

OCCASION

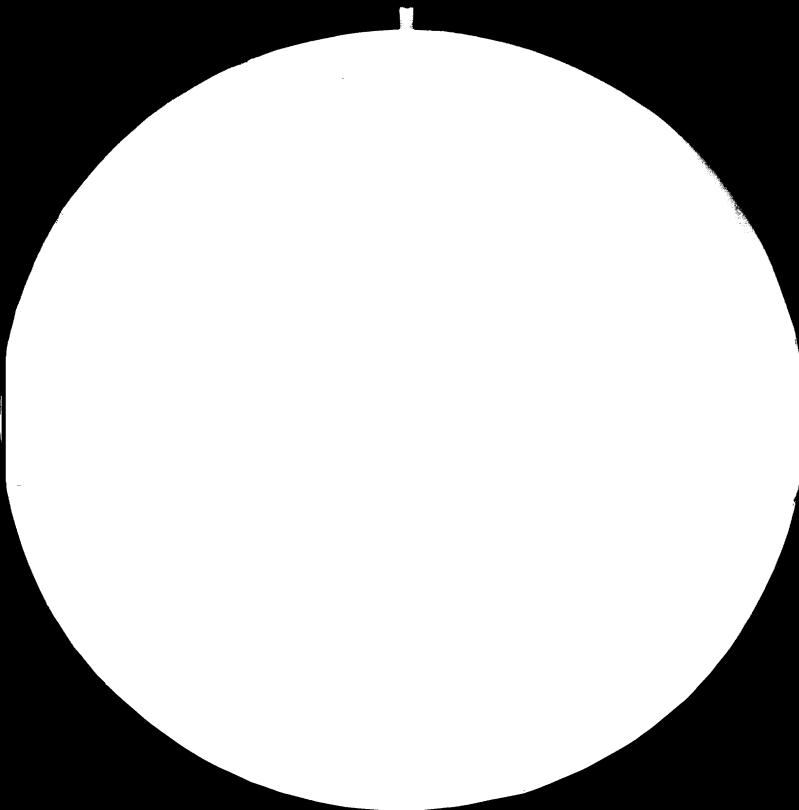
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

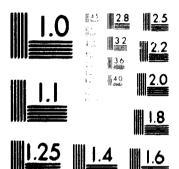
TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY


Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

MICROCOPY RESOLUTION TEST CHART

NATIONAL RUREAU OF GRANDARD'S 1962 A

UT IND COMPLACE 75/22

10080

٠

TECHNO-ECONCLIC FLASTBILITY STUDY

FOR THE ESTABLISH. ME TOF A PLYWOOD MILL IN THE SUDAN

l i n a l l e p o r t. to the United Actions Industrial Development Organization Vienna

prepared by the Forest Research Institute in Zvolen and Polytechne, Foreign Trade Corporation, Prague

Janusry 1976

ē,

رْبَّ مَعْرَاء قَطَعْتُهَا وَ ذَخِيرَةٍ وَجَدْتُهَا وَ مُشْكَلَةٍ حَالَتْهَا

Many a desert have I crossed, many a treasure discovered, and many a difficulty solved. Contents

_

I	Summary	5
	Terms, abbreviations, conversion factors	7
II	Report	8
	1 Introduction	8
	2 The market	10
	3 The rew material	20
	4 Transport	29
	5 The plant	37
	6 Economic and financial evaluation	43
	7 Findings and recommendations	52
III	Annexes	55
	1/A Conditons of field work	56
	1/B The production process of plywood	59
	2/A Flywood imports	61
	2/B The price of plywood	63
	2/C Particle boards and hardboards	65
	2/D Imports and production of sawnwood	66
	2/E Market survey in Egypt	67
	3/A The forests and their utilization	69
	3/B Stumpage recommendation	72
	3/C Evaluation of timber resources	7 5
	3/D Forest inventory recommendations	93
	3/E Suitability of tree species for veneer and plywood	94
	3/F Testing of Sudanese tree species in Czechoslovakie	95
	3/G Aerial survey recommendations	99
	4/A Distances and freight rates	100

Page

5/A Sliced veneer	104
5/B The production process of plywood	109
5/C Material and energy consumption	127
5/D Calling for tenders	132
5/E Cost of electricity produced by consumer's power plant	139
6/A Pricing of the output and receipts and costs during the start-up period	141
6/B Investment costs	145
6/C Celculation of annual repayments of loans	150
6/D Cash-flow forecast	15 2
6/E Calculations of the commercial profitability of the project	153
6/F Sensitivity analysis	15 7
6/G Macro-economic evaluation	159
References	165
List of background papers	166

Note:	Map	of	the	Sud a n		3	5
	Map	of	the	Southern	Region	30	6

ī

I - Summary

- 5 -

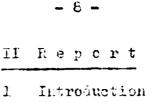
In summer 1975, a Polytechna team consisting of teamleader F.PAPÁNEK, Forest Economics Expert, A.POLÁČIK, Wood Technologist, and J.BIM, Industrial Engineer, undertook a mission to the Sudan for UNIDO spending there a total of 22 manweeks.

The findings of the team can be summed up as follows.

The present market of plywood in the Sudan is characterized by exorbitant consumer prices and an acute shortage of plywood. Annual imports of plywood amount to 2,500 m3, but consumption could be easily doubled, if the plywood price could be substantially reduced.

In Equatoria and Bahr-el-Ghazal provinces there are important timber resources in the surroundings of Katire, Nzara and Wau, where an annual yield of between 12 and 13 thousand m3 of peeler logs can be expected. A detailed forest inventory in the area of the potential plywood mill is necessary for the preparation of a utilization plan of forests for plywood production.

From emong sites mentioned, Wau is recommended, for the existing sawmilling capacities installed in the region and for other reasons, as the best possible site for establishing a plywood mill in the Sudan. The annual output of the plant is expected to be 5,000 m3 of plywood, the necessary timber supply is 11,100 m3 of peeler logs, the required labour force is 123 people. About the same number of people shall be employed in logging and forestry operations.


The locally produced plywood could be sold with an adequate profit in Khartoum to wholesalers for LS 180 per m3 instead of the present price of LS 390 per m3, and its retail price would be LS 198 per m3 instead of LS 500 per m3 as at present, thus reducing the present price level by 54 % and 60 %, respectively.

At the same time, important savings of foreign currency would be achieved. The project would bring to the Sudan important gains both in commercial profits and in macro-economic benefits. The Costs/Benefits Analysis shows an internal rate of return of 23.2 %. The accumulated surplus after 15 years of operation according to the cash-flow forecast amounts to XS 1,593,317. The return on investment as ratio of net profit to investment is 8.3 % for the average year. Total value added is XS 492,442 in the eigth year.

As shown by these figures, the seller's market existing at present in the Sudan can be reversed by establishing a domestic plywood industry. After the first plywood mill in Wau a second and third mill should be established in quick succession in the South in order to reach larger production which would meet increasing demand and allow even for plywood exports.

Terms, Abbreviations, Conversion Factors

Measures 1'/one foot/ = 30.48 cm1"/one inch/ = 2.54 cm l feddan = 0.42 ha 1 m3 /cubic metre/ = 35.31 cubic feet Weights $1 \text{ m}3 \text{ of } \log / \text{fresh} / = 1,000 \text{ kg}$ /eir dry/ = 800 kg 1 m3 of plywood 720 kg = Conversion 1 m3 of plywood = 150 sheets of 4'x 6'x 3 mm Currency and exchange rates One Sudanese Pound /LS/ = 100 Piasters /Pt/ = 1,000 milliemes /mms/ $LS 1 = L 1.33 = US \not S 3$ $L = LS 0.75 = US \not Z 2.25$ US \$ 1 = 1 0.44 Onc Egyptian Pound /LEg/ = 100 Piastres /Ft/ = 1000 milliemes /mms/ $LEg l = L 0.8 = US \not 2 1.8 = LS 0.6$ L = LEg 1.25US 31 = IEg 0.555 $LS \ 1 = LEg \ 1.666$

In response to a request of the Governement of the Sudan for a feasibility study for plywood production a contract has been signed by UNIDO in Vienna and POLYTECHNA in Prague on 9 September 1975. According to this contract, the study should cover the following topics:

a/ present market for plywood in the Sudan and neighbour-

- ing countries and its future development; b/ evaluation of the raw material situation;
- c/ elaboration of a specific proposal for the erection of a plywood factory.

This work has been entrusted to a team consisting of the team leader, F.PAPÁNEN, Forest Economics Expert; A.POLÁČIK, Wood Technologist; and J.BÍM, Industrial Engineer.

The team spent a total of 22 weeks in the field, collecting necessary data and information and visiting potential sites for a plywood mill in the South of the country. The duration of stay of the members of the team in the field was as follows:

		*
J.BÍM :	14 August to 3 September 1975	21 days
A.POLÁČIK:	10 July to 22 August 1975	44 de ys
F. PAPÁNEK:	10 July to 6 October 1975	89 d ays

Total 154 days

The field work was hampered by the rainy season in the South and, in a certain way, also by the month of Ramadan in the North and in Egypt as is explained in detail in Annex 1/A.

The names of people contacted in the Sudan and in Egypt are given in Annex 1/E.

Acknowledgement

This study has been prepared by the team of experts in close cooperation with Sudanese authorities, institutions, counterparts and staff. In carrying out the necessary inquiries and field trips a great number of organizations, both public and private, have been contacted and a very large body of informers approached. It is a pleasure to recall these numerous visits and meetings with people who were all extremely kind and helpful and did their best to assist the experts in their task.

Special mention should be made of the Industrial Research and Consultancy Institute in Khartoum and its Director, Mr.Abdel Rahman Abdel Halim Obeid who provided in Mr.Ahmed Ali Ahmed an excellent counterpart for Khartoum. In the South the responsibilities of the counterpart were taken over very succescfully by Mr.Cuor Deng Mareng, Inspector of the Regional Ministry of Commerce, Industry and Supplies in Juba. Also the Forestry Department made its staff available and several Conservators and their subordinates assisted the team-leader during his field trips in Equatoria and Bahr-el-Ghazal provinces.

Only thanks to the understanding, cooperation, and help of all these people and the sympathetic attitude of all the Sudanese autohorities, officials, managers and indeed the public at large could the present work be carried out. This is here gladly acknowledged.

2 The Market

Fresent Situation

For a long time it has been thought that there is an insufficient market for plywood in the Sudan, and only a few years ago the possibility of establishing a plywood and veneer factory was ruled out for want of adequate demand /1,2,3/.

Present annual plywood imports are in the range of 2,500 m3. In the last five years a slight tendency to increase has appeared. The main suppliers of plywood are China and Romania. Details are given in Annex 2/A.

Plywood is used mainly in furniture manufacture /about 80 %/, to a much smaller extent in construction for partitions and ceilings /20 %/. The use of plywood as a packaging material end for containers is only at its initial stages.

Governement agencies account for some 20 % of plywood consumption, the main bulk of plywood /80 %/ being used by the private sector.

The territorial distribution of plywood consumption in the country is essentially identical with the distribution of urban population and with the overall level of urbanization. Most urban centres have small scale workshops making furniture. Housing and construction in which plywood could be used is, like carpentry workshops, also limited only to urban communities.

By far the largest consumption of plywood is concentrated in the capital Khartoum, i.e. in the so called "Three cities" /Khartoum, North Khartoum and Omdurmen/. Here occur the most important construction activities requiring plywood as a building material. Here also the furniture industry is concentrated as is shown by the following data: /3/

Furniture industry in the Sudan

	25 and more		olent s then 25 outside Khartoum
Number of establishment	s 7	64	63
Number of workers	455	423	334
Output in LS	17,000	316,000	157,000

The rural population is using virtually no plywood. The per capita consumption of plywood in the capital is estimated to be four times the consumption of the remaining urban /and semiurban/ population. Consequently, the territorial distribution of plywood consumption is assessed as follows:

Area	Populat total milli	urban	Relative level of consump.	Weichting	Estimated plywood consumption
Three Cities	8.0	3.0	4x	3.2x	1,600 m3
R e ma inin g North	11.2	1.3	x	1.3x	700 m3
Southern Region	4.0	0.3	x	0 . 3x	200 m3
Total Sudan	16.0 mil.	2.4 mil.	•	4 .8x	2,500 m3
Percentage	100 %	15 %			

The usual size of imported plywood is $4 \times 6 \times 3$ mm. The wholesale price for this plywood is LS 390 /m3, the retail price varies from about LS 500 /m3 in Khartoum to more than LS 800 /m3 in the South. Details concerning the price of plywood are given in Annex 2/B.

The present excessive price of plywood in the Sudan is a consequence of inadequate supply of this commodity which does not meet actual demand.

The use of plywood and its future development should be viewed in close interrelation with the use of other woodbased panels and of sawn timber.

There is a small particle board plant producing in Khartoum which is protected from competition from abroad. Its products are used mainly in construction. The wholesale price of particle boards is LS 122 /m3, the retail price is LS 144/m3.

Small quantities of hardboards - not mentioned in the Foreign Trade Statistics - are imported from time to time and sold on the retail market for LS 340 /m3. Information concerning particle boards and hardboards is contained in Annex 2/C.

A considerable drain on the country's foreign currency resources is caused by imported coniferous sawnwood which, according to the Foreign Trade Statistics, amounted in 1974 to over 32,000 tons with a corresponding value of over LS 3.6 million. Domestic sawnwood production, consisting almost entirely from hardwoods, is insignificant. For details see Annex 2/D.

Besides the sawmills, there is in Khartoum a match fectory operating since the early 1960's /the splints are mostly imported/, and a packaging and carton factory which started production in 1960 and uses also imported raw material.

With regard to this situation in the market of forest products there is no doubt that the establishment of a plywood industry based on domestic raw material would greatly alleviate the existing shortage of wood-based building materials and of furniture and ease the strain timber imports make on the country's balance of payment.

Trends and Projected Consumption

Present consumption of plywood in the Sudan is 0.16 m3 per 1,000 inhabitants which is only one fifth of that in Africa /1970 - 0.8 m3 per 1.000 inhabitants/.

Consumption of plywood in the Sudan is expected to increase due to:

- elimination of exaggerated wholesale and retail price margins by matching supply with demand
- growth of population, especially urban
- higher living standards related to GDP

- further technical development and progress.

The rate of growth of population is 3.1% /4/ and, with the enormous land surface of the Sudar, and the improving living standards this rate will be probably maintained for some time in the future.

But much more important for the increase of plywood consumption is the growth of urban population. The percentage of urban population increased annually in the 9 years from 1955/56 to 1964/65 by 4.9 % /5/. This rate of increase may safely be projected also for the next 10-15 years in view of the influx of rural population into urban centres and the fast growth of towns and cities. The population of the Sudan is expected to increase at the following rate:

Year	Total population /3 % growth/				Urban po /5 % gro	opulation owth/	
1975	16.0	million	inhabitants	2.4	million	inhabitents	
19 80	18.6	11	t\$	3.1	78	17	
1985	21.5	11	11	3.9	29	**	
1990	25.0	88	18	5.0	**	19	

The 1971/72 Gross Domestic Product per inhabitant in the Sudan is US \$ 141 which is about two thirds of the average GDP for Africa /6,7/. The GDP is expected to grow in the Sudan at a rate of 3 % reaching

in	the year	GDP	in US 🖇
	1975		154
	1980		179
	1985		207
	1990		240

According to an FAO study /7/ the recent and projected per caput consumption of plywood and veneer by regions is for Africe as follows:

Year	1961	1971	1981	1991
m3/1000 inhabitants	0.5	1	3	5
The rate of growth	in % per	annum	is:	
1961–1971	1971-1981	L	1981-	1991
7.2	11.6		5.	2

According to this same source the average GDP for Africa is, or is expected to be: Year 1961 1971 1981 1991 US \$ per caput 159 210 283 404 The rate of growth for GDP in % per annum is:

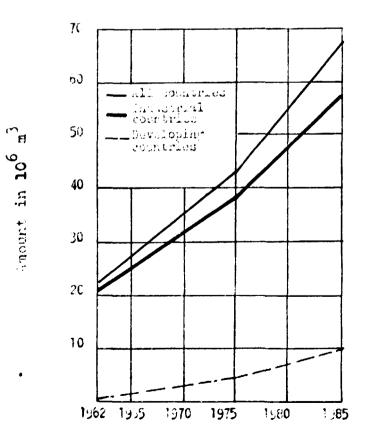
1961-1971	1971–1981	1981-1991
2.8	3.0	3.6

Plywood consumption in m3/1000 capita grows, in general, with increasing GDP in US \$/caput, but consumption per 1000 capita is smaller in the Sudan than in Africa, as shown on the following table which is based on an assumed 10 % growth of plywood consumption:

Year	Fogulation in mill.	CDF in US \$ per caput	Plywo m3/1000 capita	od consu total in m3	mption at a growth rate of 10 %
1975	16.0	154	0.16	2,560	2,500
1980	18.6	179	0. 22	4,092	4,000
1985	21.5	20 7	0.30	6,450	6 ,500
1990	25.0	240	0.42	10,500	10,400

The assumed 10 % growth rate of plywood consumption for the Sudan is consistent with the average annual growth rate for plywood consumption for Africa which is /7/:

E.4 % for the period 1950-1960


9.7 % for the period 1960-1970, and estimated to be

8.7 % for the period 1971-1981

11.1 % for the period 1981-1991.

The average annual growth of apparent plywood consumption in Africa from 1970 to 1973 even reached 13.3 %, and FAO /8/ anticipates a 15 ; growth of plywood production in developing countries for the period 1975 - 1985 /see Chart 1/.

- 14 -

Projecting the present annual plywood consumption of 2,500 m3 at a 10 % growth rate into the future, the following target figures for plywood consumption are obtained: in five years time /1980/ 4,000 m3 in ten years time /1985/ 6,500 m3

in fifteen years time /1990/ 10,400 m3

In attempting a break-down of this annual consumption of plywood according to end-uses the following assumptions are made:

1. Plywood consumption for furniture making will retain its dominant position but will grow at a somewhat slower rate than other consumption so that its weighting will be reduced in 15 years' time from the present 80 % to about 63 %. Thus the volume of plywood consumption will increase 3.3 times in 15 years.

2. On the contrary, plywood consumption for construction, including waggon construction, will increase at an ever faster rate with a 6 times increased volume consumption in 15 years' time. The corresponding increase in its weighting would be from 20 % to 29 %.

3. In the Southern Sudan, an extensive tea and tobacco plantation programme is under way. Already now a shortage of crates for packing tobacco is felt and the tea development will result in an ever growing demand for tea chests. The Army complains of the poor quality of particle board manufactured in the Sudan and would warmly welcome locally produced plywood for such end-uses as packing ammuniton etc. Plywood could replace metal in containers for air transport, for beverages /like Coce Cola bottles/ and fruits. The consumption of plywood for these and related uses is estimated to reach 200 m3 in 5 years, 500 m3 in 10 years and 800 m3 in 15 years.

Consequently, the following picture of plywood consumption according to end-uses can be expected: Year Furniture Construction Containers Total consumption 2.000 m3 500 m3 2,500 m3 1975 1980 3.000 m3 E00 m3 200 m3 4.000 m3 4.500 m3 6,500 m3 1985 1,500 m3 500 m3

800 m3

10,400 m3

1990

6,600 m3

3,000 m3

- 15 -

Fotential exports

Sudar lies in the transitory bolt contacting the tropical icrests in the South and the desert in the North. Consequently, she would seem to be in a unique position to use her forest resources not only for meeting the country's own requirements in plywood, but also for plywood exports to neighbouring countries which have no forests, or which have not yet developed, or sufficiently developed, their own plywood production. Of special interest could be plywood exports to Saudi Arabia and Loypt, which are by see within easy reach of the Sudan, but also to Sudan's southern meighbours like Zaire.

A striking development in world plywood trade is the changing international pattern stemming from the growth of exports from developing market economic, as has been pointed out at the New Felhi World Consultation of Wood-based Panels in 1975. Due so a number of factors such as its high value per unit of volume, paywood appears to make the grovest potential for international trade of all wood-based panel projucts. Vencer exports have grown over the past years hearly as fast as plywood ensorts.

In world trade suddar reverses way always occur, therefore exports of plywood should not be so big as to make the country heavily dependent on foreign sales. Such an approach would particularly suit the Sudan, since her timber resources are not so large as to enable considerable plywood exports, but nevertheless are sufficiently important to allow a minor part of the plywood production to be diverted to foreign markets, improving thereby the economic effect of the plywood industry. It is suggested that between one fifth and one third of the enviseged Jodanese plywood production could be set aside for exports. Such exports would off-set the adverse effect of imports of adhesives on the balance of payments, indeed they could result in net earnings of foreign currency by the plywood industry, if the price of Sudanese plywood were competitive in the world werket.

During field fork a short mariet survey was made in Egypt the results of which are given in Annex 2/E. E_ypt is consuming ennually some 50,000 - 60,000 m3 of plywood, both imported and locally produced, and thus represents an important potential market outlet. Annual imports of plywood may amount to anything between 30,000 and 50,000 m3. Mahogany plywood of good quality, produced in the Sudan, would have a value exceeding by at locat 20-30 % the usual sort of imported plywood, consequently it could be sold in the present market situation in Alexandria for a C and F price of about US \$ 350-360 /m3. The freight rate for plywood from Port Sudan to Alexandria being US \$ 48.26 /m3, the FOB price in Port Sudan for Sudanese plywood would be around US \$ 300 per m3 which could be interesting and incite plywood exports from the Sudan to Egypt.

Still more than Egypt, Saudi Arabia would seem to be a possible outlet for Sudanese-made plywood, since the freight rate for plywood from Port Sudan to Jedde would be only US \$ 23.33 /m3. No market survey regarding plywood has been made in Jedda, but later this may become necessary in order to promote plywood exports from the Sudan to Saudi Arabia.

In considering potential plywood exports, it should be borne in mind that mahogany-faced plywood sheets would represent on the international market a commodity that could compete as to quality and decorative value with any available brand of plywood and would easily compete with the kind of plywood supplied at present to countries in the Middle East. Sudanese plywood would have the advantage of the rew material not being expensive, and if in spite of the small capacity of the plant and the one-shift operation a reasonable production cost could be achieved by efficient management, if costs of internal transport would be lowered, and if a premium on foreign exchange earned is granted, then exports of plywood from the Sudan are a possibility which should be earnestly attempted.

Conclusion

Growing requirements for plywood in the domestic market and also potential opportunities for plywood exports to neighbouring countries warrant the establishment of a plywood industry in the Sudan. In determining the capacity of a plywood plant for the Sudan both the extent of present and future market requirements and the availability of timber should be considered. Estimated demand for plywood in 1960 - when full production of the proposed plywood mill would have been reached - is 4,000 mb per annum. The normal minimum economic capacity of a plywood plant is considered to be 5,000 mB of plywood per annum. This capacity represents, at the same time, the maximum concentration of peeler logs which is economically feasible with regard to existing forest resources in the Sudan. Consequently, the only solution is the establishment of a 5,000 mB plywood mill which would operate one shift. This would meet the country's demand for plywood in 1980 and, at the same time, allow for plywood exports of the order of 1,000 mB per annum, should Sudanese plywood be available at a competitive price.

Looking further shead, beyond the scope of this fessibality study, the following development of the plywood industry in the Sudan could be contemplated:

Feriod	lumber of plants	Arnual plywood production	Lowestic consumption	Exports
1976-1980	1	5,000 m3	4,000 m3	1,000 m3
198 119 85	2	10,000 m3	6 ,50 0 m3	3,500 m3
1 98 6–199 0	3	15,000 m3	10,400 m3	4,600 m3

The successive increase of the number of plants instead of shifts is necessary because of the low stocking of forests which does not enable the economic concentration of larger quantities of logs at the factory site. According to the expected end-uses the following specification of plywood is recommended for the 5,000 m3 plant which is to be established:

End-uses								
Thick	cness	Furriture	Con- struction	Conteiners	Exports	Total		
3	mra	1,600 m3	-	100 m3	600 m3	2,500 m3		
4	mm	دm 603	~	-	200 m 3	1,0 00 m3		
5-10	ø 6 mm	200 m3	-	100 m3	200 m3	500 m3		
15	rana 🚬	-	1,000 m3	-	•	1,000 m3		
Tota:	1	2,800 m3	1,000 m3	200 m3	1,000 m3	5,000 m3		

Limencions	2-4 mm	10 ani.	15 m.	Total
112 x 220 cm 122 x 183 cm	2,000 m3 1,500 m3	500 m.		2,500 m3
Total	ر ، ۵۵۵ و د (شـ ۵۵۵ و ز	500 t.,s		5,000 m3

Let all bounds uper formaldehyde adhesive should be used with the exception of 122 x 183 cm, 15 mm boards representing water and boil proof plywood for which the use of phenolic foils is recommended.

The size 122 x 163 cm, i.e. 4×6 is recommended because of the established market requirements for plywood sheets in the Sudan. But for the second plywood mill to be constructed in the Sudan a lorger size, i.e. 122 x 244 cm /or $4 \times 8'$ / should be contemplated. Though such a size requires more expensive equipment, it could stimulate new uses for plywood and thus enlarge plywood consumption in the Sular.

At present, no special measures for sales promotion seem to be necessary, in order to attain projected consumption figures with the only exception of one essential task: namely to make plywood of an acceptable quality available in sufficient quantity at a reasonable price.

In the calculation made in this feasibility study it is assumed that the present exorbitant consumer price for plywood sheets will be reduced by more than half, i.e. from LS 3.00 per sheet to LS 1.30 per sheet, if plywood imports are substituted by domestic production. It is needless to say that such an important price reduction would automatically increase demand for plywood to a multiple of its present level.

In order to improve the profitability of plywood production direct commercial relations with the end users are recommended through the establishment of a warehouse in Khartoum. The plywood mill in Wau would ship the plywood to Khartoum and sell it ex warehouse to consumers in Khartoum at the retail price and to wholesalers in the other urban centres in the North at the wholesale price. The plant in Wau would sell plywood ex factory to wholesale dealers in the South, as well as to plywood exporters. By establishing a retail outlet in Khartoum and Wau the selling price of plywood will be minimized and unnecessary intermediaries avoided.

3 The Law Material

Present Situation and Ceneral Observations

Not much is known about the forests of the Sudan, though there are important timber resources in the South of the country. In the absence of any forest inventory, in lack of forest maps and working plans, it is extremely difficult to estimate potential yields of the forest.

The use of these forest resources is only beginning. Sawmilling capacity is only a fraction of the potential yield of the forests, and actual sawnwood output is still much lower than the installed capacity. Some data on forest resources and their utilization are given in Annex 3/A.

The sawmills are owned and operated by the Forestry Department, consequently no stumpage fee is paid for saw logs. Royalties are collected only on fellings made outside the forest receives, their aim being the protection of timber resources by concentrating timber fellings in the forest reserves where plantations can be established after the fellings. In order to accumulate funds for the establishment of plantations after the utilization of the natural forest a recommendation is made in Annex 3/B to introduce a stumpage fee for peeler logs amounting to 60 Pt/m3.

The feasibility of plywood production depends largely on its integration with sawmilling. Indeed, only in this way will a rational utilization of the forest resources be achieved. Besides that, there is a close interrelation between the production of saw logs and peeler logs. As a matter of fact, both peeler logs end saw logs occur usually in the same tree and their separation by crosscutting the stem of the tree is by far the decision involving the highest responsibility in logging operations. Only a well-trained forester, who is well acquainted with the requirements of timber for plywood production, should determine the actual line of separation betwen peeler log and saw log in the felled tree. The operation of crosscutting is of primary importance for the outturn of peeler logs. The reletively high percentage of 30 % peeler

- 20 -

logs from the total volume of felled timber which is calculated in this report can be reached only with very careful and responsible crosscutting. Any lack of attention, interest or professional training with respect to this operation will result unavoidably in spoiling veneer and peeler logs and lowering their outturn. It is therefore absolutely essential for the successful utilization of timber resources for plywood production that logging operations for savmilling and plywood manufacture should be carried out by highly qualified and responsible field staff who does not prefer supplying raw materials to a savmill rather than to a plywood mill on departamental grounds but is on the contrary whole-heartedly interested in supplying the raw material needed to both operations according to the quality of the logs.

Peeler logs should be of the following lengths: 130, 190; and 230 cm, or their combinations: 260, 320, 360, 380, 420, 460 cm or more, if conditions of transport permit it. To these lengths 7 % should be added when cutting logs in the forest.

The present girth limit of 45" /i.e. 35 cm b.h.diameter/ is from the standpoint of plywood production too high and could be reduced to a girth limit of 37" /i.e. 30 cm b.h. diameter/. if silvicultural considerations would allow it.

It should be borne in mind, when establishing a plywood plant, that the plywood industry manufactures goods from raw material supplied by forestry. Consequently, this production is, from the viewpoint of national economy, a combined venture of agriculture and industry. The closer and smoother the cooperation between these two sectors, the better will be the results achieved by the plywood plant.

Another point that should be taken into account in planning logging operations is the rainy season which occurs all over the South of Sudan with rainfall concentrated in the summer months. In general, rainfall increases both as to amount and duration in the direction from North to South, from East to West, and, of course, with elevation. In the Imatong mountains the annual rainfall reaches an average of 1400 - 2000 mm most of which is precipitated during the seven months from April to October. A distinct dry season is only from December to February. In Juba the mean annual rainfall is 969 mm, the rainy season lasts from April to September. In Mau the mean annual rainfall is 1127 mm and the rainy season lasts from Lay to October /9/.

Loging operations should be concentrated as far as possible into the dry season and an adequate supply of roundwood should be stocked at the factory yards of the timber processing plants. In preparing working plans for the forests a distinction should be made between areas accessible only in the dry season and areas where logging could be carried out also in the rainy season. In these latter parts of the forest logging operations should be avoided during the dry season.

Normally logs should not be stored in the yerd for more than three months. This would prevent the deterioration of logs by long storage. Insects or fungi seem to be of little peril for tropical hardwoods in log yards in the Sudan; the moin concern should be the prevention of cracks, therefore protection of the log supply from direct sunrays is recommended. Should adverse climatic conditions require the stocking of a log supply for more than three months, sprinkling or other forms of log protection may become necessary /e.g. protective coating of log ends against checks and splits using tar oil, lime or paraffin, treatment with 4 % solution of CuSO₄ or ZnCl₂, protection by delimanit from the German Federal Republic, by UL salts from the German Democratic Republic, by Lastenox from Czechoslovakie etc./

Assessment of Timber Resources

At the time of the team's visit to the Forestry Department in Khartoum the Director, Mr.Kamal Osman Kalifa, pointed out that in his opinion there were four potential sites for the establishment of a plywood mill in the South, i.e.

- 1. the Imstong mountains
- 2. the Loka-Nuni area
- 3. the Yambio-Nzara area, and
- 4. the Wau-Raga area.

All these four sites were visited by the team and as far as possible short trips to the forest were made. At the Survey Department in Khartoum aerial photographs of some strips of forest surveyed ten to twenty years ago in the Imatong mountains, the hzara region and halfway between Wau and Haga were inspected. Based on information provided by the local forest staff, on data contained in various reports, on the inspection of aerial photographs, and on personal impressions a preliminary evaluation of timber resources for the purpose of plywood production is made in Annex 3/C.

