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Foreword

It has become abundantly clear that fossil fuel powered industrialization as we have known
it has had unanticipated adverse environmental impacts. One of the most significant
challenges faced by global leaders today is how to achieve inclusive and sustainable industrial
development, hereby creating jobs and reducing poverty, while combating climate change and
resource depletion. As the world gears up for common actions to meet this end, one must
ask whether current ‘green growth’ efforts towards low-carbon resource-efficient industrial
development will lead to the sustained generation of new jobs.

The present paucity of policy-related information on the impact of green industrial investment
on employment prevents policy makers and businesses from obtaining a full picture of
the potential benefits of such investments, and thus to undertake investments that will be
successful in terms of achieving both environmental protection and job creation. The absence
of this information might cause the great expectation for green industries to dwindle. Indeed,
it might jeopardize the global efforts to meet the emission reduction targets set by the
Intergovernmental Panel on Climate Change (IPCC) to control climate change.

This project comes at a time when policy makers are focusing their national strategies on
employment creation while they face a still faltering global economy with slow and uneven
recovery. Against this background, there is a pressing need to combine the objectives of green
growth with the broader targets for economic development in order to achieve a sustainable,
low-carbon trajectory. Developing countries in particular will have to balance these objectives
so as not to sacrifice opportunities to expand decent employment opportunities and reduce
poverty. Designing and implementing effective industrial policies within all countries at all
levels of development and effective international coordination will be critical for expanding
green investments and hence facilitating the transformation to a global low-carbon economy.

The project has resulted in two reports. Volume | focuses on the employment generation
opportunities of measures to reduce carbon dioxide emissions through investments in
renewable energy and energy efficiency, and reviews some of the main considerations with
respect to advancing effective industrial policies. The report concludes that if most countries
devote about 1.5 percent of their economy’s GDP to such investments each year, it will be
possible for the global economy to meet the IPCCs’ 20-year intermediate emission reduction
target, while also enjoying energy security for supporting sustainable growth rates.

Volume | also shows that there are clear net-gains in employment generation in shifting from
conventional energy sources to renewable energy sources and enhancing energy efficiency.
These gains have wider societal implications, as decent job opportunities are likely to open
up for people in the informal sector with low educational attainment levels. Targeted industrial
policies will need to help these groups realize such opportunities as well as providing the
training and skill acquisition needed for other positions created through green investments.

Volume Il examines the specific industrial policy measures promoting a low-carbon transition
in five focus countries, specifically Brazil, Germany, Indonesia, the Republic of Korea and South
Africa, through a compilation of expert review studies. Across all levels of development, major
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attention is being paid to the threats of climate change and opportunities of pursuing a low-
carbon development path, and dedicated efforts are presented to operate efficient industrial
policies to enhance green growth. However, it is clear that the major focus in developing
countries will need to be on green investments and on creating an enabling environment for
such investments if the global economy is to effectively combat climate change.

It is our pleasure to note that the reports are the result of a major effort that has brought
together the expertise of UNIDO and GGGI as well as experts from around the world. We hope
that the findings of this project will provide policy makers, other global actors and businesses
with a bigger picture of the employment generation opportunities of investing in green energy
sources. At the same time, we hope that the specific attention to industrial policy will inspire
countries when they formulate their own industrial development strategies and approaches,
so that they are prepared to make their own effective contributions to the transformation to a
global clean energy economy.

3

ﬂd

Li Yong Yvo de Boer
Director General of UNIDO Director-General of GGGI



Acknowledgements

This report was produced under a joint research project between the United Nations Industrial
Development Organization (UNIDO) and the Global Green Growth Institute (GGGI) and is Volume
of atwo-volume set of reports entitled Global Green Growth: Clean Energy Industry Investments
and Expanding Job Opportunities. The report was prepared by Robert Pollin, Distinguished
Professor of Economics and Co-Director of the Political Economy Research Institute (PERI),
University of Massachusetts-Amherst; Heidi Garrett-Peltier, Assistant Research Professor,
PERI; James Heintz, Andrew Glyn, Professor of Economics and Associate Director of PERI; and
Shouvik Chakraborty, PERI Research Fellow. The methodology used for the calculations in this
report arises out of the long-standing work by PERI. Experts at UNIDO and GGGl involved in the
project development were Nobuya Haraguchi (UNIDO), Ascha Lychett Pedersen (international
consultant at UNIDO) and Da Yeon Choi (GGGI) under the overall guidance of Ludovico Alcorta,
Director of the Research, Statistics and Industrial Policy Branch at UNIDO, and Myung Kyoon
Lee, Director of Knowledge Development & Management at GGGI.

Country experts contributed with crucial information related to the country-specific sections
of the report. These were Alexandre d’Avignon (Federal University of Rio de Janeiro, Brazil);
Wolfgang Eichhammer (Fraunhofer Institute for Systems and Innovation Research, Germany),
Yayan Satyakti (Padjadjaran University, Indonesia), Sung Jin Kang (Korea University, the
Republic of Korea) and Melvin Ayogu (American University of Sharjah, United Arab Emirates).

A range of people and organizations provided invaluable research support at various stages of
this report: Kathleen Daniel, Rabia Ferroukhi and Michael Taylor of the International Renewable
Energy Agency (IRENA) and IRENA more generally for providing the report with unpublished
data from their ongoing important research work; Alexander Herzog-Stein and Sabine Nemitz
at the Macroeconomic Policy Institute (IMK) in Berlin, Germany; and PERI-staff Yoolbee Ahn,
Thomas Herndon, Yeohyub Yoon, Ying Chen and Jeannette Wicks-Lim.

The report benefitted considerably from discussions at two workshops jointly organized by
GGGland UNIDO in Seoulon 21-22 May 2013 and New York City on 12-13 December 2013. Special
thanks go to Alex Bowen (London School of Economic), Richard Freeman (Harvard University)
and Ozlem Onaran (University of Greenwich) as well as other UNIDO and GGGI colleagues, who
attended the workshops in Seoul and New York City, and provided insights useful to the work
on the country studies. Teresa Ghilarducci, David Howell and Richard McGahey of the New
School for Social Research also made valuable contributions to the New York workshop. Daniel
Ogbonnaya (GGGI) provided excellent support in preparing and organizing the workshop in
Seoul. The New School for Social Research generously offered meeting space in their beautiful
Orozco Meeting Room as well as meals for the December 2013 workshop. Special thanks go to
Dean William Milberg and Shayne Trotman for their support in this regard.

The final draft benefitted from valuable insights by Patrick Nussbaumer and Alexander Haider
from UNIDO as well as Colin McCormick, Kurnya Roesad, Sharmala Naidoo and Yong Sung Kim
from GGGlI. Finally, administrative support was provided by Iguaraya Saavedra (UNIDO), Debbie
Zeidenberg and Emily Bloch (PERI) as well as PERI’s Administrative Director Judy Fogg.






Table of Content

FOREWORD
ACKNOWLEDGEMENTS
ABBREVIATIONS AND ACRONYMS

SUMMARY OF MAIN FINDINGS
CHAPTER 1: THE GLOBAL CLEAN ENERGY CHALLENGE

CHAPTER 2:  PROSPECTS FOR NON-RENEWABLE ENERGY
CHAPTER 3:  PROSPECTS FOR RENEWABLE ENERGY SOURCES
CHAPTER 4:  PROSPECTS FOR ENERGY EFFICIENCY

SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

CHAPTER 5: DOMESTIC PRODUCTIVE CAPACITY, IMPORTS, AND
INDUSTRIAL POLICY FOR EMPLOYMENT GENERATION

CHAPTER 6:  METHODOLOGICAL ISSUES IN EMPLOYMENT ESTIMATES
CHAPTER 7: EMPLOYMENT CREATION THROUGH CLEAN ENERGY INVESTMENTS

SECTION 3: INDIVIDUAL COUNTRY STUDIES

CHAPTER 8:  BRAZIL— CLEAN ENERGY INVESTMENTS, EMISSIONS REDUCTIONS
AND EMPLOYMENT EXPANSION

CHAPTER 9:  GERMANY - CLEAN ENERGY INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT EXPANSION

CHAPTER 10: INDONESIA - CLEAN ENERGY INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT EXPANSION

CHAPTER 11:  SOUTH AFRICA - CLEAN ENERGY INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT EXPANSION

CHAPTER 12: THE REPUBLIC OF KOREA - CLEAN ENERGY INVESTMENTS,
EMISSIONS REDUCTIONS AND EMPLOYMENT EXPANSION

CHAPTER 13: CONCLUSION

TECHNICAL APPENDICES

APPENDIX 1: CALCULATIONS AND CONVERSIONS FOR ESTIMATING
THE EFFECTS ON FOSSIL FUEL PRICES OF A CARBON PRICE

APPENDIX 2: ESTIMATING DOMESTIC CONTENT OF CLEAN ENERGY INVESTMENTS
APPENDIX 3: METHODOLOGY AND DATA SOURCES FOR AGGREGATE

EMPLOYMENT ESTIMATES
APPENDIX 4: EMPLOYMENT DECOMPOSITIONS BASED ON LABOR FORCE SURVEY DATA
APPENDIX 5: SCALED EMPLOYMENT EFFECTS
APPENDIX 6: ALTERNATIVE WEIGHTING PROPORTIONS FOR AGGREGATE CLEAN ENERGY

INVESTMENTS: ROBUSTNESS TESTS OF CLEAN ENERGY EMPLOYMENT
ESTIMATES

15
17
27

49
61

33

97

99
123

145

175

177

189

201

213

227
243
251

253
255

257
269

275

281



GLOBAL GREEN GROWTH

10

REFERENCES

INDEX

LIST OF TABLES

Table S.1:
Table 1.1:

Table 1.2:
Table 1.3:

Table 1.4:

Table 2.1:
Table 2.2:

Table 2.3:
Table 2.4:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:

Table 3.8:
Table 3.9:
Table 3.10:

Table 4.1:

Table 4.2:
Table 4.3:
Table 4.4:
Table 5.1:

285
293
Summary of emissions reduction and employment expansion effects
through 20-year country-specific clean energy investment projects 26
Energy consumption and CO2 emissions levels for world and selected
countries, 2010 32
World income-level groupings and CO2 emissions levels, 2010 34
Projected world CO2 emissions levels for 2030 by U.S. Energy
Information Administration and OECD International Energy Agency 36
Determinants of per capita CO2 emissions levels by country, 2010:
Level of development, energy intensity and energy mix 37
CO2 emissions levels from alternative fossil fuel energy sources 50
Weighted averages of global emission levels for oil, coal,
and natural gas, 2010 51
Total levelized costs for electricity generation from alternative
energy sources 56
Impact on CO2 emissions of coal-to-natural gas fuel switching within
U.S. EIA’s 2030 Reference case Global Energy Consumption Scenario 59
Onshore wind: Estimated levelized costs of electricity (LCOE)
generation in non-OECD countries/regions, 2011 66
Large-scale hydro projects: Estimated levelized costs of electricity
(LCOE) generation in non-OECD countries/regions, 2011 66
Small-scale hydro projects: Estimated levelized costs of electricity (LCOE)
generation in non-OECD countries/regions, 2011 67
Solar photovoltaic: Estimated levelized costs of electricity (LCOE)
generation in non-OECD countries/regions, 2011 67
Biomass: Estimated levelized costs of electricity (LCOE) generation
in non-OECD countries/regions, 2011 68
U.S. renewable energy costs: Estimated levelized costs of electricity
(LCOE) generation, 2011 69
U.S. energy costs: Estimated average levelized costs of renewables
vs. fossil fuels and nuclear for plants entering service, 2017 70
Estimating fossil fuel price increases through carbon pricing 73

U.S. capital expenditure costs for building renewable electricity capacity 75
Percentage emissions levels reductions over 30-year cycle relative

to gasoline or diesel fuel over 30-year cycle 76
Main sources of energy efficiency investments in U.S. commercial

building electricity use 86
Estimates of Investment Costs of Energy Efficiency Gains 88
Change in energy efficiency levels, 1990-2011 90
Estimates of direct rebound effects from two recent survey papers 94

Brazil. Domestic content of alternative energy sectors: Levels in 2005
I-O tables compared to a 20 percent domestic content decline for
tradable activities 113



Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:

Table 6.6:
Table 7.1:

Table 7.2:
Table 7.3:

Table 7.4:
Table 7.5:

Table 7.6:
Table 7.7:

Table 7.8:

Table 7.9:

Table 7.10:
Table 7.11:

Table 7.12:
Table 7.13:

Table 7.14:
Table 7.15:

Germany. Domestic content of alternative energy sectors:
Levels in 2007 I-0 tables compared to a 20 percent domestic
content decline for tradable activities

Indonesia. Domestic content of alternative energy sectors:
Levels in 2008 I-O tables compared to a 20 percent domestic
content decline for tradable activities

South Africa. Domestic content of alternative energy sectors:
Levels in 2005 I-O tables compared to a 20 percent domestic
content decline for tradable activities

Republic of Korea. Domestic content of alternative energy sectors:

Levels in 2008 I-O tables compared to a 20 percent domestic content

decline for tradable activities

Reliance on fossil fuels and imports as energy sources in selected
countries, 2011

Net fossil fuel trade balance as share of GDP, 2001-2010
Change in energy-sector output multipliers, 1995-2007
Indonesia’s trade balance, 1995 and 2007

Median energy-sector output multiplier levels, 2007
Estimated energy sector labour productivity growth rates

Growth rates of national GDP and clean energy sector labor
productivity and output multipliers

Possible impacts on employment from varying rates of GDP and
labor productivity growth

Brazil. Employment creation through spending in alternative
energy sectors, 2005

Brazil. Summary employment figures, 2005

Brazil. Composition of employment generated through alternative
energy sector spending, 2005

Brazil. Educational profile of employment generated through
alternative energy sector spending, 2005

Germany. Employment creation through spending in alternative
energy sectors, 2007

Germany. Summary employment figures, 2007

Germany. Composition of employment generated through
alternative energy sector spending, 2007

Germany. Educational profile of employment generated
through alternative energy sector spending, 2007

Indonesia. Employment creation through spending in
alternative energy sectors, 2008

Indonesia. Summary employment figures, 2008

Indonesia. Composition of employment generated through
alternative energy sector spending, 2008

Indonesia. Educational profile of employment generated
through alternative energy sector spending, 2008

South Africa. Employment creation through spending
in alternative energy sectors, 2005

South Africa. Summary employment figures, 2005

South Africa. Composition of employment generated
through alternative energy sector spending, 2005

114

114

115

115

116
118
136
137
137
138
141

142

147
149

150
151

154
155

156

157

158
160

161

162

164
165

166

11



GLOBAL GREEN GROWTH

12

Table 7.16:

Table 7.17:

Table 7.18:
Table 7.19:

Table 7.20:

Table 8.1:
Table 8.2:
Table 8.3:

Table 8.4:
Table 8.5:
Table 8.6:
Table 8.7:

Table 9.1:
Table 9.2:
Table 9.3:

Table 9.4:

Table 9.5:

Table 10.1:
Table 10.2:

Table 10.3:
Table 10.4:

Table 10.5:
Table 10.6:

Table 10.7:

Table 11.1:

Table 11.2:
Table 11.3:

Table 11.4:

South Africa. Educational profile of employment generated
through alternative energy sector spending, 2005

Republic of Korea. Employment creation through spending in
alternative energy sectors, 2008

Republic of Korea. Summary employment figures, 2008

Republic of Korea. Composition of employment generated through
alternative energy sector spending, 2008

Republic of Korea. Educational profile of employment generated
through alternative energy sector spending, 2008

Brazil. Basic energy indicators, 2010
Brazil. Energy consumption and emissions, 2010

Brazil relative to world averages in share of hydro power and
CO2 emissions, 2010

Brazil. Energy consumption and emissions: 2010 actuals and
alternative official projections

Brazil. Estimated cost for Brazil to move from IEA’s 2030
BAU to Low Carbon case

Brazil. Employment impact of clean energy investments
vs. fossil fuel spending

Brazil. Projected employment impacts of clean energy investments
after 20 Years under alternative labor productivity assumptions

Germany. Basic energy indicators, 2010
Germany. Energy consumption and emissions, 2010

Germany. Energy consumption and emissions: 2008 actuals and
alternative official projections

Germany. Employment impact of clean energy investments
vs. fossil fuel spending

Germany. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

Indonesia. Basic energy indicators, 2010

Indonesia. Energy consumption and emissions: 2010 actuals
and alternative official projections

Indonesia. Clean energy 20-year investment growth trajectory

Indonesia. Cost assumptions and capacity expansion for
clean renewables and energy efficiency investments

Indonesia. Impact of clean energy investment relative to 2030
BAU scenario

Indonesia. Employment impact of clean energy investments
vs. fossil fuel spending

Indonesia. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

South Africa. Basic energy indicators, 2010

South Africa. Energy consumption and emissions:
2010 actuals and alternative official projections

South Africa. Electricity consumption levels and sources of supply
under alternative scenarios, 2010-2030

South Africa. Clean energy 20-year investment growth

167

169
170

171

172
177
178

179

181

184

186

187
190
191

192
198

199
201

203
204

206

207

208

210
213

215

218
221



Table 11.5:

Table 11.6:

Table 11.7:

Table 11.8:
Table 12.1:
Table 12.2:

Table 12.3:
Table 12.4:
Table 12.5:

Table 12.6:
Table 12.7:

Table 12.8:

Table 13.1:

Table A3.1:

Table A4.1:
Table Ag4.2:
Table A4.3:

Table Ag.1:
Table As.2:

Table As.3:
Table As.4:
Table As.5:
Table As.6:
Table As.7:
Table A6.1:

Table A6.2:

South Africa. Cost assumptions and capacity expansion for clean
renewables and energy efficiency investments

South Africa. Impact of clean energy investments relative to
2030 BAU scenario

South Africa. Employment impact of clean energy investments
vs. fossil fuel spending

South Africa. Projected employment impacts of clean energy
investments after 20 years under alternative labor productivity
assumptions

Republic of Korea. Basic energy indicators, 2010

Republic of Korea. Energy consumption and emissions: 2010 actuals
and alternative official projections

Republic of Korea. Fiscal expenditure on green growth, 2009-2013
Republic of Korea. Clean energy 20-year investment growth trajectory

Republic of Korea. Cost assumptions and capacity expansion for clean r

enewables and energy efficiency investments

Republic of Korea. Impact of clean energy investments relative to
2030 BAU scenario

Republic of Korea. Employment impact of clean energy investments
vs. fossil fuel spending

Republic of Korea. Projected employment impacts of clean energy
investments after 20 years under alternative labor productivity
assumptions

Summary of emissions reduction and employment expansion effects
through 20-year country-specific clean energy investment projects

Industries and weights for renewable energy, energy efficiency and
fossil fuels in the I-O models

Data sources for employment decomposition estimates
Average monthly earnings in local currency units, 2012

Comparison of energy-related employment characteristics to
national averages

Indexes to employment estimates scaled by domestic wage levels

Brazil. Employment effects of alternative energy investments
scaled by domestic wage levels

Germany. Employment effects of alternative energy investments
scaled by domestic wage levels

Indonesia. Employment effects of alternative energy investments
scaled by domestic wage levels

South Africa: Employment Effects of Alternative Energy Investments
Scaled by Domestic Wage Levels

Republic of Korea: Employment effects of alternative energy
investments scaled by domestic wage levels

Summary of aggregate job creation estimates by country,
scaled to domestic wage levels

Alternative weighting proportions for aggregate renewable energy
investment

Alternative weighting proportions for aggregate clean energy
investments between renewables and energy efficiency

222

223

224

225

228

229
232
236

237

238

239

241

248

260
269
271

272
276

276

277

278

279

280

280

282

284

13



GLOBAL GREEN GROWTH

14

LIST OF FIGURES

Figure 1.1:

Figure 3.1:

Figure 3.2:

Figure 4.1:

Figure 5.1:

Figure 9.1:

Figure 11.1:

Figure 12.1:

Country-by-country per capita CO2 emissions and GDP, 2010

Typical levelized cost ranges for renewable power generation
technologies, 2012 and 2020

Food commodity price index, January 1991-September 2013

McKinsey Global Greenhouse Gas Abatement Cost Curve beyond BAU,
2030

Indonesia. Fossil fuel sector net exports as share of GDP and real

GDP growth rate, 2001-2010

Germany. A model of a flexible renewable energy supply system for
Germany, 2050

South Africa. Alternative greenhouse gas emissions trajectories

through 2050: BAU vs “Peak, Plateau and Decline” (PPD)

Republic of Korea. Government R&D spending on environment
and energy relative to other OECD countries

35

64
78

87

119

196

217

235



Abbreviations and Acronyms

BAU
BTU
CCs
CFL
CGE
CO2
EIA
EPA
GDP
GHG
GW
GWh
HVAC
I-0
IEA
IPCC
IRENA
KW
KWh
Mmt
Mt
MW
MWh
NAS
OECD
PV
Q-BTU
R&D
ROK
UNFCCC

Business As Usual

British Thermal Unit

Carbon Capture and Sequestration
Compact Fluorescent Light

Computable General Equilibrium

Carbon dioxide

Energy Information Administration (U.S.)
Environmental Protection Agency (U.S.)
Gross Domestic Product

Greenhouse Gas

Gigawatt (1x10° watts)

Gigawatt-hour

Heating, Ventilation, and Air Conditioning
Input-Output

International Energy Agency
Intergovernmental Panel on Climate Change
International Renewable Energy Agency
Kilowatt

Kilowatt-hour

Million metric tons

Metric tons

Megawatt (1x10® watts)

Megawatt-hour

National Academy of Sciences (U.S.)
Organization for Economic Cooperation and Development
Photovoltaic (Solar)

Quadrillion BTU (1x10* BTU)

Research and development

Republic of Korea

United Nations Framework Convention on Climate Change

15






SUMMARY OF MAIN FINDINGS

As of 2010, total world greenhouse gas (GHG) emissions amounted to about 45,000 million
metric tons (mmt). In order to control climate change, the Intergovernmental Panel on Climate
Change (IPCC) estimates that total emissions will need to fall by about 40 percent as of 2030,
to 27,000 mmt, and by 8o percent by 2050, to about 9,000 mmt.

Of the 45,000 mmt of total GHG emissions, about 82 percent are generated by energy-based
sources. This includes 33,615 in CO, emissions from energy sources, equaling about 75 percent
of total GHG emissions itself.

This report focuses on measures to reduce CO, emissions from energy-based sources. Ex-
pressed on a per capita basis, global CO, emissions in 2010 averaged 4.6 metric tons (mt). We
can express our intermediate emissions reduction goals in terms of this measure, within the
framework of reducing the absolute level of carbon emissions by 40 percent, to around 20,000
mmt, within 20 years. With global population expected to rise to about 8.4 billion by 2030, this
means that carbon emissions will need to be at no more than 2.4 mt per capita within 20 years.

The purpose of this report is to examine policy frameworks through which these CO, emission
reduction targets can be met, without inhibiting the opportunities for economies to grow and
expand well-being for their citizens. We are especially concerned that developing countries be
able to grow at healthy rates as the global clean energy transition advances. For developing
countries to sacrifice economic growth as a means to reverse climate change will also entail
sacrificing opportunities to expand decent employment opportunities and dramatically reduce
poverty. Limiting opportunities for countries to proceed on a healthy economic growth trajectory
will also face formidable political resistance. This resistance will in turn create unacceptable
delays in proceeding with effective policies to control climate change.

The core arguments of this report are simple. We argue that the global economy is capable of
meeting the IPCCs’ 20-year intermediate emission reduction target if most countries - including
especially most countries with either large GDPs or population - devote about 1.5 percent per
year of their economy’s GDP to investments in energy efficiency and clean renewable energy
sources. These clean renewable sources include solar, wind, geothermal, and small-scale
hydropower, as well as low-emissions bioenergy sources. They exclude corn ethanol and other
high-emissions bioenergy sources, whose use generates CO, emissions at levels equivalent
to oil. We conclude that, as a general proposition, countries that sustain this 1.5 percent of
GDP level of annual investments in energy efficiency and clean renewables will also be able
to maintain economic growth at healthy rates while providing a sufficient supply of energy
resources to undergird growth. These investments in energy efficiency and renewable energy
will also be a net new source of job opportunities. More specifically, new investments in energy
efficiency and renewable energy will generate more jobs for a given amount of spending than
maintaining or expanding each country’s existing fossil fuel sectors.

Global GDP in 2013 was $87 trillion. Thus, 1.5 percent of global GDP is about $1.3 trillion at
current GDP levels. This would mean channeling about $650 billion each for clean renewables
and energy efficiency investments, if new investment funds were divided evenly between these
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two sectors. If spending were instead divided at something closer to 1 percent for renewables
and o.5 percent for energy efficiency, as will probably be appropriate in most country settings,
that entails devoting about $870 billion for renewables and $435 billion for energy efficiency
at the current global GDP level. These clean energy investment figures would also increase
annually, corresponding with the growth of each country’s GDP.

As of the most recent credible data, total global renewable investments were at $227 billion
in 2011 and energy efficiency investments were between $150 and $300 billion. This totals
between $377 and $527 billion, or between 0.4 and 0.6 percent of global GDP. In other words,
current global investments in clean energy are at roughly 30-40 percent of where they need to
be to reach the 1.5 percent of GDP level. It is clear that a great deal needs to be accomplished
to reach the 1.5 percent figure. At the same time, with the current investment level already at
between 0.4 and 0.6 percent of global GDP, getting to a 1.5 percent of GDP figure is not so far
out of reach as to appear implausible.

Industrial Policies for Clean Energy Transition

To bring global clean energy investments up to about 1.5 percent of global GDP will certainly
requirethe development of effective industrial policies forcountries atall levels of development.
This begins with governments playing a leading role in adapting clean energy technologies. As
the UNIDO 2013 Industrial Development Report usefully summarized specifically with respect
to uptake of green technologies in manufacturing, “technological change rarely takes place
in a vacuum, and often requires incentives. Success stories of new energy technologies are
the product of forward-thinking ambitious government policies,” (UNIDO, 2013, p. 124).
Governments will also need to play a leading role in delivering affordable and flexible financing
arrangements for clean energy investments to be sustained on a large-scale basis.

In conjunction with the need for a major expansion in clean energy investments worldwide, it
is also the case that the burning of oil, coal and natural gas will need to contract substantially
in absolute terms throughout the globe to achieve the IPCC’s emissions reduction targets.
This conclusion is unaffected by whether new fossil fuel reserves are discovered, such as
the so-called “pre-salt” deposits in Brazil or elsewhere. It is also unaffected by whether new
technologies, such as hydraulic fracturing - i.e. “fracking” - are employed to produce fossil fuel
energy more cheaply. This means that, over the next generation and further into the future, all
owners of fossil fuel assets, including public sector entities as well as private oil, coal, and
natural gas corporations, will, by necessity, experience a major decline in the value of these
fossil fuel holdings.

Workers tied to the oil, coal, and natural gas industries will inevitably face job losses as a
consequence. Economic policies are therefore needed in all countries to assist these workers,
aswell as their families and communities, with transitional support into new areas of economic
activity, where decent job opportunities are expanding. In most countries, the energy efficiency
and clean renewable energy sectors will be among the most important new areas of expanding
job opportunities.



Country-Specific Perspectives

As of 2010, total global energy consumption amounted to about 510 quadrillion BTUs (Q-BTUs)
from all energy sources - including fossil fuels, all renewable sources and nuclear power. This
is while total CO, emissions were at 33,615 mmt, or 4.6 mt per capita. The two leading countries
in terms of both energy consumption and CO, emissions are China and the United States
(U.S.). Their respective levels of energy consumption were nearly identical in 2010, with China
at 100.9 Q-BTUs and the U.S. at 98 Q-BTUs. Together, China and the U.S. account for nearly
39 percent of world energy consumption. In terms of carbon emissions, China is at a higher
level, at 7,997 mmt, or 6 mt per capita. The U.S. produces 30 percent fewer emissions overall,
at 5,637 mmt, but three times more emissions on a per capita basis, at 18.2 mt. Together, they
account for 43 percent of all global carbon emissions. Obviously, we must give major attention
to developments in the U.S. and China - both the specifics within both countries and their
impact in combination - in terms of mounting an overall project for controlling climate change.

But the cases of the U.S. and China also underscore another fundamental fact. Despite their
obvious centrality, they are still, in combination, contributing well less than half to the overall
level of global carbon emissions. This therefore means that we must be at least equally
concerned to develop policies that apply to all other countries. This report focuses in particular
on the challenges faced by five specific countries: Brazil, Germany, Indonesia, South Africa,
and the Republic of Korea (ROK).

Economic conditions obviously range widely between these five countries. But they are all, in
their own distinctive ways, leading economies within their respective regions of the world. It
is also notable that with all five selected countries, policymakers have already proposed clean
energy/emissions reduction policy frameworks ranging between 1-2 percent of their country’s
GDP. Our proposal for a clean energy project sustained at about 1.5 percent of GDP therefore
builds from the perspectives developed within our five selected countries. In examining these
individual cases in some depth, we will also clearly be able to gather insights on a broader set
of countries at various levels of development.

Consider, for example, the case of Indonesia, which is defined as a lower-middle income
economy according to the World Bank. Indonesia aims to grow rapidly over the next 20 years -
i.e. in the range of 6-7 percent per year - following the examples in recent decades of the ROK,
China, India and other fast-growing Asian economies. However, the Indonesian government’s
own estimates show that the country’s CO, emissions will increase by more than 500 percent
by 2030 relative to 2010 if the economy’s GDP growth is fueled primarily by oil, coal, and
natural gas. By contrast, we estimate that, under reasonable assumptions, a significant
share of Indonesia’s energy needs for fueling a rapid growth trajectory can be met through
investments in energy efficiency and clean renewable energy, as long as Indonesia channels
about 1.5 percent of GDP annually into these clean energy areas. We also estimate Indonesia’s
investments in energy efficiency and renewable energy can also be a significant new source of
job creation within the country.

Valuable perspectives also emerge through our explorations of our four other selected
countries. Brazil is important because it is the world’s best-performing upper-middle income
economy in terms of maintaining low emissions levels amid a healthy GDP growth trajectory.
Germany, similarly, has an excellent record in terms of emissions levels relative to other high-
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income countries. Germany’s clean energy agenda for the next 20 years is also highly ambitious
and innovative. South Africa is critical because it is the largest and most advanced economy
in Sub-Saharan Africa. At present, it also depends heavily on its major coal reserves, both to
meet its domestic energy needs and to generate export revenues. A clean energy transition is
nevertheless still realistic for South Africa. The case of the ROKis unique because, in 2009, the
previous government of President Lee Myung-bak established a project of “Green Growth” as
a major national development objective. Consistent with the goals of the ROK’s Green Growth
project, our research finds that, in fact, the ROK could realistically reduce its absolute level of
CO, emissions per capita by roughly 50 percent within 20 years without having to lower the
economy’s GDP growth rate. We reach this conclusion based on a set of relatively conservative
assumptions about the ROK’s prospects for integrating energy efficiency and clean renewables
into the country’s energy mix.

Global CO2 Emissions Projections for 2030

We can obtain valuable perspective on the magnitude of the challenges ahead by considering
the CO_ emission level projections for 2030 by the International Energy Agency (IEA), which
publishes an annual World Energy Outlook. The IEA provides projections under three scenarios:
a Reference case; a "New Policies case" and a 450/Low Carbon case. The |IEA describes its
New Policies case as taking into account “broad policy commitments and plans that have
already been implemented to address energy-related challenges as well as those that have
been announced....” But this New Policies case also “assumes only cautious implementation
of current commitments and plans.” The IEA describes its 450/Low Carbon case as setting
out “an energy pathway that is consistent with a 50 percent chance of meeting the goal of
limiting the increase in average global temperature to 2°C compared with pre-industrial levels,”
(IEA, 2013a, p. 645). That is, the IEA believes that its 450/Low Carbon case provides a
50 percent chance for the world to control climate change.

Under the IEA’s 2030 Reference case, global CO, emissions are at 40,825 mmt, which is more
than twice as high as the IPCCs’ 20,000 mmt 2030 target level. The situation is only modestly
improved in the IEA’s New Policies case, in which they project 2030 CO, emissions to total
36,493 mmt. Even under the 450/Low Carbon case, the IEA still projects global emissions to be
24,663 mmt. Of course, this is a dramatic improvement relative to the other two cases. But it is
still 23 percent higher than the 20,000 mmt 2030 target. It is critical to underscore, moreover,
that the IEA describes the 450/Low Carbon case as offering only a 50 percent chance of the
world succeeding in controlling climate change.

It cannot be a satisfactory situation when, even under the most aggressive policy framework
for controlling climate change modeled by the IEA, we still face only a 50 percent chance of
achieving success.

