monomethylamine to form N-methylchloroacetamide. The reaction are shown below:

It should be noted that methanol is recycled and that the net consumption of methanol is only due to operational losses.

2.42 Process Design and Economics

Figure 6002-PX-400 is a flow sheet for the batch production of N-methylchloroacetamide. The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule. According to the following production schedule, a complete batch can be carried out in 36 hours with only one reaction train.


CHEM SYSTEMS INTERNATIONAL LTD.

SECTION

UNIC - UNIT

N. METHYL CH.

Ce document contenant des informations confidentielles est la propriétée de C.D.I et ne peut être reproduit ou utilise sons l'autorisation écrite de L.D.I	CHIMIE DEVELOPPEMENT INTERNATIONAL 42 rue Legendre PARIS 17º Tel 766-29-10 -
-CLIENT - UNIDO	SECTION 400_
- UNITE - N. METHYL CHLOROACETAMIDE	FIGURE 6002. PX. 400

E

TABLE 2.42.1

N-METHYLCHLOROACETAMIDE PRODUCTION SCHEDULE

Operation	Time	Item n°
 Cyclohexane and methanol are charged into reactor 	0.5 hr	R 401
 Monochloroacetic flakes and PTSA are charged into reactor 	1.0 hr	D409/R401
- Mixture is heated to its boiling point (50°C)	1.0 hr	R 401
- Mixture is kept boiling for 2 hours	2.0 hrs	R 401
 Methanolcyclohexane azeotrope is distilled off 	3.0 hrs	R 401
 Water-cyclohexane azeotrope is dis- tilled off 	1.5 hrs	R 401
 Heavy phase of methanol-cyclohexane azeotrope distilled previously is charged into reactor 	0.5 hr	R 401
- Mixture is heated and kept boiling	2.0 hrs	R 401
 Methanol-cyclohexane azeotrope is distilled off 	2.5 hrs	R 401
 Water-cyclohexane azeotrope is dis- tilled off 	0.5 hr	R 401
 Crude ester is cooled to 60°C or below 	2.0 hrs	R 401
 Dilute caustic solution is charged into reactor. The two phases are allowed to decant and the aqueous phase is discarded. 	2.0 hrs	R 401
 Process water and organic phase are charged under agitation into reactor. The two phases are allowed to decant and the aqueous phase is discarded. 	2.0 hrs	R 401
- Organic phase is charged into reactor	0.5 hr	R 401
 Excess cyclohexane is distilled off at 80°C 	2.0 hrs	R 401
- Ester is cooled from 80°C to -10°C	4.0 hrs	R 401
 Methanol monoethylamine mixture is charged into reactor. Temperature is kept below O°C 	2.0 hrs	R 401
- Reaction mixture is kept at 0°C	0.5 hr	R 401
- Excess methanol is distilled off	3.0 hrs	R 401

TABLE 2.42.1 (cont'd)
N-METHYLCHLOROACETAMIDE PRODUCTION SCHEDULE

Operation	Time	Item n°
- Unreacted ester is distilled under	r 1.0 hr	R 401
- Product is cooled	1.0 hr	R 401
 Dichloroethane is charged into reactor- cooling is maintained 	1.0 hr	R 401
 N-methylchloroacetamide solution is pumped to storage 	0.5 hr	R 401

Fresh/recovered cyclohexane and methanol are charged into an agitated, jacketed stainless steel reactor. Monochloroacetic acid flakes and p-toluene sulfonic acid (PTSA-esterification catalyst) are added to the solvents. Steam is opened into the jacket and reaction mixture is heated to its boiling point. In order to reach high ester yields, water produced by the reaction has to be removed. Unfortunately, the methanol/methyl-chloroacetate/water.azeotrope has a lower boiling point than the cyclohexane/water azeotrope. Therefore, it is necessary to distill the cyclohexane/methanol binary first and then the cyclohexane/water azeotrope. In practice, this procedure is carried out two times in a row and conversion yields (based on monochloroacetic acid) higher than 90% are achieved.

When the yield is high enough, the reaction mixture is cooled by circulating cooling water through the reactor jacket. The acid esterification catalyst (PTSA) is then removed by contact with a dilute caustic solution. The neutralized organic phase is water washed and excess cyclohexane is distilled off under slight vacuum to keep the temperature below 80°C.

The temperature of methyl chloroacetate is then reduced to minus 10°C by circulating a cold glycol solution through the reactor jacket. Monomethylamine in solution in methanol is slowly added with stirring over a period of about 2 hours. During the methylamine addition the batch temperature is kept between minus 5°C and 0°C.

The reaction mixture is kept below 0°C for 30 additional minutes. Excess methanol and unreacted ester are distilled off under vacuum (17 mmHg at a maximum temperature of 115°C) and N-methylchloroacetamide is slightly cooled).

Dichloroethane is added to the reactor and the resulting solution is cooled to 50°C or below by circulating cooling water through the jacket.

Finally, the N-methylchloroacetamide solution is transfered to storage.

The inside battery limits capital costs for a 1700 metric tons per year N-methylchloroacetamide plant is estimated at 1.76 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter of 1979. The components of the capital cost are summarized in Table 2.42.2. Specifications of the individual pieces of equipment are shown in appendix 3.4

The cost of production of N-methylchloroacetamide from this facility is estimated at 181.81 \not /kg. Component costs are shown in Table 2.42.3. The transfer price including a 30% return on investment (before income taxes) and a 10% interest on working capital, is 232.86 \not /kg.

This is based on a monochloroacetic acid cost of 90 $\not\in$ /kg and on a monomethylamine cost of 80 $\not\in$ /kg.

The structure of the cost of production is presented in Table 2.42.4

TABLE 2.42.2

INSIDE BATTERY LIMITS CAPITAL COSTS

N-METHYLCHLOROACETAMIDE

1700 metric tons/yr

KUWEIT LOCATION - Third quarter of 1979

_1	1000 US Dollars
- Purchased equipment	582
- Equipment handling	32
- Concrete and steel	44
- Piping	163
- Instrumentation	76
- Electrical	64
- Insulation, paint à Misc.	51
- Buildings	218
- Direct cost	1230
- Engineering	123
- Field construction, overhead & Profit	246
- Base plant cost	1599
- Contingencies (including contractors fee of 3%)	160
Inside battery limits capital cost	1759