Among the forest regions inspected one - the Loka-Nuni area - was eliminated as unsuitable for plywood production. In the remaining three forest regions an annual supply of between 12 and 13 thousandt m3 of peeler logs seems to be guaranteed. In the Imatong Forest Reserve Katire was chosen as a possible location of the plywood mill, the other two contemplated sites are Nzara in western Equatoria and Wau in Bahrel-Ghezel province. The logging cost is different in each case and the total cost of the peeler logs at the factory yard has been assessed as follows:

	Cost in LS per m3			
	Katire	Nzara	llau	
Stumpage	0.60	0.60	0.60	
Felling and crosscutting	0.75	0.60	0.53	
Skidding	2.50	2,00	0.75	
Hauling	5.40	7.20	5.40	
Road construction	1,92	2.12	1.00	
Further cost items	1.16	2.32	2.47	
Cost at factory yard	12.33	14.84	10.75	
Supplement 10 %Contingency 10 %	2.47	2.97	2.15	
Total cost of raw meterial	14.80	17.80	12.90	

Because there is no experience with large-scale logging operations in the Sudan, a supplement is added as a safeguard against possible increase of logging cost in case large-scale operations should raise the present cost of contracting or require the stepping in of the Forestry Department. It should be noted that the assessment of the raw material supply may convey a true general picture of each site, but needs further clarification and verification as to the surface of the forest, its compositon by species and its standing volume.

The need for a forest inventory to base the decision for any industrial development based on timber resources has been stressed many times in a number of reports. The idea of a plywood mill in the Suden which emerges in various reports during the 60's and 70's has been up to now always either evaded and deferred until the completion of a forest inventory, or rejected outright beause of an alleged lack of timber.

In this connection, special mention should be made of the Romanian report on wood utilization in the Sudan, presented by three foresters in 1972, which denies the existence of sufficient raw material for the establishment of a plywood mill with an annual output of 5,000 m3 and suggests the importation of pealer logs from the Central African Republic and from Zaire /10/.

Yet in spite of this report, all the evidence points to the fact that there exist in the southern Sudan - at least at the three mentioned sites - important resources of natural forests with large-sized trees of valueble species which occur in sufficient quantity to be used for plywood production. At the present stage of information regarding this forest resource it may be safe to assume that though a forest inventory - at least of the crudest type and confined only to the influx area of the potential mill site - is absolutely necessary to provide more information on timber resources and to start their rational utilization, there could be nevertheless no justification for claiming that a plywood plant cannot be erected on the grounds of an insufficient survey of the raw material. On the contrery, a positive decision on the establishment of a plywood mill would serve as an impetus and will be an economic justification for a closer survey of the forest, as well as hesten the collection of information and data on the existing timber resources of the areas considered.

In considering this matter, distinction should be made between the viewpoint of feasibility of plywood production and its actual production. While it would be impossible, at the present stage of knowledge concerning the forests, to prepare a deteiled technical project for the production of plywood, our information regarding the forest is sufficient to confirm, both with regard to quality and quantity of forests, the feasibility of such a project. Admittedly, assumptions were made in the calculations concerning the timber supply at the various potential sites, as to forest area, tree species and volume, which are at best "guesstimates" and may be altered by a subsequent inventory. Nevertheless, because of this uncertainty, provision has been made in the calculations to remain always on the safe side. But even if it should turn out that the quality of logs in the forest area selected or its volume have been overestimated there always remain two safeguards by which necessary adjustments could be made. The first adjustment measure would be the increase of the influx area so that additional timber supplies could be reached, though of course at a higher cost. This would be always feasible regarding the low cost of the raw material. The other means consist in a decrease of the supposed time period for using up the supply which in our calculations we took as 30 years, though ultimately a period of 15 years could well be accepted.

Conclusion and recommendations

From among the three forest regions where sufficient timber resources for plywood production can be found preference is given to Wau for several reasons.

Wau has the cheapest and best raw material, and the easiest terrain for large-scale logging operations. It has a railway connection with the North of the country and thus can provide the cheapest, quickest and most reliable transportation of plywood to the consumer centres. Development in and around Wau benefits of a high priority both socially and economically because of the need to create employment. The authorities of the Southern Region, and especially the Forestry Department, put high priorities for the industrial development of the Bahr-cl-Ghazal province, or they consider it the most backward part of the fouth.

The establishment and development of a plowood industry should be encouraged and facilitated by the Forestry Lepertment. In order to achieve this as quickly as possible they must take the following resures.

Short-term measures

The most important conclusion from the present survey is to start with the least possible delay a forest inventory in the vicinity of the site selected for the plywood plant, as a follow-up to the feasibility study, either as part of the multinational aid programme for the Sudan, or on a bilateral basis. This forest inventory should prepare forest maps of the respective areas, determine stocking, tree species reprecentation and annual yield, plan the outlay of a network of forest modes, and assist in testing mechanical properties and carrying out peeling tests of prospective tree species at the Soba Research and Education Institute and at the match factory in Khartowa. Verms of reference and a cost estimate are given in Annex 3/L.

It was originally intended to carry out peeling tests of up to five tree species in Czechoslovakia as part of the present feasibility study. Subsequent experience showed that there is no justification in carrying out tests in Czechoslovakia for the following reasons.

First, all the main tree species occurring around the possible site of plywood production have been already tested as to their suitability for plywood production by E.Tag Eldin Hussein Nasroun from the Soba Research and Education Institute in 1974 /Annex 3/E/. Besides that, the following 10 tree species have been tested at the Federal Forest Research Institute in Reinbeck /Federal Republic of Germany/: Cordia africana, Afzelia africana, Burkea africana, Presopis africana /all excellent in technological qualities/, and Terminalia glaucescens, Acacia polyacantha, Acacia sieberiana, Albizzia ayloneri, Albizzia zygia, Vitex doniana /ll/. Five species have been tested also in Czechoslovskia in 1973 as a preparatory stage for this Polytechna-UNIDO contract /Annex 3/F/.

Second, though some tree species may occur which should be tested for plywood production, it is impossible to say at this stage which tree species these are, since only a forest inventory in the area of the site choser for the mill can show which untested tree species occur in sufficient numbers and dimensions to be of interest for plywood production.

Third, testing of tree species both as to mechanical properties and peeling characteristics can be successfully carried out in the Sudan in the Soba Research and Education Institute and in the Khartoum match factory, as indeed has been already done for quite a number of tree species. Consequently, this kind of testing outside the Sudan as part of the international aid programe is not warranted.

What could be a matter for international or bilateral aid is advice as to what tree species should be tested in connection with the results of the forest inventory and, if so requested by the Sudanese government, operational assistance in efficient organization of the testing.

In preparation of the forest inventory an aerial survey should be carried out without delay. Recommendations are given in Annex 3/G.

Medium-term measures

On the basis of the forest inventory forest land which could yield a supply of timber for plywood production should be declared a Central Forest Reserve. This would be in line with the pursued policy of extending the area of forest reserves. The present area of forest reserves is Area Province 740,000 feddens, or 311,000 ha Equatoria 810,000 feddans, or 340,000 ha Bahr-el-Ghazal 200,000 feddans, or 84,000 ha Upper Nile

Southern Region

1,750,000 feddans, or

735.000 he

This area represents only 1.1 % of the total surface of the Southern Region. The target figure is 15 %. In order to safeguard the raw material basis for plywood production at least another 700,000 ha of forests should be added to the forest reserve estate in the near future.

Long-term measures

Finally, a new impetus should be given to the establishment of plantations on a certain part of the forest land. These should ultimately replace the natural forests as a raw material basis for both sawn-wood and plywood production.

There are at present about 8,600 ha of teak plentations: 5,400 ha in Equatoria and 3,200 ha in Bahr-el-Ghazal. The plantations were started after World War II and their age distribution is fairly even in Bahr-el-Ghazal, in Equatoria there were no plantations between 1962 and 1972. The annual increment may be around 6 m3 per ha. At present only poles from thinnings are utilized, but in 15-20 years time the plantations will yield saw logs and also a certain emount of peeler logs.

The continuous planting of teak should be encouraged and further increased, but teak should not remain the only species to be planted. Experiments should be started with the introduction of fast-growing softwood species in the savanna woodlands and continued in the Imatong mountains. This would require the establishment of two research stations, one in Equatoria for the montane forests and one in Bahr-el-Ghazal for the savanna type and gallery forests. These research stations should be under the guidance of the Research and Education Institute in Soba which could organize the research work and provide the necessary research workers.

- 28 -

4 Transport

Evaluation cf Sites

In any industrial development in the Sudan transportation is the major constraint. This is especially true of plywood production in which both the raw material and the commodity produced are heavy, bulky and costly to transport and distances involved between the timber resources in the South and consumer centres in the North are enormous.

In plywood production transportation cost depends on a number of factors among which the distance from the forest to the plywood mill and further from the plywood mill to consumer centres is of decisive importance. Therefore the selection of the site for the plywood mill, i.e. its location between the forest and the consumer, is of greatest importance for the feasibility and profitability of the enterprise.

Five possible sites for a plywood mill in the Sudan are being considered and their economic implications discussed in this report. These locations are Katire, Nzare, Wau, Juba and Khartoum. Furthermore, export possibilities of plywood to neighbouring countries through the ports of Port Sudan and Mombasa are examined.

The distances involved and the freight rates are given in Annex 4/A.

On the basis of the freight rates and handling charges quoted in Annex 4/A total transportation costs of logs and plywood for various locations of the plywood mill are computed. assuming the following concentration of sales:

Wau	10 % o r	500 m3 of plywood
Khartoum	70 % or	3,500 m3 of plywood
Port Sudan	20 % or	1,000 m3 of plywood
Total	100 % or	5,000 m3 of plywood

For the site in Juba transportation of logs from Katire, for the site in Khartoum transportation of logs from Wau is the cheapest.

- 29 -

	Cost in IS per m3					
	Katire	Nzara	Vau	Juba	Khartoum	
Logging cost	14.80	17.60	12.90	14.80	12.90	
Transport of logs	-		-	11.48	14.17	
Cost of logs at factory yard	14.80	17.80	12.90	26.28	27.07	
Cost of logs per m3 of plywood	32.86	39.52	28.64	58.34	60.10	
Transport of plyw			,		1 2 /	
To South	8.671/				/ 1.09 ^{11/}	
To Khartoum	19.89 ^{2/}	19.895/	7.647	19.89 ^{9/}	$\frac{1}{1.19^{12}}$	
To Port Sudan	1.1937	1.190/	3.118	1.19 ¹⁰	1.1912/	
Finel cost of site	e 62.61	77.91	39.39	79.42	62.38	
l/ Katire-Juba Handling Total Cost share 100	LS/1 8.2 0.4 8.0 % 8.0	2 7 7/ 40	Wau-Kha Handlin Total Cost sha	g	10.52 0.40 10.92 10.92 10.92	
2/ Jubz-Khertoum Handling Total Cost share 90 9	21. 0.2 22. 19.	10 10	Wau-Por Handlin Total Cost sh	g	15.13 0.40 15.53 3.11	
3/ Khartoum-Port & Handling Total Cost share 20 9	<u> </u>	40 95	Juba-Kh Handlin Total Cost sh	5	21.70 0.40 22.10 19.89	
4/ Nzare-Juba Handling Totel Cost share 100	16.9 0.4 17. % 17.	10 31	Khertow Hendlin Total Cost sha	B	<u> </u>	
5/ Juba-Khartoum Handling Total Cost share 90 9	21. 0.2 22. 19.6		Khertow Hendlin Total Cost sha	g	10.52 <u>0.40</u> 10.92 1.09	
6/ Khartoum-Port & Handling Total Cost share 20 9	<u> 0 </u> 5	10 95	Khartow Handling Total Cost sha	g	0.40	

The above calculation shows the coronic implications of each site, but does not tell the whole story. The selection of the most suitable site must take into account that transportation of any sort is the bottleneck of every industrial development and has to be kept at a minimum in order to make a project viable. If the transportation task is evaluated in t/km, the following picture is obtained for the five potential sites:

		OOC t/km				
Location	Katire	Nzara	iiau	Juba	Khartoum	
Hauling	375	500	375	375	375	
Log transport	by road -	-	E1 3	2,075	813	
	by rail / a	18,725				

Plywood transport

by road	648	1,879	-		-
by rail	-	-	3,883		-
on Nile	5,370	5,376	-	5,378	598
exports	567	567	567	567	567

6,968 8,324 5,638 8,395 21,070

This shows that Yau and Katire are the sites with the smallest and cheapest overall transport. A larger cost and a larger volume of transport is involved by selecting the Nzera and Juba site. As to the site in Khartoum, though economically it still seems to be a possibility, it is not feasible technically. The railway line from Wau to Khartoum could not handle this volume of transportation.

Communications between North and South

It should be noted that the weakest link in all the chain of transportation is always the connection between the North and the South of Sudan. There are practically two lines of communication: the Nile from Juba to Kosti, and the railway line from Nau through Babenousa to Khartoum. It is difficult to say which weens of transport is less efficient and less reliable and should therefore be avoided. Both transportation lines are in very poor state. Theoretically, transport from Juba to Kosti down the Nile takes 6 days, to Khartoum 10 days; upstream the duration of transport should be 10 days from Kosti, 15 days from Khartoum. But practically it takes weeks and months to get much needed supplies through this route. Maximum lifting capacity of crane is 30 t in Khartoum North, 10 t at Kosti and 5 t in Juba. But the army and the Mechanical Transport Department in Juba have cranes of over 20 t lifting capacity. There are no storing capacities at Juba and the handling of goods, both loading and unloading, should be done by the owner of commodities.

Railway transport from the South to Khartoum would seem to be faster than on the Nile, since it takes a train 3 to 5 days to travel from Khartoum to Wau. But the team leader had the pleasure of drinking beer in Wau which took two and a half months to come from Khartoum.

There are no loading or storage facilities in Wau. Loading and unloading should be done by the owner of goods. There is no waggon scale, consequently freight rates are charged for a 16 t load whatever the real load is. The reilway extension from Babanousa to Wau was built in the 1960's with haste and is probably the weakest and least efficient link in all the network of Sudan Railways.

Both communications, the railway and the Nile, are fully loaded on the way from the North to the South. In the opposite direction, from the South to the North, most railway cars and barges go empty. This one-way traffic favors the location of any industrial plant in the South since it helps to utilize better the return movement of vehicles by sending its output to the consumer centres in the North.

For the time being no radical improvement in either Nile shipping or railway transport can be expected. Therever the plywood plant will be situated, serious trouble must be anticipated arising out of the long and unreliable transport connection between North and South Sudan. It would be therefore assential to pledge the Government's support to this industrial development and assure the granting of a high priority and negotiation of special agreements with Suden Railways /or the River Transport Corporation/ for all transport connected with the establishment and operation of the plywood mill.

Road traffic

Another major concern in establishing a plywood mill is the inadequate and unsatisfactory infrastructure of the Southern Region especially with respect to road communications. There are in Equatoria and Bahr-el-Ghazal provinces five main road links /called in Michelin's map "partially improved roads"/ which are said to be all-weather roads:

Juba - Torit - Kapuete - Kenya /last section in construction/

```
Juba - Nimule - Uganda
```

Juba - Yei - Zaire

Juba - Maridi - Tumbura - Wau /leading also into the Central African Republic/

```
Juba - Rumbek - Wau.
```

All these roads could be also of importance for a plywood plant. But economic transportation on these roads would require:

- considerable road improvement by investment

- better road maintenance
- replacement of the ferry operating on the Buseri river by a bridge
- more training and control of drivers and maintenance mechanics
- better maintenance of vehicles.

Consequently, when using road transport, the following precautions should be taken:

1. Transport should be concentrated as far as possible into the dry sesson, and restricted during the rainy sesson.

2. High priority should be given to road improvement and maintenance.

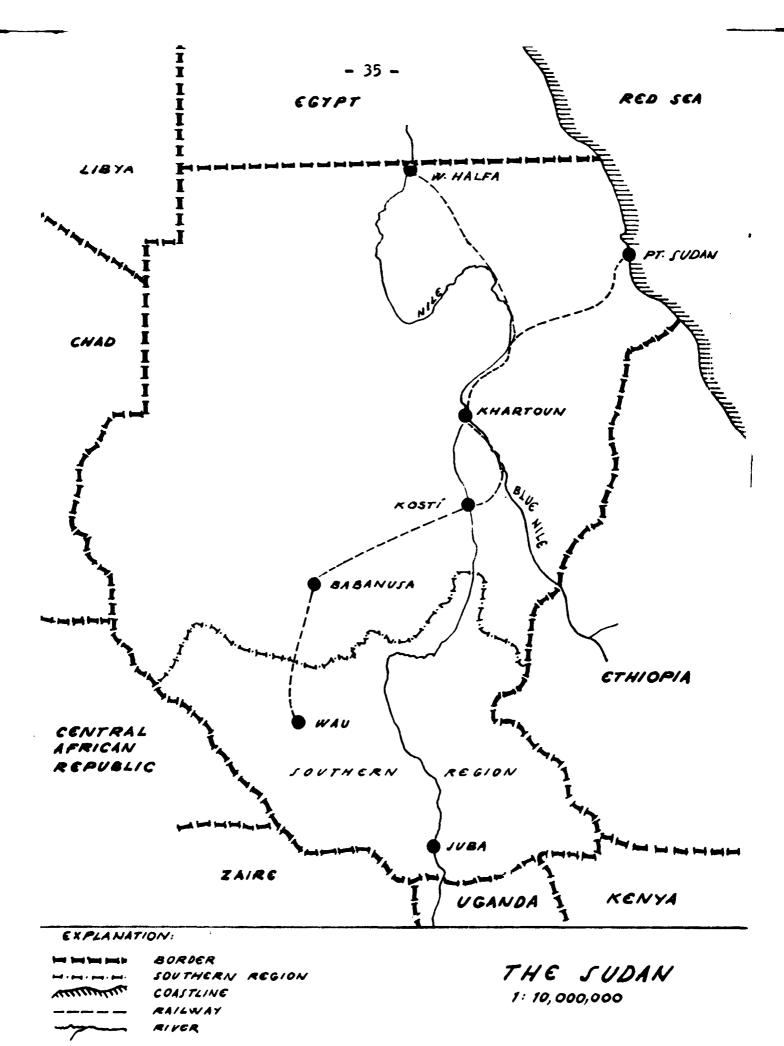
3. A speed limit should be set up and the time of departure and arrival of lorries checked by control posts.

4. The training of drivers and maintenance mechanics should be intensified and improved and, when necessary, expatriate instructors should be hired.

5. More attention is to be paid to the supervision and control of drivers.

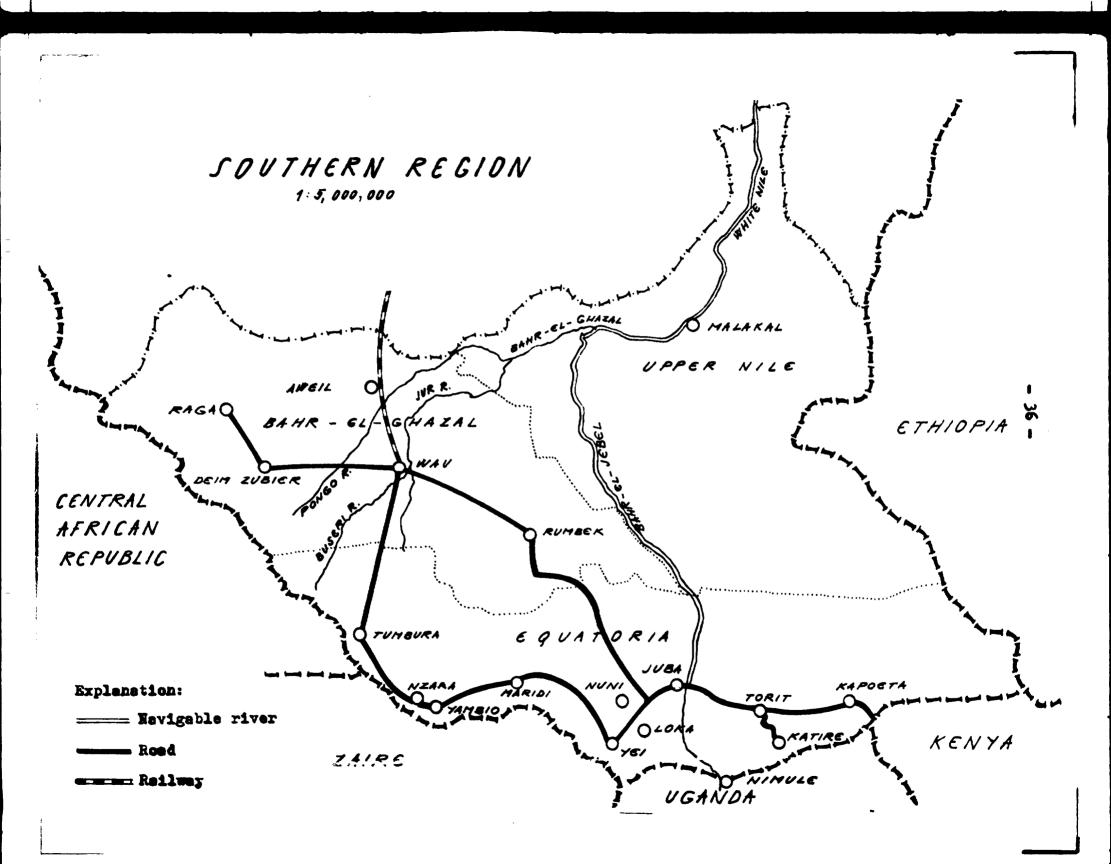
6. Maintenance of vehicles should be better organized.

Conclusion


From the viewpoint of transport Wau is recommended as the best site for a plywood mill for the following reasons:

- Location of the plywood mill in Wau results in the smallest volume of overall transport of logs and plywood

- Logging in the Wau area is the cheapest and the cost of logs at the factory yard is the lowest of all alternatives


- The site in Wau has the advantage of reducing road transport to a minimum

- Communication with the North of the country is cheapest by the railway.

.

1)

5 The Plant

Basic Lata

The plywood factory in Wau should have an output of 5,000 m3 of plywood sheets per annum based on one shift operation, corresponding to the smallest economically feesible production capacity of a plywood plant by internationally accepted standards. Such a size of production is justified by the full utilization of machinery on the one hand and by the feesible distance of log transport and corresponding log supply on the other hand.

The rate of utilization of timber in plywood production depends mostly on the quality of timber and the skill of the workers and may vary between 40 and 50 %. For the Wau factory it is put at 45 % for the next four to five years, but later this rate of utilization may rise to 50 % as workers shall learn how to process first class raw material to best advantage.

The expected rate of utilization of 45 % represents a requirement of 2.22 m3 of logs per m3 of plywood, or an annual timber consumption of 11,100 m3 of peeler logs in order to operate the factory at full capacity.

It should be noted that the emcunt and quality of timber supply available in Wau would permit, besides plywood production, also an additional production of sliced veneer. In this way logs of highest quality and large dimension, especially over 120 cm diameter, could be utilized to best advantage, especially for exports. Approximate cost of production for sliced veneer are given in Annex 5/A. Data on raw material and market will need further study.

With 275 working days a year /recommended by the Regional Ministry of Industry as the usual approach in the Sudan/ the daily output averages 18 m3 of plywood, corresponding to a daily consumption of 40 m3 of logs.

The log supply is expected to be composed of the following tree species:

- 37 -

Anaya senegalensia	6 7 %
Afzelia efricana	20 %
Baniella oliveri	10 %
Isoberlinis doka	10 %
liscellenous	3 %
	100 %

The expected structure of plywood sheets derived from the market survey is composed of 3 mm thick plywood, size 122 x 220 cm 1.300 m3 4 ma thick plywood, size 122 x 220 cm 700 m3 1.200 m3 3 mm thick plywood, size 122 x 183 cm 4 mm thick plywood, size 122 x 183 cm 300 m3 5-10,0 6 mm thick plywood, size 122 x 220 cm 500 m3 15 mm thick #BP plywood, size 122 x 183 cm 1,000 m3 Total 5.000 m3

The 3 and 4 mm plywood sheets are intended for furniture production. The 10 mm sheets shall serve mainly for furniture sections replacing the uneconomic use of massiv wood /cupboards, couches, shelves etc./. Water and boil proof plywood /WBP - ES 1203:1954/ should be used, in the first instance, as a replacement of imported coniferous sewnwood as shuttering in construction. One m3 of waterproof plywood can replace at least 15 m3 of coniferous sewnwood in shutterings.

For the cores of 10 and 15 mm plywood sheets Isoberlinia doka /Vuba/ should be used.

Technology

In planning the plywood plant the following principles
were applied as guidelines for establishing preferencies:
wherever possible to select equipment and procedures which provide employment to the greatest possible number of people, as far as economics justify such a selection

- to avoid expensive equipment and procedures which would represent a heavy drain on foreign currency resources
- to plan simple and "foolproof" equipment and procedures which are easy to handle and do not require very high skill and training.

The main pieces of equipment in a plywood plant are the log peeler, the drier and the press. For complete list of equipment see Table 5.

The peeling machine should be able to process logs of 150 and 230 cm length. The feeding should be done by a monorail with an electric hoist, but logs should be transported to the peeling machine by carriage and the reeling of veneer should be done by hand.

A drier of higher capacity has been selected in order to operate in one shift only and to have thus the option of using it in a second shift for drying sliced veneer which remains a promising possibility.

For pressing, a press with platen sizes of 2,600/1,300 mm with manual loading and hydraulic lifting table is recommended. This dimension enables the pressing of all plywood sizes and - what is of special importance - retains the option of producing partitions covered with sliced veneer for appartment interiors /required length 2,400-2,500 mm/.

The whole production process from the spreading of glue, the assembly of plywood and pressing can be organized also in an automatic line, the whole equipment being controled from the press. The price of the whole automatic line is around L3 250,000, but investments of this order of magnitude would be economically not justified in the local conditions in Southern Sudan and for the small capacity envisaged.

As to glue, for plywood sheets used in furniture production urea formaldehyde in powder form as well as a hardener is most advantageous both from the viewpoint of transportation and storage. Adhesive in liquid form cannot be recommended because of short shelf life and higher transport cost. For WBP plywood only phenol formaldehyde in foil form should be considered because liquid phenol-formaldehyde glue has a still shorter shelf life and its transport is expensive and risky.

The production process of plywood shall be organized as explained in detail in Annex 5/B.

The plywood plent in Wau should be situated near the reilway station adjoining the Wau Training Savmill with which

it shall have the log yard in common. This close neighbourhood will facilitate cooperation between the two plants and integration of production with respect to

- the selection of peeler logs from emong the saw logs delivered
- the utilization of sawmill waste in the boiler of the plywood plant
- the conversion of peeler \log cores into sawnwood at the sawmill
- the use of expensive equipment for maintenance and repair
- eventually the use of a stand-by generator.

Data on material and energy consumption are contained in Annex 5/C, and the calling for tenders is given in Annex 5/D.

Construction

The lay-out of the main operational building of the plywood plant shall be 150 x 24 m. The building shall be enclosed so as to prevent rain and weather influences to enter the space and to protect the plywood against fluctuations of relative air humidity. A skeleton construction with brick wall shall be used. The building contains the production hell, maintenance shop, the grinding shop, the compressor station laboratory, glue store, and the store for spare parts.

Next to the main operational building is an administrative building, with a 200 m2 ground-floor. It contains the offices of the management and administration personnel.

The building for the boiler, measuring 150 m2 contains in the front part of 6 x 9 m the circular saw for crosscutting the wood waste and the hogger.

Four steaming vats with dimensions of $12 \times 3 \times 3$ m shall be made of concrete with stone cladding /concrete alone and brick are not a suitable material/ in such a way that to a depth of 2 m they will be sunk in the ground and with 1 m they will protrude above the ground. Inner equipment and covers are given in the price of the machinery.

Hygienic facilities are dimensioned for 130 people, half of them.being men and half women. These facilities comprise

SZ 1988 PRODUCED CAL

lavatories, showers, water-closets and a diming-hall. Totel required space is 300 m2.

In the timber yard which shall be in common with the Wau Training Sevaill supporting poles under logs should be provided.

All other construction and its cost are given in chapter six.

Training programme

Before the installation of the machinery of the plywood plant suitable workers chosen very carefully from among operators in the Wau Training Sawmill or in other sawmills of Bahr-el-Ghazal province should be sent abroad for training to the company which will deliver the plywood eqipment. This practical training in operation in a plywood plant should comprise the professions of the lathe operator, of the dry-operator and of the press-operator and last at least six months.

The foremen and operators of other equipment will be instructed how to operate equipment in Wau during the assembly of the plant under the guidance of fitters of the supplying company. Besides that, a practical training and instruction course should be arranged during the assembly of the plant about production technology and the servicing of equipment. This course should be attended by all workers of the future factory. The training and instruction should be given by the specialist who will be in charge of management during the running in of operations and in the starting period of production, until this position can be filled by his counterpart whom he will train.

During the assembly of the plant maintenance workers and the crew of the boiler should be already assigned to their respective jobs in order to become acquainted with the equipment. They should be chosen from among experienced workers with adequate qualification.

In the first two years of operations two expatriate experts /one for technology and the other for maintenance/ should be hired in order to control the running in of the plant and to complete the training of all personell.

يريعونا فالعدمة أالحدجات

For the future Sudanese technical staff for the plywood mill - and for the sawmilling and woodworking industry at large - should be trained in a professional woodworking education centre at secondary school level which could be established in Soba.

In another development the college training and education of professional staff specialized in the woodworking industry should be enviseged at Khartoum university. This study could be closely linked with the forestry or engineering curriculum by adding lectures on wood and its processing during two semesters to the extent of 5 hours and exercising to the extert of 2 hours. This training should be entrusted to an expert with educational experience and a good knowledge of African tree species. The existing woodworking industry in the Sudan would greatly benefit from this improvement in college training.

6 Economic and financial evaluation

Sales forecast

The structure of the potential market is specified in details in the chapter dealing with the marketing aspects of the project. In this summary, the calculation of sales value is made under these assumptions: <u>Sales</u> /in m3/

	Ex factory Nau	Khartoum wholesale	Khartoum retail	Total
3 mm	800	500	1,200	2,500
4 mm	300	200	500	1,000
5-10 mm	200	100	200	500
15 mm	200	200	600	1,000
Total	1,500	1,000	2,500	5,000

Selling prices /ir. LS per m3/

	Ex factory Wau	Khartoum wholesale	Khartoum retail	
3 mm	168.0	180.0	198.0	
4 mm	141.0	153.0	171.0	
5-10 mm	135.0	147.0	162.0	
15 mm	137.0	149.0	164.0	

The expected structure of quality grades and the details as to the calculation of average selling prices are given in Annex 6/A.

Sales revenue /in 1,000 LS/

	Ex factory Wau	Khartoum wholesale	Khart oum reta il	Total
3 mm	134.4	90.0	237.6	462.0
4 mm	42.3	30.6	85.5	158.4
5-10 mm	27.0	14.7	32.4	74.1
15 mm	27.4	29.8	98.4	155.6
Total	231.1	165.1	453.9	850.1

m3/ 154.1 165.1 181.6 170.0 The above indicated level of sales revenue is assumed to be reached in the 4th operating year, the amounts of sales receipts in the first three operating years to the start-up period are quoted in Annex $5/k_{\bullet}$

Investment costs

The delivery of the plant should be contracted on a turn-key basis. While the investment cost of the production machinery and equipment are calculated as to be paid entirely in foreign currency, the construction works and the deliveries of transport equipment and furniture are planned to be fully sub-contracted to Sudanese suppliers.