Options for Reducing Carbon Emissions

Notwithstanding the wide differences in levels of development among Brazil, Germany,
Indonesia, South Africa and the ROK, and more broadly, across the globe, the fact remains
that there are only a limited number of ways in which any country, regardless of its level of



development, can control its carbon emissions while still consuming energy resources to an
extent sufficient to support rising average living standards. These are (listed in no particular
order of significance):

1. Raise the economy’s level of energy efficiency through the operations of buildings,
industry and transportation systems;

2. Among fossil fuel energy sources, increase the proportion of natural gas consumption
relative to coal, since carbon emissions from burning natural gas are about one-half
those from coal;

3. Investinthe development and commercialization of some combination of the
following technologies:

a. Clean renewables, including solar, wind, hydro, geothermal and some types of
bioenergy;

b. Nuclear power;

c. Carbon Capture and Sequestration (CCS) processes in generating coal, oil, and
natural gas-powered energy.

We conclude through our review of these alternative approaches that, considering all factors
within a long-term perspective, there are only two truly viable options. These are: 1) Investments
to raise energy efficiency levels; and 2) Investments to expand capacity in clean renewables.
Pursuing these two options should therefore constitute the core of the 1.5 percent of GDP
clean energy investment project. The reasoning behind these choices becomes clear through
comparing the relative prospects for non-renewable energy sources moving forward versus
those for clean renewable and efficiency investments.

Prospects for Non-Renewable Energy Sources

By far, the major source of global CO_ emissions is burning oil, coal, and natural gas to produce
energy. Emissions do vary significantly between these three sources. Coal emissions, at roughly
100 mmt per Q-BTU, are, respectively, about 50 percent higherthan those for oil and 8o percent
than those for natural gas. Oil emissions are therefore also about 20 percent higher than those
for natural gas. Yet, despite the fact that oil, and still more, natural gas, are cleaner burning
than coal, there are still no scenarios through which the IPCC’s 20-year global emissions target
is achievable if consumption levels increase over this time period through any combination
of oil, coal, and natural gas usage. This includes an implausible scenario in which natural gas
substitutes for 100 percent of global coal usage.

Following from this finding, we then also consider the alternative ways to continue utilizing
non-renewable energy sources while still reducing emissions. Nuclear power is the first option,
since it does generate electricity without producing CO, emissions. But nuclear power does
also create major environmental and public safety concerns, which have only intensified
since the March 2011 meltdown at the Fukushima Daiichi power plant in Japan. Similarly, CCS
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technologies present hazards. These technologies aim to capture emitted carbon and transport
it, usually through pipelines, to subsurface geological formations, where it would be stored
permanently. But such technologies have not been proven at a commercial scale. The dangers
of carbon leakages from flawed transportation and storage systems would, in any case, only
increase to the extent that CCS technologies are commercialized.

Prospects for Clean Renewables

It will be necessary to create a rapidly expanding and successful clean renewable energy sector
in order to achieve both the IPCC’s 20-year emissions reduction target as well as its target for
2050. In fact, it is realistic to allow that renewables could provide in the range of 30 percent of
all global energy supplies within 20 years. The main driver here is that the trajectory for prices
and costs for renewables is becoming increasingly favorable. In a wide range of conditions -
though of course not under all circumstances - renewable energy from most sources will be at
cost parity with non-renewables within the next 5—10 years. Costs for renewables become still
more favorable relative to fossil fuels through the establishment of either carbon tax or carbon
cap policies that reflect the environmental costs of carbon emissions. Either measure would
raise the prices of emissions-generating energy sources.

There are certainly areas of concern with renewables, as with non-renewables. The most
significant is that, as mentioned above, some bioenergy sources, including corn ethanol and
woodburning, offer little to no improvement on emissions relative to burning coal or oil. A
rapidly expanding bioenergy sector could also create strains on global agricultural resources
and, thereby, global food prices. Also, large-scale hydro projects, under most circumstances,
will generate serious environment problems. We conclude that, even while recognizing these
specific concerns, the prospects are quite favorable for the large-scale expansion of solar,
wind, geothermal, small-scale hydro as well as clean bioenergy. These renewable sources
constitute the core of what we term the clean renewable options.

Prospects for Energy Efficiency

Significantly raising energy efficiency levels in all three major areas of energy usage - i.e.
buildings, industry and transportation - offers major opportunities for all countries at all levels
of development. This is why, along with investments in clean renewables, it needs to be one
of the cornerstones of a global clean energy investment project. One major area of support for
this conclusion is the evidence we review from a range of studies as to the costs of large-scale
gains through energy efficiency investments. These cost estimates vary widely. But even at the
highest cost estimates, of around $30 billion in investments per Q-BTU of energy savings, these
investments are cost effective, in that they still generally pay for themselves within three years.
UNIDO’s 2011 Industrial Development Report shows that, in a wide range of specific settings,
returns from efficiency investments only increase further over time. The main challenge for
enabling the global energy efficiency investment market to grow rapidly is to develop more
effective systems of financing and risk-sharing.

Itis possible that efficiency investments may not have their intended effect of reducing energy
consumption at all. This would be due to the “rebound effect,” whereby better energy efficiency



encourages consumers to expand their energy-using activities. However, we conclude that
any rebound effect that may emerge as a byproduct of an economy-wide energy efficiency
investment project will not be large enough to counteract their significant benefits in terms
of both cost savings and emissions reductions. Still, the most effective way to limit rebound
effects is to combine efficiency investments with complementary measures to greatly expand
the supply of clean renewables and to raise the prices of oil, coal, and natural gas through
either a carbon tax or carbon cap.

Industrial Policy and Domestic Content

As we have discussed above, operating effective industrial policies within all countries at
all levels of development will be critical for expanding investments in renewable energy and
energy efficiency to the scale necessary to achieve the IPCC’s emissions reduction targets. Such
policies would be fully complementary with establishing a carbon price through either carbon
tax or carbon cap measures. Effective industrial policies will also be needed to effectively
manage the unavoidable major retrenchments in the oil, coal and natural gas industries.

In addition to presenting general perspectives on the role of industrial policies in the clean
energy investment project, our particular focus is on the question of how much, in each of our
five selected countries, expanding clean energy investments can be accomplished through
utilizing domestic resources versus relying increasingly on imports. To the extent that a country
runs up against domestic productive capacity constraints while expanding its investments in
energy efficiency and clean renewable energy sources, it then faces two alternatives: either
scale back the clean energy investment strategy or rely increasingly on imports to maintain the
ambitious investment agenda. Our particular concern for this report is employment effects.
That is, to what extent will changes in the domestic content of the country’s output in the
relevant sectors affect the overall job-generating prospects of its clean energy investments?
For each of our five selected countries, we develop estimates of employment creation through
clean energy investments based on two scenarios. In the first scenario, domestic content
remains stable in the relevant sectors as clean energy investments expand, while in the second
scenario, we assume domestic content declines by 20 percent in the relevant sectors.

We then also consider the extent to which countries currently rely on fossil fuels to both meet
their energy consumption needs, and, potentially, to also generate export earnings. Within this
context, the experiences of a wide range of countries with respect to the “curse” of operating as
a resource-rich economy offers useful perspectives for our analyses, especially for Indonesia
and South Africa, which are currently both major coal exporters.

Job Creation Estimates from Clean Energy Investments

We present two sets of estimates of the employment impacts of large-scale clean energy
projects in Brazil, Germany, Indonesia, South Africa, and the ROK. The first is the aggregate
level of new employment generated through investments in various types of renewable energy
and energy efficiency. We generated these figures directly from national survey data of public
and private economic enterprises and organized systematically within each country’s national
input-output (I-0) model. We recognize that there are limitations with our use of the I-O model.
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But we nevertheless conclude that this is the most reliable methodology for our purposes.

We then disaggregate these country-specific employment estimates according to four criteria:
gender balance; the share of self-employment versus wage employment; the share of jobs
created in micro-enterprises versus larger enterprises; and the educational attainment
levels associated with each type of job linked to clean energy activities. These disaggregated
employment statistics enable us to gain clarity as to which groups in society are likely to benefit
from new employment opportunities generated by clean energy investments.

Aggregate employment effects. With these country-level aggregate figures, we focus on the
levels of employment generated through spending $1 million within the various specific energy
sectors. Overall, we find that, per $1 million in spending in each country (converted at current
exchange rates), clean energy investments generate, on average, about 37 jobs in Brazil, 10 jobs
in Germany, 100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK. Critically, we
alsofind thatthe clean energy investments create more jobsin all five countries than spending the
same amount of funds within each country’s fossil fuel sectors. In the cases of Brazil, Indonesia,
and South Africa, the net employment gains for clean energy investments are substantial. They
are more modest in Germany and especially the ROK. Still, in all cases, we find that investing in
building a clean energy economy will also be a net positive source of job creation.

Disaggregated Employment effects. The disaggregated employment creation patterns also
vary substantially by country. We observe, for example, a high proportion of employment in
informal sectors in Brazil, Indonesia, and South Africa, as indicated by our figures on both
self-employment and micro-enterprise employment. This is less significant in the ROK and
a negligible factor for Germany. The high rates of informal employment in Brazil, Indonesia,
and South Africa are tied, first, to the large proportion of agricultural employment that will be
generated by the growth of clean bioenergy production. It is also associated with the large
increase in construction work that would result through the expansion of energy efficiency
building retrofit projects. The major increase in investment funds flowing into construction
and agriculture should also provide opportunities to raise the level of formalization for these
sectors. This should entail increased mechanization and productivity growth.

In its current composition, employment in clean energy areas is heavily male dominated in all
five countries. This is due to the significant role played by both manufacturing and construction
inoverall clean energy investments. Advancing majorclean energy initiatives in all five countries
(and elsewhere) could therefore be seen as an opportunity to open up decent job opportunities
forwomen in these heretofore male employment strongholds.

The levels of educational attainment in the clean energy areas are generally not especially high.
Indeed, if anything, they are somewhat lower than those for workers in the fossil fuel sectors.
This suggests that, at least at the level of general educational levels, there should not be major
challenges in finding qualified workers to cover the rising employment needs for expanding
clean energy activities. At the same time, some of these new employment activities will entail
new activities and skills. For example, installing solar panels on roofs and wiring these panels
so they supply electricity are distinct tasks relative to the jobs that are traditionally performed
by either roofers or electricians. As one important component of its clean energy industrial
policy agenda, countries will need to make provisions for these and similar areas that demand
new types of training and skill acquisition.



We are not able to observe directly the possible ways in which a large-scale expansion of clean
energy investments can contribute toward reducing poverty per se. But our disaggregated
employment figures can provide relevant data for better understanding the interconnections
between the two fundamental projects of reducing global poverty and fighting global climate
change. In general, people who work in informal employment with low educational attainment
levels also tend to receive low earnings. Creating new employment opportunities for people
in these circumstances - including creating more formal employment jobs operating at higher
productivity levels - should also provide opportunities for better pay and more job security. In
addition, the expansion of employment generally through the clean energy investment project
will help reduce poverty resulting from mass unemployment.

Country-Specific Analyses

In this section of our report, we present estimates of the overall effects on emissions reductions
and employment expansion through clean energy projects in each of our five selected countries.
For Germany, Indonesia, South Africa, and the ROK, we assume clean energy investments at
1.5 percent of GDP every year over the 20-year cycle. With Brazil, we assume clean energy
investments at lower rate, at 0.9 percent of GDP annually. This is first of all because Brazil
is already a strong performer in both its reliance on renewable energy and its level of energy
efficiency. In addition, CO, emissions in Brazil, uniquely among our five selected countries,
account for less than 4o percent of the country’s total GHG emissions. As such, for roughly the
next decade at least, Brazil should devote a relatively large share of its resources to controlling
methane and nitrous oxide emissions from non-energy sources.

We generated our estimates on emission reductions and employment expansion on the basis
of: 1) our cost estimates for investments in clean energy and energy efficiency; 2) our estimates
of employment creation per dollar of expenditure in each of the five countries; and 3) our
assumptions for average GDP growth in each country over the 20-year cycle. We deliberately
work with conservative GDP growth assumptions, derived from projections by the IEA, IMF and
the countries’ own forecasting models. Our purpose in working with these conservative GDP
growth forecasts is not that they should necessarily be accurate but that, if anything, they err
on the low side. If our five selected countries experience faster GDP growth than we assume,
they then have more resources to channel towards clean energy investments.

In Table S.1, for each of our five selected countries, we summarize the impact of our 20-year
clean energy investment project on emissions levels and employment creation as of Year 20.
As the table shows, in all cases, the clean energy investment strategy generates major gains in
emissions reductions relative to both 2010 levels and Business-as-Usual (BAU) assumptions as
of Year 20. Brazil is at 2.0 mt per capita emissions under the clean energy strategy. This is a 38
percent improvement over the BAU model, even while Brazil is devoting only 0.9 percent of GDP
to the project. Germany is at 5.5 mt per capita emissions through our clean energy investment
strategy. This is a 43 percent improvement relative to 2010 and a 29 percent improvement
relative to Germany’s 2030 BAU scenario. Indonesia is at 2.6 mt at the end of the 20-year
investment strategy. This figure is is 67 percent lower than Indonesia’s BAU framework for
2030. This result for Indonesia underscores how Indonesia can proceed on a rapid GDP growth
path without increasing its per capita emissions. The situation is similar for South Africa. We
show that South Africa can support a 4 percent GDP growth trajectory while still lowering its
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emissions within 20 years by 50 percent relative to its 2030 BAU scenario. Our estimates for the
ROK are equally impressive. Here again, we find that the ROK could reduce its CO, emissions
per capita by 56 percent relative to its 2030 BAU scenario over the 20-year investment cycle,
while still maintaining an average annual GDP growth rate over this period of 3.3 percent.

Table S.1: Summary of emissions reduction and employment expansion effects through
20-year country-specific clean energy investment projects

Brazil Germany Indonesia | South Africa ROK
Emissions reductions
Year 20 per capita emissions 2.0 mt 5.5 mt 2.6 mt 8.7 mt 5.9 mt
Year 20 per capita emissions e O ) o o RO e @
N Sp—. 13.0% 43.3% +52.9% 8.4% 49.1%
Year 20 per capita emissions e =® ) o i o i o ) o
relative to 2030 BAU 37.5% 28.6% 66.7% 49.7% 55.6%
Employment expansion
Clean energy jobs per $1 million 37.4 jobs 9.5 jobs 103.3 jobs 66.2 jobs 15.1 jobs
Clean energy minus fossil fuel . . . . .
jobs per $1 million 16.2 jobs 1.9 jobs 81.3 jobs 33.1jobs 1.5 jobs
Midpoint Year 20 employment
through clean energy 806,000 352,000 1.8 million 398,000 276,000
investments
Midpoint Year 20 employment o o o o o
as share of labor force 0.7% 0-9% 13% 1.9% 1.0%

Source: For emissions figures, Tables 1.4, 8.4 9.3, 10.5, 11.6, and 12.6. For employment figures, Tables 7.1, 7.5, 7.9, 7.13, 7.17, 8.7, 9.5, 10.7, 11.8, 12.8.

In conjunction with these major across-the-board gains in emissions reductions, we also see
in Table S.1 that clean energy investments will be a positive source of net job creation for all
five countries. These positive job effects are proportionally larger for South Africa, Indonesia,
and, operating on a smaller scale, Brazil. They are relatively modest in Germany and the
ROK, because the levels of employment creation per dollar of expenditure are more similar
to those in the fossil fuel sectors in these countries. Therefore, for Germany and the ROK, the
job increases generated by clean energy investments will be more closely matched by the job
losses produced by retrenchments in the oil, coal and natural gas sectors.

The most critical point of our report nevertheless remains valid for all five selected countries
and emerges clearly from the results in Table S.1. In all five cases, our research finds that the
clean energy investment project is capable of achieving dramatic reductions in CO, emissions
while overall job opportunities are expanding and GDP growth proceeds along a healthy long-
run growth trajectory.



CHAPTER 1: THE GLOBAL CLEAN
ENERGY CHALLENGE

This report addresses the profound challenge now facing humanity to control climate change.
The climate scientist Professor Kerry Emanuel recently summarized some of the consequences
of failing to control climate changes as follows:

e “There will be more frequent and intense heat waves, previously fertile areas in the
subtropics may become barren, and blights may seriously affect both natural vegetation
and crops.”

e “Comparatively small shifts in precipitation and temperature can exert considerable
pressure on governments and social systems whose failure to respond could lead to
famine, disease, mass emigrations, and political instability.”

e “Were the entire Greenland ice cap to melt, sea level would increase by 22 feet, flooding
many coastal regions, including much of Southern Florida and lower Manhattan. Eleven
ofthe fifteen largest cities in the world are located on estuaries and all would be affected.”

e “The 2005 hurricane season was the most active on record, corresponding to the record
warmth of the tropical Atlantic....Globally, tropical cyclones cause staggering misery
and loss of life,” (Emanuel, 2012, pp. 55-57).”

As of 2010, total world GHG emissions amounted to about 45,000 mmt. In order to control
climate change, the Intergovernmental Panel on Climate Change (IPCC) estimates that total
emissions will need to fall by about 40 percent as of 2030, to 27,000 mmt, and by 8o percent
by 2050, to about 9,000 mmt.

Of the 45,000 mmt of total GHG emissions, about 82 percent are generated by energy-based
sources. This includes 33,615 in CO, emissions from energy sources, equaling about 75 percent
of total GHG emissions itself. It also includes about 3 mmt in energy-based methane emissions
and 0.4 mmt energy-based nitrous oxide emissions.

This report focuses on measures to reduce CO, emissions from energy-based sources. In
advancing an overall global project for controlling climate change, it will of course be necessary
to undertake policies to control emissions from methane, nitrous oxide and other sources at
the rate at which CO, emissions are also being reduced. But we do not consider these parallel
issuesregardingnon-CO, emission sources in this report. With respectto CO_ itself, we establish
the goal that global emissions will need to fall at the same rate as overall GHG emissions, by
40 percent as of 2030 and 8o percent as of 2050 relative to 2010. This means that global CO,
emissions will need to be no more than about 20,000 mmt by 2030 and 6,700 mmt by 2050.

Our aim in this report is to explore the pathways through which these CO, emission reduction
targets can be met, without sacrificing the opportunities for economies to continue growing and
expanding well-being for their citizens. We are especially concerned that developing countries
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be able to grow at healthy rates as the transformation to a global clean energy economy
proceeds. For developing countries to sacrifice economic growth as a means to reverse climate
change will also entail sacrificing opportunities to expand decent employment opportunities
and to dramatically reduce poverty. Limiting opportunities for countries to proceed on a healthy
economic growth trajectory will also face formidable political resistance. This in turn will create
unacceptable delays in proceeding with effective policies to control climate change.

Overall then, the purpose of this research is to develop economic policy agendas through
which a global clean energy transition can proceed in a mutually supportive way with measures
to expand decent employment opportunities and reduce poverty.

At the same time, to be clear at the outset, it is not the purpose of this report to explore policy
ideas that are most capable of promoting economic growth or expanding decent employment
independent of their impact on reducing CO, emissions. This report is rather focused on
advancing policies capable of achieving the IPCC’s global emissions targets within the next 20
years and by 2050, and, within that context, to develop strategies capable of also supporting
economic growth and expanding employment opportunities.

This general approach applies in particular to our focus on the provision of sufficient energy
resources within each country as it seeks to meet its appropriate emissions reduction targets.
Within all country settings, there is, of course, a wide range of issues that need to be explored
in behalf of the goals of promoting economic growth and employment opportunities. Many
of these issues are not particularly concerned with a country’s energy sector. For example,
there are good reasons for countries to consider the potential economic benefits of promoting
specific economic sectors such as electronics, textiles, or food processing. However, given that
this report is focused on achieving CO_ emissions reduction targets, we need to concentrate
our attention on how this can be accomplished while also providing economies with sufficient
energy resources for supporting a healthy growth trajectory.

To be more specific, this report does not consider the merits of investments that can reduce CO,
emissions versus investments that can, for example, promote a successful high-tech sector.
Correspondingly, it is only within the context of reducing CO, emissions that we explore the
impact of a clean energy investment agenda on generating decent job opportunities. Once
again, we do not consider, for example, whether expanding a country’s electronics sector is
more conducive to promoting decentjob opportunities than investingin clean energy resources.
This is because it is only through investing in clean energy resources that we are able to deal
with the challenge of achieving a country’s emissions reduction targets.

This report ranges widely and presents large amounts of data, calculations, and detailed
examinations of particular problems. At the same time, our core arguments are simple. That
is, we argue that the global economy is capable of meeting the IPCCs’ 20-year intermediate
emission reduction target if most countries—including especially most countries with either
large GDPs or population — devote about 1.5 percent per year of their economy’s GDP to
investments in energy efficiency and clean renewable energy sources. These clean renewable
sources include solar, wind, geothermal, and small-scale hydropower, as well as low-emissions
bioenergy sources. They exclude corn ethanol, woodburning and other high-emissions
bioenergy sources, whose use generates CO_ emissions at levels equivalent to coal or oil. We
conclude that, as a general proposition, countries that sustain this 1.5 percent of GDP level of



annual investments in energy efficiency and clean renewables will also be able to maintain
economic growth at healthy rates while providing a sufficient supply of energy resources to
undergird growth. These investments in energy efficiency and renewable energy will also be a
net new source of job opportunities. More specifically, we find that new investments in energy
efficiency and renewable energy will generate more jobs for a given amount of spending than
maintaining or expanding each country’s existing fossil fuel sectors.

It will be useful here to briefly place this 1.5 percent of GDP figure in context. Global GDP in
2013 was $87 trillion. Thus, 1.5 percent of global GDP is about $1.3 trillion at current GDP
levels. This would mean channeling about $650 billion each for clean renewables and energy
efficiency investments, if new investment funds were divided evenly between these two
sectors. If spending were instead divided at something closer to 1 percent for renewables and
0.5 percent for energy efficiency, as will probably be appropriate in most country settings, that
will entail devoting about $870 billion for renewables and $435 billion for energy efficiency
at the current global GDP level. These clean energy investment figures would also increase
annually, corresponding with the growth of global GDP.

As of the most recent credible data, total global renewable investments were at $227 billion
in 2011 and energy efficiency investments were between $150 and $300 billion.* This totals to
between $377 and $527 billion, or between 0.4 and 0.6 percent of global GDP. In other words,
current global investments in clean energy are at roughly 30-40 percent of where they need to
be to reach the 1.5 percent of GDP level. It is clear that a great deal needs to be accomplished
to reach the 1.5 percent figure. At the same time, with the current investment level already at
between 0.4 and 0.6 percent of global GDP, getting to a 1.5 percent of GDP figure is not so far
out of reach as to appear implausible.

To bring global clean energy investments up to about 1.5 percent of global GDP will certainly
require the development of effective industrial policies for countries atall levels of development.
In Chapter 5, we review some of the main considerations with respect to advancing effective
industrial policies. The core project is described well by Mazzucato (2013), when she writes that
“Governments have a leading role to play in supporting the development of clean technologies
past their prototypical states through to their commercial viability. Reaching technological
‘maturing’ requires more support directed to prepare, organize, and stabilize a healthy ‘market,’
where investment is reasonably low risk and profits can be made” (2013, p. 136). UNIDO’s 2013
Industrial Development Report usefully examines this theme in the specific context of uptake
of green technologies in manufacturing, writing that “technological change rarely takes place
in a vacuum, and often requires incentives. Success stories of new energy technologies are the
product of forward-thinking ambitious government policies,” (UNIDO, 2013, p. 124).

In conjunction with the need for a major expansion in clean energy investments worldwide, it
is also the case that the burning of oil, coal and natural gas will need to contract substantially
in absolute terms throughout the globe if the world economy is going to achieve the IPCC’s
emissions reduction targets. As we will show, this conclusion is unaffected by whether new
fossil fuel reserves are discovered, such as the so-called “pre-salt” deposits in Brazil or

1The figure on global renewable energy investments is from the Frankfurt School-UNEP Collaborating Centre’s 2014 report Global Trends in Renewable
Energy Investment 2014, Key Findings, p. 11. The figures on global energy efficiency investments are from the International Energy Agency’s 2013
Energy Efficiency Market Report, pp. 47-50. The IEA study provides an extensive methological discussion on the challenges involved in “measuring the
market for energy efficiency,” (Chapter 2 of study). Through this discussion, they do nevertheless conclude that “the IEA estimates that total global
investment in energy efficiency measures in 2011 was up to USD 300 billion,” (p. 49). But they also provide, as a range, $147-$300 billion (p. 47).

29



GLOBAL GREEN GROWTH

30

elsewhere. Itis also unaffected by whether new technologies, such as hydraulic fracturing - i.e.
“fracking” - are employed to produce fossil fuel energy more cheaply. Workers tied to the oil,
coal, and natural gas industries will therefore inevitably face job losses as a consequence.
Economic policies are needed in all countries to assist these workers, as well as their families
and communities, with transitional support into new areas of economic activity, where decent
job opportunities are expanding. In most countries, the energy efficiency and clean renewable
energy sectors will be among the most important new areas of expanding job opportunities.

This report presents a global perspective on the challenges of controlling climate change
through strategies that will concurrently expand employment opportunities and contribute
toward reducing mass poverty. At the same time, we focus in particular on the challenges
faced by five specific countries: Brazil, Germany, Indonesia, South Africa, and the ROK. As
we will discuss throughout this report, and as should be apparent in any case, economic
conditions range widely between these five countries. But they are all, in their own distinctive
ways, leading economies within their respective regions of the world. It is also notable that
with all five selected countries, policymakers have already proposed clean energy/emissions
reduction policy frameworks ranging between 1 and 2 percent of their country’s GDP. Our
proposal for a clean energy project sustained at about 1.5 percent of GDP therefore builds from
the perspectives developed within our five selected countries. In examining these individual
casesin some depth, we will also clearly be able to gatherinsights on a broader set of countries
atvarious levels of development.

Consider, for example, the case of Indonesia, which is defined as a lower-middle income
economy according to the World Bank. Indonesia aims to grow rapidly over the next 20 years -
i.e. in the range of 6-7 percent per year - following the examples in recent decades of the ROK,
China, India and other fast-growing Asian economies. However, the Indonesian government’s
own estimates show that the country’s CO, emissions will increase by more than 500 percent
by 2030 relative to 2010 if the economy’s GDP growth is fueled primarily by oil, coal, and
natural gas. By contrast, we estimate that, under reasonable assumptions, a significant
share of Indonesia’s energy needs for fueling a rapid growth trajectory can be met through
investments in energy efficiency and clean renewable energy, as long as Indonesia channels
about 1.5 percent of GDP annually into these clean energy areas. We also estimate Indonesia’s
investments in energy efficiency and renewable energy can also be a significant new source of
job creation within the country. In short, we show how Indonesia’s goal of sustaining a rapid
economic growth trajectory can be accomplished through relying to an increasing extent on
clean energy resources. The Indonesian case also has broader implications. It shows that low-
and lower-middle income countries can achieve rapid economic growth without their growth
having to depend heavily on oil, coal, and natural gas. This in turn means that Indonesia
and similarly situated economies can achieve rapid growth without having to increase their
country’s CO, emissions as a necessaty, if unfortunate, byproduct of sustained growth.

Valuable perspectivesalso emerge through ourexplorations of ourfourotherselected countries.
The case of Brazil is important because, as we will see, it is the world’s best-performing upper-
middle income economy in terms of maintaining low emissions levels amid a healthy GDP
growth trajectory. Germany, similarly, has an excellent record in terms of emissions levels
relative to other high-income countries. Germany’s clean energy agenda for the next 20 years
is also highly ambitious and innovative. South Africa is critical because it is the largest and
most advanced economy in Sub-Saharan Africa. At present, it also depends heavily on its major



coal reserves, both to meet its domestic energy needs and to generate export revenues. It is
therefore a major challenge to consider how South Africa can reduce its dependence on coal
while still growing at a healthy rate. But a clean energy transition is also realistic for South
Africa.

The case of the ROK is especially important because, in 2009, the previous government of
President Lee Myung-bak established a project of “Green Growth” as a major national
development objective.? Consistent with the goals of the ROK’s Green Growth project, our
research finds that within 20 years, the ROK could realistically reduce its per capita emissions
by roughly 50 percent relative to 2010 levels without having to lower the economy’s GDP growth
rate. We reach this conclusion based on a set of relatively conservative assumptions about
the ROK’s prospects for integrating energy efficiency and clean renewables into the country’s
energy mix.

In short, by focusing on the cases of Brazil, Germany, Indonesia, South Africa, and the ROK, we
are able to develop new perspectives on the global challenges presented by climate change. We
believe we are also able to provide a realistic framework for controlling climate change while,
concurrently, expanding job opportunities and supporting long-term economic growth. It is,
more specifically, realistic to expect that most countries can devote about 1.5 percent of their
GDP annually to investments in renewable energy and energy efficiency. It is correspondingly
realistic to expect that when countries commit to this clean energy investment agenda, they
will also be able to support a healthy GDP growth trajectory and an increase in overall job
opportunitites.

Total Energy Consumption and Carbon Emissions

As an initial step in developing our research framework, it will be useful to review some basic
evidence on energy consumption and CO, emissions on a global scale, and within our five
selected economies. We begin this review with Table 1.1, which provides relevant data as of
2010. As Table 1.1 shows, as of 2010, total global energy consumption amounted to about
510 Q-BTUs from all energy sources - including fossil fuels, all renewable sources and nuclear
power. This is while total CO, emissions were at 33,615 mmt.

2 World Bank (2012).
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Table 1.1: Energy consumption and CO2 emissions levels for world and selected countries, 2010

Energy consumption CO, emissions
ReLalRi sy energy SR enersy | fotal CO,, emissions | Per capita CO, emissions
consumption consumption
(Q-BTUs) (M-BTUs) (mmt) (mt)
World 510.5 74 33,615 4.6
China 100.9 75.4 7,997 6.0
u.s. 98 316.9 5,637 18.2
Brazil 11.3 58 £450.9 2.3
Germany 13.9 170.4 793.3 9.7
Indonesia 6.0 25.2 414.6 1.7
South Africa 5.6 111.8 473.2 9.5
ROK 10.8 218.2 581 11.7

Sources: U.S. Energy Information Administration, “International Energy Statistics,” (for energy consumption and per capita emissions);
World Bank (2014), “World Development Indicators,” Table 3.9: Trends in greenhouse gas emissions (for total emissions).

The two leading countries in terms of both energy consumption and CO, emissions are China
and the U.S. As Table 1.1 shows, their respective levels of energy consumption were nearly
identical in 2010, with China at 100.9 Q-BTUs and the U.S. at 98 Q-BTUs. Together, China
and the U.S. account for nearly 39 percent of world energy consumption. In terms of carbon
emissions, China is at a higher level, at 7,997 mmt, while the U.S. is at 5,637 mmt. Together,
they account for 43 percent of all global carbon emissions. Obviously, we must give major
attention to developments in the U.S. and China in terms of mounting an overall project for
controlling climate change.

But even from this first set of statistics in Table 1.1, it is also clear that the challenges in terms
of a clean energy agenda are dramatically distinct for the U.S. and Chinese cases. The U.S. is
an advanced industrial economy in which energy consumption per capita is among the highest
in the world for large population countries, at 316.9 million BTUs (hereafter M-BTUs) per capita.
China, by contrast, despite its historically unprecedented growth experience over the past 35
years, is still a developing country, in which energy consumption per capita, at 75.4 M-BTUs, is
one-fourth that of the U.S. A major part of the challenge for advancing a viable global agenda
for controlling climate change in the most effective ways is to recognize the distinctive issues
and industrial development needs facing the U.S. and China.

The cases of the U.S. and China also underscore another fundamental fact. As important as
they are to grasping the overall global climate change challenge, they are still, in combination,
contributing well less than half to the overall level of global carbon emissions. This therefore
means that we must be at least equally concerned to develop policies that apply to all other
countries-including, of course, Brazil, Germany, Indonesia, South Africa and the ROK. Moreover,
as with the comparative situations for the U.S. and China, the differences among our five
selected countries are dramatic. For example, the current energy consumption levels are even
more different than those between the U.S. and China. We can obtain a first basic picture of
these differences through the data in Table 1.1. As we see there, per capita energy consumption



in Germany is 170.4 M-BTUs. This is 45 percent below the level of per capita consumption in
the U.S. But it is also nearly seven times greater than the per capita consumption level for
Indonesia.

Considering another pair of countries, per capita energy consumption as well as emissions
are actually higher now in the ROK than Germany, even while their overall level of energy
consumption, at 10.8 Q-BTUs, is about 20 percent below that of Germany. Brazil is nearly at the
same consumption level as Germany, but its per capita level of consumption and emissions are
in the range of 20-30 percent that of Germany. Another notable comparison that we see in Table
1.1 is that South Africa’s per capita emissions level is roughly equal to that in Germany. This
reflects the greater use by Germany of clean energy sources. South Africa, in particular, remains
heavily dependent on burning coal to generate electricity. Coal, in turn, is the most emissions-
intensive source of fossil fuel energy. Per BTU of energy, CO_emissions from coal are roughly
50 percent higher than those from oil and 8o percent higher than those from natural gas.

Specifying the Climate Change Challenge

Table 1.1 shows us world per capita carbon emissions in 2010 at 4.6 mt, with figures ranging
in our selected countries between 1.7 mt for Indonesia and 18.2 mt for the U.S. This ratio will
provide an important measure for clarifying the scale and types of policy initiatives that will be
necessary for controlling climate change.