TABLE 2.42.3

N- METHYLCHLOROACETAMIDE PRODUCTION UNIT- SECTION 400

CAPI	TAL SUMMAR	SA		
BASIS		APITAL IN		Million
-Location : KUWEIT			tery limits	1.76
	ter 1979 (Outside ba	ttery limits	0.79
1700 metric		otal fixed orking Cap	d investment	2.55 1.03
yr -ON-Stream Time: 8,000 hours		orking ca	pitai	1.03
PRODUCT	CION COST S	SUMMARY		
·			_	
. RAW MATERIALS	, Units per kg	, Price ¢/unit	.Annuel cost, \$M	Cents per kg
Monochloroacetic acid, kg	1.0124	90.0	1,549,000	•
Monomethylamine;kg	0.364	80.0	495,100	
Catalyst, solvents and			169,900	
chemicals				
Total raw materials			2,214,000	130.24
UTILITES				
Steam, 150psig, metricton	0.0035	700.0	41,700	
Cooling water, m3	0.1339	1.0	2,300	
Glycol(-20°C), 10 ⁶ kcal	. 0.0006		72,500	
Power, kwh	0.0620	1.0	1,100	
Process water, m3	0.0010	19.0	400	
Total utilities		•	118,000	6,94
OPERATING COSTS				
Labor, 7,5 men @\$16,000	/yr 1,5men	per shift	120,000	
Supervision, 1man @\$22,00	00/yr1 man		22,000	
Maint., material & Labor	6% of ISBL		105,600	
Total operating cost			247,600	14,57
OVERHEAD EXPENSES				
Direct Overhead	40 %(labo	or&sup.)	56,800	
General plant overhead				
Insurance, property taxe				
Depreciation		al invest.	<u> </u>	_
Total overhead expens	ses		511,100	· · · · · · · · · · · · · · · · · · ·
TOTAL COST OF PRODUCTION	•		3,090,700	181,81
BY-PRODUCT CREDIT				
Total by-produc	t credit			
NET COST OF PRODUCTION			3,090,700	181,81
Return on Investment 30	% Total in	vestment		
Interest on Working Capi Sales Expenses -	ital 10% wo	rking capi	765,000 103,000	
TRANSFER PRICE			3,958,700	232,86
(*equivalent to four months production costs)				
		~~~~		
CE SCHEMA CONTENANT DES INFORMATIONS EST LA PROPPIETE DE CDI ET NE PEUT ET	CONFIDENTIELLE	PAGE		UMERO PEV
OU LITILISE SANS LAUTORISATION ECRITE		j j	6002	1

OU UTILISE SANS L'AUTORISATION ECRITE DE C'DI

TABLE 2.42.4

N-METHYLCHLOROACETAMIDE

COST OF PRODUCTION BREAKDOWN

• Raw materials	71.6 %
. Utilities	3.8 %
• Operating costs	8.0 %
• Overhead expenses	16.6 %
Total cost of production	100.0 %

The cost of production and the transfer price are not very sensitive to capital cost, since a 20% increase of the capital cost would only increase the cost of production of $5.5 \ d$ /kg (i.e. 3.0%) and the transfer price of $14.69 \ d$ /kg (i.e. 6.3%)

The cost of monochloroacetic acid accounts for 50.1% of the cost of production and monomethylamine accounts for 16.0% of the cost of production.

The most significant factors of the cost of production are the raw materials.

2.5 - DIMETHOATE

2.51 Background and Chemistry

Dimethoate or 0,0 dimethyl S-carbamoylmethyl phosphorodithioate is a systemic and contact insecticide.

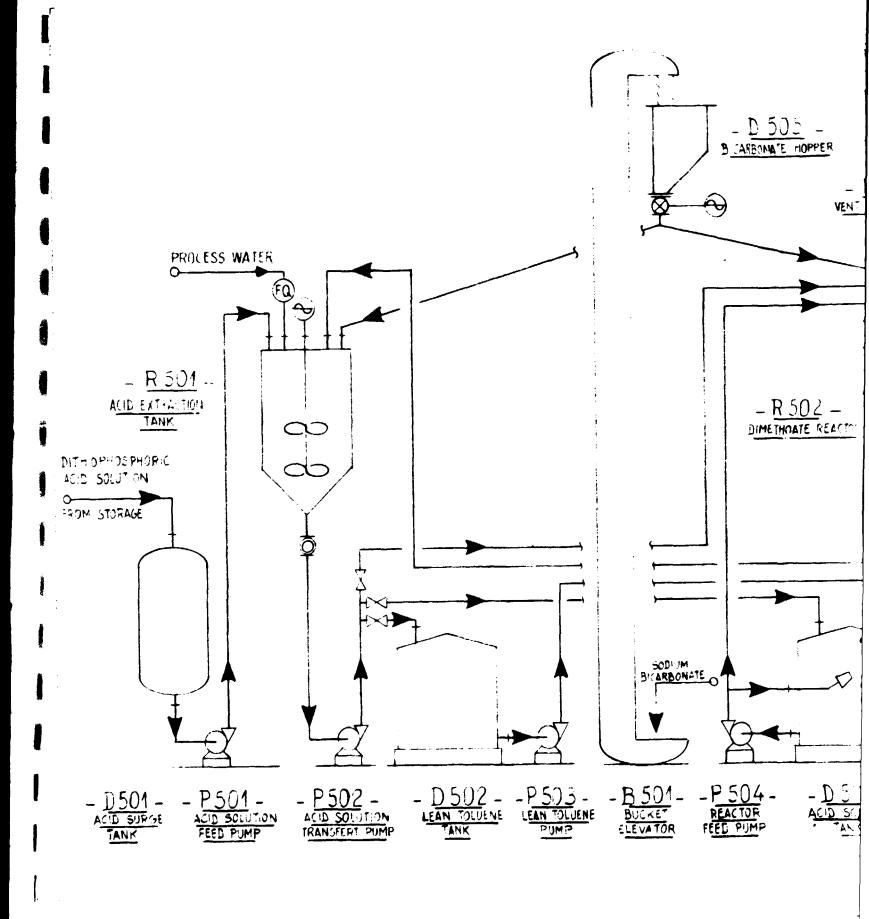
It is a white solid (m.p. 51-52°C) moderately soluble in water. Dimethoate was developed by American Cyanamid and Montecatini which are important producers.

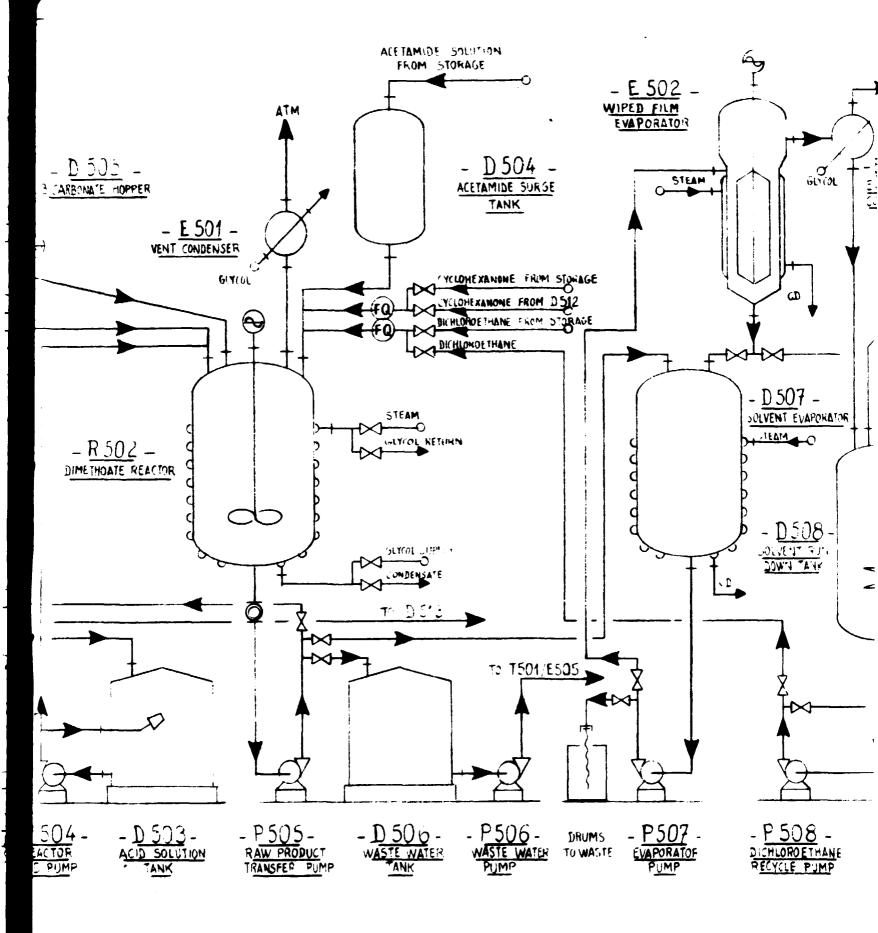
Dimethoate is produced by reacting the sodium salt of 0,0 dimethylphosphorodithica acid with N-methylchloroacetamide:

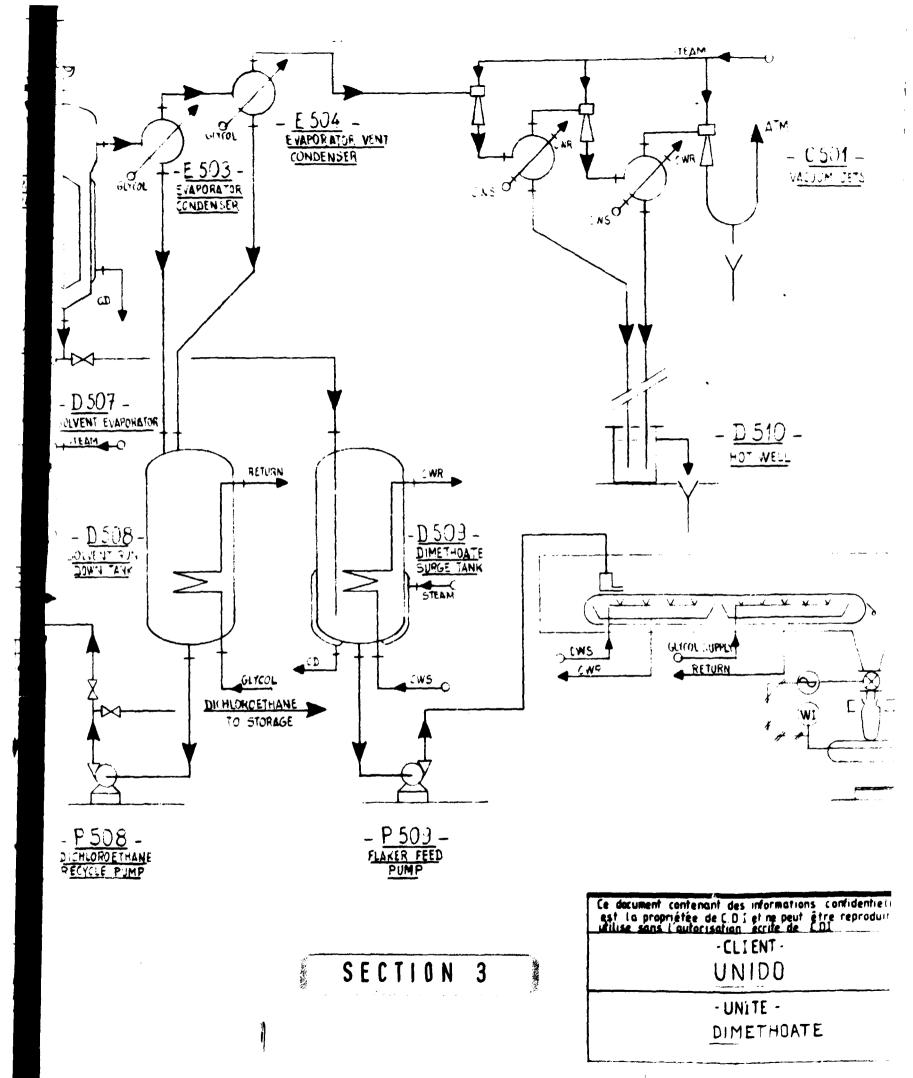
Sodium salt of N-O,Odimethyldi-chiophosphoric acid

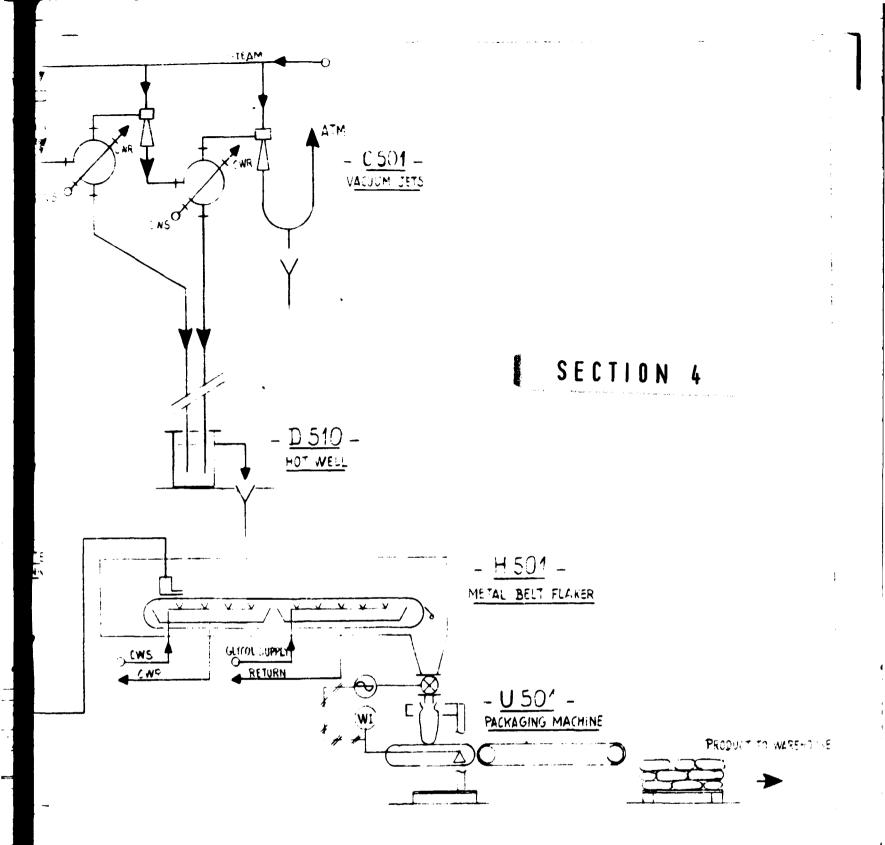
N-methylchloroacetamide Dimethoate

In theory, the reaction is very simple, but in practice dimethoate may react further with sodium dimethylphosphorodithioate to yield O,O,S-trimethylphosphorodithioate. The result is a low yield and a product difficult to purify.

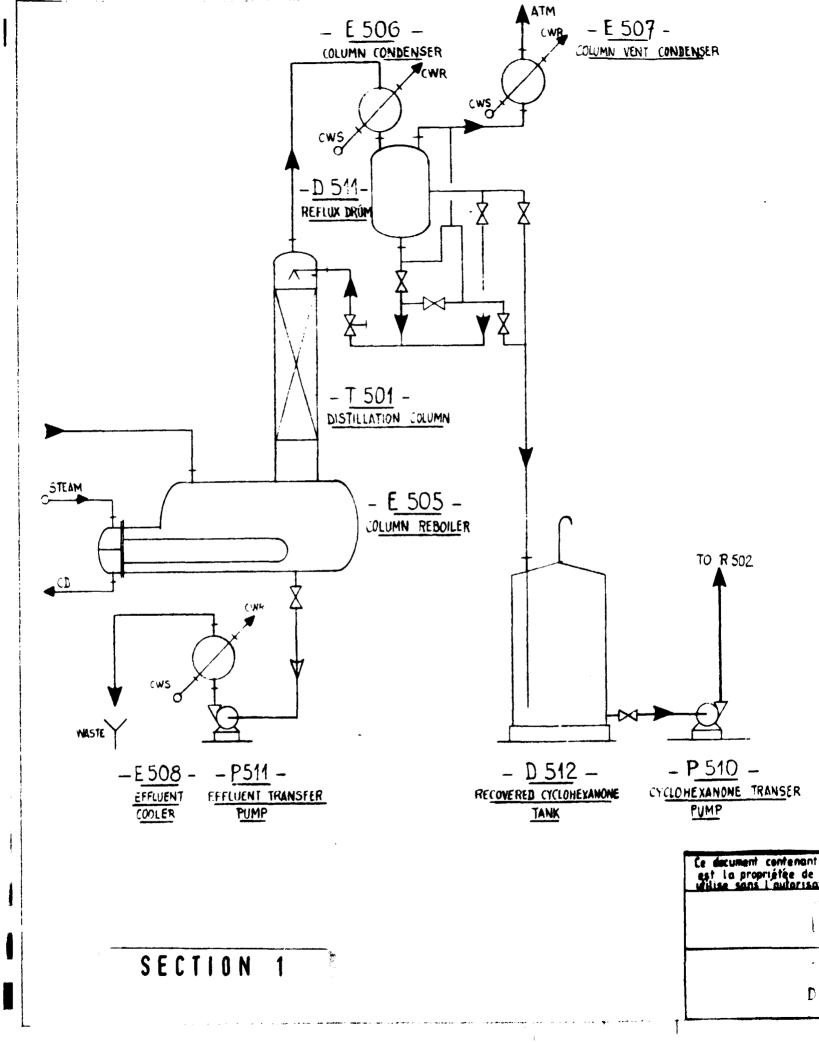

In order to minimize this problem, various @mpanies (American Cyanamid, Fisons) have developed two phase reaction system, whereby the dimethoate is extracted into the organic phase as it is formed.

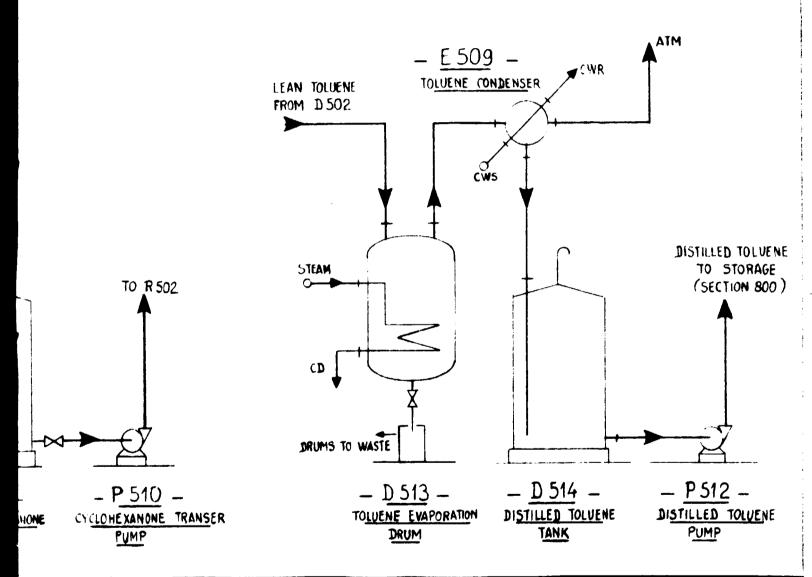

Various water immiscible solvents and/or solvent mixtures have been used, however, a chlorinated solvent/cyclohexanone mixture was selected because it seems to give satisfactory yields (see U.S.Patent 2,959,608-1960).


2.52 Process Design and Economics


Figure 6002-PX-500 A/B is a flow sheet for the batch production of technical dimethoate (90% purity) by the reaction of N-methylchloroacetamide with 0,0 dimethyldithiophosphoric acid.

The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule. According to the following production schedule, one batch can be carried out in 12 hours.





Ce document contenant des informations confidentielles est la propriétée de CDJ et ne peut être reproduit ou utilise sons l'autorisation ecrité de CDJ	CHIMIE DEVELOPPEMENT INTERNATIONAL 42 rue Legendre PARIS 17° Tel 766-29-10
-CLIENT - UNIDO	SECTION 500
- UNITE - DIMETHOATE	FIGURE 6002 - PX - 500 A

Ce decument contenant des informations confidentielles est la propriétée de C.D.I et ne sout être reproduit ou utilise sons l'autorisation acribe de C.D.I	CHIMIE DEVELOPPEMENT INTERNATIONAL 42 rue Legendre PARIS 17º- Tel 766 - 29 -10 -
-CLIENT - UNIDO	SECTION 500
- UNITE -	FIGURE
DIMETHOATE	6002-PX 500 B

TABLE 2.52.1 TECHNICAL DIMETHOATE PRODUCTION SCHEDULE

Operation	Time	Item n°
 Dithiophosphoric acid solution is charged into extraction tank 	0,5 hr	R 501
 Pirst extraction:process water is added to acid solution; acid is extracted from organic phase; aqueous phase is transferred to surge tank 	2,0 hrs	R 501/D503
 Second extraction: same procedure as first extraction 	2,0 hrs	R501/D503
 Third extraction: same procedure as first extraction 	2,0 hrs	R501/D503
 Rich aqueous phase and sodium bi- carbonate are charged into reactor 	1,0 hr	R 502
 Dichloroethane, cyclohexanone and chloroacetamide solution are added to reactor 	0,5 hr	R 502
 Reaction mixture is heated to 55°C 	1,5 hrs	R 502
- Temperature is maintained at 55°C	3,0 hrs	R 502
- Reaction mixture is cooled to 20°C	1.5 hrs	R 502
 Agitation is stopped-the two phases are allowed to decant 	1,0 hr	R 502
 Aqueous phase is pumped to surge tank; organic phase is added to extraction tank containing a sodium bicarbonate solution 	1,0 hr	R502/R501
 Organic phase is washed by bicarbo- nate solution— organic phase is pum- ped back to reactor containing process water 	2.5 hrs	R501/R502
 Organic phase is water washed in reactor. Aqueous phase is pumped to surge tank; organic phase is trans- fered to solvent evaporator 	2.0 hrs	R502/D507
 Crude product is heated up and vacuu pump is started. 	m 1,0 hr	D507/C501
 Solvents are distilled off under vacuum 	4,0 hrs	D507/D503
 Final traces of solvents are distil- led off and molten product is pumped to metal belt flaker 	•	D507/D509/ H501

The extraction, the reaction and the concentration steps are carried out in parallel.

The O,O dimethyldithiophosphoric acid solution is extracted three times with process water. The resulting normal acid solution is mixed with sodium bicarbonate so as to keep the pH of the aqueous phase in the range 3,5-10 during the reaction. N-methylchloroacetamide and dichloroethane containing 10% by volume of cyclohexanone are added to the reactor containing the rich aqueouse phase. The mixture is heated to 55°C and maintained at 55°C for three hours.

The two phases are cooled to 20°C and are allowed to decant. The lean aqueous phase is pumped into a surge tank prior to solvent recovery. The organic layer is washed with a saturated aqueous sodium bicarbonate and with water. The aqueous phases are transfered to the waste water surge tank and the organic phase is pumped to the solvent evaporator.

The organics are recirculated on a wiped film evaporator and the solvents are distilled off under vacuum. The resulting molten product is collected in the dimethoate surge tank and pumped to the flaking/packaging system.

After extraction, the lean toluene is vaporized, recovered in the distilled toluene tank and pumped to storage. Cyclo-hexanone is recovered from the various aqueous phases in a batch distillation column consisting of a steam heated kettle reboiler, packed column and overhead condensation equipment. The recovered cyclohexanone is collected in a surge tank for recycle to the next batches.

The inside battery limits capital costs for a 2500 metric tons per year technical dimethoate (dimethoate content 90% weight) plant is estimated at 3.78 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital costs are summarized in Table 2.52.2. Specifications of the individual pièces of equipment are shown in appendix 3.5.

TABLE 2.52.2

INSIDE BATTERY LIMITS CAPITAL COSTS

DIMETHOATE

2500 metric tons/yr

KUWEIT LOCATION - Third quarter of 1979

	1000 US Dollars
- Purchased equipment	1170
- Equipment handling	70
- Concrete and steel	99
- Piping	374
- Instrumentation	199
- Electrical	152
- Insulation, paint & Misc.	95
- Buildings	480
- Direct cost	2639
- Engineering	264
- Field construction, overhead & Profit	528
- Base plant cost	3431
- Contingencies (including contractors fee of 3%)	344
Inside battery limits capital cost	3775

TABLE 2.52.3

DIMETHOATE PRODUCTION UNIT- SECTION 500

CAPITAL SUMMARY

1			
BASIS		CAPITAL INVESTMENT	\$ Million
-Location	:	KUWEIT Inside battery limits	3.78
-Capacity		Third quarter 1979 Outside battery limits 2500 metric tons perTotal fixed investment vr Working Capital*	1.59 5.37 3.24
-ON-Stream	Time:	8,000 hours per yr	
}		PRODUCTION COST SUMMARY	

. RAW MATERIALS	Units per kg	, Price ∉/unit	Annuel cost,\$M	Cents per kg
O,O dimethyldithiophosphoric acid, kg N-methylchloroacetamide,kg Solvents and chemicals	0.8219 0.6710	157.38 232.86	3,233,800 3,906,300 544,400	
Total raw materials			7,684,500	307.38
- UTILITES				
Steam, 150psig, metricton Cooling water, m3 Glycol(-20°C), 10 ⁶ kcal Power, kwh Process water, m3	0.0072 0.1965 0.0011 0.1148 0.0066	700.0 1.0 7100.0 1.0 19.0	126,000 5,000 195,300 2.900 3.200	
Total utilities		•	332,400	13,30
Labor, 15 men @\$16,000/y	r 3 men	per shift	240,000	
Supervision,5 men @ \$22,000 Maint., material & Labor 6% Total operating cost)/yr1 man 6 of ISBI	per shift	110,000 226,800 576,800	23.07
General plant overhead (Insurance, property taxes	55 % Ope 1.5% tot	or&sup.) rating cost al invest. al invest.	140,000 375,000 30,600 537,000	
Total overhead expense	s		1,132,600	45.30
BY-PRODUCT CREDIT	•		9,726,300	389.05
Total by-product	credit			
NET COST OF PRODUCTION Return on Investment 30% Interest on Working Capit Sales Expenses	Total in	nvestment orking capi	9,726,300 1,611,000 t. 324,000	389.05
TRANSFER PRICE 90% techni	cal prod	uct	11,661,300	466,45
(*equivalent to four months	product	ion costs)		

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT OU UTILISE SANS L'AUTOPISATION ECRITE DE C'DI

AGE

AFFAIRE

NUMERO P

REV

The cost of production of technical dimethoate (90% purity) from this facility is estimated at 389.05 ¢ / kg. Component costs are shown in Table 2.52.3. The transfer price, including a 30% return on investment (before income taxes) and a 10% interest on working capital, is 466.45 ¢ /kg. This is based on the transfer prices of 0,0 dimethyldithiophosphoric acid and of N-methylchloroacetamide, calculated in the preceding chapters.

The structure of the cost of production is presented in Table 2.52.4.

TABLE 2.52.4

TECHNICAL DIMETHOATE

COST OF PRODUCTION BREAKDOWN

. Raw materials	79.0
• Utilities	3.4
. Operating costs	5.9
. Overhead expenses	11.7
Total cost of production	100,0 %

The cost of production and the transfer price are not very sensitive to capital cost, since a 20% increase of the capital cost would only increase the cost of production of $7.9 \ d$ /kg (i.e. 2%) and the transfer price of $21.0 \ d$ /kg (i.e. 4.5 %).

The cost of 0,0 dimethyldithiophosphoric acid accounts for 33,2% of the cost of production and N-methylchloroacetamide for 40,2% of the cost of production. These raw materials are indeed the most significant factors of the cost of production.

2.6 - MANEB/ZINEB

2.61 Background and Chemistry

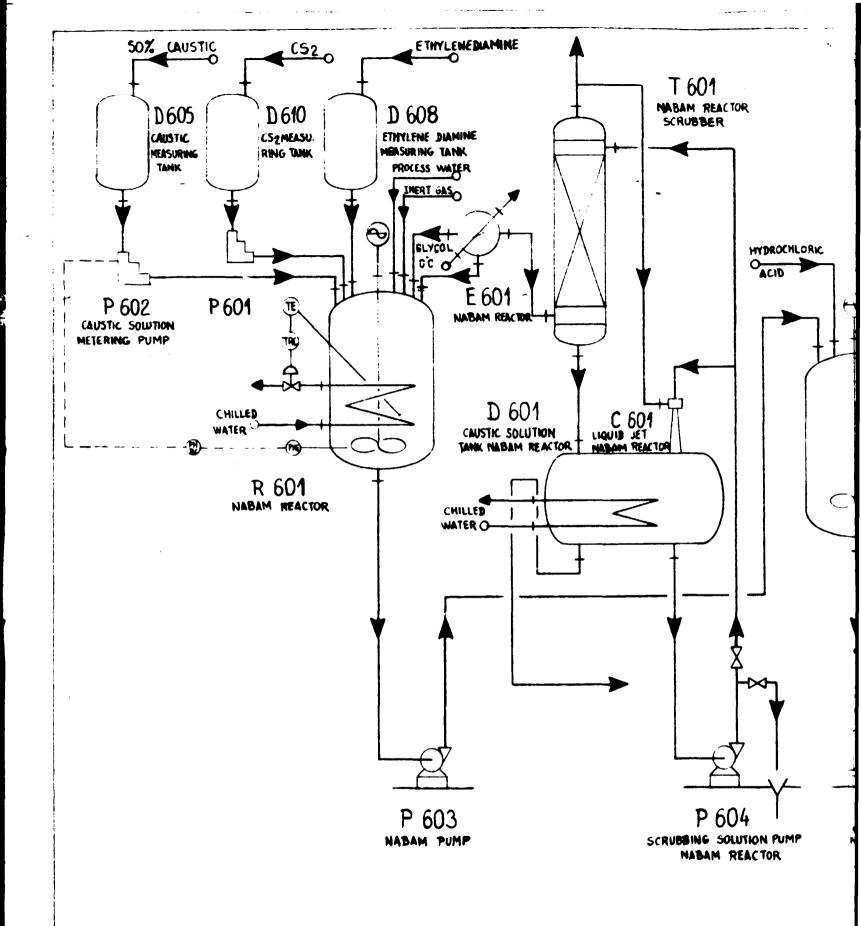
Ethylene bis-dithiocarbamates (EBDC) fungicides are one of the older classes of organic fungicides, having been developed by Rohm and Haas in the late 1940's. These fungicides are salts of a dithiocarbamate produced by reacting one mole of ethylene diamine and two moles of carbon disulfide. The most important EBDC salts are zinc (Zineb), manganese (Maneb) and the manganese/zinc complex (Mancozeb).

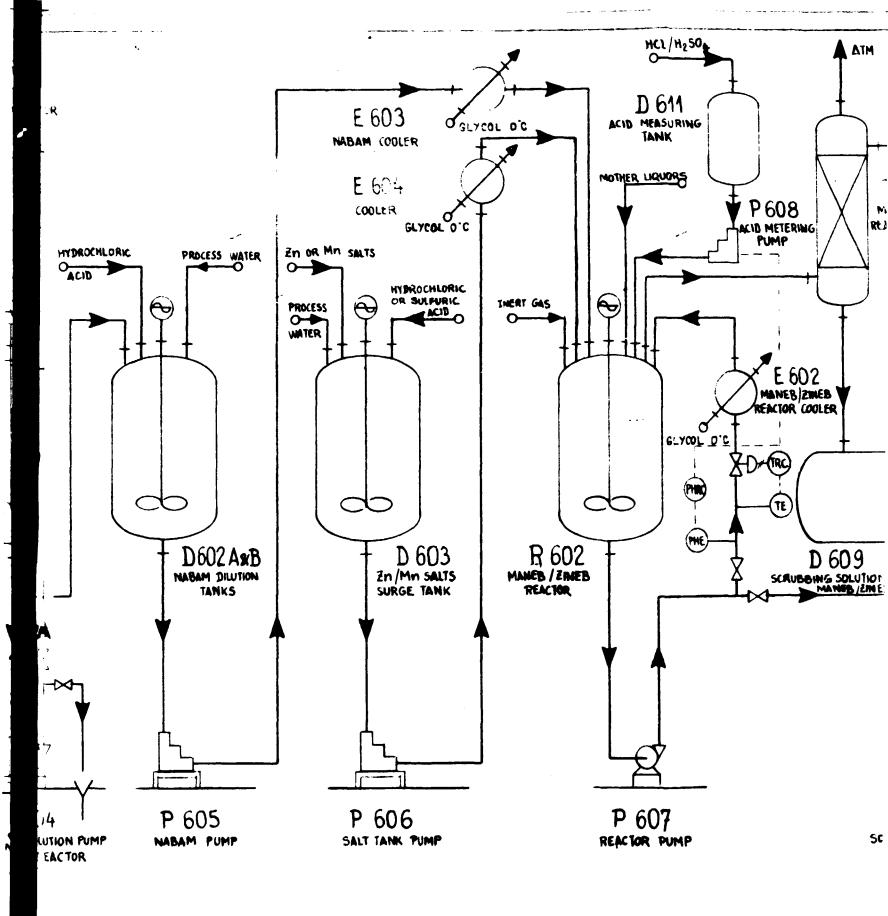
EBDC manufacture involves (1) preparation of the sodium salt of EBDC (Nabam) by the reaction of ethylene diamine, carbon disulfide and caustic soda and (2) preparation of the desired zinc, manganese or other EBDC salt by reaction of sodium EBDC with a soluble salt containing the desired cation.

The reaction equation for the initial step is as follows:

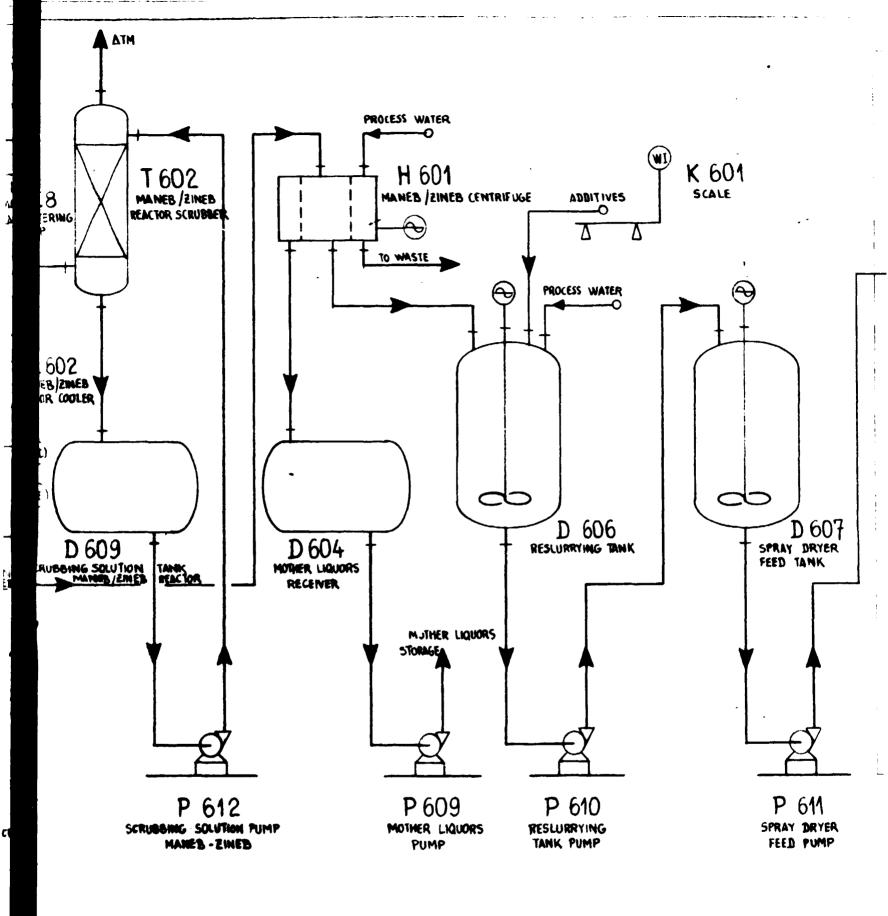
$$CH_2-NH_2$$
 + 2CS₂ + 2 NaOH - CH₂-NH-C-S-Na + 2H₂O CH_2-NH_2 CH₂-NH-C-S-Na S

ethylene diamine Nabam

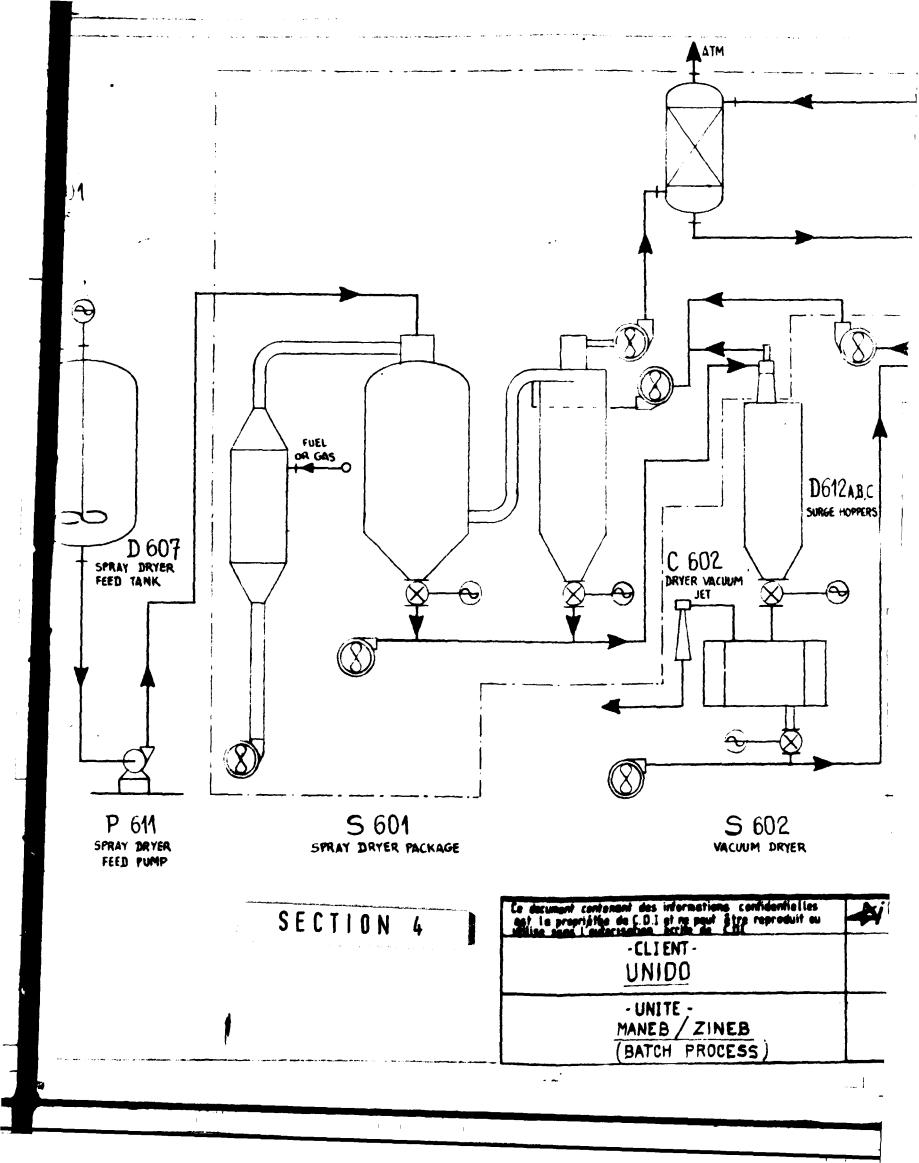

The reaction equation for the final steps are as follows:


The overall Maneb/Zineb production process is fairly straightforward, however the stability and purity of the products are greatly improved if the temperature and the pH of the reaction mixtures are closely controlled.

2.62 Process Design and Economics


Figure 6002-PX-600 is a flowsheet for the batch production of Zineb (or Maneb) from ethylene diamine, carbon disulfide and zinc chloride (or Manganese sulfate). The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule. According to the following production schedule, one batch can be carried out in 15 hours.

CHEM SYSTEMS INTERNATIONAL LTD.



1

V

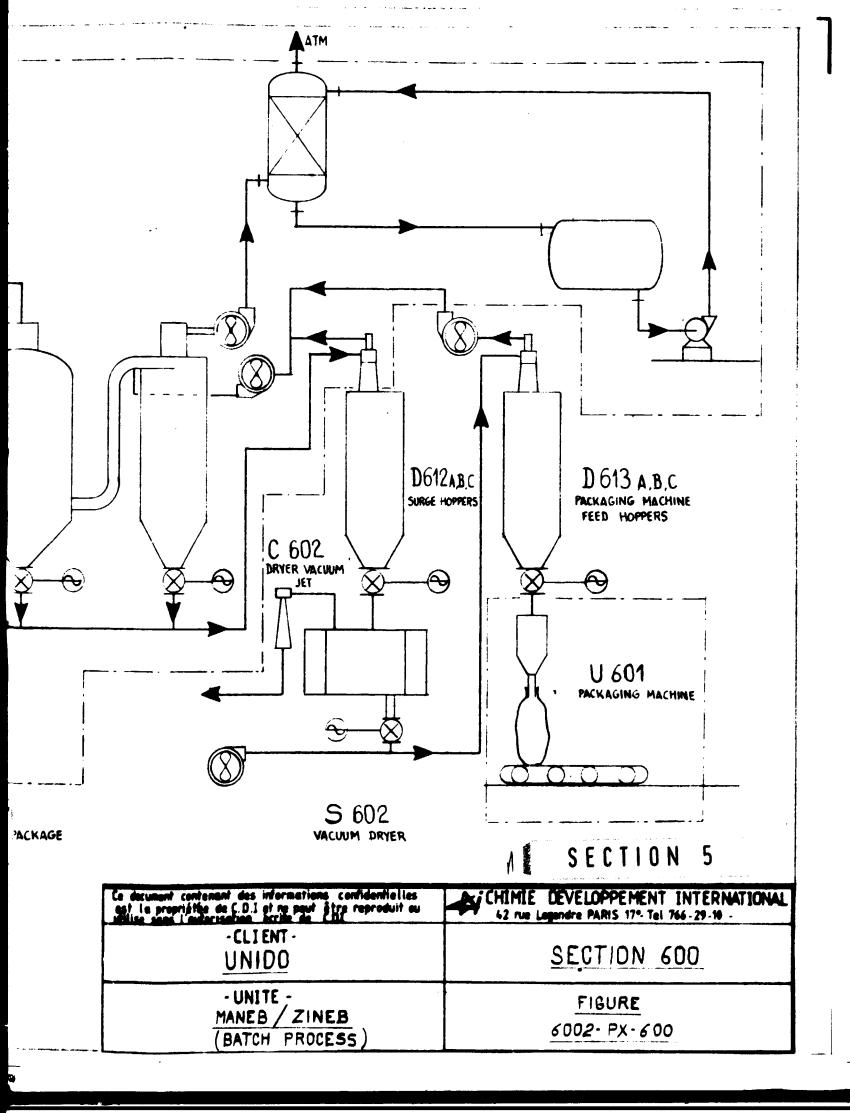


TABLE 2.62.1

ZINEB PRODUCTION SCHEDULE

Operation	Time	Item n°
 Ethylene diamine is charged into nabam reactor 	0.5 hr	R 601
- Water is added to ethylene diamine	0.5 hr	R 601
- Mixture is heated to 45°C	2.0 hrs	R 601
 Carbon disulfide is added to mix- ture until pH 9.3 (variation from 12.1 to 9.3) 	1.0 hr	R 601
 Caustic solution and carbon disul- fide are simultaneously added to mixture. pH is kept between 9.4 and 9.6 and temperature between 40 and 45°C. 	5.0 hrs	R 601
- pH is adjusted to 10.8	0.5 hr	R 601
 Excess carbon disulfide is strip- ped by nitrogen 	I.O hr	R 601
 Suspension of Nabam is cooled to 25° C 	2.5 hrs	R 601
 Cold suspension is transfered to dilution tanks. (the zinc or manga- nese salt solution is prepared during the nabam reaction in D603) 	1.0 hr	R 601/D602 A or B
 Mother liquors from a preceding batch are charged into Maneb/Zineb reactor 	1.0 hr	R 602
 pH of mixture is adjusted by a small amount of salt solution 	1.0 hr	R 602
- Zn (or Mn) salt solution and nabam solution are added to agitated mixture simultaneously. pH is kept between 2.8 and 3.4 and temperature between 26.5 and 28.5°C.	2.0 hrs	R 602
 Mixture is kept under the same con- ditions for 2 more hours 	2.0 hrs	R 602
 Zineb (or Maneb) crystals are recovered and water washed in a basket centrifuge. Wet cake is reslurried in reslurrying tank 	9.0 hrs	R602-H601 D606
 Zineb (or Maneb) suspension is pum- ped to spray dryer feed tank 	1.0 hr	D606/D607
 Product is pre-dried in spray dryer, dried is vaccum dryer and transfered to packaging machine 		ous operation

Ethylene diamine is charged into an agitated carbon steel reactor fitted with a heating/cooling coil. Process water is added to the reactor in order to get a 40.5% aqueous solution. The aqueous solution is heated to 40-45°C and carbon disulfide is added with good agitation. pH of solution drops from an initial level of 12.1-13.0 to about 9.3. At that point, 50% caustic and carbon disulfide are added simultaneously, the relative rates of addition being adjusted to maintain the pH of the reaction mixture at about 9.3.

During the addition, the temperature of the reaction mixture is kept at 40-45°C by circulating chilled water through the cooling coil.

A small amount of sodium hydroxide is then added to raise the pH to a final level of about 10.8.

During the reaction, crystals of disodium ethylene bis-dithiocarbamate hexahydrate precipate.

Traces of unreacted carbon disulfide are stripped by nitrogen and suspension is cooled to 25°C to precipitate more crystals.

The overall yield of nabam (in solid and liquid phases) is essentially quantitative.

The nabam suspension is pumped to an agitated tank where the solids concentration is adjusted to 20%.

The Zinc chloride solution (or the manganese sulfate solution) is prepared in a rubber lined agitated vessel.

The Zineb (or Maneb) mother liquors from a preceding batch are charged into an agitated, rubber lined reactor.

Zinc chloride solution and hydrochloric acid are added to the reactor in order to adjust the pH of the mixture (pH 3 to 5).

The disodium ethylene bis-dithiocarbamate hexahydrate suspension and the zinc chloride solution are added practically simultaneously (zinc chloride solution is slightly ahead of EBDC suspension) in order to have the reactants in substantially stoichiometrically equivalent amounts.

During the precipitation, the pH is controlled between 2.5 and 5 by addition of an aqueous hydrochloric solution.

Throughout this operation the temperature is maintained at 26-30°C.

The white zinc ethylene bis-dithiocarbamate precipitate is allowed to remain in the reaction mass for an additional 0.5 to 2 hours under the same operating conditions.

The precipitate is recovered in a basket centrifuge and water washed until the filtrate contains less than 0.1% of sodium salt.

The wet cake is then resourried in water; the solids content of the suspension is about 40%.

This suspension is transferred to the spray drying feed tank and pumped continuously to the spray dryer.

The air heater is gas or fuel fired and the hot air temperature is around 300°C. In order to minimize the risk of explosion in the spray dryer, the moisture content of the predried solids is kept at 10% or above.

The solids are pneumatically conveyed to surge hoppers installed above a vacuum drying system.

Finally, Zineb (or Maneb) crystals are vacuum dried batchwise to a water content of 0.2%.

The dry products are pneumatically conveyed to the packaging machine feed hoppers and transferred to an automatic bagging machine.

The battery limits capital costs for a 1000 metric tons per year Zineb (or Maneb) plant is estimated at 4,27 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital cost are summarized in Table 2.62.2. Specifications of the individual pieces of equipment are shown in appendix 3.6.

TABLE 2.62.2

INSIDE BATTERY LIMITS CAPITAL COST

MANEB/ ZINEB

1000 metric tons/yr

KUWEIT LOCATION - Third quarter of 1979

	1000 US Dollars
- Purchased equipment	1 460
- Equipment handling	80
- Concrete and steel	110
Piping	438
- Instrumentation	190
- Electrical	161
- Insulation, paint & Misc.	95
- Buildings	453
- Direct cost	2 987
- Engineering	299
- Field construction, overhead & profit	597
- Base plant cost	3 883
 Contingencies (including contractors fee of 3%) 	387
Inside Battery Limits Capital Cos	4 270

TABLE 2.62.3

MANEB/ZINEB PRODUCTION UNIT- SECTION 600 CAPITAL SUMMARY

CAPITAL SUMMARY						
,	-Location : KUWEIT Inside battery limits 4,27					
-Capacity: Third quarter 1979 Outside bat 1000 metric tons perTotal fixed	tery limits					
yr Working Cap		6,07 1,04				
-ON-Stream Time: 8,000 hours per yr		1,04				
PRODUCTION COST SUMMARY : ZINEB						
·						
. RAW MATERIALS , Units , Price per kg #/unit	.Annuel .cost,\$M	Cents per kg				
Carbon disulfide,kg 0,543 33,o	179,190	·				
Ethylene diamine, kg 0,212 246,0	521,520					
Zinc chloride, kg 0,469 92,0 Chemicals and additives	431,480 95,120					
	73,120					
Total raw materials	1,227,310	122,73				
UTILITES						
Steam. 150psig.metricton 0,00012 700,0	840					
Glycol (0°C), 106kcal 0,00047 3550,0	16,690					
Power, KWH 0,6550 1,0	6,550					
Process water, m3 0,0150 19,0 Fuel, 106kcal 0,0017 800,0	2,850 13,600	ļ				
1 461, 10 8641						
Total utilities	40,530	4,05				
Labor, 15 men @\$16,000/yr 3 men per shift	240,000	-				
Supervision,5 men @\$22,000/yr1 man per shift	110,000					
Maint., material & Labor 6% of ISBL 256,200 606,200 60						
-	000,200	60,62				
OVERHEAD EXPENSES Direct Overhead 40 %(labor&sup.)	140,000					
Direct Overhead 40 %(labor&sup.) 140,000 General plant overhead 65 % Operating costs 394,030						
Insurance, property taxes 1.5% total invest. 91,050						
Depreciation 10 % total invest. 607,000						
Total overhead expenses	1,232,080	123,21				
TOTAL COST OF PRODUCTION	3,106,120	310,61				
BY-PRODUCT CREDIT	3, 100, 120	310,01				
		!				
Total by-product credit						
NET COST OF PRODUCTION	3,106,120	310,61				
Return on Investment 30% Total investment	•					
Interest on Working Capital 10% working capit. 104,000 Sales Expenses						
TRANSFER PRICE 92% technical product 5,031,120 50						
(*equivalent to four months production costs)						
CF SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERS REV						
THE A MONORIUSE OF COLUMN OF HE STATE CEROMONIS	6002	70 76 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

OU UTILISE SANS L'AUTORISATION ECRITE DE C'DI

TABLE 2.62.4

MANEB/ZINEB PRODUCTION UNIT- SECTION 600 CAPITAL SUMMARY

1000 metric	ter 1979 (tons per	Outside ba	tery limits attery limits d investment				
-ON-Stream Time: 8,000 hours per yr PRODUCTION COST SUMMARY: MANEB							
. RAW MATERIALS	, Units per kg	, Price ∉/unit	.Annuel .cost,\$M	Cents per kg			
Carbon disulfide,kg Ethylene diamine,kg Manganese sulfate, kg Chemicals and additives	0,607 0,239 0,575	33,0 246,0 62,0	200,310 587,940 356,500 99,640				
Total raw materials - UTILITES			1,244,390	124,44			
Steam, 150psig, metricton Glycol (0°C), 10°kcal Power, Kwh Process water, m3 Fuel, 10°kcal	0,00012 0,00053 0,7342 0,01656 0,0017	700,0 3550,0 1,0 19,0 800,0	840 18,820 7,350 3,150 13,600				
Total utilities OPERATING COSTS Labor, 15 man @\$16,000	/yr 3 men	per shift	43,760	4,38			
Supervision,5men @\$22,00 Maint.,material &Labor Total operating cost	00/yr1 man 6% of ISBL	per shift	110,000 256,200 606,200	60,62			
OVERHEAD EXPENSES Direct Overhead 40 %(labor&sup.) 140,000 General plant overhead 65 % Operating costs 394,030 Insurance, property taxes 1.5% total invest. 91,050 Depreciation 10 % total invest. 607,000							
Total overhead expens	ses		1,232,080				
BY-PRODUCT CREDIT			3,126,430	312,65			
Total by-produc	t credit						
NET COST OF PRODUCTION Return on Investment 30 Interest on Working Capi Sales Expenses	% Total in ital 10% wo	vestment rking cap:	3,126,430 1,821,000 1t. 104,000	312,65			
TRANSFER PRICE 92% technic	cal product	:	5,051,430	505,14			
(*equivalent to four months production costs)							
CE SCHEMA CONTENANT DES INFORMATIONS EST LA PROPRIETE DE CDI ET NE PEUT ET OU UTILISE SANS L'AUTORISATION ECRITE	RE REPRODUIT	PAGE	AF FAIRE	HUMERO REV			

The costs of production of technical Maneb and Zineb (92% pure product + 7-8% additives + 0-1% miscellaneous) from this facility are respectively estimated at 3.13 dollars/kg and 3.11 dollars/kg. Component costs are shown in Tables 2.62.3 and 2.62.4. The transfer prices, including a 30% pretax return on investment and 10% interest on working capital are:

Maneb : 5.05 \$/kg Zineb : 5.03 \$/kg

These prices are based on carbon disulfide at 33 cents/kg, ethylene diamine at 246 cents/kg, Zinc chloride at 92 cents/kg and Manganese sulfate monohydrate at 62 cents/kg (price based on 100% $MnSO_4$).

The structure of the two costs of production is presented in Table 2.62.5.

The costs of production of Maneb and Zineb are fairly sensitive to capital cost, since a 20% increase of the capital cost would increase these costs of production of 22.3 cents per kg (i.e. 7.2%).

The costs of raw materials account for about 40% of the costs of production of Maneb and Zineb; however, the most significant reactant is ethylene diamine which accounts for about 16-19% of the costs of production.

. TABLE 2.62.5 COSTS OF PRODUCTION BREAKDOWN

·	MANEB	ZINEB
• Raw materials:		·
- Carbon disulfide	6.4 %	5.8 %
- Ethylene diamine	18.8 %	16.8 %
- Manganese sulfate	11.4 %	
- Zinc chloride		13.9 %
- Miscellaneous	3.2 %	3.0 %
Total	39.8 %	39.5 %
. Utilities	1.4 %	1.3 %
• Operating costs	19.4 %	19.5 %
• Overhead expenses	39.4 %	39.7 %
Total cost of production	100.0 %	100.0 %

2.7 - 2,4 DICHLOROPHENOXYACETIC ACID, AMINE SALT

2.71 Background and Chemistry

One of the major aromatic-based herbicide is 2,4 dichlorophenoxy acetic acid (or 2,4 D). It is used in the control of broad-leaved annual weeds in grain fields and of herbaceous weeds in pasture lands. It is also used as a general herbicide.

The most important derivatives of 2,4 D are the amine salts and alkyl esters.

Superficially, the overall reaction appears quite simple, i.e. monochloroacetic acid reacts with 2,4 dichlorophenol:

However, this operation has to be carried out in three steps:

i) dichlorophenate production

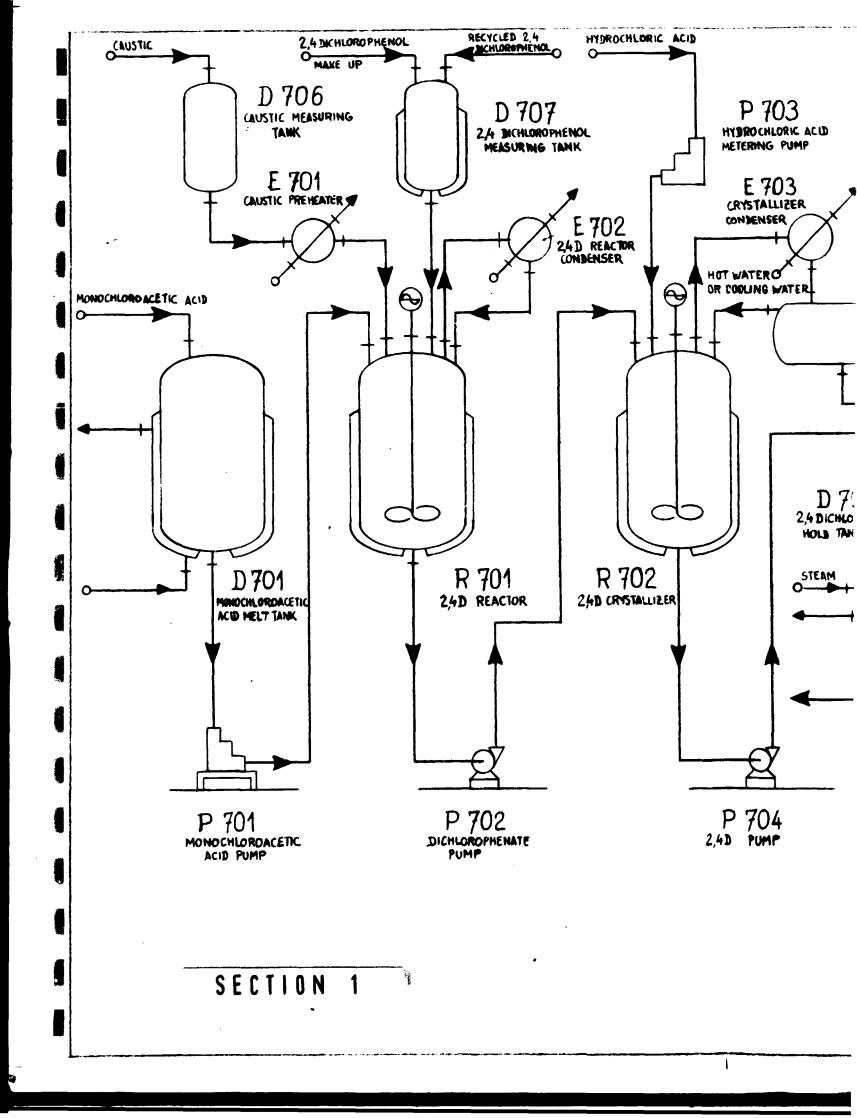
ii) Sodium salt of 2,4 D production

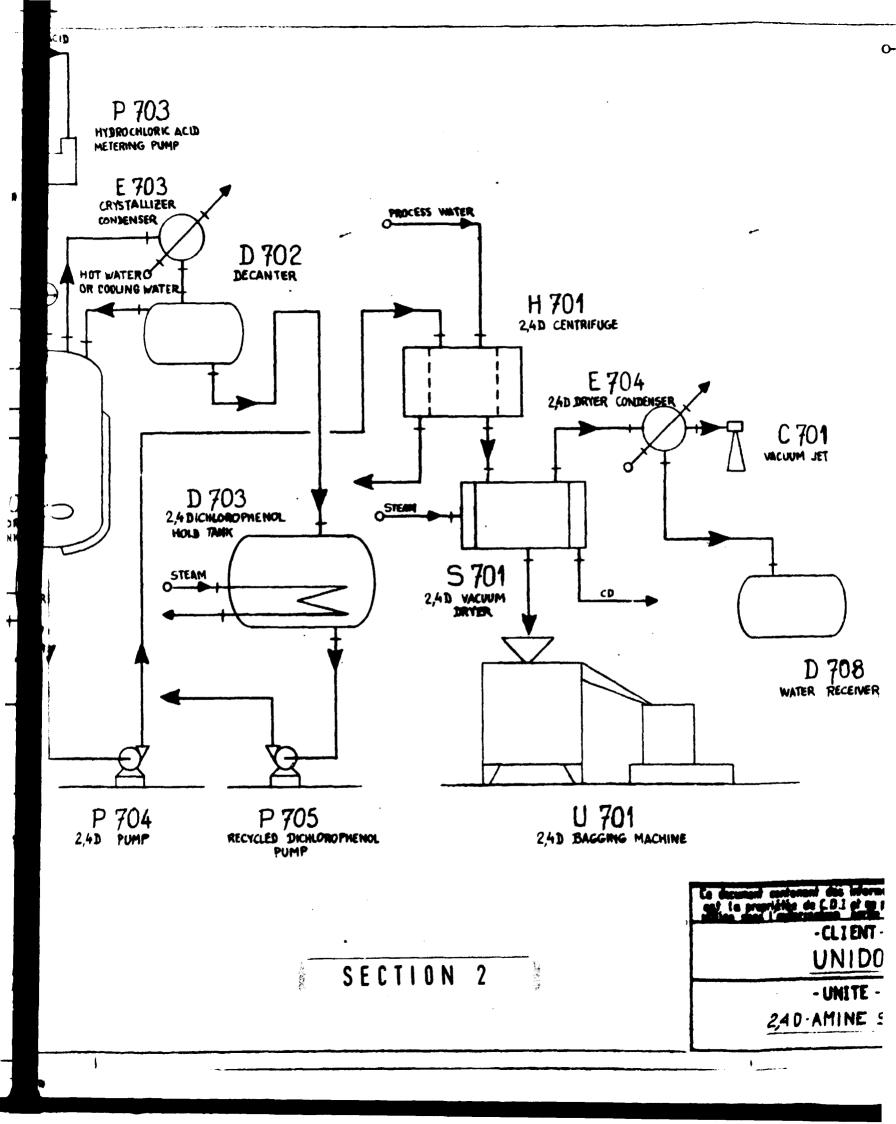
iii) 2,4 D recovery

2,4 D recovered as solid, is dryed and subsequently reacted with an amine to form the 2,4 D amine salt; various amines can be used, however, the only product presented in this chapter is the dimethylamine salt:

C1
$$CH_2$$
—C00H+ HN CH_3 CH_3 CH_3 CH_3

2,4 D


dimethylamine


2,4 D dimethylamine salt

2.72 Process design and Economics

Figure 6002-PX-700 is a flow sheet for the batch production of 2,4 dichlorophenoxyacetic acid (2,4 D) by the reaction of monochloroacetic acid with 2,4 dichlorophenol.

The design is based on three shifts per day, 7 days a week, 8000 hours per year schedule. A complete 2,4 D batch can be made in 20 hours in accordance with the following production schedule:

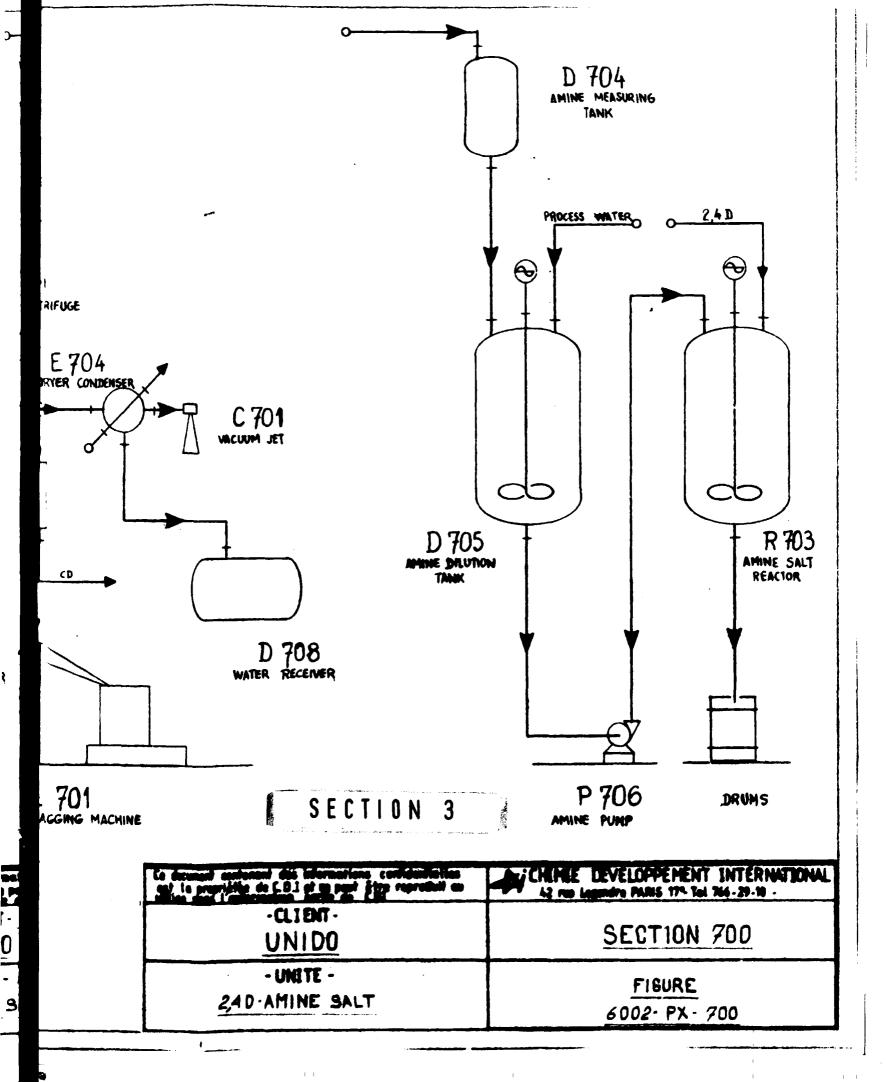


TABLE 2.72.1

2,4 DICHLOROPHENOXY ACETIC ACID PRODUCTION SCHEDULE

Operation	Time	Item n*