Detailed specifications /with the necessary technical data and price quotations/ for the production machinery and equipment are given in Table 5 /see page 123/. Other details concerning investment costs are mentioned in Annex 6/B.

Summary of investment costs	/in LS/ Foreign currency	Local currency	Total	
Production machinery and equipment	516,310	142,170	658,480	
Transport and office equipment	-	61,600	61,600	
Construction works	-	277,000	277,000	
Preliminary expenses	22,000	92,600	114,600	
Total	538,310	573,370	1,111,580	
Permanent working capital /	in L S/			
	Foreign currency	Local currency	Total	
Spare parts and technical material /3 % on the cost o production machinery and 5 on the cost of vehicles/		4,590	17,570	
Production materials /1 % on the cost of pro- duction machinery/	4,330	1,100	5,430	
Stock of raw material /for 3 months/		35,800	35,800	
Stock of adhesives	15,000	500	15,500	
Wages and salaries /approx.4 months wage bill/	-	15,000	15,000	
Provision for cash	-	20,000	20,000	
Totel	32,310	76,990	109,300	

The break-down into local and foreign currency requirements is made in order to furnish data for the macroeconomic evaluation of the project. Total capital requirements /in IS/

	Foreign currency	Local currency	Total
Investment costs	538,310	573,370	1,111,680
Permanent working capital	32 ,31 0	76,990	109,300
Total	570,620	650,360	1,220,980

Plan for financing

During the stay of the working team in the Sudan, the governement authorities were not prepared to specify the expected sources of financing the project. To enable a rough preliminary assessment of the impact of financial charges on the profitability of the project, a potential solution discussed with the Industrial Bank of Sudan and the Sudan Development Corporation has been adopted. It is assumed that the project should take full advantage of credit possibilities offered by the Industrial Bank of Sudan under the following conditions:

- the applicant is required to contribute at least a minimum of 1/3 of the total cost of the project,
- the maximum loan can not exceed LS 700,000,
- loans are granted for periods not less than 2 years and not exceeding 15 years; the Bank normally grants a reasonable period of grace before commencement of re-payment to permit completion of the project,
- the current rates charged by the Bank are 5.5 % on mediumterm loans /2-6 years/ and 8.5 % on long-term loans /6-15 years/ for local currency and 9.5 % on foreign exchange loans.

Besides the credit from the Industrial Bank of Sudan, it is assumed the supplier of the production machinery and equipment may grant a medium-term loan covering approx. 40 % of the value of production machinery. Summary of sources of financing

	L S	Interest	Payeble in
Equity capital	400,000	-	_
Supplier's loan	150, 000	9.5 %	5 years
Long-term loan /I.B.S./	400 ,0 00	8.5 %	12 years
Medium-term loan /I.B.S./	2 49,3 80	9.5 %	6 years

It is assumed that the commencement of repayment of the loans from the Industrial Bank of Sudan may be postponed as it is to be seen in the re-payment scheme /see Annex 6/C/.

The simulation of the financial position of the plant during two years of construction and 15 years of operation is shown in the cash-flow forecast /see Annex 6/D/. The replacements of the equipment will be paid from the firm's cash reserves.

Estimates of costs and profits

Operating costs

The running-in period is assumed to cover the first three years of operation. In the fourth operating year, the full capacity of 5,000 m3 has to be reached with the corresponding full level of operational costs resumed in the following table:

	LS
a/ Raw material /peeler logs/	
11,100 m3 x I S 12.90	143,190
b/ Urea formaldehyde adhesive	
200 tons x LS 190.0	38,000
c/ Technological flour	
36 tons x LS 100,0	3,600
d/ Phenolic foil /Tegofilm/	
600,000 m2 x LS 0.033	19,800
e/ Electrical energy	
942,700 kWh x LS 0.035	32,995
f/ Water	
27,000 m3 x LS 0.04	1,080
g/ Repairs and spare parts	
2 % production machinery,	
5 % on vehicles and 1 % on construction	works 15.050
Carried forward	253,715

- 46 -

	LS
	253,715
h/ Consumption of technical materials	
/tools, etc./	
1.5 % on production machinery	8,130
i/ Insurance	
0.2 % on buildings and machinery,	
0.5 $\%$ on stock of plywood and 5 $\%$	
on vehicles	7,810
j/ Wages and salaries	
/details are given in Table 4/	62,460
k/ Social security	
- obligatory /a simplified calculati	.on
of 10 % on the wage bill is assume	ed/
- facultative /covering risks not in	sured
by the state social security schem	e in
the range of 5 $\%$ cn the wage bill/	9 , 38 0
l/ Transport costs	
3,500 m3 of plywood sold through	
Khartown section will be transported	by
ra ilwe y	
3,500 x XS 10.9	38,150
n/ Sales expenses	
5 % on the value of sales in ex fact	ory
prices	38,500
n/ Plant overheads, administrative	
expenses, etc.	
10 % on operating costs /excl.transp	ort
cost and sales expenses/	34,150
Total	452,295
Contingency /approx. 5 %/	22,500
Grand Totel	474,795

Taking in consideration the lower output in the first three operating years of the running-in period, the calculation of the consistent levels in the operating costs was made in Annex 6/A.

Ť.

Profits and transition

Table 5 showing the annual operating accounts for the whole period of 15 years of operation analyses the development of calls revenues, operating and other working costs, gross profit and net profit /see page 49/.

The calculation of the net profit is node under assumption that an exemption from payment of profit tax will be granded, according to the industrial investment regulations, for the period of the first 5 years. Beginning from the 6th operating year, the normal rate of 60 % of the profit tax is planned to be delivered to the Sudanese financial authorities.

The loss of the first year covered by profits of the two successive two years indicate that liquidity problems may be faced at the beginning of operations /the financial solution can be seen in Annex 6/D/. However, storting with the fourth year of operation very massive inflows of annual net profit will contribute to the fast increase of cash reserves.

Commercial profitability of the project

The commercial profitability of the plant is naturally highly depending on the pricing policy. Though the estimates of prices have been made with the objective to enable the maximum promotion of the local market, reducing present price levels by more than 50%, the level of profit shows very reasonable margins as can be seen from the following profitability ratios based on data of costs and profits of an average year /arithmetical mean from the time series of 15 operating

rate of return as ratio of	profit bef. tax and depreciation investment	25.3 %
	profit after tax a. bef. deprec. investment	16.6 %
	investment	Avenno
pay-back period as ratio of .	profit bef. tax and depreciation	4 years
	investment	6 years
	profit after tax and bef. deprec.	o years

years/:

operating years	ualen re ceipus	0 _r erating costs	peprociation	Interest paid	Total expenses	Profit /los:/ before tax
1	420,100	339,250	116,410	76,749	532,309	- 112,209
2	675,900	439,390	115,410	74,391	630,191	49,709
3	772,500	470,215	115,410	68,067	654,692	117,808
4	850,100	474,795	116,410	59,404	650,609	199,491
5	850 ,1 00	474,795	116,410	49,933	641,138	208,962
6	850,100	474,795	93,610	39,589	607,994	242,106
7	850 ,1 00	474,795	93,610	31,997	600,402	249,698
8	ε 50,10 0	474,795	93,610	23,693	592,098	258,002
9	850,10 0	474, 795	93 ,610	21,077	589,482	260,618
10	850 ,10 0	474,795	93,610	18,610	586,644	263,456
11	850,100	474,795	93,610	15,160	583,565	266,535
12	850 ,1 00	474,795	93,610	11,819	580, 224	269 , 876
13	C50,100	474,795	93,610	8,194	576,599	273,501
14	850 ,1 00	474,793	93,610	4,261	5 7 2,666	27 7, 434
15	850,100	474,795	93,610		568,405	281,695

Annuel onereting pedoents /in 15/

SECTION 1

Table 6

1

1

	Interest paid	Total expenses	Profit /losu/ before tax	Conclative profit bef. tax	Tax on profit	Net profit	Cumulative net profit
) - •	76,749	532,309	- 112,209	- 112,209	-	- 112,209	- 112,209
	74,391	630,191	49,709	- 62,500		49,709	- 62,500
	68,067	654,692	117,808	55,308	-	117,208	55,308
	59,404	650,609	199,491	254,799	-	199,491	2 54,79 9
	49 , 933	641,138	208,962	463,761		208,962	463,761
	39,589	607,994	242,106	705,867	145,264	96,842	560,603
	31,997	6 0 0,402	249,698	955 ,5 65	149,819	99,879	660, 482
	23,693	592,098	258,002	1,213,567	154,801	103,201	763,683
	21,077	589,482	260,618	1,474,185	156 ,371	104,247	867,930
	18,610	5E6 , 644	263,456	1,737,641	158,074	105,382	973,31 ₂
	15,160	583,565	266,535	2,004,176	159,921	106,614	1,079,926
	11,819	580, 224	269,876	2,274,052	161,926	107,950	1,187,876
	8,194	5 7 6,599	273,501	2 ,5 47,55 3	164,101	109,400	1,297,276
	4,261	5 7 2,666	27 7, 434	2,825,987	166,460	110,974	1,408,250
		568,405	28 1, 69 5	3,106,602	169,017	112,678	1,520,928

SECTION 2

Nore data concerning the profitability of the project can be found in Annex 6/E comprising, basides several more profitability ratios, the calculation of the internal rate of return and the break-even analysis. The results of these calculations emphasize still more the above stated conclusions regarding the high commercial profitability of the project, though at the same time plywood prices are being reduced very deeply below their present level.

The sensitivity analysis inquiring into the potential fluctuations of sales revenues, operating costs and investment requirements indicate the very strong positon of the projected home-produced plywood when compared with imported plywood sold on the Sudanese market. It confirms once more that changes in prices might have the most important impact on the level of profitability and demonstrates the really wide and safe limits for the future pricing policy of the plant/for more details, see Annex 6/F/.

Macro-economic evaluation of the project

The establishment of a plywood mill in Wau with an annual output of 5,000 m3 of plywood would bring the following benefits to the Sudan:

1. The annual import of plywood in the range of 2,500 mJ valued at some LS 500,000 could be stopped immediately and replaced by smaller imports of adhesive resins; the yearly net savings of foreign currency /both from import replacement and potential exports/ will fluctuate in the limits of US \$ 800,000 to 1,000,000 as can be seen in Annex 6/G.

2. Domestic consumption of plywood could be almost doubled, thus helping to alleviate the existing shortage of building materials and expanding the manufacture of furniture. In places where modular construction is accepted imported coniferous sawnwood used for shutterings could be replaced by plywood and thus sawnwood imports could be reduced and additional foreign currency saved.

3. The current weste caused by using timber of peeler log quality of mahogany and other valuable tree species for inferior purpose would be largely stopped and a rational utilization of the country's timber resources encouraged. 4. Forestry in the influr cree of the plywood mill would be encouraged to convert natural forests to plantations, to intensify forest management and to develop training and research activities in forestry.

5. By establishing a plywood plant in the Sudan, technical progress in the industrial development of the wood processing sector would be assured. This would be especially felt in furniture production and in the building industry.

6. The establishment and operation of a plywood plant would provide justification for infrastructure improvements and stimulate public investments /roads, electricity etc./.

7. Substantial financial returns could be expected from a well managed plywood plant, creating revenues in the form of stumpage, taxes, interest and profits.

8. In assessing the social benefits of the project, the major aspect, however, to be considered is that of employment. The direct effect of the implementation of the project will be to provide employment for the people both in the plant itself and in logging and forestry operations. Besides, the spending power generated from wages and salaries will tend to increase employment in other sectors of economy as well. At the same time, the skill of the labour force would increase by training, social benefits customary in industrial plants would improve the social standard and a higher social standing would be achieved for all the staff and workers of the factory.

An attempt to give an aggregate view of the balance between social benefits and social costs is shown in the social costs/ benefits analysis /Annex 6/G/.

Another persuesive indicator of the significance of the project for the national economy of the Sudan is the high level of the value added /see Annex 6/G/.

But the establishment of a plywood plant in the Sudan is also ε challenge. No false hopes should be raised by implying that this venture is going to be an easy task. Only able planning, efficient management, harmonious cooperation, and an earnest endeavour can bring the desired results.

7 Indings and Pecchandations

Ins findings of this focability study can be summed up as follows:

1. There is in the Solan c sufficient immediate market outlet for the output of a 5,000 mB plywood plont, and once local production is storted it can be safely assumed that demand will double in about five years.

2. There are sufficient timber resources in the Southern Region for the establishment of several plywood plants of this capacity, using annually 11,100 m3 of peeler logs. These could be located in Nau, in the Emsterg, and in Nzara.

3. The recommended side for establiciting the first plywood plant is dev.

A. The estiblishment of a 5,000 mg ply sood plant in /au de seelsteeld, and sooblically featible.

5. Senestic physical reflacion world could in outting the propert physical rice in the debia by one that half and yet still be night; provetable and bring important social benefits and gains to the national economy.

In order to carry out successfully this project, the following recommendations should be observed:

Recommendations to the recetry Department:

1. An aerial survey of the timber resources around wau should be carried out with all possible speed.

2. A forest inventory and logging plan for the influx area of the plywood plant should be prepared, possibly with multilateral or bilateral aid.

>. In order to prepare for the impending industrial development it is reconnonced to establish a stumpage fee for peeler logs, to examine the advisability of reducing the present girth limit, to train the forest staff in peeler log selection and to take other steps /as doclaration of forest reserves, intensification of afforestation, inquiry into the possibility of softwood plantations etc./. 4. Since the establishment of a second and third plant may be soon necessary to meet denand for plywood, sawnilling copacities should be installed in the Imatony mountains and in the kears region to promote future integration with plywood production and to enable a balanced exploitation of forests for both saw logs and peeler logs with the successive conversion of natural forests into plantations.

Reconvendations to the Linistry of Industry:

5. A close institutional cooperation between the plywood mill and the lorestry Department should be established.

6. An inquiry should be made into the possibility of sliced veneer production, both from the raw material and the market point of view.

7. An effort should be made to promote the use of locally made plywood by conforming its quality to internationally accepted standards. No this end legislation should be passed to establish a national standard for Sudarece plywood.

Recommendations to the Manager of the Jan Factory:

8. Training of the three key operators /on lathe, drier and press/ should be arranged abroad for at least six months each and foremen and workers should be acquainted with equipment in the plywood mill during its installation.

9. Training, instruction and control of drivers and maintenance mechanics should be organized in order to prolong the life-time of vehicles.

10. To assure as low a cost as possible to the end users and thus promote the use of plywood in the Sudan and increase its consumption direct retailing should be organized by the factory by setting up marketing channels both in Khartoum and in Nau.

Recommendations to the Flenning Commission:

11. The development of infrastructure in the Wau region should receive a high priority, especially with regard to the replacement of the ferry on the Buseri river by a bridge and to the reconstruction of the hags road. This would open up forests for economic logging.

12. A secondary technical school specialized in teaching woodworking subjects should be established in Soba and lectures on woodworking industry should be included in the forestry and/or civil engeneering curriculum at Khertoum University.

13. In order to speed up industrial development international assistance is required for carrying out a forest inventory with logging plan in the surroundings of Wau. Multilateral aid could be provided best by UNIDO, or even by FAO. Necessary aid could be obtained also on a bilateral basis.

III Annexes

•

1/A Conditions of Field Work

It should be noted that the timing of the team's visit to the Sudan, with respect to the field trips, was ill chosen. The months of July, August and September, during which the team stayed in the Sudan, are the peak of the rainy season which, in the South of the country where the forests had to be visited, is quite pronounced.

This has been apprehended by the team beforehand and Polytechna pointed out to UNIDO the inadvisability of the team's departure to the Sudan in the summer period.

Accordingly UNIDO put the question of the timing of the team's visit to the Sudan to the Government in Khartoum which requested by cable the team's arrival "early July". This request has been complied with, but the actual field work of the team was greatly hampered by its illtimed arrival.

First, there is much rain in the South of the Ludan at this time of the year and frequent downpours hempered an inspection of the forest, indeed whele days may be lost because of lasting heavy rain.

Second, the grass of the savanna forest grows very tall in this season of the year, it often exceeds 2 m in height and consequently any view of the landscape is lost, both when travelling by car, or walking on foot in the forest. Incidetally, this circumstance is also a source of danger from wild animals since inadvertently one may bump into elephants or buffalos at close range so that they may charge.

Third, all water courses are at high water levels, the bottom land of valleys is flooded and prevent any passing through the forest, either by car or or foot.

Fourth, travelling at this time of the year is exceedingly difficult because of the had state of roads. Roads are never in too good a shape in this part of the country, not even the main roads connecting the most im-

- 56 -

portant population destres; but during the reing season they are definitely as varian worst and traffic on them and he continue of an absolute almisan. In Samu-alcharal province work only rain the until bin yours after the role of a province of condenies betwee to prevent they being doinged by traffic. Flood waters cause often danged to ordeges and may out road connections for a vary long time. The roads are slippery, washed out, full of deep hud holds and sometimes the car may get stuck in mud or land in the ditch. All this involves many hardchips for the traveller and prevents effective work at this time of the year.

To site an example of how difficult it is to see c forest, indeed to show that it may be sometimes impossible to reach it during the roing season, the expert a attempt to no to Regardence be assurianed. The Moresta in the Raga area have been indicated of the bired of the forestry Lepert-Hert is almostom, "referred Communication, so one of the encyible sites for a ply wood fractory and consequently every effort most take by the beau-lotdur to dee this site. After a first attempt to reach lags sailed for look of fuel and also because time was getting short, the expert returned to Way a second time to reach this site. It took seven days of preparations to start on the trip to Raga. Fuel was obtained by applying for help to the Commissioner of the Province. A car was provided for by the Forestry Department by ordering a five ton lorry from a logging operation 150 km distant to Wau. Finally the expedition started on its 300 km trip to Paga - only to be back in Hau the same day: the bridge over the Pongo river has collapsed and there was no possibility to cross the flooded river for at least a month. So all that could be done was to collect hearsey informations from corect staff originating from the Raga area and try to establish by crossexamination what the forest resources of Raga really are.

There is always an enormous hazard in the rainy season to be trapped somewhere in the South for days and for weeks, if not for months, in remote regions, The trip to the Suden was ill-timed also for another reason. The Moslem month of Ramadan falls in 1975 in most of September and early October, when all activities are reduced, if not suspended. Working hours in all offices and institutions are shorter than usual and people are exhausted by fasting.

This was especially felt during the team-loader's stay in Egypt. Out of seven days spent in Cairo, two days were taken up by arrival and departure. One day was Friday and one day Eid el Fitr. In the three remaining days work could be performed only from 9.30 to 12.30, but many institutions, including UNDP, were closed on Thursday, and some even on the other days, as a consequence of Ramaden. - 59 -

1/B List of reople Contacted

In the Sudan

Idris Ali Almed, Linistry of Industry, Rhertoun Sanhuri, Ministry of Industry, Khartous hain Abu Sineiha, Deputy Linister of Industry, Khartoun Abdel Rahman Abdel Halim Obeid, Director of Industrial Research and Consultancy Institute, Khartoum Kanal Osman Kalifa, Director of Forestry Department, Khartoum Kamal Hasan Badi, Deputy Director of Forestry Department, Juba Hamza Hanudi, Utilization Officer, Forestry Department, Khartoum Peter Mazia Husum, Conservator of Forests, Equatoria Baipath Majvec Milpon, Conservator of Forests, Balmel-Ghazal Ali Kandidu, Acting Assistant Conservator, Yambio Philip Adam, Forestry Department, Juba Valentino Lein Bulimka, rorestry Department, Juba David Bassiouni, Director, Regional Ministry of Agriculture, Juba Daniel Matthews, Director, Regional Ministry of Commerce, Industry and Supplies, Juba Cuor Deng Mareng, Inspector, Regional Ministry of Commerce, Industry and Supplies, Juba Michel Hyland, Deputy Resident Representative, UNDP, Khartoum, Miguel Bermeo, UNDP, Khartoum P.Astolfi, in charge of the UNDP sub-office in Juba Peter Dood, Adviser, Regional Ministry of Agriculture, Juba Gerard van Herhoeven, Adviser, Agricultural Training Centre, Yambio Kishor P.Sheth, Interfreight /Kenya/ Ltd., Juba J.Lueller, German Aid, Juba Llexander Dohia, Chief Civil Engineer, Regional Ministry of Communications, Transport and Roads Chappel, Road Expert, UNDP, Juba R.L.Mills, UNDP, Juba Manolis Andriotis, merchant, Maridi

Zoran, Yougoslev Energoproject, Juba Derrick Maze, Maritime Forwardes, Juba Michel Miama, Afforestation Officer, Wau Anthony Tikmo, Assistant Deputy Commissioner, Wau

In Egypt

Adel A. Bahgat, General Hanager, General Trading and Chemicals Co., 1/A Ramsis Str., Cairo

Stephen J.Szivos, Senior Industrial Development Field Adviser, UNDP, Cairo

Zdeněk Formánek, Commercial Section of the Czechoslovak Embassy

2/A Plywood Imports

Imports of plywood into the Sudan are not negligible neither in quantity nor in value. For the last five years the official Foreign Trade Statistics give the following figures for plywood imports:

Year	Quentity in kg	Value in LS	Unit value in XS/t
1970	273,185	25 ,53 0	93.453
1971	1,6 88,852	171,485	101.539
197 2	1,632,077	191,169	117.132
1 9 7 3	2,791,189	253,974	90. 991
1974	1,118,057	302,078	270.181
Average per anrua	1,500,672	188,847	125.842

However, it should be noted that imports of plywood in 1974 cannot be regarded as normal in the second half of that year. In the first six months of 1974 plywood imports reached 827,058 kg and c corresponding value of ZS 219,933. The considerable drop of imports in the second half of the year was caused not by lack of demand but by a temporary shortage of foreign exchange and the need to import items having higher priority like fuel.

Also the 1970 imports seem to be entirely abnormal and should therefore be excluded from the calculation of the average. Based on the more or less normal years 1971--1974 an annual import of plywood in the range of 1,800 t would seem to be a fair average.

The bulk of plywood imports cames from China and Romania, only small quantities are supplied by India, Japan, UK, France, Federal Republic of Germany, Italy, Bulgaria, Czechoslovakia and Ethiopia.

The average weight of these plywood imports is estimeted to be 720 kg per m3 /i.e. 4.8 kg per sheet 4 x 6 x 3 mm/. An average annual import of 1,800 t of plywood would therefore amount to 2,500 m3 per annum. This would be the present unnual apparent consumption of plywood in the Sudan also in the opinion of plywood importers.

The standard size of imported plywood sheets is 4 x 6 x 3 mm. At least 90 % of all imported plywood has this dimension, and this size of plywood sheet is referred to, if no other specification is given expressis verbis. Exceptionally also plywood sheets of other size and thickness are seen in the market /e.g. sheets 4 x 7 or sheets of 4 mm thickness/. The assertion of a Sudanese preinvestment study that 60 % of plywood used in the Sudan is of the size 4 x 8, cannot be subscribed to /12/.

As to quality, most of the imported plywood is of class BB and CC. Plywood imported from China is usually of poor quality; Romanian beech plywood sheets are much better and sold at up to a 30 percent higher price.

2/B The Price of llywood

The present wholesale price for a sheet of plywood in Khartour is 1/2.50 per sheet/4 x 5 x 3 mm/ ex warehouse. The Carponters Union - a cooperative society with 1,200 menbers in Khartoum also sells plywood sheets to its members at this price.

The consumer price charged by the retail dealer is at least LS 3.00 to 3.20 per sheet of plywood, but may go up as high as LS 3.75 per sheet.

In the South the consumer price is still much higher. In Juba where plywood is transported as air cargo from Khartoum at a cost of IS 0.384 per sheet the consumer prices is IS 5.75 per sheet.

All plywood imports reach the Sudan via Fort Sudan. Lo plywood is imported via Mombass-Juba.

The C and b price of plywood in Fort Sudan is at present about US \$ 300-320 per m3 according to quality and country of origin. At the present currency conversion rates this represents about ZS 100. This price seems to have remained on the whole stable for the last five years, in spite of changing world trends.

To this value the following charges are added: - customs duty 30 %,

- exchange tax 14.785 🗯
- surtex or additional tax 5 %
- development tex 2 %
- clearance and stamp tax 2.5 % and some other smaller items /0.715 %/ making a total of 55 %.

The transport cost from Port Sudan to Khartoum by lorry /the railway is not used/ is Ft 15 per sheet or LS 30 per ton.

The importer's margin is 15 % and the wholesaler and retail dealer each add a margin of 10 %.

Consequently, the actual cost of plywood import can be summed up like this:

C and E price of plywood in Fort Sudan Customs duty and related clarges 55 (L S	100 55 	/m3
Transport Port Sudan - Illiartoum	ZS Z3	155 22.50	/m3 /m3
15 % importer's morgin	LS	17 7.5 0 26.63	/m3
10 % wholesaler's wargin	LS	204 .1 3 20.41	/m3
10 % retail dealer's margin	7.S	224 .54 22.45	/n.3
Retail sales pric e or I S 1.65 per sheet.	LS	246.99	/m3

This shows that the actual price of LS 3.- to 3.75 per sheet charged to the consumer in Khartoum is an inflated price which is about double that of the officially admitted price. In the South the overcharged price is nearly three times as high as that shown in the above calculation, taking into account LS 57.60 /m3 air freight.

This exaggerated price for plywood exists in spite the fact that the prices of all imported consumer goods are nominelly controlled by the Sudanese Government /Ministry of Commerce, Pricing Control Department/. Since price control is based essentially on cost, the above price calculation is infleted by all sorts of cost items incurred by each dealer /like expenses for transport and storage, bank charges etc./ and by adding to these the margins which are in fact the gross profit.

On the other hand, the exorbitant price for plywood is possible because the present plywood imports are inadequate and do not meet the country's demand. All dealers of plywood agree that the market could absorb easily double the present consumption without any seles promotion effort.

- 64 -

2/C Particle Boerds and Hardboards

There is a particle board factory in North Khertoum with an annual production capacity of 6,000 m3 on a threeshift basis, but the actual output is much lower. In 1974 the output was 2,200 m3 on a two-shift basis. The raw material used is Eucalyptus camaldulensis and Eucalyptus tereticornis /50 %/, and bagasse /50 %/. The cize of sheets is 4 x 8 x 6 mm, this size accounts for 96 % of the output. Only exceptionally are thicker sheets produced /they range from 8 to 25 mm/. The sheets are of poor quality. The price of a sheet /4 x 8 x 6 rm/ ex factory is IS 2.18, excise duty is IS 0.02 per sheet, the consumer price in Khartoum is IS2.56 per sheet. Most /75 %/ of these particle boards are used in construction for ceilings etc; only about 25 percent goes into furniture production.

In order to protect this home-based particle board production no imports of particle boards are ellowed into the Sudan. The import of hardboards /compressed fibreboards/ is restricted, but licences for import of hardboard are granted from time to time to the Carpenters Union and to the May Corporation. The price of a hardboard sheet /4 x 6 x x 3.2 mm/ in the market of Khartoum is LS 2.40. Hardboards are imported mainly from Romanic. No imports of hardboards /or fibreboards/ are listed in the Annual Foreign Trade Statistics for 1974, though at least 500 m3 of hardboards were imported in this year by the two agencies mentioned above. Maybe, these imports are listed under plywood imports.

2/D Imports and Production of Sawnwood

About 50,000 m3 of coniferous sawn timber is imported ennually into the Suden, consisting of redwood /Pinus silvestris/ from Sweden and the USSR and of white wood /Picec excelse/ from Austria and Romaria in equal proportions. Sudan Building Material Company and Sudan Hailways are the sole importers. In 1974 the C and F price in Port Sudan was US \$ 167 per m3 for white wood and US \$ 250 per m3 for redwood. Customs duty and related items totalled 40 %, transport by truck to Khartoum costed \$\$ 10-11 per m3. The importer adds a margin of 15 %, the wholesale and retail dealer each 10 %. According to this calculation the retail price should be \$\$ 124 for white wood and \$\$ 162 for redwood.

The actual consumer price in Khartoum is ZS 162 per m3 for white wood and ZE 252 per m3 for redwood. This retail price seems to be also an inflated one.

About two thirds of the sawn timber are used in furniture manufacture and one third in construction, of which about 10,000 m3 of sawn timber are for shutterings. There is a marked shortage of redwood in the market.

Little is done to meet the country's sawn timber demand from its own forest resources. There are 14 sawmills operating in the Sudan, 9 of which are located in the Southern Region. All sawmills are government owned and operated by the Forest Department. Their combined output representing some 7,000 m3 of sawn timber per annum consists almost exclusively of hardwoods. The bulk of this production are railway sleepers.

2/1 Tetter ourver i ogyet

Spat has a plymosh promotion experity of is, due to 15,000 of per ensure, which its output is very integrater because of fivetestions in the import of peeler lags. There are four prywood plants in Egypt /all of which are state stated, three belonging to the Egyptian Woodworking Co. and one to the File Latch Co. About half of the raw material is imported iron surper /spinity poplar and beech/, the other half of the raw material originates in African countries. There are also 2 veneer plants, whose output in 1970 was 0,000 m3.

.

It is difficult to asses plywood imports into Egypt because the data of the foreign trade statistics are not clear. Information gethered from plywood importers seem to indicate and on plywood imports in the range of 30,000 to 40,000 mp.

Algood is imported mostly from the USA, birch/, from Romanic /beech/ and from the for usst, mulaly "faiwan and Nores /lonan/.