Thus, we can express our intermediate emissions reduction goals in terms of this measure,
within the framework of reducing the absolute level of carbon emissions by 40 percent, to
around 20,000 mmt, within 20 years. With global population expected to rise to about 8.4
billion by 2030, this means that carbon emissions will need to be at no more than 2.4 mt per
capita by 2030. The question will be how to achieve this in a way that is also supportive of
rising average living standards and declining poverty.

This challenge becomes especially sharp when we consider the current pattern in the
relationship between per capita GDP levels and emissions. Not surprisingly, there is a strong
direct correlation between rising per capita GDP and rising per capita emissions. This is evident
even through the basic figures shown in Table 1.1. As we see, Indonesia has the lowest per
capita emission level of our selected countries, at 1.7 mt.

We can see this pattern more generally in Table 1.2, which divides all countries into four broad
income categories, and shows the emissions per capita for each of the four income categories.
Starting with the upper panel of Table 1.2, we see that low income countries, averaging $592 in
per capita GDP and with a total population of 709 million people, operate with emissions level
of 0.3 mt per capita. Per capita emissions then rise to 1.6 mt for lower income countries, 5.4
for upper-middle income countries and 11.6 for high-income countries. That is, on average, the
1.3 billion residents of high-income countries generate 7.2 times more emissions than the 2.5
billion people living in lower-middle income countries, and 38 times more emissions than the
709 million people living in low-income countries.

33



GLOBAL GREEN GROWTH

34

Table 1.2: World income-level groupings and CO2 emissions levels, 2010

a) Per capita income, population and emissions

Average
. Average GDP per capita . emissions per
Income Categories ($2005 PPP) Total population capita
(m)
Low $592 709 million 0.3 mt
Lower middle $1,920 2.5 billion 1.6 mt
Middle $4,560 4.9 billion 3.4 mt
Upper middle $7,340 2.4 billion 5.4 mt
High $37,720 1.3 billion 11.6 mt
b) Countries with low, medium, and high per capita emissions
Number of countries LT §DP per
capita
Countries with per capita CO, emissions below 60 $1,768
2.4 mt
Countries with per capita CO, emissions below $3,058
205 74 3,05
Countries with per capita CO, emissions above s $ 00
10.0 mt 3 337

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” Table 1.1: Size of the economy, 3.8: Energy dependency,
efficiency and carbon dioxide emissions, 3.9: Trends in greenhouse gas emissions.

Note: Sample includes countries with over 5 million in population

The lower panel of Table 1.2 gives further perspective on this relationship. Of the total of 60
countries in which emissions per capita are currently below 2.4 mt - the average level for all
countries that the world needs to reach within 20 years - average GDP per capita was $1,768.
Further, of the 74 countries in which per capita emissions was below the current world average
of 4.6 mt, average GDP per capita was $3,058. By contrast, of the 13 countries in which per
capita emissions were above 10 mt, average GDP per capita was $33,700.

At the same time, we do see some significant outliers. This is evident from Figure 1.1, which
plots the relationship between per capita GDP levels and per capita emissions. The positive
correlation is clearly strong. But we do still see large outliers on either side of the regression
line. As the figure shows, the low emissions countries in the high-income category include
Norway, Switzerland, Sweden and Singapore. Among countries whose per capita GDP ranges
between $10,000 and $30,000, the best performer is Brazil, one of our five selected countries.
Brazil is also important among the full set of countries, since it is the only large economy that
is operating at significantly below the regression line in terms of lower emissions. As we see,
the U.S. and China are both substantially above the regression line. We of course consider the
case of Brazil more fully in later chapters.



Figure 1.1: Country-by-Country per Capita CO2 Emissions and GDP, 2010
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Source: World Bank (2014), “World Development Indicators,” Table 3.8: Energy Dependency, Efficiency, and Carbon Dioxide Emissions.

Global CO2 Emissions Projections for 2030

We can obtain further perspective on the magnitude of the challenges ahead by considering the
CO, emission level projections for 2030 by two of the largest and most influential organizations
that have developed models that address this question. These are the U.S. Department of
Energy’s Energy Information Agency (EIA), which produces an annual International Energy
Outlook; and the OECD’s International Energy Agency (IEA), which publishes an annual World

Energy Outlook.

In Table 1.3, we show the most recent projections of the EIA and IEA for world CO_ emissions
levels under various scenarios. The EIA reports a world emissions projection for 2030 only
under its Reference case3. As we see in Table 1.3, under this 2030 Reference case, the EIA
projects that total global CO, emissions will be at 41,468 mmt - i.e. at a level that is more than

twice as high as the 2030 target level for climate change control of 20,000 mmt.

3 In addition to its Reference case, with projections for 2030, as well as through 2040, the EIA also reports results for four other scenarios - both high
and low economic growth cases and both high and low oil price cases. But they do not report on CO, estimates under 2030 under these four other

scenarios.
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Table 1.3: Projected world CO2 emissions levels for 2030 by U.S. Energy Information
Administration and OECD International Energy Agency

2030 CO, emissions projections
ggérlier:‘:eclfzaliormation Administration (EIA) LI i
OECD International Energy Agency (IEA)
* Reference case 40,825 mmt
* New Policies case 36,493 mmt
* 450/Low Carbon case 24,663 mmt

Sources: Authors’ compilation based on U.S. Energy Information Administration, “International Energy Outlook 2013.”;
International Energy Agency (2013) “World Energy Outlook 2013,” Tables for Scenario Projections, pp. 574-575.

The IEA provides projections under three scenarios: a Reference case; a “New Policies” case
and a 450/Low Carbon case. The IEA describes its New Policies case as taking into account
“broad policy commitments and plans that have already been implemented to address energy-
related challenges as well as those that have been announced....” But this New Policies case
also “assumes only cautious implementation of current commitments and plans.” The [EA
describes its 450/Low Carbon case as setting out “an energy pathway that is consistent with a
50 percent chance of meeting the goal of limiting the increase in average global temperature
to 2°C compared with pre-industrial levels,” (IEA, 2013a, p. 645). That is, the IEA believes that
its 450/Low Carbon case provides a 50 percent chance for the world to control climate change.

As we see in Table 1.3, as with the EIA’s reference case, under the IEA’s 2030 Reference case,
global emissions are at 40,825 mmt CO, - again, more than twice as high as the 20,000 mmt
target for controlling climate change. The situation is only modestly improved in the IEA’s New
Policies case, in which they project 2030 CO, emissions to total 36,493 mmt. Even under the
450/Low Carbon case, the IEA still projects emissions to be 24,663 mmt C0,. Of course, this is
a dramatic improvement relative to all the other cases. But it is still 23 percent higher than the
20,000 mmt 2030 target.

It is critical to underscore that the IEA describes the 450/Low Carbon case as offering only
a 50 percent chance of the world succeeding in controlling climate change. This estimate
underscores the urgency of advancing a realistic agenda that offers a significantly higher
probability of achieving success in controlling climate change than the IEA’s 450 program.

Component Parts of CO2 Emissions per Capita Ratio

To provide additional perspective on variations in per capita CO, emissions level by country,
it will be useful to decompose the emissions per capita ratio into three component parts. This
yields three ratios, each of which provides a simple measure of one major aspect of the global
climate change challenge. That is, CO, emissions per capita can be expressed as follows:



Emissions/population = (GDP/population) x (Q-BTUs/GDP) x (emissions/Q-BTU).
These three ratios provide measures of the following in each country setting:

1. Level of development: Measured by GDP/capita;

2. Energy intensity: Measured by Q-BTUs/GDP;

3. Emissions intensity: Measured by emissions/Q-BTU.
Table 1.4 shows the results of the decomposition for the world, the U.S, China, as well as Brazil,
Germany, Indonesia, South Africa, and the ROK. Considering first the U.S. and China, we see
that emissions per capita are three times higher in the U.S, at 18.2 mt versus 6 for China. The

three factors generating this overall result are as follows:

1. Level of development: Average GDP per capita in the U.S, at $50,000, is 8 times higher
than that for China;

2. Energy intensity: The U.S. is twice as efficient as China, with its Q-BTU/GDP ratio at 6.2
versus 12.1 for China;

3. Emissions intensity: The mix of energy sources in the U.S. is 40 percent cleaner than that
in China, at 57.5 emissions/Q-BTU versus 79.3 for China.

Table 1.4: Determinants of per capita CO2 emissions levels by country, 2010:
Level of development, energy intensity and energy mix

CO, Emissions/population = (GDP/population) x (Q-BTUs/GDP trillions) x (Emissions/Q-BTU)

%) il GDP/' Energyintfan.sity ratio: En.1issions in.terfsity
2 . population Q-BTUs/ trillion dollars ratio: CO_ emissions/
peRElatien ($2005 PPP) GDP Q-BTU
World 4.6 mt $10,300 7.1 Q-BTUs 65.9 mmt
China 6.0 mt $6,200 12.1 Q-BTUs 79.3 mmt
u.S. 18.2 mt $50,000 6.2 Q-BTUs 57.5 mmt
Brazil 2.3 mt $11,600 5.1 Q-BTUs 39.9 mmt
Germany 9.7 mt $41,500 4.1 Q-BTUs 57.1 mmt
Indonesia 1.7 mt $3,600 6.8 Q-BTUs 69.1 mmt
South Africa 9.5 mt $7,500 14.6 Q-BTUs 84.5 mmt
ROK 11.7 mt $22,000 9.8 Q-BTUs 53.8 mmt

Source: Authors’ calculations based on Tables 1.1 and 1.2.
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Both the U.S. and China will need to sharply reduce their levels of emissions per capita, to
bring the world to an average of 2.4 mt per capita within 20 years. Obviously, in absolute terms,
the U.S. challenge is far greater, given its current per capita emissions level of 18.2 mt. But the
U.S. is at least much further along in both operating at a higher level of efficiency and utilizing
cleaner energy sources. Nevertheless, the U.S. still needs to intensify the efforts already
underway to raise efficiency and increase reliance on low-carbon energy sources.

Table 1.4 also makes clear that there are sharp disparities between our five selected countries,
not only in terms of income levels, but also in terms of energy efficiency and their existing
mixes of energy sources.

Let’s first again consider Brazil, which is performing quite well in terms of energy emissions,
at 2.3 mt per capita. Brazil is accomplishing this while still operating at a fairly high per capita
GDP level of $11,600. The reasons for Brazil’s strong performance in per capita emissions is
that it both operates at a high level of efficiency - utilizing only 5.1 Q-BTUs of energy per $1
trillion in GDP, and by utilizing clean renewable energy sources to a substantial degree. This
allows Brazil to produce only about 40 mmt of emissions per Q-BTU of energy.

The cases of South Africa and Germany are again useful for comparative purposes. As we have
seen, their levels of emissions per capita are nearly identical, at 9.7 and 9.5 mt respectively.
But Germany is generating this level of emissions while its average capita GDP level is $41,500,
while in South Africa, average GDP per capita is $7,500. Of course, the reason emissions per
capita are nearly identical is because Germany is operating at a very high level of efficiency,
4.1 Q-BTUs per GDP. This is nearly four times more efficient than South Africa, where the energy
intensity ratio is 14.6 Q-BTUs/GDP. The German energy mix is also nearly 50 percent cleaner
than that for South Africa.

This comparison suggests a pathway for South Africa to dramatically lower its emissions level
by both raising its efficiency standards as well as its reliance on clean energy sources. To do so
will enable the South African economy to at least approach the 2.4 mt per capita CO, emissions
standard within 20 years while still experiencing healthy economic growth. As for the German
economy, the figures in Table 1.4 show that there is considerable room for improvement,
particularly with its emissions intensity ratio. As we discuss in Chapter 9, investments on
the order of 1 percent of GDP per year in clean renewables should enable Germany to cut
its emissions ratio by about 15 percent in 20 years. Germany also plans to make still greater
improvements in hits energy intensity ratio over this same time period.

There are similarly useful perspectives to extract for the Indonesian case, its much lower
level of per capita GDP relative to both Germany and even South Africa notwithstanding. As
we see in Table 1.4, Indonesia operates at roughly the world average in terms of both energy
intensity emissions intensity. But this is with an economy in which per capita GDP is $3,600.
For Indonesia to reach a substantially higher level of average income over the next 20 years
while still maintaining an acceptable level of emissions per capita, they will need to raise their
level of efficiency and reliance on clean energy. This is what will enable Indonesia to increase
per capita GDP at a healthy rate while still maintaining their CO, emissions level at roughly
the global target figure of 2.4 mt per capita. As mentioned above, and as we consider in more
depth in subsequent chapters, building a clean energy economy in Indonesia does not need
to be an obstacle to operating along a strong long-term growth trajectory. Rather, clean energy



investments in Indonesia can be a major engine supporting Indonesia’s favorable long-term
growth performance.

The ROK is a high-income country, with per capita GDP at $22,000 per year. The economy
operates at a higher per capita CO, emissions level than both Germany and South Africa, at
11.7 mt. It is also generating energy with relatively clean sources, with its emissions intensity
ratio at 53.8. This is modestly better than both the U.S. and Germany. However, the ROK’s
energy intensity ratio, at 9.8 Q-BTUs/GDP, is nearly double that for Brazil, and 60 percent
higher than the U.S. Of course, the ROK has a history of success with implementing industrial
policies capable of integrating cutting-edge technologies into the economy. As we discuss in
Chapter 12, its current share of research and development spending relative to GDP is already
the highest in the world. This background enables us to conclude that there is indeed a strong
prospect for the ROK to dramatically reduce its absolute emissions levels within 20 years; and
to do so without having to sacrifice GDP growth in the process.

Options for Reducing Carbon Emissions

Notwithstanding the wide differences in levels of development among Brazil, Germany,
Indonesia, South Africa and the ROK, and more broadly, across the globe, the fact remains
that there are only a limited number of ways in which any country, regardless of its level of
development, can control its carbon emissions while still consuming energy resources to an
extent sufficient to support rising average living standards. These are (listed in no particular
order of significance):

1. Raise the economy’s level of energy efficiency;

2. Among fossil fuel energy sources, increase the proportion of natural gas consumption
relative to coal, since carbon emissions from burning natural gas are about one-half
those from coal;

3. Investin the development and commercialization of some combination of the following
technologies:

a. Clean renewables, including solar, wind, hydro, geothermal and some types of
bioenergy;

b. Nuclear power;

c. Carbon Capture and Sequestration (CCS) processes in generating coal, oil, and
natural gas-powered energy.

The focus of this report is to examine the prospects for each of these options in our distinct
country settings. That, indeed, is what will constitute the core of any country’s clean energy
investment agenda. As we will show, once we have identified the key components of a clean
energy investment project for each country, we will then be in a position to estimate the impact
of this project on creating employment opportunities. But here again, we emphasize that the job
creation elements of the project will emerge as an outgrowth of each economy’s investments in

39



GLOBAL GREEN GROWTH

40

clean energy. We are not advancing a jobs policy that operates independently of each country’s
clean energy investment agenda.

We present two sets of estimates of the employment impacts of large-scale clean energy
projects in Brazil, Germany, Indonesia, South Africa, and the ROK. The first is the aggregate
level of new employment generated through investments in various types of renewable energy
and energy efficiency activities in each of our five specific country settings. Overall, we find
that, in all five selected countries, clean energy investments generate more jobs than spending
the same amount of money within each country’s fossil fuel sectors. There are of course
differences in the relative levels of job creation by country, as well as the quality of the jobs
generated by investments in clean energy versus fossil fuels. We obtain further perspective
on these questions of job quality when we disaggregate these country-specific employment
estimates according to four criteria: gender balance; the share of self-employment versus
wage employment; the share of jobs created in micro-enterprises versus larger enterprises;
and the educational attainment levels associated with each type of job linked to clean energy
activities. These disaggregated employment statistics enable us to gain clarity as to which
groups in society are likely to benefit from new employment opportunities generated by clean
energy investments.

We have not been able to observe directly the possible ways in which a large-scale expansion
of clean energy investments can contribute toward reducing poverty per se in either our five
country settings or elsewhere. But our disaggregated employment figures can nevertheless
provide relevant data for better understanding this critical aspect of the global clean energy
investment project. In general, people who work in informal employment with low educational
attainment levels also tend to receive low earnings. Creating new employment opportunities
for people in these circumstances - including more formal employment jobs operating at higher
productivity levels - should also provide opportunities for better pay and more job security. In
addition, the expansion of employment generally will help reduce poverty resulting from mass
unemployment.

Structure of Report

The remainder of this report is divided into three sections. Section 1 examines prospects for
supplying energy over the next 20 years through alternative energy sources. Within Section 1,
Chapter 2 covers non-renewable energy sources, including oil, coal, natural gas and nuclear
power. We first review in Chapter 2 the basic facts on the extent of CO, emissions that are
generated from consuming oil, coal and natural gas, as well as high-emissions bioenergy
sources. This will enable us to see clearly the levels of fossil fuel consumption that can be
sustained while still achieving the target of reducing global CO, emissions to no more than
20,000 mmt within 20 years. We will then consider the alternative ways to continue utilizing
non-renewable energy sources while still reducing emissions from these energy sources. The
possibilities here are to expand nuclear power and CCS technologies as well as fuel switching,
with cleaner-burning natural gas substituting for emissions-intensive coal. But we conclude
in this chapter that none of these alternatives with non-renewables can produce an adequate
framework for controlling CO, emissions. Specifically, there is no scenario for achieving the
IPCC’s 20-year emissions reduction targets through consuming any combination of oil, coal
and natural gas at close to their current levels. In addition, CCS technologies and nuclear power



create major and unavoidable public safety concerns.

Chapter 3 covers renewable energy sources, including bioenergy, hydro, wind, solar, and
geothermal power. We argue that in order for the world economy to meet its intermediate CO,
emissions reduction targets within 20 years and, subsequently for 2050, it will be necessary
to create a rapidly expanding and successful renewable energy sector. This means producing
energy increasingly from wind, solar, geothermal, bioenergy, and hydropower sources. As we
will review in this chapter, it is in fact realistic to allow that clean renewables could provide in
therange of 30 percent of all global energy supplies within 20 years. The main driver here is that
the trajectory for prices and costs for renewables is becoming increasingly favorable. In a wide
range of conditions - though not under all circumstances - renewable energy from most sources
will be at cost parity with non-renewables within the next 5-10 years. There are certainly areas
of concern with renewables. The most significant is that, as mentioned above, some bioenergy
sources, including corn ethanol and woodburning, offer little or no improvement on emissions
relative to burning coal or oil. A rapidly expanding bioenergy sector could also create strains on
global agricultural resources and, thereby global food prices. Also, large-scale hydro projects,
under most circumstances, will generate serious environment problems. We examine these
issues in Chapter 3. We conclude that, even while recognizing these various concerns, the
prospects are quite favorable for the large-scale expansion of solar, wind, geothermal, small-
scale hydro as well as clean bioenergy.

Chapter 4 addresses a range of issues concerning energy efficiency. The first basic conclusion
of this chapter is that significantly raising energy efficiency levels for all countries, at all levels
of development, is necessarily one of the two cornerstones of the global green growth project,
along with clean renewable energy investments. One major area of support for this conclusion
is the evidence we review from a range of studies as to the costs of large-scale gains through
energy efficiency investments. These cost estimates vary widely. But as we will show, at even
the highest cost estimates, of around $30 billion in investments per Q-BTU of energy savings,
these investments are cost effective, in that they still generally pay for themselves within three
years. The main challenge for enabling the global energy efficiency investment market to grow
rapidly is to develop more effective systems of financing and risk-sharing. We do also consider
the prospect that large-scale efficiency investments may not have their intended effect of
reducing energy consumption at all. This would be due to the “rebound effect, ” whereby better
energy efficiency encourages consumers to expand their energy-using activities. However, we
conclude that any rebound effect that may emerge as a byproduct of an economy-wide energy
efficiency investment will not be large enough to counteract their significant environmental
benefits. Still, the most effective way to limit rebound effects is to combine efficiency
investments with complementary measures to greatly expand the supply of clean renewables
and to raise the price or put firm limits on producing CO_ emissions.

Section 2 of this report focuses on employment impacts of economic activity in the clean energy
sectors - including here both renewables and efficiency investments - and the non-renewable
energy sectors. We also address issues related to the employment question, in particular
the extent to which any given country’s clean energy investment project can operate through
expanding domestic economic activity as opposed to relying increasingly on imports. Answering
this question, in turn, entails considering the types of national industrial policies that will be
needed for countries to successfully mount large-scale clean energy investment projects.
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Our primary focus in Chapter 5 is to examine how much any country, and our five selected
countries in particular, is likely to expand its investments in clean energy sectors on the basis
of its own domestic resources. To the extent that a country runs up against domestic productive
capacity constraints while expanding its investments in energy efficiency and clean renewable
energy sources, it then faces two alternatives: either scale back the clean energy investment
project or rely increasingly on imports to maintain the ambitious investment agenda. Our main
consideration in raising these questions is employment effects. That is, to what extent will
changesin the domestic content of the country’s outputin the relevant sectors affect the overall
job-generating prospects of its clean energy investments? We focus on two considerations.
The first is the role that can be played by a country’s industrial policies to expand domestic
productive capacity in the relevant sectors of the economy. We emphasize here both credit and
labor market policies as central components within a broad industrial policy framework. We
then also consider the extent to which countries currently rely on fossil fuels to both meet their
energy consumption needs, and, potentially, to also generate export earnings. We address the
effects of retrenchments in the fossil fuel sectors on the economy broadly, and, in particular, on
the workers whose livelihoods depend on these sectors, as these sectors face retrenchment.

Chapter 6 considers our methodology for generating estimates of employment impacts of
economic activity in both the clean energy and fossil fuel sectors of Brazil, Germany, Indonesia,
South Africa and the ROK. Our estimates are figures generated directly from data from national
surveys of public and private economic enterprises and organized systematically within each
country’s national I-O model. Here is one specific example of how our methodology works. If a
business invests an additional $1 million on energy efficiency retrofits of an existing building
(orits equivalent within each country’s national currency), how much of the $1 million will they
spend on hiring workers, how much will they spend on non-labor inputs, including materials,
energy costs, and renting office space, and how much will be left over for business profits?
Moreover, when businesses spend on non-labor inputs, what are the employment effects
through giving orders to suppliers, such as lumber and glass producers or trucking companies?
We also ask this same set of questions for investment projects in renewable energy as well as
spending on operations withinthe non-renewable energy sectors. There are certainly limitations
with our use of the I-O model, which we review. But we conclude that this is the most reliable
methodology for our purposes. We also consider in Chapter 6 some broader methodological
and measurement questions. For example, should we regard a high employment impact for
a given clean energy investment strategy as necessarily being a favorable development, or
are we simply observing the effects of a moving onto a lower level of labor productivity? We
also address a series of more technical measurement issues in Chapter 6, and pursue these
questions further in Appendices 3 and 4.

Chapter 7 presents these employment estimates by country, both the aggregated and
disaggregated figures. With respect to aggregate figures, we focus on the levels of employment
generated through spending $1 million within the various specific energy sectors. With the
disaggregated employment figures, we show the percentage of jobs based on our four criteria
- gender balance; the proportions in self-employment and working in micro-enterprises; and
the educational attainment levels of people employed in the various energy-linked activities.

Overall, we find here that, per $1 million in spending in each country (converted at current
exchange rates), clean energy investments generate, on average, about 37 jobs in Brazil,



10 jobs in Germany, 100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK.
Critically, as mentioned above, we also find that the clean energy investments create more jobs
in all five countries than spending the same amount of funds within each country’s fossil fuel
sectors. In the cases of Brazil, Indonesia, and South Africa, the net employment gains for clean
energy investments are substantial. They are more modest in Germany and especially the ROK.
Still, in all cases, we find that investing in building a clean energy economy will also be a net
positive source of job creation.

Not surprisingly, our disaggregated employment results vary by country. We observe, for
example, a high proportion of employment in informal sectors in Brazil, Indonesia, and
South Africa, and, to a somewhat lesser extent, the ROK, as indicated by our figures on both
self-employment and micro-enterprise employment. This pattern is linked, first, to the large
proportion of agricultural employment that will be generated by the growth of clean bioenergy
production. It is also associated with the large increase in construction work that would result
through the expansion of energy efficiency building retrofit projects. The major increase in
investment funds flowing into construction and agriculture should also provide opportunities
toraise the level of formalization for these sectors. This should entail increased mechanization
and productivity growth.

In its current composition, employment in clean energy areas is heavily male dominated in all
five countries. This is due to the significant role played by both manufacturing and construction
inoverall clean energy investments. Advancing major clean energy initiatives in all five countries
(and elsewhere) could therefore be seen as an opportunity to open up decentjob opportunities
forwomen in these heretofore male employment strongholds.

The levels of educational attainmentin the clean energy areas are generally not especially high.
Indeed, if anything, they are somewhat lower than those for workers in the fossil fuel sectors.
This suggests that, at least at the level of general educational levels, there should not be major
challenges in finding qualified workers to cover the rising employment needs for expanding
clean energy activities. At the same time, some of these new employment activities will entail
new activities and skills. For example, installing solar panels on roofs and wiring these panels
so they supply electricity are distinct tasks relative to the jobs that are traditionally performed
by either roofers or electricians. Similarly, refining agricultural wastes into biofuels is different
than refining corn into ethanol or, for that matter, refining petroleum into gasoline. Countries
advancing clean energy investment projects will need to make provisions for these and similar
areas that demand new types of training and skill acquisition. This is an issue we address
separately in Chapter 5.

We do not present figures in Section 2 on actual numbers of jobs that are likely to be generated
within each country through the various investment projects. Rather, this is one of the central
topics we take up in Section 3, which consists of our five country-specific studies. The chapters
proceed as follows: Chapter 8, Brazil; Chapter 9, Germany; Chapter 10, Indonesia; Chapter 11,
South Africa; and Chapter 12, the ROK. In each of these country-specific chapters, we examine
their broad energy indicators; some alternative projections for energy development over the
course of a 20-year cycle; the country’s likely economic growth trajectory over such 20-year
cycles; and the range of costs each country is likely to face through undertaking large-scale
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investments in clean energy.4

In all five country settings, we deliberately work with relatively conservative assumptions
on each country’s economic growth trajectory and the costs that countries will face in
implementing large-scale investment activities in renewable energy and energy efficiency.
As we will see, the cost estimates for renewable energy and energy efficiency projects range
widely, according to which countries and regions are being considered and, at a more technical
level, what specific methodologies are being used to generate estimates. For the purposes
of this report, it is less important to try to establish what are the most reliable GDP growth
forecasts and cost estimates than to be able to evaluate the viability of large-scale clean energy
investments when we assume that GDP growth will be moderate and investment costs will be
relatively high. If the actual costs of renewable and efficiency investments are lower than what
we have assumed, then this only strengthens our conclusion that a transformative clean energy
investment agenda is a realistic prospect for all five of our selected countries.

For all of the countries except Brazil, we consider the impact on energy supply and CO,
emissions levels of the country devoting 1.5 percent of annual GDP on investments in renewable
energy and energy efficiency. For two reasons, we assume a lower rate of investment in these
areas for Brazil. The first reason is that Brazil is already a very strong performer in both its
reliance on renewable energy and its level of energy efficiency. The second reason is that, in
Brazil, uniquely among our five selected countries, CO, emissions from energy-based sources
accounts for less than 40 percent of the country’s total GHG emissions. As such, for roughly
the next decade, Brazil should devote a relatively large share of their resources to controlling
methane and nitrous oxide emissions from non-energy sources.

Overall, our country-specific analyses demonstrate that each of our five selected countries
can achieve major advances forward in reducing CO, emissions through the clean energy
investment projects that we outline. The projects that we outline, in turn, build from the existing
policy approaches and prospects being developed in each of the five countries. Through
this approach, we are able to describe trajectories through which each of the countries can
realistically reduce its ratio of per capita CO, emissions to an extent that the world as a whole
can expect to achieve the overall 20-year CO, emissions target of 20,000 mmt.

Once we identify the broad levels of investment activity for each country - i.e. about 1.5 percent
of annual GDP for all the countries other than Brazil, and with Brazil at about 0.9 percent of
GDP - we can then estimate total amounts of employment creation through investments in
renewable energy and energy efficiency. We show these employment figures both in absolute
terms and as a share of each country’s total labor market.

We also examine our estimates for the total numbers of jobs generated through clean energy
investments in comparison with the same level of spending in each country on its existing
fossil-fuel based energy infrastructure. Crucially, we find that in all countries, investing in
building a clean energy economy is a net source of job creation relative to maintaining the

4 In developing these scenarios for 20-year clean energy investment projects, we have had to be specific as to what we mean by a “20-year project.”
In particular, many of the scenarios we consider provide projects for the year 2030, as if the year 2030 were 20 years from the present. But at present,
of course, the year 2030 is now only 16 years away. At the same time, in some cases, the most recent data points are for the year 2010, while in
other cases, data are available as recently as 2012 or even parts of 2013. Our approach to managing this issue is, in general, to present our analyses
within a 20-year time frame, rather than specifically focusing on 2030 as our end-point. But we do also make considerable use of projections that are
specifically focused on the year 2030. Most importantly, we have attempted to manage this issue in ways that do not distract focus on the basic issues
at hand, regardless of whether our time frame ends in the year 2030 or, perhaps one, two or three years later.



economy’s fossil fuel-based operations. We present these country-by-country employment
creation estimates first in terms of employment levels in Year 1 of the overall 20-year clean
energy investment cycle. We then also provide projections on employment creation in Year 20
of the 20-year cycle, building from a range of assumptions as to each country’s relative rates of
labor productivity growth as well as GDP growth. Overall, our results on employment creation
throughout the 20-year clean energy investment cycle enable us to conclude that, in all five of
our specific country settings, the project of building a clean energy economy is also a project
for expanding employment opportunities.
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As we noted at the end of Chapter 1, there are only a limited number of possible ways for
economies to reduce their absolute levels of carbon emissions while still either increasing
their per capita consumption of energy-based services or at least maintaining their current
consumption levels. These are: raising energy efficiency; expanding the use of either clean
renewable energy sources or nuclear power; capturing the CO, emissions from burning fossil
fuels through CCS technology; or switching to cleaner-burning natural gas or oil and out of coal.

In this chapter, we will first review the basic facts on the extent of CO, emissions that are
generated from consuming oil, coal and natural gas, as well as high-emissions bioenergy
sources. This will enable us to see clearly the levels of fossil fuel consumption that can be
sustained while still achieving the target of reducing global CO, emissions to no more than
20,000 mmt within 20 years. We will then consider the alternative ways to continue utilizing
non-renewable energy sources while still reducing emissions from these energy sources - i.e.
through expanding nuclear power and CCS technologies as well as through fuel switching from
coal to natural gas and oil.

To estimate the impact on emissions of any given level of energy consumption supplied from
oil, coal, natural gas and high-emissions renewable sources, we need to begin with the basic
data on emissions that result from these alternative non-renewable sources.

Table 2.1 reproduces figures reported by the US Energy Information Administration (EIA) as
to the CO, emissions levels from oil, coal, natural gas and bioenergy sources, with specific
figures referring to the use of these energy sources for alternative purposes.> As we discuss
further below, generating electricity from operating nuclear power plants does not produce
GHG emissions.® The data in Table 2.1 are shown in terms of millions of metric tons of carbon
dioxide equivalent per Q-BTU of energy. The basic results are as follows:

5 The IEA publication CO, Emissions from Fossil Fuel Combustion (IEA, 2013b) provides an extensive discussion on methodologies for estimating
€0, emissions from oil, coal, and natural gas combustion. Among other useful features of this discussion is its explanation as to how differences
can emerge in estimating emissions from a given level of combustion from a specific fossil fuel source. They also note that “in most cases, these
differences will be small,” (p. 1.5).

6 We also review below the evidence regarding emissions generated through mining and refining uranium needed in generating nuclear energy, and
in the process of constructing nuclear power plants.
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€0, emissions per Q-BTU of energy generated (mmt)

Petroleum

Gasoline (net of ethanol)
Liquefied petroleum gas used as fuel
Liquefied petroleum bas used as feedstock k
Jet fuel

Distillate fuel (net of biodiesel)
Residual fuel

Asphalt and road oil
Lubricants

Petrochemical feedstocks
Kerosene

Petroleum coke

Petroleum still gas

Other industrial

Coal

Residential and commercial
Metallurgical

Coke

Industrial other

Electrical utility

Natural gas

Used as fuel

Used as feedstock
High-emissions bioenergy
Biomass

Biogenic waste

Biofuels heats and coproducts
Ethanol

Biodiesel

Liquids from biomass

Source: U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012”.

71.3
63
12.3
70.9
73:2
78.8

37-1
25.1
72.3
92.1
64.2

745

95-4
93.7
114.1
94
95.5

53.1
28

88.5
90.7
88.5
65.9
739
73:2



Petroleum. We see in Table 2.1 that emissions levels vary according to how petroleum is being
utilized. This includes the extent to which the oil is being combusted with the various usages.
Thus, when petroleum is used for gasoline, it emits 71.3 mmt of CO_per Q-BTU of energy.
By contrast, as a petrochemical feedstock, the emissions level is 25.1 mmt of CO, per Q-BTU
equivalent. There are no emissions when gasoline is used for producing asphalt and road oil,
since these processes entail no petroleum combustion.