- Molten dichlorophenol is charged into reactor	0.5 hr	R 701
 Caustic solution is added to di- chlorophenol 	0.5 hr	R 701
- Dichlorophenolate production	1.0 hr	R 701
 Molten monochloroacetic is added to the dichlorophenolate at 60 90°C and atmospheric pressure 	8.0 hrs	R 701
 Reaction mixture is transferred to crystallizer 	0.5 hr	R701/R702
- Mixture is acidified to pH5	0.5 hr	R 702
- Mixture is heated to 100°C	2.0 hrs	R 702
 2,4 dichlorophenol is steam distilled 	3.0 hrs	R 702
- Crude product is cooled to 40°C	5.0 hrs	R 702
 pH is reduced to 1 and 2,4 D precipitates 	2.0 hrs	R 702
 2,4 D is filtered and washed in centrifuge 	6.0 hrs	R702/H7G1

TABLE 2.72.2

2,4 D amine salt production schedule

Operation	Time	Item n°
- Dimethylamine solution is charged into dilution tank	0.5 hr	D 705
- Dimethylamine solution is diluted by process water	1.0 hr	D 705
 Amine solution is transferred to reactor 	0.5 hr	D705/R703
 2,4 D solids (wet or dry) are added to amine solution 	1.0 hr	R 703
- Reactant are kept in contact for one hour	1.0 hr	R 703
 2,4 D amine salt solution is trans- fered into drums 	2.0 hrs	R 703

Amine salt production is completely independant from 2,4 D production and could actually be made from purchased 2,4 D.

Molten dichlorophenol and 50% caustic solution are charged into an agitated, jacketed stainless steel reactor. Monochloroacetic acid is then gradually added under agitation to the phenate solution. During the reaction the temperature is maintained between 60 and 80°C and the pH is kept above 7 by introduction of 50% caustic in the reaction mixture.

When the reaction is complete, the mixture is transferred to an agitated, jacketed glass lined reactor where excess dichlorophenol (50% excess with respect to monochloroacetic acid) is recovered.

The reaction mixture is acidified to pH 5 by treatment with hydrochloric acid; sodium dichlorophenate is then converted to dichlorophenol which is insoluble in the aqueous phase. The two phases are heated up and the dichlorophenol is removed by steam distillation. The dichlorophenol steam mixture is condensed overhead by hot water and the heterogeneous liquid mixture is allowed to decant. The dichlorophenol layer is recovered for reuse in the next batch.

The hot mixture left in the reactor is cooled to 40°C by circulating cooling water in the reactor jacket.

Hydrochloric acid is added to the cool agitated mixture and the 2,4 D acid precipitates from the solution as fine white crystals when the pH is about 1.

The slurry is then pumped to a bottom discharge basket centrifuge. The solids are washed with water until free of sodium chloride and discharged into an agitated vacuum dryer.

Various useful amine salts can be produced from 2,4 D acid, nowever, the description will only deal with one product: the dimethylamine salt.

A 40% dimethyl amine solution is charged into an agitated tank. The amine solution is then diluted to 14% by process water. The dilute amine solution is pumped to an agitated stainless steel reactor and the 2,4 D solids are added to the amine solution.

when all the crystals are dissolved, the reaction is complete, and if deemed necessary, various additives are added to the mixture. Finally, the resulting solution is analyzed and metered into drums. The inside battery limits capital costs for a 600 metric tons per year 2,4 dichlorophenoxyacetic acid plant is estimated at 1.65 million dollars (US) based on construction at a Kuweit location (Shuaiba Area) in the third quarter 1979. The components of the capital cost are summarized in Table 2.72.3. Specifications of the individual pieces of equipment are shown in appendix 3.7.

The costs of production of 2,4 D acid and 2,4 D-DMA salt from this facility are estimated at 323.7 and 310.04 cents per kg respectively (Note: 2,4 D acid plant capacity: 600 t/year and 2,4 D-DMA salt capacity: 720 t/year).

The transfer prices, including a 30% pretax return on investment and a 10% interest on working capital are:

2,4 D acid : 476.03 cents per kg

2,4 D-DMA salt : 438.37 cents per kg

The structure of the cost of production of 2,4 D acid and 2,4 D-DMA salt are presented in Table 2.72.6.

TABLE 2.72.3

INSIDE BATTERY LIMITS CAPITAL COST

2,4 D AMINE SALTS

600 metric tons (2,4 D)/yr

KUWEIT LOCATION- Third quarter of 1979

· · · · · · · · ·	1000 US Dollars
- Purchased equipment	551
- Equipment handling	33
- Concrete and steel	47
- Piping	154
- Instrumentation	66
- Electrical	55
- Insulation, paint and misc.	45
- Buildings	198
- Direct cost	1149
- Engineering	115
- Field construction, overhead & profi	t 230
- Base plant cost	1494
- Contingencies (including contractors fee of 3%)	149
Inside battery limits capital cost	1643

TABLE 2.72.4

2,4 DICHLOROPHENOXY ACETIC ACID PRODUCTION UNIT- SECTION 700 CAPITAL SUMMARY

1		CKLIIVE 2011	177.7			
BASIS			CAPITAL I			Million
-Location	:	KUWEIT		ttery limits		1.65
-Capacity		Third quarter 197 600 metric tons p	9 Outside b erTotal fix Working C	ed investmen	s t	1.18 2.83 0.65
-ON-Stream	Time:	8,000 hours per yr	-			
		PRODUCTION COS	T SUMMARY			
		inf+	e Prico	Annual		Contr

. RAW MATERIALS	, Units per kg	, Price ∉/unit	.Annual .cost,\$M	Cents per kg
2,4 dichloropheno, kg Monochloroacetic acid,kg Sodium hydroxide (100%),kg Hydrochloric acid (100%),kg	0.740 0.430 0.470 0.280	118.0 90.0 23.0 24.0	523,920 232,200 64,860 40,320	
Total raw materials UTILITES			861,300	143.55
Steam, 150psig, metricton Cooling water, m3 Power, Kwh Process water, m3	0.0084 0.3920 0.1220 0.0015	700.0 1.0 1.0 19.0	35,280 2,360 740 180	
Total utilities OPERATING COSTS Labor, 10 men @\$16,000/1	yr 2 men	per shift	38,560	6.43
Supervision, men @\$22,00 Maint., material & Labor 6 Total operating cost	O/yr1 man % of ISBL	per shift	110,000 99,000 369,000	61,50
		ating cos 1 invest.	42,450	
Total overhead expens	es		673.300	112.22

Total overhead expenses 673,300 112.22 1,942,160 323.70 TOTAL COST OF PRODUCTION

BY-PRODUCT CREDIT

Total by-product credit	1,942,160	323.70
NET COST OF PRODUCTION Return on Investment 30% Total investment Interest on Working Capital 10% working capit. Sales Expenses -	849,000 ° 65,000	
TRANSFER PRICE (99% plus 2,4D acid)	2,856,160	476.03
(*equivalent to four months production costs)		

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE	AFFAIRE NUMERO	REV
OU UTILISE SANS LAUTOPISATION ECRITE DE COI	6002 700	

CAPITAL INVESTMENT \$ Million

TABLE 2.72.5

2,4 D DIMETHYLAMINE SALT PRODUCTION UNIT - SECTION 700

BASIS

CAPITAL SUMMARY

-Location : KUWEIT Inside batte		1.65	
-Capacity : Third quarter 1979 Outside bate 720 metric tons perTotal fixed	ery limits	1.18	
yr Working Cap		2.83 0.75	
-ON-Stream Time: 8,000 hours per yr		0.73	
DDODUGMTON COGM CUMMADY			
PRODUCTION COST SUMMARY			
, Units , Price . . RAW MATERIALS per kg ⊄/unit	Annuel cost, \$M	Cents per kg	
per ng prante		per kg	
2,4 dichlorophenol,kg 0.6167 118.0	523,950		
Monochloroacetic acid,kg 0.3584 90.0	232,240		
Dimethylamine,kg 0.1667 105.0 Sodium hydroxide (100%),kg 0.3917 23.0	126,030 64,87 0		
Hydrochloric acid (100%),kg 0.2333 24.0	40.310		
Total raw materials	987,400	137.14	
. UTILITES	507,400	13/014	
Steam, 150psig, metricton 0.0070 700.0 Cooling water, m3 0.3267 1.0	35,280	ļ	
Cooling water, m3 0.3267 1.0 Power, Kwh 0.1017 1.0	2,360 74 0		
Process water, m3 0.0013 19.0	180		
makal sakilikian		Ì	
Total utilities	33,560	5,36	
OPERATING COSTS	240,000		
Labor, 15 men @\$16,000/yr 3 men per shift	240,000		
Supervision,5 men @\$22,000/yr1 man per shift	110,000		
Maint., material &Labor 6% of ISBL	99,000		
Total operating cost	449,000	62,36	
OVERHEAD EXPENSES	•	62,36	
Direct Overhead 40 %(labor&sup.)	140,000		
General plant overhead 65 % Operating cost. Insurance, property taxes 1.5% total invest.	42,450		
Depreciation 10 % total invest.	283,000		
Total overhead expenses	757 000		
TOTAL COST OF PRODUCTION		105,18	
	2,232,260	310.04	
BY-PRODUCT CREDIT			
			
Total by-product credit			
NET COST OF PRODUCTION	2,232,260	310.04	
Return on Investment 30% Total investment Interest on Working Capital 10% working capit	849,000		
Sales Expenses -	75,000		
TRANSFER PRICE (100% 2,4 D-DMA salt)	3,156,260	438,37	
	3,130,200		
(*equivalent to four months production costs)			
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO REV			
EST LA PROPRIETE DE COI ET NE PEUT ETRE REPRODUIT			
OU UTILISE SANS L'AUTURISATION ECRITE DE C'DI	/	00	

TABLE 2.72.6

COST OF PRODUCTION BREAKDOWN

	2,4 D acid	2,4 D-DMA salt
. Raw materials	44.3 %	44.3 %
. Utilities	2.0 %	1.7 %
. Operating costs	19.0 %	20.1 %
. Overhead expenses	34.7 %	33.9 %
•		
Total cost of production	100.0 %	100.0 %

The costs of production of 2,4 D acid and 2,4 D-DMA salt are not very sensitive to capital cost, since a 20% increase of the capital cost would only increase the costs of production of 5.0 % (16.3 \not c /kg) and 4.4 % (13.6 \not c /kg).

The cost of raw materials and, more specifically, the cost of 2,4 dichlorophenol is the most significant factor of the cost of production.

It should be noted that 2,4 D esters can also be produced campaignwise in the R702- E703-D702 system.

2.8 - OFFSITE FACILITIES

2.81 Storage

The bulk storage of fluids and solids is mostly made of flat bottom tanks and transfer pumps. As specified in the design basis, the storage capacities are as follows:

- Paw materials : 15 days *

- Products: 30 days

The technical specifications of the individual pieces of equipment are presented in appendix 6.8.

As far as the solids are concerned, they are assumed to be received and/or shipped on 1000 kg pallets, stored in ground level warehouses and stocked in 2 levels.

The only exception is phosphorus pentasulfide which is received in tote bins and transferred to a bulk storage silo.

It should noted that the costs of the non standard shipping containers (steel cylinders for monomethyl and dimethyl-amines, P₂S₅ tote bins, ...) were not taken into account since they depend upon the suppliers policy. In other words, at a later stage of the project it will be necessary to discuss with the potential suppliers so as to determine the most suitable way of shipping and raw materials.

The cost of the various pieces of equipment and the cost of the warehouses was divided according to the quantities of products used in the various production units.

2.82 Waste disposal

2.82.1 Liquid effluents

The organic wastes are collected and transferred to the organic wastes storage tank prior to their incineration with much excess air in the incinerator.

• In revised economics annexed to the final report Annex 1, both raw materials and products storage capacities have been expanded to 3 months.

The aqueous wastes are drained in a specific sewer system connected to aqueous effluents holding pits. Moreover, the production facilities are diked and any runoff from malfuncion or any spill is collected in these holding pits.

From these underground holding pits, the aqueous wastes are pumped to neutralization-decantation tanks where they are treated with caustic and/or hydrochloric acid- when the neutralization is complete, the mixture is allowed to decant for about 16-24 hours. The organic layer is then pumped to the organic waste storage tank and the aqueous layer is pumped to battery limits. In this very simple neutralization operation, some toxic substances are changed to non toxic compounds, however other compounds (i.e. dichlorophenol) are left unchanged. It may therefore be necessary to add more sophisticated treatment systems such as a biologically active trickling filter, a biological treatment plant, an activated carbon adsorption column, etc...

In this preliminary study, the cost of the waste treatment unit only includes the cost of the neutralization-decantation system. This was made on purpose since the definition of the secondary treatment facilities would require extensive work not justified for a preliminary study. Moreover, they may not be required in certain areas.

The cost of the neutralization unit was split between sections 100-700 according to the quantity of effluents produced by every section (see Table 2.82.1)

For this plant, we recommand an activated carbon adsorphon unit. This type of unit can handle the organics dissolved in water resulting from the chemical operations described here. Moreover, such a unit is very flexible and could also handle other compounds, should other pesticide products be made in this plant at a later date.

Such units are standard and can be purchased from such componies as CECA in France.

TABLE 2.82.1

SUMMARY OF LIQUID WASTES (daily average)

Section	Water (kg/day)	Organics (kg/day)	Inorganics (kg/day)
s 100			
S 200	5205	581	757
s 300	5263	294	17
S 400	7056	1594	22
s 500	54317	3 8 4 9	5146
s 600	68383	164	2116
s 700	17321	53	2287
	157545	6535	10345

2.82.2 Solid wastes

Approximately 1500 kg of solids wastes (filter cakes...) are produced every day. They are mostly coming from the dithiophosphoric acid unit (5100); they can be detoxified with NaOH and buried with lye in an approved landfill.

2.82.3 Gaseous effluents

The most important gaseous waste is H₂S co-produced with dithiophosphoric acid (about 1140 kg/day plus small amounts of toluene and methanol).

This compound is burned with a large excess of air in an incinerator and SO_2 produced is discharged to atmosphere. Besides, the incinerator is designed for handling H_2S and the toxic liquid wastes.

The other gaseous wastes are mainly air and/or $\rm CO_2$ (neutralization with $\rm Na_2CO_3$ or $\rm NaHCO_3$) containing small amounts of solvents and traces of active ingredients. Most of them, are treated in caustic scrubber, prior to their discharge to atmosphere.

2.82.4 Utilities

The utilities are assumed to be <u>purchased</u> from a central producing unit of the industrial development area, i.e. the capital cost of the boilers, cooling towers, etc. <u>are not</u> included in the outside battery <u>limits capital cost</u>.

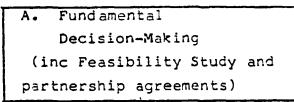
The utility requirements of the whole plant are listed hereafter:

- STEAM : . 150 psig saturated steam
 - . steam requirements: 10 metric tons/hour
- -"-20°C" GLYCOL SOLUTION:
 - supply : -20°C; return : -10°C
 - requirements: 2.85×10^6 kcal/hr
- "O°C" GLYCOL SOLUTION:
 - . supply: 0°C; return : +10°C
 - requirements: $0.87 \times 10^6 \text{ kcal/hr}$
- COOLING WATER:
 - . supply: 30°C; return: 40°C
 - requirements: 580 m3/hr

(the glycol units cooling requirements are not included in this figure)

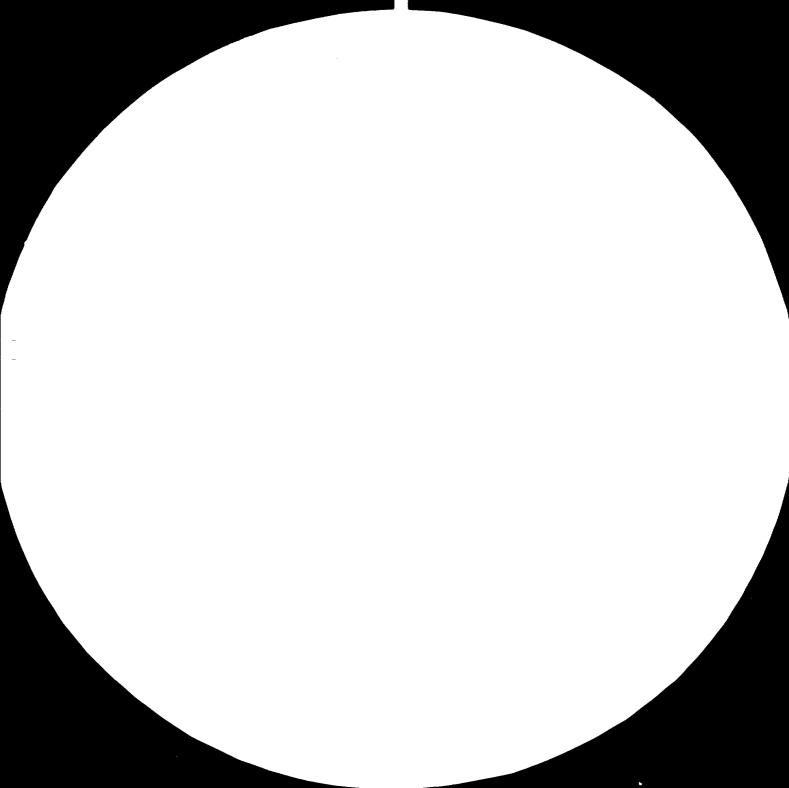
- POWER :.220/380 Volts 3 phases
 - .requirements: 500 Kwh/H
- PROCESS WATER:
 - . filtered and dionized "town" water
 - . requirements : 15 m3/hr
- INERT GAS:
 - . Nitrogan 6 bar gage dew point:-30°C
- COMPRESSED AIR:
 - . 6 bar gage dew point: -30°C
 - . requirements: 150 m3/hr @ 20°C- 760 mmHg

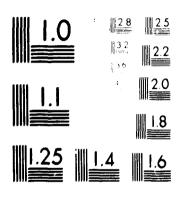
3- ORGANIZATION and MANPOWER


Irrespective of ownership structure, the management organisation must be clearly related to the objectives of the sponsors and the tasks to be performed, and should be flexible to meet the changing nature of the tasks as the project develops.

3.1 - PROJECT IMPLEMENTATION


The primary objective is seen as the establishment of a commercially successful venture producing basic pesticides and insecticides. Also, the project will provide useful employment and form a basis for future development.


A schedule of "project implementation" is given in Section 5 and figure 3.10.1 gives a simplified representation of the overall task. The appropriate organizational and manpower considerations are discussed below in relation to the main stages indicated by the figure.


FIGURE 3.10.1 MAIN ASPECTS OF PROJECT IMPLEMENTATION

- C. Approval and Financing
- Plant design, Infrastructure, Recruit staff and procurement utilities con- develop operating and construction nections etc. organisation
 - E. Establish Commercial Operation

A- Fundamental Decision-Making

Before seeki g contractor bids, certain fundamental decisions have to be made which will establish the whole pattern for the project, such a plant location, size, final product mix, partnership agreements and/or availabity of licensed know-how.

B- Detail Definition of Project

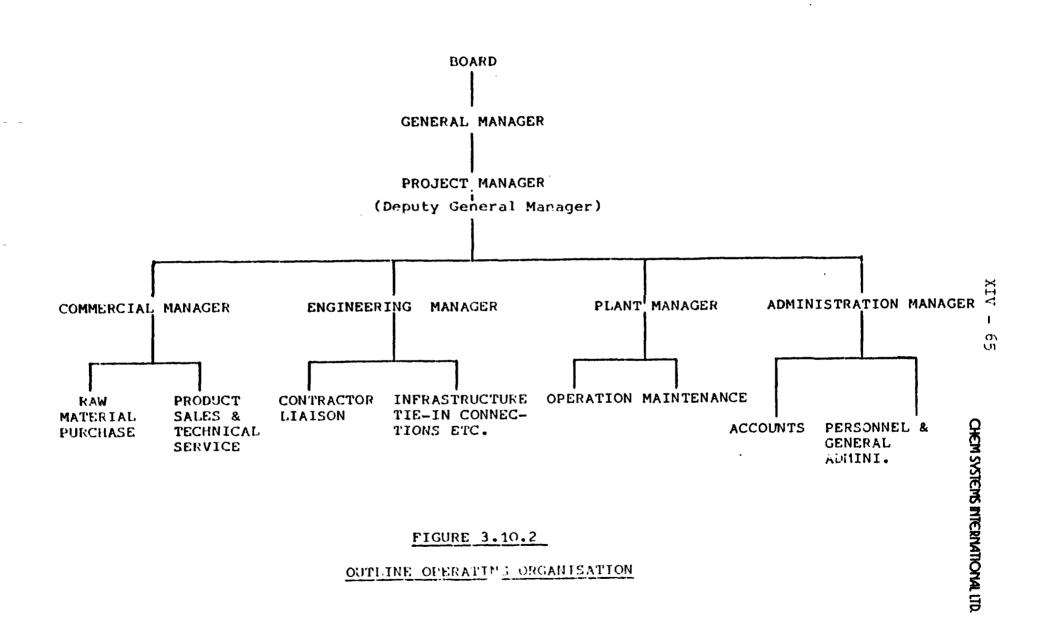
The main objective of this stage is to obtain and evaluate contractor bids for plant design supply and construction. However, there are numerous other activities which must proceed in parallel, such as negotiation of feedstock contracts and establishing details of financing. This is a task which requires skilful handling to obtain the best results. Oversights at this stage can have costly long-run effects. It is therefore recommended that a full-time Project Manager be appointed. The Project Manager should have experience in the bidding stage and in the execution of major projects. It is also essential that he be backed-up with appropriate expert support and advice, and be given authority to make the necessary decisions including commitment of expenditure within budget. Because of the number of aspects to be considered, it is recommended that a "steering committee" be appointed to assist the Project Manager, which can be attended by various specialists and responsible persons as necessary. Major decisions would obviously have to be ratified by the project sponsors themselves.

C- Approval and Financing

When plant bids have been obtained and evaluated, the project sponsors should be able to review the overall development of the project, finalise financing arrangements, and give the definitive go-ahead to the project. This stage is in a sense a continuation of the definition stage and the same structure of a steering committee plus Project Manager is recommended.

D. Design and Construction Phase

Activities during this phase cover not only the work of the plant contractor, but also questions of infrastructure development and the establishment of the operating organisation. Figure 3.10.2 shows the organisation that should be built up during this phase, and would be expected to set the basic pattern for the stage of commercial operation.


The various managers indicated by Figure 3.10.2 would have to be carefully selected and recruitment should start at an early stage, since each will have to recruit and train further staff ready for commercial operation. The Project Manager appointed earlier should continue with the project, reporting to the General Manager, until plant completion. Tasks of the individual managers in this phase are outlined below:

• General Manager

He must keep the objective of commercial viability in mind and give the overall direction needed. He will have to ensure that efforts to monitor the contractor do not result in delay to the work, and be ready to give a lead in overcoming obstacles as they arise. At the same time he will have to give a lead in developing the systems and procedures to ensure efficient coordination of company activities. Above all he must be responsible for selection of key staff and encouraging them to work as a team.

· Project Manager

He will have the primary responsibility to ensure that the plant is completed and is operational on schedule. This will require experienced judgement and adequate decision-making authority. It is therefore recommended that the Project Manager should also have the position of Deputy General Manager with authority to give instructions in the absence of the General Manager himself.

• Commercial Manager

Feedstock purchase and the sale of bulk pesticides and insecticides need to be well planned in advance of plant operation and to be closely coodinated subsequently. It is therefore recommended that one experienced person be responsible for both aspects as Commercial Manager. Since the products selected have been used for a fairly long time and are mainly bought by established pesticide formulators, technical service back-up could be limited. Thus, the commercial department should be relatively small, i.e. manager, assistant for feedstock purchasing, assistant for product sales, assistant for technical service and clerical back-up.

• Engineering Manager

The Engineering Manager would assist the Project Manager in contractor supervision during this phase. However, equally important will be what can we described as "interface" activities, such as ensuring that all of the services and back-up within the owners' scope are provided to enable the contractor to work efficiently.

· Plant Manager

The Plant Manager should become responsible for plant operation and maintenance once it has been handed over by the contractor. Prior to that time, he will have the major task of organising the recruitment and training of plant staff.

• Administration Manager

Since the project sponsors will most likely be responsible for financing the project, it is not considered necessary to have a full-time high level financial officer, and responsibility for accounting could be combined with personnel and general administration.

• Establishing Commercial Operation

This is a critical time, when both the plant and the organisation must be brought into full operation. Clear definition of responsibilities between owner and contractor are necessary to minimize possibilities of conflict. Close cooperation is necessary together with patience in the face of the many minor snags which will have to be overcome.

During plant commissioning, a larger number of qualified staff is needed than that required for normal operation. This can be most readily accommodated by use of contractor's staff.

3.2-PERMANENT MANPOWER REQUIREMENTS

Actual manpower levels for operating plants can vary widely between different countries and companies. There are many reasons for this, including the level of staff turnover, number being trained, extent to which maintenance and service work is contracted out, etc. Table 3.10.3 represents Chem Systems' estimate of a reasonable level of staffing for an Arab Location.

Of the total staff level of 195, the largest proportion is of plant operation staff, due to the need to staff the plant 24 hours per day, seven days per week. A typical shift would comprise the following operating staff:

Supervisors: 5 to 7

Shift operators product dispatch helpers :

With a normal 40 hour-week, it would take 4.2 men to fill each shift post with no allowance for holidays, sickness, etc....

Therefore a figure of 5 has been used to arrive at the total of 75 operators.

15

Maintenance represents the next largest number of staff. It is assumed that on each shift there will be an instrument technician, an electrician and a pipefitter or mechanical fitter.

TABLE 3.10.3

ESTIMATED PERMANENT MANPOWER REQUIREMENT

. General Ma	nager	1
. Deputy gen		1
. Clerical s		2
 Department 	<u>s</u> :	
. Commercial	:	
	Manager Assistants Clerical staff	1 3 4
. Engineerin	g:	
	Manager Engineers Clerks and secretary	1 2 3
. Plant Oper	ation and Laboratory:	
	Plant manager Shift supervisors Snift operators (product dispatch-helpers(1 2 ? 75
	Chief chemist Chemists	1 3
	Clerical staff	4
. Plant Main	itenance:	
• Figure Main	Superintendent Shift crafstmen Skilled-semi-skilled (day workers (Clerical staff	<pre>1 (reporting to the 15 plant manager) 15</pre>
. Administra	ation and Accounting:	
	Administration manager Personnel Director (Safety Director (Medical Director (Chief Accountment (Accountants Clerical staff and others	1 1 (reporting to the 1 Administration 1 Manager) 1 10 15
. Total star	ff	195

4 - FINANCIAL ANALYSIS *

4.1 - INTRODUCTION

The cost of production of the individual products presented in chapter two are based on the performance data and capital cost estimates developed in the course of the design work.

Capital costs have been estimated from the individual equipment costs and adjusted for a Middle East location (based on Chem System's experience of detailed cost estimate analysis in various countries of the world).

As far as labour and utilities costs are concerned, they are typical figures used in Kuwait (Shuaiba Area- second/third quarter 1979). However, it should be noted that the fuel and steam costs are based upon crude oil at \$ 15 per barrel with a 20% discount to encourage local industry. The cost of the various raw materials was taken at the current French or European level. The shipping cost was not taken into account since it is felt that for fairly large supply contracts, most manufacturers would adjust their landed prices to the current European prices. For the financial analysis presented hereunder, the same assumption is made, i.e. the landed prices of the active ingredients and/or the formulated products are the same as the current european prices.

4.2 - MALATHION

The costs of production and the transfer prices of the two malathion raw materials are presented in Table 4.20.1

The three items introduce a very minor reduction of individual product costs between 0 and 1.0 %.

This slight change will note affect the hereafter conclusions.

After conversations with the Ministry of Commerce and Industry, financial figures have been slightly modified (see Annex 1):

⁻ utilities costs adjusted,

⁻ interest rate on working capital reduced to 4 %,

⁻ additional investment for general storage.

Staffing in other departments is generally in line with the responsibilities described in 3.1.D above. The engineering staff allowed for would be adequate for planning special maintenance tasks, minor plant modifications and resolving technical problems. as they arise.