She deneral trading and Chemicals Outpany in Coiro, Hamses Str. 1/A /General Danager Mr. Adel A. Bahgat/ is importing in 1975:

e/ from the USUR 15,000 m3 of birch plywood for the Linistry of Housing and Reconstruction of the following specification:

cize 60" x 60" 96 %, other dimensions 10 % thickness 3 mm 75 %, 4 mm 20 %, 5 mm 5 % quality BB 25 %, BB/C 25 %, C 50 %

b/ from Romania about 500 m3 of beech plywood for the

private sector through the Committee on Simber size 5 m 5, 10 m 4, 7 x 4, thackness 3 ma 70 %, s am 20 %, 5 mm 10 %, quality 3/85 /and 300/

c/ from Triwan and Nores 6,000 mB of plywood for the Ministry of Housing and Acconstruction of the following specification:

size 220 x 122 cm thickness 4 mm 60 %, 5 mm 40 %

plywood, but they are sold to import less. The C and F price in Alexandria /in US p/ is: for bird: pl.wood /from USDL/ quality BB 0 BB/C Bb/CP US \$/m3 3 mm 201.51 178.59 228.50 244.64 4 mm 210.67 142.88 198.24 6 mm 201.90 194.04 9 mm 194.04 189.80 12 mm 107.69 181.37 for beech plywood /from Lomania/ 3 mm quality B/BE US \$ 474 /m3 SFD US \$ 392 /m3 These prices seem to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of plywood cheete in Ceiro ic: Country of orig. 5 Dimensions It/sheet \$E_c/m3\$ Itely 153 x 153 cm x 3 mm 100 256 x 4 mm 200 214 Finland 122 x 163 cm x 3 mm 190 264 Flywood is hot used for shutterings.	There en	re, beside	this d	firm,	other	importers	of		
ior birch pl.mood /tron 1001/qualityBB0BB/CPUS \$\$/m33 mm201.51178.59228.50244.644 mm210.67142.98198.246 mm201.90194.049 mm194.04189.8012 mm107.69181.37for beech plywood /from lomenia/3 mm quality B/BbUS \$\$ 474 /m3STDUS \$\$ 392 /m3These prices seem to include the premium on foreignchohenelis of clywood sheets in Ceiro is:Country of orlg. nDimensionsItaly153 x 153 cm x 3 mm100256x 4 mm260x 183 cm x 3 mm10021.21 x 183 cm x 3 mm									
quality BB 0 33/C 3E/CP US \$/m3 3 mm 201.51 178.59 226.50 244.64 4 mm 210.67 142.82 198.24 6 mm 201.90 154.04 189.80 9 mm 194.04 189.80 121.37 for beech plywood /from Lomenia/ 3 mm quality B/3E US \$/ 474 /m3 SFD US \$/ 474 /m3 SFD US \$/ 392 /m3 These prices seen to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of plywood sheets in Cairo is: 000000000000000000000000000000000000	The C and F price in Alexandria /in UD β / is:								
3 mm 201.51 178.59 228.50 244.64 4 mm 210.67 142.88 198.24 6 mm 201.90 194.04 189.80 9 mm 194.04 189.80 181.37 10 mm 107.69 181.37 for beech plywood /from lomenia/ 3 mm quality B/3E US Z 474 /m3 SFD US Z 392 /m3 These prices seen to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of clywood sheets in Ceiro is: 0ountry of orig. n pinensions 11/cheet /L2g/m3 Italy 153 x 153 cm x 3 mm 100 256 x 4 am 200 214 Finland 122 x 163 cm x 3 mm 190 264									
4 mm 210.87 142.88 198.24 6 mm 201.90 194.04 189.80 9 mm 194.04 189.80 18 mm 187.69 181.37 for beech plywood /from Lomenia/ 3 3 mm quality B/3E US \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ 474 /m3 STD US \$	quality	BB	G		33 /C	BE/CP	LS \$/m3		
6 mm201.90194.049 mm194.04189.8018 mm107.69181.37for beech plywood /from Lomenia/ 3 mm quality B/3E3 mm quality B/3EUS Z4743 mm quality B/3EUS Z474STDUS Z392These prices seem to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of plywood sheets in Cairo is:Country of orig. nDimensione11/2heet KEg/n3Italy153 x 153 cm x 3 mm100256 x 4 amx 4 am200214Finland122 x 183 cm x 3 am190284	3 mm	231.51	178.5	59 3	28.50	244.64			
9 mm 194.04 189.80 18 mm 187.69 181.37 <u>for beech plywood /Trom Lomenia/</u> 3 mm quality B/3E US Z 474 /m3 STD US Z 392 /m3 These prices seem to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of clywood sheets in Cairo is: Country of orig, n Dimensione It/sheet ISg/m3 Italy 153 x 153 cm x 3 mm 100 256 x 4 am 200 214 Finland 122 x 183 cm x 3 mm 190 284	4 mm	210.87	142.8	38		198.24			
<pre>12 mm 107.69 181.37 for beech plywood /from Lomenia/ 3 mm quality B/3E US \$ 474 /m3 STD US \$ 392 /m3 These prices seem to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of plywood sheets in Cairo is: Country of opig.s binemations It/sheet \$LDg/m3 Italy 153 x 153 cm x 3 mm 100 256</pre>	6 ная	201.90				194.04			
for beech plywood /from Lomania/3 mm quality B/3EUS Z 474 /m3STDUS Z 392 /m3These prices seem to include the premium on foreignenchange. The Company is buying plywood by tenders.The rotail price of clywood sheets in Cairo is:Country of orig.mDimensionsItaly153 x 153 cm x 3 mmLoo256x 4 mm200Lebanon122 x 183 cm x 3 mm190284	9 mm	194.04				189.80			
3 mm quality B/3EUS Z474/m3STDUS Z392/m3These prices seem to include the premium on foreignenchange. The Company is buying plywood by tenders.The rotail price of plywood sheets in Cairo is:Country of orig. nDimensionsItaly153 x 153 cm x 3 mmItaly122 x 163 cm x 4 mm200214Finland122 x 183 cm x 3 mm190284	18 mm	187.69				181.37			
3 mm quality B/3EUS Z474/m3STDUS Z392/m3These prices seem to include the premium on foreignenchange. The Company is buying plywood by tenders.The rotail price of plywood sheets in Cairo is:Country of orig. nDimensionsItaly153 x 153 cm x 3 mmItaly122 x 163 cm x 4 mm200214Finland122 x 183 cm x 3 mm190284	Con boost pla	ricol (Prov	- one	aio/					
SFD US ≠ 392 /m3 These prices seem to include the premium on foreign enchange. The Company is buying plywood by tenders. The rotail price of plywood sheets in Cairo is: Country of orig. n Dimensions Italy 153 x 153 cm x 3 mm 100 256 x 4 am 200 214 Finland 122 x 163 cm x 3 mm 190 264					1. 3				
These prices seem to include the premium on foreignenchange. The Company is buying plywood by tenders.The rotail price of plywood sheets in Ceiro is:Country of orig.nDimensionsItaly153 x 153 cm x 3 mmItaly153 x 153 cm x 3 mmLebanon122 x 183 cm x 3 mm190284	o ma duarrey								
exchange. The Company is buying plywood by tenders. The rotail price of plywood sheets in Cairo is: Country of orlg.n Dimensions It/sheet 10g/m3 Italy 153 x 153 cm x 3 mm 100 256 x 4 mm 200 214 Finland 122 x 183 cm x 4 mm 260 291 Lebanon 122 x 183 cm x 3 mm 190 284	Whage pa					monitum on	famaian		
The rotail price of plywood sheets in Cairo is:Country of originDimensionsIt/sheet /Dg/m3Italy153 x 153 cm x 3 mm100256x 4 mm200214Finland122 x 183 cm x 3 mm190291Lebanon122 x 183 cm x 3 mm190264					-		-		
Country of orig.s Dimensions It/sheet /Lg/m3 Italy 153 x 153 cm x 3 mm 100 256 x 4 am 200 214 Finland 122 x 183 cm x 3 mm 260 291 Lebanon 122 x 183 cm x 3 mm 190 284	_	_	-		-	-			
Itely 153 x 153 cm x 3 mm 100 256 x 4 am 200 214 Finland 122 x 183 cm x 4 mm 260 291 Lebanon 122 x 183 cm x 3 am 190 284			-						
x 4 am200214Finland122 x 183 см x 4 am260291Lebanon122 x 183 см x 3 am190284		-					-		
Finland122 x 183 cm x 4 mm260291Lebanon122 x 183 cm x 3 mm190284	ltely-	153 x	153 0						
Lebanon 122 x 183 cm x 3 cm 190 284									
Plywood is not used for shutterings.							284		
Egypt's own resources /bagasse and flax shives/ are	Egypt's	own resour	ces /1	bagas	s se and	flax shiv	es/ are		

used for production of particle board.

3/A The Foreste and their Utilization

Forest lend with important timber resources which could represent a potential for plywood production occurs only in the South of Sudan, viz. in Equatoria and Bahr-el--Ghazal provinces. No reliable data exist as to actual volume of stock and annual yield, nor as to the distribution of forests and their species composition. No forest inventory is available and no working plans exist for any part of the forests. There is-with one exception in the Wau region - no map showing the distribution of forests, their density or tree species composition in the two provinces. Information concerning forest resources given by the Sudanese Forest Service conveys a general picture, but lacks data and figures as to possible utilization of the forests. Records of snuple plots have been mostly destroyed during 17 years of hostilities in the South. Under these conditions, the best eveilable information concerning forestry is little more than hearsay.

Libor Pathe /13/ puts the approximate even of production forests in the woodload sevenne with high mainfall /900 to 1800 mm/ at 164,000 square km and the estimated volume of timber at 34 million m3 which averages to about 2 m3 per ha. For the montane vegetation with a rainfall of 500 to 2000 mm he estimates the area of production forests as being 6,000 square km and the timber volume as being 16 million m3 which represents about 27 m3 per ha.

The Forest Department /Bulletin 16/ classifies 445,000 square km as productive forest land in the Sudan with an average standing volume of just over 1 m3 per ha. According to this source the montage forests extend to about 0,000 square km and contain about 30 % of the total standing volume, i.e. 16 million m3, or 53 m3 per ha.

Johannes Week /14/ estimates that the everage annual yield of plantations could be 8 to 12 m3 per he in the hundd sevanna and 6 to 20 m3 per ha in the montane rain forest.

According to J.A. Jackson whose excellent Deport to the Government of the Sudan on Forest Hanagement, though written

- 69 -

in 1960, is still considered to be the most reliable source of information on forestry in the South, the estimated potential annual yield of sawn timber in southern Sudan is as follows:

Igoberlinia au ka /Vuba/	128,000 m3
Daniella oliveri /Bu/	1,250 m3
Theye senegalensis /Dark Mehogany/	2,500 m3
lheya grandifolia /Light Mahogany/	E00 m3
Olea hochstetteri, Podocarpus milanjian and other species of Montane forests	11000 m3
Other species /approx./	4,000 m3
Potal	137,550 m3

Those figures have been quoted by Mr.Kamal Osman Kalife, Director of the Forestry Department in Knartoum, at the time of the team's visit as the ectual possibility of stilization of the forests.

Saws viaber production reached its all-time peak in 1963 with an output of 13,600 m3 saws timber. The present installed sawsilling capacity in Equatoria and Bahr-el-Ghazal provinces would allow an annual production of almost 20,000 m3 saws timber on a one-shift basis, corresponding to an intake capacity of about 50,000 m3 of saw logs. Actual output of saws timber is said to be at present only about a quarter of the rated capacity, owing mainly to transport difficulties, lack of fuel, lack of spare parts, and inefficient management.

The territorial distribution of the sawmilling capacity is as follows:

Sawmills in Bahr-el-Chazal	Capacity m3 sawn timber
Wev	4 , 00 0
Bispelia	1,000
Pongo Nuer	2,000
Pongo Aweil	2,000
Matiang	2,000
Subtotal	11,000

Sawmills in	Capacity m3 cown timber
Laustoris	
Natire	2 ,0 00
Jilo	1,000
l'zere	2,000
Buni	2,000
Loks /to be established in 1976/	/ 2,000
Subtotal	9,000
Bahr-el-Ghazal	11,000
Equatoria	9,000
Totel	20,000

- 71 -

Judging from the saw logs which have been inspected during the team's visit to the South about 30 % of peeler logs are at present used for sawn timber. Sometimes peeler and veneer logs are processed even into railway sleepers! The absence of phywood production provenus the rational utilization of forest recources.

The prevailing tree species used for sawmilling and representing about 85 % of the total sawn timber output is Mahogany /both Khaya senegalensis and Khaya granditolia/. Only the Numi sawmill which lies in the Vuba belt processes almost exclusively Vuba /Isoberlinia doka/. A more or less important admixture of some other tree species occur in the sawmill yards which may be, according to the nature of the surrounding forest, Isoberlinia doka, Chlorophora excelsa, Terminalia superba or T. glaucescens, Afzelia africana, Daniella oliveri, Maesopsis eminii, Tectonia grandis, Cedrela toona, Cupressus lucitanica etc. Host tree species converted into sawn timber are suitable also for plywood end/or veneer production.

3/3 Stumps je Leconnemation

Since the scretchy separament even and operates oncecheckly all devuills, no stampent is paid for sow long. For pay logs processed in the securith in hours which is operated of the hypotested in the securith Complex a fixed annual rate is paid as stampage to the Forestry Department.

for commercial follings outside of forest reserves a royalty is paid according to four different sizes of timber:

Large kutla /big log/ with a medium dilmeter of 13.4" and more

Kutla /log/	:1	11	11	from 7.6 to 13.4"
Mirig /big pole/	4	12	87	from 4.8 to 7.6"
Resses /small pole/	: 1	**	11	less than 4.8"

The royald: Similar seconding to tree species and is /in fluctures set glace of the test has an enter?:

Species	l ar ya Kutle	Kutho		1:0.3888
Teak /loojon8 _intuis/	60	60	50	60
uuraba /isevdocedicka kotachyi,	1 60	29	25	25
Mahogen; / Ineye Grandif., H.se- negelensis/	- 50	60	60	60
Inderab or Gambeil /Cordia abyssinica/	60	6u	60	60
Bu /Danielle oliveri/	60	60	60	60
Other tree species	40	25	12	5

For pieces less than seven feet long half of above rates is charged.

hoyalty differs essentially from stumpage not only in terms of money, but also us on economic tool and as to purpose. The intention of the forest law in establiching the royalty has been to prevent follings outside of norest reserves. hegalty is not based on the cost of silviculture, but is intended as a punishment for cutting trees outside the forest reserve. This is reflected also in the high level of money levied. While royalty is a deterrent, stumpage is the equivalent of silvicultural cost and should enable normal management inside the forest reserve. If the proposed plywood mill will operate - like the sawmills - in the organizational framework of the Forestry Department, the question of stumpage will not arise. But if it will represent a joint venture of the Ministry of Agriculture and the Ministry of Industry, even with a share of profit going to the Forestry Department, it is necessary to introduce stumpage as an element of cost into the calculetion of cost for plywood. Besides that, a stumpage item would be needed, if the plywood industry were entirely separated from the Forestry Department as a private enterprise. Since up to now no stumpage fee has been fixed and levied for the forests of the Sudan, an attempt had to be made to determine a practical value for stumpage in this feasibility study.

As a basis for the computation of stumpage the actual cost of silvicultural operations in establishing and maintaining a plantation during the rotation period was taken. The rotation period was put at 80 years.

According to records from Equatoria and Bahr-el-Ghazel provinces the present cost of silvicultural operations is estimated as follows:

Ground	preperation	initial	13	3.50	ner fedaen
11	11	final	\mathbf{L} S	2.50	per feddan
lursery	y stock		LS	3.50	p er fedda n
Plantin	r.g		LS	3.00	per feddan
Weeding	5		Ľs	4.00	per feddan
Fireli	ing		7 :3	3.20	per feddan
Tote	9 1		LS	20.00	per fedden

Overheads are not likely to exceed 60 % of the direct cost, consequently the total cost of silvicultural operations emounts to IS 32 per feddan, or IS 80 per ha.

The mean annual increment of plantations /mostly teak/ connot be less than 1 m3 of logs per feddan, or d.F m3 per ha. Based on this safe asumotion, the average strapage for logs would be

2.5 m3 x 80 years

It is now assumed:

- 1. that the stumpage for peeler logs should be twice that of saw logs
- 2. that the occurrence of peeler loss is on the average half of that of sew logs.

Under these two assumptions the stumpage for saw loga is LS 0.30 per m3 and for peeler logs LS 0.60 per m3, since 1/3 m3 x 0.60 LS + 2/3 m3 x 0.30 LS = 0.40 LS/m3.

The stumpage paid for the production of 1 m3 plywood will be accordingly LS 1.33 per m3 plywood /2.22 m3 logs x x LS 0.60 /m3 log/.

3/C Evaluation of Timber Resources

Imatong mountains

The forests of the Imatong mountains are generally considered to be the most promising source of timber in the Sudan. They consist modul: of montone reis forest which should be termed perhaps better as "cloud forest". They occur mostly at altitudes between 1700-2700 m /the highest point being Mt. Kenyati 3187 m/. They contain the second largest forest reserve in the Sudan with an area of 282,270 feddans /115 000 ha/. This area is composed of hilly broken country of varying slopes with a few sheer rock outcrops; there is little flat land.

This appraisal is concerned only with the Imatong forest reserve though montane forests can be found also in the Lolibai mountains to the South, reaching to the Uganda border, the Lomariti mountains in the Lost, and the Acholi mountains in the Forth Bash. All these wanges contain the greater part of the montane forest found within the Sudar.

The Letong Corest reserve is composed of two distingtive kinds of forests: the montane forest above 1300 m which covers about 75 % of the srea, and the lower lying foothill forest limited to about 25 % of the curiace. About 13 % of the area is estimated to be non-forest land. According to a crude estimate, in the montane forest 10 % of the forest lend may be loaged over or cleared for shifting cultivation. and another 10 % may consist of protection forest; in the foothill forest, 20 % of forest land ray be logged over or cleared and another 20 , are or should be declared a nature reserve. Consequently, the area of production forests is calculated as follows: 115,000 hn Imstong Forest Reserve, total area Less 13 % of non-forest land - 15,000 ha Mr. One he Forest land

- 75 -

Forest land		100,000 ha
A/ Lontane forest 75 %		75,000 ha
Logged over or cleared 10 %	7,500 ne	
Provention for st 10 f	7,500 he	15,000 ha
lonuage production forest		60,000 ha
E/ Foothill iorest 25 %		25,000 ha
Logged over or cleared 20 ½	5,000 ha	
Neture reserves 20 $\%$	5,000 ha	10,000 ha
Foothill production forest		15,000 ha
Total production forest	ی پر بر بر بی	75,000 ha
Annual felling area for 30 ye	ears	2,500 he

There are & forest rangers in the Imatong Forest Meserve, concequently the annual felling area for a forest ranger would emount on the average to 312.5 he which is feasible. The total annual felling area in the montane forest would be 2,000 he and in the foothill forest 500 he.

As far as can be judged from the short visit to the montane forest, there occur about 25 big trees per ha with an average volume of 1 m3 per tree, totalling 25 m3 per ha. This would be consistent with the Draper report /15/ which indicates a volume of 15 to 50 m3 of saw logs per ha from the natural forest.

The main tree species occurring in the montane forest are Olea hochstetteri and Podocarpus milanjianus which may represent 75 % of the total felling volume. Besides them a number of other hardwoods occur such as Syzigium guineense, Pygeum africanum, Ocotea viridis, Fagara macrophylla, Polyscias fulvo, etc. It is estimated that at least 80 % of the volume is represented by tree species suitable for plyweod production.

The stem quality of the trees is, unfortunately, mostly not favorable for plywood production. The sample seen on four welks into the forest would not yield even 10 % of peeler logs. But this field inspection may not

have conveyed a true picture of the untouched natural forest and from what has been said by the local forest staff and read in various reports about the Imatong forests it may be expected that an outturn of 20 ° or peeler logs would be a safe assumption.

Consequently, the calculated volume of peeler logs is put at /0.80 x 0.20 =/ 15 % of the total volume, i.e. at /25 m3 per ha x 0.16 =/ 4 m3 per ha. This would amount for the annual felling area of 2,000 ha to 8,000 m3 of peeler logs per annum from the montone forest.

In the foothill forest Khaya granditolia is the prevailing tree species representing about two thirds of the standing volume. The other species are Chlorophora excelsa, Entandophregma angolense, Measopsis eminii, Chrysophyllum albidum, Celtis zenkeri, Cola cordifolia etc.

J.K. Jackson puts the standing volume in the Tolanga forest which is part of the foothill forests and which was also visited by the seam at 13.5 mB per halout of which mahogony represents 3 mB per ha, but he adds that an increase of yield could be allowed if a wider range of tree species could be utilized /1/.

In our opinion it is safe to assume a standing volume of at least 18 m3 per ha as an average for the foothill forest. About three quarters of the tree species may be suitable for plywood production and most of the trees being of outstanding shape an outturn of two thirds in peeler logs could be expected. Accordingly, the quantity of peeler logs is put at /18 m3 x 3/4 x 2/3 =/ 9 m3 per ha on the average which gives for the 500 ha of the annual felling area a total of 4,500 m3 of peeler logs.

Total 2.500 m3 of peeler logs

or 5 m3 of peeler logs per ha.

If all the saw logs could be processed as well, fellings could produce

	eaw logs	peeler logs	tot al
from the montane forest	42,000 m3	8,000 m3	50,000 m3
from the foothill forest	4,500 m3	4,500 m3	9,000 m3
from the whole reserve	46,500 m3	12,500 m3	59,000 m3
in proportion	79 %	21	100 %

But the sawmilling capacity consists at present only of two small sawmills in Katire and Gilo with an intake capacity of about 6,000 m3 per annum. According to the Imatong Forestry Project drawn up by the IBRD in July 1973 as the first part of an integrated development programme a new sawmill at Itibol should be constructed with an annual roundwood input of 9,000 m3. Together with the existing savmill in Katire this would allow the processing of some 13,000 m3 of saw logs per annum.

For the time being rellings should be limited to a selection of trees containing peeler logs in the range of at least 18,000 m3 roundwood per annum since it is estimated that even selective fellings of peeler logs would produce about 30 % of saw logs:

Total fellings	18,000 m3	100 %
Peeler logs	12,600 m3	70 %
Saw logs	5,400 m3	30 %

Felling of trees is done in the Imatongs - as indeed everywhere in the South - by hand. There are power saws kept in the store, but they are not used for lack of know-how.

The cost involved in logging operations is estimated as follows.

The daily wages of forest workers are 30 Pt, the average output in felling and crosscutting in the Imatongs is 0.4 m3 per man-day. The unit cost is therefore 75 Pt per m3.

The Imstong Forest Reserve has the approximate shape of a square of 33 x 33 km. Katire lies in the middle of the northern edge of this square. Maximum transportation distance from the forest to Katire Would be around 40 km, the average distance would not exceed 30 km.

The density of the road network whould be planned so as to keep the total sum of skidding cost and road construction cost at its minimum. For skidding a crawler tractor, preferably a D6 Caterpillar with logging arch should be used. Since the country is hilly and skidding cost relatively high, the skidding distance should not exceed 600 m and be kept at 300 m as an average. This would require about 8 m of healing roads per he.

The soil in the Imatong mountains is mostly deep clay loam, but plenty of pock can be found. Road construction cost is estimated at ZS 1200 per km. This would amount to ZS 9.60 per he or ZS 1.92 per m3, of peeler log. Road maintenance is included in this sum.

Skidding cost would amount to XS 2.50 per mB, and hauing cost, according to current rates of contractors, to Ft 18 per mB, and km, or XB 5.40 per mB for the symple hauling distance.

For saw loss the hauling cost would be the tane as for peeler loss. Put if no physoid production would be started, the hauling distance for saw loss would be only spout 15 km instead of 30 km, so the hauling cost would be reduced by IS 2.70 per m3. Since for each m3 of saw logs /30 % / 2.33 m3 of peeler logs /70 % occur, the difference in houling cost should be charged against this quantity of peeler logs, consequently /2.70 : 2.35 =/ IS 1.16 per m3 of peeler logs.

The total cost of one m3 of peeler log at the factory yard in Katire would, accordingly, consist of IS. 0.50 /m3 stunpage for peoler logs 13 0.75 " felling and crosscuting skidding, 300 m. IS 5 per hour 2 m3 per 73 hour 1 11 hauling, 30 km. It 38 per ro ind km 5.40 road conclinuation 1..... 1.22 17 incleared coth of san log houling. L Fotal cost of celler lew at factory yard LS 12. 1 /m3

This cost may be regarded as a favourable one from the financial viewpoint, but from the allvicultural viewpoint the situation is less satisfactory. The main drawback is that the saw log volume remains for the greatest part unutilized in the forest, consequently the exploitation of the forest cannot be followed by subsequent conversion of the natural forest into plantations. It should be noted that there are coniferous plantations /Cupressus lusitanica and some pine species/ in the Imatongs which do extremely well, and large-scale planting of fast-growing coniferous species at short rotations should be the aim of forestry operations in the Imatongs.

The IBRD Imatong Forestry Project referred to above enviseges the annual establishment of 350 ha of plantations around Gilo. If this afforestation programme could be carried out in each of the 8 Forest Ranger Districts of the Imatong Forest Reserve, all the area logged over could be currently converted to softwood plantations.

This would, of course, require a vory large increase of the existing sawmilling capacity. Since the Matire sawmill could process even in its present state without any reconstruction all incoming saw logs from the foothill forest, it would be necessary to install at Itibol and preferably at two or three other sites in the montane forest a number of sawmills with a total intake capacity of 42 000 m3 of roundwood. Such an increase of the sawmilling capacity would allow, together with large-scale charcoal production, and perhaps even with a chipboard plant, the complete utilization of the natural forest and its subsequent conversion to softwood plantations.

In the opinion of the consultent it would be worthwhile to examine such an optimum solution in the light of forest inventory results from the Imatong Forest Reserve.

Loka - Huni area

This area lies on the eastern edge of the long Vuba belt which extends from here to the north west as far as

- 08 -

Aweil and Raga for some 800 km. The prevailing tree species are Isoberlinia doka /Vuba/, Afzelia africana /Fai/ and Daniella oliveri /Bu/ occuring as an admixture.

The only sawmill in this region is in Nuni, with an annual intake capacity of about 2,500 m3 roundwood. Two other sawmills with a similar total capacity shall be installed in the Loka area in 1975 financed from German bilateral aid.

Plywood production in this region could be based only on Vube as the main tree species. Now, while Vuba as a tree species in itself is suitable for plywood production, the particular size and quality of Vuba timber in this region seems to be of little value for this purpose. Both the log yard at Nuni sawmill and the surrounding forest have been inspected and the impression was gained that it would be hardly feasible to supply the necessary raw material under existing conditions. The average volume of a log of Vuba is estimated to be only 0.3 m3 and not more than 10 % of the logs in the coumill yard could be used for peeling.

Also from what has been seen in the forest the conclusion was drawn that the inspected stands could not provide peeler logs in sufficient quantity to warrant the establishment of a plywood mill in this area.

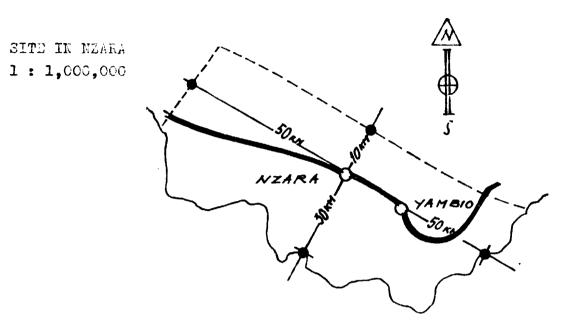
Consequently the idea to choose this region as a potential site for a plywood mill was abandoned.

This does not mean, of course, that a plywood mill could not be installed in the Vuba belt in some other place where Vuba stands are said to be of exceedingly good size and quality. But no such place has actually been seen by the expert.

hzara area

Little is known about the forests and timber recourses of the Mzara-Yambio region, therefore not much can be said about them. It seems to be certain that there are two kinds of forest in this region: the gallery forest and the savenna conse. Onthe minimum of convert work of a portocal introductor of including the convert work into a content to convert of a constructed into the last law, Constructor of construction of construction reversel to spectructor.

We appeare that the brids of reveal lead stretches along the border botheen budgh and Calue and along the read from Nample to Light and surther in the direction to Comburs. For much forest form is with no the north cost of this read, but the interf worth to the south work of the read second to be dense and nothinghly howswithd. The forest is sound to huppove work in growth and density towards the border.


The only consult in this region to in Hears operated by the Agricultural Industrial Complex. The transport distance of tops from the forest to the scutill is cold to be 5-11 km. bothy make parts and Chlobe, have used. The arnual intake and of y of the contrival is present provided. Noort man of the time recent to the rewall's provide to the dust for sufficient the recent to the rewall's provide to the dust of the time and the recent to energy works of the standard to set to show that the recent to the standard to set to show that

Les maril : unill of, cookel y in this we for doer not allow the utilization of both saw logs one powler logs occurring in the forest. Answead of that only trees containing ceeler logs could be taken out of the forest. Even so besides peeler logs about 30 (of the volume felled would represent saw logs.

If hears would be chosen as the site of a phywood mill, logging operations could extend as for as the Sudan-Zaire border which is they 30 km distort as the drow flics; but in the opposite direction, be the northeast, only a belt of about 10 km width in the stod, farther away the sevence woodhard does not contain thebor. In the threation to the contraduce and remaindent, the threation could be the contraduce and remaindent, the threation could be understand to be the first here in even threation could be understand to be the first here in even threation could be understand to be the first here in even threation could be understand to be the first here in even threation could be understand.

Consequently, the indux area of the physical would comprise a rectangle of /30 + 10/|x|/50 + 30/|km, representing

s surface of 4,000 square km. Maximum transportation distance could reach 60 km, but the average distance is not likely to exceed 40 km /see map/.

Consequently, the indicates of the physical rill would comprise a rectangle of /30 + 10/x /50 + 50/ ht, representing a surface of 4,000 square km. Actinum transportation distance could reach 60 km, but the average distance is not likely to exceed 40 km.

The forest cover of this area is estimated by the responsible forest authorities at 50 to 70 %. To be on the safe side, let us assume a 50 % forest cover which corresponds to a forest surface of 200,000 ha. Of this about 5 % or 10,000 ha are gallery forests and 95 % or 190,000 ha savanna forests. Distributed over 30 years, the annual felling area is 6,666 ha.

The average width of a gellery forest is from 50 to 100 m. This would imply a total length of 1,333 km of water courses and a distance of about 3 km between them, which would be consistent with the configuration of land. The main species of the gallery forest is unlogary /Khaya grandifelia/ which attains a very big size. The average volume of a mehodany tree could well be 3 m3 and most of it could be used for peeling and even for veneer. In small numbers also other big-sized tree species occur, mainly Chlorophora excelsa and Albizzie zygia. Stocking is dense, about 10 big trees grow per ha with a utilisable peeler log volume of about 15 m3 per ha. This would represent for the total area of gallery forests some 150,000 m3 of peeler logs, mostly mahogany, which distributed ower 30 years would amount to 5,000 m3 of peeler logs per annum.

The savanna forest is composed mainly of Chlorophora and Terminalia. Chlorophora excelsa grows usually in clusters of 5 to 10 trees at distances of 10 to 20 m, then another cluster occurs several hundred meters farther off. The trees are very tall and of exceedingly good shape. One tree may occur on the average per 2 hs with a peeler log of 1.8 m^3 per tree, or 0.9 m3 per hs.

The other main species is Terminalia /T.glaucescens and T. superba/ which is of much smaller size and less good shape. On the average, three tracs may occur per ha, each of a log volume of 0.5 m3 per tree and 20 % peeler quality. This would amount to 0.3 m3 of peeler logs per ha.

Consequently,	the savanna forest could yield:	
Chlorophora	0.90 m3 of peeler logs per ha	
Terminalie	C.30 m3 of peeler logs per ha	_

T o t a l l.20 m3 of peeler logs per ha The total amount of peeler logs would be, therefore: /190,000 ha x l.20 m3 per ha =/228,000 m3 which distributed over 30 years would amount to 7,600 m3 of peeler logs per ennum.

The annual supply of peeler logs for the plywood mill would consist of: timber from gallory forests 5,000 m3 of peeler logs per annum timber from savanna forests 7,500 m3 of peeler logs per annum Total supply 12,600 m3 of peeler logs per annum Trees felled for peeler logs would contain, of course, also a certain amount of saw logs. It may be assumed that on the average trees selected for peeling would contain 30 % of saw logs. Consequently, total fellings for both the plywood mill and the sawmill in Nzora should be in the order of 18,000 m3 of logs per annum which would result in:

7 0 % c f pe	eler lezs	12,600	m3	per	annum
30 % o f sa	aw logs	5,400	m3	per	annum
10 0 😥		12,000	m3	per	annum

Thus, fellings for the plywood mill would supply, at the same time, also the saw logs for the sawmill.

Felling is done in the Nzara region - like elsewhere in Equatoria - by workers paid a deily wage of Pt 30. Average daily output is 0.5 m3 per man. Consequently, cost of felling amounts to Pt 50 per mj. This would include also crosscutting.