Coal. The range of emission levels is narrower with coal, between 94-95 mmt of CO_per Q-BTU,
for all purposes other than combusting coke, in which case, the emissions are higher, at 114.1
mmt per Q-BTU.

Natural gas. Emissions are at 53 mmt of CO, per Q-BTU when natural gas is used as a fuel, i.e.
about 45 percent lower than those for coal-based energy. Emissions from natural gas are then
cut roughly in half when used as a feedstock, to 28 mmt of CO, per Q-BTU.

High-emissions bioenergy. The level of emissions varies according to the specific uses being
put to bioenergy sources. Thus, biomass and biogenic waste are roughly equivalent to coal in
their level of emissions per Q-BTU of energy, while ethanol and biodiesel are comparable to
gasoline.

Weighted Averages for Emissions Levels

Given the range of emissions levels within each of the fossil fuel energy sources, it is useful
to calculate weighted averages of emissions levels, based on the proportions of consumption
within each energy source. We show these weighted average figures in Table 2.2, working from
overall global energy consumption and emissions levels for oil, coal and natural gas in 2010.

@ @ G
Energy consumption €O, emissions CO, emissions per Q-BTU
(Q-BTUs) (mmt) (mmt)

(= column 2/1)

Petroleum and other

liquid fuels® 163 Q-BTUs 11,200 mmt 68.7 mmt
Coal 138 Q-BTUs 13,800 mmt 100 mmt
Natural gas® 110.6 Q-BTUs 6,200 mmt 56.1 mmt

Source: Authors’ calculations based on U.S. Energy Information Adminstration (2013), “International Energy Outlook 2013,”
Table 20 (for emissions); IEA, “Key World Energy Statistics 2012,” p. 37 (for energy consumption).

Notes: a) The “petroleum and other liquid fuels” category includes, according to the EIA, petroleum- derived fuels and non-petroleum derived fuels,
such as ethanol and biodiesel, and coal-based synthetic liquids. Petroleum coke, which is a solid, is included. Also included are natural gas plant
liquids, crude oil consumed as a fuel, and liquid hydrogen. b) The average emissions per Q-BTU of natural gas are slightly lower in the U.S. (53.1
mmt/Q-BTU) than the world average (56.1 mmt/Q-BTU). The lower value of carbon content is used by the U.S. Energy Information in its “Annual
Energy Outlook” and is presented in here in Table 2.1. The higher value is used by the International Energy Agency in its “World Energy Outlook” and
is presented here in Table 2.2 The difference in these values is a result of product mix, differences in production processes, and the age and heat rate
of natural gas plants, as documented in IEA (2013d), Deutsche Bank Climate Change Advisors (2011), and EIA (2012b).
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As we see, these weighted average figures, rounded, are 69 mmt per Q-BTU of energy derived
from petroleum or other liquid fuels; 100 mmt per Q-BTU of coal-derived energy; and 56 per
Q-BTUs for natural-gas derived energy. We note that the figure for petroleum and other liquid
fuels is inclusive of ethanol and other biofuel sources.”

Nuclear Power

As of 2010, nuclear power provided 27 Q-BTUs of energy throughout the global economy, which
represented about 5.2 percent of global energy supply.® Eighty-five percent of global nuclear
power supply is generated within the OECD economies.? In terms of the world achieving GHG
emission targets - both the 20-year intermediate target and the 2050 target - nuclear power
provides the obvious important benefit that it does not generate GHG emissions or air pollution
of any kind while operating.

At the same time, the processes for mining and refining uranium ore and making reactor
fuel require large amounts of energy. Nuclear power plants have large amounts of metal
and concrete, which also require large amounts of energy to manufacture. If fossil fuels are
used to make the electricity and manufacture the power plant materials, then the emissions
from burning those fuels could be associated with the electricity that nuclear power plants
generate.™

It is difficult to reach firm conclusions as to the extensiveness of these secondary emissions
effects from producing nuclear energy. In their survey of the relevant literature, Beerten et al.
(2009) conclude that none of the relevant studies on this question “takes into account the
different mining techniques in a proper manner”. They also conclude that insufficient evidence
is available as to the “energy and GHG emissions involved with the waste processing, storage
and disposal on the one hand and the decommissioning of the plant on the other hand,” (p.
5067).

However, even if we assume a best-case scenario in terms of full cycle emission from generating
nuclear energy, we still of course need to recognize the longstanding environmental and public
safety issues associated with nuclear energy. These concerns include:

* Radioactive wastes. These wastes include uranium mill tailings, spent reactor fuel, and
other wastes, which according to the EIA “can remain radioactive and dangerous to
human health for thousands of years” (EIA 2012c, p. 1).

7 The average emissions per Q-BTU of natural gas are slightly lower in the U.S. (53.1 mmt/Q-BTU) than the world average (56.1 mmt/Q-BTU). The lower
value of carbon content is used by the U.S. Energy Information in its “Annual Energy Outlook” and is presented in here in Table 2.1. The higher value
is used by the International Energy Agency in its “World Energy Outlook” and is presented here in Table 2.2. The difference in these values is a result
of product mix, differences in production processes, and the age and heat rate of natural gas plants, as documented in IEA (2013d), DeutschBank
(2011), and EIA (2012b). In addition, the “petroleum and other liquid fuels” category does not include emissions from biomass sources. In the EIA’s
2012 Annual Energy Outlook, Table D-5, these emissions are included, at least in part, in the “other” category. We incorporate these emission figures
into our coal category. We also note that these weighted averages of emissions per Q-BTU of energy, as derived from the 2010 actual levels of energy
consumption in the U.S., are nearly identical to the estimated figures the EIA projects in their scenarios for U.S. energy consumption in 2030 and
beyond, and thus we use these in our calculations of emissions generated through the alternative 2030 scenarios.

8 EIA (2012d).
9 ibid.
10 This paragraph is paraphrased from the EIA, (“Nuclear Explained,” 2014).



e Storage of spent reactor fuel and power plant decommissioning. Spent reactor fuel
assemblies are highly radioactive and must be stored in specially designed pools or
specially designed storage containers. When a nuclear power plant stops operating, the
decommissioning process involves safely removing the plant from service and reducing
radioactivity to a level that permits other uses of the property.

e Political security. Nuclear energy can obviously be used to produce deadly weapons as
well as electricity. Thus, the proliferation of nuclear energy production capacity creates
dangers of this capacity being acquired by organizations - governments or otherwise -
who would use that energy as instruments of war or terror.

® Nuclear reactor meltdowns. An uncontrolled nuclear reaction at a nuclear plant can
result in widespread contamination of air and water with radioactivity for hundreds of
miles around a reactor.

Even while recognizing these problems with nuclear energy, it is still the case, as noted
above, that nuclear power supplies over five percent of global energy supply. For decades, the
prevalent view throughout the world was that these risks associated with nuclear power were
relatively small and manageable, when balanced against its benefits. However, this view has
been upended in the aftermath of the March, 2011 nuclear meltdown at the Fukushima Daiichi
power plant in Japan, which resulted from the massive 9.0 Tohuku earthquake and tsunami.

The full effects of the Fukushima meltdown cannot possibly be known for some time. But an
initial recent research paper by Ten Hoeve and Jacobson (2012) on the overall health effects of
Fukushima finds that they are likely to be very large. Ten Hoeve and Jacobson conclude that
the health effects from inhalation, external exposure, and ingestion of radionuclides will range
between 15-1,100 cancer related deaths and between 24 and 1,800 morbidities, with most of
the impact within Japan itself. Their estimates do not include the effects on the roughly 20,000
workers at the plant in the months following the accident. They also do not include the nearly
600 deaths that had been certified as “disaster related,” through fatigue or aggravation of
chronic illnesses due to the disaster.®

In its most recent 2013 International Energy Outlook, the EIA acknowledges that Fukushima
has substantially intensified concerns worldwide about the viability of expanding, or even
maintaining, nuclear energy as a major power source. The EIA writes:

The Fukushima Daiichi disaster could have long-term implications for the future of world
nuclear power development in general. Even China - where large increase in nuclear
capacity have been announced and are anticipated in the IEO 2013 Reference case
- halted approval processes for all new reactors until the country’s nuclear regulator
completed its safety review. Germany and Switzerland announced plans to phase out
or shut down their operating reactors by 2022 and 2034, respectively...The uncertainty
associated with nuclear power projections for Japan and for the rest of the world has
increased (EIA, 2013, p. 95).

11 The edited volume by Schreurs and Yoshida (2013) addresses a broader set of political and economic considerations of the Fukishima disaster. As
of August 2013, the Fukushima crisis escalated seriously as Japan’s Nuclear Regulatory Authority (NRA) stating, as reported by Reuters, “that it feared
more storage tanks were leaking contaminated water. According to Reuters, “Water in the latest leak is so contaminated that a person standing close
to it for an hour would receive five times the annual recommended limit for nuclear workers,” (Takenaka and Topham, 2013).
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Overall then, it is clear that these safety considerations with nuclear energy must be accorded
significant weight. As such, nuclear energy cannot be seen as serving as a reliable long-term
source of non-carbon emitting energy supplies. This means that, to the extent possible, it is far
preferable to rely on clean renewable energy sources and advances in energy efficiency as the
preferred alternatives as we proceed with reducing our dependence on oil, coal, and natural gas.

CCSis a broad term that encompasses a number of specific technologies that are capable of
capturing CO, from point sources, such as power plants and other industrial facilities. Through
CCS technologies, the captured CO, is then transported, usually through pipelines, in some
form to locations where it is then stored indefinitely in subsurface geological formations.

One specific approach entails converting the captured CO, into liquid form, then moving the
liquid CO, through pipelines to oil reservoirs. If the oil has already been extracted from such
reservoirs, then the dormant reservoir can serve as a permanent CO, storage facility. But if the
reservoir does still contain oil, then the CO_ injections can be used to push the remaining oil
out of the repository more efficiently. As of 2009, Science reported on five CCS projects around
the world of this type that were in operation and another seven that were in the process or
being planned. Two of the operating projects were in the North Sea, and the other three were
in Sastatchewan, Canada; Kaniow, Poland; and In Salah, Algeria (Science, September 2009,
“Carbon Sequestration,” pp. 1644-45.)

The broad case on behalf of CCS is straightforward: the development of effective CCS
technologies will allow for the world’s enormous fossil fuel energy resources to continue to be
exploited without these energy sources continuing to release such high levels of CO_into the
atmosphere. As former U.S. Energy Secretary Steven Chu wrote in 2009:

The world has abundant fossil fuel reserves, particularly coal. The United States
possesses one-quarter of the known coal supply, and the United States, Russia, China
and India account for two-thirds of the reserves. Coal accounts for 25 percent of the
world’s energy supply and 40 percent of the carbon emissions. It is highly unlikely that
any of these countries will turn their back on coal any time soon, and for this reason, the
capture and storage of CO emissions from fossil fuel power plants must be aggressively
pursued (Chu, 2009, p. 1599).

At the same time, as surveyed forcefully by Joseph Romm (2008) of the U.S. Center for
American Progress there are four major problems associated with CCS technologies, which
in combination, render the approach unsuitable for serving as a major clean-energy strategy
either in the in the relatively short- or the longer term. These four problems entail issues of 1)
costs; 2) timing; 3) scale; and 4) permanence and transparency. It is worth quoting at length
from Romm’s overview:

1. Cost: Coal plants with CCS are very expensive today. A 2012 study by the U.S.
Congressional Budget Office found that plants equipped with CCS technology have
capital costs averaging 76 percent higher than non-CCS plants.? The modeling work

12 CBO (2012), p. 7.



done for the California Public Utility Commission (CPUC) on how to comply with the AB32
law (California’s Global Warming Solutions Act), puts the cost of coal gasification with
carbon capture and storage at a staggering 16.9 cents per kiWh.

2. Timing: The world does not even have a single large-scale (300+ MW) coal plant with
CCS anywhere in the world.... Most governments and most U.S. utilities have scaled
back, delayed, or cancel their planned CCS projects (see below). As Howard Herzog of
MIT’s Laboratory for Energy and the Environment said in February 2008, “How can we
expect to build hundreds of these plants when we’re having so much trouble building
the first one?”s

3. Scale: We need to putin place a dozen or so clean energy “stabilization wedges” by mid-
century to avoid catastrophic climate outcomes....For CCS to be even one of those would
require a flow of CO2z into the ground equal to the current flow of oil out of the ground.
That would require, by itself, re-creating the equivalent of the planet’s entire oil delivery
infrastructure, no mean feat.

4. Permanence and transparency: We need to set up some sort of international regime for
certifying, monitoring, verifying, and inspecting geologic repositories of carbon - like
the U.N. weapons inspections systems. The problem is, this country [the U.S.] hasn’t
been able to certify a single storage facility for a high-level radioactive waste after two
decades of trying and nobody knows how to monitor and verify underground CO, storage.
It could take a decade just to set up this system (Romm, 2008).

In addition to the issues highlighted by Romm’s survey, there are also broader environmental
issues at stake. The possibility of leakages from the underground CO, repositories is one such
danger. Any such leakages could produce contamination of ground water, and thereby, drinking
water. Leakages could also mean new releases of the very CO_ emissions that the technology
is designed to mitigate. Still another issue is the environmental damage from continuing to
extract coal through mountaintop removal and strip mining.

Considering all of these factors, the IEA’s 2013 World Energy Outlook presents a highly
pessimistic assessment of the prospects for CCS:

Progress in developing CCS has been disappointingly slow. Only a handful of large-scale
CCS projects, mainly in natural gas processing, are operating, together with some low-
costschemes inindustrial applications. While projects are more economically viable ifthe
captured CO2 can be used for enhanced oil recovery, there is, to date, no commercial CCS
application in the power sector or in energy-intensive industries. Beyond technological
and economic challenges, there could be legal challenges related to the potential for
€O, gas escape from underground storage. Although some progress has been made in
developing regulatory frameworks, deployment support is lacking and the absence of a
substantial price signal has so far impeded necessary technological development and
more widespread update (IEA, 2013a, p. 53).

In short, following from this most recent assessment by the IEA, we conclude that the prospects
for deploying CCS technologies on a large scale globally are not favorable. Thus, as we noted

13 Quoted in Biello, 2008.
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above with respect to nuclear power, to the extent possible, it is far preferable to rely on
clean renewable energy sources and advances in energy efficiency rather than unproven CCS
technologies as the preferred alternatives as we proceed with reducing our dependence on
oil, coal, and natural gas. It is of course possible that major technological breakthroughs will
create a much more favorable outlook for CCS than those presented in summary assessments
by Romm (2008) and the IEA (2013). But the evidence for any such major breakthroughs does
not presently exist. As such, as we will explore in depth in Chapters 3 and 4, the more prudent
approach for building clean energy economies is to encourage the rapid advances that are
already underway with clean renewables and energy efficiency.

The EIA (2012b) forecasts that total levelized costs for generating electricity from natural
gas-powered processes will be substantially lower than those from any other conventional
or renewable energy source. We discuss this in detail in Chapter 3, in comparing the costs
generating electricity from renewable sources relative to those from coal, natural gas and
nuclear power. But these figures are also critical for our current discussion, so we present the
main findings in Table 2.3 below, as they relate specifically to the issue of assessing hydraulic
fracturing technology.

U.S. EIA projections for 2017

Total 2017 estimated costs per Total 2017 estimated costs
megawatt hour (dollars) relative to natural gas (percent)

Conventional natural gas (no CCS) $66.1

Hydro $88.9 +34.5%
Wind $96.0 +45.2%
Conventional coal (no CCS) $97.7 +47.8%
Nuclear $114.7 +73.5%
Biomass $115.9 +75.3%
Solar PV $152.7 +131.0%

Source: Authors’ calculations based on U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012.”

As we see in Table 2.3, the EIA projects that, as of 2017, the total costs of electricity generation
from natural gas without CCS technology will be $66.1 per megawatt hour. This figure is 26
percent lower than for hydro, the next lowest source for electricity generation, at $88.9 per
megawatt hour. According to the EIA’s 2017 projections, the costs of natural-gas-fired electricity
(without CCS) are lower than all other sources of electricity generation, both non-renewable
and renewable, ranging from wind and coal (45 and 48 percent more expensive than natural
gas, respectively) to solar PV (131 percent more).

The factor that is producing such low-cost electricity projections from natural gas is the
EIA’s assumption of a rapidly expanding use of hydraulic fracturing technology to extract



natural gas from shale rock. But the issue with fracking technology is that some, though not
all, credible research finds that fracking consistently produces serious environmental costs
along with an inexpensive energy supply. In particular, fracking has been demonstrated to
contaminate drinking water with methane gas in aquifers overlying the major shale formations
of northeastern Pennsylvania and upstate New York. Yet other recent research has found that
methane emissions can be significantly reduced when producers take active measures to
control methane emissions.

It will be useful here to review these alternative perspectives. To begin with, we draw from
an important 2011 overview paper by Jackson, Pearson, Osborn, Warner and Vengosh of Duke
University. Jackson et al. begin by describing the basics of fracking technology and explain
why this technology is capable of extracting natural gas at significantly lower costs than
conventional extraction methods:

The extraction of natural gas from shale formations is one of the fastest growing trends
in American on-shore domestic oil and gas production....Large-scale production of
shale gas has become economically viable in the last decade attributable to advances in
horizontal drilling and hydraulic fracturing (also called “hydrofracturing” or “fracking”).
Such advances have significantly improved the production of natural gas in numerous
basins across the United States, including the Barnett, Haynesville, Fayetteville,
Woodford, Utica, and Marcellus shale formations. In 2010, shale gas production doubled
to 137.8 billion cubic meters, and the EIA projects that by 2035 shale gas production will
increase to 340 billion cubic meters per year, amounting to 47% of the projected gas
production in the United States.

Hydraulic fracturing typically involves millions of gallons of fluid that are pumped into an
oilorgas well athigh pressure to create fractures in the rock formation that allow oil or gas
to flow from the fractures to the wellbore. Fracturing fluid is roughly 99% water but also
contains numerous chemical additives as well as propping agents, such as sands, that
are used to keep fractures open once they are produced under pressure. The chemicals
added to fracturing fluid include friction reducers, surfactants, gelling agents, scale
inhibitors, acids, corrosion inhibitors, antibacterial agents, and clay stabilizers. The
Interstate Oil and Gas Compact Commission (I0GCC) estimates that hydraulic fracturing
is used to stimulate production in 90% of domestic oil and gas wells, though shale
and other unconventional gas recovery utilizes high-volume hydraulic fracturing to a
much greater extent than conventional gas development does. Horizontal wells, which
may extend two miles from the well pad, are estimated to be 2-3 times more productive
than conventional vertical wells, and see an even greater increase in production from
hydraulic fracturing. The alternative to hydraulic fracturing is to drill more wells in an
area, a solution that is often economically or geographically prohibitive (Jackson et al.,
2011, pp. 1-2).

What is the environmental impact of fracking? One perspective is the environmental/safety
issues with shale extraction are manageable. This position is most strongly supported by the
findings reached in a major 2013 research study directed by David T. Allen of the University
of Texas-Austin, which was funded by the natural gas industry (Allen et al., 2013). Allen et al.
found that methane emissions could be cut by as much as 98 percent - from 81 to 1.7 megatons
per well - when controls were utilized to capture these emissions.
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The 2011 study by Jackson et al. presents a sharply different view, especially around the issue
of groundwater contamination. They conclude as follows:

A recent study by Osborn and colleagues in the Proceedings of the National Academy
of Sciences, USA provides to our knowledge the first systematic evidence of methane
contamination of private drinking-water in areas where shale gas extraction is occurring.
The research was performed at sites above the Marcellus and Utica formations in
Pennsylvania and New York. Based on groundwater analyses of 60 private water wells
in the region, methane concentrations were found to be 17-times higher on average in
areas with active drilling and extraction than in non-active areas, with some drinking-
water wells having concentrations of methane well above the “immediate action” hazard
level (2011, pp. 3-4).

In a more recent 2013 study, “Increased Stray Gas Abundance in a Subset of Drinking Water
Wells Near Marcellus Shale Gas Extraction,” Jackson et al., reached basically the same
conclusion as their 2011 paper regarding the impact of fracking technology on drinking water.
For example, in their 2013 paper, they conclude that “Methane was detected in 82 percent of
drinking water samples, with average concentrations six times higher for homes less than one
kilometer from natural gas wells,” and that “Ethane was 23 times higher in homes less than
one kilometer from gas wells,” (2013, p. 1).

Certainly, neither the University of Texas nor the Duke University studies can be considered
to have produced definitive findings. Yet taken together, they bring greater clarity regarding
a key question at hand: whether adequate controls can be put in place for greatly reducing
the methane emissions that are occurring in the absence of such controls. Establishing such
controls would no doubt be costly, and, as such, the industry would prefer to avoid paying
these costs.* From this perspective, the safety concerns regarding fracking are comparable to
those connected with nuclear energy.

As a result of the negative findings regarding contamination of drinking water, in May, 2012,
Vermont became the first state in the U.S. to pass legislation banning fracking. As of this
writing, New York also operates with a moratorium on fracking. Other states and municipalities
have either imposed temporary moratoria or are in the process of debating such measures.

In Europe, as of October 2013, countries that have banned fracking include France and Bulgaria,
which have the largest deposits of exploitable shale rock resources in on the Continent. The
Czech Republic, Northern Ireland, and the regions of Canatabria in Spain, and Friebourg in
Switzerland have also established bans, while Romania, Germany and Luxembourg have
declared moratoria. *

It is also the case that the recent political crisis in the Ukraine has created pressure for
European countries to reduce their dependence on natural gas supplies imported from
Russia.'® Regardless of how these geopolitical issues are resolved, it remains the case, as we
will discuss below, that allowing current, or even increasing levels of natural gas consumption
levels is not compatible with achieving the 20-year global emission reduction target.

14 Koch 2103 presents a range of reactions to the findings by Allen et al. quoted in Koch, (2013).
15 This listing of countries comes from Petro Global News (2013).

16 EurActiv (2014).



In addition to the safety issues raised through hydraulic fracturing technology, it is also the
case that relying heavily on coal to natural gas fuel switching will not provide anywhere close
to an adequate level of emissions reductions necessary to meet the global 2030 emission
reduction target. We can see this clearly by considering the EIA’s reference case for total global
energy consumption in 2030. As we have discussed, with this 2030 reference case, total global
energy consumption is at 729 Q-BTUs in 2030. Total emissions are at 41,000 mmt, i.e. roughly
twice as high as the target level of 20,000 mmt for meeting the climate change control target.

Within the framework of this reference case, let us considertwo alternative global fuel-switching
scenarios: that both 5o percentand 100 percent of global coal consumption is replaced through
natural gas, but that otherwise, the EIA’s reference case remains as they have projected it. Of
course, even the 50 percent coal-to-natural gas fuel-switching scenario is implausibly large. We
have included the 100 percent fuel switch to establish the outer boundary of a fuel-switching
scenario on a global scale. We show the results of these illustrative exercises in Table 2.4.

2030 Reference 2030 with 50 percent coal-to- 2030 with 100 percent coal-

case natural gas fuel switching = to-natural gas fuel switching

Coal consumption (Q-BTUs) 200 Q-BTUs 100 Q-BTUs 0 Q-BTUs
CO, emissions from coal 10.500 mmt 800 mmt o mmt
(mmt) 9,5 9,
Natural gas consumption
(Q-BTUS) 126 Q-BTUs 226 Q-BTUs 326 Q-BTUs
CO, emissions from natural

2 8,600 mmt 15,400 mmt 22,300 mmt
gas (mmt)
Coal + natural gas CO

. 2 28,100 mmt 25,200 mmt 22,300 mmt
emissions (mmt)
Oil and other liquid fuel CO, 12700 mmt 12700 mmt 13.200 mmt
emissions (mmt) 33 33 33

38,500 mmt 35,600 mmt
Total CO, emissions (mmt) 41,400 mmt
(7% reduction) (14% reduction)

Source: Authors’ calculations based on U.S. Energy Information Administration (2013), “International Energy Outlook 2013.

As Table 2.4 shows, on its own, the overall impact of even these highly aggressive coal-to-
natural gas fuel-switching scenarios is quite modest. Within the context of the EIA’s 2030
Reference case global energy consumption scenario, the 50 percent coal-to-natural gas fuel
switch reduces overall CO, emissions by 7 percent, from 41,400 mmt to 38,500 mmt globally.
Even the 100 percent coal-to-natural gas fuel switch produces an emissions reduction of only
14 percent, to 35,600 mmt globally. Of course, these emissions reduction levels need to be
evaluated against the need to reduce global emissions down to about 20,000 mmt by 2030 or
thereabouts.
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What these illustrative exercises illustrate clearly is the importance of exploring the prospects
forinvestmentsin energy efficiency and clean renewable energy sources as the central elements
of a global green growth strategy.
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In order for the world economy to meet its intermediate CO, emissions reduction targets within
20 years and, subsequently for 2050, it will be necessary to create a rapidly expanding and
successful renewable energy sector. This means producing energy increasingly from wind,
solar, geothermal, bioenergy, and hydropower sources. Even if, with strong energy efficiency
measures accompanying ongoing economic growth, the absolute level of global energy
consumption were to fall by 10-20 percent over the next 20 years, it would still be necessary
that clean renewable energy sources would provide about one-third of global energy supply. At
present, total renewable sources account for about 13 percent of global energy supply.

As we will review in this chapter, it is in fact realistic to allow that clean renewables could
provide in the range of one-third of all global energy supplies within 20 years. It is already
the case that, in terms of additions to capacity, renewable power generation technologies
account for about half of all new power generation worldwide.”” The main driver here is that the
trajectory for prices and costs for renewables is becoming increasingly favorable. In particular,
clean renewables are already close to closing the cost gap with non-renewable energy sources.
In awide range of conditions - though of course not under all circumstances - renewable energy
from most sources will be at cost parity with non-renewables within the next 5-10 years.

The current dynamic of the global renewable energy sector is well summarized in the 2013
report by the International Renewable Energy Agency (IRENA):

In the past, deployment of renewables was hampered by a number of barriers,
including their high up-front costs. Today’s renewable power generation technologies
are increasingly cost-competitive and are now the most economic option for off-grid
electrification in most areas, and, in areas with good resources, they are the best option
for centralized grid supply and extension....The rapid deployment of these renewable
technologies has a significant impact on costs, because of the high learning rates for
renewables, particularly for wind and solar. For instance, for every doubling of the
installed capacity of solar photovoltaic (PV), module costs will decrease by as much as
22 percent (IRENA, 2013, p. 12).

In considering the prospects for renewable energy supplies to achieve an ambitious growth
target, the first point to emphasize is that these energy sources vary widely, in terms of their
basic feedstocks, the means by which they generate energy, their costs, and theirenvironmental
impacts and related externalities.*®

Bioenergy provides the most critical case in point here. This is first of all because bioenergy
sources account for 75 percent of global renewable energy supply, which amounts to about 10
percent of total energy supply (IEA, 2014). Considering the short- to medium term - i.e. within

17 IRENA, 2012.

18 The massive IPCC study Renewable Energy Sources and Climate Change Mitigation (2013) provides a comprehensive reference guide on these
issues.
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the 20-year time frame on which we are focused in this report - bioenergy will continue to be
the largest source of renewable energy throughout the globe. For this reason alone, prospects
for the bioenergy sector merit our careful attention.

But expanding the bioenergy sector also presents major challenges. To begin with, depending
on the production processes utilized, bioenergy may not be - and, in most cases, in fact, is
not - a low-emissions energy source. For example, corn ethanol is the most heavily consumed
bioenergy source in the U.S. at present. Under currently prevailing refining methods used, the
CO, emissions produced by corn ethanol can be comparable to burning oil. This is also true
for biomass energy when - as is mostly the case at present throughout the globe - the energy
sources and production practices are not carefully managed to minimize carbon emissions.

An equally serious concern with producing bioenergy is that it can entail significant increases in
the demands on the world’s agricultural resources. This in turn could lead to rising agricultural
prices. This problem is especially serious with respect to food prices. We have seen over the
past decade how sharp increases in global food prices have produced massive increases in
food insecurity and malnutrition worldwide.

Biomass/biofuels can also be a carbon-neutral source of energy, if the raw materials are
wastes and non-food crops and if these raw materials are refined through the use of renewable
sources. The impact of bioenergy production on agricultural resources and food prices can also
be minimized when the underlying feedstocks are wastes and non-food crops. But, to date,
these other techniques for producing bioenergy are utilized only to a small extent worldwide.
In considering the expansion of renewable energy sources, our focus therefore needs to be
on low- to zero-emissions sources, which we term “clean renewables. We return to this point
below.

The other renewable sources - hydro, wind, solar, and geothermal power - produce no CO,
emissions. Yet at present, among these, only hydro is producing energy on a significant scale
globally - i.e. 2.3 percent of all global energy supply, or 17.5 percent of all renewable supply (IEA,
2013e). Forthe most part, it is not desirable that large-scale hydro projects expand significantly
past their current capacity level. This is because there are likely to be serious environmental
issues connected with additional large-scale dam construction in terms of disrupting existing
communities and eco systems. At the same time, prospects are much more favorable for
expanding electricity-generating capacity from small scale hydro projects. This would be in
addition to expanding capacity from other emissions-free renewable energy sources - that is,
wind, solar, geothermal and clean bioenergy.



Renewable energy costs vary widely depending on technologies, feedstocks, available
resources and the specific conditions at any given power-generating site. The prospects for
achieving cost reductions for renewables will also vary, depending on how these same factors
play out, in particular as investors learn to improve renewable energy technologies then to
incorporate these technical innovations into production processes. The 2013 IRENA report
provides a useful overview here:

Depending on local resources, biomass, geothermal, and hydropower can all produce
electricity at very competitive costs. Onshore wind is typically the next most expensive,
while solar PV and CSP are more costly. However, this cost order typically follows an
inverse relationship to resource availability. The availability of low-cost resources for
hydropower, geothermal and biomass are all constrained to a greater or lesser extent,
while long lead times for the first two mean that capacity additions cannot be ramped
up or down rapidly....Conversely, wind and solar resources are much larger and are
distributed, albeit unevenly, around the world. This, together with targeted policy
support, has seen the level of wind and solar PV capacity grow much more rapidly than
hydropower, biomass and geothermal (IRENA, 2013, p. 24).

Figure 3.1 below, reproduced from the 2013 IRENA study, provides a clear picture on cost ranges
for renewables both in 2012 and projected for 2020. The 2020 figures, of course, incorporate
estimates as to the rates at which more efficient technologies are being adapted between
2012 and 2020. These projected cost reductions thus reflect the estimated “learning curves”
for renewable energy technologies. The cost figures being reported in the figure are the total
levelized costs of producing electricity (LCOE) through renewable sources. Total levelized costs
include five components:

e (Capital costs. The IRENA study assumes an average cost of capital at 10 percent. But
it also discusses in detail the variables, which can lead to large differences in costs of
capital.

¢ Fixed operations and maintenance. These include standard costs that do not vary with
output levels, including land and maintenance of buildings and machines.

e Variable operations and maintenance. This includes fuel costs for operating renewable
energy projects, which will be most significant in the case of bioenergy.

e Transmission. This includes the operations of the electrical grid system. In the case of
direct distributed energy, transmissions costs are eliminated.

e Capacity utilization rate. The projected utilization rate for equipment, which varies with
market demand and resource availability.

19 Further details on sources of variation in capital costs are provided in Limaye and Zhu (2012).
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Figure 3.1: Typical levelized cost ranges for renewable power generation technologies,
2012 and 2020
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PT = parabolic through, ST = solar tower, BFB/CFB = bubbling fluidized bed/circulating fluidized bed, AD = anaerobic digestion.
Source: IRENA (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure ES-2.

The basic findings that emerge from Figure 3.1 are as follows:

1.

The largest range of costs is with solar power, both in 2012 and with their projections for
2020. In 2012, generating electricity from solar PV technologies ranges between about
14 and 35 cents per kilowatt hour (kWh). IRENA projects that solar PV costs will decline
in 2020. But their projected range, between about 8 and 30 cents, will still be wide.

. The lowest costs are through hydro electricity generation, at about 3 cents per kWh. But

these costs do also rise as high as about 15 cents.

The costs of generating electricity through onshore wind, biomass, hydro and
geothermal are all at rough parity with fossil fuel electrical generation prices within the
OECD economies. Solar power, with both PV and CSP technologies, as well as offshore
wind, are the only two renewable sources in which total levelized costs are consistently
higher than the range for fossil fuels.



4. The costrange forfossil fuel electricity generation is narrower than for most renewables.
But the differences in range are relatively small for wind, most biomass, hydro and
geothermal. It is only with solar power that the cost range is significantly wider than that
for fossil fuel energy.