With a more limited project scope (i.e. 2 products instead of 4), the direct operating labor and the personnel of the various departments would be reduced accordingly.

TABLE 4.20.1

MALATHION RAW MATERIALS

TRANSFER PRICES (US cents/kg)

	O,O Dimethyl- dithiophosphoric acid	Ethy Maleste
		400 46
. Raw materials	98.68	132.46
. Utilities	0.79	2.25
. Operating costs	11.29	19.67
• Overhead expenses	19.53	34.63
• Total cost of production	130.29	159.06
. Return on Investment	: -	-
 Interest on working capital (10%) 	4.35	6.27
. Transfer price	134.64	195.33

The malathion cost of production presented in Table 4.20.2 is based on raw materials transfer prices at zero return on investment (see Table 4.20.1). The resulting malathion transfer price is then the minimum acceptable sales price. When compared to the bulk malathion sales price in Europe, it appears that the netback is negative at effective annual capacity.

However, the difference between the European sales price of formulated malathion and the calculated minimum sales price is over 7 US dollars per kg.

Technical Malathion

TABLE 4.20.2

MALATHION

COST OF PRODUCTION & SALES PRICE (US cents/kg)

• Raw materials:			
	 O,O dimethyldithiophosphoric acid 	67.37	
	- Ethyl maleate	105.09	
	- Solvents and Chemicals	1.00	
	Total raw materials	173.46	173.46
. Uti	ilities		1.64
. Ope	• Operating costs		19.66
. Ove	erhead expenses		31.91
. Cos	st of production		225.67
. Return on investment			-
. Int	• Interest on working capital (10%)		S.70
	• Sales price (minimum for 97% product)		234.37
	• Sales price (minimum-based on 100% product)		241.62
Ac	 European sales price (based on 100% Active Ingredient)(non formulated product -bulk) 		179.00
 European sales price (based on 100% A.I) (formulated product-500 g/liter-10liter package) 		988.00	

Yet this difference is only reduced to 6.8 US dollars per kg if a 30% return on investment is added to the 0,0 dimethyldithiophosphoric acid, ethyl maleate and malathion transfer prices.

This very simple calculation shows that it would not be profitable to sell bulk malathion (non formulated) to local formulators. However, the construction of a simple formulation unit and the distribution of the formulated product to local distributors seems to be quite attractive.

4.3 - DIMETHOATE

The costs of production and the transfer prices of the two dimethoate raw materials are presented in Table 4.30.1

TABLE 4.30.1

DIMETHOATE RAW MATERIALS

TRANSFER PRICES (US cents/kg)

•	O,O dimethyl- dithiophosphoric acid	N-methyl- chloroacetamide
• Raw materials	98.68	130.24
. Utilities	0.79	6.94
• Operating costs	11.29	14.57
• Overhead expenses	19.53	30.06
. Total cost of production	on 130.29	191.81
. Return on Investment	-	-
 Interest on working capital (10%) 	4.35	6.06
. Transfer price	134.64	187.87

The dimethoate cost of production presented in Table 4.30.2 is based on raw materials transfer prices at zero return on investment (see Table 4.30.1). The resulting Dimethoate transfer price is then the minimum acceptable sales price. When compared to the bulk Dimethoate sales price in Europe, it appears that the netback is negative at effective annual capacity.

However, the difference between the European sales price of formulated Dimethoate and the calculated minimum sales price is about 4.75 US dollars per kg.

Technica

TABLE 4.30.2

DIMETHOATE

COST OF PRODUCTIO. % SALES PRICE (US cents/kg)

	Dimethos e
. Raw materials :	
- 0,0 dimethyldithiophosphoric acid 110.	.66
- N-methylchloroacetamide 126.	.0€
- Solvents and Chemicals 21.	.78
- Total raw materials 258.	.50 258.50
• Utilities	13.3C
. Operating costs	23.07
. Overhead expenses	45.30
. Cost of production	340.1
. Return on investment	-
. Interest on working capital (10%)	12
. Sales price (minimum for 90% product)	353.11
. Sales price (minimum for 100% product)	392.37
 European sales price (based on 100% A.I) (non formulated product-bulk) 	305.00
. European sales price (based on 100% A.I)	863.00
<pre>(formulated product=400 g/1=10 liter package)</pre>	

Moreover, this difference still amounts to 3.5 US dollars per kg if a 30% return on investment is added to the 0,0 dimethyldithiophosphoric acid, N-methylchloroacetamide and Dimethoate transfer prices.

As for Malathion, this very simple calculation shows that it would be profitable to sell formulated Dimethoate to local distributors. It requires the construction of a simple formulation unit.

4.4 - MANEB-ZINEB

The costs of production and minimum sales prices (at zero percent rate of return) of Maneb/Zineb are presented in Table 4.40.1.

At the current sales prices of bulk or formulated products, the netbacks are negative at effective annual capacity.

Even if Maneb/Zineb were produced in a completely written off plant (i.e. depreciation=zero), the minimum sales prices would still be:

Maneb : 285 US cents/kg (100% A.I) Zineb : 283 US cents/kg (100% A.I)

In any case, the only way to produce ethylene bis dithiocarbamate is to work in an "old plant" and to have access to low-price raw materials i.e. produce ethylene diamine; otherwise it is almost impossible to justify any investment in Maneb/Zineb production at the current price levels. On top of that, some Eastern European countries (Bulgaria for instance) are offering these products at incredibly low prices:

current Bulgarian Zineb price: 145 US cents/kg (100% A.I technical product)

TABLE 4.40.1

MANEB / ZINEB

COST OF PRODUCTION & SALES PRICES (US cents/kg)

		MANEB	ZINEB
•	Raw materials	124.44	122.73
•	Utilities	4.38	4.05
•	Operating costs	60.62	60.62
•	Overhead expenses	123.21	123.21
•	Cost of production	312.65	310.61
•	Return on Investment	-	-
•	Interest on working capital (10%)	10.40	10.40
•	Sales price (minimum for 92% product)	323.05	321.01
•	Sales price (minimum (based on 100% A.I)	351.14	348.92
•	European sales price (based on 100% A.I- product sold in bulk)		217.00
•	European sales price (based on 100% A.I formulated product 80%-20 or 25 kg package)	294-309	280

4.5 - 2,4 D -AMINE SALT

The costs of production and minimum sales prices (at zer percent rate of return) of 2,4 D acid/2,4 D- DMA salt are presented in Table 4.50.1.

At the current sales prices of bulk technical products, the netbacks are negative at effective annual capacity. The difference between the current sales price of the formulated 2,4 D-amine salt solution (in 10 liter package) and the calculated minimum sales price is very small: 7.4 to 15.5 US cents/kg acid equivalent. The expected return on investment of this production scheme (2,4 D from 2,4 dichlorophenol + amine salt production unit) is too small 1.5 to 3.3 percent of total inv.) to justify any investment.

However, it would be financially more interesting to buy 2,4 D acid on the merchant market and to mix it with an amine solution. This operation is technically very simple and coulbe carried out in any agitated batch reactor of the malathics or the dimethoate unit.

TABLE 4.50.1 2,4 D- 2,4 D, dimethylamine salt COST OF PRODUCTION & SALES PRICES (US cents/kg.

		2,4 D acid	2,4 D DMA salt
	Raw materials	143.55	137.14
•	Utilities	6.43	5.36
•	Operating costs	61.50	62.36
•	Overhead expenses	112.22	105.18
	_		
•	Cost of production	323.70	310.04
•	Return on Investment	-	-
•	Interest on working capital (10%)	10.83	10.42
•	Sales price(minimum based on 100% acid or salt)	334.53	320.46
•	Sales price(minimum based on 100% acid)	334.53	384.55
•	European sales price (based on 100% A.I 40% bulk technical product)	220.0	325.0
•	European sales price (based on 100% A.I formulated product-600 g/l or 400 g/l 10 liter package)	-	392-400

5 - IMPLEMENTATION PLAN

5.1 - INTRODUCTION

The purpose of this section is to outline the steps which have to be taken to establish full commercial operation of the pesticides/insecticides plant and show the sequence of events.

Figure 5.10.1 is a basic activity network for the project. The emphasis is on the owners-side activities. Contractors normally develop detailed networks for design/procurement/contraction etc to enable them to exercise detailed control and minimize time for contract execution. In practice however, owners-side activities are often more crucial to the overall schedule and failures on this side can completely upset the most careful contractor planning.

The network can be simplified into three main elements:

- i Definition of project basis
- ii Activities related to plant design and construction
- iii Activities related to corporate organisation and external relations.

Each of these main elements is discussed separately below.

5.2 - DEFINITION OF PROJECT BASIS

This is shown as the first group of activities on Figure 5.10.1 and covers decisions on the following questions:

- · Location
 - . Feedstock supply
 - . Plant capacity and duty specification
 - . Process selection
 - . Infrastructure and support service requirements
 - . Ownership and financial structure
 - . Management structure
 - . Basis for plant contracts
 - . Detailed program

The length of time this activity will require clearly depends on the preliminary discussions which will be carried out between the Kuwait authorities and the industrial firms willing to transfer their know-how.

A minimum of six months could be taken into account however a 12 months period seems to be more realistic.

Ideally, the completion of this activity would be masked by the approval of a "Project Definition Document" by the parties concerned.

5.3 - PLANT DESIGN AND CONSTRUCTION

The final choice of process licences is assumed to be covered in the project definition stage. In practice, the choice will probably be between:

- i Acquire a licence for all products and intermediates
- ii Acquire a licence for some products and select a partner (or partners) having in house know-how
- iii Select a partner (or partners) having in house knowhow for all products.

Whatever the choice, the agreement should include the promisetion of a basic design package which would be used as the basis for the detailed design by a contractor.

If the partner selected is unable to provide a basic deal, a package, it is then necessary to have this work subcontracted to an engineering a consulting firm working in close cooperation with the industrial partner.

There are two main options in selection of a contractor:

- a) Obtain competittive lump sum bids on the basis of the basic design package(s)
- b) Select contractor on basis of general experience and capability, together with manhour rates, fees etc.

In the latter case, selection can proceed in parallel with preparation of the licensor's package, saving perhaps six months on schedule. In this case, option (b) is recommended with a "convertable" type contract to be awarded. After selection, the contractor would prepare a detailed estimate to present to the owner, who would have the option of converting the contract at that stage to lump sum, or to instruct the contractor to proceed on a cost plus fee basis. This approach has many advantages in addition to saving of time and can be very cost-effective since it greatly reduces bidding time and costs, and associated contractor mark-ups.

5.4 - ESTABLISHING CORPORATE ORGANIZATION AND EXTERNAL RELATIONS

The management organization required for this project is distussed in Section 3 of this report. Prior to full approval (as go-head for plant design and construction), a full time Project Manager is recommended, guided by a steering committee. In a sequently, the permanent management team should be recruited and this team will in turn organise the recruitement and meals ning of the remaining staff.

Establishment of "external relations" covers matters such as feedstock supply, financing, marketing etc. Certain aspects of this have to be agreed at an early stage before full project go ahead, however many further aspects and details will have to be resolved at a later stage.

Based on the assumption made in drawing up the activity network in Figure 5.10.1, Table 5.40.1 shows the earliest timing for key events.

TABLE 5.40.1

EARLIEST TIMING OF KEY EVENTS

	Event	Earliest Date
•	Select Process Licence(s) and award contract for basic design package	May 1982
•	Select Contractor (fee/convertable contract basis)	Sept 1982
•	Completion of definitive Estimate	Jan 1983
•	Go-ahead for detail design and construction	Mar 1983
•	Mechanical completion	Mar 1985
	Completion of commissioning	Sept 1985

APPENDIX A

The technical specification of the pieces of equipment of the nine sections of the production facilities are presented hereafter.

1 - EQUIPMENT LIST - 0,0 DIMETHYLDITHIOPHOSPHORIC ACID

ľ

1

.

SECTION 100

DIMETHYL DITHIOPHOSPHORIC ACID PRODUCTION UNIT

ITEM N°	ITEM NAME
B 101	BUCKET ELEVATOR
C 101	VACUUM JET
D 101	P ₂ S ₅ WEIGH HOPPER
D 102	TOLUENE METHANOL MEASURING TANK
D 103	P ₂ S ₅ CONTAINER
D 104	DISTILLATE RECEIVER
D 105	DITHIOPHOSPHORIC ACID SURGE TANK
D 106	CAUSTIC SOLUTION SURGE TANK
D 107 A,B	SOLID WASTES CONTAINERS
E 101	REFLUX CONDENSER
E 102	METHANOL TOLUENE CONDENSER
н 101	PRECOAT FILTER
P 101	WASTE TRANSFER PUMP
P 102	CRUDE PRODUCT PUMP
P 103	FILTER FEED PUMP
P 104	DISTILLATE RECYCLE PUMP
P 105	PRECOAT -TOLUENE TRANSFER PUMP
P 106	DITHIOPHOSPHORIC ACID TRANSFER PUMP
P 107	CAUSTIC RECYCLE PUMP
R 101	P ₂ S ₅ METHANOL REACTOR
R 102	METHANOL EVAPORATOR
R 103	PRECOAT MIXING TANK
Т 101	METHANOL RECOVERY COLUMN
	CHIMIE DEVELOPPEMENT INTERNATIONAL 42 rue Legendre PARIS 17°
 	CLIENT
	EQUIPMENT LIST
	UNIDO SECTION 100
	<u> </u>
DESCRIPTION REV DATE SIGN	N VERIE
<u></u>	N FORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO REV

	TECHNICAL SPECIFICATIONS	
TEM N°	ITEM NAME AND SPECIFICATION	
B 101	SERVICE : BUCKET ELEVATOR	
	TYPE : Bucket elevator	
	MATERIAL: Polyethylene or 316 SS buckets	
	CAPACITY: 2 m3/hr (sp.gr.= 1.0)	
	SIZE : length: 12 m	
	driver: 1 HP -Explosion proof motor	
	NOTES : includes feed hopper and rotary feeder	
	SERVICE :	
•	TYPE :	
•	MATERIAL:	
	CAPACITY:	
	SIZE :	
	·	
	NOTES :	
	·	
	SERVICE :	
	TYPE :	
	MATERIAL:	
	CAPACITY:	
	SIZE :	
	 .	
	NOTES :	
	·	

	TECHNICAL SPECIFICATIONS
item. N°	ITEM NAME AND SPECIFICATION
C 101	SERVICE : VACUUM JET
	TYPE : Liquid jet vacuum pump
	CAPACITY: 8 kg/hr of air @ 20°C SUCTION PRESSURE: 200 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID: -steam: -liquid: 20% caustic solution
	MATERIAL : impervious graphite TEMPERATURE : <60°C
	NOTES :
	SERVICE
	TYPE
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID :-steam : -liquid:
	MATERIAL TEMPERATURE.
	NOTES
	SERVICE :
	TYPE :
	CAPACITY SUCTION PRESSURE: DISCHARGE PRESSURE: PROPELLING FLUID :-steam: -liquid:
	MATERIAL : TEMPERATURE :
	NOTES :

 $1 \cdots 1 \cdots 1 \cdots 1$

	TECHNICAL SPECIFICATIONS		
TEM N•	ITEM NAME AND SPECIFICATION		
D 101	SERVICE : P2S5 WEIGH HOPPER		
	TYPE : Vertical hopper with conical		
	bottom VOLUME: 2.3 m3		
İ	VOLUME : 2,3 m3 DIAMETER : 1400 mm HEIGHT : 2200 mm		
,	HEIGHT : 2200 mm		
	MATERIAL : 316 stainless steel		
	PRESSURE : 0,5 bar g TEMPERATURE: 50°C		
	NOTES : supplied with rotary feeder and drive		
D 102	SERVICE : TOLUENE-METHANOL MEASURING TANK		
	TYPE : Vertical tank- dished head		
	VOLUME : 3,5 m3		
•	DIAMETER: 1300 mm		
	HEIGHT : 2400 mm		
	MATERIAL : 316 Stainless steel		
	PRESSURE : atmospheric TEMPERATURE: 50°C		
	NOTES :		
D 103	SERVICE : P2S5 CONTAINER		
	TYPE : returnable tote bins with slide		
	valve		
	VOLUME : 1800 liters DIAMETER : as per manufacturer's standard		
	HEIGHT :		
	MATERIAL : Aluminium		
	PRESSURE :+ 0.1 bar g		
	TEMPERATURE: 50°C		
	NOTES : fitted with inert gas nozzle		
	4 containers		
t tentus so	NTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE		
ST LA PROPRIÉ	TE DE COL ET NE PEUT ETRE REPRODUIT 1/ 330 GOOZ ADS I	NUMERO	PEV

	TECHNICAL SPECIFICATIONS		
ITEM N•	ITEM NAME AND SPECIFICATION		
D 104	SERVICE : DISTILLATE RECEIVER		
	TYPE : Vertical- dished heads		
	VOLUME : 1 m3		
	VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm		
	HEIGHT : 1500 mm	1	
	MATERIAL : 316 ss		
	PRESSURE : + 1,7 bar g + full vacuum		
	TEMPERATURE: 110°C		
	NOTES :		
D 105	SERVICE : DITHIOPHOSPHORIC ACID SURGE TANK		
	TYPE : Vertical storage tank		
	VOLUME : 4.5 m3		
	VOLUME : 4,5 m3 DIAMETER : 1,5 m HEIGHT : 2,6 m		
	HEIGHT : 2,6 m		
	MATERIAL : 316 ss		
	PRESSURE : - 5 g/cm2; + 25 g/cm2 TEMPERATURE: 60°C		
•	NOTES :		
D 106	SERVICE : CAUSTIC SOLUTION SURGE TANK		
	TYPE : Horizontal - dished heads		
	VOLUME : 2,5 m3		
	DIAMETER : 1200 mm		
	HOGOHOR :		
	Lenght :2100 mm		
	MATERIAL : Carbon steel	1	
	PRESSURE : Atmosphéric	1	
	TEMPERATURE: 60°C		
	NOTES : Cooling coil: 2 m2		
CE SCHEMA CO	ONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE	NUMERO	P
	NS LAUTOPISATION ECRITE DE CDI 330 6002 AD	5 9 1001	1

tem N°	ITEM NAME AND SPECIFICATION
D 107	SERVICE : SOLID WASTE CONTAINERS
	TYPE : open top with cover-light gage
	VOLUME : 0.5 m3 DIAMETER : HEIGHT : 800 x 800 x 800 mm
	MATERIAL . Carbon steel
	PRESSURE : Atmospheric TEMPERATURE:
	NOTES : portable container (with Fork lift truck)
	SERVICE :
	TYPE :
	VOLUME : DIAMETER : HEIGHT :
	MATERIAL :
	PRESSURE : TEMPERATURE:
	NOTES :
	SERVICE :
	TYPE :
	VOLUME : DIAMETER : HEIGHT :
	MATERIAL :
	PRESSURE : TEMPERATURE:
	NOTES :

	EQUIPMENT ITEM SYMBOL : E - HEAT EXCHANGER
	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
E 101	SERVICE HEAT TRANSFER AREA: 7 m2 TYPE Graphite block exchanger PROCESS SIDE - material: graphite - pressure: 1,7 bar g - temperature: 140°C UTILITY SIDE: Cooling water - material: graphite+ carbon steel - pressure: 6 bar g - temperature: 70°C NOTES:
E 102	SERVICE :ETHANOL-TOBUENE CONDENSER HEAT TRANSFER AREA : 10 m2 TYPE : graphite block exchanger PROCESS SIDE : methanol+toluene+traces H2S - material : graphite - pressure : 1.7 bar gage+full vacuum - temperature: 140°C UTILITY SIDE : 44% ethylene glycol solution - material : graphite +carbon steel - pressure : 6 bar g - temperature: -20°C NOTES : .
	SERVICE : HEAT TRANSFER AREA : TYPE : PROCESS SIDE : - material : - pressure : - temperature: UTILITY SIDE : - material : - pressure : - temperature: NOTES :
EST LA PROPRIET	TENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PEV TE DE CDI ET NE PEUT ETRE REPRODUIT TO L'AUTORISATION ECRITE DE COI 330 6002 ADS E 1001

	TECHNICAL SPECIFICATIONS		
ITEM N° ITEM NAME AND SPECIFICATION			
н 101	SERVICE : PRE COAT FILTER TYPE : Centrifugal discharge tray filter 321 kg volume : 350 liters FILTERING AREA : 5 m2		
	MATERIAL : 316 ss PRESSURE : 5 bar g TEMPERATURE : 90°C NOTES : Explosion proof motor		
	SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES :		
	SERVICE : TYPE : SOLIDS - weight: - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES :		

EQUIRMOST INCH STREAM : P - 1566'S

item N°	ITEM NAME AND SP	ECIFICATIONS
P 101	SERVICE	: WASTE TRANSFER PUMP
	TYPE	:Centrifugal pump
	FLOW RATE	:5 m3/hr
	DIFFERENTIAL PRESS	CURE: 2.5 bars
	MATERIAL	:impervious graphite
	STUFFING BOX	: yes
	MECHANICAL SEAL	•
	DRIVER	: :explosion proof motor
	NOTES	:
P 102	SERVICE	: CRUDE PRODUCT PUMP
	TYPE	:Centrifugal pump
	FLOW RATE	: 12 m3/hr
	DIFFERENTIAL PRESS	SURE: 2 bars
	MATERIAL	:impervious graphite
	STUFFING BOX	3
	MECHANICAL SEAL	:yes-with toluene injection
		:explosion proof motor
	NOTES	: T= 85°C
	•	• ;
P 103	SERVICE	: FILTER FEED PUMP
	TYPE	: Centrifugal pump
	FLOW RATE	: 4 m3/hr
	DIFFERENTIAL PRESS	• • • • • • • • • • • • • • • • • • •
	MATERIAL	: 316 SS
	STUFFING BOX	•
	MECHANICAL SEAL	
	DRIVER	: Explosion proof water
	NOTES	* T= 60°C
		Ì
,	1	

	EQUIPMENT ITEM SYMBOL : P - PUMPS	
	TECHNICAL SPECIFICATIONS	
item N°	ITEM NAME AND SPECIFICATIONS	
P 104	SERVICE : DISTILLATE RECYCLE PUMP TYPE : Centrifugal pump FLOW RATE : 1.5 m3/hr DIFFERENTIAL PRESSURE: 1.5 bar g MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : yes DRIVER : explosion proof motor NOTES :	
P 105	SERVICE : PRECOAT-TOLUENE TRANSFER PUMP Centrifugal pump FLOW RATE : 5 m3/hr DIFFERENTIAL PRESSURE: 2.0 bar g MATERIAL : 316 SS STUFFING BOX : yes MECHANICAL SEAL : DRIVER : Explosion proof motor NOTES : Open type impeller	
P 106	SERVICE : DITHIOPHOSPHORIC ACID TYPE : Centrifugal pump FLOW RATE : 12 m3/hr DIFFERENTIAL PRESSURE: 3.0 bar g MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : Yes DRIVER : Explosion proof motor NOTES :	

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPPIETE DE COI ET NE PEUT ETRE REPRODUIT OU UTILISE SANS L'AUTORISATION ÉCRITE DE COI

AFFAIRE NUMERO PEV

	TECHNICAL SF	PECIFICATIONS	
ITEM ITEM NAME AND SPECIFICATIONS			
P 107	SERVICE :	CAUSTIC RECYCLE PUMP	
	TYPE :	Centrifugal pump	
	FLOW RATE :	15 m3/hr	
	DIFFERENTIAL PRESSURE:	5.5 bar eff	
		Carbon steel or cast iron	
	STUFFING BOX :		
	MECHANICAL SEAL :	double	
	DRIVER :	explosion proof motor	
	NOTES :		
	SERVICE :		
		s	
	FLOW RATE :		
	DIFFERENTIAL PRESSURE:		
	MATERIAL :		
	STUFFING BOX :	• •	
	MECHANICAL SEAL :		j
	DRIVER :		1
	NOTES :		
	· :	·	
 	SERVICE :		
	TYPE :		
	FLOW RATE :		
	DIFFERENTIAL PRESSURE:		1
	MATERIAL :	•	
	STUFFING BOX :		
	MECHANICAL SEAL :		
	DRIVER :		
	NOTES :		
	·	·	}

TECHNICAL SPECIFICATIONS					
TEM N°	ITEM NAME AN	D SPECIFICATION			
R 101	SERVICE	: P ₂ S ₅ - METHANOL REACTOR			
	Type .	: Jacketed reactor			
	NOMINAL CAPACITY	: 5000 liters			
	MATERIAL	: Glass lined carbon steel			
	AGITATOR AND DRIV	E: impeller- 7,5 kw			
	PRESSURE	: 1,7 bar g			
	TEMPERATURE	: 200.°C			
	HEATING/COOLING	: 10 bar steam- cooling water			
	NOTE	: explosion proof motor			
R 102	SERVICE	: METHANOL EVAPORATOR			
	TYPE	: Jacketed reactor			
	NOMINAL CAPACITY	: 5000 liters			
	MATERIAL	: glass limed carbon steel			
•	AGITATOR AND DRIV	/E: impeller- 7,5 kw			
	PRESSURE	: 1,7 barg + full vacuum			
	TEMPERATURE	: 200°C			
	HEATING/COOLING	: 10 bar steam- cooling water			
	NOTES	: explosion proof motor			
	1				

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPPIETE DE CDI ET NE PEUT ETRE REPRODUIT OU UTILISE SANS L'AUTOPISATION ECRITE DE C'DI

330 ADS 6002 RIODI

	TE	CHNICAL SPECIFICATIONS
item N°	item Name an	D SPECIFICATION
R 103	SERVICE	: PRECOAT MIXING TANK
	TYPE	: Agitated open tank with cover
	NOMINAL CAPACITY	conical bottom : 1 m3
	MATERIAL	: 304 SS
	AGITATOR AND DRIV	E: Turbine impeller- 1,5 kw
	PRESSURE	: atmospheric
	TEMPERATURE	: 50°C
• •		
• .		: Explosion proof motor
		and the second of the second o
•		
		·
	SERVICE	• • • • • • • • • • • • • • • • • • • •
	TYPE	
	NOMINAL CAPACITY	
	MATERIAL	• • • • • • • • • • • • • • • • • • •
	AGITATOR AND DRIV	/E:
	PRESSURE	
	TEMPERATURE	
	HEATING/COOLING	
•	NOTES	
	·	
	{	

1 1

	TECHNICAL SPECIFICATIONS
1 ITEM	NAME AND SPECIFICATION
101 SERVICE	: METHANOL RECOVERY COLUMN
I DIAMETE	Packed tower
TRAYS	: Type : : Number : : Spacing : : Material :
PACKING	: Type : 1° pall rings : Height : 2400 mm : Material : 316 SS
	: Material : 316 SS : Pressure : + 1.7 bar g and full vacuum : Temperature: 140°C
NOTES	: Temperature: 140 C
SERVICI	
TYPE DIAMETI TRAYS	
IRAIS	<pre>: type : number : spacing : material :</pre>
PACKING	3: type :
VESSEL	<pre>: material : : pressure : : temperature:</pre>
NOTES	:
1	

2 - EQUIPMENT LIST - ETHYL MALEATE

SECTION 200

ETHYL MALEATE PRODUCTION UNIT

	ITEM N°	ITEM NAME
	В 201	SCREW CONVEYOR
	C 201	VACUUM JETS
	C 202	SUCTION FAN
	D 201	MALEIC ANHYDRIDE FEED HOPPER
ı	D 202	ETHANOL FEED TANK
	D 203	BAROMETRIC LEG SEAL POT
	D 204	REFLUX DRUM
	D 205	SOLVENT RECEIVER
	D 206	PRODUCT RECEIVER
		•
	E 201	FALLING FILM EVAPORATOR
	E 202	CONDENSER
ļ	P 201	SODIUM CARBONATE SOLUTION TRANSFER PUMP
	P 202	CATALYST SOLUTION TRANSFER PUMP
	P 203	REACTION MIXTURE RECIRCULATION PUMP
	P 204	PRODUCT TRANSFER PUMP
l		
	R 201	SODIUM CARBONATE MIXING TANK
	R 202	CATALYST MIXING TANK.
	R 203	ESTERIFICATION REACTOR
	T 201	DISTILLATION COLUMN
- 1		

						ELOPPEMÉNT IN Legendre PARIS 17°	TERNATION	IAL
				CLIENT		EQUIPMENT L	IST	
DESCRIPTION	 DATE	<u> </u>	VERIF.	S CONFIDENTIELLES	PAGE	AFFAIRE	NUMERO	REV

	EQUIPMENT ITEM SYMBOL : B - CONVEYORS	
	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
B 201	SERVICE : SCREW CONVEYOR	
	TYPE : screw conveyor	
	MATERIAL: carbon steel	
	CAPACITY: 1000 kg /hr or 1700 l/hr	
	SIZE : length 18 m Driver 1 HP- Explosion proof water	
	Driver i HP- Explosion proof water	İ
	NOTES : includes feed hopper	
	SERVICE :	
	TYPE :	
	MATERIAL:	
	CAPACITY:	
	SIZE :	
	NOTES :	
	· · · · · · · · · · · · · · · · · · ·	
	SERVICE :	
	TYPE :	
	MATERIAL:	
	CAPACITY:	į.
	SIZE :	
	NOTES :	
		1
CE SCHEMA CE	ONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE ETE DE COI ET NE PEUT ETRE REPRODUIT 1/1 330 6002 ADS B	NUMERO PEV 2001

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
C 201	SERVICE : VACUUM JETS
	TYPE : multistage steam jets with surface condensers CAPACITY : 8 kg/hr of air SUCTION PRESSURE : 15 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID :-steam : 150 psig saturated steam -liquid:
	MATERIAL : Cast Iron and carbon steel TEMPERATURE :
	NOTES : condensers: shell and tube
	SERVICE TYPE CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID :-steam: -liquid: MATERIAL TEMPERATURE. NOTES
	TYPE : CAPACITY : SUCTION PRESSURE : DISCHARGE PRESSURE: PROPELLING FLUID :-steam : -liquid: MATERIAL : TEMPERATURE : NOTES :

	TECHNI	CAL SPECIFICATIONS	
rem	ITEM NAME	AND SPECIFICATION	•
C 202	SERVICE :	SUCTION FAN	
	TYPE :	Centrifugal fan	
	CAPACITY :	500 m3/hr of air at 760 mmHg	
	TEMPEDATURE	20°C + 80 mm water column 20°C	
	MATERIAL :	PVC or Aluminium Explosion proof motor	
	NOTES	•	
<u> </u>	SERVICE	:	
	TYPE	:	
	CAPACITY	:	
	DISCHARGE PRESSURE		
	MATERIAL DRIVER		
	NOTES	:	·
	SERVICE	:	
	TYPE	•	
	CAPACITY	:	
	DISCHARGE PRESSURE TEMPERATURE	: :	
	MATERIAL DRIVER	:	
	NOTES	:	

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
D201	SERVICE : MALEIC ANHYDRIDE FEED HOPPER
	TYPE : Vertical hopper with conical bot- tom VOLUME : 3,6 m3
	DIAMETER: 1400 mm HEIGHT: 3000 mm