For the extraction of logs to the roadside a 25 Caterpillar should be used for a maximum distance of 1 km, on the average for a distance of 500 m. This would require a road density of 5 m per ha. Under these conditions, skidding cost would amount to about ZS 2 per m3 /cost of tractor ZS 4 per hour, skidding output 2 m3 per hour/.

The ground in this region is very suitable for road construction, the earth cover is shallow, consisting of coarse sand with excellent drainage and based on iron-stone. Slopes are gentle. Road construction cost would amount to IS 800 per km, or IS 4 per ha. This entire cost should be charged against peeler logs, since the collection of saw logs would not require such an extensive road network. The quantity of peeler logs being on the average 1.89 m3 per ha /i.e. 12,600 m3 : 6,666 ha/, road construction cost would be IS 2.12 per m3 of peeler log.

Hauling is done usually be contractors. The current rate is 18 Pt per m3 and km, which amounts for an average hauling distance of 40 km to ZS 7.20 per m3 of peeler logs. This includes also loading and unloading and stacking in the factory yard. The same amount of cost would apply for the hauling of saw logs. But the actual hauling cost for saw logs, if no plywood mill would be established, would not exceed 7S 1.80 per m3 since hauling distance would be on the average 10 km. So the difference $AS 5.40 \neq 7.20 = 1.80/$ per m3 should be charged to plywood traduction. If saw lows represent 30 % and be charged to plywood traduction. If saw lows difference would amount to 7S 2.30 /= 5.40 : 2.33/ per m3 of peeler log.

The total cost involved in supplying peeler leas in the Nzare area is estimated accordingly as follows:

:	in LS per m3
stumpage for peeler lows	0 . €0
felling and eposseutting	0.60
skidding, 500 m, IS 6 for hour, 3 m3	
hauling, 40 km, Pt 18 per m3 and km	7.20
road construction, 5 m per he, 70 CeO per 100	
instanced loss of new log loss of	• • 43
Total cost of really. I grant frames, jose	

This would be, from the fineroial viewpoint, an acceptable result, but it should be bound in mird that the exploitation of the relural indepet is uncathefactory, since only the cream of timber resources is utilized and no silvicultural improvement is schleved. This cituation could be remedied by a substantial increase of the sevenilling depecity at Hzars which would allow, at least partially, the full utilization of existing bit her resources, both for plywood and downwood production, and the subsequent conversion of the network for the set plantations, x_i even better, to plantations of from specific softwood or exist.

- 85 -

Wau - Raga area

The forest area between Wau and Kaga was photographed and evaluated by the Inventory Section of the Forestry Department in 1963. As a result a map is available showing the Vuba belt and zavaena rich in large-crowned trees.

In the Vube belt there were 20.5 trees per he with a volume of 8.66 m3 per ha, corresponding to an average tree volume of 0.43 m3 which would seem to be of sufficient size for containing peeler logs of a diameter of around 35 cm.

In the savanna there were on a surface of 320 square km 24,000 mahogany trees with a volume of 40,000 m3, or 1.67 m3/tree

14,000 Afzelia trees with a volume of 30,000 m3, or 2.01 m3/tree

3,000 Laniella trees with a volume of 6,000 m3, or 2.00 m3/tree.

This emounts to an evenage stocking of 2.4 mB per ha.

An aerial reconneissance which had been undertaken with a survey place revealed that there were more than tree since as much Vuba and mahogany, Afzelia africans and Daniella oliveri in the creas south of Deim Zubeir and east of the area investigated. These areas have been photographed at the end of January 1963. The statement was made then by H.S.S.Gassouma, Forest Inventory Officer.

However Gassouma's report was questioned by a committee which visited the area in December 1963, reporting: "It cannot by assumed /indeed our visit showed the contrary/ that sufficient merchantable timber can be found where the photos reveal "dense" forest".

For much more is known about this forest since that time. But it is a fact that there are 5 sawmills established in the area to the north and west of Lau with an important sawmilling capacity, as has been already indicated. In the opinion of the Conservator of Forests in Wau, Fr. Daipath, the supply of loss for all these sawmills is well established for the future, and could be even increased, though it may be necessary to transfer one or two sawmills to other sites nearer to the timber resources in the near future. Furthermore, it is urgently required to build a bridge across the Bousseri river, replacing the ferry operating there now, in order to start timber exploitation also to the south of the river.

With regard to this situation, the best solution for starting plywood production in Bahr-el-Ghazal province seems to be to increase savmilling to the full capacity of the existing savmills in Wau, Besselia, Pengo Nuer, Pongo Aweil and Matiang and to add an extra 43 % to the felling volume for supplying peeler logs to the plywood plant, assuming a 30 % outturn of peeler logs from the volume of felled timber. The plywood mill whould be situated in this case in the centre of the area for the delivery of peeler logs which lies practically in Wau.itself.

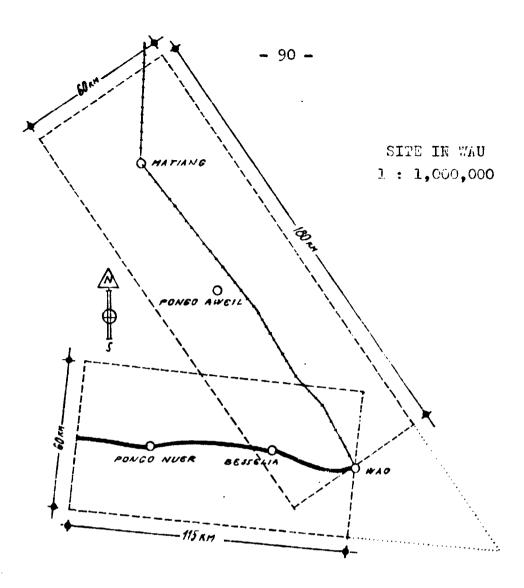
Consequently, the timber supply for the plywood mill could be best provided in this manner:

Thousands of cubic meters

Savmill	Total fellings 100 %	Peeler logs 30 %		Distance in km from Vau
Wau	14,3	4,3	10,0	nya mana ana ana ana ana ana ana ana ana a
Besselia	3,6	1,1	2,5	35
Pongo Nuer	7,9	2,4	5,5	85
Pongo Aweil	L 7,8	2,3	5,5	9 0
Matiang	7,8	2,3	5, 5	150
Total	41,4	12,4	29,0	and a fail and a faile and a second a second a

Accordingly, fellings in the range of 41,400 m3 per annum could provide 29,000 m3 of saw logs for the existing five sawmills and, at the same time, around 12,400 m3 of peeler logs for the plywood mill.

The transportation of peeler logs to the site of the plywood mill in Wau would be done from the sawmills in Besselia and Pongo Kuer by lorries on the Kaga road, and from the sawmills Ponge Aweil /which is only 8 km from Mundit railway station/ and Matiang /which is next to the railway station in Aweil/ by train. The cost of transportation


would be: To Wau from	Volume	Distance	Unit cost	IS per annum
Besselia	1,100 m3	35 kn	Pt 7.5 /10/km	2,883
Ponge Ruer	2,400 m3	C5 km	1t 7.5 /m3/km	15,000
Pongo Aweil	2,300 m3	S kr:	Pt 7.5 /m3/km	
		90 km	IS 1.57 /m3	7,901
Matiang	2,300 m3	150 km	LC 1.87 /m3	4,301
Weu	4,300 m3	•		
Loading and unloading	12,400 m3		Pt 25 /m3	3,100
			-	30,580

or LS 2.47 per m3 of peeler log.

It is estimated that fellings in the order of 41,400 m3 of logs per annum could be made for at least 15 years along a 60 km wide strip stretching 180 km to the north of wau along the road and railway to Aweil, and 115 km to the west of Wau along the road to kage, i.e. 30 km behing Mationg and Fongo Muer.

These two strips cover an area of 17,000 square km /i.e. 60 x 180 + 50 x 115/ of which at least one third should be covered by forest representing approximately 600,000 ha of untouched forest land. It is further estimated that there is on the average at least one big tree of mahogany, Afzelia or Daniella with a breast height girth of 45 or more inches /36 cm diameter or more/ and an average log volume of 1.6 m3 per 2 feddans which amounts to 2 m3 log volume per ha. The total stocking on the two strips would equal accordingly 1,200,000 m3 of logs. If this supply should last 30 years the annual fellings would be 40,000 m3 of logs, out of which some 12,000 m3 would represent peeler logs. The supply of raw material for plymood production in Weu may be considered affer on this basis.

The maximum distance of low transport from the two mentioned strips to the five savmill sites would prectically not exceed 50 km and the average distance would be around 30 km /see map/.

The ground on all this territory is either level or very moderately undulated, with very shallow and permeable sendy soil and the underlying ironstone plate which protrudes often to the surface and makes an excellent hard surface for transportation.

In order to keep skidding cost at a reasonable level, maximum skidding distance should not exceed 1 km and average skidding distance should be around 500 m. This would enable keeping skidding cost at about ZS 0.75 per mB on the average, when using a 85 h.p. wheel tractor and logging arch, but would require a density of hauling roads of about 5 m per ha.

Since annual fellings amount to 40,00 m3 of logo on an area of 20,000 ha, an annual road construction programme of

100 km having roads should be tackled. The cost of road construction can be estimated at LS 400 /km or LS 2 /ha. With 2 m3 of logs felled per ha this amounts to LO 1.00 per m3.

The houling of logs is done usually be contractors, the latest bids in Bohr-el-Ghazal province indicate a price of Pt 10 per m3 and km. For the average hauling dictance of 30 km the hauling cost is estimated at **L**S 5.40 per m3. This sum includes loading, unloading and stacking of timber, at the factory yard.

Felling and crosscutting of trees is done in Bahr-el-Ghazal provide on a piece work basis. The forest workers are prid LS 0.015 per cubic foot which is equal to Pt 53 per m3.

The final cost of peeler logs at the rill yard is therefore composed of the following items:

	1 .3/m3
stumpage for peeler logs	0.60
felling and crosscutting	0.53
skidding, 500 m, 70 l.30 jer hour, 2 m3 der hour	0.57
houling, 30 km, it 18 per all old the	John
road construction, 5 m jour ln, 400 1/7	1. OC
delivery from sewmills to glywood mill in Jau	2.47

Total cost of peeler log at victory 13 10.75 per m3 yard

This may be regarded as a very satisfactory result from the economic viewpoint, caused by the integration of the plywood plant with existing downilling capacities. But what is still more important from the viewpoint of feasibility is the bright outlook for longstarding utilization of the vest timber resources which lie to the west of the two mentioned strips and especially in the Huru - Dein Eubeir -Rage area and behind it to the south up to the border of the Central African Lepublic.

As has been already contioned in the introduced, it has not been possible to the forest economics expert to visit these forests inspite of all efforts undertaken to reach this region. But discussions with forestry staff originating in this region revealed the existence of important timber resources both of the gallery and savanna type with mahogany, Afzelia, Daniella, Isoberlinia and Terminalia as the prevailing tree species. The size of these trees seems to be by no means inferior to the trees around Nau and the density of the forest increases, and tree growth improves, in the direction to the border. The surface of forest land involved may be in the range of 5,000 square km or more, with very little or no population at all.

At present, this region is untouched by any development, and it would be very difficult to establish an industrial plant here for lack of infrastructure. The road from Wau via Kuru and Deim Zubeir to Rage is notorious for its desolate state and should be entirely reconstructed. This could involve expenses in the range of up to one million pounds /or about ZS 3,000 per km/, but no projects for any road improvement are planned or even contemplated at present.

However, this situation may change in 15 years time and once a good road, suitable for heavy traffic, is built between Wau and Rega as an infractructure development, access to the whole region will be gained and timber extraction could be started with corresponding installation of sawmills and also of a plywood inductry.

But at present conditions for the establishment of a plywood mill exist only in and around Wau. A great advantage of Wau is the railway connection with Khartoum and the entire North of the country. The only improvement of the existing infrastructure which is urgently needed is the construction of a bridge across the Busseri river. This could involve a cost of about ZC 750,000 and should be accomplished as part of the road improvement from Juba via Haridi-Yambio-Tumbura to Wau, which is under consideration.

3/D Forest Inventory Recommendations

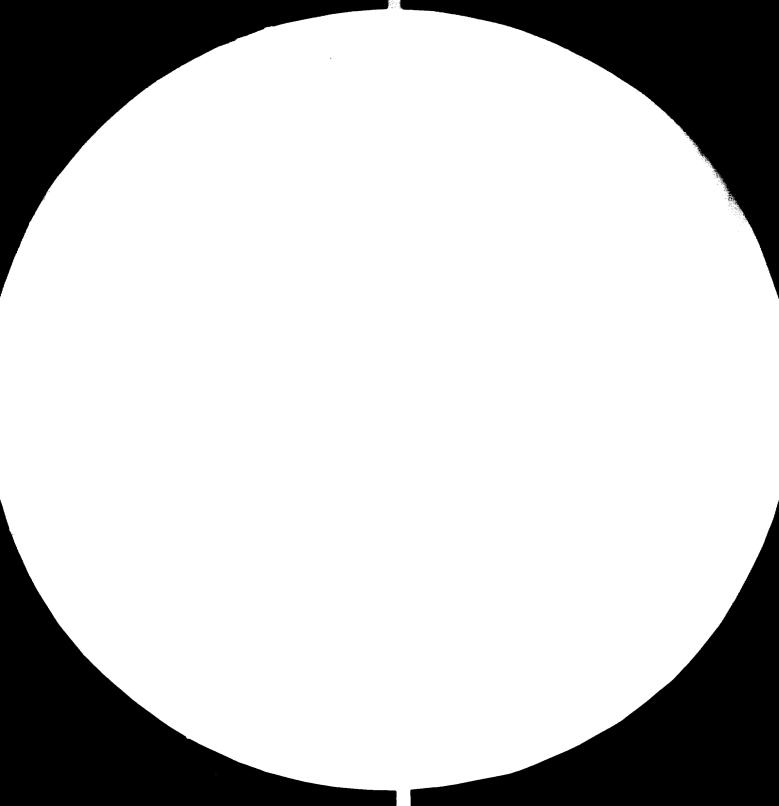
The title of the project should be Forest Inventory with Logging Plan. The project should cover an estimated surface of 400,000 ha of forest land in Bahr-el-Ghaual province around Wau, Besselia, Fongo Ever, Bongo Aweil and Matiang, and prepare a logging plan for 10 years. Besides that, assistance should be given in the testing of interesting tree species as to their suitability for the production of plywood and sliced veneer. The staff of the project should consist of

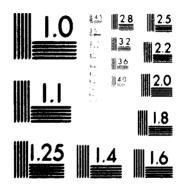
	Assigna	lent
	Project Area	Khartoum
l Project Manager and Forest Management Expert	12 months	5 menths
1 Inventory Officer	12 months	3 months
3 Field Inventory each 12 months Assistant Officers	s 36 morths	3 months
1 Consultant for Thetogrammetry	6 months	1 month
l Consultant for road network and logging	4 rienths	2 months

Total

70 months 14 months

Sudanese staff provided by Sudanese Government should include at least 7 counterperts, 4 forest rangers, 4 forest guards, 12 drivers and assistant drivers, 32 unskilled labourers.


Sampling on 0.5 % of the forest land should be carried out.


Equirment required: 1 survey plane for 30 days, 4 landrovers and 2 light lorries, radio transmission and receiving equipment, camping equipment, calculators and typewriters.

Estimated total cost: US \$ 450,000.

Tinancing could be from bilateral or multilateral cources.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF CLANDARD LINES &

	3/E	Suitchility	∩.£	Tree	Species	for	Veneor	anđ	Flymood
--	-----	-------------	-----	------	---------	-----	--------	-----	---------

accerding to

Tag Ildin Hussein Nasroun

1999 - 1999 - 1998 - 1999 - 19

Ofricar Cimbers /16/

Suit:ble:	
Acacia eleborate	suitable
Albizzia aylmori /Sercira/	11
Albizzia lebbeck	ŧ:
Albizzia zygia /Albizia sohaul/	**
B oswell ia papyrifera /Caral/	**
Ceibs pentanéra	1 *
Chlorophora excelsa	• •
Cordia africana /Indersb/	**
Cupressus lucitanice	11
Deniella oliveri /Du/	87
Du cal yptus cenellarlendie	۰i
Bucalyptus terotionnis	
Isoberlinin Joka /Tube/	30. Cestrd
Rhaya grandizolia /behogony teri/	ວນໄດ້ຄຳໂອ
K haya s edeg al eopis /ledogany afl/	11
Litragyne stipuloza /Hitragyne/	**
Olea hochstetteri /%ayiun/	11
P odocar pus milanjianus /Podo/	**
Pseudocedrels kotschyi /Duruba/	11
Sclerocarya birrea /Homoid/	17
Syzygium guineense /Ruji/	r,
Tectona grandis /Teak/	t i
Terminalia ssp. /Derut/	5.0
Terminalio superba	t 1
Could be used:	
Acecia albide /Narws/	not techno
Afzelia africana /Toi/	anitable

a moto monor a approximation

3/T Testing of Sudaness Tree Species in Openhoslovakia

At the beginning of 1973 the State Forest Products Recorreb Institute in Trabislava received from Lightbrogist 5 samples of wood species grown in the Sudar. The samples were delivered in the form of small, rectongular, sown pieces 200 x 110 x 15 - 12 nm with a moisture content of about 7 %.

The botchical never of the five species whre:

1. Pseudoceduela Kotschi

- 2. Cordia africana
- 3. Vubs isoberlinia
- 4. Boswellia popyrifera

5. Khaya sonegelonsis

The purpose of the delivery was to get at least a general idea on the possibility of utilization of there species for the production of vencer and plywood. In spite of the fact that the dimensions of the samples were too small to perform the couldness for the samples were too small to tax apprends was developed thick and it possible to peel a couple of vencero from one rises of rood.

Seeling procedure

The samples were converted into veneer on a laboratory rotary cutter. The preparation of the samples for cutting was based on soaking in water at 20 °C for 20 hours with an gradual increase of temperature to 40 °C during the following 24 hours. Inmediately before cutting the pieces were steeped in water at a temperature of 80 °C for A hours.

The nominal thickness of the experimental versors was established at 1.5 nm and C.8 nm. The outting procedure was conducted under the following sattings:

The horizontal dictance between the adge of the build and the non-hard was 0.7 mm for the residual chickness of 2.6 mm and 1.45 mm for the nominal thickness of 1.5 mm. Luring the auture; the complession of the veneer of 7.5 is wet 12 %and then ad the 0.6 mm veneer 0 %. The detains of the character angle was $e^{0}60$ and that of the charpeds arele 10 %. The sector offer for the community for an offer of the construction of the constructio

The basic results established by the experiments are given in the collour stable:

Species	l rachty or Sint-dyr Soor	zet veneër	is en Ghistrers	2701: je ruksture Pontent Aurin j ov 180 sveness In
l s atoroj. Potačeji		0.00		22
Cordia surio.	. .	•		
 16-17 /	• • • ₽ • • :	ng 20 1 ● 2	•	.'
•	•	. •	• .	•
		€. • .	*	

wer lite of the state of t

ai new reserve belong odt to gollars. It peolestrovell.

is find the stable of locals research and the multiple of is find the second of locals of locals 5 of local 1.5 of the test of the second on all of measures the stable of the find the second of contract for the second of the file find the second of contract of the second of the multiple as a normal statement of the second of the second of the sign of the second of the second of the second of the sign of the second of the second

stitut io credules in the convertence of a spirit effor mileous in the memory of sectors of a sector effor mileous contraction of the sectors of the sectors effort when it is a first sector of the sectors of the sectors of the sectors of a first sector of the sectors. wood could be used for decorative purposes and also for the production of plywood, provided, of course, that further investigations confirm the preliminary results.

Sample No 5 /Vuba/ presented no difficulties in peeling. The veneers were free from cutting checks. The texture of the veneers is very stiractive, the only bondicap is the rough structure of the surface due to the deep porce. Some difficulties would arise in the finshing and gluing operations. Deep glue penetration and a high consumption of resins and fillers is to be expected.

Sample No 4 /Boswellia/ caused no troubles in cutting. The wood is very light, copable of absorbing a large amount of water by coaking in a very short time. It is obvious that this wood is not resistant to fungal attack. After socking in water the light grey turns black which is an indication of mould attack. The mould on the smell specimens could not be identified and there was no possibility to investigate this problem function.

The low resistance to hould attack does not necessarily mean that the meanical properties of the wood are offected. Apparently the venners could be clutable for the production of plywood and could be used probably as the laner plies and cores. The vencers are smooth enough and quite free from cutting checks. There is little hope that these vencers could be used for decorative purposes.

Veneer Drying

After cut ing, the veneers were soaked in when water to raise the not the content as high as possible.

The specimens filled with water created the most unlavorable conditions for drying. The drying bod's place in a laboratory aix-impact conveyor dryer at the temperature of 140°C and at an air valueity of 33 m/tim. Hample to 1 was not submitted to the dring process theorem 2 the lack of sufficient material.

the results are shown in the following boble:

	Sample			Noisture content 🖇			
No	Botanical Name	Thickness	Original	After 2 min. of drying	After a min. of drying		
2	Cordia	G•S	164	6.0	0.3		
3	Vuba	C.8	91	1.2	0.1		
4	Boswellia	C.8	172	4.7	0.2		
5	Khaya	1.5	74	6.8	0.7		

The table shows that the specimens were dried up to the moisture content less than 7 % in less than 2 minutes without any damage by severe splits. Thy only exeption was sample No 1, where some splits occurred. Those splits could be eliminated by proper hydrothermal preparation and by improved cutting conditions.

The specimens soaked in water were discolored to a certain extent so that they lost the natural, original color. It is hoped that this discoloration may be avoided provided the presoaking of the veneers had not taken place in the process before drying.

General Conclusions

The encount of experimental material which was available for the tests was too small to allow definitive conclusions. Nevertheless, according to the results of the preliminary, improvised laboratory tests, there are no indications that the species concerned were not suitable for the manufacture of veneers. The results are in no way discouraging in any respect and there are optimistic indications that further research on a more adequate scale would solve the various utilization problems for the species under review.

3/G Aerial Survey Recommendations

The aerial survey should comprise about 17,000 square km of land on both sides along the road from Wau to Aweil and 30 km behind Aweil, and along the road from Wau to Pongo Muer and 30 km behind Pongo Muer. The width of the strip photographed should be 60 km.

The scale of the photographs taken should be 1:30,000, this would enable the drawing of maps in the scale of 1:25,000. Longitudinal overlapping should be 60 %, transversal overlapping 30 %.

The size of the photographs taken should be 18×18 cm, or 23 x 23 cm. For the 18×18 cm size a camera with a 200 mm focal length, for the 23 x 23 cm size a camera with a 150 mm focal distance should be used.

In order to facilitate identification of tree species from aerial photographs spectro-zonal photographic material should be used, if available. Else black and white photographs would do, too.

4/A Distances and Freight Rates

Distances involved are

a/ by road	
Katire - Juba	180 km
Nza ra - Juba	522 km
Nzara - Wau	4 7 7 km
Juba - Wau	8 46 km
Juba - Mombas a	1,638 km

These distances are quoted from Michelin's map of North-East - Africa, N^O 154, it being borne in mind that according to Michelin in Africa distances rarely can be given with absolute accuracy.

b/ by rail

Wau - Khartoum	1,49 8 km
Wau - Port Sudan	2,285 km
Wau - Wadi H alfa	2,407 km
Khertoum - Port Sudan	787 km
Khartoum - Wedi Helfe	909 km
Kh artoum - Kosti	383 km

These distances are taken from the Transport Statistical Bulletin 1974, p.20.

c/ on the Nile

Juba	-	Kosti	1,436	km
Juba	-	Khartoum	1,660	km

These distances are quoted from the Transport Statistical Bulletin 1974, for the Kosti-Khartoum section road distance according to the Michelin map being added.

The freight rates /in LS/m3/ are at present as follows: a/ by road for logs for plywood

from Katire to Juba	11.48	8.27
from Nzare to Juba	23.49	16.91
from Nzera to Wau	21.47	15.46
from Juba to Wau	-	27.41
from Juba to Mombase	-	28.80

These rates are calculated according to the official tariff established by the Commissioner in Equatoria province /Pt 7 per ton/mile/ and in Bahr-el-Ghazal province /Pt 12 per ton/mile/, for transportation of goods on main roads. For the transportation from Katire to Juba this rate applies only as far as Torit /135 km from Juba/; for the road from Katire to Torit /45 km/ the maintenance of which is the responsibility of the Forestry Department, the rate of Pt 12 per ton/km was applied. The road connection from Nzara to Wau cannot be used economically at the present conditions because the existing ferry on the Bousseri river offers slow service and a low weight limitation. Freight rate to Mombasa is given according to charges for transport made by Interfreight /Kenya/ Ltd.

		in	LS/m3
b/	by rail	for logs	for plywood
	from Wau to Khartoum	14.168	10.519
	from Wau to Port Sudan	-	15.127
	from Wau to Wadi Halfa	-	16.855
	from Khartoum to Port Suda	en -	5.551
	from Khartoum to Wadi Halt	fe -	7.279
	from Kosti to Khartoum	4.728	-

The freight rates quoted above are valid since 1 July 1975. They are based on the assumption that 30 m3 of plywood /21.6 ton/ or 20 m3 of logs /16 ton/ could be loaded on a 30 ton waggon.

c/ <u>on the Nile</u> /For a full barge 100 ton or 500 ton both for logs and plywood/

			in IS/ton
from Juba	to	Kosti	17.100
from Juba	to	Khartoum	21.700

The River Transport Corporation is authorized to transport goods only to and from Kosti. Direct transport on the Nile to or from Khartoum requires special authorization by Sudan Railways.

The loading space of a 500 tons barge is 500 m3. It is estimated that on such a barge 333 m3 of logs or 500 m3 of plywood could be loaded. Transportation cost in ZS/m3 would therefore be:

from Juba to Kosti	for logs IS/m3 25.676	for plywood IS/m3 17.100
from Juba to Khartoum	32.583	21.700
d/ by sea		US \$/m3
For plywood f	rom Port Sudan	from Mombasa
to Jedda 26	.33 /19.50/	31.73 /23.50/
to Alexandria 48	.26 /35.75/	53.33 /39.50/
to Hamburg 82	.62 /61.20/	88.16 /65.30/

These freight rates apply for 1 t or 1 m3 whichever is more /weight for volume basis/ and include the Suez surcharge /2.5 %/, bunker surcharge /8.5 %/, the currency adjustment factor /10 %/ levied on the basic rates and surcharges, and finally, the congestion surcharge which varies from port to port. The basic rate is given in parenthesis. in US \$/ton or m3

for machinery	to	Port Sudan	00	to Mombasa
from Hamburg		144.94		170.94

The basic freight rate is US \$ 118.70 to Port Sudan and US \$ 140 to Membasa. To it are added 2.5 % Suez surcharge, 8.5 % bunker surcharge, and finally on the total the 10 % currency adjustment factor. The freight rate includes loading and unloading costs. A heavy lift charge of US \$ 25.90 is made for every piece exceeding 6 tons, for pieces over 15 tons weight the charge is US \$ 73.20 + US \$ 3.50per each additional ton or a part thereof. The freight rate applies to 1 t or 1 m3 whichever is more.

Installed crane lifting capacity in Port Sudan is 15 tons, heavier pieces can only be unloaded by ship's crane.

For the export of plywood to Egypt there is theoretically an alternative way of transportation from Wadi Halfa on the Nile to Assuan and from there eventually by train to Cairo. The freight rate on the Nile from Wadi Hlafa to Assuan charged by the Nile Navigation Company is IS 5 /tcn. But there are no facilities at Wadi Halfa, no port, ro

arrangement for the handling of goods, consequently no commodities pass on this transportation line in either direction. For the time being, this transport system would require a vividly uneconomic amount of unloading and reloading from train to steamer and from steamer to train and must consequently be ruled out until facilities in Wadi Halfa improve.

Handling charges for plywood in Port Sudan would be IS 1 /ton /Pt 60 /ton for unloading from railway and stacking, Pt 25 /ton for loading on boat, Pt 15 /ton miscellanous/, or Pt 72 /m3. Handling charges in Nombase should be about the same. For machinery handling charges would amount to IS 2 /ton, for heavy items up to IS 3 /ton.

The handling charges on the Nile and railway for logs or plywood, including loading and unloading, would be about Pt 40 /m3.

5/A Sliced veneer

All tree species intended for plywood production are suitable also for the production of sliced veneer. Especially suited for sliced veneer is teak, and teak plantations in the South will yield in the future an important supply of veneer logs. For the time being, tree species listed in Annex 3/E as suitable for veneer should be used.

Since the utilization of the most valuable species and of logs of the best quality and largest diameter for the production of sliced veneer sheets, in connection with the establishment of a plywood mill in Wau, seems to be visble, a short technical and economical evaluation of such a project is added. Veneer production could be considered also for other sites in the South beside Wau, or even in the particle board factory in Khartoum with transport of veneer logs to Khartoum, preferably on the Nile. This would require, of course, further study which is outside the scope of the present contract.

For the site in Wau the following targets of veneer production are recommended:

Output: 2,000,000 square m of veneer per annum Thickness of veneer sheets: 0.7 mm Timber consumption: 1.3 m3 per 1,000 m2 of veneer Annual timber consumption: 2,000 m3 Deily timber consumption: 9.5 m3 <u>Necessary new equipment</u>

The integration of veneer production with plywood production has important advantages since most of the equipment installed in the plywood plant, like the drier, the equipment for crosscutting, the mobile crane, veneer knife grinder, chain saw grinder, hog, steam boiler etc. can be used in common with the plywood plant.

Additional machinery and equipment necessary for veneer production would comprise the following items:

Equipment	Power input in KW	Price in LS
Horizontal veneer slicer with accessories /length of knife 2,700 mm/	70	40,000
Band saw	50	30,000
Clipper for transversel clipping of veneer /length of knife 1,350 mm/	3	4,000
Clipper for longitudinal clipping of veneer /length of knife 3,700 mm/	6	10,000
Hoist to the veneer slicer	5	1,500
2 trucks with trailers for logs and waste	1	1,500
Total	135	87,000

Construction investment

In order to produce the intended amount of sliced veneer the recommended hell of the plywood mill should be extended by 6 m on the left side. The steaming vats should be shifted by the same distance. This means that the area of the hell will increase by 900 m2 which represents a cost of ZS 45,000.

To the recommended steaming vats two steaming vats of $6 \times 3 \times 3$ m dimensions should be added /i.e. one 12 long steaming vat divided into two parts with independent lids/.

Cost

LS 2,500

Other necessary construction, e.g. levelling and preparation of site and log yard, road construction, warehouses, administrative building, hygienic facilities, gerages, boiler house etc., are in common with the plywood plant.

Labour force

The production of sliced venner rea	uires:
Skilled workers	13
Semi-skilled workers	15
Unskilled workers	8
Management and business administration	4
Total personell	40

Electric power	
Annuel consumption of electric power is	5 400 MMh.
Water	
The requirements ere:	
Inductricl water in m3 per annum	1,650
Water for centtery purneses and for drinking in m3 per entum	1,300
Total water consumption in m3 per annum	2,950
Heat requirement	
Steaming of logs in Goal per annum	390
Veneer drying in Gcal per annun	1,000
Total heat requirement in Goal per annum	1,390
Investment costs /in LS/	
a/ Production machinery and southpased	
Trice CF Lory Stics	67 , 000
Exchange, development and additional tax, clearing, insurance and transport to alte / .375 t/	12,210
Value of mochinery of site	1.C = , 17.C
Engineering, accembly and installation	,
/10 %/	10,820
Value of erected machinery	119,030
Contingency /10 %/	11,900
Total invertment cost	100,930
b/ Construction works	
Operational building	45 , 000
Steaming pit	2,500
Design work /6 %/	2,850
Total	50,050
Contingency /5 1/	2,520
	52,070

- 106 -

Summary /LS/

÷	investment cost	depreciation
production machinery and equipment	130,930	13,090
construction works	52,870	2,640
permanent working capital	32,500	
Total	216,300	15,730

Operating costs /LS/

Only the most important items are specified, minor items are included in "other expenses". The price of raw material is calculated almost double that in the plywood project; the average wages are increased by 15 % as compared with plywood production.