5. The lower average costs and narrower cost range for fossil fuels reflects the fact that
these sectors are operating with mature technologies that have been developed over
decades, and have been supported on a massive global scale over this full period by
both private investors and public subsidies.?®

6. Rates of decline in costs between 2012 and 2020 - reflecting the technological ‘learning
rates’ over these eight years -vary significantly by renewable energy source. For
example, IRENA projects large cost reductions for both solar PV and Concentrated Solar
Power (CSP) over these years. With grid-based solar PV systems, IRENA estimates that
the levelized cost range per kWh will decline from between about 18-37 cents in 2012
to between about 9-30 cents as of 2020. As the figure shows, at 9 cents per kWh as of
2020, solar PV will become cost competitive with fossil fuel generated electricity under
average circumstances. By contrast, IRENA is projecting much more modest learning
rates and cost reductions between 2012-2020 for onshore wind, most bioenergy
sources, and no cost improvements for either hydro or geothermal power. At the same
time, as noted above, IRENA shows onshore wind, most bioenergy sources, hydro and
geothermal power as already operating basically at levelized cost parity with fossil fuel-
generated electricity as of 2012.2

Beyond the broad renewable energy cost estimates shown in Figure 3.1, it is important for
the purposes of this report to also examine costs at a more detailed scale. The 2013 IRENA
study does also provide cost estimates on a regional basis. We report on their main findings in
Tables 3.1-3.5 below, which show cost figures for each of the renewable energy sources. Each
of the tables shows average costs by region as well as the range of costs among the individual
projects for which IRENA has collected data.

Wind. Table 3.1 shows cost figures for onshore wind projects. As we see, average costs per kWh
of generating electricity from onshore wind range between 8 cents in China and India to 12
cents in Other Asia. We do also see a wide range of costs within each region. For example, the
average cost in Latin America is 9 cents, but the range is between 4 and 16 cents. In Africa, the
average cost is also 9 cents, while the range is between 5 and 17 cents

20 The development of the global fossil fuel industry has been well-documented, for example, by Yergin (1992 and 2011).

21These learning rate patterns between 2012 and 2020 projected by IRENA for various renewable sources are broadly consistent with those estimated
by the EIA. The EIA measures learning rates as the capital cost reductions that will be associated with a doubling of capacity for any given technology.
In EIA (2013¢, p. 104), learning rates for biomass, hydro, and wind at 1 percent; geothermal as ranging between 1-8 percent, solar PV and biofuels at
between 1-10 percent; and solar CSP as between 1-20 percent. In short, the EIA estimates that the greatest upside potential for cost reductions are with
solar. But this is in large part because costs presently are very high and existing productive capacity is very modest.
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Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

Average Range
Africa 9 5-17
China 8 5-11
Eastern Europe and Central America 11 7-17
Other Asia 12 8-16
India 8 3-12
Latin America 9 4-16

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 4.8 and underlying IRENA
cost database.

Hydro. Table 3.2 shows figures for large-scale hydro projects. Here average costs for generating
electricity range between 3 cents per kWh in China to 12 cents in Other Asia. In addition, the
cost range within regions is also wide. In Africa, the average cost is 6 cents per kWh, but the
range is between 1 and 17 cents.

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

Average Range
Africa 6 1-17
China 3 1-8
Eastern Europe and Central America 10 3-14
Other Asia 12 8-16
India 8 3-12
Latin America 9 4-16

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 5.8 and underlying IRENA
cost database.

As we discussed above, these figures for large-scale hydro projects are less relevant in terms
of expanding capacity into the future than the projects for small-scale hydro. We show the
IRENA figures on small-scale hydro projects in Table 3.3. As we see there, average costs for
small-scale hydro projects are generally lower than those for large-scale projects and the range
of costs within regions is also somewhat narrower. For example, in Other Asia, the average
cost for small-scale hydro projects is 4 cents per kWh, while large-scale hydro costs average 12
cents. In India, small-scale hydro projects average 5 cents per kWh while large-scale projects
average 8 cents. In Latin America, small-scale projects average 5 cents while large-scale
average 9 cents. These figures for small-scale hydro suggest that there are major opportunities
for expanding hydropower through smaller projects. Most significantly, in all regional settings,



the average costs for small-scale hydro are either at rough parity with or lower than those for
fossil fuel sources of electricity generation.

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

Average Range
Africa 6 2-10
China 3 1-6
Eastern Europe and Central America 4 2-6
Other Asia 4 2-13
India 5 2-13
Latin America 5 2-9

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 5.8 and underlying IRENA
cost database.

Solar. Table 3.4 shows cost figures for solar PV. As we saw with the average global figures for
solar PV, as well as solar CSP, by regions, the cost figures for solar are still quite high relative to
both fossil fuels and other renewable sources, even while costs have been falling significantly
in recent years. Thus, by region, the average costs for solar PV range between 15 cents per kWh
in Latin America to 30 cents in Other Asia. Costs also vary widely between regions. In China,
average costs are 19 cents per kWh, while the range is between 11-53 cents. In India, average
costs are 23 cents per kWh, while the range is between 8-37 cents. The average costs perregion
and the cost range are even higher for solar CSP technologies.

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

Average Range
Africa 21 18-54
China 19 11-53
Middle East 28 21-32
Other Asia 30 14-70
India 23 8-37
Latin America 15 12-31

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 6.9 and underlying IRENA
cost database.
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As the IRENA study emphasizes, solar energy carries the best long-term promise as a clean
renewable energy resource into the future. The underlying feedstock - sunshine - is generally
abundant in all regions of the world relative to other renewable sources. The technologies can
operate effectively at a variety of scales, including individual rooftops. With rooftop solar and
its close equivalents - such as community-level power-generating projects - electricity can be
distributed without having to rely on an electrical grid system. Over time, these advantages will
be tremendously beneficial to advancing solar energy. Nevertheless, solar remains the high-
cost technology, even among renewables, and is likely to continue as such for at least the next
decade.

Bioenergy. Table 3.5 shows cost figures on electricity generation through biomass sources. In
this case, average costs are low, at between 5-6 cents per kWh of electricity, in all non-OECD
regions. But the cost ranges are also very large within each region — 1-20 cents in India; 2-20
cents in Africa; 3-18 cents in Latin America and 2-17 cents in Other Asia. The Chinese biomass
projects report the smallest range, at 2-10 cents, but this range as well is large in absolute
terms, if not relative to other regions. Given this wide range of costs, in pursuing opportunities
to expand bioenergy-fired electricity production, the specific conditions will clearly be decisive.
These figures also do not distinguish according to feedstocks and refining methods. That is, we
do not know from these figures whether the electricity production is generating reductions in
CO, emissions relative to burning fossil fuels. This fact underscores further the need to examine
the specific conditions involved in each bioenergy electricity project.

Estimates are in 2011 dollars; figures are cents per kilowatt hour (kWh)

Average Range
Africa 5 2-20
China 6 2-10
Other Asia 6 2-17
India 5 1-20
Latin America 5 3-18

Source: International Renewable Energy Agency (2013), “Renewable Power Generation Costs in 2012: An Overview,” Figure 8.5 and underlying IRENA
cost database.

Geothermal. Unlike with the other renewable electricity sources, IRENA does not report on
geothermal-powered electricity costs on a region-by-region basis. They also do not provide a
range of estimated costs. They do give figures on average costs for projects in four countries
- Chile, Indonesia, Kenya and the Philippines. They show figures for projects ranging in size
between about 30 megawatts up to 240 megawatts. These cost figures range between a low
of about 3 cents per kWh for projects at about 60 and 125 megawatts to a high of 6.5 cents for
projects of about 240 megawatts. This clearly is a very limited sample. But it does show that,
under favorable conditions, geothermal-powered electricity can be produced at low costs in
non-OECD countries.



As a comparison with the IRENA renewable electricity cost data for non-OECD countries, it will
be useful to examine comparable figures for the U.S. economy. We present such figures in Table
3.6 for biomass/biofuels, onshore wind, large-scale hydro, solar PV, and geothermal energy.
The first column of this table shows the reference case levelized electricity costs estimated
by the EIA for projects coming online as of 2017, including both the average costs and the
estimated cost range, with the range of estimates in parenthesis. Column 2 of Table 3.6 shows
the EIA’s “Low Renewable Technology Cost case” for 2035. In this case, the EIA assumes that
costs fall by 40 percent for all renewable sources other than hydro. The EIA assumes hydro
costs remain fixed at their reference case, even while other renewable costs are falling by 40
percent. For purposes of direct comparison, in column 3, we show the midpoint of the average
levelized cost figures for the various non-OECD regions for all five renewable energy sources.

Figures are current cents per kilowatt hour (kWh); figures in parenthesis are cost range

Low Renewable

Average reference Midpoint 2011 costs for

case for 2017 T 700 non-OECD regions
case for 2035
11.6
Biomass/biofuels 6.9 5.5
(9-8-13.7)
9.6
Onshore wind 5.8 9
(7.7-11.2)
8.9
Large-scale hydro 8.9 8.5
(5.8-14.7)
15.3
Solar PV 9.2 22
(11.9-23.9)
9.8
Geothermal 5.9 4.5
(8.4-11.2)

Sources: Authors’ calculations based on U.S. Energy Information Administration (2012c¢), “Levelized Cost of New Generation Resources in the Annual
Energy Outlook 2012”, Tables 1 and 2; U.S. Energy Information Administration (2012b) “Assumptions to the Annual Energy Outlook 2012.”

The key finding here is that that the cost figures for the non-OECD countries are comparable to, if
not generally somewhat lower than those for the U.S. This is despite the fact that the non-OECD
figures are for 2011 while the U.S. figures are for 2017 in the reference case and 2035 in the low
renewable technology cost case. Thus, with bioenergy, the non-OECD midpoint average, at 5.5
cents, is lower than the low-point reference case figure for the U.S, at 9.8 cents. The non-OECD
figure is also lower than the 2035 low-cost U.S. figure, at 6.9 cents. With geothermal energy
as well, the non-OECD mid-point figure, at 4.5 cents is below even the low-cost case for 2035
for the U.S. By contrast, the figures for wind and hydro are roughly comparable between the
U.S. reference case and the non-OECD midpoint average. Solar PV is the only case where the
non-OECD midpoint average cost figure, at 22 cents is high relative to the U.S. In this case, the
non-OECD figure is at parity with the high-end figure for the U.S. 2017 reference case.
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Broadly speaking, these figures show that the costs of generating electricity from renewable
sources in the non-OECD countries are within close range of the U.S. cost figures. As regards
the U.S. cost estimates, it is also crucial to note that, even with the reference case figures
for 2017, these costs are at rough parity with those for most non-renewable energy sources.
We can see this in Table 3.7, which reports the EIA’s 2017 reference case figures for electricity
generated by coal, natural gas and nuclear power, and compares those cost figures with those
for hydro, wind, and biomass. The EIA’s figures for coal and natural gas are presented in two
ways - through conventional production methods and through using CCS technologies to
reduce the CO, emissions generated by burning coal or natural gas.

Average total system = Average costs Average costs Average costs
levelized costs (2010 | relative to hydro = relative towind | relative to biomass
dollars/mWh) (percent) (percent) (percent)
Conventional coal $97.7 +11.0% +1.8% -15.7%
Advanced coal with CCS $138.8 +57.7% +44.6% +19.8%
Natural gas -
conventional combined $66.1 -24.9% -45.2% -43.0%
cycle
Natural gas - advanced
combined cycle with $90.1 +2.4% -6.2% -22.3%
Ccs
Advanced nuclear $111.4 +26.3% +15.8% -4.1%

Source: Authors’ calculations based on U.S. Energy Information Administration (2012c¢), “Levelized Cost of New Generation Resources in the Annual
Energy Outlook 2012.”

As the table shows, the EIA estimates that, in terms of average costs, hydro, wind, and biomass
are all competitive with four of the five nonrenewable energy sources shown - conventional
coal, coal with CCS, natural gas with CCS, and nuclear. As of 2010, conventional coal was the
most significant source of electricity in the U.S., generating about 48 percent of total U.S.
supply. Nuclear power generated another 21 percent of total supply as of 2010. In combination
then, conventional coal and nuclear power were responsible for generating nearly 70 percent
of all U.S. electricity in 2010.22 It is therefore notable that the EIA is projecting that, in terms of
average costs, hydro, wind and biomass will all be fully competitive with coal plants operating
in 2017. In addition, the EIA is projecting that the average costs for hydro and onshore wind will
both be significantly lower than those for average nuclear power plants operating in 2017. The
EIA projects that the average costs for biomass will be only four percent more expensive that
the average for nuclear power.

According to the EIA’s estimates, conventionally produced natural gas is the only nonrenewable
energy source included that is consistently less expensive to produce than renewables. But
these low cost figures for conventional natural gas result from an assumption of growing
reliance on hydraulic fracturing technology for extracting natural gas from shale rock deposits.
Beyond the matter of CO_ emissions from burning natural gas, we have discussed the serious
environmental problems around hydraulic fracturing technology in Chapter2. We also discussed

22 Authors’ calculations based on statistics from EIA (2013d), Table 1.2.



in Chapter 2 the equally serious problems in developing CCS technologies on a large scale.

Overall then, the EIA’s own official estimates on levelized electricity costs suggest that the
renewable electricity sectorin the U.S. is likely to become fully competitive with non-renewable
electricity in a matter of a few years. This finding is consistent with the results for the non-OECD
countries as reported by IRENA.

At the same time, these figures do not mean that all renewable sources will be equally cost
competitive within all regions of the world. We have rather seen that costs vary widely among
renewable sources by region. We have also seen that in the case of solar energy, the most
promising long-term renewable energy source, costs are still unlikely to be competitive in the
near future under most conditions. Nevertheless, overall, what these figures show is that in
most regions there will be some combination of renewable energy sources that can generate
electricity at competitive costs.

CCS Costs and Carbon Pricing

In addition to the comparative cost results summarized above, it is also the case that
renewables would become still more competitive with non-renewables if the market prices of
non-renewables incorporated some reasonable measure of the environmental costs generated
through producing energy from these sources.

One way in which we can obtain a range of estimates as to the effects of incorporating these
environmental costs into fossil fuel prices is to consider the cost effects of utilizing CCS
technologies in fossil fuel prices. As we saw in Table 3.7, the EIA estimates that total levelized
costs rise by 42 percent when CCS technology is applied to coal-fired electricity generation
(from $97.7 to $138.8 per megawatt hour), and by 37 percent when CCS is used with natural
gas electricity generation (from $66.1 to $90.1 per megawatt hour). It would be reasonable to
assume that utilizing CCS technology in oil production would generate a roughly equivalent
level of cost increases - i.e. between 35 and 40 percent.

We can get a second perspective by considering estimates as to the impact on fossil fuel prices
of either a carbon cap or carbon tax policy approach to putting a price on carbon emissions.
In their 2011 edition of the Annual Energy Outlook, the EIA developed scenarios for both 2025
and 2035 which they term their “GHG Price” case. Under these scenarios, the price of carbon
emissions begins at $25 per metric ton in 2013 and rises to $75 per ton of CO_ as of 2035.
However, the EIA estimates that this policy will not raise the price of crude oil at all relative
to their Reference case, either in 2025 or 2035. Indeed, the EIA reports that oil prices decline
modestly in both 2025 and 2035 in their GHG Price scenarios. The EIA does not provide an
explanation for this counterintuitive result.?

23 The relevant figures are in the first two rows of Table D.18, p. 200 in EIA (2011).
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An alternative scenario for carbon prices as of 2035 is presented in the IEA’s 450/Low Carbon
case that we described in Chapter 1. Under this 450/Low Carbon case, the IEA assumes that
the price on carbon “reaches $125 per ton of carbon in most OECD countries in 2035.” This IEA
scenario also allows that “several non-OECD countries are assumed to put in place cap-and-
trade schemes to limit CO, emissions,” (IEA, 2013b, p. 42). However, at least in their published
documents, the IEA does not provide an estimate as to what the impact of this scenario would
be on global fossil fuel prices.

It will be useful to provide some additional perspective as to the impact of carbon pricing on
overall fossil fuel prices. This is especially the case, given that the IEA provides no estimates
for price effects within their 450/Low Carbon case, and that the EIA reports the highly unlikely
result that carbon prices of $25 per ton as of 2013 and $75 per ton as of 2035 will generate
lower crude oil prices in both 2025 and 2035. One simple alternative approach is to assume
a straightforward mark-up framework, at least as a first approximation. This would assume
that the cost and price increases on fossil fuels from the carbon price policy would follow
proportionally from both the stipulated level of the given carbon price policy - such as $75 per
ton under the EIA’s 2035 scenario and $125 per ton under the IEA’s 450/Low Carbon scenario -
and the amount of CO, emissions generated by oil, coal or natural gas.

For example, within the framework of a $75 per ton carbon price, as with the EIA’s 2035 model,
we would simply calculate the number of tons of carbon that are emitted by burning a given
amount of oil, coal, or natural gas. Once we know that figure, we then assume that the $75 per
ton in carbon pricing would be fully passed through and incorporated in the market prices of
oil, coal, or natural gas.

We have performed this simple set of calculations within the framework of the EIA’s 2035
Reference Case. That is, we use the EIA’s Reference Case estimates for the average market
prices of crude oil, coal, and natural gas in 2035. We then use figures on the amounts of CO,
that are emitted through burning oil, coal and natural gas. For this, we draw on the figures we
reported in Table 2.2, showing that CO, emissions per Q-BTU were about 69 mmt for oil, 100
mmt for coal, and 56 mmt for natural gas.

In Table 3.8, we present our estimates of this carbon price policy using this approach.? As Table
3.8 shows, the impact of the $75 per ton carbon price will range widely between the market
prices of oil, coal, and natural gas. As we see, the approximate average crude oil price will rise
by about 21 percent, from $140 to $170 per barrel. This is a significant percentage increase, but
itis far below those for coal and natural gas. The coal price would rise by 250 percent, by $7.50
to $10.50 per 1 M-BTUs. The natural gas price would rise by about 64 percent, by $7 to $11.50
per 1 M-BTUs.

24 We present the details of these calculations in Appendix 1.



Estimates based on:
e (Carbon emissions per Q-BTU reported in Table 2.2
e FIA’s 2035 carbon price of $75 per ton
e [EIAs 2035 Reference Case prices for oil, coal, and natural gas
® Simple mark-ups of carbon-price cost increases on fossil fuel prices

. . Average fossil Percentage
. Approximate Fossil fuel cost . A .
Approximate H fuel prices after fossil fuel price
I average EIA 2035  mark-up with 75
CO_emissions 75 dollars per ton changes after
2 reference case dollars per ton A N
levels R . . carbon price mark- carbon price
fossil fuel prices carbon price
up mark-up
$140 per barrel $30 per barrel $170 per barrel
Qil ) TTHH 7 =$ =3 21.4%
Q-BTU =$48 per1 = %10 per1 _ i .
M-BTUs) M-BTUS) (S )
Coal onrT]erprer $3 per1 M-BTUs = $7.50 per1 M-BTUs = $10.50 per 1 M-BTUs 250.0%
Natural = 56 MMLper | ¢ or1M-BTUS $4.50 per1M-BTUs = $11.50 per 1 M-BTUs 64.3%
gas Q-BTU 7P 4.50 p -50p 4.3%

Sources: See Table 2.2 and Appendix 1.

Two factors influence these percentage changes. The first, of course, is the level of CO,
emissions generated by the respective fossil fuel energy sources. But the second is the initial
pricing levels for the respective energy sources. Thus, per 1 M-BTUs, the EIA’s 2035 Reference
Case coal price is about 40 percent lower than that for natural gas, at $3 versus $7 respectively
per 1 M-BTUs. As such, when we impose the carbon price on coal, the percentage impact is
greater because the initial price is lower. Note further that, even with coal prices rising much
more than natural gas percentage-wise, the price level for coal, at $10.50 per1 M-BTUs, remains
lower than the $11.50 per 1 M-BTUs price for natural gas. As for comparative oil prices, Table 3.8
first reports oil prices per barrels of oil rather than per 1 M-BTUs, but we also then convert these
figures onto a per 1 M-BTUs basis. As Table 3.8 shows, as converted, the 2035 oil price with a
$75 per ton carbon price is $58 per 1 M-BTUs. Therefore, on a per 1 M-BTUs of energy basis, the
price of coal in 2035 would still be only 18 percent that for oil while operating in the framework
of a $75 per ton carbon price.

As we have already reviewed earlier in this chapter, the average costs for generating electricity
through onshore wind, biomass, hydro and geothermal power are already either at, or at
least rapidly approaching, cost parity with fossil fuels and nuclear power, even prior to taking
account of the environmental costs tied to non-renewables. Solar power is consistently more
expensive, but its costs are also coming down most rapidly. Once we then also take account of
the environmental costs of burning fossil fuels through either a carbon price in the range of $75
per ton (the EIA 2035 price) or $125 per ton (the IEA’s 2035 price), or requiring the use of CCS
technologies, most renewable costs will become significantly less expensive than fossil fuels
and nuclear power under average conditions.
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We have also seen that the cost ranges by region for renewables are wider than those for fossil
fuels. However, as we have estimated, even with the lower EIA $75 per ton carbon price as
of 2035 (as opposed to the EIA’s $125 per ton price), the market prices for fossil fuels could
increase by amounts up to about 20 percent for oil, 60 percent for natural gas, and 250 percent
for coal. Under such circumstances, most renewable prices would become cheaper than fossil
fuel energy even in regions where renewable prices are at the higher ends of their range.

Even ifwe assume that solar energy prices will decline only incrementally over the next 20 years,
solar would also still reach approximate cost parity with fossil fuels under average conditions
within a policy framework that includes a $75 per ton carbon price. Of course, the relative gains
from solar would become sharper still if the carbon price is at $125 per ton.

For reasons that we discuss in Chapter 2, it is neither likely nor desirable that CCS technologies
be relied upon as the means of controlling the environmental costs of burning fossil fuels. Still,
as we have seen, the EIA estimates that operating with CCS technologies would raise levelized
fossil fuel production costs by about 35-40 percent in the production of electricity. This would
also push most fossil fuel costs above those for renewables.

Overall though, the most effective approach for incorporating the environmental costs into
fossil fuel prices will be to establish carbon pricing. With the global economy operating under
a carbon pricing framework, the result will be to substantially accelerate the process whereby,
in all regions of the world, the full range of clean renewable energy sources become cost
competitive, if not less expensive, than fossil fuels and nuclear power.

Given the similar range in total costs of producing electricity from renewable energy sources
between the non-OECD countries and the U.S., the U.S. figures from the EIA on capital
expenditures provide a useful benchmark for assessing the capital costs in other countries as
well. We present these data in Table 3.9. These EIA figures are especially useful for this report,
since we do not have consistent capital expenditure figures broken out for Brazil, Germany,
Indonesia, South Africa, and the ROK. We can however use the U.S. capital expenditure figures
for providing a reasonable cost range in our five selected countries. We emphasize that we
are not suggesting that these U.S.-based cost figures will necessarily be accurate for specific
settings within each of the five selected countries. For example, these figures are, if anything,
probably too high for Indonesia, Brazil, and South Africa, where labor costs will be much lower
than the U.S. Nevertheless, our approach is precisely to err, if anything, on overestimating the
renewable energy investment costs in any given country setting, rather than underestimating
these costs. As such, we will work from these figures in our country-by-country discussions as
to how much new capacity could be produced if these countries devote roughly 1 percent of
GDP peryear to investments in clean renewables.



Figures are present values of total capital costs; $1 per mWh = ($1 billion/3.42 Q-BTUs).

2035 Low Cost Technology Case

2017 Reference Case Assumes 40 percent cost reduction
except for hydro
3) i\::::ge 6) Average
1) Costs per 2) Costs per over 20-vear 4) Costs per  5) Costs per costs over
mWh Q- BTU M mWh Q- BTU 20-year cycle
cycle per er Q- BTU
Q-BTU P
(dollars) (Billion dollars) (dollars) (Billion dollars)
Bioenergy $709 $207 billion | $10.4 billion $425 $124 billion | $6.2 billion
Hydro $974 $284 billion = $14.2 billion Same as reference case
Onshore Wind $1,035 $306 billion = $15.3 billion $621 $183 billion $9.1 billion
Solar PV $1,782 $521 billion | $26.1 billion $1,069 $312 billion | $15.6 billion
Geothermal $974 $285 billion | $14.2 billion $584 $167 billion | $8.3 billion

Source: Authors’ calculations based on U.S. Energy Information Administration (2012b), “Assumptions to the Annual Energy Outlook 2012.”

Working first with the EIA reference case estimates for 2017, column 1 of Table 3.9 shows
the present value of total lump-sum capital expenditures to produce one megawatt hour of
additional electricity-generating capacity from alternative renewable energy sources. In column
2, we convert the units of the present value figures from megawatt hours into a lump sum of
billions of dollars per Q-BTU of new electricity-generating capacity. Column 3 presents these
same reference case figures as an annual average level of investment peryear over 20 years, as
expressed in Q-BTUs of capacity. In columns 4-6, we present the same set of figures, except that
we now operate under the EIA’s low technology cost assumptions for 2035. As noted above, the
EIA’s Low Renewable Technology Cost case assumes that the levelized costs for hydropower do
not decline at all relative to its Reference case.

These figures show that, in the EIA’s Reference case, the present value of capital expenditures
for renewable investments range between $207 billon per Q-BTU with bioenergy to $521 with
solar PV. Spanning over a 20-year investment period, this amounts to between $10.4 and $26.1
billion peryear. Moving to the Low Renewable Technology Cost case, the range is between $124
and $312 billion per Q-BTU, which amounts to between $6.2 and $27.7 billion per year for 20
years.

When we move into examining the cases of Brazil, Germany, Indonesia, South Africa and the
ROK, we will use these capital expenditure figures to consider both how much renewable energy
capacity can be produced through an investment strategy in the range of 1 percent of GDP per
year. We will then estimate how many jobs will be generated through this investment strategy.

These capital expenditure figures are especially important for our efforts at estimating the
employment-generating impacts in each of our five countries of expanding their renewable
energy sectors. As we have discussed at the outset, we are organizing our discussions on
employment impacts on the assumption that each of our selected countries will pursue an
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investment project in expanding their renewable energy capacity at around 1 percent of the
country’s GDP per year.

Emissions Control

The term “biomass,” as described by the U.S. Environmental Protection Agency (EPA) describes
“many different fuel types from such sources as trees, construction, wood, and agricultural
wastes; fuel crops; sewage sludge; and manure. Agricultural wastes include materials such as
corn husks, rice hulls, peanut shells, grass clippings, and leaves.”?> Biomass can be converted
into energy in either solid, liquid or gas form. A biomass energy source converted into liquid
form is a biofuel.

Based on the feedstock used and the refining technology, biomass/biofuels energy sources
vary greatly in their emission levels. We see this in Table 3.10 with respect to biofuels. The table
reports on the level of GHG emissions for five types of ethanol as well as one biodiesel energy
source relative to emissions from gasoline or diesel fuel used in 20052¢

Corn ethanol

+34%
Refined through coal-fired processing
Corn ethanol

-26%
Refined through biomass-fired processing with combined heat and power
Sugercane ethanol -26%
Waste grease biodiesel -80%
Corn stover ethanol -116%
Switchgrass ethanol -124%

Source: U.S. Environmental Protection Agency. 2009, May. “EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels.”

Starting with corn ethanol refined through coal-firing, we see that, over a 30-year cycle, the
overall level of GHG emissions - incorporating all stages in production, from growing crops,
refining, and burning the fuel to generate energy - actually generates 34 percent higher
emissions levels relative to burning gasoline. But corn ethanol can also produce lower emission
levels than gasoline if it is refined through a biomass-fired refining process. However, even in
this case, the emissions reductions compared with gasoline are relatively modest, at about 26
percent over a 30-year cycle. The emissions reductions are also about 26% lower than gasoline
when burning sugarcane-based ethanol.

25 “Non-Hydroelectric Renewable Energy,” EIA (2013€).

26 EPA (2009) includes a fuller listing than those shown in Table 3.5 and also includes emission figures over a 100-year cycle in addition to the 30-year
cycle shown in the table here.



As is clear from Table 3.10, the way to achieve major emission reductions is through burning
waste grease biodiesel fuel, or even more so, corn stover or switchgrass-based ethanol. This
is because with either waste grease or corn stover, there are no production costs, including
energy consumption, required to supply the bioenergy raw material. With switchgrass as the
raw material, the production costs - including energy consumption requirements - are minimal.
Even when including the refining and energy-generating processes, the EPA study finds that,
netting out everything, these fuel sources achieve reduced emission levels.

More generally, according to the Union of Concerned Scientists (2010) bioenergy sources can
be considered part of the terrestrial carbon cycle - the balanced cycling of carbon from the
atmosphere into plants and then into soils and the atmosphere during plant decay. When
bioenergy is developed properly, emissions of biomass carbon are taken up or recycled by
subsequent plant growth with a relatively short time, resulting in low net carbon emissions.
As such, the Union of Concerned Scientists includes the following as clean, or what they term
“beneficial” biomass resources:

1. Energy crops that do not compete with food crops for land;
2. Portions of crop residues such as wheat straw or corn stover;
3. Sustainably-harvested wood and forest residues; and

4. Clean municipal and industrial wastes.

The Union of Concerned Scientists contrasts these with “harmful biomass resources and
practices.” These harmful resources and practices include clearing forests, savannas or
grasslands to grow energy crops, and displacing food production for bioenergy production
that ultimately leads to the clearing of carbon-rich ecosystems elsewhere to grow food. They
write that “harmful biomass adds net carbon to the atmosphere by either directly or indirectly
decreasing the overall amount of carbon stored in plants and soils.”

At present, as mentioned above, the proportion of bioenergy generated through clean
processes is negligible outside of Brazil. But the potential is high for a major expansion in
these energy sources. Thus, a 2009 study by the U.S. National Academy of Sciences (NAS)
estimated that by 2020, 550 tons of biomass could be sustainably harvested to produce
cellulosic and other advanced biofuels - that is bioenergy exclusive of that derived from corn
ethanol or other heavy carbon-emitting sources. This study further estimates that this supply of
biomass could produce 45 billion gallons of ethanol in the U.S. This translates into 6.4 Q-BTUs
of energy from “clean” biofuels. The prospects for a major expansion in clean bioenergy should
be comparable in other countries as well.
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One major concern raised about a rapid expansion of bioenergy production is that it will raise
food prices with an adverse impact on low-income and poor families. The manufacture of
bioenergy uses agricultural products as basic inputs and large increases in the production of
bioenergy will increase the demand for agricultural output and divert production away from
food and towards non-food bioenergy production. The potential problem is that this rapid
growth in bioenergy demand will translate into higher prices for food (Sexton et al., 2008).

The possibility that bioenergy production could be responsible for rising food prices became a
growing concern with the increase in global agricultural commodity prices, which began around
2004. Figure 3.2 below documents the movement of global food prices from 1991-September
2013. As the figure shows, the most intense period of the global economic crisis - from the
second half of 2008 through 2009 - interrupted the upward trend in food commodity prices,
but, by 2011, the prices of many food commodities had rebounded to around their pre-crisis
peaks (Abbott, Hurt and Tyner, 2011). This was also a period in which production of bioenergy
surged. In particular, world biofuel production, as a liquid energy source, grew five-fold
between 2001 and 2011, with the most rapid increases occurring in 2007/8 - the peak of the
food price hikes (HLPE, 2013). The fact that the growth in biofuels production corresponded
with the increase in agricultural commodity prices raised questions of whether biofuels were
responsible for high food prices.

Food commodity price index, International Monetary Fund, Jan. 1991 to Sept. 2013 (2005 = 100).
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Those who argue that bioenergy production is the primary reason behind rising food prices see
rising demand for agricultural goods as the primary force behind increasing prices. Specifically,
they point out that production of bioenergy accounts for a large share of the increase in overall
agricultural production and present this as evidence that demand for food grains outstrips
supply (Wilkinson et al., 2013). However, the precise nature of the link between biofuel
production and food prices remains unsettled. Many factors contributed to the increase in
food prices over this period. The growing production of and the growing supply of bioenergy
was not likely to have been a major contributor (Sexton et al., 2008; Trostle et al., 2011). Other
considerations include the large-scale entry of financial investors into commodity futures
markets, changes in the U.S. dollar exchange rate, and shocks to agricultural production from
droughts and other extreme weather events (Baffes and Haniotis, 2010; Trostle et al., 2011;
Wilkinson et al., 2013).

During the period in which food prices soared, other commodity prices experienced similar
increases. This includes commodities having little connection to bioenergy, such as metals.
This suggests that a common factor that operates across diverse markets drove up prices - e.g.
speculative investment in a range of commodity futures (Gilbert, 2010). Biofuels production
does not fit this description. A study of commodity price increases over this period by World
Bank researchers concludes that the expansion of bioenergy played a modest role in raising
food prices, but other factors were more important (Baffes and Haniotis, 2010). This same
report notes that “biofuels account for only about 1.5 percent of the agricultural area under
grains/oilseeds cultivation” (p. 12). Other studies find little evidence of a connection between
biofuel production and the increases in food prices over this period (Gilbert, 2010). The fact
that food prices fell after the 2008 global financial crisis while biofuels production continued
to increase further suggests that biofuels are not the dominant drivers of food prices (Trostle et
al., 2011). To the extent that there is an emerging consensus, it appears to be that the expansion
of biofuels had some impact on food prices, but that other factors were likely more importantin
explaining the kind of price increases experienced from 2004 to 2008.