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: 50°C
	NOTES : supplied with rotary feeder and drive
D202	SERVICE : ETHANOL FEED TANK
	TYPE : Vertical tank- dished heads
	VOLUME: 8 m3 DIAMETER: 1900 mm HEIGHT: 2600 mm
	MATERIAL : carbon steel
	PRESSURE : atmosphéric TEMPERATURE: 50°C
	NOTES :
D203	SERVICE : BAROMETRIC LEG SEAL POT
	TYPE : Vertical tank-flat bottom- light gage
	VOLUME : 100 liters
	DIAMETER : 500 mm HEIGHT : 750 mm
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: 60°C
	NOTES : removable cover included

	TECHNICAL SPECIFICATIONS	
TEM N•	ITEM NAME AND SPECIFICATION	
D 204	SERVICE : REFLUX DRUM	
	TYPE : horizontal decanter-dished heads	
	VOLUME : 1 m3 DIAMETER : 850 mm HEIGHT : 1600 mm	
	MATERIAL : 304 SS	
	PRESSURE : 1,7 bar g + full vacuum TEMPERATURE: 130°C	
	NOTES :	
D 205	SERVICE : SOLVENT RECEIVER	
	TYPE : Vertical tank- dished heads	
· i	VOLUME: 5 m3 DIAMETER: 1500 mm HEIGHT: 2600 mm	
	MATERIAL : carbon steel	
	PRESSURE : 1,7 bar g + full vacuum TEMPERATURE: 130°C	
	NOTES : cooling coil: 2 m2	
D 206	SERVICE : PRODUCT RECEIVER	
	TYPE : Vertical tank- dished heads	
	VOLUME : 3,5 m3 DIAMETER : 1300 mm HEIGHT : 2400 mm	
	MATERIAL : 304 SS	
	PRESSURE : 1,7 bar gage, full vacuum TEMPERATURE: 130°C	
	NOTES : cooling coil: 2,5 m2	

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
E 201	SERVICE HEAT TRANSFER AREA: 20 m2 TYPE: tubular heat exchanger-falling film PROCESS SIDE: ethyl maleate +PTSA+ethylen - material: 316 LSS dich or - pressure: 1,7 bar g+full vacuum 200°C UTILITY SIDE: 150 psig saturated steam - material: carbon steel+316 L - pressure: 12 bar g - temperature: 200°C NOTES:	e ide
	SERVICE : CONDENSER HEAT TRANSFER AREA	
	SERVICE :VENT CONDENSER HEAT TRANSFER AREA :3 m2 TYPE :shell and tube exchanger tube side -ethanol-ethylene dichloride :304 SS - pressure - temperature: 1,7 bar g, full vacuum 160°C UTILITY SIDE : 44% glycol solution - material : 304 SS-carbon steel - pressure : 6 bar g - temperature: -20°C NOTES :	

	EQUIPMENT ITEM S	SYMBOL : P - FUMPS	
	TECHNICAL	SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECE		
P 201	TYPE FLOW RATE DIFFERENTIAL PRESSURE		
	STUFFING BOX	<pre>: cast Iron : : with external fluid flush : explosion proof motor :</pre>	ing
P 202	SERVICE TYPE FLOW RATE DIFFERENTIAL PRESSURE MATERIAL STUFFING BOX MECHANICAL SEAL DRIVER NOTES	CATALYST SOLUTION TRANSF PUMP Volumetric pump 1 m3/hr 2.0 bar 316 SS Yes Explosion proof motor :	ER ,
P 203	SERVICE TYPE FLOW RATE DIFFERENTIAL PRESSUR MATERIAL STUFFING BOX MECHANICAL SEAL DRIVER NOTES	REACTION MIXTURE RECIRCU- LATION PUMP Centrifugal pump 316 SS or 316 L SS double mechanical seal explosion proof motor operates under vacuum	
EST LA PROPRI	ONTENANT DES INFORMATIONS CONFID ETE DE CDI ET NE PEUT ETRE REI INS L'AUTOPISATION ECRITE DE C'D	PRODUIT 14/ 230 COO2 ADS DO	MERU PEV

	TECHNIC	CAL SP	ECIFICATIONS		
ITEM N•	ITEM NAME AND SE				
P 204	SERVICE		PRODUCT TRANSFER PUMP		
	TYPE	:	Volumetric pump	ļ	
	FLOW RATE	:	6 m3/hr		
	DIFFERENTIAL PRESS	SURE:	3.0 bar		
	MATERIAL	:	316 SS		
	STUFFING BOX	:		1	
	MECHANICAL SEAL	:	yes		
	DRIVER	:	explosion proof motor		
	NOTES	:	reversible pump		
	SERVICE	:		-	
	TYPE	:		1	
	FLOW RATE	:			
	DIFFERENTIAL PRES	SURE:			
	MATERIAL	:			
	STUFFING BOX	:			
	MECHANICAL SEAL	:	•		
	DRIVER	:			
	NOTES	:			
		•			
	SERVICE	•		_	
	TYPE	:			
	FLOW RATE	:			
	DIFFERENTIAL PRES	SURE:	·		
	MATERIAL	:			
	STUFFING BOX	:			
	MECHANICAL SEAL	:			
	DRIVER	:			
	NOTES	:			
				-	

EQUIPMENT ITEM SYMBOL : R - REACTOR TECHNICAL SPECIFICATIONS ITEM 11. ITEM NAME AND SPECIFICATION R 201 : SODIUM CARBONATE MIXING TANK SERVICE TYPE :Agitated open tank with cover conical bottom NOMINAL CAPACITY : 2,5 m3 : fiber reinforced polyester MATERIAL AGITATOR AND DRIVE: turbine impeller, 2.2 kw PRESSURE : Atmospheric : 50°C TEMPERATURE HEATING/COOLING : NOTE : Explosion proof motor :CATALYST MIXING TANK R 202 SERVICE : Agitated open tank with cover TYPE conical bottom NOMINAL CAPACITY :200 1 :316L stainless steel MATERIAL AGITATOR AND DRIVE: turbine impeller - 0,75 KW :atmospheric PRESSURE the second second second second second :50°C TEMPERATURE HEATING/COOLING : : Explosion proof motor NOTES CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE NUMERO PEV

AF FAIRE EST LA PROPPIETE DE COI ET NE PEUT ETRE REPRODUIT 330 6002 OU UTILISE SANS L'AUTOPISATION ECRITE DE C'DI

ADSR2GO1

	TEC	CHN	ICAL SPECIFICATIONS	
ITEM N°	ITEM NAME ANI	PECIFICATION		
R 203	SERVICE	:	ESTERIFICATION REACTOR	
	TYPE	:	Jacketed reactor	
	NOMINAL CAPACITY	:	10000 liters	
	MATERIAL	:	316 L- stainless steel	
	AGITATOR AND DRIVE	Ξ:	7.5 HP- turbine impeller	
	PRESSURE	:	Full vacuum + 1,7 bar g	
	TEMPERATURE	:	200°C	
	HEATING/COOLING	:	10 bar steam/cooling water	
	NOTE	:	explosion proof motor	
•			•	
·				
	SERVICE ·	:	•	
	TYPE	:		
	NOMINAL CAPACITY	:		
	MATERIAL	:		
	AGITATOR AND DRIV	/E:		
	PRESSURE	:		
	TEMPERATURE	:		
	HEATING/COOLING	:		
	NOTES	:		
•				
	CONTENANT DES INFORMATIONS		FIDENTIFULES PAGE AFFAIRE N	4

	TECHNICAL SPECIFICATIONS
Tem N°	ITEM NAME AND SPECIFICATION
T 201	SERVICE : DISTILLATION COLUMN
	TYPE : Packed tower DIAMETER: 800 mm
	TRAYS : Type : : Number : : Spacing : : Material :
	PACKING: Type : 2" pall rings : 6000 mm : Material : 316 SS
	VESSEL: Material: 304 SS: Pressure: +1,7 bar gage +full vacuum: Temperature: 160°C
	NOTES :
· ,	SERVICE:
	TYPE : DIAMETER:
	TRAYS : type : : number : : spacing : : material :
	PACKING: type : height : material :
	VESSEL : material : : pressure : : temperature:
	NOTES :

3 - EQUIPMENT LIST - MALATHION

SECTION 300

MALATHION PRODUCTION UNIT

ITEM I	~	_		ITE	M NAME	
C 30	1			REAC	CTOR VACUUM PUMP	
C 30	2			STR	IPPER VACUUM PUMP	
D 30	1			нот	wael	
D 30	2			HOT	WELL	
D 30	3			ETH'	YL MALEATE FEED TANK	
D 304	4			DMT	'A-TOLUENE FEED TANK	
D 30	5			REC	OVERED TOLUENE TANK	
D 30	5 A.	В		REC	OVERED REACTANTS TANK	
D 30	•	•		HEA'	VY PHASE SURGE TANK	
D 30				CRUI	DE MALATHION SURGE TANK	
D 30					DE MALATHION SURGE TANK	
D 310		R			JD WASTES CONTAINERS	
	•					
E 30	1			REAG	CTOR CONDENSER	
E 30	2			REA	CTOR VENT CONDENSER	
E 30	3			EVA	PORATOR CONDENSER	
E 30	4			EVA	PORATOR VENT CONDENSER	
E 30	5			AGI'	TATED FILM EVAPORATOR	
E 30	6			STR	IPPER CONDENSER	
н 30	1			PRE	CCOAT FILTER	
P 30	1	•		EVA	APORATOR FEED PUMP	
P 30	2			REC	OVERED REACTANTS PUMP	
P 30	3			FIL	TER FEED PUMP	
P 30	4			SOD	DIUM CARBONATE SOLUTION PUMP	
P 30	5			PRE	COAT SUSPENSION TRANSFER PUMP	
					CHIMIE DEVELOPPEMENT INTERNATIONA	L
	 	 	 		CLIENT	
					EQUIPMENT LIST	
		<u> </u>	-		UNIDO	
	 	 	 		SECTION 300	
	↓	├	 	 	4	

T 4. 4.0	ITEM NAME
P 306	MALATHION TRANSFER PUMP
P 306	MALATHION TRANSPER PUMP
R 301	MALATHION REACTOR
R 302	MALATHION STRIPPER
R 303	SODIUM CARBONATE MIXING TANK
R 304	PRECOAT MIXING TANK
	the second secon
	en en en en en en en en en en en en en e
·	

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO REVEST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 2/2 310 6002 SOM 003 0

ITEM N°	ITEM NAME AND SPECIFICATION
C 301	SERVICE : REACTOR VACUUM PUMP
C 301	TYPE : multistage steam jets with surface condensers CAPACITY : 10 kg/hr of air SUCTION PRESSURE : 10 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID :-steam : 150 psig satured steamliquid:
	MATERIAL : cast iron and carbon steel TEMPERATURE :
	NOTES : condensers:shell and tube
C 302	SERVICE : STRIPPER VACUUM PUMP
	TYPE : multistage steam jets with surface condensers
	CAPACITY : 9 kg/hr of air SUCTION PRESSURE : 25 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID :-steam : 150 psig saturated steam -liquid:
	MATERIAL : cast iron and carbon steel TEMPERATURE.
	NOTES : condensers:shell and tube
	SERVICE :
	TYPE :
	CAPACITY : SUCTION PRESSURE : DISCHARGE PRESSURE: PROPELLING FLUID :-steam : -liquid:
	MATERIAL : TEMPERATURE :
	NOTES :

	EQUIPMENT ITHM SYMBOL : D = TANKS AND HOPFERD	-
	TECHNICAL SPECIFICATIONS	-
ITEM N•	/ ITEM NAME AND SPECIFICATION	
D 301	SERVICE : HOT WELL	
	TYPE :vertical tank-flat bottom-light	1
•	gage VOLUME :100 liters DIAMETER :500 mm HEIGHT :750 mm	
	MATERIAL :carbon steel	
	PRESSURE :atmospheric TEMPERATURE: 60°C	
	NOTES :removable cover included	
D 302	SERVICE : HOT WELL	
	TYPE :Vertical tank-flat bottom-light gage	
	VOLUME :100 liters DIAMETER :500 mm HEIGHT :750 mm	
	MATERIAL :carbon steel	
	PRESSURE :atmospheric	
•	NOTES : removable cover included	
D 303	SERVICE : ETHYL MALEATE FEED TANK	
	TYPE : Vertical tank -dished heads	
	VOLUME : 2 m3 DIAMETER : 1100 mm HEIGHT : 1900 mm	
	MATERIAL : carbon steel	
·	PRESSURE : atmospheric TEMPERATURE: 50°C	
	NOTES :	
est la proprie	NTEMANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERS REV. TE DE COI ET NE PEUT ETRE REPRODUIT 1/ 330 6002 ADS D3001.	-

	TECHNICAL SPECIFICATIONS	
item N°	ITEM NAME AND SPECIFICATION	
D 304	SERVICE : DMTA - TOLUENE FEED TANK	
	TYPE : Vertical tank- dished heads	
	VOLUME :2,5 m3 DIAMETER :1200 mm HEIGHT :2100 mm	•
	MATERIAL : 316 SS	
	PRESSURE : - 5 g/cm2; + 25 g/cm2 TEMPERATURE: 50°C	
	NOTES :	
D 305	SERVICE : RECOVERED TOLUENE TANK	•
	TYPE : Vertical tank-dished heads	
	VOLUME : 1,2 m3 DIAMETER : 1000 mm HEIGHT : 1400 mm	
·	MATERIAL : carbon steel	
	PRESSURE: full vacuum+ 1,7 barg TEMPERATURE: 120°C	
	NOTES :	
D306 A,B	SERVICE : RECOVERED REACTANTS TANKS	
	TYPE :Vertical tank-dished heads	
	VOLUME :1.0 m3 / DIAMETER :900 mm + HEIGHT :1500 mm	
	MATERIAL : 316 SS	
	PRESSURE: Full vacuum and 1,7 bar g TEMPERATURE: 120°C	
	NOTES : 2 tanks in parallel	

	TECHNICAL SPECIFICATIONS		
Tem N•	' ITEM NAME AND SPECIFICATION		
D 307	SERVICE : HEAVY PHASE SURGE TANK		
•	TYPE : Vertical tank-dished heads -		
	VOLUME : 2.8 m3 DIAMETER : 1250 mm HEIGHT : 2100 mm	•	
	MATERIAL : 304 SS		
	PRESSURE : Full vacuum + 1.7 bar gage TEMPERATURE: 80°C		
	NOTES :		
			_
D 308	SERVICE : CRUDE MALATHION SURGE TANK		
	TYPE: Vertical tank- dished heads		
	VOLUME : 2.8 m3	•	
	DIAMETER :1250 mm HEIGHT :2100 mm		
	MATERIAL : 316 SS		
	PRESSURE : Full vacuum + 1,7 bar gage TEMPERATURE: 180°C		
•	NOTES :cooling coil 2m2		
D 309	SERVICE : CRUDE MALATHION SURGE TANK	,	
	TYPE : Vertical tank-dished heads		
	VOLUME : 3 m3		
	DIAMETER : 1300 mm	••	
•	MATERIAL : 304 SS	1	
	PRESSURE : atmospheric TEMPERATURE: 70°C	!	
	NOTES :	•	

EQUIPMENT ITEM SYMBOL : D - TANKS AND HOPPERS

ITEM N°	ITEM NAME AND SPECIFICATION	
D310 A,B	SERVICE : SOLID WASTES CONTAINERS TYPE : open top with cover-light gage VOLUME : O,5 m3 DIAMETER : 800x800x800 mm HEIGHT : MATERIAL : carbon steel PRESSURE : atmospheric TEMPERATURE: NOTES : 2 portable containers (with fork light truck)	•
	SERVICE: TYPE: VOLUME: DIAMETER: HEIGHT: MATERIAL: PRESSURE: TEMPERATURE: NOTES:	
	SERVICE: TYPE: VOLUME: DIAMETER: HEIGHT: MATERIAL: PRESSURE: TEMPERATURE: NOTES:	

	TECHNICAL SPECIFICATIONS.	
TEM N°	ITEM NAME AND SPECIFICATION	
E 301	SERVICE : REACTOR CONDENSER HEAT TRANSFER AREA : 6m2 TYPE : graphite block exchanger PROCESS SIDE	ion
E 302	SERVICE : REACTOR VENT CONDENSER HEAT TRANSFER AREA !1 m2 TYPE : graphite block exchanger PROCESS SIDE : toluene - material : graphite - pressure : 1,7 bar gage+full vacuum - temperature: 120°C UTILITY SIDE : 44% ethylene glycol solution graphite+carbon steel - pressure : 6 bar g - temperature: - 20°C NOTES :	ion
E 303	SERVICE : EVAPORATOR CONDENSER HEAT TRANSFER AREA : 4 m2 TYPE : graphite block exchanger PROCESS SIDE : DMTA+ ethylmaleate - material : graphite - pressure : 1,7 barg+ full vacuum - temperature: 180°C UTILITY SIDE : Cooling water - material : graphite+carbon steel - pressure : 6 barg - temperature: 70°C NOTES :	

EQUIPMENT	7.77	SYMBOL	: E	: -	HEAT	EXCLASS.
	A 4 1 8		• •			

	macuNicat	SPECIFICATIONS
		SPECIFICATIONS
ITEM H*	ITEM NAME AND	SPECIFICATION
E 304	SERVICE	EVAPORATOR VENT CONDENSER
ļ	HEAT TRANSFER AREA	: 0.5 m2
	TYPE	graphite block exchanger
	material	: 1,7 bar gage+full vacuum
	UTILITY SIDE - material - pressure - temperature	#4% ethylene glycol solution :graphite +carbon steel :6 barg e: -20°C
	NOTES	:
E 305	SERVICE	: AGITATED FILM EVAPORATOR
2 300	HEAT TRANSFER AREA	
	TYPE	agitated thin film evaporator
		: 1.7 bar g+full vacuum
	UTILITY SIDE - material - pressure - temperature	:316 SS and/or carbon steel :11 bar g
	NOTES	:explosion proof motor
E 306	SERVICE	STRIPPER CONDENSER
	HEAT TRANSFER AREA	:8 m2
	TYPE	: shell and tube
	PROCESS SIDE - material - pressure - temperatur	:tube side- water+malathipn :304 SS :full vacuum +1,7 bar g e:80°C
		<pre>:shell side(-5°C glycol) :304 SS +carbon steel :6 bar g e: _ 5°C + 40°C</pre>
	NOTES	:
EST LA PRIPEIE	TENANT DES INFORMATIONS CONFIDE E DE COI ET NE PEÙT ETRE REF S L'AJTOPISATION ECRITE DE C'D	12/ 12001 12/ 12001

EQUIPMENT ITEM SYMBOL : H - FILTERS

TECHNICAL SPECIFICATIONS

TYPE :centrifugal discharge tray filter SOLIDS - weight :	SOLIDS - weight volume FILTERING AREA	t:7 / 50 liters
FILTERING AREA : 2,5 m2 MATERIAL : 304 SS PRESSURE : 5 bar g TEMPERATURE : 70°C NOTES : Explosion proof motor SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TEM	FILTERING AREA	e :}
MATERIAL : 304 SS PRESSURE : 5 bar g TEMPERATURE : 70°C NOTES : Explosion proof motor SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TEMPERATURE :	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	. •
PRESSURE : 5 bar g TEMPERATURE : 70°C NOTES : Explosion proof motor SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TEMPERATURE :	I MATERIAL.	- 10 III-
TEMPERATURE : 70°C NOTES : Explosion proof motor SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TYPE	304 SS	
SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :		
SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TYPE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	•	
TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TEMPERATURE : TEMPERATURE :	NOTES	Explosion proof motor
TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE : TEMPERATURE : TEMPERATURE :		
SOLIDS - weight: - volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE: NOTES: SERVICE: TYPE: SOLIDS - weight: - volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE: TEMPERATURE:	SERVICE	
FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE: NOTES:: SERVICE: TYPE: SOLIDS - weight: - volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE: TEMPERATURE:	TYPE	•
FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE: NOTES:: SERVICE: TYPE: SOLIDS - weight: - volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE:	SOLIDS - weigh	t :
MATERIAL : PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	i i	
PRESSURE : TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	i	
TEMPERATURE : NOTES : SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :		
SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	· · · · · · · · · · · · · · · · · · ·	
SERVICE : TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :		
TYPE : SOLIDS - weight : - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	110235	
TYPE : SOLIDS - weight: - volume : FILTERING AREA : MATERIAL : PRESSURE : TEMPERATURE :	SERVICE	
SOLIDS - weight: - volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE:	. 1	
- volume: FILTERING AREA: MATERIAL: PRESSURE: TEMPERATURE:		t :
MATERIAL : PRESSURE : TEMPERATURE :		
PRESSURE : TEMPERATURE :	FILTERING AREA	•
TEMPERATURE :	• • • • • • • • • • • • • • • • • • • •	
	PRESSURE	
NOTES :	TEMPERATURE	•
	NOTES	
	}	

	TECHNIC	AL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SP	ECIFICATIONS	
P 301	SERVICE	EVAPORATOR FEED PUMP	
	TYPE	:Centrifugal pump	
	FLOW RATE	:3,5 m3/hr	
	DIFFERENTIAL PRESS	URE: 2.0 bar	
	MATERIAL	:graphite	
	STUFFING BOX	:	
	MECHANICAL SEAL	:double mechanical seal	
	DRIVER	:explosion proof motor	
	NOTES	:	
P 302	SERVICE	: RECOVERED REACTANTS PUMP	
	TYPE	: Volumetric pump	
	FLOW RATE	:3.0 m3/hr	
	DIFFERENTIAL PRESS	URE: 2.5 bar	
	MATERIAL	: 316 SS	}
	STUFFING BOX	:	
	MECHANICAL SEAL	: Yes	
	DRIVER	:explosion proof motor	
	NOTES	•	
P 303	SERVICE	: FILTER FEED PUMP	
. 505	TYPE	:Volumetric pump	
	FLOW RATE	.6 m3/hr	
	DIFFERENTIAL PRESS	•)
	MATERIAL PRESS	:316 SS	1
	STUFFING BOX	;yes	
	MECHANICAL SEAL	• 4	
	DRIVER	: explosion proof motor	
	NOTES	•	
	MOTES	•	
	1		1

	TECHNICAL S	PECIFICATIONS			
ITEM N°	ITEM NAME AND SPECIFICATIONS				
P 304	TYPE : FLOW RATE : DIFFERENTIAL PRESSURE:	SODIUM CARBONATE SOLUTION PUMP Volumetric pump 2.0 m3/hr 2.0 bar cast iron or carbon steel			
	STUFFING BOX : MECHANICAL SEAL :				
P 305	TYPE FLOW RATE DIFFERENTIAL PRESSURE: MATERIAL STUFFING BOX MECHANICAL SEAL DRIVER	PRECOAT SUSPENSION TRANSFER PUMP Centrifugal pump 2.5 m3/hr 2.0 bar cast iron or carbon steel yes explosion proof motor copen type impeller			
P 306	TYPE FLOW RATE DIFFERENTIAL PRESSURE: MATERIAL STUFFING BOX	MALATHION TRANSFER PUMP Volumetric pump 2.5 m3/hr 2.0 bar 316 SS Yes explosion proof motor			

	TE	CHNICAL SPECIFICATIONS	
item N°	ITEM NAME AN	D SPECIFICATION	
R 301	SERVI CE	: MALATHION REACTOR	
	TYPE	: Jackted reactor	
	NOMINAL CAPACITY	: 6000 liters	
	MATERIAL	glass lined carbon steel:	
	AGITATOR AND DRIV	E: impeller 11 KW	
	PRESSURE	, 1.7 bar gage + full vacuum	
	TEMPERATURE	: 200°C	
	HEATING/COOLING	: 150 psig steam/cooling water	
	NOTE	Explosion proof motor double mechanical seal	
R 302	SERVICE	:MALATHION STRIPPER	
	TYPE	:Jacketed reactor	
	NOMINAL CAPACITY	:4000 liters	
	MATERIAL	:316 SS	
	AGITATOR AND DRIV	VE: impeller 7,5 kw	
	PRESSURE	: 1.7 bar g + full vacuum	
	TEMPERATURE	:200°C	
	HEATING/COOLING	:150 psig steam/cooling water	
	NOTES	<pre>:explosion proof motor double mechanical seal</pre>	

	TEC	CHNICAL SPECIFICATIONS
TEM N°	ITEM NAME AN	D SPECIFICATION
R 303	SERVICE	: SODIUM CARBONATE MIXING TANK
	TYPE NOMINAL CAPACITY	:Agitated open tank with cover conical bottom :0.75 m3
	MATERIAL	Fiber reinforced polyester
	AGITATOR AND DRIVE	E:turbine impeller-1.5 kw
	PRESSURE	:atmospheric
	TEMPERATURE	:50°C
	HEATING/COOLING	:
	NOTE	Explosion proof motor
R 304	SERVICE	PRECOAT MIXING TANK
R 304	SERVICE	PRECOAT MIXING TANK
	TYPE NOMINAL CAPACITY	agitated open tank with cover conical bottomO.75 m3
	MATERIAL	:304 SS
	AGITATOR AND DRIV	E:Turbine impeller-1,5 kw
	PRESSURE	atmospheric
	TEMPERATURE	: 50°C
	HEATING/COOLING	:
	NOTES	explosion proof motor
	1	
]	

4 - EQUIPMENT LIST - N-METHYLCHLOROACETAMIDE

SECTION 400

N-METHYLCHLOROACETAMIDE PRODUCTION UNIT

ITEM N°	ITEM NAME
3 401	SCREW CONVEYOR
401	VACUUM JETS
D 401	OVERHEAD DECANTER
D 402	DISTILLATE RECEIVER
D 403	DISTILLATE RECEIVER
D 404	SOLVENT SURGE TANK
D 405	PRODUCT SURGE TANK
D 406	METHYLAMINE FEED TANK
D 407	CAUSTIC DILUTION TANK
D 408	HOT WELL
D 409	CHLOROACETIC ACID HOPPER
E 401	REACTOR CONDENSER
E 401	VENT CONDENSER
E 402	VENT CONDENSER
P 401	SOLVENT FEED PUMP
P 402	CAUSTIC DILUTION PUMP
P 403	PRODUCT TRANSFER PUMP
P 404	SOLVENT RECYCLE PUMP
R 401	AGITATED BATCH REACTOR
	DISTILLATION TOWER

					CHIMIE	DEVELOPPEMENT INTERNATIONAL 2 rue Legendre PARIS 17°
					CLIENT	
						EQUIPMENT LIST
		<u> </u>	 		UNIDO	
 						SECTION 400
DESCRIPTION	REV	DATE	SIGN.	VERIF.		

	TECHNICAL SPECIFICATIONS		_
ITEM	ITEM NAME AND SPECIFICATION	,	
B 401	SERVICE : SCREW CONVEYOR		
	TYPE : screw conveyor		
	MATERIAL: stainless steel - 304		
	CAPACITY: 5 m3/hr		
	SIZE : lenght 25 m		
	Driver: 1.5 HP- explosion proof motor		
	NOTES : includes feed hopper		
	•		
	SERVICE :		
	TYPE :		
	MATERIAL:		
	CAPACITY:		
_	SIZE :		
	NOTES :		
	SERVICE :		
	TYPE :		
•	MATERIAL:		
	CAPACITY:		
	SIZE :		
	NOTES :		
		l	

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
C 401	SERVICE : VACUUM JETS TYPE : multistage steam jets with	
	intercondensers CAPACITY: 20 kg/hr of air SUCTION PRESSURE: 15 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID: -steam: 150 psig sat steam -liquid:	·
	MATERIAL : cast iron and carbon steel TEMPERATURE :	
	NOTES : shell and tube condensers	
-	SERVICE	
	TYPE	
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID :-steam : -liquid:	
	MATERIAL TEMPERATURE.	
	NOTES	
	SERVICE :	
	TYPE :	
	CAPACITY : SUCTION PRESSURE : DISCHARGE PRESSURE: PROPELLING FLUID :-steam : -liquid:	
·	MATERIAL : TEMPERATURE :	
	NOTES :	

	EQUIPMENT ITEM SYMBOL : D - TANKS AND HOPPERS	
	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
D 401	SERVICE : OVERHEAD DECANTER TYPE : horizontal drum- dished heads	
	VOLUME : 400 liters DIAMETER : 0,5 m HEIGHT : 2,0 m	
	MATERIAL : 304 ss PRESSURE : 1,7 bar gage + full vacuum	
	TEMPERATURE: 100°C NOTES :	
D 402	SERVICE : DISTILLATE RECEIVER	
	TYPE : vertical drum- dished heads VOLUME : 12 m3 DIAMETER : 1.9 m HEIGHT : 4.0 m	
	HEIGHT: 4.0 m MATERIAL: carbon steel	
	PRESSURE :1.7 bar gage +full vacuum TEMPERATURE: 100°C	
	NOTES : cooling coil: 2 m2	
D 403	SERVICE : DISTILLATE RECEIVER TYPE : Vertical drum- dished heads	
	VOLUME : 5.0 m3 DIAMETER : 1.5 m HEIGHT : 2.6 m	
	MATERIAL : carbon steel	
	PRESSURE : 1.7 bar gage + full vacuum TEMPERATURE: 100°C NOTES :	
	NOTES :	
ES" LA PROPPIE	NITEMANT DES INFORMATIONS CONFIDENTIFLLES PAGE AFFAIRE TE DE CDI ET NE PEUT ETRE REPRODUIT S L'AUTOPISATION ECRITE DE CDI 1/ 330 6002 ADS	 FEV

	TE	CHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAM	E AND SPECIFICATION	
D 404	SERVICE	: SOLVENT SURGE TANK	
		: Vertical tank- flat bottom- light gage	
	VOLUME	: 18 m3	
	DIAMETER HEIGHT	• 2.0 m • 5.9 m	
	MATERIAL	:carbon steel	
	PRESSURE TEMPERATURE	± 50 cm water column 60°C	
	NOTES	:	
D 405	SERVICE	: PRODUCT SURGE TANK	
	TYPE	: Vertical- dished heads	
	VOLUME	. 8 m3	
	DIAMETER	: 1.9 m	
	HEIGHT	: 2.6 m	
	MATERIAL		
	PRESSURE TEMPERATURE	: atmospheric 5: 60°C	
	NOTES	:	
D 406	SERVICE	: METHYLAMINE FEED TANK	
	TYPE	: Vertical dished heads	
	VOLUME		1
	DIAMETER HEIGHT		
	1	: carbon steel	
	-1	: 6 bar g + full vacuum	
	TEMPERATUR		
	NOTES	: Cooling coil: 5 m2	
	1		

·	TECHNICAL SPECIFICATIONS		
Tem N•	ITEM NAME AND SPECIFICATION		
D 407	SERVICE : CAUSTIC DILUTION TANK		
	TYPE : Vertical tank- flat bottom- light gage		
	VOLUME : 4.5 m3		
	DIAMETER : 1.4 m		
•	HEIGHT : 3.0 m		
	MATERIAL : carbon steel		
	PRESSURE : atmospheric		
	TEMPERATURE: 60°C		
	NOTES : Heat treated welds		
	:		
D 408	SERVICE : HOT WELL		
	TYPE : Vertical :ank- flat bottom- light		
	Vertical lanks flat bottoms fight gage VOLUME : 100 li s		
	DIAMETER : 500 mm		
	HEIGHT : 750 mm		
	MATERIAL : carbon st el		
	PRESSURE : atmospheric		
	TEMPERATURE: 60°C		
	NOTES : Removable cover included		
D 409	SERVICE : CHLOROACETIC ACID HOPPER		
	TYPE : Vertical tank- conical bottom		
	VOLUME : 9.5 m3		
	DIAMETER : 2 m		
	HEIGHT : 4.5 m		
	MATERIAL : 316 SS		
	PRESSURE : atmospheric TEMPERATURE: 50°C		
·	NOTES : Rotary feeder and drive included (explosion proof motor)		
	NIEMANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO		

	TECHNICAL SPECIFICATIONS	
ITEM H*	ITEM NAME AND SPECIFICATION	
E 401	SERVICE HEAT TRANSFER AREA: 150 m2 TYPE: shell and tube PROCESS SIDE: tube side - material: 304 SS - pressure: 1.7 bar g + full vacuum - temperature: 150°C UTILITY SIDE: Cooling water-glycol-shell: side: 304 SS + carbon steel: 6 bar g 70°C NOTES: NOTES: NOTES: The condense of the condense of	
E 402	SERVICE : VENT CONDENSER HEAT TRANSFER AREA ! 10 m2 TYPE : shell and tube PROCESS SIDE : tube side	
	SERVICE : HEAT TRANSFER AREA : TYPE : PROCESS SIDE : - material : - pressure : - temperature: UTILITY SIDE : - material : - pressure : - temperature: NOTES :	

	A -	53
	EQUIPMENT ITEM SYN	MBOL : P - PUMPS
	TECHNICAL S	PECIFICATIONS
TEM N°	ITEM NAME AND SPECIF	ICATIONS
P 401	SERVICE :	SOLVENT FEED PUMP
	TYPE :	Centrifugal pump
	FLOW RATE :	30 m3/hr
	DIFFERENTIAL PRESSURE:	2,5 bar
	MATERIAL :	cast iron
	STUFFING BOX :	
	MECHANICAL SEAL :	yes
	DRIVER :	explosion proof motor
	NOTES :	•
P 402	SERVICE :	CAUSTIC DILUTION PUMP
	TYPE :	Volumetric pump
	FLOW RATE :	15 m3/hr
	DIFFERENTIAL PRESSURE:	i i i i i i i i i i i i i i i i i i i
	1	cast iron or carbon steel
	STUFFING BOX :	l l
	MECHANICAL SEAL :	double
		explosion proof motor
	•	variable speed drive- self priming
P 403	SERVICE :	PRODUCT TRANSFER PUMP
	i	volumetric pump
		30 m3/hr
	DIFFERENTIAL PRESSURE:	3.5 bar
		316 SS
	STUFFING BOX :	
		yes
		explosion proof motor variable speed drive
		Agriante sheed drive

	The same of the sa	
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE	AFFAIRE NUMERO	FEV
IST LA PROPPIETE DE COS ET NE PEUT ETRE REPRODUIT	220	1
CO UTIL SE SANS L'AUTORISATION ECRITE DE COT	330 6002 ADS P4001	0

	TECHNIC	CAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SE	PECIFICATIONS	
P 404	SERVICE	: SOLVENT RECYCLE PUMP	
	TYPE	: centrifugal pump	
	FLOW RATE	: 20 m3/hr	
	DIFFERENTIAL PRESS	SURE: 2.5 bar	
	MATERIAL	: cast iron	
	STUFFING BOX	:	
	MECHANICAL SEAL	: yes	
	DRIVER	: explosion proof motor	
	NOTES	:	
	•		
	SERVICE	:	
	· TYPE	:	
	FLOW RATE	:	
	DIFFERENTIAL PRESS	SURE:	
	MATERIAL	: ,	
	STUFFING BOX		
	MECHANICAL SEAL		
	DRIVER	•	
	NOTES	•	
		•	
	SERVICE	:	
	TYPE	:	
	FLOW RATE	:	
	DIFFERENTIAL PRES	SURE:	
	MATERIAL	:	1
	STUFFING BOX	•	
	MECHANICAL SEAL	:	
	DRIVER	:	
•	NOTES	:	

	· TE	CHNICAL SPECIFICATIONS		
ITEM N°	ITEM NAME AN	D SPECIFICATION		
R 401	SERVICE	: AGITATED BATCH REACTOR		
	TYPE	: Jacketed reactor with interna	1	
	NOMINAL CAPACITY	coil : 28m3		
	MATERIAL	: 316 stainless steel		
	AGITATOR AND DRIV	E: 15 kw turbine		
	PRESSURE	: 1.7 bar gage + full vacuum		
	TEMPERATURE	: 200°C		
	HEATING/COOLING	: 150 psig steam/cooling water/	l	
	NOTE	glycol : explosion proof motor- double		
		mechanical seal coil area: 14 m2		
	SERVICE	•		
	TYPE	:		
	NOMINAL CAPACITY	:		
	MATERIAL	:		
	AGITATOR AND DRIV	/E:		
	PRESSURE	:		
	TEMPERATURE	.		
	HEATING/COOLING	:		
	NOTES	•		
		•		
CE SCHEMA	CONTENANT DES INFORMATIONS	CONFIDENTIELLES PAGE AFFAIRE N	UMERO	25/
IST LA PROP	PIETE DE COI ET NE PEUT ET	RE REFRODUIT 1/ 330 6002 ADS R	1	0

·	TECHNICAL SPECIFICATIONS
Tem N•	ITEM NAME AND SPECIFICATION
T 401	SERVICE : DISTILLATION TOWER
	TYPE : packed tower DIAMETER: 1 m
	TRAYS : Type : : Number : : Spacing : : Material :