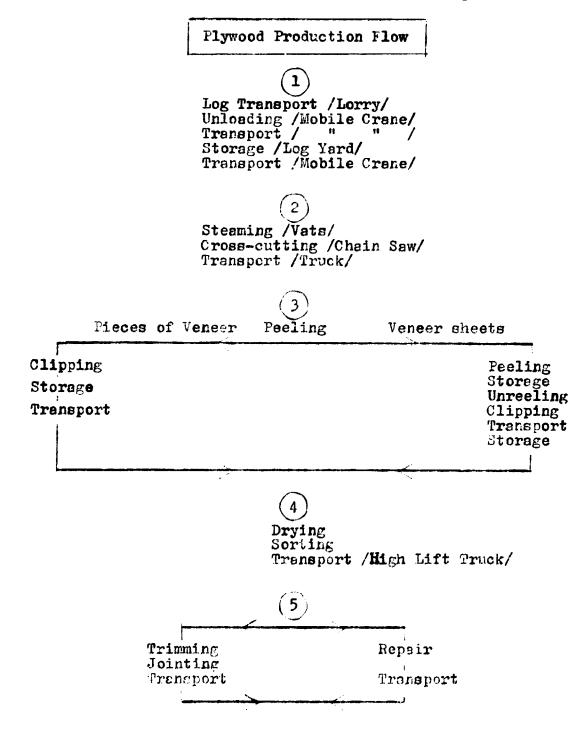
production.	1s
a/ Raw material	
2,600 m3 x 22.0	57,200
b/ Electrical energy	
400,000 x 0.035	14,000
c/ Repairs, consumption of technical materials	
3.5 % on production machinery +	
1.0 % on construction works	5,110
d/ weges	20,240
e/ social security	3,040
f/ overheads, administrative and other	
expenses /20 % on a-e/	19,920
Total	119,510
Contingency /5 %/	5,980
Total operating costs	125,390

Sales

As the major part of the output is essumed to be exported, the calculation of sales revenues is based on average prices CIF North European port: selling price 0.30 - 0.50 US 2 per m2. In the calculation, the average price is taken into

consideration; under these assumptions, the sales revenues will amount to:

0.40 US \$ per m2 = 0.133 LS per m2 0.133 LS x 2.000.000 = 266.000 LS


Profitability

Investment cost LS 215,300 Sales revenues 266,000 Annual expenses: - operating costs 125,390 - depreciation 15,730 - transport costs 40,000 181,120 The transport costs are based on experience from several projects in West Afri a. Profit before tax 84,880 Net profit 33,950 49,680 Net profit + depreciation

Pay-back period as ratio of

Investment/net profit + depreciation - <u>4.4 years</u> i.e. 30 % higher when compared with the profitability of plywood production. 5/B The Production Process of Plywood

In the following production flow chart the different steps of production are demonstrated between the input of raw materials and the output of the finished product.

	- 11x -
	Cherris Liuc (presdirg Jacking Imanaport
	lut (preading
	diama di degeni. Tima di angli
	TTSH1 ~ 2014 *
	1735 sing
	lros ling Tronoport Storage
	(E
	Bizing
	Braneport
^T) o mont en	
Rep air	
	Tarline Terre appen
/ spain	
	(<mark>frendsta</mark> nd
	Creation and C Creation Diozentia
	Looding ci llgwood

1. Log storage

Logs delivered from the forest at the factory yard should be corted in classes according to diemeter /by increments of 10 cm/ and then stored on wooden supports. Logs thus sorted can by loaded directly into the steaming vats.

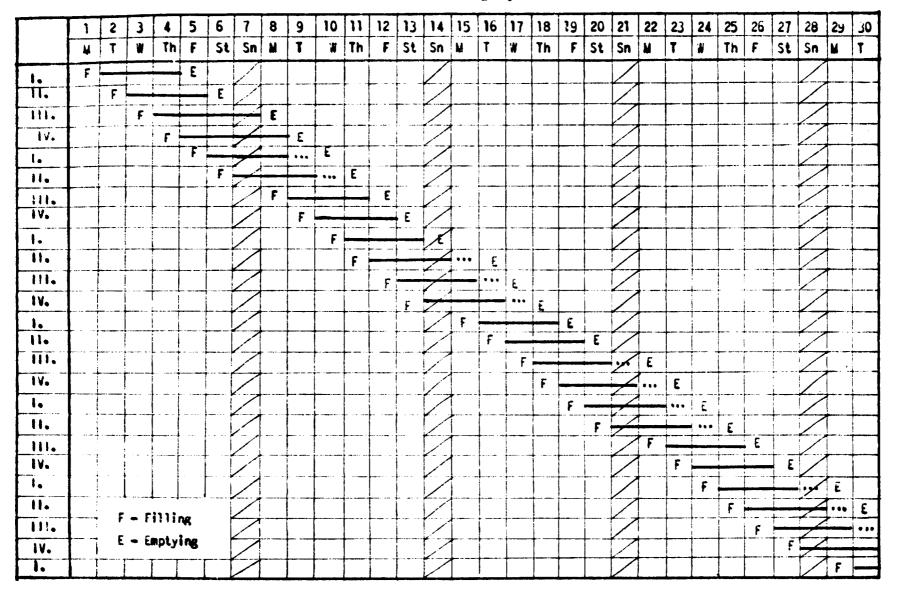
A log supply of about 2,800 rB should be stored at the beginning of the rainy sesson, when a three months supply is necessary to compensate the transport restriction during the summer months. The minimum log supply is 500 mB which represents a fortnight's supply and is sufficient to make up for irregulation of delivery during continuous logging operations. Sprinkling of logs is not required since the storing of logs will not exceed three months and tropical hardwoods are slow to develop cracks in the climate of Wau, if shaded from insolation. No serious danger from attack by insects or fungi during the storage of logs at the factory yard is anticipated /see page /.

Log transport in the factory yard and filling of steaming vats will be done by a mobile crane of 16 tons lifting capacity. No stabilization of the yard surface is required for the movement of the crane. Its lifting capacity permits the carrying of a 6 tons load at a distance of 8 m which is important for the filling and emptying of steaming vats. A bridge crane which is currently used in large plywood plants is too expensive to be installed for the planned small production capacity /since it costs some *IS* 120,000/, whereas a mobile crane is fully adequate for this task.

2. Steaming and cross-cutting

In order to plastify the roundwood and to improve peeling conditions at the peeling lathe the steaming of logs in necessary. It should be done by the indirect method in four steaming vats. The following steaming cycle is envisaged:

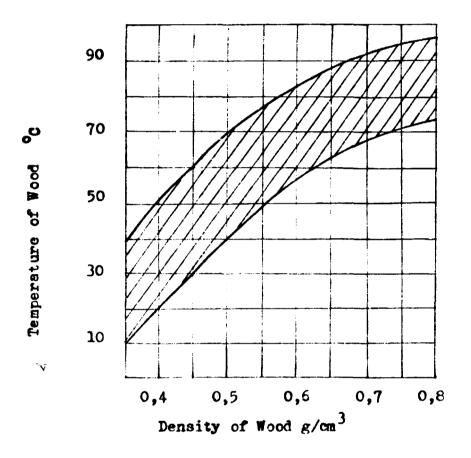
Filling of steaming vat		4	hours
Emptying of steaming vat		8	h ours
Heating to a temperature of 85 to 90°C		8	h ours
Steaming at this temperatur	e	40	hours
Conditioning, and cooling o	ff	12	hours
	Total	7 2	hours


The steaming cycle is shown on Chart 2 /see the following page/.

For the steaming of 40.4 m3 four steaming vats are necessary, accounting for loss of time. Chart $\mathbb{N}^{\underline{0}}$ 2 shows the cycles of the heating schedule. The steaming vat should be filled the day it is emptied.

L

The Steaming cycle



- 112 -

The temperature to which peeler logs must be heated is determined from Chart 3.

The steamed logs shall be lifted by the mobile crane for handling on the landing where they shall be crosscut by a power saw into required lengths /i.e. 1.30, 1.90 and 2.30 m/. Waste comprising bark, trimmings and saw dust shall be transferred by carriage to the waste hog. Debarking shall be done by hand after steaming. Debarked logs shall be pushed on a rail carriage to the depot in front of the peeling machine from where a monorail with electric hoist shall feed them into the peeling machine.

3. Peeling and veneer clipping

The logs are placed between the chuck spindles /marking of the centres of the logs should be done with a template/. A centering device is not recommended being too expensive. Veneer shall be peeled into thicknesses of 1.2, 2.0 and 3.0 mm. From this range of thicknesses plywood of almost any thickness can be composed, as is shown in Table 1./see the following page/.

Veneer of 1.2 mm thickness shall be peeled off from the outer part of logs in the whole knot-free zone. From the inner part of logs of poorer quality veneer of 2.0 and 3.0 mm thickness shall be peeled for core.

After fixing the log into the double /retracting/ chucks of the peeling lathe the log is rounded off into a cylindrical form. Pieces of veneer which are shorter than the log length and cannot be utilized represent a waste and are removed to the waste hog and used as fuel. Veneer peeled in log length and having a width of at least 15 cm is transferred by hand to mechanical clippers where it is clipped on both sides and piled on a pallet. Having got the log into cylindrical shape a continuous veneer sheet appears and is reeled by hand onto a bobbin. From there it is moved to an interim store in front of the clippers. The interim store should have three storeys in order to separate 1.2 mm veneer from 2.0 and 3.0 mm veneer. The third storey serves the purpose of returning empty bobbins. The veneer belt is reeled off by hand and cut into required dimensions leaving excess size for shrinking. The veneer is then stocked on the pellet and together with it transferred to the drier for drying. Having finished the peeling of the log the cylindrical core is taken out of the peeling lathe and carried away to the framesaw to be converted into small dimension stock.

The whole production process from the handling of logs up to the drier can be also organized as a continuous line using a debarker and an automatic crosscutting device, from where the logs could be transported before the peeling machine and fed into it by means of a fastening and centering device. Plywood structure

	T	a	ы	e	1
--	---	---	---	---	---

Number of layers		I	3					5					7		
Rated thickness	-	3	4	5	6	6	8	9	10	12	8	9	10	12	15
Face veneer	-	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Core	nin.	ļ									1,2	1,2	1,2	2,0	2,0
Core	600	İ				1,2	2,0	2,0	3,0	3,0	1,2	1,2	2,0	2,0	3,0
Centre		1,2	2,0	3,0	4,0	2,0	2,0	0, ز	2,0	4,0	1,2	2,0	2,0	2,0	3,0
Core	nan					1,2	2,0	2,0	3,0	3,0	1,2	1,2	2,0	2,0	3,0
Core	-										1,2	1,2	1,2	2,0	2,0
Face veneer	-	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Total thickness	4 8	3,6	4,4	5,4	6,4	6,8	8,4	9,4	10,4	12,4	8,4	9,2	10,8	12,4	15,4
Compressing	×							5							
Sanding	*	9,9	9,7	6,9	6,8	6,8	4,0	3,0	3,0	2,4	4,0	3,0	2,4	2,0	1,5
Actual thickness	-	3,1	3,8	4,8	5,7	6,0	7,7	8,7	9,6	11,5	7,7	8 ,5	10,0	11,5	14,7
Permissible tolerance	-			+ 0,2				+ 0,	4				+ 0,4		
according to ISO	8 8			- 0,5				- 0,6	5				- 0,7		

•

- 115 -

The outcoming continuous sheet could be automatically reeled and transferred to the drier by another automatic device for reeling-off the veneer. In this case the clipping of the veneer should be performed behind the drier. The whole line would require only 6 men and its capacity would be about 10,000 m3 per shift. Such a line is very sophisticated and complicated to operate and maintain, it requires a lot of conveyers, spare parts and is very expensive. For the intended capacity and conditions prevailing in the Sudan this line would be utterly unsuitable.

Capacity of peeling lathe

The peeling lathe, operating 275 working days a year, should peel 3.9 m3 of moist veneer per hour. The average performance of a peeling lathe, taking into account loss of time, for log lengths of 130 and 230 cm and a veneer thickness of 1.2, 2.0 and 3.0 mm and supposing an average log diameter of 50 cm /which would represent the average log diameter in the Sudan/ is 4.5 m3 per hour.

4. Veneer drying and sorting

Veneer shall be dried in a jet drier with a belt conveyor with impact air circulation. Veneer shall be dried to a final humidity of 6 % for furniture plywood glued with urea-formaldehyde glue and to a final humidity of 8 - 10 % for WBP plywood glued with phenol formaldehyde foils.

The dried veneer is sorted behind the drier according to quality and size. It will be necessary to establish quality standards of sorting after running in the plant. Sheets requiring surface repair shall be transferred to the plugging machine and sheets with edge cracks to the tables for menual repairing. Each type is piled on a separete pallet. Once the pallet is loaded the veneer is carried, as the case may be, either for repair, or to the press, while undersized pieces are taken to the trimmer and jointer.

5. Veneer jointing. treatment and repair

Undersized pieces of veneer are taken in the trimmer

where glue is spread on the edges and then the pieces are metched in the jointer into an endless belt which is again, cut into suitable sizes. Of the total amount of dry veneer about 30 % will be undersized which represents 7.4 m3 per day. The capacity of the trimmer being 2.5 m3 per hour, one machine is sufficient.

Pieces of veneer spread with glue are matched in the transverse jointer. Since veneer of all lengths /125, 185 and 225 cm/ is to be matched, the working width of the jointer should be 230 cm. The feed of the machine is 7 m/min. At an average veneer length of 178 cm and thickness of 2.0 mm the performance of the jointer in 420 minutes /with a utilization capacity of 0.8/ would be 7 m3.

End cracks in whole sheets shall be mendied manually on tables. Surface defects /knots, decay/ shall be removed on the veneer plugging machine.

6. Spreading of glue

The urea-formaldehyde glue /prepared from glue containing the ZnCl₂ hardener, non-edible flour, and water/ shall be spread by the glue spreader at a rate of 180 to 200 g/m2. Daily output everages 18 m3 of plywood. With regard to the structure of production 2,050 sheets of veneer should be spread over with glue per day. The capacity of the glue spreader is about 2,500 sheets per shift.

The glue is put on both sides of the core /in three layer plywood/ or cores /in plywood with more layers/ and then the assembling is made by hand. The assembled pieces are moved on pallets to the press.

WBP plywood shall be glued with phenol formaldehyde foils, consequently no spreading of glue is necessary.

7. The pressing of plywood

It is made in the heated press. The press shall be filled by hand from a hydraulic lifting table. The plywood for furniture in pressed at a temperature of platens of 105 to 110°C and at a pressure of 18 kp/cm2. For WBP plywood the temperature should be 140 to 150 °C. The pressing cycle in seconds for various plywood thickness is as follows:

	3 and 4 mm	<u>6 mm</u>	<u> 15 mm</u>	
Filling of press	60	60	60	
Closing of press	30	30	30	
Pressing	180	270	480	
Opening and emptying	60	60	60	
Total time in seconds	330	420	630	

Press capacity

Annually 3,571 hours are required for pressing this amount of plywood at the given cycle. A one-shift operation /275 days x 7 hours = 1,925 hours/ covers only 54 % of the required capacity with a press in 15 openings. Consequently the press must be operated in two shifts.

The manual filling of a press with a larger number of openings is not feasible. In this case an automatic filling and emptying device and a cold pre-press are required, but this would substantially increase the price of the pressing equipment. Therefore, the press shall be filled from the lifting table.

8. Sizing of panels

This is made on the double sizing saw. Its capacity, at a feeding speed of 20 m/min, average plywood thickness of 4 mm, size 122 x 183 cm, 0.8 utilization of working time, and a 4.2 m distance between the step motion of the belt, is about 3.0 m3 per hour.

The first sizing saw cuts along the face grain, the second one transversally to it. The waste from the sizing saws shall be transported manually to the waste hog.

Repair of defective plywood shall be made by hand. Repaired plywood shall be pressed in the second shift using the free caracity of the press.

9. Sanding

Sanding of plywood shall be done only on 3, 4 and 6 mm thick plywood sheets in as far the plywood quality suits furniture production and exports. Plywood of lowest quality shall be used for containers, this shall not be sanded. WBP plywood intended for construction shall also not be sanded. The performance of the three drum sander is higher than the expected production, consequently the sander shall operate only during one shift. Since there is only one sander the sheets must be returned for sanding the other side.

A high fork lift truck shall be used for the transport of finished plywood into the store and from the store to the vehicle used for external transport. It shall also be used to transfer dry vaneer.

In Table 2 and 3 /see the following pages/ the movement of material and the waste arising from various operations in the production process are given for an annual outpt of 5,000 m3 of plywood manufactured in one shift numbering 275 and 300 working days, respectively. Waste and losses are calculated from the timber volume. Both a 45 % and a 50 % rate of utilization are considered, but Chart 4 /see page 125/ shows only the 45 % rate of utilization.

The possible plant layout is shown in Chart 5 /see page 126 /. The layout may be, of course, altered by the deliverer of the machinery.

The manpower specification is given in Table 4 /see page 122 / and equipment requirements are listed in Table 5 /see page 123 /. - 120 -

Table 2

Movement of Material

Rate of utilization 45 %

Output: 5,000 m3 plywood per annum

2 2

Log consumption: 11,100 m3 per ennum, 2.22 m3 per m3 of plywood

Item	Output in %		275	in m3 300 g days	waste
Logs into stearing vats per day per hour	100		40 .4 5 . 8	37.0 5.3	
Handling loss per day per year		7	2.8	2.6	7 7 7
Peeling machine processes per day per hour	93		37 .6 5.4	34. 4 4. 9	
Wet non utilizable waste per day per year		14	5 •7	5.2	1,554
Cores per day per year		12	4.8	4.4	1,332
Output of wet veneer per day per hour	67		27 . 1 3 . 9	24.8 3.5	·
Losses due to shrinking per day per year		6	2.5	2.2	666
Output of dry veneer per day per hour	67		24.6 3.5	22.6 3.2	
Weste from dry veneer per day per year		8	3.2	3.0	888
Volume processed in the press per day per hour	5 3		21.4 3.0	19.6 2.8	
Losses in pressing, trimm and sending per day	n i ng	8	3.2	3.0	
per year Finished plywood per day per hour	45		18.2 2.6	16.6 2.4	888

Table 3

Movement of Material

Rate of utilization 50 %

Output: 5,000 m3 plywood per annum

Log consumption: 10,000 m3 per annum 2.00 m3 per m3 plywood

Item	Output in %	Waste in %	275	in m3 300 g days	waste
Logs into steaming vats per day per hour	100		36.5 5.2	33 . 3 4.8	
Handling loss per day per year		6	2.2	2.0	600
Peeling machine processe per day per hour	s 94		34•3 4•9	31.3 4.5	
Wet non utilizable waste per day per year		14	5.1	4•7	1,400
Cores per âsy per year		12	4•4	4.0	1,200
Output of wet veneer per day per hour	68		24.8 3.5	22.6 3.2	
Losses due to shrinking per day per year		6	2.2	2.0	60 0
Output of dry veneer per day per hour	62		22.6 3.2	20.6 2.9	
Waste from dry veneer per day per year		6	2 .2	2.0	600
Volume processed in the press per day per hour	56		20.4 2.9	18.6 2.7	
Losses in pressing, trim sanding per day per year	ming	6	2.2	2.2	600
Finished plywood per day per hour	50		18.2 2.6	16 .6 2.4	

- 121 -

Te	71	6	A
_ 1 12	DI	•	- 44

Menning table

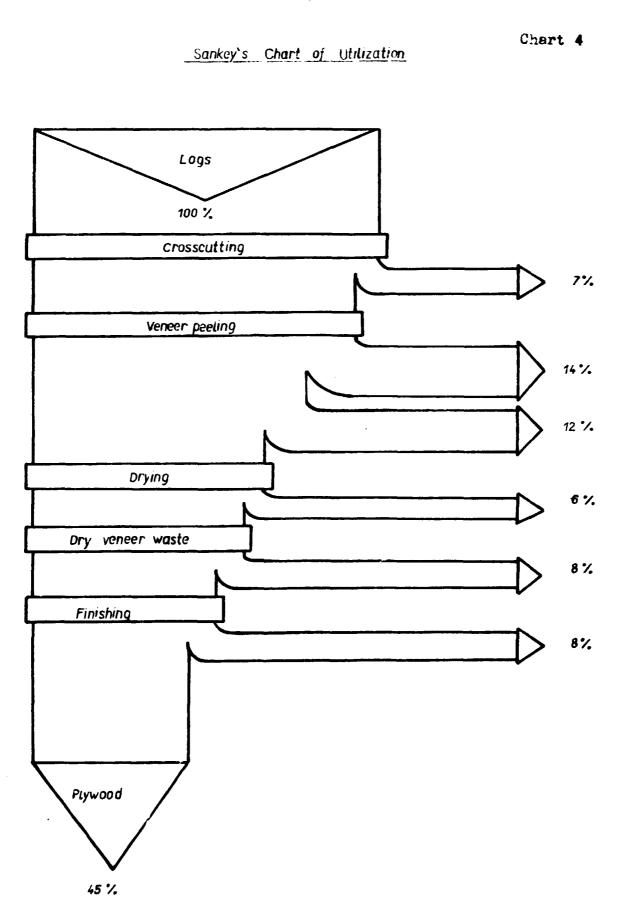
¥

	Number	Per person	Annual saleries or wages /LS/
A - WAU			
General manager	1		3,600
Technical manager	1 1		3,000
Plant engineer	l		1,800
Assistant plant engineer		9 00	1,800
Administration manager	1	• • •	1,800
Senior accountant	ī		1,200
Accountants	2 1 2 2 3 2 2 5 1 3 2 8	60 0	1,200
Senior clerks	2	600	1,200
Junior clerks	3	400	1,200
Secretaries	ź	360	720
Typists	2	300	600
Office boys, watchmen	5	180	900
Chief mechanic	í	200	700
Production supervisors	จิ	5 60	1,680
Storekeepers	5	560	1,120
Foremen	Ē	480	3,840
Skilled workers	30	400	12,000
Semi-skilled workers	24	300	7,200
Unskilled workers	30	200	8,000
Drivers	2	240	480
		240	400
Total	123		54,040
B - KHARTOUM			
Sales manager	1		2,400
Senior clerk	1 1 2 1 1		960
Accountant	ī		960
Junior clerks	2	400	800
Secretary	ī	,	400
Typist	ī		360
Driver	ī		300
Storekeeper			600
Unskilled workers	1 3 4	280	840
Watchmen, messenger	Á	200	800
a dermient, mensenger			
Total	16		8,420
Grandtotal	139		62,460

- 122 -

Table 5

Equipment Requirements


Equipment	Power demand in KW	Heat consumer Kcal/h	Price LS
A. Log yard			
1. Storage			
l mobile crane 16 t	-	-	25,500
2 chain saws	6		2,000
Sub-Total	6	-	27,500
B. Production line			
2. Steaming and cross-cutting			
Equipment for stearing vats /2 pumps, steam distribution covers/	, 6	400, 000	8,000
Equipment for crosscutting	-	-	50 0
2 truck for logs and waste with rail	-	-	550
3. Peeling and veneer clipping			
l monorail with electric hoi	st 5	-	1,500
l veneer lathe	75		45,000
l reeling equipment, hand- operated, with bobbin maga	zin -		2,000
l truck for undersized piece of veneer	s -	-	200
2 veneer clippers	10		7,000
4. Veneer drying and sorting			
l veneer drier	120	1,400,000	58, 000
5. Veneer jointing, treatment and repair			
l veneer trimmer	20	-	16,000
1 veneer jointer with clippe	r 11	130, 000	28,000
l veneer plugging machine	7	-	5,300
6. Glue spreading			
l glue spreader	5	-	4,000
l glue mixer	2	-	1,0 00
1 glue storage complete	Ņ	-	1,650
Carried forward	265	1,930,000	177,700

T.

1

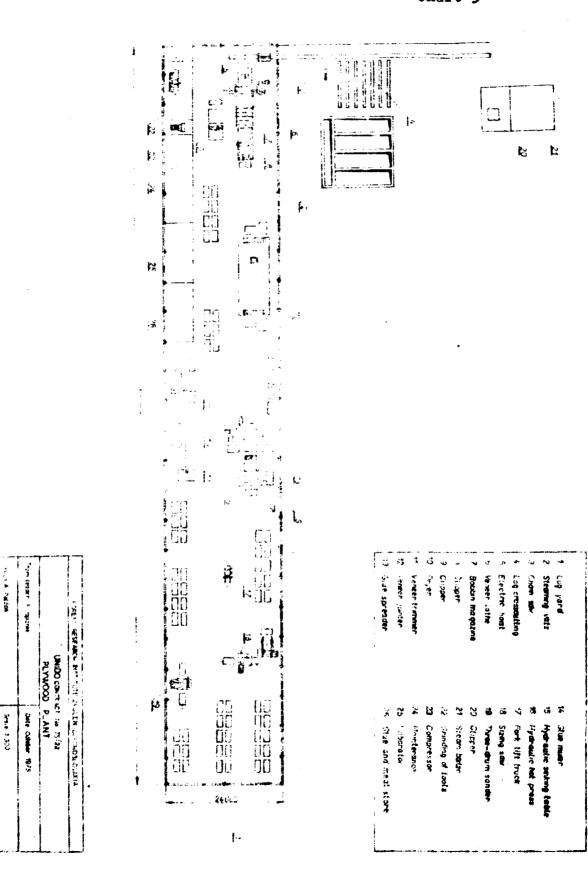

	Table 5 cont d				
Equipment	Power demand in KW	Heat consumer Kcel/h	Price LS		
	265	1,930,000	177,700		
7. Fressing					
l hydraulic hot press in 15 openings	50	700,000	45,000		
l hydraulic sinking table for loading	3	-	1,400		
8. Sizing					
l plywood sizing saw	20	-	10,000		
9. Sanding					
l three - drum sander	50	-	16,000		
Sub-Total	386	2,630,000	2 50,100		
C. <u>General services and</u> installations					
l veneer knife grinder	5	-	9,500		
l circular saw grinder	2	-	1,000		
1 chain saw grinder	2	-	200		
l waste hog and blower	24	-	3,900		
1 steen boiler complete 12	at p 5	-	90,000		
Exhaust plant	36	-	11,500		
Equipment for producing and distribution of compression air /6 atp/	30		3,400		
Equipment for heat distribution	_	_	4,000		
Installation of electromo	+ ama	_	4,000		
light	-	-	9,000		
Lab.equipment /lab.hydrau press, glue bond testing					
machine, lab.drier/	10	-	6,500		
High lift truck	~	-	6,000		
Maintenance equipment			10,000		
Sub-Totel	114	-	155,000		
Sub-Total A Sub-Total B Sub-Total C	6 388 114	2,630,000	27,500 250,100 155,000		
Grand-Total	508	2,630,000	432,600		

Table 5 cont'd

- 125 -

ł

ļ

ł

ţ

- 126 -

Chart 5

ţ

11. 4 11. 4

5/C Material and Energy Consumption

Waste

At the expected 45 % rate of utilization of logs the following amount of wood waste will be available at the plywood plant and should be disposed of:

Operation	Quant in %	ity of waste in m3/day	from logs in m3/year
Handling of logs	7	2.8	777
Peeling /wet undersized pieces/	14	5 •7	1,554
Cores	12	4.8	1,332
Waste from dry veneer	8	3.2	888
Trimming of plywood sheets	5	2.0	550
		18.5	5,101

In this survey only utilisable wood waste is listed. Not mentioned are losses caused by shrinking and pressing. The utilisation of wood waste for the production of particle boards or fibreboards is not feasible because of the small amount of waste which is best used by burning for energy production.

Glue consumption

Plywood intended for furniture production shall be glued with urea-formaldehyde glue. The powder glue /which is used also in the particle board production in Khartoum/ is made to contain 64 % of dry substance /7 weight parts of glue powder and 4 weight parts of water at a temperature of 40 ^OC/. For glue prepared in this way the following recipe can be used:

55 % of glue

20 % of non edible flour

-25 % of water.

It is recommended to order from the producer a glue which contains already the ZnCl₂ hardener. In this case the preparation of the hardener, and also its transport costs, are eliminated. If glue without hardener would be purchased, to the total amount of gluing matter 10 % of a hardener /15 % of NH₄Cl, 30 % of urea, 55 % of water/ should be added. The total spread of gluing matter is 180 to 200 g/m².

For the intended production programme the requirement of glue powder shall be as follows:

cm	mm	m 3	pieces/m3	kg/m3
122 x 220	3	1,300	124	52
122 x 18 3	3	1,200	150	5 2
122 x 220	4	700	93	38,5
122 x 183	4	300	112	38,5
1 22 x 22 0	6	500	62	63

Annual glue consumption is 200,000 kg. Average consumption of glue per m3 plywood is 50 kg.

Flour consumption is 9 kg per m3 of plywood. Total annual consumption of flour shall be 36,000 kg.

Glue requirements for waterproof plywood intended for construction:

Dimensions 120 x 183 cm - 15 mm - 31 pieces/m3.

Total annual consumption of tegofoils is 600,000 m2.

Heat energy

The distribution of heat energy consumption by the various appliences is given in the following survey.

	kcal/h	t/h	t/day	Gcal/year	t/year
Steaming vats	400,000	0.8	19.2	2,640	5,280
Veneer drier	1,400,000	2.8	22.4	3,080	6,160
Veneer jointer	130,000	0.3	2.4	286	660
Press	700,000	1.4	22.4	3,080	6,160
Total	2,630,000	5.3	66.4	9,086	18,260
Heat requirement	its per m3 pl	.ywood:	9.086	- = 1.8 Go	al/m3

The necessary amount of heat energy of about 2.6 Gcal/h shall be supplied by a steam boiler operating at a pressure

- 128 -

of 12 atmospheres. The condensated steam shall be returned to the boiler. Wood waste shall be used as fuel. It shall be shortened by a circular saw, fragmented by a waste hog and burnt in a stoker.

The consumption of 2.6 Gcal/h refers to the first shift, in the second shift consumption shall be 1.1 Gcal/h and in the third shift 0.4 Gcal/h.

Fuel consumption

The caloric power of wood waste is assessed at 2,500 kcal/kg. The boiler's efficiency being 0.75 fuel consumption shall be:

in the first shift:

1

$$Q = \frac{2,630,000}{2,500 \times 0.75} = 1,402 \text{ kg/h x 8} = 11,216 \text{ kg}$$

in the second shift:

$$Q = \frac{1,100,000}{2,500 \times 0.75} = 586 \text{ kg/h x 8} = 4,688 \text{ kg}$$

in the third shift:

$$Q = \frac{400,000}{2,500 \times 0.75} = 288 \text{ kg/h x 8} = 2,304 \text{ kg}$$

Fuel requirement per day

18,208 kg

In the plywood plant a daily amount of 20,350 kg of wood waste is expected to be available. From this amount only 13,970 kg shall be burnt. The cores, /i.e. the cylinders remaining after the peeling process representing 5.8 m3 /6,380 kg/ per day/ shall be transferred to the Wau Training Sawmill and there converted on a small frame saw into small dimension stock, thus obtaining 3.5 m3 f sawnwcod a day.