Studies of the impact on future food commodity prices of policies to promote the production of
biofuels reach similar conclusions. A 2012 report from the Institute for European Environmental
Policy reviewed research that modeled the impact of biofuel mandates, both within the
European Union and globally, on commodity prices (Kretschmer, Bowyer and Buckwell, 2012).
With regard to global and multi-regional mandates, the report found that the prediction of price
increases varied widely and depended on the modeling approach used, with food commodity
prices increasing between 1 and 35 percent. Even considering the higher predicted food price
increases, the review concludes “the price changes projected into the future found in the
studies reviewed here are all positive, but not massive, especially in comparison to the recently
experienced global commodity price spikes,” (p. 49). The promotion of bioenergy production
in the future will likely have a positive impact on food prices. But again, this impact will likely
be modest.

It is also important to recognize that, up to this point in time, the growth of biofuels as a
liquid energy source has largely been a response to high prices of gasoline, not to issues of
sustainability and climate change (HLPE 2013). Increased biofuels production reduced the cost
of gasoline (Sexton et al., 2008). Ironically, the growth in biofuels likely reinforced the use of
fossil fuels by keeping gasoline prices low and thereby reducing incentives to develop cleaner
alternatives. Higher gasoline prices make biofuels production more profitable, encouraging its
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expansion. Some point to rising fuel prices as an important factor in the surge in food prices.
This is because high fossil fuel prices encourage the production of biofuels, which, in turn, may
impact food prices (Wilkinson et al., 2013).

New bioenergy technologies have the potential of both reducing the threat of climate change
and addressing concerns over food security. For instance, clean bioenergy sources, as we have
discussed above, would help improve food security through making a major contribution toward
the reduction of CO emissions (Sexton et al., 2008). At the same time, as has been shown
in this report, the development of viable clean biofuels will make a substantial contribution
to reducing GHG emissions. What is needed is a new approach to bioenergy policy that
jointly emphasizes environmental sustainability and food security. The more comprehensive
approach would include land use policy, support for developing new technologies, research
to raise agricultural yields, and strategies for confronting the primary threats to food security.
By designing policies to encourage technological innovations, raising agricultural productivity,
and promoting biofuels that have a smaller impact on food crops, the effects on food prices
will be minimized. We discuss these policy issues further in Chapters 8 and 9, when we take
up these issues specifically with respect to Brazil and Germany. Especially in Germany, major
initiatives are already underway for developing an effective clean bioenergy sector.

Furthermore, increases in commodity prices do not translate into a one-to-one increase in
the food prices that consumers pay. Overall food prices depend on the food processing and
distribution system in place. In high-income countries, such as the U.S., commodity prices only
account for about 15 percent of the overall price of food. Therefore, a doubling of commodity
prices may result in @ much smaller increase in food prices. For developing countries, the
relationship between commodity prices and food prices can be much more direct. The difference
in price effects should be taken into account when thinking about global approaches to jointly
addressing climate change, poverty, and hunger. Income support policies (e.g. cash transfer
schemes and related strategies) can be important complementary policies to off-set the impact
of higher food prices on the poor.

It is also essential to note that food price increases have been associated with extreme
weather events and climate change has the potential to emerge as a significant contributor to
food insecurity and rising food prices in the future (Carty, 2012; Commission on Sustainable
Agriculture and Climate Change, 2012; Nelson and Olofinbiyi, 2012). Therefore, strategies,
which aim to stabilize food prices and improve food security, must focus on reducing GHG
emissions and directly address climate change. Switching to clean biofuel technologies is a
central part of an overall strategy to reduce emissions and, because of this, a well-designed
biofuels policy will enhance, not undermine, food security in the long run.

Overall, we can conclude from the full range of evidence presented in this chapter that, in
all regions of the world, there will almost certainly be some combination of clean renewable
sources that can produce significant energy supplies at cost parity relative to non-renewables,
eitherat present orwithin the next five years. Of course, this conclusion will be greatly supported
if effective carbon pricing policies are in all regions of the world. Moreover, the process of
lowering costs for clean renewables will only accelerate as the utilization of these technologies
expands. As we noted at the outset of this chapter, the high technological learning rates,
especially for solar energy, will generate major cost reductions. With solar PV modules, costs
have been declining by as much as 22 percent for every doubling of installed capacity.



Despite these general trends, it is still also true that, to know which particular combination
of clean renewable sources can be utilized efficiently in any given specific setting can be
determined only within the context of that specific setting. Equally, establishing at what
point clean renewables can effectively substitute at scale for non-renewables also requires an
understanding of the specific resources available and broader economic circumstances within
each region. As such, the on-the-ground decision makers within each region and country, such
as the managers of grid systems, will have to examine all the relevant considerations as they
move to expand renewable capacity and correspondingly reduce dependence on fossil fuels
and nuclear power.

The global investment patterns for clean renewables have been generally positive in recent
years. Thus, the 2014 edition of Global Trends in Renewable Energy Investments (Frankfurt
School-UNEP Collaborating Center, 2014) reports, among its other findings, that:

e Renewable energy excluding large hydro made up 43.6 percent of the new power
capacity added in all technologies in 2013 (the same figure as 2012), and raised its
share of total generation worldwide to 8.5 percent from 7.8 percent.

e Although investment in renewable energy capacity in 2013, including all hydro, was
below gross investment in fossil-fuel power, at $227 billion compared to $270 billion,
it was roughly double the net figure for investment in fossil-fuel power excluding
replacement plant.

As we explore further in later chapters, annual global clean renewable investments will need to
rise well beyond $227 billion, which is equal to about 0.3 percent of 2013 global GDP. Rather,
overall clean renewable investments will need to reach about 1 percent of global GDP, which
would equal $870 billion for 2013 (with annual global energy efficiency investments rising to
about 0.5 percent of global GDP). Still, investment levels within this range are rapidly becoming
a realistic goal in virtually all country settings, in that clean renewable energy can be supplied
at competitive costs and, as we will discuss below, the investments to build and operate the
capacity will generally be a significant net new source of job opportunities.
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Significantly raising energy efficiency levels for all countries, at all levels of development, is
necessarily one of the two cornerstones of the global green growth project, along with clean
renewable energy investments.

It is important to clarify the distinction between energy conservation and energy efficiency.
Energy conservation entails reducing the amount of economic activity that requires the
consumption of energy. Some examples of energy conservation are using machine-powered
heating and cooling systems less in buildings, traveling fewer miles, and relying less on energy-
powered machinery in industrial processes.

By contrast, energy efficiency entails using less energy to achieve the same, or even higher,
levels of energy services from the adoption of improved technologies and practices. The IEA’s
2013 Energy Efficiency Market Report describes the market for energy efficiency as follows:

The cost-effective supply of energy efficiency can be defined as the investment
opportunities for which the sum of the benefits, stemming from avoided energy
consumption, outweighs the investment costs....The energy that is not consumed
as a result of energy efficiency measures, whether it is a barrel of oil, cubic metre of
gas, tonne of coal or terawatt hour of electricity, is described in terms of the physical
energy quantities avoided. This important notion of how energy efficiency can directly
Substitute, and be equated with, supply-side commodities is central to conceptualizing
the supply of energy efficiency....Energy efficiency is a domestically produced energy
resource, for which the market is often local. Like other energy markets, its equipment
and infrastructure may be imported, but avoiding ongoing fuel requirements can provide
greater control over domestic energy supply (IEA, 2013¢, p. 29).

Energy conservation does have a role to play in reducing global CO, emissions and fighting
climate change, given that, in particular, businesses, public institutions and upper-income
households in advanced economies could readily reduce their energy-consuming activities
without significantly affecting their mode of operations or living standards. But for the vast
majority of the world’s population, one of the central drivers of rising living standards will be
to significantly enhance access to low-cost energy-based services, such as well-functioning
modern buildings, convenient modes of transportation, and workplaces in which the use of
energy-driven machinery raises productivity. This is why energy efficiency has to play a much
more important role than energy conservation in the unified global project of controlling climate
change while raising mass living standards.
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This central role for energy efficiency is widely understood. The World Bank researchers Ashok
Sarkar and Jas Singh offer this overview:

Energy efficiency is rapidly becoming a critical policy tool around the world to help
meet this substantial growth in energy demand. Evidence from the past 3-4 decades
of experience around the world indicate that EE [energy efficiency] programs generally
entail positive and multiple benefits for the government, energy consumers, and the
environment. Such programs can: conserve natural resources; reduce the environmental
pollution and carbon footprint of the energy sector; reduce a country’s dependence
on fossil fuels, thus enhancing its energy security; ease infrastructure bottlenecks
and impacts of temporary power shortfalls; and improve industrial and commercial
competiveness through reducing operating costs. In terms of project economics, EE
options are seen as “no regrets” policies, since their net financial cost can be negative,
i.e. the measures are justified purely based on high financial returns....Amongst the
menu of feasible technical options currently available to help reduce the rate of growth of
greenhouse gas emissions produced by the energy sector, EE technologies stand apart
as the most cost-effective ones, as shown in numerous analyzes by various stakeholders,
ranging from the Intergovernmental Panel on Climate Change (IPCC) to private sector
practitioners such as the analyses done by McKinsey (Sarkar and Singh, 2010, p.5561).

This perspective is also advanced in numerous other World Bank studies on climate change
and building green economies in developing countries. For example, a 2008 analysis focusing
on Brazil, China, and India by Taylor et al. argues as follows:

As a domestic measure that reduces reliance on imported energy, energy efficiency
programs are typically a key part of national efforts to improve the security of future
energy supply. Energy efficiency is favored in environmental improvement strategies
because it reduces the need for energy development, transportation and distribution,
onsite use, and all the associated environmental impacts. But perhaps the greatest
attraction of many energy efficiency measures is their cost effectiveness. Cost vary
among technologies and countries where energy efficiency measures are implemented,
but often are only one-quarter to one-half the comparable costs of acquiring additional
energy supply (Taylor et al., 2008, p. 28).

The 2011 Industrial Development Report by UNIDO, Industrial Energy Efficiency for Sustainable
Wealth Creation, focuses specifically and in detail on prospects for efficiency investments in
the industrial sectors of developing countries. UNIDO summarizes the perspective of this study
as follows:

Industrial development..must become sustainable. Continued high resource
consumption and carbon-intensive and polluting technologies will sap the potential
for growth and development. Innovative solutions, national and global, are vital to
making industrial activity more sustainable - to attuning it to environmental and
social needs. The “green industry” approach can provide the blueprint for sustained
industrial development. Increasing industrial energy efficiency is a key foundation for
green industry worldwide. By building on past successes, countries can develop their



industries while tempering the impacts on resource depletion and climate change
(UNIDO, 2011, p. 23).

Among its research findings, this UNIDO study presents results of a survey of 357 industrial
firms in developing countries, whose purpose was to better understand the decisions of these
firms on investing in energy efficiency projects. The total level of efficiency investments for the
surveyed firms was $614 million, with individual projects ranging from as low as $100 up to
$73 million. The types of investments included direct equipment replacements; waste reuse;
residual temperature reuse; pipes and insulation improvements; better use of infrastructure;
and fuel optimization.

The UNIDO researchers were able to assess the financial viability of these projects through
their survey findings. They found that, in line with practice in developed countries, more than
90 percent of surveyed firms in the sample used simple payback rules to assess the financial
viability of their investments. The surveyed firms approved projects only if they had a simple
payback of no more than 2-3 years. The actual mean payback period for 119 projects with data
was 23 months. The UNIDO researchers were able to generate more systematic internal rate of
return (IRR) estimates as well for these projects. They found that the estimated mean IRR was
25 percent for projects with a three-year lifespan and no resale value. They also found that
the mean IRR rose with each additional year of life, to 37 percent for four years, 43 percent for
five years and 50 percent for 10 years. UNIDO concluded from these results that “these higher
rates compare favorably with average returns in capital markets, which are typically lower over
comparable timeframes,” (UNIDO, 2011, p. 78).%7

Focusing now on the advanced economies, the overall prospects for these countries is that
large-scale efficiency investments can produce significant reductions in their absolute levels of
energy consumption. As with the developing countries, such gains in efficiency for advanced
economies can be achieved without having to experience reduced GDP growth. This conclusion
is expressed strongly, for example, in the major 2010 study by the U.S. National Academy of
Sciences (NAS), Real Prospects for Energy Efficiency in the United States. Their overarching
findings include the following observations:

Energy efficient technologies for residences and commercial buildings, transportation
and industry exist today, are expected to be developed in the normal course of business,
that could potentially save 30 percent of the energy used in the U.S. economy while
also saving money. If energy prices are high enough to motivate investment in energy
efficiency, or if public policies are put in place that have the same effect, U.S. energy use
could be lower than business-as-usual projections by...17-20 percent in 2020 and 25-31
percent in 2030....The full deployment of cost-effective energy-efficient technologies in
buildings alone could eliminate the need to add to U.S. electricity generation capacity
(NAS, 2010, p. 4-5).

To provide some details on the extent of energy savings available in the U.S. from specific
investmentareas, we show in Table 4.1 below the estimates of the National Academy of Sciences
the NAS on the savings opportunities available just with electricity consumption in commercial
U.S. buildings. As the table shows, the potential energy savings estimated by the NAS includes
25 percent for lighting systems, 48 percent for space cooling, 45 percent for ventilation, 39

27 More details on this survey are found in Alcorta et al. (2012).
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percent for space heating and between 25-60 percent for office equipment usage. Overall,
the NAS finds that savings as of 2030 could reach nearly 2 Q-BTUs just with electricity use in
the commercial building sector. This would represent a 35 percent savings relative to the U.S.
Energy Department’s EIA's 2030 Business-as-Usual (BAU) assumptions - and, on its own, a
fully 2 percent absolute reduction in overall U.S. energy consumption relative to current levels.
Moreover, on average, the NAS estimates that the costs of achieving this level of savings would
be 2.8 cents per kilowatt hour. As of 2013, average electricity costs for commercial buildings
were 11 cents per kilowatt hour.

Cost of conserved energy

Savings in Q-BTUs, Savings relative to EIA (cents per kWh in 2010

e el ey 2030 reference case (percent)

dollars)®

Lighting 0.47 25% 5.4
Space cooling 0.39 48% 2.9
Office equipment - PCs 0.24 60% 4.1
Office equipment - non PCs 0.23 25% 3.3
Ventilation 0.2 45% 0.5
Refrigeration 0.12 38% 1.4
Space heating 0.1 39% 0.5
Other uses and thermal

shell 0.65 35% 1.5
Other 0.02 14% 4
Total 2.4 Q-BTUs 35% 2.8 cents per kilowatt hour

Source: Adapted by authors from Table 2.10 in NAS (2010) “Real Prospects for Energy Efficiency in the United States”.

Notes: a) Calculated using AEO 2012 Reference case Table A4; b) Costs from Brown et al. (2008) were inflated using the GDP implicit price deflator
(BEA 2012).

As noted by Sarkar and Singh above, the work by the business consulting firm McKinsey
and Company are useful here. McKinsey estimates that, on a global scale, energy efficiency
investments are the most cost-effective approach to reducing GHG emissions. McKinsey shows
this most dramatically through their Global Greenhouse Gas Abatement Cost Curve, which we
reproduce as Figure 4.1 below. As McKinsey’s figure shows, there are large numbers of specific
investment activities that can reduce GHG at negative costs. Virtually all of these are various
sorts of efficiency investments. They include investments in lighting, consumer appliances
and electronics, heating and air-conditioning systems, building insulation, electrical motors,
hybrid automobiles, and waste recycling.
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In a 2010 study, McKinsey researchers further argue that while the benefits of efficiency
investments can be captured in all regions of the world and all countries, the largest benefits
per dollar of expenditure are available in developing countries. Specifically, McKinsey
estimates that, using existing technologies only, developing countries could realistically slow
the growth of energy demand through 2020 by more than half - from 3.4 to 1.4 percent per
year - without having to reduce GDP growth at the same time. McKinsey estimates that gains
in energy efficiency would generate about $600 billion per year in savings on energy costs
throughout the developing world by 2020 (McKinsey and Company, 2010a).

Of course, as we saw in Table 1.3 of Chapter 1, countries vary widely in their existing level of
efficiency. Reviewing those figures from Table 1.3, the energy intensity ratio for the world as a
whole is 7.1 Q-BTUs per $1 trillion GDP. Among the countries shown in the table, the intensity
ratios range widely, from 4.1 for Germany to 14.6 per $1 trillion for South Africa - that is, the
German economy is operating at a level of energy efficiency more than three times higher than
that of South Africa. Brazil is the next most efficient in energy use, with an efficiency ratio at
5.1 per $1 trillion, while China is the second least efficient, with its ratio at 12.1 per $1 trillion.

The Indonesian ratio, at 6.8 is close to the global average of 7.1. But this is with the Indonesian
economy operating at a GDP per capita level of $3,600. Indonesia is aiming to raise per capita
GDP at rapid rates over the next 20 years. The challenge will be for the Indonesian economy
to maintain healthy GDP growth while also significantly incorporating energy efficiency
investments into their growth process. That would enable the economy to consume energy
within a system that, for example, more closely resembles that of Brazil than South Africa.
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At the same time, it is important to note that even in the case of Germany, the most energy-
efficient large advanced economy in the world, there is a clear recognition that significant
advances in efficiency are necessary and attainable at reasonable costs. Thus, the German
federal government’s official 2010 Energy Concept document sets as a goal a 20 percent
decline in absolute energy consumption by 2020 and a 50 percent reduction by 2050 (BMUB,
2010). The Concept document places special emphasis on opportunities for energy savings
in the economy’s stock of buildings. As with most advanced economies, the operations of
buildings are responsible for about 40 percent of all energy consumption. The BMUB’s Energy
Concept sets as the country’s goal to be able to operate its entire building stock at virtually zero
net emissions by 2050. This will entail significant up front investments in energy-efficiency
technologies for buildings, including the thermal shell, as well as heating and cooling and
lighting systems. But these investments are more than self-financing within a reasonable time
frame, given the energy savings achieved through the up-front investments.

Estimates as to the investment costs for achieving energy efficiency gains vary widely. In Table
4.2, we show summary estimates from three sets of studies. As we see, the 2008 World Bank
study by Taylor et al. puts average costs at $1.9 billion per Q-BTU of energy savings, based on a
study of 455 projects in both industrial and developing economies. The McKinsey study that we
cited above estimates costs for a wide range of non-OECD economies at $11 billion per Q-BTU of
energy savings. Focusing just on the U.S. economy, the U.S. National Academy of Sciences NAS
estimated average costs for energy efficiency savings in the buildings and industrial sectors at
about $29 billion per Q-BTU.

Regions/countries Estimated costs Estimated costs
. (dollars per ton of oil | (billion dollars per Q-BTU
estimated . . .
equivalent savings) of savings)

$1.9 billion per Q-BTU
(conversion):
1 Q-BTU =~25.2 million TOE

455 projects in
11 industrial and
developing countries

World Bank (Taylor et al.,
2008, p. 29)

$76 per ton of oil
equivalent (TOE)

Africa, India, Middle
East, South East Asia,
Eastern Europe, China

$11 billion per
Q-BTU

McKinsey and Co. (2010,
p- 27)

~ $29 billion per Q-BTU for
buildings, industry

NAS (2010; as summarized

in Pollin et al. 2014) W

Itis not surprising that average costs to raise energy efficiency standards would be significantly
higher in industrialized economies. As we will discuss further below, a high proportion of
overall energy efficiency investments are labor costs, especially projects to retrofit buildings
and industrial equipment. However, these wide differences in cost estimates are not simply
resulting from variations in labor and other input costs by regions and levels of development.
Thus, the World Bank estimate of $1.9 billion per Q-BTU includes both industrialized and
developing countries, while the McKinsey $11 billion per Q-BTU estimate - nearly 6 times
greater than the World Bank figure - is primarily coming from developing country projects.



These alternative studies do not provide sufficiently detailed methodological discussions
that would enable us to identify the main factors generating these major differences in cost
estimates. But it is at least reasonable to conclude from these figures that, with on the ground
real-world projects, there are likely to be large variations in costs down to the project-by-project
level. Thus, parallel to the situation with specific renewable energy projects that we discussed
in Chapter 3, the costs for energy efficiency investments that will apply in any given situation
will necessarily be specific to that situation, and must be always be analyzed on a case-by-case
basis.?®

At the same time, for the purposes of this report, we will need to proceed with some general
rules-of-thumb for estimating the level of savings that are attainable through a typical set of
efficiency projects in our five selected countries, as well as in other settings. A conservative
approach will be to allow that, relative to the World Bank and U.S. National Academy of Sciences
figures, the midrange cost estimate provided by McKinsey at $11 billion per Q-BTU of savings,
is appropriate for low-and middle-income economies, including Brazil, Indonesia and South
Africa. We will also assume that the cost figure for Germany will be equivalent to the National
Academy of Sciences the estimate for the U.S., at around $30 billion per Q-BTU of savings. We
then will also assume that the cost figure for the ROK is at an approximate midpoint between
those two other figures, at around $20 billion per Q-BTU.>®

In working with these cost figures, we should also emphasize again that, in all cases, the
payback period for such energy efficiency investments are generally estimated to be relatively
short - in most cases, less than three years for full payback.

The question that is often posed in evaluating opportunities for successful energy efficiency
investments is straightforward: if such large opportunities for cost savings exist - independent
of environmental benefits - then why are governments, businesses, and households failing to
embrace them? This issue is addressed frequently in the literature.3°

The first answer is that, to a considerable extent, efficiency investments have indeed been
embraced over the past few decades. As a measure of this, Table 4.3 shows the change in
aggregate energy efficiency from 1990-2011 for the world as a whole, for countries at different
income levels, as well as for the U.S, China, and our five selected countries. As we see, for the
world as a whole, energy efficiency improved by 31 percent between 1990 and 2011, an average
annual rate of efficiency gains of 1.3 percent. The averages for low/middle- and high-income
countries are both slightly higher than the world average. Among individual countries, China
has achieved the largest efficiency gains, improving by 164.3 percent between 1990 and 2011.
Among our selected countries, Germany has achieved the largest efficiency gains, improving
by 54.2 percent between 1990 and 2011. Brazil and the ROK are the least successful performers
here, showing little to no improvements in energy efficiency over this period. But in the case of

28 The survey research by Alcorta et al. (2012) on individual industrial efficiency projects in developing country does provide useful details on cost
variations on a project-by-project basis.

29 In our individual country analyses below, we will also provide more detailed evidence from individual country studies. In addition, a valuable
resource for energy efficiency investment activity at the country-specific level is the IEA’s 2013 Energy Efficiency Market Report, on which we will also
draw in later sectors.

30 These references include McKinsey & Company 2010a; Sakar and Singh (2010); World Bank (2006); World Energy Council (2013).

89



90

Brazil, we do need to remember that, as of 2011, it is nevertheless operating at a high level of
efficiency, requiring only 5.1 Q-BTUs of energy to produce $1 trillion of GDP.>*

Measured as GDP per dollar of energy consumption

Change in efficiency over full Average annual change in
period efficiency
World 31.0% 1.3%
Low and middle income countries 39.4% 1.6%
High income countries 33.3% 1.4%
u.s. 42.9% 1.7%
China 164.3% 4.7%
Brazil -2.6% -0.1%
Germany 54.2% 2.1%
Indonesia 23.7% 1.0%
South Africa 12.9% 0.6%
ROK 1.9% 0.1%

Source: Authors’ calculations based on World Bank (2014), “World Bank Indicators,” Table 3.8: Energy dependency, efficiency, and carbon dioxide
emissions.

Despite these steady and widespread gains in energy efficiency worldwide, it is nevertheless
still the case, as we have reviewed above, that widespread opportunities for further large
efficiency are still available. Why, then, are these equivalents of $50 bills lying on the sidewalk
not being picked up?

The basic problem, as widely recognized in the literature, is that the estimates of large benefits
that are attainable through efficiency investments are based on engineering evidence, such
as the figures we have referred to above in this chapter. However, typically, such engineering-
based evidence neglects other considerations that are significant, and can be decisive, in
moving forward with energy efficiency investments. These other considerations include the
following interrelated factors:

* Necessity to obtain investment financing. Even though energy efficiency investments
have the potential to yield high returns and rapid paybacks, they still entail significant
up-front financing commitments. If adequate financing structures are not available, the
projects will not proceed.

® Perceptions of high risk. The general engineering evidence on gains from efficiency
investments applies to a large range of investment projects, but does not necessarily
apply to any single project. For any given project to proceed, the decision-makers
need to be convinced that they specifically will receive the benefits that are available
generally. This entails investors assuming risks. The perceptions of risk are higher when
experiences with efficiency investments are not widely known or understood.

31See Zhang et al. (2011) for a discussion of total factor energy efficiency.



* High transaction costs. Precisely because financing structures for efficiency investments
are not generally well-developed and perceptions of risk are higher than actual risk
levels in most cases, the transaction costs involved in bringing an efficiency investment
to fruition are relatively high.

e Split incentives. This occurs when one entity would be responsible for making the
energy efficiency investments but another entity pays the costs of consuming energy.
This is most prevalent in non-owner occupied buildings, in which building owners are
responsible for maintaining the buildings while tenants are responsible for paying for
their own energy consumption.

e Difficulties in structuring contracts. The other four factors - weak financing institutions;
perceptions of high risks; high transaction costs; and split incentives - in turn create
difficulties in establishing contractual terms that adequately reflect these concerns, but
atthe same time, provide adequate recognition of the large benefits that are attainable,
as identified through engineering evidence.

These issues are highlighted, for example, in the 2008 World Bank study (Taylor et al., 2008) that
focused on the cases of Brazil, China, India and other middle-income developing countries. This
study notes that “the key impediments to effective energy efficiency investment through the market
are the intertwined problems of current high transaction costs; perceived high risks driving up the
implicit discount rates associated with projects; and difficulties in structuring workable contracts
for preparing, financing, and implementing energy efficiency investments,” (p. 50-51).

With respect to industrial efficiency specifically, these issues are examined in a chapter-length
analysis “Barriers to Industrial Energy Efficiency,” in the 2011 UNIDO Industrial Development
Report. The UNIDO researchers conclude that:

Aversion to investment seems to stem from a combination of failures in the markets for
energy-efficientgoods andservices and departures fromthe rational behavior of orthodox
economic theory. These forces overlap to create barriers to improving energy efficiency
including: lack of awareness of efficiency opportunities; difficulty borrowing money
for energy-efficiency investments; inadequate technical know-how; and disconnection
between those responsible for investing and those operating the equipment (UNIDO,
2011, p. 86).

The implication that follows from these observations is not that the engineering information
regarding gains from efficiency investments is wrong, or irrelevant to assessing the viability
of real-world projects. To the contrary, the point is rather that both public policy and private
initiatives are needed to overcome these barriers to capturing the large-scale benefits from
efficiency investments that the engineering research has identified.

There is already a large literature that attempts to address these obstacles to the successful
expansion of efficiency investments in different country settings.3> We briefly review these
issues in Chapter 6, in the context of examining industrial policies to advance the global clean
energy investment project.

32 UNIDO (2011) provides a chapter-length analysis (pp. 100 — 124) on these policy matters as they apply to industrial energy efficiency. See also
Spratt, Griffith-Jones and Ocampo (2013) for a good overview, including interviews with industry participants, along with the other works cited above.
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In advancing an ambitious agenda for energy efficiency in Brazil, Germany, Indonesia, South
Africa, and the ROK, and more generally throughout the globe, it is critical to also examine
what is termed the “rebound effect” and the related phenomenon of a “backfire” effect. The
issue posed with the rebound effect is: if economic activities that entail the consumption of
energy can be accomplished at lower costs due to the gains in energy efficiency, wouldn’t this
fall in energy costs encourage, in turn, more energy-consuming activities? And to the extent
that more energy-consuming economic activity powered specifically by fossil fuels does
take place because of these efficiency gains, wouldn’t this reduce the benefits of efficiency
investments for lowering CO, emissions? It is even possible that, in some circumstances, the
initial gains in energy efficiency would end up being lower than the subsequent increase in
energy consumption. This outcome is what we mean by the “backfire effect.” When the backfire
effect occurs specifically with respect to fossil fuels, the net result is that improvements in
energy efficiency, anomalously, end up generating increases in emissions.

The possibility that rebound and backfire effects could occur was first proposed in the
economics literature by William Stanley Jevons in his 1865 book, The Coal Question. Jevons
wrote that the invention of a more efficient steam engine would ultimately lead to increased
coal consumption by way of making the use of coal economically desirable for many uses.
He claimed that overall coal consumption would increase even as the coal used for particular
applications may decrease. Jevons wrote that “It is a confusion of ideas to suppose that the
economical use of fuel is equivalent to diminished consumption. The very contrary is the
truth.”s

Since Jevons’s era, further research on the rebound effect only became highly active in the
1980s and 1990s, including the influential contributions by Khazzoom (1980), focused on
the U.S. case, and Brookes (1990), focused on the UK. A large professional literature has
subsequently emerged, which we briefly review below. But beyond even the findings of most of
the recent literature, the prospects for rebound effects needs to be examined within a broader
context of a given economy’s level of development and policy priorities. We also consider this
factor below.

It is important initially to distinguish two broad categories of rebound effects, direct and
indirect effects.

Direct effects refer to a given activity, such as driving a car or heating a home. The rebound
effect here measures how much more consumers engage in such activities due to rising energy
efficiency in these activities, which in turn yields falling per unit energy costs. For example, how
many more miles might people drive as a result of operating more energy-efficient automobiles,
or how much more they may heat or cool buildings after efficiency investments bring the costs
down.

33 This paragraph is paraphrased from Gavankar and Geyer (2010).



Indirect effects take different forms. These include the following:

e When the costs of energy fall, consumers can then spend more on everything else
besides directly energy-consuming activities such as driving a car or heating a building.
But the remaining goods and services - everything from education, health care, or
consumer goods - also make use of energy. When demand for these products rises, that
in turn will produce increased demand for energy.

e Businesses experiencing falling energy costs may increase their use of energy-intensive
equipment in their production processes.

e Investmentsinenergyefficiencyinvolve expenditures on capitalgoods which themselves
require products that require energy inputs (e.g. supplies for building weatherization
projects).

e Tothe extent that energy efficiency investments encourage faster economic growth, this
accelerated overall economic growth rate would mean a higher overall level of energy
demand.

There is no doubt that both direct and indirect rebound effects occur. But the first critical
question is not whether they occur, but rather how large they are. A second, related, question
is, to what extent do rebound effects vary, depending on the specific conditions in any given
economy, as well as the economy’s relevant policy environment.

Major professional reviews of this literature include those by Greening, Greene and Difiglio
(2000), Sorrell (2007), Sorrell, Dimitropoulos and Sommerville et al. (2009) and Gavankar and
Geyer (2010).34 We draw on the main findings from these literature reviews in what follows.

Direct Rebound Effects. Most research into the size of the direct rebound effect has been
focused on the household sector in the U.S., that is, residential energy use and household
transportation (Sorrell, Dimitropoulos and Sommerville et al., 2009). The effect is based on
how consumers may change their behavior in response to changing prices. But there are
several methodological issues and potential sources of bias in trying to measure the direct
rebound effect for households.

To begin with, since direct rebound effects are tied to the idea of demand for energy services,
the size and nature of the effect will depend on how “energy services” are defined. But such
definitions are subject to substantial variation. For example, with the transportation sector,
energy services are frequently defined in terms of number of miles traveled. However,
this measure does not take into account choices about the types of vehicles driven. Would
consumers want bigger cars if such vehicles became more efficient? A consistent measure of
“energy services” would have to control for this factor, but does not always do so.

34 Nadel (2012) is a less formal but still quite useful recent discussion of the topic. Gillingham et al. (2013) provides a brief updated assessment of
what they term “a vast academic literature” on this issue. The main conclusion reached by Gillingham is fully consistent with the more lengthy survey
studies.
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Another concern is that many studies assume that changes in demand in response to increases
in energy efficiency are equivalent to changes in demand associated with comparable changes
in prices. But this may not be the case. This is because changes in energy efficiency may
not translate directly into reductions in prices if the efficiency improvements require new
investments with additional capital costs. If the demand effect is calculated without taking
account of such capital costs, the rebound effect is likely to be overstated.

A third important concern is being able to accurately identify causality. Most studies on the
rebound effect assume that when energy efficiency increases, this efficiency increase is the
driving factor causing a subsequent rise in energy demand. However, higher demand for energy
emerging from independent factors could also cause consumers to respond by investing in
energy efficiency - that is, the causality between an increase in energy demand and energy
efficiency would be the reverse of the relationship that the rebound effect presupposes.

Table 4.4 shows estimates of the direct rebound effects by category of energy services, as drawn
from the literature reviews by Greening, Greene and Difiglio (2000) and Sorrell, Dimitropoulos,
and Sommerville (2009). The evidence reported in these surveys is primarily drawn from U.S.
economy-based studies, but includes evidence from other OECD economies as well.3s As the
table shows, these estimates range widely in both studies. Nevertheless, though these two
surveys were published nine years apart from one another, they summarize similar sets of
conclusions as to the likely range of household rebound effects. Thus, these articles find that
for automobiles, heating and cooling systems, the rebound effect is likely to lie in the range of
10-30 percent relative to the total amount of energy saved. For home appliances and lighting,
the rebound effect is lower, and may be close to zero. A zero rebound effect reflects the level
of consumer saturation - for example, utilizing more energy-efficient clothes or dishwashing
machines will likely have little to no impact on the demand for people to wash their clothes
or dishes more frequently. For such activities, when demand for energy services is near its
saturation point, efficiency gains will translate proportionally into reduced energy consumption.