	PACKING: Type : pall rings- 2" : Height : 5 m : Material : 304 SS
	VESSEL: Material: 304 SS: Pressure: 1.7 bar gage+full vacuum: Temperature: 150°C
	NOTES :
	SERVICE :
	TYPE : DIAMETER:
	TRAYS : type : : number : : spacing : : material :
	PACKING: type : : height : : material :
	VESSEL : material : : pressure : : temperature:
	NOTES :

5 - EQUIPMENT LIST - DIMETHOATE

SECTION 500

DIMETHOATE PRODUCTION UNIT

ITEM	N.			ITEM NAME	
в 50	1			BUCKET ELEVATOR	
c 50	1			VACUUM JETS	
D 50	1			ACID SURGE TANK	
D 50	2			LEAN TOLUENE TANK	
D 50	3			ACID SOLUTION TANK	
D 50	4			ACETAMIDE SURGE TANK	
D 50	_			BICARBONATE HOPPER	
D 50	6	`		WASTE WATER TANK	
D 50	7			SOLVENT EVAPORATOR	
D 50	8	٠		SOLVENT RUN DOWN TANK	
D 50	9			DIMETHOATE SURGE TANK	
D 51	.0			HOT WELL	
D 51	.1			REFLUX DRUM	
D 51	.2			RECOVERED CYCLOHEXANONE TANK	
D 51	.3			TOLUENE EVAPORATION DRUM	
D 51	.4			DISTILLED TOLUENE TANK	
E 50)1			VENT CONDENSER	
E 50	2			WIPED FILM EVAPORATOR	
E 50	3			EVAPORATOR CONDENSER	
E 50	4			EVAPORATOR VENT CONDENSER	
E 50	5			COLUMN REBOILER	
E 50	6	:		COLUMN CONDENSER	
E 50	7			COLUMN VENT CONDENSER	
E 50	8			EFFLUENT COOLER	
E 50	9			TOLUENE CONDENSAL	
н 50)1		· · · · ·	METAL BELT FLAKER	
				CHIMIE DEVELOPPEMENT INTERNATION 42 rue Legendre PARIS 17°	NAL
				CLIENT	
		 	 	UNIDO EQUIPMENT LIST	
	+	 	 	SECTION 500	
,					
DESCRIPTIO	N REV	DATE	SIGN	VERIF.	

_	ITEM N°	ITEM NAME
	P 501 P 502	ACID SOLUTION FEED PUMP ACID SOLUTION TRANSFER PUMP
	P 503	LEAN TOLUENE PUMP
	P 504	REACTOR FEED PUMP
	P 505	RAW PRODUCT TRANSFER PUMP
	P 506	WASTE WATER PUMP
	P 507	EVAPORATOR PUMP
i	P 508	DICHLOROETHANE RECYCLE PUMP
	P 509	FLAKER FEED PUMP
	P 510	CYCLOHEXANONE TRANSFER PUMP
	P 511	EFFLUENT TRANSFER PUMP
	P 512	DISTILLED TOLUENE PUMP
	R 501	ACID EXTRACTION TANK
	R 502	DIMETHOATE REACTOR
	N 302	
	T 501	DISTILLATION COLUMN
	U 501	PACKAGING MACHINE
	ŧ	
		المرازي أأنسهم فسأنصرن المعاد يتبعه سمم مرايم الوايم الويا المراسين بالمراجع الرازي
		and the contract of the contra
		en production de la company de la company de la company de la company de la company de la company de la compan La companyación de la company de la company de la company de la company de la company de la company de la comp
l		

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO REVEST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 2/ 310 6002 90M 004 0

TECHNICAL SPECIFICATIONS		
ITEM N°	ITEM NAME AND SPECIFICATION	
B 501	SERVICE : BUCKET ELEVATOR	
	TYPE : bucket elevator	
	MATERIAL: carbon steel (plastic buckets allowed)	
	CAPACITY: 2000 kg/hr (d=1.0)	
	SIZE : length : 15 m	
	NOTES : explosion proof motor	
	SERVICE:	
	TYPE :	
	MATERIAL:	
	CAPACITY:	
	SIZE :	
	NOTES :	
	SERVICE :	
	TYPE :	
	MATERIAL:	
	CAPACITY:	
	SIZE :	
	NOTES :	
CE SCHEMA CO	ONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PETE DE COI ET NE PEUT ETRE REPRODUIT 1/ 330 6002 ADS 8 5001 O	

	TECHNICAL	SPECIFICATIONS	
TEM N°	ITEM NAME A	ND SPECIFICATION	
C 501	SERVIC E	: VACUUM JETS	
	TYPE CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID		am
	MATERIAL TEMPERATUR E	<pre>: cast iron and carbon steel :</pre>	
	NOTES	:condensers: shell and tube	
	SERVICE		
	TYPE		
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID		
	MATERIAL TEMPERATURE.	,	
	NOTES		
	SERVICE	:	
	TYPE		
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID	: :: :-steam : -liquid:	
	MATERIAL TEMPERATURE	: :	
	NOTES	:	
	i		

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
D 501	SERVICE : ACID SURGE TANK TYPE : Vertical tank-dished heads VOLUME : 5 m3 DIAMETER : 1.5 M HEIGHT : 2.6 m MATERIAL : 316 SS PRESSURE : atmospheric TEMPERATURE: 60°C NOTES :
D 502	SERVICE: LEAN TOLUENE TANK TYPE: Vertical tank-flat bottom- light gage VOLUME: 5 m3 DIAMETER: 1.5 m HEIGHT: 3.0 m MATERIAL: carbon steel PRESSURE: atmospheric TEMPERATURE: 60°C NOTES:
D 503	SERVICE: ACID SOLUTION TANK TYPE: Vertical tank-flat bottom- light gage VOLUME: 18 m3 DIAMETER: 2.4 m HEIGHT: 4.1 m MATERIAL: 316 SS PRESSURE: Atmospheric TEMPERATURE: 60°C NOTES:

	TECHNICAL SPECIFICATIONS
ITEM N•	ITEM NAME AND SPECIFICATION
D 504	SERVICE : ACETAMIDE SURGE TANK TYPE : Vertical tank-dished heads VOLUME : 5 m3 DIAMETER : 1.5 m HEIGHT : 2.6 m MATERIAL : 304 ss PRESSURE : atmospheric TEMPERATURE: 60°C
D 505	NOTES : SERVICE : BICARBONATE HOPPER
	TYPE : Vertical tank-conical bottom VOLUME : 2.9 m3 DIAMETER : 1.4 m HEIGHT : 2.8 m MATERIAL : fiber reinforced polyester PRESSURE : atmospheric TEMPERATURE: 40°C NOTES : includes rotary feeder and drive (explosion proof motor)
D 506	SERVICE: WASTE WATER TANK TYPE: Vertical tank-flat bottom- light gage VOLUME: 30 m3 DIAMETER: 2.7 m HEIGHT: 5.4 m MATERIAL: carbon steel PRESSURE: atmospheric TEMPERATURE: 60°C NOTES:

	Т	ECHNICAL SPECIFICATIONS	
ITEM N•	ITEM NA	ME AND SPECIFICATION	
D 507	SERVICE	: SOLVENT EVAPORATOR	
	TYPE	wertical tank -dished heads	
	VOLUME DIAMETER HEIGHT	: 2.5 m	
	MATERIAL	: 304 SS	
	PRESSURE TEMPERATUR	:1.7 bar gage + full vacuum E:200°C	
	NOTES	:heating coil: 6 m2	
D 508	SERVICE	: SOLVENT RUN DOWN TANK	
	TYPE	: Vertical tank- dished heads	
	VOLUME DIAMETER HEIGHT	: 18 m3 : 2.3 m : 4.2 m	
	MATERIAL	:carbon steel	
	PRESSURE TEMPERATUR	:1.7 bar gage + full vacuum E:60°C	
	NOTES	cooling coil: 3 m2	
D 509	SERVICE	: DIMETHOATE SURGE TANK	
	TYPE	: Vertical tank- dished heads	
	VOLUME DIAMETER HEIGHT	: 1.9 m	
	MATERIAL	: 304 SS	
	PRESSURE TEMPERATUR	: 1.7 bar gage + full vacuum RE: 150°C	
	NOTES	: Cooling coil : 4 m2 Heating jacket: 2 m2	

	TECHNICAL SPECIFICATIONS
ITEM N•	ITEM NAME AND SPECIFICATION
D 510	SERVICE : HOT WELL
	TYPE : Vertical tank-flat bottom-light gage
	VOLUME • 100 liters
	DIAMETER: 500 mm HEIGHT: 750 mm
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: 60°C
	NOTES : removable cover included
D 511	SERVICE : REFLUX DRUM
	TYPE : Vertical tank- dished heads
	VOLUME : 0.23 m3
	DIAMETER : 0.6 m HEIGHT : 0.8 m
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: 100°C
	NOTES :
D 512	SERVICE : RECOVERED CYCLOHEXANONE TANK
	TYPE : Vertical tank- flat bottom
	VOLUME : 4 m3
	DIAMETER: 1.4 m HEIGHT: 2.8 m
	MATERIAL : carbon stee!
	PRESSURE : atmospheric TEMPERATURE: 100°C
	NOTES :

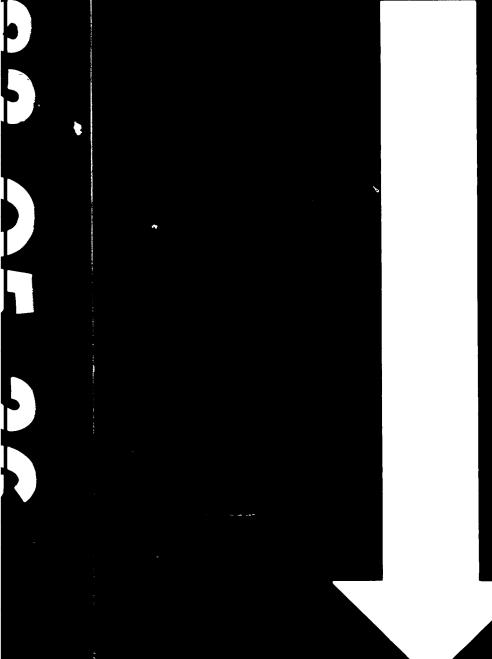
	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
D 513	SERVICE : TOLUENE EVAPORATION DRUM	
	TYPE : Vertical tank-dished heads	ļ
	VOLUME : 2.5 m3 DIAMETER : 1.2 m HEIGHT : 2.2 m	
	MATERIAL : carbon steel	
	PRESSURE : 1.7 bar g + full vacuum TEMPERATURE: 200°C	
	NOTES : heating coil: 3 m2	
D 514	SERVICE : DISTILLED TOLUENE TANK	
	TYPE : Vertical tank-flat bottom-light gage	;
	VOLUME : 2.5 m3 DIAMETER : 1.2 m HEIGHT : 2.1 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 80°C	
	NOTES :	
	SERVICE :	
	TYPE :	
	VOLUME : DIAMETER : HEIGHT :	
	MATERIAL :	
	PRESSURE : TEMPERATURE:	
	NOTES :	
CE SCHEMA COI	NTENANT DES INFORMATIONS CONFIDENTIFLLES PAGE AFFAIRE	NUMERO PE

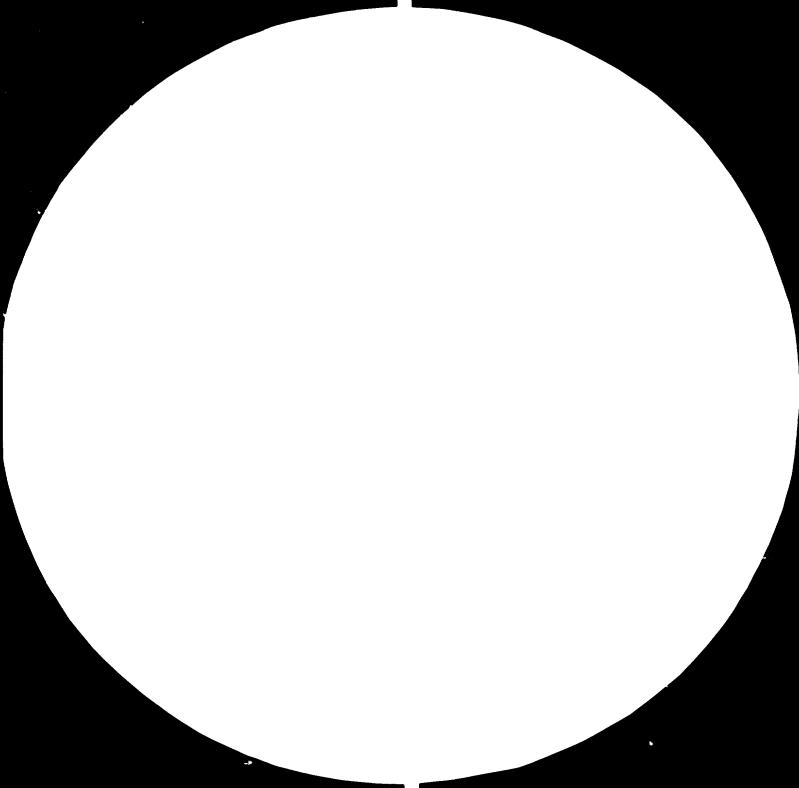
	TECHNICAL	L SPECIFICATIONS
TEM R°	ITEM NAME AND	O SPECIFICATION
E 501	SERVICE HEAT TRANSFER AREA	: VENT CONDENSER
	TYPE	: graphite block exchanger
	PROCESS SIDE - material - pressure - temperatur	:solvent vapors :graphite :atmospheric
	UTILITY SIDE - material - pressure - temperatur	:graphite-carbon steel :6 bar g
	NOTES	•
E 502	SERVICE	:WIPED FILM EVAPORATOR
2 302	HEAT TRANSFER AREA	
	TYPE	:wiped film evaporator
	PROCESS SIDE - material - pressure - temperature	:304 SS :1.7 bar gage + full vacuum
	UTILITY SIDE - material - pressure - temperature	:150 psig steam :304 S5 + carbon steel :11 bar g re:200°C
	NOTES	:15 HP explosion proof motor
E 503	SERVICE HEAT TRANSFER AREA	EVAPORATOR CONDENSER :35 m2
	TYPE	graphite block exchanges;
	- pressure	
	- temperatur	glycol solution
	- material - pressure - temperatur	<pre>:graphite= carbon steel :6 bar g re: _ 20°C</pre>
	NOTES	:
E SCHEMA CO	NYTENANT DES INFORMATIONS CONFID	DENTIFILES PAGE AFFAIRE NUMERO PEN

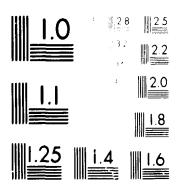
			
	TECHNICAL	SPECIFICATIONS	
ITEM N°	ITEM NAME AND	SPECIFICATION	
E 504		: EVAPORATOR VENT CONDENSER	
	HEAT TRANSFER AREA		
		:graphite block exchanger	
	PROCESS SIDE - material - pressure - temperatur	:1.7 bar g+ full vacuum	
	UTILITY SIDE - material - pressure - temperatur	: graphite-carbon steel :6 bar g	
	NOTES	:	
E 505	SERVICE	:COLUMN REBOILER	
	HEAT TRANSFER AREA	120 m2	
	TYPE	:kettle reboiler	
	PROCESS SIDE - material - pressure - temperatur	:316 SS :1.7 bar g+ full vacuum	
	UTILITY SIDE - material - pressure - temperatur	:150 psig steam :carbon steel :11 bar g :e:200°C	
	NOTES	:vessel volume=15 m3 (DIA=2.0m- L=4.6 m)	
E 506	SERVICE	:COLUMN CONDENSER	
	HEAT TRANSFER AREA	: 25 m2	
	TYPE	:shell and tube	
	PROCESS SIDE - material - pressure - temperatur	:cyclohexanone-water :carbon steel :1.7 bar g+full vacuum ·e:130°C	
	UTILITY SIDE - material - pressure - temperatur	:cooling water :carbon steel :6 bar G :e:60°C	
	NOTES	:	
EST LA PROPRIET	TENANT DES INFORMATIONS CONFID LE DE CDI ET NE PEUT ETRE FEI S L'AUTOPISATION ECRITE DE CD	PRODUIT	PEV

	TECHNICAL	SPECIFICATIONS	
TEM	ITEM NAME AND	SPECIFICATION	
E 507	SERVICE	: COLUMN VENT CONDENSER	
	HEAT TRANSFER AREA	: 3 m2]
		: shell and tube	
	PROCESS SIDE - material - pressure - temperatur	<pre>:cyclohexanone + water :carbon steel :atmospheric e: 100°C</pre>	
	UTILITY SIDE - material - pressure - temperatur	<pre>:cooling water :carbon steel :6 bar g :e:60°C</pre>	
	NOTES	: .	
E 508	SERVICE	: EFFLUENT COOLER	
	HEAT TRANSFER AREA	₹50 M2	
	TYPE	:plate heat exchanger	
	PROCESS SIDE - material - pressure - temperatur	:3 bar g	
	UTILITY SIDE - material - pressure - temperatur	:carbon steel :6 bar g	
	NOTES	: .	
E 509	SERVICE	: TOLUENE CONDENSER	
- · ·	HEAT TRANSFER AREA	•	
	TYPE	:shell and tube	
	PROCESS SIDE	:toluene	
	- material - pressure - temperatur	:carbon steel :1.7 bar g+full vacuum :e: 150°C	
	UTILITY SIDE - material - pressure - temperatur		
	NOTES	:	

	TECHNICAL SPECIFICATIONS						
ITEM N°	ITEM NAME AND SPECIFICATION						
н 501	SERVICE : METAL BELT FLAKER						
	TYPE : "SANDVIK" metal belt flaker						
	BELT MATERIAL : 304 SS						
	CAPACITY : 850 kg/hr						
	EFFECTIVE AREA : 12 m2						
	HEAT TRANSFER FLUID : glycol solution						
	DRIVE : explosion proof motor						
	NOTES : includes feed system, solids discharge hopper, rotary disch valve, enclosure and drive.						
	en en la companya de la companya de la companya de la companya de la companya de la companya de la companya de						
	and the second s						


CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 1/


AF FAIRE 330 6002 NUMERO ADS H5001


REV

TECHNICAL SPECIFICATIONS					
TEM	ITEM NAME AND SP	ECIFICATIONS			
P 501	SERVICE	: ACID SOLUTION FEED PUMP			
	TYPE	:centrifugal pump			
	FLOW RATE	:10 m3/hr			
	DIFFERENTIAL PRESS				
	MATERIAL	:graphite			
	STUFFING BOX	:			
	MECHANICAL SEAL				
	DRIVER	explosion proof motor			
	NOTES	:			
P 502	SERVICE	: ACID SOLUTION TRANSFER			
	TYPE	PUMP Centrifugal pump			
	FLOW RATE	: 40 m3/hr			
	DIFFERENTIAL PRESS	URE: 2.0 bar			
	1	:graphite			
	STUFFING BOX	:	1		
	MECHANICAL SEAL	: yes			
	DRIVER	explosion proof motor			
	NOTES	:			
	_	• .			
P 503	SERVICE	: LEAN TOLUENE PUMP			
	TYPE	: centrifugal pump			
	FLOW RATE	: 8 m3 /hr			
	DIFFERENTIAL PRESS	SURE: 2.0 bar			
	MATERIAL	: cast iron			
	STUFFING BOX	:			
	MECHANICAL SEAL	: yes			
	DRIVER .	: explosion proof motor			
	NOTES	:			
			1		

	TECHNICA	L SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPE	CIFICATIONS	
P 504	SERVICE	REACTOR FEED PUMP	
	TYPE	centrifugal pump	
	FLOW RATE DIFFERENTIAL PRESSU	30 m3/hr RE:2.0 bar	
	MATERIAL	:graphite	1
		:	
	MECHANICAL SEAL	• yes	1
	DRIVER	explosion proof motor	
	NOTES	:	1
		•	
	<u> </u>		
P 505	SERVICE	: RAW PRODUCT TRANSFER PUMP	
		centrifugal pump:	
	FLOW RATE	:50 m3/hr	
	DIFFERENTIAL PRESSU		
	MATERIAL	:graphite	
	STUFFING BOX	:	
	MECHANICAL SEAL	; yes	
	DRIVER	explosion proof motor	1
	NOTES	:	
		•	
P 506	SERVICE	: WASTE WATER PUMP	
	TYPE	:centrifugal pump	ļ
	FLOW RATE	25 m3/hr	1
	DIFFERENTIAL PRESSU	JRE: 2.0 bar	
	MATERIAL	cast iron	
	STUFFING BOX	• yes	
	MECHANICAL SEAL	•	
	DRIVER	: explosion proof motor	
	NOTES	•	
		•	
			1
	1		1

Markon city (R) and HTP to 19 (E) (1948). The state of th

	TECHNIC	AL SPECIFICATIONS					
ITEM N°	ITEM NAME AND SPECIFICATIONS						
P 507	TERVICE .	:EVAPORATOR PUMP					
	TYPE	:volumetric pump					
-	FLOW RATE	:15 m3/hr					
	DIFFERENTIAL PRESS	URE:2 bar					
	MATERIAL	:316 SS					
	STUFFING BOX	i					
	MECHANICAL SEAL	:double					
	DRIVER	explosion proof motor					
	NOTES	:reversible pump					
	`						
P 508	SERVICE	:DICHLOROETHANE RECYCLE PUMP					
	TYPE	:centrifugal pump					
	FLOW RATE	:30 m3/hr					
	DIFFERENTIAL PRESS	ì					
	MATERIAL	cast iron or carbon steel					
	STUFFING BOX	:					
	MECHANICAL SEAL	:double					
	DRIVER	explosion proof motor					
	NOTES	:					
·	-	- ,					
-	SERVICE	:FLAKER FEED PUMP					
P 509							
P 509	TYPE	:volumetric pump					
P 509	TYPE FLOW RATE	:Volumetric pump :1 m3/hr					
P 509		:1 m3/hr					
P 509	FLOW RATE	:1 m3/hr					
P 509	FLOW RATE DIFFERENTIAL PRESS	:1 m3/hr URE:2.0 bar					
P 509	FLOW RATE DIFFERENTIAL PRESS MATERIAL	:1 m3/hr URE:2.0 bar :316 SS					
P 509	FLOW RATE DIFFERENTIAL PRESS MATERIAL STUFFI!'G BOX	:1 m3/hr URE:2.0 bar					

	TECHNICAL S	SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATIONS		
P 510	TYPE FLOW RATE DIFFERENTIAT PRESSURE:		
	STUFFING BOX MECHANICAL SEAL	explosion proof motor	
P 511	TYPE FLOW RATE DIFFERENTIAL PRESSURE MATERIAL STUFFING BOX MECHANICAL SEAL	:316 SS :yes	
P 512	TYPE FLOW RATE DIFFERENTIAL PRESSURE MATERIAL STUFFING BOX MECHANICAL SEAL	centrifugal pump 5 m3/hr 3.0 bar cast iron yes explosion proof motor	

	TE	CHNICAL SPECIFICATIONS				
TEM N°	ITEM NAME AN	D SPECIFICATION				
R 501	SERVICE	ACID EXTRACTION TANK				
		<pre>: agitated vertical tank-conical bottom : 28 m3 (0.D.=3000 mm)</pre>				
	MATERIAL	: 316 SS				
	AGITATOR AND DRIV	E: turbine impeller				
	PRESSURE ·	: atmospheric				
	TEMPERATURE	: 60°C				
	HEATING/COOLING					
	NOTE	: explosion proof motor				
	•					
		·				
R 502	SERVICE	: DIMETHOATE REACTOR				
	TYPE :agitated vertical tank-dished heads					
	NOMINAL CAPACITY	:40 m3				
	MATERIAL	:316 SS				
	AGITATOR AND DRIV	/E:turbine impeller				
	AGITATOR AND DRIV	/E:turbine impeller : atmospheric	·			
		j	·			
	PRESSURE TEMPERATURE	: atmospheric	·			
	PRESSURE TEMPERATURE	: atmospheric	·			
	PRESSURE TEMPERATURE HEATING/COOLING	<pre>: atmospheric : 85°C : 150 psig sat.steam/glycol</pre>	·			
	PRESSURE TEMPERATURE HEATING/COOLING	<pre>: atmospheric : 85°C : 150 psig sat.steam/glycol</pre>	·			
	PRESSURE TEMPERATURE HEATING/COOLING	<pre>: atmospheric : 85°C : 150 psig sat.steam/glycol</pre>				
	PRESSURE TEMPERATURE HEATING/COOLING	<pre>: atmospheric : 85°C : 150 psig sat.steam/glycol</pre>				

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
т 501	SERVICE : DISTILLATION COLUMN
	TYPE : packed tower DIAMETER: 750 mm
	TRAYS : Type : : Number : : Spacing : : Material :
	PACKING: Type : pall rings -2" : Height : 3 x 3 meters : Material : 304 SS
	VESSEL : Material rarbon steel : Pressure : 1.7 bar g + full vacuum : Temperature: 130°C
	NOTES :
	SERVICE :
	TYPE : DIAMETER:
	TRAYS : type : : number : : spacing : : material :
	PACKING : type : : height : : material :
	VESSEL : material : : pressure : : temperature:
	NOTES :

	EQUIPMENT ITEM SYMBOL : U- PACKAGE UNITS					
TECHNICAL SPECIFICATIONS						
TEM N°	ITEM NAME AND SPECIFICATION					
	SERVICE : PACKAGING MACHINE					
	TYPE : automatic bagging and palletizing unit					
	CAPACITY: 2 bags per minute					
	NOTES : includes an automatic scale and roller (or band) conveyors					
İ						
:						

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 0U UTILISE SANS L'AUTOPISATION ECRITE DE CDI 1/1

AF FAIRE NUMERO
330 6002 NDC U 500

REV O Chimie Developpement International

6 - EQUIPMENT LIST - MANEB-ZINEB

,

SECTION 600

MANEB -ZINEB PRODUCTION UNIT

	601							
C			•		FORK	LIFT	TRUCI	Ķ
-	601				LIQU	ID JET	'- NAI	BAM REACTOR
С	602				DRYE	R VACU	IUM JI	ET
D	601				CAUS	TIC SO	LUTIO	ON TANK-NABAM REACTOR
D	602	A,B			NABA	M DILU	TION	TANKS
D	603				Zn/M	n SALT	s sui	RGE TANK
D	604			•	MOTH	ER LIQ	UORS	RECEIVER
D	605				CAUS	TIC ME	ASUR:	ING TANK ·
D	606				RESL	URRYIN	IG TAI	NK
Ď	607			•	SPRA	Y DRYE	R FE	ED TANK
D	608				ETHY	LENE D	IAMI	NE MEASURING TANK
D	609				MANE TANK	-	B REA	ACTOR-SCRUBBING SOLUTION
D	610				CS ₂ M	EASURI	NG T	ANK
, D	611				ACID MEASURING TANK SURGE HOPPERS			
. D	612	A,B	, C					
D	613	A,B	,c		PACK	AGING	MACH:	INE FEED HOPPERS
E	601		-	• ,	NABA	M REAC	TOR (CONDENSER
E	602				MANE	B/ZINE	B RE	ACTOR COOLER
E	603	•		•	NABA	M COOL	ER	
E	604				COOL	ER		
		•	•.					
н	601		•		MANE	B/ZINE	B CE	NTRIFUGE
к	601				SCAL	E		
					Zi.	CHIMIE	DEV	ELOPPEMENT INTERNATIONAL
				 	1			Legendre PARIS 17°
					CLIEN	Ī		
							E	QUIPMENT LIST
					UNIDO		S	ECTION 600
DESCRIPTION	REV	DATE	SIGN.	VERIF.				

ITEM N°	ITEM NAME
P 601	CS ₂ METERING PUMP
P 602	CAUSTIC SOLUTION METERING PUMP
P 603	NABAM PUMP
	SCRUBBING SOLUTION PUMP-NABAM REACTOR
P 604	NABAM PUMP
P 605	
P 606	SALT TANK PUMP
P 607	REACTOR PUMP
P 608	ACID METERING PUMP
P 609	MOTHER LIQUORS PUMP
P 610	RESLURRYING TANK PUMP
P 611	SPRAY DRYER FEED PUMP
P 612	SCRUBBING SOLUTION PUMP-MANEB/ZINEB
R 601	NABAM REACTOR
R 602	MANEB/ZINEB REACTOR
s 601	SPRAY DRYER PACKAGE
s 602	· VACUUM DRYER
т 601	NABAM REACTOR SCRUBBER
т 602	MANEB/ZINEB REACTOR SCRUBBER
U 601	PACKAGING MACHINE

	TECHNICAL SPECIFICATIONS .
ITEM N°	ITEM NAME AND SPECIFICATION
· · · · · · · · · · · · · · · · · · ·	
в 601	SERVICE : FORK LIFT TRUCK
	NOMINAL CAPACITY: 3000 kg (Center of gravity of load at 0.8 m from rear end of fork)
	TRUCK POWERED BY: Internal combustion engine or batteries
	ENVIRONMENTAL CONDITIONS: hazardous area
	WHEELS TYPE: tires
	And the second s
•	
•.	
•	

	TECHNICAL	SPECIFICATIONS
TEM N°	ITEM NAME AN	D SPECIFICATION
C601	SERVICE :	LIQUID JET-NABAM REACTOR
	TYPE	draft inducing venture scrubbe
	SUCTION PRESSURE: : DISCHARGE PRESSURE: PROPELLING FLUID :	
	MATERIAL : TEMPERATURE :	cast iron or carbon steel
	NOTES :	
C602	SERVICE	DRYER VACUUM JET
	TYPE	Steam jets in series
		10 mmHg abs 760 mmHg :-steam : 150 psig sat.steam -liquid:
	MATERIAL TEMPERATURE.	cast iron or carbon steel ∠45°C
	NOTES	
	SERVICE	
	TYPE	
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID	-steam : -liquid:
	MATERIAL TEMPERATURE	
	NOTES	
		7

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
D601	SERVICE : CAUSTIC SOLUTION TANK-NABAM REACTOR	
	TYPE : Horizontal tank-dished heads	
	VOLUME : 2 m3 DIAMETER : 1.1 m HEIGHT : 2.2 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 100°C	
	NOTES :	
D602	SERVICE : NABAM DILUTION TANKS-(2 tanks)	
A,B	TYPE : vertical tank-dished heads	
	VOLUME : 10 m3 DIAMETER : 2400 mm HEIGHT : 2600 mm	
	MATERIAL : rubber lined carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 70°C	
	NOTES : agitator: pitched blades turbine power: 7,5 kw	
D603	SERVICE : Zn/Mn SALTS SURGE TANK	
	TYPE : vertical tank-dished heads	
	VOLUME : 8 m3 DIAMETER : 2200 mm HEIGHT : 2200 mm	
	MATERIAL : rubber lined carbon steel	
	PRESSURE : atmospheric TEMPERATURE:50°C	
	NOTES : Agitator: pitched blades turbine power: 5,5 kw	

	T	ECHNICAL SPECIFICATIONS	
TEM N°	ITEM NA	ME AND SPECIFICATION	
D604	SERVICE	: MOTHER LIQUORS RECEIVER	
	TYPE	: Horizontal tank-dished heads	
	VOLUME DIAMETER HEIGHT	: 1500 mm	
	MATERIAL	:rubber lined carbon steel	
	PRESSURE TEMPERATUR	: atmospheric E: 50°C	
	NOTES	:	
D605	SERVICE	: CAUSTIC MEASURING TANK	
	TYPE	: Vertical tank-dished heads	
	VOLUME DIAMETER HEIGHT	: 1 m3 : 900 mm : 1500 mm	
	MATERIAL	:carbon steel	
	PRESSURE TEMPERATUR	: atmospheric E: 50°C	
	NOTES	: Heat treated welds	
D606	SERVICE	: RESLURRYING TANK	
	TYPE	vertical tank-dished heads	
	VOLUME DIAMETER HEIGHT		
	MATERIAL	:rubber lined carbon steel or polyester	
	PRESSURE TEMPERATUR	· · · · · · · · · · · · · · · · · · ·	
	NOTES	: agitator:pitched blades turbine power: 15 kw	

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
5607	SERVICE : SPRAY DRYER FEED TANK TYPE : Vertical tank-dished heads VOLUME : 40 m3 DIAMETER : 3400 mm HEIGHT : 4400 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : Agitator:pitched blades turbine power: 37 kw	
D608	SERVICE: ETHYLENE DIAMINE MEASURING TANK TYPE: vertical tank-dished heads VOLUME: 600 l DIAMETER: 750 mm HEIGHT: 1500 mm MATERIAL: rubber lined carbon steel PRESSURE: + 100 g/cm2 TEMPERATURE: 50°C NOTES:	
D609	SERVICE : MANEB/ZINEB REACTOR-SCRUBBING SOLUTION TANK TYPE : horizontal tank-dished heads VOLUME : 2 m3 DIAMETER : 1100 mm HEIGHT : 1900 mm MATERIAL *rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 100°C NOTES : Heat treated welds	:

D610 SERVICE : CS2 MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1.2 m3 DIAMETER : 1000 mm HEIGHT : 1400 mm MATERIAL : carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		TECHNICAL SPECIFICATIONS	
TYPE : vertical tank-dished heads VOLUME : 1.2 m3 DIAMETER : 1000 mm HEIGHT : 1400 mm MATERIAL : carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyoster PRESSURE : atmospheric	TEM N°	ITEM NAME AND SPECIFICATION	
VOLUME : 1.2 m3 DIAMETER : 1000 mm HEIGHT : 1400 mm MATERIAL : Carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric	D610	SERVICE : CS2 MEASURING TANK	
DIAMETER : 1000 mm HEIGHT : 1400 mm MATERIAL : carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		TYPE : vertical tank-dished heads	
PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		DIAMETER : 1000 mm	
TEMPERATURE: 50°C NOTES: D611 SERVICE: ACID MEASURING TANK TYPE: vertical tank-dished heads VOLUME: 1 m3 DIAMETER: 900 mm HEIGHT: 1500 mm MATERIAL: rubber lined carbon steel PRESSURE: atmospheric TEMPERATURE: 50°C NOTES: D612 SERVICE: SURGE HOPPERS TYPE: Vertical tank-conical bottom VOLUME: 4 m3 DIAMETE: 1400 mm HEIGHT: 3700 mm MATERIAL: polyester PRESSURE: atmospheric		MATERIAL :carbon steel	
D611 SERVICE : ACID MEASURING TANK TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		PRESSURE :atmospheric TEMPERATURE: 50°C	
TYPE : vertical tank-dished heads VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE: : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		NOTES :	
VOLUME : 1 m3 DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric	D611	SERVICE : ACID MEASURING TANK	
DIAMETER : 900 mm HEIGHT : 1500 mm MATERIAL : rubber lined carbon steel PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		TYPE : vertical tank-dished heads	
PRESSURE : atmospheric TEMPERATURE: 50°C NOTES : D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE: 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		DIAMETER : 900 mm	
TEMPERATURE: 50°C NOTES: D612 SERVICE: SURGE HOPPERS A,B,C TYPE: Vertical tank-conical bottom VOLUME: 4 m3 DIAMETE: 1400 mm HEIGHT: 3700 mm MATERIAL: polyester PRESSURE: atmospheric		MATERIAL : rubber lined carbon steel	
D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE: : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric	<i>.</i>		
D612 SERVICE : SURGE HOPPERS A,B,C TYPE : Vertical tank-conical bottom VOLUME : 4 m3 DIAMETE : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric		NOTES :	
VOLUME : 4 m3 DIAMETE: : 1400 mm HEIGHT : 3700 mm MATERIAL : polyester PRESSURE : atmospheric	D612	I	
DIAMETE: : 1400 mm HEIGHT: : 3700 mm MATERIAL: polyester PRESSURE: atmospheric	A,B,C	TYPE : Vertical tank-conical bottom	
PRESSURE : atmospheric		DIAMETE: : 1400 mm	
		MATERIAL : polyester	
TEMPERATURE: ambient		PRESSURE : atmospheric TEMPERATURE: ambient	
NOTES : 3 tanks		NOTES : 3 tanks	

	T	ECHNICAL SPECIFICATIONS
ITEM N°	ITEM NA	ME AND SPECIFICATION
D 613	SERVICE	: PACKAGING MACHINE FEED HOPPERS
A, B, C	TYPE	: Vertical tanks-conical bottom
	VOLUME DIAMETER HEIGHT	: 1400 mm
	MATERIAL	: polyester
	PRESSURE TEMPERATURI	
	NOTES	:3 tanks
	SERVICE	:
	TYPE	:
	VOLUME DIAMETER HEIGHT	:
	MATERIAL	:
	PRESSURE TEMPERATUR	· · · · · · · · · · · · · · · · · · ·
	NOTES	:
	SERVICE	:
	TYPE	:
	VOLUME DIAMETER HEIGHT	: : :
	MATERIAL	•
	PRESSURE TEMPERATUR	: · · · · · · · · · · · · · · · · · · ·
	NOTES	:

	TECHNICAL	SPECIFICATIONS	
ITEM N°	ITEM NAME AND	SPECIFICATION	
E 601	SERVICE	: NABAM REACTOR CONDENSER	
	HEAT TRANSFER AREA	:5 m2	
	TYPE	:shell and tube	
	PROCESS SIDE - material - pressure - temperatur	<pre>:carbon steel :1.7 bar g+full vacuum</pre>	
	- material	<pre>:shell side-GLYCOL solution (0°C) :Carbon steel :6 bar g</pre>)
	NOTES		
E 602	SERVICE	: MANEB/ZINEB REACTOR COOLER	
	HEAT TRANSFER AREA	∮ 30 m2	
	TYPE	graphite block exchanger	
	PROCESS SIDE - material - pressure - temperatur	:graphite :1.7 bar g	
	UTILITY SIDE - material - pressure - temperatur	<pre>: shell side-glycol solution (0°C : graphite- carbon steel : 6 bar g re:</pre>)
	NOTES	:	
E603	SERVICE	: NABAM COOLER	
	HEAT TRANSFER AREA	: 20 m2	
	TYPE	:shell and tube	
	PROCESS SIDE	:tube side	
	- material - pressure - temperatus	titonium 4 bar g re:	
	UTILITY SIDE - material - pressure - temperature	shell side-glycol solution (0°C carbon steel 6 barg	:)
	NOTES		

	TECHNICAL SPECIFICATIONS
TEM N°	ITEM NAME AND SPECIFICATION
£60 4	SERVICE : COOLER
	HEAT TRANSFER AREA : 20 m2
	TYPE : shell and tube
	PROCESS SIDE : tube side
	- material : titonium - pressure : 4 bar eff - temperature:
	UTILITY SIDE : shell side-glycol solution (0°C - material : carbon steel - pressure : 6 bar g - temperature:
	NOTES :
	SERVICE :
	HEAT TRANSFER AREA !
	TYPE :
	PROCESS SIDE :
	- material : - pressure :
	- temperature:
	UTILITY SIDE :
	- material :
	- pressure : - temperature:
	NOTES : .
	SERVICE :
	HEAT TRANSFER AREA :
	TYPE :
	PROCESS SIDE :
	- material : - pressure :
	- temperature:
	UTILITY SIDE :
	- material :
	- pressure : - temperature:
	NOTES : ONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO ETE DE COI ET NE PEUT ETRE FERRODUIT 2/2

	TECHNICAL SPECIFICATIONS
	IBUNICAL SECTIFICATIONS