The remaining requirement for fuel shall be met by the Wau Training sawmill where 12,000 kg of wood waste will be available from the planned sawmill output.

Electric energy

Consumption of electric energy shall be as follows:

	Installed kw	Used kwh	I.shift	kwh/D II.shift	Total	kwh/year
Equipment	508	356	2,848	552	3,400	935,000
Light	14	7	-	23	28	7,700
Total	-	363	2,848	580		942,700
The consul 188 kwh/m	-	electr	ic energy	per m3 of	plywo	od is

The required electric energy shall be supplied by the power plant in Wau. The Wau Training Sawmill has a stand-by generator with a capacity of 208 KW which is at present unused.

Should the power plant in Wau be unable to supply electricity for want of installed capacity, a consumer's power plant could be installed at the plywood mill /to the 208 KW Diesel generator mentioned above another 500 KW Diesel generator could be bought which would supply electricity to the plywood plant including sliced veneer production/. In this case the price of electricity produced would not exceed the price charged by the power plant in Wau which is that taken into account in the cost calculation /see Annex 5/E.4

In the second shift the power consumption shall be limited to requirements for preparing and spreading of glue, for operating the press and for lighting.

Water consumption

The water consumption for industrial purpose is computed as follows: Steaming vats 1 m3/h x 24 h 24 m3/day Preparation of glue 1 m3/h x 16 h 16 m3/day Washing of the glue spreader 1.5 m3/day Boiler 2 m3/h x 24 h 48 m3/day

T o t a 1 89.5 m3/day

- 130 -

Annual water consumption for industrial use is 24,612 m3. Water consumption for sanitary purposes and for drinking:

100 l per person per day about2,500 m3Total water consumption27,112 m3Water consumption per m3 of plywood: 5.4 m3

Spare parts and supplies for repair and maintenance.

A list of spare parts which are necessary for one year's operation is given hereunder. Included also are spare parts and material for maintenance which shall be specified as to type and quantity by the supplier of equipment.

Туре	Quant	ity
Peeler knives	15	
Clipper knives	9	
Cutters for the waste hog	30	
Pressure-bar for peeling lathe	3	
Pressure-bar for clipper	2	
Circular saw blades for sizing device and waste crosscut saw	50	
Abrasive paper	500	m2
Sew chains	10	
Conveyer for the drier /life-time 2-3 years/	1	
Screws of the support of the peele	r 1	
Nut of feeding spindle	1	
Electric motors	2	
Lubricents and hydraulic oil	7 00	kg
Lubricating grease	300	kg

Further spare parts and material which will be specified by the supplier of machines comprises: steel rope for the mobile crane, bearings, valves, V-belts, construction material etc.

5/T Calling for Tenders

irceverion cropranme: Insual output: 5.000 mg of 10 ywood Number of working days: 275 Plywood sesortments: 3 mm thick plywood size 122 x 220 cm - 1.300 m3 size 122 x 183 cm - 1.200 m3 4 nm thick plywood size 122 x 220 cm 700 m.3 size 122 x 183 cm 300 m3 -6 mm thick plywood size 122 x 220 cm -500 m3 15 mm thick plywood - waterproof size 122 : 165 cm - 1,000 m3

1.Coursge

<u>Bobile curve</u> of 16 tons lifting power, with ability to lower and lift a load of 6 tons at a distance of 8 m into or from a depth of 3 m, operating on Diesel oil. The mobile crane shall be used for unloading logs from lorries, for storing logs in the log yard, for the transfer of logs into the steaming vats, and for moving the steamed logs to the crosscutting device.

2. Steaming and cross-cutting

Feed piping for steam reduced to 1.3 etmosphere into four steaming vate dimensioned 12 x 3 x 3 m, and drain piping to the boiler house, including heating calorifers in the steaming vate.

Two pumps for pumping water

Covers for the steaming vets made from stainless steal with polystyrene insulation

Two electric chain saws /one as a reserve/ able to crosscut logs of a diameter of up to 120 cm.

3. Peeling and veneer clipping

The peeling lathe

Requirements concerning the peeling lathe

The peeling lathe should be able to process logs of a length between 130 and 230 cm. These dimensions limit the maximum and mimimum length of the peeled log without using a prolonging spindle /such machines are already offered in the market/. With regard to potential log diameter, especially with mahogany, the cross-transverse motion of the support should enable peeling of logs up to a diameter of 120 cm.

The number of spindle revolutions need not to exceed 150 per minute, since the reeling is done by hand and the cutting speed will be sufficient even at low revolutions. with respect to the expected size of logs. The range of thickness required extends from 0.5 to 6.0 mm. The Ward Leonard device for the regulation of revolutions is not recommended /being rather expensive/, a three-pole commutation electric motor for changing the spindle revolution in correspondence with the diminishing log diameter will be sufficient. The machine should be equipped with double /retracting/ chucks, the diameter of the outer spindle measuring at least 26 cm and of the inner one at least 13 cm. The machine shall be equipped with a casette which permits the installation of the knife in exact position with respect to the spindle axis after sharpening. In order to prevent the bending of the log at the end of peeling a backup roll should be added to the machine.

Reeling equipment with bobbin megazine

The reeling equipment is placed on rails behind the peeling lathe so that it can be moved away when undersized pieces of veneer leave the peeler. The length of the bobbin is 2,300 mm.

The full bobbin is moved into the bobbin magazine from where it glides autometically to the clipper.

The bobbin magazine is made of iron, with two storeys for full bobbins and the third one /inclined towards the peeling lathe/ for returning the empty bobbins. The diemeter of the empty bobbin is 0.2 m, the diameter of the full bobbin is 0.6 m. Ten bobbins are necessary /for each storey/.

Clipper for the veneer belt	
- Length of the knife in mm 2,40	0
- Speed of the feeding conveyer in m per min. 0 - 6	.0
- Speed of the removing conveyer in m per min. 3	10
- Compressed air drive in kg/cm2	6

- Possibility of clipping both automatically by photo-electric cell and by hand

Clipper for undersized pieces of veneer

Instead of feeding and removing conveyers: benches or rollers. No photo-electric cell for clipping is required. Length of knife, as given before.

4. Veneer drying and sorting

~ .

Requirements concerning drier

The drier should dry 27 m3 of moist veneer @r 24.6 m3 of dry veneer per day. The initial humidity of veneer being 80 % and the final one 6 %, 13,986 kg of water should be evaporated per day. This represents 1,998 kg of water per hour, based on one 7 hour shift. With a working width of 2.8 m a belt length of 55.3 m is required, consequently a three storey veneer drier 20 m long /excluding the cooling-off zone/ is necessary. The drier will be heated by steam at a pressure of 12 atmospheres.

Technical requirements:

	Width	of	belt	in	mm	2,4	00
--	-------	----	------	----	----	-----	----

-	Length	nſ	heated	zone	i n	mm	3	х	20,	000	
---	--------	----	--------	------	------------	----	---	---	-----	-----	--

-	Length	of	cooling-off	zone	in	m	3,000

- Pressure in atmospheres
- Average output of dry veneer in m3/hour 3.0

12

- Behind the drier a transversal rubber conveyer for sorting veneer sheets shall be installed.

5. Veneer jointing, treatment and repair

Trimmer

- Operating length in mm	2,400
- Height of bundle before pressing in mm	300
- Feed rate in m per min.	12
Transverse jointer	

 Operating	width in	mm	2,300
 Feed rate	in m per	min.	9

- Required output in m3 per day 7

- The jointer is equipped with a clipper.

Veneer plugging machine

Surface defects shall be removed on the veneer plugging machine.

- Diemeter of the plug puncheon in cm 15

6. Spreading of glue

The glue spreader should have a daily output /in two shifts/ of about 2,100 sheets.

The glue will be prepared directly on the glue spreader, on which a glue mixer is fastened; from there the glue is pumped to the glue spreader.

The capacity is about 1,000 kg of glue mix in two shifts.

7. Pressing of plywood

Requirements concerning the press:

- Pressing plates in mm	2,600/1,300
- Number of openings	15
- Day light of opening in mm	7 0
- Greatest total pressure in kp/cm2	1,050
- Highest specific pressure in kp/cm2	25
- Hydraulic fluid: weter + 5 % of emulsion gease	
- Length of input side in mm	2,300
- Closing speed in mm per sec.	100
- Heating: by steam	

- Pressing plates equipped with metal cauls.

Filling of the press and closing fro	m the upper opening.						
8. Sizing of panels							
First sizing sew:							
- Meximum edging width in mm	1,400						
- Minimum edging width in mm	1,000						
Second sizing saw:							
- Meximum edging width in mm	2,400						
- Minimum edging width in mm	1,700						
Feeding speed in m per min.	20						
9. Sanding							
Three-drum sander:							
- Operating width in mm	2,050						
General services and installations							
Veneer knife grinder:							
- Disk diameter in mm	3,200						
Circular saw grinder:	Circular saw grinder:						
- universal							
Waste hog and blower:	Waste hog and blower:						
- Hog width in mm 430							
- Height in mm	120						
- Feeding speed in m per min. 12							
- Output in m3 per hour 3							
Steam boiler:	_						
- Capacity in Gcal per hour 5							
- Pressure in stmospheres	12						
· · · ·	The whole equipment is composed of						
- the conveyer, means of transport and bunker - the furnace							
- the furnace - the boiler with armsture							
- the boller with armsture - the device for fume cleaning and chimney							
- the control panel							
- the feeding pump							
- the device for water conditioning.							
The output of the steam boiler would cover elso							
mirements for possible production of cliend reneor							

requirements for possible production of sliced veneer.

Maintenance equipment: - Electric hand drilling machine - Electric pillar drilling machine - Universal grinder - Shaping machine - Tin shears - Welding apparatus - Universal lathe - Universal milling cutter - Hack saw - Saw set pliers - Diverse grinding disks, 15 pieces - Locksmith's equipment - Electrical outfit Modern equipment of this type is available in the maintenance working shop of the Nau Training Sawmill. Laboratory equipment Hydraulic press: - dimensions of platens in mm 300 x 300 - specific pressure in kp per cm2 25 200 - Day light in mm - Electric heating Glue bond testing machine: - total strenght in tons 0.5 · Laboratory drier - with a thermostat up to 200 °C Laboratory scales Höpler viscosimeter Laboratory table Laboratory glass Electric moisture-content indicator for veneer Other auxiliary equipment will be produced locally: - 10 work tables - 50 pallets for veneer and plywood to be transferred by high lift trucks.

Firms delivering machinery and equipment for plywood
plants:
<u>Siempelkemp</u> - Maschinenfabrik
Krefeld l
Deutsche Bundesrepublik /West Germany/
Hildebrand - Maschinenbeu Grub H 7446
0 ber b oi hingen
Deutsche Bundesrepublik /West Germany/
RFR - Vereinigte Furnier - und Sperrholz -
Maschinenfabriken
Hamburg 33
Wiesendamm 30
Deutsche Bundesrepublik /West Germany/
<u>C.Müller-Forst</u> - Meschinenfabrik und Eisengiesserei
bei Holzminden an der Weser
Deutsche Bundesrepublik /West Germany/
Angelo Cremona and Figlio - Monza
Viale Lombardia 275
Italia /Italy/
Lehden Rautoteollisuus - Lahti
Suomi - /Finland/
<u>Coe Manufacturing Co.</u> - Painesville
Ohio - USA

5/E Cost of electricity produced by consumer's

power plant

If the plywood plant in Law generates its own electricity, this would not increase the cost of electric power above the current rate charged by the plant in Mau /i.e. ZO 0.035 per KWh/ as is shown by the cash-flow forecast presented below. The following assumptions were made in this calculation:

	7	LS
Investment cost of consumer's p including installation in Wau	power plant	35,000
Permanent working capital		5,000
Annual operating costs:		
fuel 250,000 liter x 🕰 0.09	26,100	
wages etc.	1,750	27.850
Internal revenue: 942,700 HWh/:	ornum x 3.5]	5/30h =

= 33,000

Interect on loans: 9.5 %

for consumer's power plant in Wau

	Constr.	1	2	3	4	5
A. Sources of cash	<u> </u>					
1. Loans	40, 000					
2. Internal revenue		33,000	33,000	33,000	33,000	33,0 00
B. Uses of cash	40,000					
 Fixed capital expenditure 	35,000					
2. Permanent working capital	5,000					
3. Operating costs	-	27,850	27,850	27,850	27,850	27,850
4. Debt service				-		
4.1 Interest on loans		3,800	3,672	3,531	3,378	3,209
4.2 Repayment of loans		1,350	1,478	1,619	1,772	1,941

end warm a reason

C. Surplus/Deficit

SECTION 1

ار .

- 140 -

2	3	4	5	6	7	8	ç	10	11
,000	33,000	33,000	33,000	33,000	33, 000	33,000	33,000	33 ,00 0	33,000
, 850	2 7, 850	27,850	27,850	2 7, 850	27,850	27,850	2 7, 850	2 7,850	27 ,85 0
9 ,67 2 .,478	3,531 1,619	3,378 1,772	3,209 1,941	3,025 2,125	2 ,823 2 ,3 27	2 ,60 2 2,548	2,360 2,790	2,095 3,055	1,805 3,345
				l_s	ECTIOI	N 2			
					n mar anna an ann an an an				

	8	9	10	11	1 2	13	14	15	
)	33,00 0	33 , 000	33,000	33,000	33,000	33,000	33,000	33,000	
10	27 ,850	27,850	2 7, 850	2 7,85 0	27,850	27,850	27,850	2 7,85 0	
3	2,602	2,360	2,095	1,805	1,487	1,139	758	340	
-	2,548	2 ,7 90	3,055	3,345	3,663	4,011	4,392	3,584	
								+ 1,226	

Provide Robinson and a second second

6/A Pricing of the output and receipts and costs

during the start-up period

Selling prices

The calculation of the average selling prices is based on the following assumptions:

e/ it is expected that under normal conditions /beginning from the third operating year/ the structure of quality grades should be:

for interior plywood /thicknesses from 3 to 10 mm/: quality BB /and better/ 20 %
quality BB/C 50 %
quality C 30 %
for exterior plywood only two quality grades will be

- produced: quality BD 50 % quality DD/C 50 %
- b/ the transport and sales expenses will be positively influenced by the fact that the bulk of the output will be distributed through the firm's own celling bureau ic Khartoum; this will allow to bring the wholesale and rotail margins to relatively low levels when compared with the present situation of imported plywood.

The summary of the planned ex factory prices is given in the following table:

	BB	Quality BB/C	C	Averag e price
3 m.n	192.0	172.0	146.0	163.C
4 mm	161.0	144.0	122.0	141.0
5 mm	157.0	140.0	119.0	137.0
6 mm	155.0	138 . 0	2.17.O	135.0
8 mm	152.0	136.0	115.0	192.0
1.0 mm	151.0	135.0	115.0	1.92.0
15 mm /ext.grade/	145. 0	130.0	~	127.0

Prices ex factory Wau /in IS per m3/

Based on the average ex factory prices indicated in the preceeding table, the wholesale and retail prices are calculated in the following way /in LS per m3/:

	Ex factory Wau	Martoum wholesale	Khartoum retail
3 mm	168.0	180.0	198.0
4 mm	141.0	153.0	171.0
5 mm	137.0	149.0	164.0
6 mm	135. 0	147.0	162.0
8 mm	133.0	145.0	160.0
10 mm	132.0	144.0	159.0
15 mm	137.0	149.0	164.0

Note: in the calculation of the sales receipts, the 6 mm plywood is taken as representing the whole group from 5 to 10 mm /considering the relatively small volume of this group, such a simplification cannot affect the exactness of the calculation/.

Sales and costs during the start-up period

Sales /in m3/

	1	Operating year 2	3	
Ex factory Wau	200	650	1,050	
Khertoum wholesale	400	9 00	950	
Khartoum retail	1,900	2,450	2,500	
Total	2,500	4,000	4,500	

Selling prices /in LS per m3/

	Operating year		
	1	2	3
Ex factory Wau	143.3	149.5	154.1
Khartoum wholesale	155.3	161.5	165.1
Khartoum retail	173.3	178.5	181.6

Note: it is assumed that during the first two years the output may be of lower quality /lst year: BB/C-50 %, C-50 %; 2 nd year: BB-10 %, BE/C-50 %, C-40 %/

Sales revenue /in 1,000 LS/

	Operating year			
	1	2 2	3	
Ex factory Weu	28.7	97.2	161.8	
Khartoum wholesale	62.1	145.4	156.8	
Xhartoum retail	329.3	437•3	453.9	
Total	420.1	679.9	772.5	

Operating costs during the running-in period

/as a percentage of the final amount/

	operating years			
	1	2	3	
Level of output	50	80	95	
Sales through Khartoum /as percentage of total Kh.sales/	66	96	99	
Raw materials	58	85	9 8	
Power, water	6 5	87	100	
Spare parts, technical materials	60	٤5	100	
Wages and seleries X/	1 9 0	95	100	
Sales expenses	70	90	100	
Transport costs	66	96	9 9	
Overheads, administrative expenses, insurance	63	90	100	

x/Note: expatriate staff - 100 %

During the first two operating years, the wage bill is to be increased to pay the salaries of two expatriate experts; their salaries, incl. allowances are assumed to be LS 700 and LS 600 per month, the annual expense being LS 15,600 /40 % of this amount to be paid in foreign currency/.

	operating years					
	1	2	ز			
Raw material	83,050	121,710	140,330			
U rea adhesi ve	22,040	32,300	37,240			
Technological flour	2,090	3,060	3,530			
Phenolic foil	11,480	16,830	19,400			
Electrical energy	21,450	28,710	32,995			
Water	700	940	1,080			
Repairs and spare parts	9,030	12,790	15,050			
Consumption of technical material	4,880	6,910	8,130			
Insurance	6,250	7,030	7,810			
Wag es and salaries	71,810	74,940	62,460			
Social security	10,770	11,240	9,380			
Transport costs	25 ,1 80	36 ,6 20	37,770			
Sales expenses	25,950	34,650	38,500			
Flant overheads	27,320	34,150				
Total	323,000	418,470	447,825			
Contingency /5 %/	16,150	20,920	22,390			
Grand Total	339,150	439,390	470,215			

Summary of operating costs during the running-in period /in LS/

6/B Investment costs

Production mechinery and equipment

As stated in chapter 6.2, the delivery of the plant will be carried out on a turn-key basis. It is, however, not excluded that minor items of equipment might be sub-contracted to local suppliers /the value of potential local deliveries is estimated not to exceed approx. 3 % of the total value of production mechinery and equipment/. As the details of such a sub-contract could not be satisfactorily specified in this initial phase of the project, the investment costs of the machinery and equipment are calculated under the assumption that the total sum has to be paid for entirely in foreign currency.

According to the Sudanese industrial investment regulations, it can be reasonably assumed that all machinery and equipment may be granted the full exemption of custom duties.

The straight line of depreciation will be used. The writeoff period will be 10 years for the production machinery and equipment and 5 years for the handling equipment.

Two replacements or repairs of investment character are planned to be carried out in the 7th and 11th operating years /the amount of investment requirement being 20 %, resp. 50 % of the initial cost of the machinery and equipment/. The prices are assumed to be constant. The handling equipment is planned to be replaced every 6th year.

Calculation of the value of erected machinery /in LS/

	Foreign currency	Local currency	Total	
Price CF Port Sudan:				
a/ log yard equipment	2 7, 500	-	27,500	
b/ production line	264,700	-	264,700	
c/ general installations and services	14 0,400	-	140,400	
Total CF Port Sudan	432,600		432,600	
Insurance /1.0 %/	-	4,330	4,330	
Price CIF Port Sudan	432,600	4,330	436,930	

- 145 -

	Foreign currency	Local currency	Total
Price CIF Port Sudan	432,600	4,330	436,930
Exchange tax /14,875 %/	-	64,350	64,350
Development tax /2 %/	-	8,650	8,650
Additional tex /5 %/	-	21,630	21,630
Clearing, insurance, transp to site /2.5 %/	oort -	10,820	10,820
Value of machinery at site	432,600	109,780	542,380
Engineering, supervision / 3 % /	4,330	8 ,650	12,980
Assembly and installation /10 %/	32,440	10,820	43,260
Value of erected machinery	459,370	129,250	598,620
Contingency and inflation allowance /10 %/	46,940	12,920	59,860
Total	516,310	142,170	658,480

Construction works

Owing to the climatic conditions in Hau, the economic life of constructions is assumed to be 20 years. No replacements are planned during the 15 years period included in the cashflow forecast.

Carried forward	175,500
200 m2; 35 XS/m2	7,000
5. Administration building	
1,200 m2; 30 LS/m2	36,000
materials	
4. Warehouses for plywood, spare parts,	
2,400 m2; 50 LS/m2	120,000
for heavy machinery	
3. Operational building, incl. foundations	
1,000 m2; 2.5 LS/m2	2,500
2. Roads on the site	
20,000 m2; 0.5 LS/m2	10,000
incl. log yard	
1. Levelling and preparation of the site,	
A/ <u>Factory at Wau</u>	LS

- 146 -

	L S
	175,500
6. Garage, workshops for vehicles	
100 m2; 20 L S/m2	2,000
7. Concrete drainage /apron/ around	
operational building and warehouses	
350 m; 8 LS/m	2,800
8. Centeen, first-sid center, social services	
300 m2; 35 Ls/m2	10,500
9. Perimeter fence, incl. entrance area	
600 m; 5 LS/m	3,000
10.Boiler house	
150 m2; 40 LS/m2	6,000
ll.Steaming pits	2,400
12.Steam supply	500
13.Water and sewage installation	2,000
14.Fire protection	5,000
Total	209,700
B/ Housing at wer	
1. 2 residential houses for managers	20,000
2. Guesthouse	8,000
Total	28,000
C/ Warehouse and sales section at Khartoum	
1. Land, incl. levelling	750
<pre>1. Land, incl. levelling 500 m2; 1.5 LS/m2</pre>	750
	750
500 m2; 1.5 LS/m2	750 8,000
500 m2; 1.5 ZS/m2 2. Warehouse	
500 m2; 1.5 XS/m2 2. Warehouse 200 m2; 40 XS/m2	
500 m2; 1.5 LS/m2 2. Warehouse 200 m2; 40 LS/m2 3. Administration building	8,000
500 m2; 1.5 LS/m2 2. Warehouse 200 m2; 40 LS/m2 3. Administration building 50 m2; 30 LS/m2	8,000
<pre>500 m2; 1.5 LS/m2 2. Warehouse 200 m2; 40 LS/m2 3. Administration building 50 m2; 30 LS/m2 4. Garage</pre>	8,000 1,500
<pre>500 m2; 1.5 LS/m2 2. Warehouse 200 m2; 40 LS/m2 3. Administration building 50 m2; 30 LS/m2 4. Garage 40 m2; 15 LS/m2</pre>	8,000 1,500

A/ Factory at Jau	209,700
B/ Housing at Wau	28,000
C/ Warehouse and sales section at Khartoum	11,200
D/ Design work /6 5 on A - C/	14,930
E/ Contingency /approx.5 %_on A-D/	13,170
Total	277,000

Transport, office and housing equipment

Price estimates for transport, housing and office equipment are considered as paid for in local currency. Even if partially imported, all these items are available on the local market and no exemptions from custom duties are expected to be granted.

The service life of the vehicles is assumed to be 4 years, the write-off period for the office and housing furniture will be 10 years. It is planned to replace the vehicles every 5th year and the furniture in the 11th operating year /the replacement being made under the condition of constant prices/. LS Equipment to be purchased includes: 10,000 1. 1 lorry 10 [/.au/ 6,000 2. 1 lorry 6 T /Khartoum/ 3. Landrover / Wau/ 5,000 5.000 4. Medium-price car /Khartoum/ 5. Office furniture and equipment 10,000 6. Furniture and equipment for residential 12,000 houses 7. Furniture and equipment for the canteen 8,000 and first-aid center 56,000 Totel 5,600 Contingency /10 %/ Total 61,600

Summery

LS

Preliminary /development/ excenses

The assessment is based on experiences with similar industrial projects and discussions in the Sudanese consultancy institutes and firms. The write-off period will be 5 years.

	Foreign currency ///S/	Local currency / L °/	Total / I S/ -
1. Cost of establishing the company	_	2,000	2,000
2. Tendering and commissioni services, technical assistance	ing 9 ,0 00	9,000	18,000
3. Wages and salaries during construction	³ 1,000	32,600	33,600
4. Training of technical and managerial personnel	12,000	4,000	16,000
5. Interest on capital durin construction x/	ng -	45,000	45,0 00
Total	22,000	92,600	114,600
X/			

Note: according to the timing of construction and installation works, interest on capital during construction is assumed to be 60 % of the sum of interest paid in the first operating year

<u>Schedule</u> of depreciati	Investment cost /IS/	Depreciation rate /%/	Annual deprecistion /LS/
Production machinery	_		_
and equipment	623,830	10	62,380
Handling equipment	34,650	20	6,930
Construction works	277,000	5	13,850
Vehicles	28,600	25	7,150
Furniture	33,000	10	3,300
Preliminary exponses	114,600	20	22,920
Total		in shigh street op one styling office of the	116,530

Note: Beginning from the 6th operating year, the sum of annual depreciation will decrease to ZS 93,610. The replacements of machinery and equipment will not affect the amount of depreciation.

6/C Calculation of annual repayments of loans

As can be seen in the cash-flow for cast, the operational loss in the first operating year has a very negative impact on the financial situation of the plant. To improve the liquidity in the first two years, the following measures in the financing schedule are proposed:

- a/ to postpone the repayment of principal of the medium-term and long-term loans from the Industrial Bank of Sudan for the first, resp. the first two years,
- b/ to use the system of repayment in equal annual instalments. All data concerning the debt service are given in table 7 on the following page.

Loan	Amount /in KS/	Rate	Period		1	Operati : 2	ng year 3	4	5	6	
Supplier' credit	a 150,000	9.5 %	5 years	Princ.	24,814	27,712	29,754	32,581	35,679		
				Int.	14,249	11,891	9,309	6,482	3,384		
				Instal.	39,063	39,0 63	39 ,06 3	39,063	39,063		_
Long-term	400,000	8.5 %	12 years	Princ.	-	-	20,459	22,198	24,085	26,133	è l
loan I.B.S.				Int.	34,000	34,000	34,000	32,261	30, 374	28,326	٤.5
				Instal.	34,000	34,000	54,459	5 4,45 9	54,459	54 ,4 59	54
Medium-	300,000	9.5 %	6 years	Princ.	-	39,375	43,117	47,214	51,700	56,612	6.1
term loan I.B.S.				Int.	28,500	28 ,50 0	24,758	20,661	16,175	11,263	;
				Instal.	28,500	67 ,875	67 ,87 5	67,875	67,875	67,875	€.1
Aggregate repayment principal	of				24,814	66,547	93, 330	101,993	111,464	82,745	
Aggregate	interest				76,749	74,391	68,067	59 ,4 04	49,933	39,589	
Aggregate instalment					101,563	140,938	161,397	161,397	161,397	122,334	36

SECTION 1

また

war war with a sum for the first of the same state of the same sector of the same sector of the same sector of

								Tab	le 7		
13 year 3	4	5	6	7	8	9	1 C	11	12	13	14
29,754	32,581	35,679									
9 , 309	6,482	3,384									
39 ,06 3	39 ,063	39 ,0 63									
20,459	22,198	24,085	26,133	28,355	30,766	33,382	36,220	39, 299	42,640	46,265	50,198
3 4,00 0	32,261	30, 374	28,326	26,104	23,693	21,077	18,239	15,610	11,819	8,194	4,261
54,459	5 4, 459	54,459	54,459	54 ,45 9	54,459	54,459	54,459	54,459	54, 459	54, 45 9	54,4 59
43,117	47,214	51,700	56,612	61,982							
24,758	20,661	16,175	11,263	5,893							
67,875	67,875	67,875	67,875	67, 875			-				
93,330	101,993	111,464	82,745	90 , 337	30,766	33,382	36,220	39,299	42,640	46,265	50, 198
68 ,067	59,404	49,933	39,589	31,997	23,693	21,077	18,239	15,610	11,819	8,194	4,261
161 , 397	161,397	161,397	122,334	122,334	54 , 459	54, 4 59	5 4,45 9	54 , 459	54,459	54,459	5 4,4 59

P.

SECTION 2

6/D Cash-flow forecast /in LS/

	Constru	ction	Operati	ng yeers		
	1	2	l	2	3	4
A. Sources of cash	260,000	99 0, 000	420,100	679,900	772,500	850,100
<pre>l. Financial resources, total</pre>	260,000	990,000				
1.1 Loans		850,000				
1.2 Equity	260,000	140,000				
2. Sales revenue			420 ,1 00	679,900	7 72,500	850,100
B. Uses of cash	253,800	952,1 80	455,713	580 , 328	631,612	636,1 92
<pre>1. Fixed capital expenditure</pre>	253,800	857,880				
1.1 Construction works	110,800	166,200				
<pre>1.2 Machinery end equipment</pre>	108,000	612,080				
1.3 Preliminary expenses	35,000	79,600				
2. Permanent working capital		94 ,300	15,000			
3. Operating costs			339 ,1 50	439,390	470,215	474,795
4. Debt service			101,563	140,938	161,397	161,397
4.1 Interest on loans			76,749	74,391	68,067	59,404
4.2 Repayment of loans			24 , 8 14	66,54 7	93,330	101,993
5. Tax on profit						
C. Surplus /Deficit of cash /A-B/	6,200	37,820	- 35,613	99,572	140,688	C 13, 908
Surplus/Deficit sccumulated		44 ,0 20	8,407	107,979	248,867	462 ,7 75

_1

SECTION 1

ť,

3	4	5	6	7	e	9	10	11	12
™ , 500	850,100	850,100	850,100	850,100	850,100	8 50,1 00	850,100	850,100	850 ,1 0
12 ,500	850,100	850,100	850,100	850 ,10 0	850,100	850,100	850,100	850,100	E50 ,1
				,	0,0,200	0,0,200	0,0,200		
1,612	636,192	664,792	777,043	871,714	684,055	714,225	687,328	1,068,740	691 ,1
		28,600	34,650	124 ,76 6		28,600		379,565	
		28,600	34,650	124,766		28,600		379,565	
n ,215	474,795	474,795	474,795	474,795	474 ,7 95	474,795	4 74 ,795	474,795	474,73
1 207	161 207	1(1 207	100 334	100 014	5 4 450	54 AF0	54 450	54 150	
1,397	161,397	161,397	122,334	122,334	54,459		54,459	54,459	54,49
,067	59,404	49,933	39,589	31,997	23,693	•	18,239	15,160	11,82 42 6
≧ , 330	101,993	111,464	82,745	90 , 3 3 7	30,766	33,382	36,220	39, 299	42,6.1
			145,264	149,819	154,801	156,371	158,074	159,921	161, 9
3 88,0	2 13,90 8	185,30 8	73,057	- 21,614	166,045	135,875	162 ,7 72	-218,64 0	158,
ଞ , 867	462 ,7 75	648,083	721,1 40	699,526	865,571	1,001,446	1,164,218	94 5,57 8	1, 104,6

SECTION 2

i.