Estimated likely range from Sorrell,

ST e R (i, Dimitropoulos and Sommerville survey

Green and Difiglio survey (2000)

(2009)
Personal vehicles 10-30% 10-30%
Space heating 10-30% 10-30%
Space cooling 0-50% 1-26%
Home appliances 0% <20%
Lighting 5-12% <20%

Sources: Adapted from Table 3 in Greening, Green and Difiglio (2000) and Table 1 in Sorrell, Dimitropoulos, and Sommerville (2009).

Note: The Sorrell et al. survey includes a category “other energy services.” The estimates for this category are used for home appliances and lighting
in this table. The term “likely range” in describing the Sorrell et al. figures is the assessment of these authors probable range for the direct rebound
effects, based on their literature review.

35 The precise definition of the rebound effect is the elasticity of demand for energy services with respect to energy efficiency.



Indirect Rebound Effects. Research on the magnitude of indirect, or economy-wide, rebound
effects are even more limited than those for direct effects. Various methodologies have been
utilized in the literature, including consumer expenditure surveys, macro-econometric models,
and theoretical general equilibrium models. They have produced a wide range of estimates
of the indirect effect, but the results are highly sensitive to the methodology used and the
underlying assumptions within the method used. Sorrell concludes regarding these studies
that “while a number of methodological approaches are available to estimate these effects,
the limited number of studies to date provides an insufficient basis to draw any general
conclusions,” (2007, p. 57).

As these survey papers all recognize, the size of any rebound effects will depend on the level of
development of an economy, the purposes for which energy is being consumed in the economy,
and the economic policies being pursued at a given time.

For example, in the historical period in Britain described by Jevons, the use of steam engines
was growing rapidly as a crucial component of the 19™ century industrial revolution. The very
purpose of producing more efficient steam engines at that time was to facilitate an accelerated
rate of industrialization, powered by coal-powered machinery. The Jevons case has relevant
parallels with developing countries today, including especially Indonesia and South Africa
among our five selected countries. These are expanding economies in which per capita energy
consumption is rising. In these cases, we would expect that increased energy efficiency,
that produces lower costs for consuming a unit of energy, will encourage, for example, more
intensive use of automobile travel or household appliances. Conditions will be different with
economies that are already at high GDP levels, such as the U.S. or Germany. In these cases, the
per-capita consumption of energy-intensive activities is far closer to a saturation point than is
true in Indonesia or South Africa.

But the more critical issue here is the historical and policy environment in which efficiency
investments are occurring. If we consider the case of Britain in the Jevons era, the purpose of
improving energy efficiency was precisely to support the greater use of coal-fired power. But in
all regions of the global economy in the current era, the overarching purpose of raising energy
efficiency is quite distinct. The proximate purpose is to maintain or enhance the benefits of
energy-driven machines, while lowering the need for energy inputs to power these machines.
The fundamental purpose is, quite simply, to play a major role in fighting climate change.

Thus, for all countries at all levels of development, it is critical that the effort to increase
energy efficiency would be accompanied by complementary policies that, in combination, can
succeed in dramatically reducing CO, emissions. As one major obvious set of complementary
measures, policies to promote affordable clean renewable energy investments would allow for
higher levels of energy consumption - including through some limited rebound effects - without
leading to increases in CO, emissions. Another major complementary policy to promoting
energy efficiency investments would be to set a price on carbon emissions through either a
carbon cap or carbon tax. As such, a policy environment that complements energy efficiency
investments with strong support for renewable energy and putting a price on carbon emissions
will purposefully create a much smaller rebound effect than a situation - such as that in Jevons’
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England - when the drive for energy efficiency was undergirding early industrialization, free of
environmental constraints.

The evidence we presented in Table 1.3 on energy intensity levels for different countries is also
pertinent here. As we saw there, Germany presently operates at an efficiency level roughly 50
percent higherthan the U.S., with the respective intensity ratios at 4.1 versus 6.2 Q-BTUs per $1
trillion in GDP. Brazil is at more than twice the efficiency level of the ROK, and nearly three times
that of South Africa (5.1 versus 9.8 and 14.6 Q-BTUs per $1 trillion in GDP respectively). There
is no evidence that large rebound effects have been emerging as a result of the high efficiency
standards achieved by Germany and Brazil relative to those of the U.S., the ROK or South
Africa. Equivalently, there should be no presumption that rebound effects would be necessarily
stronger in the U.S., the ROK, or South Africa once they began to significantly improve their
efficiency performances. The basic variable here will be the overall policy environment.
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SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

CHAPTER 5: DOMESTIC
PRODUCTIVE CAPACITY, IMPORTS,
AND INDUSTRIAL POLICY FOR
EMPLOYMENT GENERATION

The project of building a global clean energy economy will require highly ambitious policy
initiatives in all regions, including advanced, middle-income, and developing economies. For
the global economy to reduce CO, emissions from 33,600 to 20,000 mmt within 20 years - i.e.
an absolute decline in emissions of 40 percent relative to 2010 levels, even while global GDP
expands at a reasonable rate - will require countries to invest heavily in both clean renewable
energy sources and energy efficiency. As we have discussed briefly at the outset and will
examine further below, the necessary level of investment will need to be about 1.5 percent of
GDP in most countries, including Brazil, Germany, Indonesia, South Africa and the ROK. How
exactly each of these major economies allocates this level of investment expenditures will
depend on the specific resources and capacities they have available, including the particulars
of their climate; their existing energy resources and supply systems; and their capacity to
mobilize physical and financial resources. We discuss some of these specific country-by-
country considerations later in this report.

Our primary focus here is to examine how much any country, and our five selected countries
in particular, is likely to expand its investments in clean energy sectors on the basis of its own
domestic resources. To the extent that a country runs up against domestic productive capacity
constraints while expanding its investments in energy efficiency and clean renewable energy
sources, it then faces two alternatives: either scale back the clean energy investment project
or rely increasingly on imports to maintain the ambitious investment agenda. We assume
for purposes of this discussion that countries will want to follow through in advancing the
ambitious clean energy investment project. We therefore need to consider the extent to which
the impact of these clean energy investment projects will vary, depending on whether a country
can rely on its domestic resources at least in its existing proportions of productive inputs, or
whether it will need to rely on imports to supply an increasing share of inputs in building a
clean energy economy.

Of course, whether a country needs to increase its reliance on imports as it expands its
investments in clean energy willin turn affect the country’s trade and current account balances.
We discuss this issue of trade balances below, but do not provide a formal empirical analysis
on this question. Our main focus, rather, is on employment affects. That is, within the context
of a clean energy investment project at the level of about 1.5 percent of a country’s GDP, what
is the extent to which changes in the domestic content of the country’s output in the relevant
sectors will affect the overall job-generating prospects of its clean energy investments? This
includes the sectors directly engaged in energy production as well as suppliers to those energy-
producing sectors.
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Specifically, we consider two alternative scenarios. In the first scenario, we allow that a country
is able to maintain its existing level of domestic production in the clean energy sectors as it
expandsits clean energy activities by 1.5 percent of GDP. In the second scenario, we assume that
the economy cannot expand production fast enough to maintain the current level of domestic
content in its clean energy activities, but rather needs to raise its import share in the relevant
sectors. As we discuss further below, we assume import content will need to rise in sectors in
which imports already constitute more than 10 percent of total inputs. For those activities, we
assume that import content rises by 20 percent over existing levels. The estimates we generate
here will enable us to assess in Chapter 6 the extent to which overall employment creation from
a clean energy investment project is likely to be affected by whether a country can expand its
domestic productive capacities in proportion to its rising level of clean energy investments.

In addition to developing and reporting on the effects of these two scenarios regarding domestic
content, we consider here two factors that will significantly influence the extent to which a
country will be capable of expanding its supply of domestic inputs. These two factors are: 1)
the role that can be played by a country’s industrial policies to expand domestic productive
capacity in the relevant sectors of the economy; and 2) the extent to which countries currently
rely on fossil fuels to meet their energy consumption needs. We begin with our review on
industrial policies, then present our quantitative analysis on domestic content ratios. We
conclude by assessing the role of fossil fuel production for exports and consumption in our
selected countries.

Industrial Policies for Clean Energy Transformations

Whether or not countries are able to advance a major clean energy investment agenda without
significantly altering the economy’s demand for imports will depend on the extent to which
they can implement industrial policies capable of expanding their productive capacity in the
economy’s relevant sectors. It will be useful here to briefly examine some of the main issues
and country-level experiences on this question.

What is Industrial Policy?

The term “industrial policy” is commonly used to refer to two distinct types of government
interventions. In one usage, industrial policy refers to the regulation of competition, e.g.
policies on monopolies, mergers and market restrictive practices. In the other usage, industrial
policy has a broader meaning, associated closely with the concept of a “developmental state”
- that is, a state that plays an active role in building effective institutions and frameworks that
can successfully guide the development trajectory of a country’s economy.3®

In this discussion, we are focused on the second meaning of industrial policy - with industrial
policies as one important element of a developmental state. But with industrial policy as a tool
of a developmental state, a range of institutions, policy instruments and targets are put into play,
which also need to be explicitly recognized. These could include R&D subsidies for government,
university or private business research centers. It could also include preferential tax treatment,

36 Pitelis (2001) provides a succinct survey these alternative meanings to the term “industrial policy.” See also Pollin (2012) for an overview of
industrial policies, especially as applied in the U.S. and with respect to clean energy investments.
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credit opportunities, or direct subsidies for specific sectors of the economy, including of course,
renewable energy and energy efficiency investments. Some types of business regulations could
also be seen as industrial policy interventions. Raising automobile efficiency standards is an
example of a regulation that will be crucial for building a clean energy economy, especially in
countries, such as the U.S., where public transportation systems are weak.

Rodrik captures well the meaning of the term “industrial policy” in this broader sense when
he writes, “I will use the term to denote policies that stimulate specific economic activities
and promote structural change. As such, industrial policy is not about industry per se.
Policies targeted at non-traditional agriculture or services qualify as much as incentives on
manufacturing,” (2009, p. 3). Rodrik further notes that a main purpose of industrial policies is
not the application of any specific policy measures but rather about building institutions that
foster effective interrelationships between the public and private sectors to achieve important
policy goals. He writes:

The task of industrial policy is as much about eliciting information from the private sector on
significant externalities and their remedies as it is about implementing appropriate policies.
The right model for industrial policy is not that of an autonomous government applying
Pigovian taxes or subsidies, but of strategic collaboration between the private sector and the
government with the aim of uncovering where the most significant obstacles to restructuring
lie and what type of interventions are most likely to remove them. Correspondingly, the
analysis needs to focus not on the policy outcomes - which are inherently unknowable ex
ante - but on getting the policy process right (Rodrik, 2004, p. 3).

Advancing Effective Industrial Policies

From a free market perspective, there are virtually no viable arguments on behalf of industrial
policies. The central point is straightforward: governments should not be in the business of
subsidizing one technology, industry, or location, much less one business firm over others. This
amounts to governments “picking winners,” which they are incapable of accomplishing effectively.
On top of this, industrial policies of this sort force taxpayers to finance government policymakers’
inept efforts at picking winners. In fact, the job of picking winners in the economy is more effective
when private businesses compete in a free market to satisfy the demands of consumers. Some
of the businesses’ decisions will be good, and others will be bad. The point is that this will be
sorted out through competitive markets, at no expense to taxpayers. More generally, free market
proponents hold that economic outcomes established through market competition, in the absence
of government interference, will always produce the most efficient allocation of an economy’s
productive resources and the highest level of overall economic welfare.

However, these free market perspectives do not accord with the actual trajectories of virtually
all countries, in all historical epochs, that have experienced successful industrial development.
As one critical case in point, we can see this clearly in the specific case of technological
development in the U.S. As Ruttan (e.g. 2006) has made clear, nearly all major technical
innovations within the U.S. economy have entailed huge expenses over long gestation periods.
Individual business firms are unable to sustain expenses at this level on their own. This is
especially the case because there is never a guarantee that those investors who assumed the
initial burden of long time horizon, high-risk ventures will end up as the prime beneficiaries
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from such endeavors. Ruttan summarized the matter as follows:

Cantheprivatesectorberelied on as asource of majornew general purpose technologies?
The quick response is that it cannot. When new technologies are radically different from
existing technologies and the gains from advances in technology are so diffuse that they
are difficult to capture by the firm conducting the research, private firms have only weak
incentives to invest in scientific research or technology development (Ruttan, 2006, p.
177; emphasis in original).

Of course, we do not expect that all countries will need or want to attempt to advance the
frontierin the development of clean energy technologies. But a second consideration as regards
industrial policies is more broadly relevant for all countries pursuing a clean energy investment
agenda. This is the project of adapting new technologies within a country’s production processes
and industrial systems, or what Mazzucato (2014) terms “innovation-led growth.” Mazzucato
explains how innovation-led growth is always the result of effective interactions between the private
sector and what she terms “the entrepreneurial state.” She writes:

In seeking to promote innovation-led growth, itis fundamental to understand the important
roles that both the public and private sector can play. This requires not only understanding
the importance ofthe innovation ‘ecosystem’ but especially what it is that each actor brings
to that system. The assumption that the public sector can at best incentivize private sector-
led innovation (through subsidies, tax reductions, carbon pricing, technical standards and
so on)...fails to account for the many examples in which the leading entrepreneurial force
came from the State rather than from the private sector....To understand the fundamental
role of the State in taking on the risks present in modern capitalism, it is important to
recognize the ‘collective’ character of innovation. Different types of firms (large and small),
different types of finance and different types of State policies, institutions and departments
interact sometimes in unpredictable ways - but surely in ways that can help shape to meet
the desired ends (Mazzucato, 2013, p. 193).

In developing her concepts of the entrepreneurial state and innovation-led growth, Mazzucato
concentrates in detail on how such policies can be advanced most effectively in promoting the
“green industrial revolution.” She argues that:

Getting to the much-needed green revolution presents a serious problem: given the risk
aversion of businesses, governments need to sustain funding for the search for radical
ideas that push a green industrial revolution along. Governments have a leading role to
play in supporting the development of clean technologies past their prototypical states
through to their commercial viability. Reaching technological ‘maturing’ requires more
supportdirected to prepare, organize, and stabilize a healthy ‘market,” where investment
is reasonably low risk and profits can be made (Mazzucato, 2013, p. 136).

Of course, the specificdetails ofindustrial policiesneed to designed, targeted, and implemented
well. There are many cases when industrial policies have been executed successfully. As has
been carefully documented, among others, in the classic works by Johnson (1982), Amsden
(1989, 2001), Wade (1990), and Chang (1994), the dramatic rise of Japan, then the ROK,
and the other “Asian Tiger” economies - Taiwan Province of China, Thailand, Singapore, and
Malaysia - were built on a foundation of successful industrial policies, especially the ability
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to build successful export industries through adapting existing technologies in manufacturing
production. The Chinese experience follows roughly in this same framework, while also
incorporating uniquely Chinese features.>” At the same time, we do need to recognize that even
within the East Asian model, there have also been serious failures. For example, in the 1950s,
the Japanese government famously instructed Honda to stick to manufacturing motorcycles,
refusing to support Honda’s plan to begin producing automobiles. The Japanese also tried and
failed to build a commercial airline in the 1970s.

Considering more recent and directly relevant examples, Mazzucato (2013) documents both
successes and failures with green industrial policies - in which she observes successes to
date having mainly occurred in Western Europe and China, while, in her view, the U.S. and
the United Kingdom have been less successful. The primary distinction between more or less
successful experiences has been the willingness of governments to commit major resources
over the long-term, as opposed to the more sporadic levels of commitments coming from the
U.S. and the United Kingdom.

While Mazzucato’s research on green industrial polices focuses primarily on countries operating
at or near the technological frontier, UNIDO’s 2013 Industrial Development Report considers green
manufacturing industrial policies for all regions in the globe. The UNIDO study thus provides
perspectives that are especially useful for less developed economies aiming to successfully
advance a clean energy transition. The UNIDO study summarizes its analysis as follows:

The paradigm of continually increasing demand of finite resources must be shifted
as the past abundance of relatively inexpensive natural resources, such as energy...
is coming to an end. Approaches toward this “green structural change” will include
adapting industries more technologically advanced and with higher labour and capital
productivity. The key thus lies in decoupling natural resources use and environmental
impacts from economic activity (UNIDO, 2013, p. 81).

In all cases, one critical feature of a successful industrial policy is the establishment of viable
development banks and, more broadly, of credit allocation systems that can support the
investments in new areas. This point becomes clear in Amsden’s illuminating discussion of
development banking in The Rise of “The Rest” (2001). Amsden begins her discussion of this
topic with the observation that:

The state’s agent for financing investment was the development bank. From the
viewpoint of long-term capital supply for public and private investment, development
banks throughout “the rest” were of overwhelming importance (Amsden, 2010, p. 127,
emphasis in original).

Amsden goes on to document this in the cases of Mexico, Chile, as well as in three of our
five selected countries - i.e. the ROK, Brazil and Indonesia. But she also points out that “the
government’s role in long-term credit allocation was substantial in parts of ‘the rest’ where
development banks were of relatively minor importance,” (p. 129). These cases include
Malaysia, Thailand, Taiwan Province of China and Turkey. She writes of these cases, “where

37 The classic works on industrial policies and development in Japan, the ROK and the other Asian tigers includes Johnson (1982), Amsden (1989,
2001), Wade (1989) and Chang (2002), On China, an excellent relatively recent study is Li (2002). Valuable recent studies include Natsuda and Thoburn
(2013) on the development of the auto industry in Thailand and Ado (2013) on adoption of local content rules as applied to resource-rich developing
countries. UNIDO (2013) examines the issue of industrial policies specifically in the area of green manufacturing sectors in all regions of the globe.
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necessary, the whole banking sector in these countries was mobilized to steer long-term credit
to targeted industries, acting as a surrogate development bank.”

The central importance of financial policies to support clean energy investments in developing
countries has been explored in detail in several recent studies. One important example is
the 2008 World Bank book Financing Energy Efficiency: Lessons from Brazil, China, India and
Beyond (Taylor et al., 2008). This book includes 10 case studies of alternative energy efficiency
financing structures. These include:

e Aloan guarantee program for private energy efficiency financing in China, which began
in 2003;

e The evolution of the Indian Renewable Energy Development Agency (IREDA) to provide
subsidized loans for both renewable and energy efficiency investments; and

e Brazil’s public benefit “wire-charge” mechanism, through which 1 percent of annual
utility net revenues are utilized for public-benefit investments. Initially, renewables
received 75 percent of these funds, but as of 2010, the funds were divided evenly
between renewables and efficiency investments.

A more recent study by Spratt, Griffith-Jones and Ocampo (2013), Mobilizing Investment for
Inclusive Green Growth in Low-Income Countries, examines the conditions under which
the necessary large-scale investments in renewable energy and energy efficiency can be
successfully advanced in low-income countries. The authors are particularly concerned that
such investments be “inclusive,” in the sense that the benefits of these investments be shared
at least equally by the society’s least advantaged groups. This would include expanding access
to electricity, and providing clean energy, for electricity and other needs, at affordable prices.
Two of the major findings of this study are as follows:

1. The importance of looking at “how best to structure investment vehicles that combine
the detailed local knowledge required to overcome information asymmetries, with the
scale required to minimize transaction costs and achieve diversification benefits;” and

2. The need to reduce the expectations of high returns on these investments from
institutional investors. The authors write: “Achieving growth that is both green and
inclusive is inherently difficult. Doing so using private investment, which requires very
high returns may be impossible. Unless investors can be persuaded to adopt more
reasonable expectations, alternative sources of finance may been needed if the goal of
generating inclusive green growth in low-income countries is to be achieved” (p. 6).

Itis also important to consider here the case of Germany, the most successful large advanced
economy in the world in terms achieving high energy efficiency standards. It is clear that
government development financing policies have been critical to Germany’s success to date
in implementing high efficiency standards. The overview of the IEA’s 2013 Energy Efficiency
Market Report focuses precisely on this point, as follows:

Germany is a world leader in energy efficiency. Germanys’ state-owned development
bank, KfW, plays a crucial role by providing loans and subsidies for investment in energy
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efficiency measures in buildings and industry, which have leveraged significant private
funds (IEA, 2013c, p. 149).

In Chapter 9, we discuss in more detail Germany’s overall policy approach to advancing both
energy efficiency and renewable energy investments.

Labor Market Issues within Industrial Policies

Aswereviewindepthin Chapter 7,the demandforlaborthatwillbe generated through expanding
clean energy investments will be widely disbursed in each of our five selected countries. It is
important to recognize that the majority of jobs created by clean energy investments will be
in the same areas of employment in which people already work. For example, constructing
wind farms creates jobs for sheet metal workers, machinists and truck drivers, among others.
Increasing the energy efficiency of buildings through retrofitting relies, among others, on
roofers, insulators, and building inspectors. Expanding public transportation systems employs
civil engineers, electricians, and dispatchers. Increasing demand for bioenergy will mean a
significant increase in employment in standard agricultural activities. With respect to these
types of employment opportunities within a national clean energy investment project, it will
not be necessary for governments to introduce a distinct new set of job training programs that
differ significantly from those that most countries already practice.

As we will also review in Chapter 7, the general level of educational attainment for workers in
the clean energy sectors is not, for the most part, significantly different than those for workers
presently employed in the oil, coal and natural gas sectors. Thus, as these fossil fuel activities
contract, this will create an increased supply of workers available to operate within the clean
energy sectors with appropriate levels of general educational credentials.

Atthe same time, some of these new employment activities will entail new activities and skills.
For example, installing solar panels on roofs and wiring these panels so they supply electricity
are distinct tasks relative to the jobs that are traditionally performed by either roofers or
electricians. Similarly, refining agricultural wastes into biofuels is different than refining
corn into ethanol or, for that matter, refining petroleum into gasoline. Countries advancing
clean energy investment projects will need to make provisions for these and similar areas
that demand new types of training and skill acquisition. The major 2008 global survey study
Green Jobs commissioned by the United Nations Environmental Program and others (Renner,
Sweeney and Kubit, 2008) addresses this issue of skills gaps and the needs for expanded
training programs in various areas as follows:

A transition to a green economy will create demand for workers, many of them in
skilled trades or professions, and filling these positions will require adequate training
programs. At the cutting edge of technological development for wind turbine or solar PV
design, for instance, specialization has progressed to the point where universities need
to consider offering entirely new study fields and majors. Several countries have reported
that a “skills gap” already exists between available workers and the needs of green
industries. A 2007 survey of Germany’s renewable industry concludes that companies
in this field are suffering from a shortage of qualified employees, and especially those
needed in knowledge-intensive positions. The Confederation of British Industry has
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expressed concern that sectors going green are struggling to find technical specialists,
designers, engineers, and electricians. In the United States, the National Renewable
Energy Laboratory has identified a shortage of skills and training as a leading barrier
to renewable energy and energy-efficiency growth. In addition, Australia, Brazil, and
China also report shortages of skilled workers. To remedy such shortages requires not
only adaptations in training new workers, but also retraining efforts for those workers
who transition from older, polluting industries to new ones. Along with the skills gap
can be placed the “management challenge,” which will consist in the development of
new perspectives, awareness and managerial capacities. Managers must be willing and
able to learn new skills, and to make use of the skills their subordinates have obtained
(Renner, Sweeney and Kubit, 2008, pp. 25-26).

Another major and more detailed study on skill requirements per se generated by clean energy
investments is a 2011 publication by the International Labour Office, Skills for Green Jobs: A
Global View (Strietska-Ilina et al., 2011).38 The study also examines the skills issues tied to other
green economy activities, such as afforestation, reforestation, waste management, and water
management. This study surveys skill requirements tied to specific green economy occupations
in 21 countries, including all five of our selected countries.?® This study is especially useful in
that it both identifies specific skills gaps as well as describes a range of formal training and
other skill-acquisition measures for closing these gaps. Critically, authors of the study are clear
in their assessment that most clean energy and other green-economy occupations will require
updating skills as opposed to training workers for entirely new occupations. For example, the
authors observe that:

The number of existing occupations that will change and update their skills content by
far exceeds the number of new occupations that will emerge and will affect more jobs
than the latter. This finding corresponds to the results of other studies. The greening
of established occupations implies incremental changes in qualifications. New skills
are needed because specific competencies are currently lacking, some existing skills
relating to job tasks that become obsolete cease to be used, some tasks require global or
interdisciplinary approaches, and sustainable development constraints are increasingly
taken into account. This may lead to the diversification of existing occupations (for
example, in management, with increased environmental management responsibilities)
orto increased specialization of occupations (Strietska-llina et al., 2011, p. 100).

Given the magnitude of the clean energy investment project that needs to be undertaken
in most countries, including Brazil, Germany, Indonesia, South Africa, and the ROK, it is
inevitable that skill bottlenecks will emerge at various points in the transition path. Still, these
bottlenecks will be less severe than they might be otherwise, given that, as we have discussed:
1) most jobs and skill requirements in the clean energy economy are not significantly different
than those already required of most people currently working in other sectors; and 2) the
general educational attainment levels for most jobs within the clean energy sectors will be
roughly comparable to those within the fossil fuel sectors that will be facing retrenchments.
This then produces an increase in the labor supply that can move into the clean energy sectors.
In addition, as we will discuss in detail later in this chapter, countries facing skill bottlenecks in

38 A companion study from the ILO is the 2013 report Sustainable Development, Decent Work and Green Jobs.

39 The other 16 countries in the ILO survey are Australia, Bangladesh, China, Costa Rica, Denmark, Egypt, Estonia, France, India, Mali, Philippines,
Spain, Thailand, Uganda, the United Kingdom and the U.S. Two studies that focus on the details of clean energy employment issues for the U.S. case
are Pollin and Wicks-Lim (2008) and Pollin, Garrett-Peltier and Wicks-Lim (2009).
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transitioning to a clean energy economy can increase their demand forimports in specific areas
to at least partly cover gaps within their domestic workforce resources.

At the same time, skill gaps and bottlenecks will continue to emerge in building clean energy
economies. This conclusion emerges clearly from both the 2008 UNEP and the 2011 ILO studies.
We do anticipate such obstacles in projecting the 20-year clean energy investment project for
Brazil, Germany, Indonesia, South Africa and the ROK that we describe in Chapters 8-12. Thus,
in the country-specific modeling exercises we present in Chapters 8-12, the time frame we
develop is a 20-year clean-energy investment period. However, we assume no progress in the
first three years of the 20-year period in expanding capacity in energy efficiency and renewable
energy capacity. We assume a significant feature of the initial three years of startup activity
will entail policymakers and businesses recognizing where skill shortages exist and making
adjustments in business operations and training programs to address these skill shortages.

In addition to these issues of skill shortages, there is the equally critical workforce issue of
providing adequate transitional support for communities and workers that are presently
dependent on the fossil fuel industries as their source of livelihoods. These workers and
communities obviously face retrenchments over time as clean energy sources increasingly
substitute for fossil fuels. The 2008 UNEP issue addresses this matter, presenting the concept
of a “Fair and Just Transition,” which they describe as follows:

The shift to a low carbon and sustainable society must be as equitable as possible. A
“Just Transition” framework is being assembled as a result of the work of the work of
the trade unions, the ILO, national and local governments, and sustainability-conscious
business and community-based organizations. The framework is built around the idea
that the coming transition will have a huge effect on workers and communities. Many
will benefit but others may face hardships as certain industries and occupations decline.
From the point of view of social solidarity, and in order to mobilize the political and
workplace-based support for the changes that are needed, it is imperative that policies
be putin place to ensure that those who are likely to be negatively affected are protected
through income support, retraining opportunities, relocation assistance and the like
(Renner, Sweeney and Kubit, 2008, p. 27).

The UNEP study acknowledges that the Just Transition approach is not yet adequately developed
in any country.%° Pollin et al. (2014) sketch an approach for the U.S. clean energy transition,
building from the concept developed by the late U.S. labor and environmental leader Tony
Mazzocchi of a “superfund for workers” who will face hardships due to necessary environmental
transitions.4 They estimate that a decent level of support for the affected fossil fuel workers
within the U.S. context would be in the range of $40,000 per year for two years to cover wage
subsidies, health insurance, counseling and retraining, relocation and job search costs.

This “superfund for workers” approach is consistent with the broader concept of “flexicurity”
for workers described by UNEP, which entails a shift from the notion of job security to one of

40 Renner, Sweeney and Kubit et al., (2008) et al observe, for example that “examples of Just Transition are still few and far between,” (2008, p. 27).

41 Mazzocchi explained his idea as early as 1993 as follows, “Paying people to make the transition from one kind of economy - from one kind of job - to
another is not welfare. Those who work with toxic materials on a daily basis...in order to provide the world with the energy and the materials it needs
deserve a helping hand to make a new startin life. ...There is a Superfund for dirt. There ought to be one for workers,” (Mazzocchi,1993, p.41). Indeed,
as described by Leopold (2007) the concept of “just transition” itself came from Mazzocchi, as a revised version of the “superfund for workers” theme
(Leopold, 2007, p. 417).
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employment security. As described in the UNEP Green Jobs study, the core elements of the
flexicurity model are:

e Flexible and secure contractual arrangements and work organizations;

e Active Labor Market Policies (ALMP) which effectively helps people to cope with rapid
change, unemployment spells, reintegration and transition to new jobs;

e Reliable and responsive lifelong learning systems, to ensure the continuous adaptability
and employability of all workers, and to enable firms to keep up productivity levels; and

e Modern Social Security systems, which provide adequate income support and facility
labor market mobility. (Renner, Sweeney and Kubit, 2008, p. 291).

Again, the UNEP authors recognize that flexicurity-based labor market policies are functioning
to date in only a few advanced European economies. What is nevertheless clear is the need
to develop something resembling this policy framework in order for clean energy transitions
to advance successfully - i.e. with the least possible level of opposition - in all countries and
regions of the globe.

The Role for Alternative Ownership Forms

This lastissue raised by Spratt, Griffith-Jones and Ocampo (2013) as to the difficulties of meeting
the high profit requirements of private-sector clean energy investors raises the question: to
what degree might alternative ownership forms play a constructive role in advancing the clean
energy investment agenda?

In fact, the energy sector, on a worldwide scale, has long operated under a variety of ownership
structures, including public/municipal ownership, and various forms of private cooperative
ownership in addition to private corporate entities. The alternative ownership forms operate in
all areas of the energy industry, including with both the conventional fossil fuel energy sources
and within the renewable sectors. The European industry, in particular, operates with a high
proportion of cooperative ownership forms, and the relative performance ofthese non-corporate
business enterprises has generally been quite favorable relative to the traditional corporate
firms. Two areas where we can observe this clearly are with research and development across
the electricity sector and in the emergence of various sorts of community-based wind farms.

Research and Developmentin Electricity. Of course, the project ofbuilding a clean energy economy
will entail large-scale commitments for R&D, and innovative approaches to commercialization of
new technologies. With this in mind, the 2010 study by Sterlacchini is significant for examining
the relationship between spending on R&D in the advanced industrialized economies the field
of energy/electricity between from 1990 to 2004 and changes in the predominant ownership
structures in the industry. In particular, Sterlacchini finds that

Within the most developed areas of the world, R&D investment in the field of energy/
electricity has declined dramatically overthe last decades. Although even public research
has been reduced, the key area of concern rests on the behavior of the electricity supply
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industry. Investment in energy R&D by US utilities fell by 72 percent between 1990 and
2004. Over the same period, the electric companies of the EU reduced R&D expenditures
by 62 percent (Sterlacchini, 2010, p. 2).

Further, Sterlacchini concludes that this drastic decline in R&D spending resulted primarily
from the widespread movement to privatize the electricity market, beginning in the 1990s.
According to Sterlacchini, privatization in electricity has “increased competitive pressures
to cut costs and those concerned with R&D have been particularly vulnerable. In particular,
electric utilities have abandoned the long-term research projects concerned with fundamental
and general-purpose technologies,” (p. 2).

Community-owned wind farms. Bolinger (2001, 2005) has conducted comparative studies of
“community ownership forms” in the wind energy industry specifically, in both Europe and the
U.S. Bolinger defines “community wind” as “locally owned, utility-scale wind development that is
interconnected to the grid on either the customer or utility side of the meter.”4> Bolinger reports
that, at the end of the year 2000, roughly 8o percent of all wind power capacity in four northern
European countries - Germany, Denmark, Sweden and the United Kingdom - could be considered
community-owned. Moreover, because these four countries accounted for roughly half of the
world’s installed wind power capacity at that time, this means that community-owned projects
accounted for roughly 40 percent of world wind power development at the end of 2000.43

Bolinger describes four important advantages to community ownership structures in the wind
industry relative to traditional corporate ownership forms. These include:

1. Lower costs of capital. Community-based wind projects in Europe have been able to rely
on a wide array of relatively smaller-scale local investors. In the U.S., community wind
projects could have access to the capital market for “socially responsible” investing,
which Bolinger estimates as being in the range of $2 trillion overall. Moreover, a study by
Wiser and Pickle (1997) estimated that the costs of wind power could fall by 22 percent if
the investors’ required rate of return could fall from, say, 18 to 12 percent.