tem n•	ITEM NAME AND SPECIFICATION
1601	SERVICE: MANEB/ZINEB CENTRIFUGE
	TYPE: Three column basket centrifuge with bottom discharge
	BASKET CAPACITY:400 liters
	BASKET DIAMETER; 1500 mm
	MATERIAL: rubber lined carbon steel or Uranus B6
	DRIVER: Explosion proof motor
	.]
	··

ITEM N° K601 SERVICE: SCALE TYPE: Pendulum balanced scale SCALE RANGE: 0-300 kg SCALE DIVISION: 1 kg maximum INDICATOR TYPE: dial		TECHNICAL SPECIFICATIONS	
TYPE: Pendulum balanced scale SCALE RANGE: 0-300 kg SCALE DIVISION: 1 kg maximum INDICATOR TYPE: dial		ITEM NAME AND SPECIFICATION	
SCALE RANGE: 0-300 kg SCALE DIVISION: 1 kg maximum INDICATOR TYPE: dial	K601	SERVICE : SCALE	
SCALE DIVISION: 1 kg maximum INDICATOR TYPE: dial		TYPE : Pendulum balanced scale	
INDICATOR TYPE: dial		SCALE RANGE: 0-300 kg	
		SCALE DIVISION: 1 kg maximum	
		INDICATOR TYPE: dial	
		. •,	
		;	
•			
•			
	EST LA PRO	CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PRIETE DE CDI 1/1 330 6002 ADS KOCCI	2

EQUIPMENT ITEM SYMBOL : P - PUMPS TECHNICAL SPECIFICATIONS METI ITEM NAME AND SPECIFICATIONS : CS2 METERING PUMP P601 SERVICE : metering pump TYPE :400 1/hr FLOW RATE DIFFERENTIAL PRESSURE: 3 bar : 316 ss MATERIAL STUFFING BOX MECHANICAL SEAL : Explosion proof motor DRIVER NOTES : CAUSTIC SOLUTION METERING P602 SERVICE PUMP TYPE *metering pump :400 1/hr FLOW RATE DIFFERENTIAL PRESSURE: 3 bars : 316 ss MATERIAL STUFFING BOX MECHANICAL SEAL : Explosion proof motor DRIVER NOTES P603 : NABAM PUMP SERVICE :Centrifugal pump TYPE :12 m3/hr FLOW RATE DIFFERENTIAL PRESSURE: 2 bars :cast iron or carbon steel MATERIAL STUFFING BOX :double . MECHANICAL SEAL explosion proof motor DRIVER NOTES

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PEVEST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 1/4 330 6002 ADS P6001 0

	TECHNIC	AL SPECIFICATIONS
TEM	ITEM NAME AND SP	ECIFICATIONS
P60 4	TYPE	: SCRUBBING SOLUTION PUMP NABAM REACTOR centrifugal pump : 10 m3/hr
	DIFFERENTIAL PRESS MATERIAL STUFFING BOX MECHANICAL SEAL DRIVER NOTES	: cast iron
P605	STUFFING BOX MECHANICAL SEAL	<pre>:metering pump-(membrane) :6400 l/hr URE: 3 bar :Hastelloy C or PTFE</pre>
P606	SERVICE TYPE FLOW RATE DIFFERENTIAL PRESS MATERIAL STUFFING BOX MECHANICAL SEAL DRIVEF. NOTES	SALT TANK PUMP :metering pump (membrane) :4900 1/hr URE:3 bar :Hastelloy G or PTFE : :Explosion proof motor :

1

TECHNICAL SPECIFICATIONS		
ITEM N°	ITEM NAME AND SPECIFICATIONS	
P607	SERVICE : REACTOR PUMP	
	TYPE : centrifugal pump	•
	FLOW RATE : .150 m3/hr	
	DIFFERENTIAL PRESSURE: 2,5 bar	•
·		
	MATERIAL : rubber lined carbon steel STUFFING BOX : yes with lantern.	•
	MECHANICAL SEAL.	
	DRIVER explosion proof motor	
	NOTES acid proof metallic parts	
	deze proces	
P608	SERVICE ACID METERING PUMP	
. 000		
·	TYPE : metering pump	•
	FLOW RATE : 150 1/hr	
	DIFFERENTIAL PRESSURE: 3 bar	
	MATERIAL : PTFE	
	STUFFING BOX	
	MECHANICAL SEAL	
	DRIVER Explosion proof motor	-
	NOTES :	
•		
	SERVICE : MOTHER LIQUORS PUMP	
P609		
	FLOW RATE : 10 m3/hr :	
	DITTERBUTING FREEDOKE.	
	MATERIAL , rubben lined carbon steel	
	STUFFING BOX yes with lantern	
,	MECHANICAL SEAL	
	DRIVER : explosion proof motor	
	NOTES acid proof metallic parts	1
		·
	A company of the second	

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATIONS	·
P610	SERVICE : RESLURRYING TANK PUMP	
	TYPE : centrifugal	•
	FLOW RATE :30 m3/hr.	
	DIFFERENTIAL PRESSURE: 2,5 bar	
	MATERIAL : rubber lined carbon steel	
	STUFFING BOX : yes with lantern	•
	MECHANICAL SEAL.	•
	DRIVER : explosion proof motor	
	NOTES : The state of the state	
		•
P611	SERVICE SPRAY DRYER FEED PUMP	
	TYPE : volumetric pump	•
	FLOW RATE : 1000 l/hr	•
	DIFFERENTIAL PRESSURE: 3 bar	
	MATERIAL : 316 ss and rubber	
	STUFFING BOX : yes	
•	MECHANICAL SEAL	· -
	الشبر المستوردة الماريون ودرد السبارة والهرائق	
		- -
	NOTES moyno single rotor screw pump with elastomeric .	
•	Fining	
P612	SERVICE / : SCRUBBING SOLUTION PUMP	
	TYPE * Centrifugal *	
	FLOW RATE : 2 m3/hr	
	DIFFERENTIAL PRESSURE: 2 bar	
	MATERIAL : cast iron or carbon steel	
	STUFFING BOX . : yes	
	MECHANICAL SEAL	
	DRIVER : explosion proof motor	
	NOTES	-
	The state of the s	
		·
	· · · · · · · · · · · · · · · · · · ·	I

	TEC	CHNICAL SPECIFICATIONS
N°	ITEM NAME AND SPECIFICATION	
R 601	SERVICE	: NABAM REACTOR
	TYPE NOMINAL CAPACITY	<pre>: agitated vertical tank with heating/cooling coil : 4 m3</pre>
	MATERIAL	: carbon steel
	AGITATOR AND DRIV	E:turbine 7,5 kw
	PRESSURE	: + 1,7 bar- full vacuum
	TEMPERATURE	: 100°C
	HEATING/COOLING	: steam- glycol (O°C)
	NOTE .	explosion proof motor_coil area: 10 m2
	·	
	·	
R602	SERVICE	:MANEB/ZINEB REACTOR
	TYPE	:agitated vertical tank
	NOMINAL CAPACITY	:30 m3
	MATERIAL	:rubber lined steel
	AGITATOR AND DRIV	/E:pitched blades turbine;30 kw
	PRESSURE	:+ 1,7 bar
	TEMPERATURE	:100°C
	HEATING/COOLING	
	NOTES	: explosion proof motor
		·

1			
	TECHNICAL SPECIFICATIONS		
item n°	ITEM NAME AND SPECIFICATION		
S 601	SERVICE: SPRAY DRYER PACKAGE TYPE : hot air spray drying package CAPACITY: solids: 160 kg/hr 20°C		
s 602	SERVICE: VACUUM DRYER TYPE : horizontal agitated batch vacuum VOLUME: 5 m3 DRYING TEMPERATURE: <45°C DRIVER: explosion proof PARTS IN CONTACT WITH PRODUCT: 304 SS	dryer	

1 1 1

	TECHNICAL SPECIFICATIONS
TEM N°	ITEM NAME AND SPECIFICATION
т 601	SERVICE : NABAM REACTOR SCRUBBER
	TYPE : Packed column DIAMETER: 400 mm
	TRAYS : Type : : Number : : Spacing : : Material :
	PACKING: Type : Raschig ring- 1" : Height : 2 m : Material : Carbon steel
	VESSEL : Material : Carbon steel : Pressure : + 1.7 bar g + full vacuum : Temperature: 100°
	NOTES :
т 602	SERVICE : MANEB/ZINEB REACTOR SCRUBBER
	TYPE : packed column DIAMETER: 200 mm
	TRAYS : type : : number : : spacing : : material :
	PACKING: type :Rasching rings- 1/2" : height : 1.6 m : material :ceramic or glass
	VESSEL : material :glass or polyester : pressure :1 bar g : temperature: <100°C
	NOTES :

	TECHNICAL SPECIFICATIONS
item N°	ITEM NAME AND SPECIFICATION
U601	SERVICE: PACKAGING MACHINE
	TYPE: Automatic bagging and pelletizing unit
	CAPACITY: 2 bags per minute (maxi)
	NOTES: includes an automatic scale and roller (or band) conveyors.
	- material in contact with final product :304 SS
	- electrical equipment: explosion proof
	•
	,

7 - EQUIPMENT LIST - 2,4 D AMINE SALT

SECTION 700

2,4 D AMINE SALT PRODUCTION UNIT

ITEM	N.		ITEM NAME
C 701			VACUUM JET
D 701			MONOCHLOROACETIC ACID MELT TANK
D 702			DECANTER
D 703		• •	2,4 DICHLOROPHENOL HOLD TANK
D 704			AMINE MEASURING TANK
D 705		, ,	AMINE DILUTION TANK
D 706			CAUSTIC MEASURING TANK
D 707	,	: :	2.4 DICHLOROPHENOL MEASURING TANK
D 708		• = ·• - :	WATER RECEIVER
•			
E 701	. :		CAUSTIC PRE HEATER
E 702	• •	•- ÷	2,4 D REACTOR CONDENSER
E 703			CRYSTALLIZER CONDENSER
E 704			2,4 D DRYER CONDENSER
	· · .		
н 701	•	• •	2,4 D CENTRIFUGE
		•	
P 701		٠.	MONOCHLOROACETIC ACID PUMP
P 702			DICHLOROPHENATE PUMP
P 703	•		HYDROCHLORIC ACID METERING PUMP
P 704			2,4 D PUMP
	_	· ·	RECYCLED DICHLOROPHENOL PUMP
P 705	• · •	. :	
P /06		•	AMINE PUMP
• • •		• •	
			CHIMIE DEVELOPPEMENT INTERNATION

							/ELOPPEMENT INTERNATIONAL Legendre PARIS 17°
					CLIENT		
					UNIDO		EQUIPMENT LIST SECTION 700
DESCRIPTION	REV	DATE	SIGN	VERIF.			
EST LA PROP	RIETE	DE C	DI ET	NE PEUT	S CONFIDENTIELLES ETRE REPRODUIT TE DE CDI	PAGE 1/2	AFFAIRE NUMERO REV 310 6002 SOM 700 C

-	ITEM I			_	ITEM NAME
R	701		2,4	D	REACTOR
R	702		2,4	D	CRYSTALLIZER
R	703		AMI	NE	SALT REACTOR
S	701		2,4	D	VACUUM DRYER
U	701		2,4	D	BAGGING MACHIN
					•

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	1
C701	SERVICE : VACUUM JET	
	TYPE :Steam jets in series	
	CAPACITY: 4 kg/hr of air SUCTION PRESSURE: 15 mmHg DISCHARGE PRESSURE: 760 mmHg PROPELLING FLUID: -steam: 150 psig sat.steam -liquid:	
	MATERIAL : cast iron or carbon steel TEMPERATURE : < 60°C	
	NOTES :	
	SERVICE	
	TYPE	
	CAPACITY SUCTION PRESSURE DISCHARGE PRESSURE PROPELLING FLUID :-steam : -liquid:	
	MATERIAL TEMPERATURE.	
	NOTES	
	SERVICE :	
	TYPE :	
	CAPACITY : SUCTION PRESSURE : DISCHARGE PRESSURE: PROPELLING FLUID :-steam : -liquid:	
	MATERIAL : : TEMPERATURE :	
	NOTES :	

	TECHNICAL SPECIFICATIONS	
TEM N°	ITEM NAME AND SPECIFICATION	
D 701	SERVICE: MONOCHLOROACETIC MELT TANK TYPE: Jacketed vertical tank-dished heads VOLUME: 1,2 m3 DIAMETER: 1,2 m HEIGHT: 1,4 m MATERIAL: glass lined carbon steel PRESSURE: 1,7 bar g+ full vacuum TEMPERATURE: 150°C NOTES:	
D 702	SERVICE : DECANTER TYPE : horizontal tank-dished heads VOLUME : 1 m3 DIAMETER : 0,9 m HEIGHT : 1,5 m MATERIAL :316 SS PRESSURE :1,7 barg+ full vacuum TEMPERATURE: 150°C NOTES : :	
D 703	SERVICE: 2,4 DICHLOROPHENOL HOLD TANK TYPE: herizontal tank-dished heads VOLUME: 0,5 m3 DIAMETER: 0,65 m HEIGHT: 1,4 m MATERIAL: 316 SS PRESSURE: 1,7 bar g+ full vacuum TEMPERATURE: 150°C NOTES: heating coil= 2m2	

EQUIPMENT	TTEM	SYMBOL.	•	D	_	TANKS	AND	HOPPERS

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
D 704	SERVICE : AMINE MEASURING TANK
	TYPE : Vertical tank-dished heads
	VOLUME : 0.25 m3 DIAMETER : 0.5 m HEIGHT : 1.2 m
	MATERIAL : 304 SS
	PRESSURE : 1.7 barg TEMPERATURE: 100°C
	NOTES :
D 705	SERVICE : AMINE DILUTION TANK
	TYPE : agitated vertical tank-dished heads
	VOLUME : 0.8 m3 DIAMETER : 1.0 m HEIGHT : 1.2 m
	DIAMETER : 1.0 m
	<u> </u>
	MATERIAL : 304 SS
	PRESSURE: 1.7 bar g
	NOTES :
p 706	SERVICE : CAUSTIC MEASURING TANK
	TYPE : vertical tank-dished heads
	VOLUME : 3.5 m3 · · · · · · · · · · · · · · · · · ·
	MATERIAL : carbon steel
1:	PRESSURE : 1.7 bar g TEMPERATURE: 100°C
	NOTES :
EST LA PROPPIE	NTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO REVISE LAUTORISATION ECRITE DE C.D.T. 2/3 330 6002 ADS 07001 0

	EQUIPMENT ITEM SYMBOL : D - TANKS AND HOPPERS
	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
D 707	SERVICE : 2,4 DICHLOROPHENOL MEASURING TANK TYPE : jacketed, vertical tank-dished heads VOLUME : 1.5 m3 DIAMETER : 1.05 m HEIGHT : 1.60 m MATERIAL : 316 SS PRESSURE : 1.7 barg TEMPERATURE: 150°C NOTES :
D 708	SERVICE: WATER RECEIVER TYPE: horizontal tank-dished heads VOLUME: 0.5 m3 DIAMETER: 0.65 m HEIGHT: 1.4 m MATERIAL: carbon steel PRESSURE: 1.7 barg+ full vacuum TEMPERATURE: 150°C NOTES:
	SERVICE: TYPE: VOLUME: DIAMETER: HEIGHT: MATERIAL: PRESSURE: TEMPERATURE: NOTES:
EST LA PROPRIE	NTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PEV 16 DE COS ET NE PEUT ETRE REPRODUIT 3/3 330 6002 ADS 07000 0

	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATION
E 701	SERVICE : CAUSTIC PREHEATER HEAT TRANSFER AREA : 6 m2 TYPE : shell and tube PROCESS SIDE : tube side - material : carbon steel - pressure : 1.7 bar g - temperature: UTILITY SIDE : shell side-150 psig steam
	UTILITY SIDE : shell side-150 psig steam - material : carbon steel , - pressure : 10 barg - temperature: 200°C NOTES :
E 702	SERVICE :2,4 REACTOR CONDENSER HEAT TRANSFER AREA : 15 m2 TYPE : shell and tube PROCESS SIDE : tube side - material : 316 SS - pressure : 1.7 bar g+full vacuum - temperature:
	UTILITY SIDE : shell side - material : carbon steel - pressure : 6 bar g - temperature: NOTES :
E 703	SERVICE : CRYSTALLIZER CONDENSER HEAT TRANSFER AREA : 8 m2 TYPE : shell and tube PROCESS SIDE : tube side - material : 316 SS - pressure : 1.7 bar g+full vacuum - temperature:
	UTILITY SIDE : shell side-hot water - material : carbon steel - pressure : 6 bar g - temperature: NOTES :

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
E 704	SERVICE : 2,4 DRYER CONDENSER HEAT TRANSFER AREA : 2 m2 TYPE : shell and tube PROCESS SIDE : shell side - material : carbon steel - pressure : 1.7 bar g+full vacuum - temperature: UTILITY SIDE : tube side-cooling water - material : carbon steel - pressure : 6 bar g - temperature: NOTES :	
	SERVICE : HEAT TRANSFER AREA ! TYPE : PROCESS SIDE : - material : - pressure : - temperature: UTILITY SIDE : - material : - pressure : - temperature: NOTES :	
	SERVICE HEAT TRANSFER AREA: TYPE PROCESS SIDE - material - pressure - temperature: UTILITY SIDE - material - pressure - temperature: NOTES NOTES :	

1 1 1

	A - 109	
	EQUIPMENT ITEM SYMBOL : H- CENTEIPURG	
	TECHNICAL SPECIFICATIONS	
item N°	ITEM NAME AND SPECIFICATION	
н701	SERVICE : 2,4 D CENTRIFUGE	
	TYPE: Three column basket centrifuge with bottom discharge	
	BASKET CAPACITY: 400 liters	
	BASKET DIAMETER: 1500 mm	
	MATERIAL : Uranus B6	
	DRIVER: Explosion proof motor	
	•	
!		
i		
	·	
	·	

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE EST LA PROPPIETE DE CDI ET NE PEUT ETRE REPRODUIT OU UTILISE SANS L'AUTORISATION ECRITE DE CDI 1/1

AFFAIRE NUMERO 330 6002 ADS 147001

REV

	EQUIPMENT ITEM SYMBOL : P - PUMPS
	TECHNICAL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATIONS
P 701	SERVICE : MONOCHLOROACETIC ACID PUND TYPE : metering pump FLOW RATE : 50 to 200 l/hr DIFFERENTIAL PRESSURE: 1.5 bar MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : DRIVER : explosion proof motor NOTES : jacketed pump-steam heated
P 702	SERVICE : DICHLOROPHENATE PUMP TYPE : centrifugal pump - FLOW RATE : 12 m3/hr DIFFERENTIAL PRESSURE: 2.5 bar MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : double : 1 DRIVER : explosion proof motor NOTES :
P 703	SERVICE : HYDROCHLORIC ACID METERING PUMP membrane metering pump FLOW RATE : 1000-3000 1/hr DIFFERENTIAL PRESSURE: 1.5 bar MATERIAL : PTFE STUFFING BOX : MECHANICAL SEAL : DRIVER : explosion proof motor NOTES :

EQUIPMENT ITEM SYMBOL : P - PUMPS		
	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATIONS	
P 704	SERVICE : 2,4 D PUMP TYPE : centrifugal pump FLOW RATE : 3 m?/hr DIFFERENTIAL PRESSURE: 1.5 bar MATERIAL : rubber lined STUFFING BOX : MECHANICAL SEAL : double DRIVER : explosion proof motor NOTES :	
P 705	SERVICE : RECYCLED DICHLOROPHENOL PUMP centrifugal pump FLOW RATE : 1 m3/hr DIFFERENTIAL PRESSURE: 2.0 bar MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : yes DRIVER : explosion proof motor NOTES : jecketed pump-steam heater	
P 706	SERVICE : AMINE PUMP TYPE : centrifugal pump FLOW RATE : 3 m3/hr DIFFERENTIAL PRESSURE: 2.0 bar MATERIAL : 316 SS STUFFING BOX : MECHANICAL SEAL : yes DRIVER : explosion proof motor NOTES :	
(ST LA PROPRI	ONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NU ETE DE COI ET NE PEUT ETRE REPRODUIT 2/2 330 6002 ADS p	MERO REV

TECHNICAL SPECIFICATIONS							
Tem N°	ITEM NAME AND SPECIFICATION						
R701	SERVICE	: 2,4 D REACTOR					
	TYPE NOMINAL CAPACITY	agitated, jacketed batch reactor6 m3					
	MATERIAL	: 316 SS					
	AGITATOR AND DRIV	E: Turbine - 7,5 KW					
	PRESSURE	: 6 barg+ full vacuum					
	TEMPERATURE	: 200°C					
	HEATING/COOLING	: steam /cooling water					
	NOTE	-mechanical seal					
R702	SERVICE	: 2,4 D CRYSTALLIZER					
, , , , , , , , , , , , , , , , , , ,	TYPE NOMINAL CAPACITY	: agitated, jacketed batch reactor					
	MATERIAL	: glass lined carbon steel					
	AGITATOR AND DRIV	VE: impeller- 7,5 KW					
	PRESSURE	: 6 bar g + full racuum					
	TEMPERATURE	: 200°C					
	HEATING/COOLING	: steam/cooling water					
	Notes .	-explosion proof motor -mechanical seal					

	TEC	CHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AN	D SPECIFICATION	
R 703	Service	:AMINE SALT REACTOR	
	TYPE	: agitated batch reactor	
	NOMINAL CAPACITY	: 1.5 m3	
	MATERIAL	: 316 SS	
	AGITATOR AND DRIVE	E: turbine - 4 kw	
	PRESSURE	: 1.7 bar g	
	TEMPERATURE	: 150 °C	
	HEATING/COOLING		
	NOTE	: explosion proof motor	
	,		
		·	
	SERVICE	• • • • • • • • • • • • • • • • • • • •	
	TYPE	•	
	NOMINAL CAPACITY		
	MATERIAL	•	
	AGITATOR AND DRIV	/E:	
	PRESSURE	:	
	TEMPERATURE	:	
	HEATING/COOLING	• • • • • • • • • • • • • • • • • • •	
	NOTES		

	EQUIPMENT ITEM SYMBOL : S-DRYER		
	TECHNICAL SPECIFICATIONS		
ITEM N°	ITEM NAME AND SPECIFICATION		
S 701	SERVICE : 2,4 D VACUUM DRYER TYPE : horizontal agitated batch vacuum dryer VOLUME : 4 m3 DRYING TEMPERATURE: 60°C DRIVER : explosion proof motor PARTS IN CONTAC WITH PRODUCT: 304 SS		
	-		
e course	CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUI	1ERJ	39

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
U 701	SERVICE: 2,4 D BAGGING MACHINE	
	TYPE : automatic bagging unit	
	CAPACITY: 2 bags per minute (25 kg bags)	
	NOTES :-includes an automatic scale and roller or band conveyors	
	-material in contact with product:304 SS	
	-electrical equipment, explosion proof	
	·	
	, i	

8 - EQUIPMENT LIST - OFFSITE FACILITIES

SECTION 800

STORAGE

ITE	M N*	_			ITEM NAME	
D 801			DI	THIOP	HOSPHORIC AC	ID SOLUTION STORAGE
D 802				THANO	L STORAGE TAN	ık
D 803	,		то	LUENE	STORAGE TANK	(
D 804			ET	HANOL	STORAGE TANK	(
D 805	•		ET	HYLEN	E DICHLORIDE	STORAGE TANK
D 806	;		ET	HYL M	ALEATE STORAG	GE TANK
D 807	,		CY	CLOHE	XANE STORAGE	TANK
D 808	A,B		MO	метну	L AM INE STORA	AGE TANKS
D 809	-				DE SOLUTION S	
D 810)		CY	CLOHE	XANONE STORAG	GE TANK
D 811						STORAGE TANK
D 812			RE	COVER	ED 2,4 DICHLO	DROPHENOL TANK
D 813					C ACID STORAG	ı
D 814				INE S	OLUTION STORA	AGE TANK
		•	НҮ	DROCH	LORIC ACID ST	CORAGE TANK
	•					S STORAGE TANK
D 817						S STORAGE TANK
818					DISULFIDE STO	
D 819					E DIAMINE ST	
					SOLUTION ST	
D 821					ILUTION TANK	
P 801			DI	THIOP	HOSPHORIC AC	ID SOLUTION PUMP
P 802	?		ME	THANC	L TRANSFER P	UMP
P 803	}		то	LUENE	TRANSFER PU	мР
P 804			ET	HANOL	TRANSFER PU	MP
P 805	;		ET	HYLEN	E DICHLORIDE	TRANSFER PUMP
					CHIMIE	DEVELOPPEMENT INTERNATIONAL
						42 rue Legendre PARIS 17°
					CLIENT	
					UNIDO	EQUIPMENT LIST
						SECTION 800
RIPTION	REV	PATE	SIGN	VERIF.		

ITEM N°	ITEM NAME
P 806	ETHYL MALEATE TRANSFER PUMP
P 807	CYCLOHEXANE TRANSFER PUMP
P 808	ACETAMIDE SOLUTION PUMP
P 809	CYCLOHEXANONE TRANSFER PUMP
P 810	SOLVENT UNLOADING PUMP
P 811	HYDROCHLORIC ACID PUMP
P 812	MOTHER LIQUORS PUMP
P 813	2,4 DICHLOROPHENOL PUMP
P 814	SULFURIC ACID PUMP
P 815	CARBON DISULFIDE PUMP
P 816	ETHYLENE DIAMINE PUMP
P 817	CAUSTIC SOLUTION PUMP
P 818	AMINE SOLUTION PUMP
11 904	D C - CTODACE UNIT
บ 801	P ₂ S ₅ STORAGE UNIT

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO CONTUNENT DE COLOR D

REV

	TECHNICAL SPECIFICATIONS	
ITEM N•	ITEM NAME AND SPECIFICATION	
D 801	SERVICE : DITHIOPHOSPHORIC ACID SOLUTION STORAGE TYPE : vertical tank-flat bottom VOLUME : 30 m3 DIAMETER : 2.85 m HEIGHT : 5.70 m MATERIAL : 316 SS	
	HEIGHT : 5.70 m	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	
D 802	SERVICE : METHANOL STORAGE TANK	
	TYPE : vertical tank-flat bottom	
	VOLUME : 100 m3 DIAMETER : 4.0 m HEIGHT : 9.0 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	
D 803	SERVICE : TOLUENE STORAGE TANK	
	TYPE : vertical tank- flat bottom	
	VOLUME : 15 m3 DIAMETER : 2.45 m HEIGHT : 3.0 m	
•	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	

	TECHNICAL SPECIFICATIONS	
TEM N°	ITEM NAME AND SPECIFICATION	
D 804	SERVICE : ETHANOL STORAGE TANK	
	TYPE : vertical tank-flat bottom	
	VOLUME : 40 m3 DIAMETER : 2.9 m HEIGHT : 6.0 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	
D 805	SERVICE : ETHYLENE DICHLORIDE STORAGE TANK	
	TYPE : vertical tank-flat bottom	
	VOLUME : 20 m3 DIAMETER : 2.35 m HEIGHT : 4.50 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	
D 806	SERVICE : ETHYL MALEATE STORAGE TANK	
	TYPE : vertical tank-flat bottom	
	VOLUME : 15 m3	
	DIAMETER : 2.05 m HEIGHT : 4.5 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric	
	TEMPERATURE: 60°C	
	NOTES :	

	TECHNICAL SPECIFICATIONS
item N°	ITEM NAME AND SPECIFICATION
D 807	SERVICE : CYCLOHEXANE STORAGE TANK
	TYPE : vertical tank- flat bottom
	VOLUME : 12 m3 DIAMETER : 1.8 m HEIGHT : 4.5 m
	MATERIAL : Carbon steel
	PRESSURE : atmospheric TEMPERATURE: 60°C
	NOTES :
D 808	SERVICE :MONOMETHYL AMINE STORAGE TANKS
A,B	TYPE : horizontal tanks-elliptical heads
	VOLUME : 20 m3 DIAMETER : 2.0 m HEIGHT : 6.5 m
	MATERIAL : carbon steel
	PRESSURE: 20 bar TEMPERATURE: 60°C
	NOTES : 2 tanks
D 809	SERVICE :ACETAMIDE SOLUTION STORAGE TANK
	TYPE :vertical tank- flat bottom
	VOLUME : 40 m3 DIAMETER : 2.9 m HEIGHT : 6.0 m
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: 60°C
	NOTES :

TECHNICAL SPECIFICATIONS				
ITEM N•	ITEM NAME AND SPECIFICATION			
D 810	SERVICE : CYCLOHEXANONE STORAGE TANK			
	TYPE : vertical tank- flat bottom			
	VOLUME : 4 m3 DIAMETER : 1.4 HEIGHT : 3.0			
	MATERIAL : carbon steel			
	PRESSURE : atmospheric TEMPERATURE: 60°C			
	NOTES :			
D 811	SERVICE :2,4 DICHLOROPHENOL STORAGE TANK			
	TYPE : vertical tank-flat bottom			
	VOLUME : 15 m3 DIAMETER : 2.5 m HEIGHT : 3.2 m			
	MATERIAL : 304 SS			
	PRESSURE : atmospheric TEMPERATURE: 100°C			
	NOTES : heating coil:10 m2-insulated tank			
D 812	SERVICE : RECOVERED 2,4 DICHLOROPHENOL TANK			
	TYPE : vertical tank- flet bottom			
	VOLUME : 7 m3 DIAMETER : 1.8 m HEIGHT : 2.8 m			
•	MATERIAL : 304 SS			
	PRESSURE : atmospheric TEMPERATURE: 100°C			
	NOTES :heating coil 5 m2-insulated tank			
EST LA PROPPIE	NTEMANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PENTE DE COI 4/7 330 6002 ADS DECOM CO			

	TECHNICAL SPECIFICATIONS
ITEM N•	ITEM NAME AND SPECIFICATION
D 613	SERVICE · : SULFURIC ACID STORAGE TANK
	TYPE : vertical tank-flat bottom
,	VOLUME : 3 m3 DIAMETER : 1.4 m HEIGHT : 2.0 m
	MATERIAL : carbon steel
	PRESSURE : atmospheric TEMPERATURE: ambient
	NOTES :
D 814	SERVICE : AMINE SOLUTION STORAGE TANK
	TYPE : vertical tank-flat bottom
	VOLUME : 8 m3 DIAMETER : 2.0 m HEIGHT : 2.6 m
	MATERIAL : 304 SS
	PRESSURE : -5 g/cm2; + 25 g/cm2 TEMPERATURE: ambient
	NOTES : cooling coil= 2 m2
D 815	SERVICE : HYDROCHLORIC ACID STORAGE TANK
	TYPE : vertical tank-flat bottom
·	VOLUME : 50 m3 DIAMETER : 4.0 m HEIGHT : 4.0 m
	MATERIAL : FRP
	PRESSURE : atmospheric TEMPERATURE: ambient
	NOTES :

	TECHNICAL SPECIFICATIONS	
ITEM N°	ITEM NAME AND SPECIFICATION	
D 816	SERVICE : ZINEB MOTHER LIQUORS STORAGE TANK TYPE : vertical tank-flat bottom VOLUME : 140 m3 DIAMETER : 4.5 m HEIGHT : 9.0 m MATERIAL :rubber lined carbon steel PRESSURE :atmospheric TEMPERATURE: ambient NOTES :	
D 817	SERVICE: MANEB MOTHER LIQUORS STORAGE TANK TYPE: vertical tank- flat bottom VOLUME: 140 m3 DIAMETER: 4.5 m HEIGHT: 9.0 m MATERIAL: rubber lined carbon steel PRESSURE: atmospheric TEMPERATURE: ambient NOTES:	
D 818	SERVICE :CARBON DISULFIDE STORAGE TANK TYPE :vertical tank-flat bottom VOLUME :25 m3 DIAMETER : 3.0 m HEIGHT : 3.5 m MATERIAL : aluminium PRESSURE :-5 g/cm2; + 25 g/cm2 TEMPERATURE: ambient NOTES :	

	TECH	NICAL SPECIFICATIONS	
TEM N°	ITEM NAME	AND SPECIFICATION	
D 819	SERVICE :	THYLENE DIAMINE STORAGE TANK	
	TYPE :	vertical tank- flat bottom	
	VOLUME : DIAMETER : HEIGHT :	2.0 m	
	MATERIAL :		
		-5g/cm2 ; + 25 g/cm2	
	NOTES :	cooling coil= 2 m2	
D 820	SERVICE :	CAUSTIC SOLUTION STORAGE TANK	
	TYPE :	vertical tank-flat bottom	
	VOLUME : DIAMETER : HEIGHT :	60 m3 4.5 m 3.6 m	
	MATERIAL :	carbon steel	
	PRESSURE : TEMPERATURE:		
	NOTES :	heating coil= 5 m2	
D 821	SERVICE :	AMINE DILUTION TANK	
	TYPE :	vertical- dished heads	
	DIAMETER :	6 m3 1.6 m 2.8 m	
	MATERIAL :	carbon steel	
	PRESSURE : TEMPERATURE:	6 bar g + full vacuum 60°C	
	NOTES :	cooling coil= 5 m2	

	TECHNIC	AL SPECIFICATIONS
ITEM N°	ITEM NAME AND SP	ECIFICATIONS
P 801	TYPE	: DITHIOPHOSPHORIC ACID SOLUTION PUMP centrifugal
	FLOW RATE	•
	DIFFERENTIAL PRESS	•
	MATERIAL	
	STUFFING BOX	
	MECHANICAL SEAL	l l
	NOTES	: explosion proof motor
P 802	SERVICE	: METHANOL TRANSFER PUMP
	TYPE	: centrifugal
	FLOW RATE	: 6 m3/hr
	DIFFERENTIAL PRESS	URE: 3.0 bar
	MATERIAL	: cast iron or carbon steel
	STUFFING BOX	:
	MECHANICAL SEAL	
	DRIVER	: explosion proof motor
	NOTES	:
		· ·
P 803	SERVICE TYPE	* TOLUENE TRANSFER PUMP : centrifugal pump
	FLOW RATE	: 3 m3/hr
	DIFFERENTIAL PRESS	SURE: 3.0 bar
!	MATERIAL	: cast iron or carbon steel
	STUFFING BOX	
		: yes
	DRIVER	: explosion proof motor
	NOTES	y de la company

TECHNICAL SPECIFICATIONS					
ITEM N°	ITEM NAME AND SPE	ITEM NAME AND SPECIFICATIONS			
P 804	SERVICE	:ETHANOL TRANSFER PUMP			
	TYPE	centrifugal pump .			
	FLOW RATE	:5 m3/hr			
	DIFFERENTIAL PRESSU	JRE: 3.0 bar g			
	MATERIAL	cast iron-or carbon steel:			
	STUFFING BOX	:			
	MECHANICAL SEAL	:yes			
	DRIVER .	: explosion proof motor			
	NOTES	:			
P 805	SERVICE	ETHYLENE DICHLORIDE TRANS-			
	TYPE	FER PUMP centrifugal pump			
	FLOW RATE	3 m3/hr			
	DIFFERENTIAL PRESS	URE: 4.0 bar	1		
	MATERIAL	: cast iron or carbon steel			
	STUFFING BOX	:			
	MECHANICAL SEAL	: yes			
	DRIVER	: explosion proof motor			
	NOTES	:			
P 806	SERVICE TYPE	ETHYL MALEATE TRANSFER PUM centrifugal pump	; -		
	FLOW RATE	: 5 m3/hr			
	DIFFERENTIAL PRESS	·			
	MATERIAL PRESS	: cast iron or carbon steel			
	STUFFING BOX	:			
	MECHANICAL SEAL	· : yes			
	DRIVER	explosion proof motor			
	NOTES	•			
	10163	•			
			'		

EQUIPMENT ITEM SYMBOL : P - PUMPS

TECHNICAL SPECIFICATIONS

TEM N•	ITEM NAME AND SP	ECIFICATIONS
P 807	SERVICE	: CYCLOHEXANE TRANSFER PUMP
	TYPE	: Volumétric pump
	FLOW RATE	: 2 m3/hr
	DIFFERENTIAL PRESS	URE: 3.0 bar
	MATERIAL	:cast iron or carbon steel
	STUFFING BOX	•
	MECHANICAL SEAL	: yes
	DRIVER	:explosion proof motor
	NOTES	:
P 808	SERVICE	: ACETAMIDE SOLUTION PUMP
	TYPE	:centrifugal pump
	FLOW RATE	: 15 m3/h
	DIFFERENTIAL PRESS	URE: 3.0 bar
	MATERIAL	:cast iron or carbon steel
	STUFFING BOX	:
	MECHANICAL SEAL	: yes
		:explosion proof motor
	NOTES	:
	-	• :
P 809	SERVICE	: CYCLOHEXANONE TRANSFER PUMP
	TYPE	:centrifugal pump
	FLOW RATE	:5 m3/hr
	DIFFERENTIAL PRESS	SURE: 3.0 bar
	MATERIAL	cast iron or carbon steel
	STUFFING BOX	:
	MECHANICAL SEAL	; yes
	DRIVER	: explosion proof motor
	NOTES	•
		·
EST LA PROPPI	ONTENANT DES INFORMATIONS COI ETE DE CDI ET NE PEUT ETRE LNS L'AUTOPISATION ECRITE DE	AEPRODUIT 320 ADC

ITEM		
N.	ITEM NAME AND SP	PECIFICATIONS
P 810	SERVICE	: SOLVENT UNLOADING PUMP
	TYPE	: centrifugal pump
į		: 30 m3/hr
	DIFFERENTIAL PRESS	
		: cast iron or carbon steel
	STUFFING BOX	:
	MECHANICAL SEAL	[
		: explosion proof motor
	NOTES	:
P 811	SERVICE	HYDROCHLORIC ACID PUMP
	TYPE	: centrifugal pump
	FLOW RATE	: 10 m3/hr
	DIFFERENTIAL PRESS	SURE: 3.0 bar
	MATERIAL	: glass or PTFE