Terminal								
value	15	14	13	12	11	10	9	
	E50 ,100	850,100	850,1 00	8 50,10 0	850,100	850,100	850,100	10,100
	850 , 100	850 ,10 0	8 50,1 00	E 50,1 00	850 ,1 00	850 ,100	85 0,1 00	50 ,100
	643,812	695,714	721,955	691 ,1 80	1,068,740	687,328	714,225	:4 ,05 5
218,31			28,600		379,565		28,600	
218,31			2 8, 600		3 7 9,565		28,600	
109,30								
	47 4,795	474 , 795	4 74, 79 ⁵	474 ,7 95	474 , 795	474 ,795	474 , 795	`4 ,7 95
		54,459	54,459	54 ,45 9	54 ,45 9	54 , 459	54 ,45 9	4,459
		4,261	8,194	11,819	15,160	18,239	21,077	5 , 693
		50,19 8	46,265	42,640	39, 299	36,220	33,382	,7 66
	169,017	166,460	164,101	161,926	159,921	158,074	156,371	,201
32 7,61	206 ,288	154 , 386	128 , 145	158,920	-218,640	162 ,7 72	135,875	,045
1,920,92	1,593,317	1,387,029	1,232,643	1.104.498	945.578	1,164,218	1,001,446	5.571

SECTION 3

1.44

and the second
6/E Calculations of the commercial profitability of

the project

The commercial profitability is calculated on the assumption that the present level of plywood price in the Sudan will be cut by more than half. This means that there remains a very broad margin to raise the commercial profitability of the project - if it should be desirable - as will be shown by the sensitivity analysis examples.

The calculations of the commercial profitability are based on two basic data:

cost and profits of an "average" year /arithmatical mean/
cost and profits of the 8th operating year /mediane/
as can be seen from the following table /in LS/:

Total capital investment:

1,220,980

Forecast operational accounts:

	everage Joar	Sth year
Sales	804,913	850,100
Expenses:		
- operating costs	463,006	4 7 4,795
- depreciation	101,210	93,610
- interest paid	33,505	23,693
- total	597,801	592,098
Tex on profit	105,717	154 , 801
Profit:		
- before tax and deprecistion	308,322	351 ,61 2
- before tax	207,112	258,002
- after tax /net profit/	101,395	103,20 1
- after tax and before depre- ciation	202,005	196,811

Return on investment as ratio of:

		average year	8th year
TOT	profit before tax and depreciation		
rc1	investment	2 5. 3 %	28.8 %
POT	profit before tax		
ROI2	investment	14.0 %	21.1 %
POT	profit efter tax and bef. deprec.		
ROI3	investment	16.6 %	16.1 %
ROT	net profit	8.3 %	с. с. с [.]
ROI4	investment	C.J %	8.5 %

Pay-back period as ratio of:

τοτ	investment	
PBP1	profit before tax and deprec.	4.0 years 3.5 years
FBF	investment	(()
1013	provint after tax and before depres.	6.0 years 6.2 years

Commercial profitability as ratio of seles and profit:

RP,	profit before tax		20.2.(
ⁿ¹ 1	sales revenues	20.1 7/	30.3 %
DT	net profit	30.6.0	
RF ₂	sales revenues	12.6 %	ICOL 70

Break-even analysis

The breck-even point /BEP/where revenues and costs, incl. depreciation and tax on profit, are equal will be calculated using the formula:

- 155 -

BEP /in %/ =
$$\frac{FC + 0.3 \text{ SVC}}{SR - VC - 0.7 \text{ SVC}}$$
 x 100

where: FC - fixed costs SVC - semi-variable costs VC - variable costs SR - sales revenues

The calculations are based on the presumed data for the 8th operating year /in LS/:

sales			850,100
variable costs:	raw material	143,190	
	adhesives	61,400	
	water, energy	34,075	
	transport costs	38 ,150	
	contingency	13,770	290,585
fixed costs:	depreciation	93,610	
	interect paid	23,693	
	insurance	7,810	
	overheads	34,150	
	contingency	2,090	
	tax on profit	154,801	316,154
semi-veriable co	osts: remaining operating	g costs,	

	incl. contingency	140,160
	316,154 + 42,048	x 100 = 77.6 %
BEP =	350,100 - 290,585 - 98,112	

Cost /Benefit Analysis /in LS/

		Constr l	iction 2	Op eratin g	; years	3	۵
B. Benefi	<u>ts</u>			· · · · · · · · · · · · · · · · · · ·			
Loans			850 ,000				
Seles	revenues			420,100	679 ,900	772,500	850,10(
Total			850,000	420,100	679,900	772,500	850,1 0(
C. Costs					:		
Fixed	cepital expenditu	re 2 53, 800	٤57,880				
Perman	ent working capit	al	94,300	15,00 0			
Operat	ing costs			339 ,1 50	439,390	470,215	474,795
Debt s	ervice			101,563	140,938	161,397	161,397
Tex on	profit		•				
Totel		25 3, 800	952,180	455,713	580,328	63 1, 612	636,192
B - C		-253, 800	-102,180	-35,613	99 ,57 2	140,888	213,908
B - C ac	cumulated		-355,980	-391,593	-292,021	-151,133	62,775
	nt value /12 %/	-253,800	-91,247	-28,384	70,895	89,605	121,286
NPV 12 %	accumulated		-345,047	-373,431	-302,536	-212,931	-91,645
Net prese	nt value /25 %/	-253,800	-81,744	-22,792	50,981	57,764	70,16 2
NPV 25 %	accumulated	. مو مورود و در ۱۹۹۰ مربور و او ا	-335,544	-358,336	-307,355	-249,591	-179,425

Internal rate of return is calculated using the formula:

IRR =
$$P_1 + \frac{a}{a-b} / P_2 - P_1 / \frac{298,758}{298,758} / \frac{298,758}{298,758} / \frac{298}{298,758} / \frac{298}{298} / \frac{29$$

 $RR = 12 + \frac{25 - 12}{098,756 + 48,734} / 25 - 12 + 0.0598.13$

SECTION

1

10.000

IRK = 23.2 %

3	4	5	6	7	<u>.</u>	9	10	11	1:
772,500	850,100	850,100	850,100	850,100	850,100	850,100	850,100	850,100	850,1
772,500	850,1 00	850,100	850,100	850,100	850,100	850,100	850,100	850,100	850,14
		28,600	34 , 650	124 , 766		28,600		379 , 565	
470,215	4 7 4,795	4 7 4 ,7 95	474 ,7 95	474,795	474,795	474,795	474 , 795	4 74, 795	474,7
161,397	161,397	161,397	122,334	122,334	54,459	54,459	54,459	54,459	54,4~
			145,264	149 ,819	154,801	156,371	158,074	250,921	101,9
63 1, 612	636,192	664,792	777,043	871,714	684,055	714,225	687,328	1,008,740	69 1, 1
140,888	213,908	185,308	73,057	-21,614	166,045	135 , 8 7 5	162,772	-218,640	156 , 91
151,133	62,775	248,083	321,140	299 ,52 6	465,571	601,446	764,218	545,578	704,44
89,605	121,286	93,951	33,022	-E,732	59,942	43,752	46,716	-56,190	36,39
212,931	-91,645	2,306	35,328	26,596	86,538	130,290	177,006	120,816	157, 20
57,764	70,162	48,551	15,342	-3,631	22,250	14,539	13,998	-15,086	8,7.
-24 9,591	-179, 429	-130, 878	-115,536	-119,167	-96,917	-82,378	-68,380	-83,466	-7 4,7
		· · · · · · · · · · · · · · · · · · ·							

SECTION 2

27

<u>3</u>	9	10	11	12	13	14	15	Terminal Volue
0,100	850,100	850,100	850,100	850,100	850,100	850,100	850,100	
0 ,100	850,100	850,100	850,100	850,100	850,100	850,100	850,100	
	28,600		379,565		28,600			218,311
								109,300
4,795	474,795	474,795	474,795	474,795	474,795	474,795	474,795	
04,459	54, 459	54,459	54 , 459	54,459	54,459	54 ,45 9		
54,801	156,371	158,074	159,921	161,926	164 ,1 01	165,460	169,017	
, ,055	714,225	687,328	1,068,740	691,180	721,955	695 ,7 14	64 3, 8 1 2	327,611
				150 000		154 255	006-003	327,611
:56 ,045	135,875	162,772	-218,640	158,920	128,145	154,386	206,288	-
· 55 ,571	601,446	764,218	545 , 578	704,498	832,643	987,029	1,193,317	1,520,928
59 ,942	43,752	46,716	-56, 190	36,393	26,270	28,253	33,625	53,401
86,538	130,290	177,006	120,816	157,209	183,479	211,732	245,357	298,758
22,250	14,539	13,998	-15,086	8,741	5,638	5,404	5,776	9,173
96,917	-82,378	-68,380	-83,466	-7 4,725	-69,087	-63,683	-57,907	-48,734

6/F Sensitivity analysis

Several simple examples showing the impact of the potential future market and costing development indicate the very strong position - in terms of profitability - of the domestic production of plywood /considering the wide price margin when compared with the imports of plywood to the Suden/.

The sensitivity analysis is based on the date of the 8th year of operation /the mediane member of the time series of 15 years taken into account in the study/. The results can be summerized in the following conclusions:

- the selling price exercises the greatest influence on the return on investment of the project as can be seen mainly in the last column of the table: the increase of sales revenues by 9.7 % is sufficient enough to compensate the aggregate impact of increases both of investment and operating costs;
- the increase of investment such a limit the relatively lowert impact on the return on investment (if an eddlional of ect on interest on loans is convert,
- if the sales revenues were increased by 20 %, the return on investment /as ratio of gross profit to investment/ would climb up to 35.1 % with prices remaining only about 50 % of the present price level on the Sudanece market!

	Buata auta	utles rovenues increased by 20 p	Salus revenues out by 10 %	Opers inc.
Potal capital invectment	1,220,980	1,220,920	1,220,980	1,2
Salos revenues	. 50 , 1 00	1,020,120	765,090	Ċ
Expenses, total	592 , 098	59 2,098	592,098	С
of which: oversting costs	- メデキ・ 7 65 フィン タ ・アン	474,795	474,795	5
servesir lien	j, 610	13,510	90 ,61 0	
ling order to grade	, 23	23 ,39 3	10 ,5 93	
Hoofin Sectore text	: <u>*</u> ,2	408,028	172,952	4 -
ess on predit	15.,01	150,813	100,795	1
Trofit aster (an and before deprociation	196,811	264,819	162,807	21
het profit	10,,201	171,100	69,197	
Return on investment as ratic:				
- profit before tax /investment		35.1 %	14.2 %	
 profit after tax and before depreciation /investment 	15.1 %	21.7 😒	13.3 %	
- net profit /investment	8 .5 %	14.0 %	5 .7 %	
Pay-back period as notio of:				
- invostment / profit after tex and before deprecision	6.2 yeers	4. Veors	7.5 years	
Retio of profitability as percentage of:				
- net profit / sales revenues	12.1 2	16.8 y	9 . 0 %	

Secondaria englacia englass /in 123

- 158 -

dies revenues increased by 20 g	Sales revenges cut by 10 %	Operating costs increased by 10 %	Investment cost increased by 10 %	Sales revenues increased to compensate the increase in investment and operating costs by 10 % /to retain the basic ROI/
1,320,980	1,220,980	1,220,980	1,343,080	1,343,080
1,020,120	765,090	850 ,1 00	850,100	932,728
592,098	5 92,098	6 3 9 ,57 8	601,459	64 8 ,938
474,795	474,795	5 22,275	474,795	522,2 7 5
3,510	93,610	93,010	102,971	102,971
13 ,693	≗ ⊳, 693	23,653	23,693	23,093
428 , 022	172,992	210,522	248,641	283,790
150,813	103,795	126 ,31) ²	149,185	1 70 , 2 7 4
264,919	162,807	177,819	202,427	216,487
171,109	69,197	84,209	92,456	113,516
35.1 %	1:.2 %	17.2 %	18 .5 %	21.1 %
21.7 %	13.3 %	14.6 %	15.1 %	16.1 %
14.0 %	5 •7 %	6.9 %	7.4 %	8.5 %
4.∕ years	7.5 years	6.9 years	6.6 years	6.2 years
16.8 %	9.0 %	9 •9 %	11.7 %	12.2 %

6/G Macro-economic evaluation

Velue added

For the calculation of the value added /from the macroeconomic point of view/ the following items are taken into consideration /in LS/:

	op erati 4 t h	ng year 8th
raw material /90 %/, including contingency	135,315	135,315
wages and salaries, including social security and contingency	75,432	75,432
interest paid	59,404	23,693
profit before tax	199,491	258 ,00 2
total value added	469,642	492,442

Ratio of value added = value added x 100

 $RVA_4 = \frac{469,642}{850,100} \times 100 = \frac{55.2\%}{200}$

 $RVA_8 = \frac{492,442}{850,100} \times 100 = 57.9\%$

Social costs/benefits analysis

For the assessment of the national economic profitability of the project a somewhat simplified method /as compared with UNIDO's Guidelines/ was used.

Since the conclusions are commented in Chapter 6, in this Annex only short remarks to the methodology are added: - the output was evaluated in world prices - 250 US \$ per m3 - for the calculation of social opportunity costs the following premiums were used: foreign exchange + 0.5

unskilled lebour - 1.0

- in the component "unskilled labour" the semi-skilled labour trained in the project is included

- the social discount rate is lying between 5 % and 6 %.

	Foreign exchange	Domestic materials	Unskilled labour
Production machinery and equipment	516,310	136,760	5,410
Transport and office equipment	26,400	35,200	
Construction works	13,850	18 0, 050	83,100
Preliminary expenses 1,	22,000	38,000	9,600
Total	578,560	390,010	98,110

Components of investment costs /in 1S/

1/ Interests on capital during construction are excluded

Components of working capital /in LS/

	Foreign	Domestic	Unskilled
	exchange	materials	lebour
Total ^{2/}	35,890	54,590	18,820

2/ The proportions of each component in the cost of raw material and wages are calculated on the same basis as in operating costs.

	1	Foreign 2	exchange 3	4-15	1	D ome stic 2	matu. B
a/ Raw material	8,305	12,170	14,030	14.320	41,525	60,860	70,
b/ Urea adhesive	16,530	24,225	27,930	28,500	5,510	8,075	75
c/ Technological flour					2,090	3,060	3,
a/ Phenolic foil	8,610	12,625	14,500	14,850	2,870	4,205	1,3
e/ Electrical energy					21,450	28,710	32,
f/ Water					700	940	1,
g/ Repairs and spare parts	6,770	9 ,680	11,440	11,440	2,260	3,110	3,0
h/ Consumption of technical materials	3,660	5,180	6,100	6,100	1,220	1,730	2,
i/ Insurance					6,250	7,030	7,
j/ Wages and salaries					40,990	42,270	43,
Expatriate staff	6,240	6,240			9,360	9,360	
k/ Social security					10,770	11,240	9,
1/ Transport costs					23,920	34,790	35,
m/ Sales expenses	1,350	1,730	1,925	1,925	22,905	29,455	32,
n/ Flent overheads and administrative expenses	1,365	1,535	1 ,71 0	1.7:0	23,225	26,135	29,0
Total	52,830	73,385	77,685	78,845	215,045	270,970	286,2
Contingency /approx.5 %/	2,640	3,670	3,880	3,910	10,750	13,550	14,
Total operating costs	55,470	77,055	81,565	82,755	225,795	284,520	300,0

Operating costs /broken-down into components/ in IS

SECTION 1

П

- 161 -

		~
,	-	
		4.5
_		_

. "1	exchange		j r	Domestic		13		nskilled		4 75
	ر	4-15	1	2	3	4-15	1	2	3	4-15
2	14,030	14,320	41,525	60,860	70,170	71,590	33,220	48,680	36 ,1 30	57,280
5	27,930	28,500	5,510	8,075	9,310	9,500				
			2,090	3,060	3,530	3,600				
5	14,500	14,850	2,870	4,205	4,850	4,950				
			21,450	28,710	32,995	32,995				
			700	940	1,080	1,080				
0	11,440	11,440	2,260	3,110	3,610	3,610				
С	6,100	6,100	1,220	1,730	2,030	2,030				
	-	-	6,250	7,030	7,810	7,810				
			40,990	42,270	43,940	43,940	15,220	17,070	18,520	18,520
5			9,360	9,360						
			10,770	11, 240	9,380	9,380				
			23,920	34,790	35,820	36,240	1,200	1,830	1,890	1,910
1	1,925	1,925	22,905	29,455	32 ,7 25	32 ,7 25	2,695	3,465	3,850	3,850
	1 ,71 0	1,710	23,225	26,135	29,025	29,025	2,730	3,070	3,415	3,415
E T	77,685	78,845	215,045	270,970	286,335	288,475	55,1 25	74,115	83,805	84,975
7.2	3,880	3,910	10,750	13,550	14,320	14,380	2,760	3,700	4,190	4,210
	81,565	82,7 55	225,795	284,520	300,655	302,855	5 7, 885	77,815	87,995	89,185

Т

 $\left| \cdot \right|$

SECTION 2

1

1. S. C.

	- 162 -					
Resources flows /in	L S/	Constru		Operating years		
		1	2	1	2	
1. Supplier's loan:	foreign exchange		150,000			
2. Output: foreign e	exchange			197,9 20	330,000	- 31
3. Construction and	replacement costs:					
3:1 Foreign exchange	construction works	5,540	•			
	machinery and equipment	81,430	461,280			
	preliminary expenses	14,000	8,000			
3.2 Domestic materia	ls: construction works	72,020	108,030			
	machinery and equipment	25,920	146,040			-
	preliminary expenses	21,000	17,000			
3.3 Unskilled labour	: construction works	33,240	49,860			
	machinery and equipment	6 5 0	4,760			
	preliminary expenses		9,600			
4. Permanent working	; capital:					
	foreign exchange		35,890			
	domestic materials		47,120	7,470		
	unskilled labour		11,290	7,530		
5. Operating costs:	foreign exchange		Ĭ	55,47 0	77,055	Ł
	domestic materials			225,795	284,520	3 0
	unskilled labour			57,885	77,815	۶
6. Debt service /sup	plier's loan/:					
	foreign exchange			39,063	39,063	31
7. Screp value and p	ermanent working capital					
7.1 Scrap value:	domestic materials					
7.2 Permanent workin	g capital:					
	foreign exchange					
	domestic meterials					
	unskilled labour					
SECTION	N 1					

1

- 162 -

1 1

	rating yea			-	<i>,</i>	_		<u>^</u>	10	
1	2	3	4	5	6	7		9	10	
197,9 20	330,000	375,000	416,670	416,670	416,670	416 , 6 7 0	416,670	4 16, 670	416,670	4 1 6
				12,300	20,790	94,074		12,300		286
			1	16, 300	13,860	29,944		16,300		91
						748				، د
7,470 7,530										
55,470	77,055	81,565	82 , 755	82 ,7 55	8 2,755	82,755	82,755	82 ,7 55	82,755	Be
225,795	284,520	300,655	302,855	302,855	302,855	302,855		302,855	302,855	3 02
57,8 85	77,815	87,995	89,185	89,185	89,185	89,185	89,185	89,185	89,1 85	8 9
39,063	39,063	39,063	39,063	39,063						

SECTION 2

7	8	9	10	11	12	13	14	15	Terminal value
.6 ,670	416,670	4 16, 670	416,670	416,670	416,670	416,670	416,670	416,670	
94 ∍074		12,300		286 , 192		12,300			
:9 , 944		16,300		91, 096		16,300			
748				2 , 27 7					
52 ,755 302 ,855 39 ,185	82,755 302,855 89,185	302,855	82,755 302,855 89,185	82,755 302,855 89,185	82,755 302,855 89,185	82 ,7 55 302 ,855 89 ,185	82,755 302,855 89,185	82,755 302,855 89,185	

218,311

35,890 54,590 18,820

Social costs/benefits analysis /in LS/

SECTION 1

		Cons 1	truction 2	l	2	3
B/	Social benefits, total	نىيىنى، ، كەلى بۇرىپ مەنىك الىغ	225 ,0 00	296,880	495,000	562,500
	Supplier's credit Output Working capital and scrap value		225,000	2 96 ,880	495,000	562,5 00
c/	Social costs, total	270,395	1,088,410	355,533	439,166	462,06 6
	Construction and replacement cost	e 270,395	987,455			
	Permanent working capital		100,955	7,470		
	Op er ating costs			309,000	400,103	423,000
	Debt service /supplier's credit/			39,063	39,063	39,063
B-(Social net benefits	-270,395	-863,410	-58,653	55,834	100,434
	Social net benefits accumulated		-1,133,805	1,192,458	-1,136,624	1,036,190
	Present value of social net benefits /5 %/	-270,395	-821,966	-53,198	48,421	82,657
	Present value of SNB accumulated	-270,395	-1,092,361_	1,145,559	-1,097,138	1 ,014, 48]

1	2	3	0 p e r a 4	ting ; 5	years 6	7	8	9	7.
96,880	495,000	562,500	625,005	625,005	625,005	625,005	625,005	62 5,0 05	625,
96,880	495,000	562, 500	625 ,0 05	625,005	625,005	625 , 005	625 ,005	625, 005	625,
55 ,533	439,166	462,066	466,051	500,801	472,033	598,043	426,988	4 61,7 38	426
				34,750	45,045	171,055		34,750	
7,470								A	
0 9,000	400,103	423,003	426,988	426,988	426,988	42 6,98 8	426,988	426 ,988	42 €
39,063	39,063	39,063	39,063	39,063					
58,653	55,834	100,434	158,954	124,204	152,972	26,962	198,017	163,267	1 96
192,458	-1,136,624	,036,190	-877,236	-753,032	-600,060	-573,098	-375,081	-211,814	-1,
- 33,198	48,421	82,657	124,620	92,656	108,763	18,253	127,721	100,246	<u>11</u>
45 , 559	-1,097,138	,014, 481	-889,861	-79 7 ,205	-688,442	-670,189	-542,468	-442,222	- 32c

SECTION 2

7	8	9	10	11	12	13	14	15
25,005	625,005	625,005	625,005	625,005	625,005	625,005	625,005	951,741
25,005	625,005	625, 005	625,005	62 5,00 5	625 , 005	625 , 005	625,005	625 ,005 326 , 736
98 ,043	426,988	461,738	426,988	947,372	426,988	461,738	426,988	426,988
71,055		34,750		520,384		34,750		
26 , 988	426,988	426 ,988	426,988	426,988	426,988	42 6 ,988	426 ,988	426,988
.6 ,96 2	198,017	163,267	198,017	-322,367	1 98 ,0 17	163,267	198,017	524,753
73 ,09 8	-375,081	-211,814	-13,797	-336,164	-138,147	+25,120	+233,137	+747,890
ે8 ,253	127,721	100,246	115,840	-179,558	104,949	82,450	95,246	240,337
70 ,189	-542,468	-442,222	-326,382	-505,940	-400,991	-318,541	-223,295	+17,043

SECTION 3

- 164 -

Flows of foreign currency /in US \$/

		Const	ruction				
		1	2	1	2	3	_
A/	Outflow of foreign currency, totel	302,910	1,540,440	283,599	348 , 354	361,884	
	1. Outflow of capital, total	302,910	1,540,440	117,189	117,189	117,1 69	
	Construction works	16,620	24,930				
	Machinery and equipment	244 ,290	1,383,840	1 			
	Preliminary expenses	42,000	24,000				
	Permanent working capital		107,670				
	Debt service /supplier's credit/			117,189	117,189	117,1 89	
	2. Current outflow, total			166,410	231,165	24 4,695	
	Adhesives			75,420	110,550	127,440	
	Spares, technical materials	3		31,290	44,580	52,620	
	Expatriate staff			18,720	18,720		
	Rew material			24,915	36,510	42,090	
	Other expenses incl.conting	zency		16,065	20,805	22,545	
B/	Inflow or savings of foreign currency, total		450,000	5 93,760	990,000	1,125,000	1,
	Supplier's credit		450,000				
	Substitution of imports /or exports/			593 ,7 60	990,000	1,125,000	1,
	Permanent working capital /terminal value/			9 (1997) 			
c/	Net savings of foreign currency	-302,910	-1,090,440	310,161	641,646	763,116	
	Net savings of foreign currency accumulated		-1,393,350	1,083,189	-441,543	321,573	1,

	1	2	3	Cper 4	a tin g 5	years ö	7	8	9
)	283,599	348,354	361,884	365,454	402,354	310,635	530,487	248,265	285,165
)	117,189	117,189	117,189	117,189	154,089	62,370	282,222		36,900
:					36,900	62,370	2 82,222		36,900
	117,189	117,189	117,1 89	117,189	117,189				
	166,410	2 31,165	244,695	248,265	248,265	248,265	2 4 8 ,265	248,265	248,265
	75,420	110,550	127,440	130,050	130,050	130,050	130,050	130,050	130,050
	31,290	44,580	52,620	52,620	52,620	52,620	52,620	52 ,6 20	52 , 620
	18,720 24,915	18,720 36,510	42,090	42,960	42,960	42,960	42.060	40.060	
	16,065	20 ,805	22 , 545	22,635	42,900 22,635	42,980 22,635	42,9 6 0 22,635	42,960 22,635	42,960 22,635
	593,760	990,000	1,125,000	1,250,000	1,250,000	1,250,000	1,250,000	.250.000	1,250,000
	593 ,760	990 ,000	1,125,000	1,250,000	1,250,000	1,250,000	1,250,000 1	, 250 , 000	1,250,000
	310,161	641,646	763,116	884,546	847,646	9 39 , 365	719,513 1	,001,735	964,835
-1	,083,189	-441,543	321,573	1,206,119	2,053,765	2,993,130	3,712,643	,714,378	5,679,213

l

SECTION 2

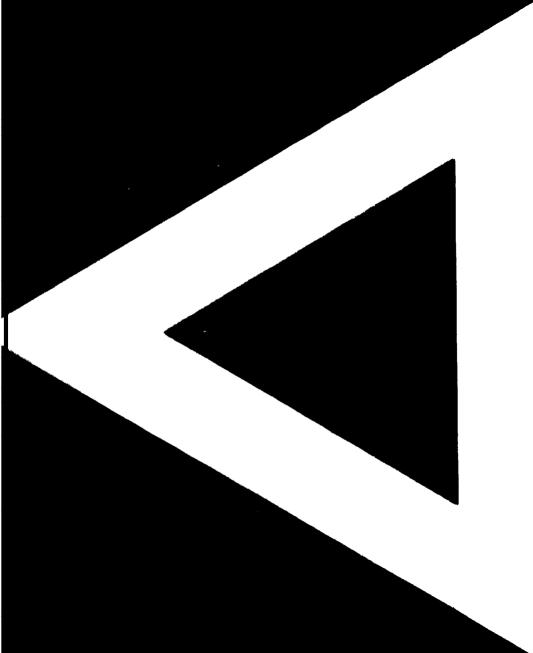
Karangan maka ing kanangan paristan dari paristan dari kanangan kanangan kanangan kanangan kanangan kanangan ka

. ... 1

8		9	10	11	12	13	14	15
	248,265	285 ,1 65	248,265	1,106,841	248,265	285,165	248,265	248,265
-		36,900		858,576		36,900		
<u>.</u>		36 , 900		858,576		36 ,900		
5	248 ,265	248,265	248,265	248,265	248,265	248,265	24 8,265	248,265
) U	130,050	130,050	130,050	130,050	130,050	130,050	130,050	130,050
L Û	52 ,6 20	52 , 620	52,6 20	52 , 620	52,620	52,620	5 2 , 620	52,620
ч.)	42,960	42,96 0	42,960	42,960	42,960	42,960	42,960	42,960
•5	22,635	22,635	22,635	22,635	22,635	22,635	22 ,635	22,635
20 1	250,000	1,250,000	1,250,000	1,250,000	1,250,000	1,250,000	1,250,000	1,357,670
່. 1	,250,000	1,250,000	1,250,000	1,25 0 ,000	1,250,000	1,250, 000	1,250,000	1,250,000
								107,670
:3 1	,001,735	964,835	1,001,735	143 ,15 9	1,001,735	964,835	1,001,735	1,109,405
3	,714,378	5,679,213	6,680,948	6,824,107	7,825,842	8,790,677	9,792,412	10,901,817

الــــــ

References


- 1/ J.K.Jackson, Report to the Government of the Sudan on Forest Management, FAO 1960,
- 2/ H.Eueller-Eckhardt, Final Report to the Government of the Sudan on wood-based board materials, FAO-UNDF, No.TA 2402, 1967
- 3/ L.H.Manderstam and partners /UK/ Ltd, Consulting Engineers, Chipboard Manufacture in Sudan, Feasibility Study, 1974
- 4/ Le visage de la pauvreté, CERES, 45, 1975
- 5/ Statistical yearbook 1973, Democratic Republic of the Sudan, Department of Statistics
- 6/ National Income Accounts and Supporting Tables 1971/72, Khartoum, April 1974
- 7/ World Consultation of Wood-based Panels, New Delhi, February 1975, Doc.No.I
- 8/ Ernst Crosshenning, Die moderne Furniererzeugung, Holz als Roh-und Werkstoff 29, Meft 4/5, 1971
- 9/ Heinrich Segebrock, Reiseführer Sudan, 1963, Bonn, 143 pp. published by Kurt Schroeder
- 10/ Avatafului Munteenu Enrohe, Final Report concerning possibilities of wood utilization in Sudan, Bucuresti, 1972
- 11/ H.Gottwald, D.Noack, Anatomische und Physikalisch-technische Untersuchungen an Holzarten der Republik Sudan, Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, No.64, Reinbeck, 1966
- 12/ Suden Industrial Research Institute, Pre-Investment Study of a Plant for the Manufacture of Plywood, March 1970
- 13/ Libor Putna, Sudan Forests and Forest Industries, 1971
- 14/ Johannes Weck, Aussichten einer Forst- und Holzwirtschaft in Suden, 1960
- 15/ S.A.Draper, Imatong Forestry Project, July 1973
- 16/ S.Bolza, W.G.Keating: African Simbers The Properties, Uses and Characteristics of 700 Species, ...elbourne, 1972

- 166 -

List of background papers

Sudan Foreign Frade Analysis 1969-1973, Martoum, April 1975 Transport Statistical Bulletin 1974, Pational Flanning Commission, Knartoum Internal Trade Statistics 1972, Lational Flarning Commission, Khartoum Five Year Plan of Economic and Social Development /emended/, 1970/71 - 1974/75, National Planning Commission, Khartoum Abdel Wahis Yousif, Southern Sudan in Perspective, Khartoum J.M.Bryer, S.Haugaard, J.B.Smart, Reactivation of Forestry Production in Southern Sudar, FAO, 1973 Landerkurzberichte Sudan, 1972 C.L.James, Report to the Government of Sudan on a forest resource survey program, FAO, 1968, No.TA 2515 D.A.Stellingwerf, Report to the Government of the Sudan, Forest Inventory and Aerial Photographs, FAO 2009, 1965 Saini, Report to the Government of Sudan on present wood consumption and future requirements, 146 1954 P.A.Burguet, Summary Report to the Government of the Suden on the utilization of Sudebase woods, 1.10, 1903 K.O.Khalifa, Estimate of the Forest Pescurves of the Sudar and its yield through the interpretation of sir photographs, 1954.