	STUFFING BOX	: yes
	MECHANICAL SEAL	
	DRIVER	explosion proof motor
	NOTES	:
		• •
P 812	SERVICE	MOTHER LIQUORS PUMP
	TYPE	: centrifugal pump
	FLOW RATE	: 30 m3/hr
	DIFFERENTIAL PRESS	· · · · · · · · · · · · · · · · · · ·
	MATERIAL	rubber lined carbon steel
	STUFFING BOX	- I
	MECHANICAL SEAL	,
	DRIVER	: explosion proof motor
	NOTES	•
		·

TECHNICAL SPECIFICATIONS					
rem N•	ITEM NAME AND SPECIFICATIONS				
P 813	SERVICE	: 2,4 DICHLOROPHENOL PUMP			
	TYPE	: centrifugal			
	FLOW RATE	: 3 m3/hr			
	DIFFERENTIAL PRESS	URE: 3.0 bar			
	MATERIAL	: 316 SS			
	STUFFING BOX	:			
	MECHANICAL SEAL	: double			
	DRIVER	: explosion proof motor			
	NOTES	: jacketed pumpsteam heated			
D 044		CIVIDIO ACTO DUMO			
P 814	1	: SULFURIC ACID PUMP.			
		: volumetric			
	FLOW RATE	1 m3/hr			
	DIFFERENTIAL PRESS				
	ţ	: cast iron or carbon steel			
	STUFFING BOX				
	MECHANICAL SEAL				
	DRIVER	: explosion proof motor			
	NOTES	•			
	- ,	•			
P 815	SERVICE	CARBON DISULFIDE PUMP			
	TYPE	: centrifugal			
	FLOW RATE	: 5 m3/hr			
	DIFFERENTIAL PRESS	· j			
	MATERIAL	; 316 SS			
	STUFFING BOX				
	MECHANICAL SEAL	· · · · · · · · · · · · · · · · · · ·			
	DRIVER	: explosion proof motor			
	NOTES				

	TECHNICAL SPECIFICATIONS				
item N°	ITEM NAME AND SPECIFICATIONS				
P 816	SERVICE : ETHYLENE DIAMINE PUMP				
	TYPE : volumetric pump				
	FLOW RATE : 2 m3/hr				
	DIFFERENTIAL PRESSURE: 3.0 bar				
	MATERIAL : 316 SS				
	STUFFING BOX :				
	MECHANICAL SEAL : yes				
	DRIVER : explosion proof motor				
	NOTES :				
	•				
P 817	SERVICE :CAUSTIC SOLUTION PUMP				
-	TYPE : centrifugal pump				
	FLOW RATE : 12 m3/hr				
	DIFFERENTIAL PRESSURE: 3.0 bar				
	MATERIAL : cast :iron-carbon steel				
	STUFFING BOX : yes				
	MECHANICAL SEAL :				
	DRIVER : explosion proof motor				
	NOTES :				
,	-				
P 818	SERVICE : AMINE SOLUTION PUMP				
	TYPE : volumetric pump				
	FLOW RATE : 2 m3/hr				
	DIFFERENTIAL PRESSURE: 3.0 bar				
	MATERIAL : 316 SS				
	STUFFING BOX :				
	MECHANICAL SEAL : yes				
	DRIVER : explosion proof motor				
	NOTES :				
	•				
	•	E .			

	EQUIPMENT ITEM SYMBOL : U- PACKAGES
	TECHNICAL SPECIFICATIONS
item n•	ITEM NAME AND SPECIFICATION
U 801	SERVICE: P ₂ S ₅ STORAGE UNIT • one 100 m3 storage silo (material= aluminium) • one bucket elevator • includes: rotary valves, drives, piping and instrumentation • note: the entire system is under nitrogen blanket
CE SCHENA EST LA PRO	CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PRIETE DE COI ET NE PEUT ETRE REPRODUIT 1/1 330 6002 ADS USCO 1 C

SECTION 900

WASTE TREATMENT UNIT

ITEM N°	ITEM NAME
D 901 A,B D 902 A,B,C,D	AQUEOUS EFFLUENTS HOLDING PITS NEUTRALIZATION-DECANTATION TANKS
D 903	ORGANIC WASTES STORAGE TANK
P 901 A,B	AQUEOUS EFFLUENTS TRANSFER PUMPS
P 902 A,B,C,D	EFFLUENT NEUTRALIZATION PUMPS
P 903	ORGANIC WASTES PUMP
บ 901	H ₂ S INCINERATOR

						DEVELOPPEMENT INTERNATIONAL rue Legendre PARIS 17°
					CLIENT	EQUIPMENT LIST
					UNIDO	SECTION 900
DESCRIPTION	REV	DATE	SIGN	VERIF.	l	

	EQUIPMENT ITEM SYMBOL : D - TANKS AND HOPPERS	S
	TECHNICAL SPECIFICATIONS	
ITEM N•	ITEM NAME AND SPECIFICATION	
D 901 A,	B SERVICE : AQUEOUS EFFLUENTS HOLDING PITS	
	TYPE : underground concrete tank with acid proof brick lining VOLUME : 50 m3 DIAMETER : 5x4 m HEIGHT : 2.5 m MATERIAL : concrete + acid-proof bricks+	
	plastic liner PRESSURE : atmospheric TEMPERATURE: 60°C NOTES : 2 tanks	
D 902 A,B,C,D	SERVICE : NEUTRALIZATION-DECANTATION TANKS TYPE : vertical tanks-flat bottom	
	VOLUME :100 m3 DIAMETER : 4 m HEIGHT : 7,5 m	
	MATERIAL :carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 80°C	
	NOTES : 4 tanks	
D 903	SERVICE :ORGANIC WASTES STORAGE TANK	·
·	TYPE : vertical tank-flat bottom	
	VOLUME :30 m3 DIAMETER : 3 m HEIGHT :4.5 m	
	MATERIAL : carbon steel	
	PRESSURE : atmospheric TEMPERATURE: 60°C	
	NOTES :	
EST LA PROPRIET	NTEMANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE TE DE CDI ET NE PEUT ETRE REPRODUIT IS L'AUTORISATION ECRITE DE CDI 1/1 330 6002 ADS	NUMERO PEV

	TECHNIC	AL SPECIFICATIONS
ITEM N°	ITEM NAME AND SPECIFICATIONS	
P 901	SERVICE	: AQUEOUS EFFLUENTS TRANSFER
A,B	TYPE	PUMPS centrifugal pumps
		: 20 m3/hr
	DIFFERENTIAL PRESSURE: 3.0 bar	
	MATERIAL	: TEFLON
	STUFFING BOX	
	MECHANICAL SEAL	į.
	DRIVER .	: explosion proof motor
	NOTES	: 2 pumps
P 902 A	SERVICE	: EFFLUENT NEUTRALIZATION
B,C,D	TYPE	PUMPS centrifugal pumps
·	FLOW RATE	: 100 m3/hr
	DIFFERENTIAL PRESSURE: 2.0 bar	
	MATERIAL	: TEFLON
	STUFFING BOX	:
	MECHANICAL SEAL	: double
	DRIVER	: explosion proof motor
	NOTES	: 4 pumps
		•
P 903	SERVICE	: ORGANIC WASTES PUMP
	TYPE	: centrifugal pump
	FLOW RATE	: 15 m3/hr
	DIFFERENTIAL PRESSURE: 3.0 bar	
	MATERIAL	cast iron or carbon steel
	STUFFING BOX	:
	MECHANICAL SEAL	: yes
	DRIVER	: explosion proof motor
	NOTES	:
		1
		1
		ł

	EQUIPMENT ITEM SYMBOL : U_ PACKAGES	
	TECHNICAL SPECIFICATIONS	
item n°	ITEM NAME AND SPECIFICATION	
U 901	SERVICE: H ₂ S INCINERATOR	
	CAPACITY: the following gas stream is completely oxidized in the incinerator H ₂ S: 165 kg/r toluène: 20 kg/hr methanol: 41 kg/hr . gas incineration package including blowers,	.
	stack, instruments and safety devices.note: the incinerator is also designed for burning liquid wastes.	
;		
	·	
EST LA PHO	CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUM PRIETE DE COI ET NE PEUT ETRE REFRODUIT 1/1 330 6002 ADS U90	

ANNEX I

REVISED COSTS OF PRODUCTION SHEETS

Following conversations held in Kuwait on March 21-22 with representatives of the Ministry of Commerce & Industry, Kuwait, the costs of production sheets has been modified on the basis of the following data:

Utility costs

Electricity 2 FILS per KWH (1000 FILS = \$ 3.6)

Cooling Water 5 FILS per M3

Process Water 55 FILS per M3

Gas 260 FILS per 1000 cubic feet

Interest on working capital

Theinterest on working capital is equal to 4 %.

It has been assumed that steam is raised in a gas-fired-boiler which leads to a cost of 7 \$/metric tonne.

Storage capacity increase

It has been asked to increase the storage capacities to 3 month. This implies an increase of the outside battery limits investment.

TABLE 2.12.3

O,O DIMETHYLDITHIOPHOSPHORIC ACID PRODUCTION UNIT- SECTION 100 CAPITAL SUMMARY

-Capacity : Third quarter 1979 3100 metric tons pe		tery limits ttery limits i investment	
-ON-Stream Time: 8,000 hours per yr			
PRODUCTION COST	SUMMARY		
. RAW MATERIALS per kg	, Price ∉/unit	Annuel cost, \$M	Cents per kg
Phosphorus Pentasulfide,kg 0.7960	108.24	2,671,000	
Methanol, kg 0.4911	21.00	320,000	1
Solvents and chemicals		68,000	
Total raw materials		3,059,000	98.68
• UTILITES			
Steam, 150psig, metricton 0.00025		5,430	
Cooling water, m3 0.0252 Glycol (-20°C), 10 ⁶ kcal 0.00008		1,470 17,610	
Power, KwH 0.0242	-	560	
Total utilities	•	25,070	0.81
OPERATING COSTS Labor, 10 men @\$16,000/yr 2 me	n per shift	160,000	
Supervision,5 men @\$22,000/yr1 ma Maint., material &Labor 6% of ISE Total operating cost	nper shift	110,000 80,000 350,000	- 11.29
OVERHEAD EXPENSES Direct Overhead 40 %(la General plant overhead 65 % Op Insurance, property taxes 1.5% to	bor&sup.) perating cos tal invest. tal invest.	108,000 ts 227,000 39,300	
Total overhead expenses		636,300	20.52
TOTAL COST OF PRODUCTION		4,070,370	131.30
BY-PRODUCT CREDIT			
Total by-product credit	:		
NET COST OF PRODUCTION Return on Investment 30% Total Interest on Working Capital 4 %	investment	4,070,370 705,000 t. 54,000	131.30
Sales Expenses -			
TRANSFER PRICE		4,820,370	155.78
(*equivalent to four months produc	tion costs)		
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIE EST LA PROPPIETE DE CDI ET NE PEUT ETRE REPRODU OU UTILISE SANS L'AUTORISATION ECRITE DE C'OI	PAGE	AF FAIRE	NUMERO PEV
,			

$2^{1}, 2^{2}, 3$ TABLE ETHYL MALEATE PRODUCTION UNIT- SECTION 200 CAPITAL SUMMARY \$ Million CAPITAL INVESTMENT KUWEIT Inside battery limits Third quarter 1979 Outside battery limits 0.44 1.68 1100 metric tons perTotal fixed investment Working Capital* 0.69 -ON-Stream Time: 8,000 hours per yr PRODUCTION COST SUMMARY Units , Price . Annuel Cents RAW MATERIALS **⊄**/unit per kg cost, \$M per kq 0.6905 74.6 566,700 Ethanol, kg 0.6312 118.0 Maleic anhydride 819,300 Catalyst, solvents and 71,000 chemicals 1,457,000 132 - 46 Total raw materials Steam, 150psig, metricton 0.0029 700.0 22,400 2,770 0.1340 1.88 Cooling water, m3 Power, KwH 0.0523 0.75 430 300 0.0013 20.68 Process water, m3 Total utilities 2.35 25,900 OPERATING COSTS Labor, 7,5 men @\$16,000/yr1,5 men per shift 120,000 Supervision,1 man @ \$22,000/yr1 man overall 22,000 Maint., material &Labor 6% of ISBL 74,400 Total operating cost 216,400 19.67 OVERHEAD EXPENSES 40 %(labor&sup.) 56,800 65 % Operating costs 140,700 Direct Overhead General plant overhead Insurance, property taxes 1.5% total invest. 25,200 Depreciation 10 % total invest. 168,000 Total overhead expenses 390,700 35.50 TOTAL COST OF PRODUCTION 2,089,800 189.98 BY-PRODUCT CREDIT Total by-product credit NET COST OF PRODUCTION 2,089,800 189.98 480,000 Return on Investment 30% Total investment Interest on Working Capital 4 % working capit. 27,600 Sales Expenses 236.11 2,597,400 TRANSFER PRICE (*equivalent to four months production costs)

CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE PEV AF FAIRE NUMERO EST LA PROPRIETE DE COI ET NE PEUT ETRE FEPRODUIT 6002 OU UTILISE SANS L'AUTOPISATION ECRITE DE C'DI

BASIS

-Location

-Capacity

UTILITES

TABLE 2.32.3

MALATHION PRODUCTION UNIT-SECTION 300 CAPITAL SUMMARY

BASIS CAPITAL INVESTMENT 5 Million Location KUWEIT Inside battery limits 1.72 Third quarter 1979 Outside battery limits 1.02 2000 metric tons perTotal fixed investment 2.74							
yr Working Capital* 1.74 -ON-Stream Time: 8,000 hours per yr							
PRODUCTION COST SUMMARY							
. RAW MATERIALS	, Units per kg	, Price ∉/unit	Annuel cost,\$M	Cents per kg			
Dimethyldithiophosphoric acid , kg	0.5004	157.38	1,575,100				
Ethyl maleate, kg Solvents and Chemicals	0.5380	238.97	2,571,400 20,000				
Total raw materials			4,166,500	208.32			
UTILITES							
Steam,150psig,metricton Cooling water, m3 Glycol(-20°C),10 ⁶ kcal Power, KwH Process water, m3	0.0012 0.0429 0.0001 0.0346 0.0004	700.0 1.88 7100.0 0.75 20.68	16,800 1,610 14,200 520 170				
Total utilities		•	33,300	1.66			
DPERATING COSTS Labor, 10 men @\$16,000/Y Supervision,5 men @\$22,000 Maint., material &Labor 69	D/yr1 man	per shift	160,000 110,000 103,200				
Total operating cost OVERHEAD EXPENSES Direct Overhead General plant overhead Insurance, property taxes	40 %(lab 65 % Ope 61.5% tot 10 % tot	or&sup.) rating cost	373,200 108,000 242,600 41,100	18.66 33.29			
TOTAL COST OF PRODUCTION			·				
BY-PRODUCT CREDIT Total by-product	: credit		5,238,700	261.93			
NET COST OF PRODUCTION Return on Investment 30% Total investment 750,000 Interest on Working Capital 4 % working capit. 69,600 Sales Expenses							
TRANSFER PRICE 97% Technic	:al produ	ct	6,058,300	302.92			
(*equivalent to four months	producti	on costs)					
CE SCHEMA CONTENANT DES INFORMATIONS CONFIDENTIELLES PAGE AFFAIRE NUMERO PEV EST LA PROPRIETE DE CDI ET NE PEUT ETRE REPRODUIT 6002 1							

TABLE 2.42.3

N- METHYLCHLOROACETAMIDE PRODUCTION UNIT- SECTION 400 CAPITAL SUMMARY

BASIS -Location : KUWEIT -Capacity : Third quar 1700 metric	ter 1979 (tons per	Outside ba	tery limits ttery limits d investment	1.76 1.00 2.76 1.03		
-ON-Stream Time: 8,000 hours per yr PRODUCTION COST SUMMARY						
. RAW MATERIALS	, Units per kg	, Price ⊄/unit	.Annuel .cost,\$M	Cents per kg		
Monochloroacetic acid,kg Monomethylamine;kg Catalyst, solvents and chemicals	1.0124 0.364	90.0 80.0	1,549,000 495,100 169,900			
Total raw materials . UTILITES			2,214,000	130.24		
Steam, 150psig, metricton Cooling water, m3 Glycol(-20°C), 10 ⁶ kcal Power, kwh Process water, m3	0.0035 0.1339 0.0006 0.0620 0.0010	700.0 1.88 7100.0 0.75 20.68	41,700 4,280 72,500 790 350			
Total utilities		•	119,620	7.04		
Supervision, 1man (\$22,00 Maint., material & Labor 6 Total operating cost	00/yr1 man		120,000 22,000 105,600 247,600	14.57		
OVERHEAD EXPENSES Direct Overhead General plant overhead Insurance, property taxe Depreciation Total overhead expens TOTAL COST OF PRODUCTION BY-PRODUCT CREDIT	s 1.5% tot 10 % tot	rating cos	56,800 161,000 41,400 276,00 535,200 3,116,420			
Total by-product NET COST OF PRODUCTION Return on Investment 309 Interest on Working Capi Sales Expenses TRANSFER PRICE (*equivalent to four months	% Total ir tal4 % wo	rking capi	3,116,420 765,000 41,200 3,922,620			
CE SCHEMA CONTENANT DES INFORMATIONS EST LA PROPRIETE DE COL ET NE PEUT ET OU UTILISE SANS L'AUTORISATION FORITE D	RE FEPRODUIT	PAGE	AFFAIRE N	UMERO PEV		

TABLE 2.52.3

DIMETHOATE PRODUCTION UNIT- SECTION 500

CAPITAL SUMMARY

	er 1979 tons per	Inside b Outside Total fi	INVESTMENT Dattery limits battery limits exed investment Capital*			
PRODUCTI	ON COST	SUMMARY				
. RAW MATERIALS	, Units per kg	, Price ∉/unit		Cents per kg		
O,O dimethyldithiophosphoric acid, kg N-methylchloroacetamide,kg Solvents and chemicals	0.8219 0.6710	157.3 232.8		·		
Total raw materials			7,684,500	307.38		
Steam, 150psig, metricton Cooling water, m3 Glycol(-20°C), 106 kcal Power, kwh Process water, m3	0.0072 0.1965 0.0011 0.1148 0.0066	700.0 1.8 7100.0 0.7 20.6	9,240 195.300 5 2,150			
Total utilities OPERATING COSTS Labor, 15 men @\$16,000/y	r a men	ner shi	336,100 .ft 240,000	13.44		
Supervision,5 men @ \$22,000 Maint.,material &Labor 69 Total operating cost OVERHEAD EXPENSES)/vr1 man	per shi	,	23.07		
Direct Overhead General plant overhead Insurance, property taxes	· · ·	rating o	osts 375,000 86,100			
Total overhead expense	?S		1,175,100	47.00		
BY-PRODUCT CREDIT			9,772,500	390.89		
Total by-product credit NET COST OF PRODUCTION 9,772,500 390.89 Return on Investment 30% Total investment 1,611,000 Interest on Working Capital 4 % working capit. 129,600 Sales Expenses						
TRANSFER PRICE 90% technic	•		11.513.100	460.52		
(*equivalent to four months	·		s)			
CE SCHEMA CONTENANT DES INFORMATIONS CEST LA PROPRIETE DE CDI ET NE PEUT ETRE OU UTILISE SANS L'AUTORISATION ECRITE DE	E REPRODUIT	ES PAGE	AFFAIRE	NUMERO REV		

TABLE 2.62.3

MANEB/ZINEB PRODUCTION UNIT- SECTION 600 CAPITAL SUMMARY

	TAL JOHNA		VECTMENT	¢ M111100		
BASIS CAPITAL INVESTMENT \$ Million Location : KUWEIT Inside battery limits 4.27						
-Capacity : Third quarter 1979 Outside battery limits 2.17						
1000 metric			dinvestment			
yr		Norking Ca	pital*	1.04		
ON-Stream Time: 8,000 hours	per yr					
PRODUCT	ION COST	SUMMARY :	ZINEB			
	, Units	, Price	.Annuel .	Cents		
RAW MATERIALS	per kg	⊄/unit	cost,\$M			
Carbon disulfide,kg	0.543	33.0	179,190			
Ethylene diamine,kg	0.212	246.0	521,520			
Zinc chloride, kg	0.469	92.0	431,480			
Chemicals and additives			95,120			
Total raw materials			1,227,310	122.73		
UTILITES	•		-, ,			
Steam, 150psig, metricton Glycol (0°C), 106kcal	0.00012		840			
	0.00047		16,690			
Power,KWH Process water, m3	0.5550 0.0150	0.75 20.68	4,910 3,100			
Fuel, 10 ⁶ kcal	0.0017		6,630			
·			· · · · · · · · · · · · · · · · · · ·	2 22		
Total utilities			32,170	3.22		
Labor, 15 men @\$16,000	yr 3 men	per shift	240,000			
Supervision.5men @\$22,00	00/vr1 man	per shift	110,000			
Maint., material & Labor 6	% of ISBL	•	256,200			
Total operating cost			606,200	60.62		
OVERHEAD EXPENSES						
Direct Overhead	40 %(labo		140,000			
General plant overhead Insurance, property taxe						
Depreciation		al invest.	96,600 644,000			
Total overhead expens	-		1,274,630	127 16		
TOTAL COST OF PRODUCTION						
BY-PRODUCT CREDIT			3,140,310	314.03		
DISTRODUCT CHEDIT						
Total by-produc	t credit	_				
NET COST OF PRODUCTION		•	3,140,310	314-03		
Return on Investment 309 Interest on Working Capi Sales Expenses	% Total in tal 4 %wo	vestment rking capi	1.821.000			
TY/*STER PRICE 92% techni	cal produc	:t	5,002,910	500.29		
(*equivalent to four months						
CE SCHEMA CONTENANT DES INFORMATIONS	CONFIDENTIELLE	SPASE	4664128	אניינגנ אני		
EST A PROPRIETE DE COI ET ME PEUT ET	TIUCCARJA 38	1 1	6002	. 1		
19 1 THE SE SANS LAUTORISATION ECRITE	JE (U)	<u> </u>	<u></u>			

1 - 8 TABLE 2.62.4

MANEB/ZINEB PRODUCTION UNIT- SECTION 600 CAPITAL SUMMARY

-Capacity 1000 metric	ter 1979 (tons per	Outside ba	tery limits ttery limits d investment	\$ Million 4.27 2.17 6.44 1.04			
-ON-Stream Time: 8,000 hours per yr PRODUCTION COST SUMMARY: MANEB							
. RAW MATERIALS	per kg		.Annuel .cost, SM	Cents per kg			
Carbon disulfide,kg Ethylene diamine,kg Manganese sulfate, kg Chemicals and additives	0.607 0.239 0.575	33.0 246.0 62.0	200,310 587,940 356,500 99,640				
Total raw materials UTILITES			1,244,390	124.44			
Steam, 150psig, metricton Glycol (0°C), 10°kcal Power, Kwh Process water, m3 Fuel, 10°kcal	0.00012 0.00053 C.7342 0.01656 0.0017	0.75	840 18,820 5,510 3,420 6,630				
Total utilities OPERATING COSTS Labor, 15 men @\$16,000	/yr ³ men	per shift	35,220 240,000	3.52			
Supervision,5men 0\$22,00 Maint.,material &Labor Total operating cost	00/yr1 man	per shift	110,000 256,200 606,200	60.62			
OVERHEAD EXPENSES Direct Overhead General plant overhead Insurance, property taxe Depreciation	s 1.5% tota	rating cos	140,000 394,030 96,600 644,000				
Total overhead expens	ses		1,274,630	127.46			
TOTAL COST OF PRODUCTION BY-PRODUCT CREDIT			3,160,440	316.04			
Tota l by-produc	t credit	•					
Return on Investment 30 Interest on Working Capi Sales Expenses	% Total in Ital4 % wo	vestment rking capi	3,160,440 1,821,000 41,600	316.04			
TRANSFER PRICE 92% technic			5,023,040	502.30			
CE SCHEMA CONTENANT DES INFORMATIONS FST LA PROPRIETE DE COI ET NE PEUT ET ON UTILISE SANS L'AUTORISATION FORFTE	RE REPRODUIT	S PAGE	AFFAIRE	NUMERO PEV			

TABLE 2.72.4

2,4 DICHLOROPHENOXY ACETIC ACID PRODUCTION UNIT- SECTION 700 CAPITAL SUMMARY

PRODUCT	ION COST S	UMMARY		
RAW MATERIALS	, Units per kg	, Price ¢/unit	.Annuel .cost,\$M	Cents per kg
2,4 dichloropheno, kg Monochloroacetic acid,kg Sodium hydroxide (100%),kg Hydrochloric acid (100%),kg	0.740 0.430 0.470 0.280	118.0 90.0 23.0 24.0	523,920 232,200 64,860 40,320	***************************************
Total raw materials UTILITES			861,300	143.55
Steam, 15Opsig, metricton Cooling water, m3 Power, Kwh Process water, m3	0.0084 0.3920 0.1220 0.0015	1.88 0.75	35,280 4,420 550 180	
Total utilities		•	40,430	6.74
Supervision,5 men @\$22,00 Maint.,material &Labor @ Total operating cost OVERHEAD EXPENSES Direct Overhead General plant overhead Insurance, property taxe	5% of ISBL 40 %(labo 65 % Oper	r&sup.)	99,000 369,000 108,000 ts 239,850	61,50
Depreciation Table average	10 % tota	l invest.	<u> </u>	-
Total overhead expens	· .		717,000	119.50
BY-PRODUCT CREDIT			1,001,130	331.623
				
Total by-produc	t credit	,		

1 - 10 TABLE 2.72.5

2,4 D DIMETHYLAMINE SALT PRODUCTION UNIT - SECTION 700

CAPITAL SUMMARY

: KUWEIT

BASIS -Location

CAPITAL INVESTMENT \$ Million
The description 1.65

-Location : KUWEIT -Capacity : Third quarter 720 metric	er 1979 O tons perT	utside bat	Investment	3.21			
yr -ON-Stream Time: 8,000 hours		orking cap	rear,	0.75			
PRODUCTI	PRODUCTION COST SUMMARY						
. RAW MATERIALS	Units per kg	, Price ¢/unit	Annuel cost,\$M	Cents per kg			
2,4 dichlorophenol,kg Monochloroacetic acid,kg Dimethylamine,kg Sodium hydroxide (100%),kg Hydrochloric acid (100%),kg Total raw materials			523,950 232,240 126,030 64,870 40.310	427.44			
. UTILITES	•		987,400	137.14			
Steam, 15Opsig, metricton Cooling water, m3 Power, Kwh Process water, m3	0.0070 0.3267 0.1017 0.0013	1.88 0.75	35,280 4,420 550 190				
Total utilities		•	10 110	5 62			
OPERATING COSTS Labor, 15 men @\$16,000/.	r 3 men	per shift	40,440	5.62			
Supervision,5 men @\$22,000 Maint.,material &Labor 6% Total operating cost	/yr1 man of ISBL	per shift	110,000				
General plant overhead 6 Insurance, property taxes	1.5% tota	ating cost	449,000 140,000 s 291,850 48,150 321,000	62.36			
Total overhead expense	s		801,000	111.25			
TOTAL COST OF PRODUCTION BY-PRODUCT CREDIT	٠		2,277,840	316.37			
Total by-product	credit						
NET COST OF PRODUCTION Return on Investment 30% Interest on Working Capit Sales Expenses -	Total in al 4% wo	vestment rking capit	2,277,840 849.000 30,000	316.37			
TRANSFER PRICE (100% 2,4 D-(*equivalent to four months			9,156,840	438.45			
CE SCHEMA CONTENANT DES INFORMATIONS CO EST LA PROPRIETE DE CDI ET NE PEUT ETRE OU UTILISE SANS L'AUTORISATION ECRITE DE	A EPRODUIT	_		HUMERO PEV			

ANNEX 2

SAFETY

In such a plant, safety involves hazards generally associated with chemical operations, plus some specific problems.

1 - SPECIFIC PROCESS HAZARDS

One process step requires specific precautions to be incorporated in the plant design and lay-out. It is the reaction between methanol and P_2S_5 to give dimethylthiophosphoric acid, which is the first step for the various organophosphorous insecticides.

This reaction is exothermic and can easily get out of hand, and even become explosive.

Two features have been incorporated in plant design to prevent accidents and/or minimize their consequences.

a- Interlock systems

 P_2S_5 is added progressively in the cooled reactor containing methanol and solvent. Temperature rise is controlled by the rate at which P_2S_5 is introduced.

The mixture temperature is measured and registered. An automatic shut-off (solenoid valve on P_2S_5 feed) is actuated when :

- . the temperature reaches a pre-set limit,
- the rate of temperature rise (obtained by differentiating the temperature versus time curve) tends to go above a pre-set limit.

In this manner, a dangerous acceleration of the reaction can be immediately detected and stopped, which is more effective than a simple high temperature cut-off which can be already late when it starts acting.

b- Enclosures

Reactor R-101 is installed within a reinforced concrete cubicle in order to contain the detrimental effects of an explosion to other buildings. One side of the cubicle is open with a dyke in front of the opening, in order to stop any flying debris in case of explosion.

Instrumentation is such that no personnel is authorized within the cubicle while the reaction is in progress, and all useful indications are legible on a control panel located outside the cubicle. All operating parameters can also be controlled by means of automatic control loops or remotely operated hand control stations located on that panel.

2 - GENERAL CHEMICAL PLANT HAZARDS

Most of materials handled in a chemical plant are flamable and some are toxic.

If accidental liquid spillage occurs, it is indispensible that it remains contained so that it does not spread or gets into the sewage system.

For this reason, each process area and bulk storage areas are dyked. The dykes containing storage tanks are of such volume that they can contain the whole volume of the largest tank included there. All liquids are collected in a pit from which they can be pumped to reclaiming or disposal facilities.

Fire-fighting facilities, including hydrants strategically located in front of buildings and bulk storage area, plus mobile extinguishers, are provided. Water is supplied to hydrants by a special network, completely independent from other water distribution systems, and independently pressurized.

Buildings can be ventilated by wall fans able to exhaust the whole volume of the building in a few minutes. Moreover suction points going to abatement devices are located near potential leak points (shaft seals, etc.).

3 - PERSONNEL PROTECTION

Personnel working within process buildings is provided with protection clothing including helmets, gloves, boots, goggles plus coveralls and/or gas masks in more critical areas.

Safety showers, with eye-washing devices, are provided on each floor. Fire blankets are located near exits.

Central medical facilities are located in the office-laboratories building where first medical care can be given to injured personnel.

ANNEX 3

PACKAGING

The profitability analysis has shown that profitability on insecticide production could be obtained if formulated product solution was prepared and packaged for sale in cans.

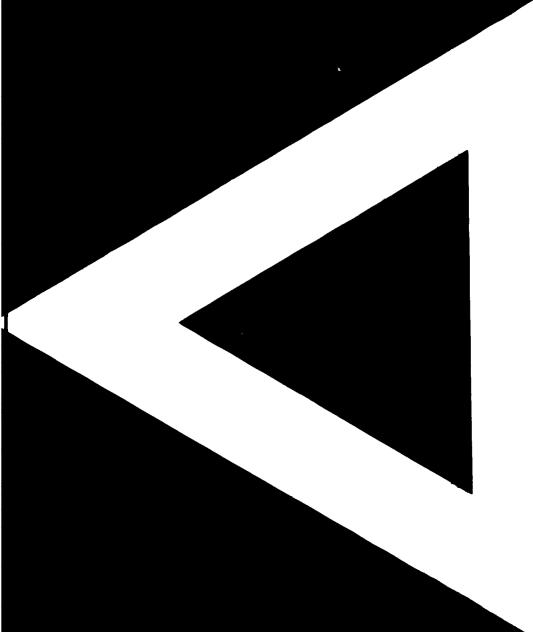
The quantities of malathion and dimethoate solutions imply therefore a sizable filling operation, in the order of 10 million liters per year.

Unlike chemical operations, such filling operations are usually carried out only 5 days a week, 8 hours per day.

Assuming 10 liters cans (classical for such products), a capability of 600 cans per hour is needed. This requires a mechanized operation.

We have therefore considered for that operation a special machinery for which the total investment (with installation) is \$ 50 000.

It is composed of a feed table on which empty cans are accumulated by hand. From there, everything is done automatically:


- . empty cans conveyed one by one under the liquid feed head,
- filling with 2 nozzles to prevent froth. Volume can be preset at any desired value,
- . clothing cans,
- . printing a lot number under them,
- . labeling cans (70 mm \times 70 mm labels possible),
- . conveying full cans to final conditionning.

For containers of that size, the easiest is to put them in pallets-cartons at the end of the filling chain (hand operation). These pallet-cartons are easily handled by a fork-truck, and stacked.

Let us note that the filling machine which has been selected is capable of handling cans of other volumes if the market would make it advisable. The height of the filling head is adjustable, and also the dosage volume and the filling speed.

It is advisable to run such a machinery by campaigns of at least one week on one given product, say malathion.

The filling head and feed tank are then cleaned thoroughly by circulating the dilution solvent (toluene), before starting on another product.