2. Increased public support. Direct community ownership of wind projects has raised
public awareness in Europe and increased the number of local people who have direct
financial stakes in such projects. Among other things, this has reduced community
resistance to projects at the planning and permitting stages.4

3. Potential for distributed generation benefits. The relatively smaller size of community-
owned projects creates the potential to site projects closer to where the turbines are
sited and the energy is generated. This creates the possibility for significant reductions
in the costs of transmitting energy over the grid. In Europe, clusters of wind turbines are

42 He further defines “locally owned” to mean that one or more members of the local community have a direct financial stake in the project, and that
“utility scale” refers to new projects consisting of one or more turbines of 600 kW or greater in nameplate capacity, or older projects in excess of 50 kW.

43 The level of government support for community-owned wind and solar farms has, in fact, risen more recently in the United Kingdom. In January 2014,
the Energy and Climate Change Secretary Ed Davey announced the government’s aim to require large onshore renewable energy developers to offer “a
meaningful share” of the ownership in the projects in their communities (Shankleman, 2014). In the U.S. by contrast, the development of community
ownership in the wind industry has been negligible to date. Virtually all wind-energy projects have been large-scale corporate owned wind farms. At
the same time, there is some evidence that community wind projects are advancing, especially in Minnesota, Wisconsin, lowa and Massachusetts,
where both the physical and legal environments are relatively supportive (see also Finzel and Kildegaard, 2009).

44 This is not to suggest that community-owned projects are free of controversy. One importantissue that is frequently raised in Denmark, for example,
concerns the noise levels created by some wind turbine systems the noise created by wind turbines (see, e.g. Johansson, 2013). These complaints
have, in turn, generated efforts to control these noise levels through various methods (e.g. Cummings, 2102).
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often connected into the grid without requiring any additional grid reinforcements. Such
benefits are more likely to be available when community wind projects are established in
more densely populated areas. For example, in Copenhagen as of 2005, two community-
owned wind projects were operating within the city limits.

4. Electricity price stability. Community-owned wind projects operate at arms-length
from the two forces that are most responsible for creating instability in energy prices
generally and electricity prices specifically - that is, the global market for oil and the
speculative commodities futures market for energy, including electricity. Because, by
theirbasic ownership structure, community-based wind projects will continue to operate
independent of the global price of oil as well as the commodities futures markets, this
should create long-term conditions supportive of electricity price stability.

Against these built-in advantages of community-based wind projects, Bolinger notes
disadvantages as well. The most significant is the greater difficulty with such projects in
capturing economies of scale. Community-owned projects will tend to be smaller in scale than
corporate-owned wind farms, though they do not necessarily have to operate on a small scale.
This is precisely because they are tied to specific communities and local financing sources.
Large-scale corporate wind farms are thus better equipped to spread the fixed costs of any
given project, including permitting and legal costs and the full range of construction and
transmission costs.

As Bolingeremphasizes, there will be conditions underwhich the benefits of economies of scale
outweigh those of community-owned projects. But the reverse will also certainly be the case
in many instances. The experiences in Germany, Denmark, Sweden, and the United Kingdom
make clear that community-based ownership structures can succeed in the wind industry. It is
also true that the incentive structure and regulatory environment in Europe are more supportive
of a community-based model. The most important factor here is the prevalence of “feed-in”
laws in Europe. The feed-in laws guarantee access to the grid for small-scale producers and
also establish a guaranteed price at which utilities must purchase electricity from wind and
other renewable energy producers.

100 Percent Community-Owned Renewable Supply in Rural Germany

In addition to the broad perspective on community-owned wind farms provided by Bolinger
(2001 and 2005), a 2013 article by Li et al. describes an important case study of Freimant, a
rural community of 4,200 residents in Germany’s Black Forest region. As of 2008, Freimant had
achieved 100 percent electric power supply through community-owned renewable sources.
Wind energy is Freimant’s main power source, but they also generate smaller amounts of
energy from solar PV, biogas, and small-scale hydro plants.

On the basis of having surveyed the residents of Freimant, Li et al. emphasize that the project
would not have advanced successfully on the basis of the residents environmental goals alone,
even while such environmental concerns were foremost for policy-making bodies outside the
community who supported the project. Li et al. summarize the sources of the success of the
project as follows:
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The residents’ motivations for undertaking the project were strongly connected to
community-interest as opposed to awareness of climate change, which is generally
far more distantly connected with their daily life. The residents and local government
were more concerned about their own benefit from the project and its influences on
their local surroundings. Residents expect a financial benefit from community energy
projects; a self-ownership of renewable energy plants increases motivation and local
acceptance....Community energy projects contributing to climate protection by reducing
the community’s CO, emissions. They [also] create new income streams, have positive
effects on the community’s image and are a way to strengthen rural areas by establishing
a regional value added chain...Especially for rural areas, energy projects are a chance
to foster regional development, to secure agricultural holdings and to conserve cultural
landscapes that have been shaped by agriculture over centuries. This case study has
shown that there are people willing to act and that it is possible to achieve a 100% power
supply from renewable sources (Li et al., 2013, p. 227).

Overall, what emerges from this brief survey on industrial policies is that such policies, in some
combination of appropriate specific initiatives, will be necessary in all cases for advancing a
successful large-scale clean energy investment project - i.e. a project on the order of 1.5 percent
of each country’s GDP. It is well beyond the scope of this report to attempt to argue what will
be the most effective specific combination of industrial policies in any given country setting.
We do note that, as of this writing, we find no evidence of significant community-based clean
energy projects operating in any of our five selected countries other than Germany. However,
the fact that such projects have been successful in Germany and elsewhere in Western Europe
— including communities such as Freimant that are not especially well endowed with either
financial resources or the appropriate natural resources - suggests that such projects can, with
time, be made successful elsewhere as well, including in Brazil, Indonesia, South Africa and
the ROK .45

For our specific purposes of estimating the employment effects of a clean energy investment
project, we will proceed under the simple assumptions that:

1. Countries that are able to mount successful industrial policies will be able to advance
a large-scale clean energy investment project while still maintaining their current
proportion of domestically-produced inputs in the economy’s relevant sectors; and

2. Countries that do not mount successful industrial policies in behalf of the clean-energy
investment project will see the import content in their economy’s relevant sectors rise
by 20 percent relative to current import proportions. We explain below how we derive
this 20 percent adjustment figure.

Estimating Domestic Productive Resource
for Clean Energy Investments

In Tables 5.1-5.5, we show for all five selected countries the percentage of overall activity in each
of the energy-producing sectors that is produced with domestic resources. For example, in the

45 A useful resource for considering the practicalities for developing community-based renewable energy projects, focused on North America, is by
the Commission for Environmental Cooperation (2010).
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case of Brazil, we estimate that, as of the data provided in its most recent 2005 I-O table, domestic
content was as follows for these energy sectors: 97 percent for bioenergy; 91 percent for wind; 96
percent for hydro, and so forth. For South Africa, the domestic content percentages are: 94 percent
for bioenergy; 9o percent for hydro; 75 percent for wind, 83 percent for solar; 93 percent for coal,
and 62 percent for oil and gas, among others. In Appendix 2, we describe the full calculations
within each country’s I-O tables through which we generated the results in Tables 5.1-5.5.

Within the framework of these existing domestic content ratios, we then pose the question: how
much aretheseratios likelyto change as our selected countries undertake majornew investment
projects in renewable energy and energy efficiency and sustain these investment projects over
a 20-year timespan? Of course, we cannot know the answer to this question in advance in our
five distinct country settings, especially given that each country will also incorporate other
transitional forces along its long-run growth trajectory. Therefore, as described briefly above,
we focus here on considering two simple alternative scenarios in addressing this question.
In the first scenario, we assume that the countries undertake effective industrial policies to
support their clean energy investment projects. As a result of these effective policies, we then
assume that the domestic content ratio within all energy-linked activities remains at their
current levels.

In the second scenario, we assume that the countries’ industrial policies are not as effective.
As a result, domestic content in all tradable activities linked to each energy sector declines
by 20 percent relative to their current levels. We consider two main issues in addressing this
approach as our second scenario. The first is, how are we defining “tradable” activities within
each country’s I-O tables? The second is, why do we assume that the fall in domestic content
should be 20 percent, as opposed to some other percentage?

Our definition of a “tradable” activity follows from the literature on this question. The most
recent brief survey of which we are aware is Lombardo and Ravenna (2012). They define a
“tradable” activity as one in which less than 9o percent of this activity’s inputs come from
domestic sources.“® They write:

We define as tradable all goods from sectors where the tradability measure is above a
fixed number. To provide comparability with results in the literature, we adopt a 10 percent
threshold, as in De Gregorio et al. (1994) and Betts and Kehoe (2001). (Lombardo and
Ravenna, 2012, p. 559).

For activities, which are defined as tradable by this measure, why do we assume that domestic
content will fall by 20 percent in our second scenario, i.e. when industrial policies to support
clean energy investments are less successful? Here we work from the results presented in Bems
(2008) on “Aggregate Investment Expenditures on Tradable and Nontradable Goods.” For our
purposes, the key findings in Bems are as follows:

1. Aggregate investment expenditure shares on tradable and nontradable goods are very
similarin rich and poor countries, as well as in different regions of the world.

2. The expenditure shares on tradables and nontradables have been stable over time.

46 They write, “We define as tradable all goods from sectors where the tradability measure is above a fixed number. To provide comparability with
results in the literature, we adopt a 10 percent threshold, as in De Gregorio et al. (1994) and Betts and Kehoe (2001),” (2012, p. 559).



SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

Average expenditure shares on nontradables have varied between 54-62 percent over
the period he studies, 1960-2004.

Working from these results by Bems, if we assume that the variation on non-tradables ranges
between 54-62 percent, this means the decline from the high end of the range, at 62 percent, to
the low end, at 54 percent, is about 13 percent (8 percentage points decline from a 62 percent
base). Because, if anything, we do not want to underestimate the potential proportionate
decline in domestic content that could result from greatly expanding investments in clean
energy activities, we chose to increase the percent decline in domestic content from the 13
percent figure that we extract from the Bems’ research to 20 percent.

Based on these assumptions, the figures we report in the second columns of Tables 5.1-5.5, all
show domestic content as declining by 20 percent in all tradable activities (i.e. those activities
in which domestic content is currently below 9o percent) associated with the clean energy
investment project. Thus, again looking at the case of Brazil in Table 5.1, the impact of this
adjustment procedure does not affect the domestic content of the bioenergy sector, which
remains at 97 percent domestic content or building retrofits, which remains at 100 percent.
However, wind power declines from 91 to 88 percent domestic content. Grid upgrades decline
from 77 to 67 percent domestic content and industrial energy efficiency falls from 87 to 8o
percent domestic content. For the case of South Africa, as reported in Table 5.4, wind falls from
75 to 68 percent domestic content, grid upgrades falls from 64 to 56 percent, and industrial
energy efficiency falls from 71 to 67 percent.

Table 5.1: Brazil. Domestic content of alternative energy sectors: Levels in 2005 I-O tables
compared to a 20 percent domestic content decline for tradable activities

Stable domestic content P gecine fortradable activiies
Renewables
Bioenergy 97% 97%
Hydro 96% 95%
Wind 91% 88%
Solar 85% 79%
Geothermal 94% 90%
Energy efficiency
Building retrofits 100% 100%
Industrial efficiency 87% 80%
Grid upgrades 77% 67%
Fossil fuels
Coal 78% NA
Oil/natural gas 78% NA

Source: Data sources as noted in Appendix 2.
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Table 5.2: Germany. Domestic content of alternative energy sectors: Levels in 2007 I-O tables
compared to a 20 percent domestic content decline for tradable activities

Stable domestic content P gecine forradable ativiies
Renewables
Bioenergy 78% 67%
Hydro 65% 55%
Wind 75% 65%
Solar 70% 62%
Geothermal 56% 54%
Energy efficiency
Building retrofits 96% 96%
Industrial efficiency 54% 47%
Grid upgrades 69% 60%
Fossil fuels
Coal 70% NA
Oil/natural gas 4,0% NA

Source: Data sources as noted in Appendix 2.

Table 5.3: Indonesia. Domestic content of alternative energy sectors: Levels in 2008 I-0
tables compared to a 20 percent domestic content decline for tradable activities

Stable domestic content  gecinefo tradable actiies
Renewables
Bioenergy 96% 94%
Hydro 89% 83%
Wind 83% 75%
Solar 85% 77%
Geothermal 91% 87%
Energy efficiency
Building retrofits 100% 100%
Industrial efficiency 75% 65%
Grid upgrades 82% 76%
Fossil fuels
Coal 82% NA
Oil/natural gas 76% NA

Source: Data sources as noted in Appendix 2.
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Table 5.4: South Africa. Domestic content of alternative energy sectors: Levels in 2005 I-O
tables compared to a 20 percent domestic content decline for tradable activities

Stable domestic content P gecine fortradable activiies
Renewables
Bioenergy 94% 92%
Hydro 90% 87%
Wind 75% 68%
Solar 83% 74%
Geothermal 92% 88%
Energy efficiency
Building retrofits 100% 100%
Industrial efficiency 71% 67%
Grid upgrades 64% 56%
Fossil fuels
Coal 93% NA
Oil/natural gas 63% NA

Source: Data sources as noted in Appendix 2.

Table 5.5: Republic of Korea. Domestic content of alternative energy sectors: Levels in 2008
1-0 tables compared to a 20 percent domestic content decline for tradable activities

Stable domestic content ® gecinefo tradable actiies
Renewables
Bioenergy 79% 68%
Hydro 91% 82%
Wind 86% 76%
Solar 83% 71%
Geothermal 79% 72%
Energy efficiency
Building retrofits 100% 100%
Industrial efficiency 83% 70%
Grid upgrades 83% 73%
Fossil fuels
Coal 42% NA
Oil/natural gas 46% NA

Source: Data sources as noted in Appendix 2.
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In the next chapter, we show how these alternative assumptions as regards domestic content
proportions play outin our estimates of the employment effects of the clean energy investment
project.

Fossil Fuel Consumption and Imports/Exports

One factor in enabling the expansion of domestic production in sectors of economies linked to
clean energy will be the fact that the fossil fuel sectors in all countries will be correspondingly
contracting. The freeing up of economic resources out of the activities tied to the fossil fuel
sectorwill be substantial in all cases. These activities include extracting, transporting, refining,
and theretail distribution of fossil fuel energy, along with all of the sectors that provide supplies
to support these activities.

The data in Table 5.6 provide a sense of the magnitudes involved. The first column of the
table shows the extent to which each of our five selected economies relies on fossil fuels
to meet its overall energy consumption levels. As we see, fossil fuels supply more than half
of each country’s total energy consumption. Brazil has the lowest proportion of fossil fuel
consumption, at 53.5 percent of total energy consumption, because of its uniquely high levels
of both hydro and biofuel production. Indonesia is next lowest, at 66.1 percent reliance on
fossil fuels. But this figure includes Indonesia’s still heavy reliance on burning peat as a high-
emissions renewable energy source. Exclusive of peat, coal, oil and natural gas provide roughly
90 percent of Indonesia’s remaining energy supply. Germany, the ROK and South Africa all rely
on fossil fuels for between 78-88 percent of their overall energy supply. These figures show
that, as these economies undergo transitions to clean energy sources, major shares of their
economies’ overall resources will be released from the current demands generated by their
fossil fuel sectors.

Table 5.6: Reliance on fossil fuels and imports as energy sources in selected countries, 2011

Fossil fuels as a share of total energy Imports as a share of total energy
consumption consumption®
Brazil 53.5% 8.0%
Germany 78.2% 60.0%
Indonesia 66.1% -89.0%
South Africa 87.7% -15.0%
ROK 82.9% 82.0%

Source: World Bank (2014), “World Development Indicators,” Table 3.6: Energy production and use and Table 3.8: Energy dependency, efficiency, and
carbon dioxide emissions.

Notes: a) Negative figures indicate net export proportion.

We obtain additional perspective as to how such scenarios might play out through the figures
shown in column 2 of Table 5.6. Here we show the import shares as a proportion of total energy
consumption forour five selected economies as of 2010. As we see, Indonesia and South Africa
were energy exporters - Indonesia with oil and South Africa with coal. However, since 2010,
Indonesia has become an oil importer. Indeed, in the absence of a successful clean energy
investment strategy. Indonesia is projected to become a major oil importer over the next five
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years (Azwar, 2013). With Brazil, as the table shows, imports constituted a relatively modest 8
percent of its overall energy supply as of 2010, while Germany and the ROK were major energy
importers, at 60 and 82 percent of their overall energy supply. These proportions have held
steady since 2010.

Of course, the energy-importing countries, Brazil, Germany, and the ROK, are presently utilizing
a smaller share of their total domestic resources in the fossil fuel sector. Their share of total
economic resources devoted to energy-linked activities could rise as a result of increasing
investments in energy efficiency and renewable energy. However, as we saw in Tables 5.1, 5.2
and 5.5, the share of total domestic resources devoted to supplying oil, coal and natural gas
are not negligible. In Germany, the shares are 70 percent for the coal sector and 40 percent
for oil and gas, as shown in Table 5.2. In the ROK, as we see in Table 5.5, the proportions are
42 percent for coal and 46 percent for oil and gas. Thus, even with Germany and the ROK, as
major energy importers, the move out of fossil fuels and into clean energy will entail releasing
domestic resources that can be repurposed for the clean energy transition.

South Africa, unlike the case of Indonesia transitioning from oil exporterto importer, is projected
to remain as a coal exporterin a global Reference Case scenario over the next 20 years.#” South
Africa would therefore see its market for coal exports contract as the reliance on clean energy
sources expand, including in countries currently importing South African coal. This will create
problems for their balance of payments as well as the incomes and job opportunities for people
attached to the coal sector. But this then also means that for South Africa, as with all other
fossil fuel exporting economies, resources will become increasingly available for repurposing
in support of a clean energy investment project.

The Impact of Declining Fossil Fuel Export Markets

The contraction of South Africa’s coal export market that would result through the clean energy
transition does then raise a broader question concerning all five selected countries. That is,
considering all fossil fuel sectors in each of the five countries, what is likely to be the effect
of the global contraction in fossil fuel trade that will result through a global clean energy
transition?

We can obtain some perspective on this question by considering the net trade balance with
respect to fossil fuels for our five selected economies. In Table 5.7, we provide figures on net
fossil fuel exports as a share of GDP over the decade 2001-2010. As the table shows, four of
the five economies, including South Africa, were, on average, net importers of fossil fuels over
this decade. In the cases of Brazil, Germany, and the ROK, the share of net fossil fuel imports
relative to GDP was also generally stable, since, as the table shows, the decade-long average
(mean) figures are all significantly greater than their standard deviations.

47 See, for example, the EIA’s 2030 Reference Case in the International Energy Outlook 2013.
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Table 5.7: Net fossil fuel trade balance as share of GDP, 2001-2010

Positive figures = net fossil fuel trade share surpluses;
Negative figures = net fossil fuel trade share deficits

Mean fossil fuel trade balance/GDP Standard deviations
Brazil -0.6 0.3
Germany -2.3 0.5
Indonesia 4.3 1.1
South Africa -0.9 1.2
ROK -6.4 1.8

Sources: Authors’ calculations based on U.S. Energy Information Agency (EIA), International Energy Statistics [for fossil fuel trade]; IMF, International
Financial Statistics [for GDP].

South Africa is also a net fossil fuel importer over the full 2001-2010 decade, but, for two
reasons, its situation is different than those for Brazil, Germany and the ROK. The first factor
is that its ratio of net fossil fuel imports relative to GDP is not stable over the decade, with the
mean value of - 0.9 being less than the standard deviation of 1.2. The second factor is that
South Africa has been a net fossil fuel importer overall even though it is also a major exporter
of coal. This is because South Africa is an even larger importer of crude oil than it is an exporter
of coal. On balance, therefore, South Africa’s trade position should improve as it experiences
concurrent reductions in both oil imports as well as coal exports. In addition, the share of fossil
fuels in the country’s trade accounts will contract as both oil imports and coal exports decline.
The fossil fuel trade will constitute a smaller share of the economy’s overall GDP. This will
therefore mean that the impact of fossil fuel imports and exports will have a diminished impact
on the economy’s overall stability. As discussed above, South Africa’s coal sector will of course
still experience a substantial retrenchment as the clean energy investment project proceeds.
The country will need to implement effective transitional assistance measures for coal miners
and the communities dependent on the industry, as one component of the country’s overall
clean energy industrial policy agenda.

Indonesia is the only economy in our group that is a net exporter of fossil fuels over the 2001-
2010 decade, as Table 5.7 shows. A global clean energy investment project will therefore entail
a loss of net exports for Indonesia. How significant is this likely to be for the country’s overall
economic growth and employment trajectory?

One consideration, as we also mentioned above, is that Indonesia had been a major oil exporter
but has been losing that position since the mid-2000s. It was a net oil importer as of 2010. The
fact that Indonesia is still a net exporter of fossil fuels overall is because of its ongoing high
level of coal exports. Coal exports constituted 4.5 percent of Indonesia’s GDP as of 2010. How
significant would be the impact of losing a major share of its coal export revenues as well
as, perhaps, its net export position with fossil fuels overall? As with South Africa, Indonesia’s
coal sector itself would of course experience a sharp retrenchment. The country will need
to implement effective adjustment assistance policies for the impacted communities and
workers. But what about the broader impact on the economy’s overall growth and employment
trajectory?
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We can obtain a reasonable sense of how Indonesia’s overall economic performance will be
affected by the decline of its net fossil fuel export position through its experience over the
2001-2010 decade with respect to its fossil fuel net exports relative to its overall economic
growth. In Figure 5.1, we show the pattern of net fossil fuel exports in relationship to the
economy’s annual real GDP growth rate. As is clear from the figure, there is no consistent
relationship between Indonesia’s fossil fuel export share and its overall GDP growth rate. For
example, between 2001-2002, the export/GDP share declined from 5.8 to 4.0 percent of GDP,
while real GDP growth rose from 3.6 to 4.5 percent. Again, between 2004-2005, the fossil fuel
export share declined from 4.6 to 3.5 percent of GDP, while real GDP growth increased from 5.0
to 5.7 percent. For the decade as a whole, as we report in Figure 5.1, the correlation coefficient
between the fossil fuel export share and GDP growth is -0.19. That is, over 2001-2010, there
was a weak negative correlation between Indonesia’s overall fossil fuel export position and the
country’s average annual real GDP growth rate.

Figure 5.1: Indonesia. Fossil fuel sector net exports as share of GDP and real GDP growth
rate, 2001-2010

Percentages

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

B Net fossil fuel export balance as pct. of GDP
M Real GDP growth rate

Sources: Authors’ calculations based on U.S. Energy Information Agency (EIA), International Energy Statistics [for fossil fuel trade]; IMF, International
Financial Statistics [for GDP].

Notes: Correlation coefficient between fossil fuel net exports/GDP and real GDP growth is -0.19.

All else equal, the Indonesian economy would likely benefit through being able to sustain a net
export position in the fossil fuel sector. But the fact that the decline in Indonesia’s net fossil
fuel export position does not positively correlate with its economic growth performance means
that Indonesia has already demonstrated its capacity to adjust to the decline in its fossil fuel
export revenues - the decline in oil exports, in particular. Put another way, Indonesia has not
been operating in an “all else equal” environment over the decade 2001-2010 as regards the
impact of its fossil fuel export revenues on GDP growth. Indonesia has rather demonstrated
over this period its capacity for adaptation to the changing patterns of trade flows in its fossil
fuel sector. For the country to transition onto a clean energy investment project will require still
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further adaptations. But the evidence suggests that the decline of its net fossil fuel export will
not itself create a major barrier to the success of Indonesia’s clean energy transition.

Oil Curse and Stranded Assets

Two additional sets of issues are relevant within this discussion. The first concerns the long-
term economic development prospects of countries with large fossil fuel endowments to
operate as net exporters. The relevant literature has not reached a consensus as to whether,
in fact, being an oil exporter ends up promoting economic growth at all. Rather, the overall
evidence is decidedly mixed. Sachs and Warner (1997, 2001) initiated a line of research on what
they termed “the curse of natural resources.” They found that economies with a high ratio of
oil exports to GDP in 1970 tended to grow relatively slowly in the subsequent 20 years. Other
early studies, including Leite and Weidmann (1999) focused on the relationship between oil
abundance and the quality of institutionsin a given country - finding that ineffective institutional
environments engendered by oil abundance in turn acts as a hindrance to economic growth.
By contrast, other researchers such as Salai-i-Martin and Subramanian (2003) have found that
there is no clear relationship, either positive or negative, between abundant natural resources
and growth. Still others, including Alexeev and Conrad (2009) observe a positive association
between oil wealth and economic performance.4®

It is beyond the scope of this report to attempt to adjudicate the results of these various
researchers. For our purposes, the central conclusion to take from this literature is that
operating as an oil exporter can be supportive of growth under some circumstances, but it is
never necessarily beneficial to growth. Rather, there is clearly a wide range of factors at play in
determining whether being an oil exporter will be supportive of growth. This, correspondingly,
also means that countries that are not oil exporters, or that experience a decline in their oil-
exporting sector, can nevertheless consistently find other channels for promoting economic
growth. We of course see this with our own group of five selected countries. Germany and the
ROK, the two countries with the highest levels of GDP per capita, are also the two countries
with the highest ratios of fossil fuel imports as a share of GDP over 2001-2010 - Germany at 2.3
percent of GDP and the ROK at fully 6.4 percent of GDP. It is also evidently true that the ROK’s
outstanding growth performance over the past 50 years has coincided with many oil exporting
countries, including, for example, Mexico, Libya and Ecuador, experiencing mediocre growth
or stagnation.4

A second important consideration here is that, as we emphasized at the outset of this report,
it is simply not possible to control climate change if the global economy continues to burn
fossil fuels at anything close to the rate that it has experienced over the past generation. This
means that, over the next generation and furtherinto the future, all owners of fossil fuel assets,
including public sector entities as well as private oil, coal and natural gas corporations, will,
by necessity, experience a major decline in the value of these fossil fuel holdings. Thus, a
2013 study authored jointly by Carbon Tracker and the Grantham Research Institute on Climate
Change and the Environment at the London School of Economics examined the current
holdings of the largest 200 fossil fuel companies in the world. This study estimated that “60-80

48 An excellent survey of this literature and especially a critical replication of the Alexeev and Conrad econometric findings is an unpublished study by
Alnusf (2011). Ross (2012) provides a broader perspective on the political as well as the economic issues associated with the oil curse.

49 Perhaps the leading example of a country that has avoided the resource curse is Norway. Holden (2013) provides a useful discussion as to how
Norway achieved this, in contrast with, among other countries The Netherlands - from which the term “The Dutch Disease” originates.
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percent of coal, oil and gas reserves of listed firms are unburnable (2013, p. 4).” The study then
considered the implications of this finding for the long-term valuations for these companies.
They conclude that “The 200 fossil fuel companies analyzed here have a market value of $4
trillion and debt of $1.5 trillion....Equity valuations could be reduced by 40-60 percentin a low
emissions scenario. In parallel, the bonds of fossil fuel companies could also be vulnerable to
ratings downgrades,” (2013, p.5).

In the context of such findings, what is clear is that even if countries, such as Indonesia, are
holding net fossil fuel export positions and these positions are presently making net positive
contributions to economic growth, these fossil fuel exporters will still need to undertake major
adjustments in recognition of the forthcoming devaluation of their fossil fuel assets.
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CHAPTER 6: METHODOLOGICAL
ISSUES IN EMPLOYMENT
ESTIMATES

Building from National Input-Output Models

Our employment estimates are figures generated directly from data from national surveys of
public and private economic enterprises within Brazil, Germany, Indonesia, South Africa and
the ROK, and organized systematically within each country’s national I-O model. The “inputs”
within this model are all the employees, materials, land, energy and other products that are
utilized in economic activities of public and private enterprises within the five countries to
create goods and services. The “outputs” are the goods and services themselves that result
from these activities that are then made available to households, private businesses and
governments as consumers within both domestic and global markets. Within the given structure
of each national economy, these figures available within the I-O model provide the most
accurate evidence available as to what happens within private and public enterprises when
they produce the economies’ goods and services. In particular, these data enable researchers
to observe how many workers were hired to produce a given set of products or services, and
what kinds of materials were purchased in the process.

Here is one specific example of how our methodology works. If we invest an additional $1
million on energy efficiency retrofits of an existing building (or its equivalent within each
country’s national currency) how will the business undertaking this retrofit project utilize that
$1 million to actually complete the project? How much of the $1 million will they spend on
hiring workers, how much will they spend on non-labor inputs, including materials, energy
costs, and renting office space, and how much will be left over for business profits? Moreover,
when businesses spend on non-labor inputs, what are the employment effects through giving
orders to suppliers, such as lumber and glass producers or trucking companies?

We also ask this same set of questions for investment projects in renewable energy as well as
spending on operations within the non-renewable energy sectors. For example, to provide $1
million worth of petroleum that can be sold to consumers at retail stations as a refined product,
how many workers will need to be employed, and how much money will need to be spent
on non-labor inputs?s° Through this approach, we have been able to make observations as to
the potential job effects of alternative energy investment and spending strategies at a level of
detail that is not available through any alternative available approach.

There are certainly limitations with our use of the I-O model. We examine these issues below. But
as we also discuss below, these limitations in the I-O model approach need to be considered in
the context of alternative approaches, including computable general equilibrium models, which,
in our view, contain even more serious deficiencies. In short, we hold that for our particular

50 More technically, what we are defining here is the final demand for petroleum to all consumers.
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purposes at hand of estimating employment effects of alternative energy spending activities in
comparable ways within the national economies of Brazil, Germany, Indonesia, South Africa and
the ROK, the I-O approach is the most reliable methodology available. The following discussion
provides a broad overview of our methodology for estimating employment effects of clean
energy investments in Brazil, Germany, Indonesia, South Africa, and the ROK. We also provide
more detailed technical discussions, and full sets of references in Appendices 2-4.

In addition to issues resulting directly from our use of the use of I-O models, we also need
to consider here some broader methodological and measurement questions with respect to
the employment effects of clean energy investments. A first critical question is whether it is
necessarily a favorable development when clean energy investments generate, per dollar of
expenditure, a higher level of employment than spending within the fossil fuel sectors. This
higher level of employment for clean energy investments could simply reflect a decline in
labor productivity. A second set of issues concerns the time dimension of employment. That
is, can we accurately observe the extent to which jobs that are created through clean energy
investments will last for either short or long periods of time? How, also, should we interpret the
relative benefits of the jobs that are created when they last, for example, for one year versus
10 years? A third, related set of questions concerns job quality. An expansion in the overall
availability of jobs can, alternatively, produce more lower- or higher-quality jobs. The relative
proportions of bad versus good jobs resulting through clean energy investments will obviously
matter for assessing the overall welfare effects of these investments.

We address this broader set of questions after first setting out our basic estimating framework.
We then discuss the more technical set of concerns emerging from our use of the I-O model.

Aggregate Employment Creation:
Direct, Indirect, and Induced Jobs5*

Spending money in any area of an economy - including regional and national economies as
well as the global economy - will create jobs, since people are needed to produce any good or
service that the economy supplies. This is true regardless of whether the spending is done by
private businesses, households, or a government entity. At the same time, for a given amount
of spending within the economy, for example, $1 million, there are differences in the relative
levels of job creation through spending that $1 million in different ways. Again, this is true
regardless of whether the spending is done by households, private businesses or public sector
enterprises.

There are three sources of job creation associated with any expansion of spending - direct,
indirect, and induced effects. For purposes of illustration, consider these categories in terms of
investments in home retrofitting or building wind turbines:

1. Direct effects - the jobs created, for example, by retrofitting buildings to make them
more energy efficient or to construct wind turbines;

51 Appendix 3 describes in detail our methodology for estimating aggregate employment creation in clean energy and fossil fuel investments in Brazil,
Germany, Indonesia, South Africa and the ROK.
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2. Indirect effects - the jobs associated with industries that supply intermediate goods for
the building retrofits or wind turbines, such as lumber, steel, and transportation;

3. Induced effects - the expansion of employment that results when people who are paid in
the construction or steelindustries spend the money they have earned on other products
in the economy. These are the multiplier effects within a standard macro model.

In this report, we focus on direct and indirect effects. Estimating induced effects - i.e. multiplier
effects - within I-O models is much less reliable than the direct and indirect effects. In addition,
induced effects derived from alternative areas of spending within a national economy are likely
to be comparable to one another. We therefore do not lose a significant amount of information
in terms of relative employment effects between spending on renewable energy and energy
efficiency versus fossil fuels when we exclude induced effects from our estimations.

Within the categories of direct plus indirect job creation, how is it that spending a given amount
of money in one set of activities in the economy could generate more employment than other
activities? As a matter of simple arithmetic, there are only three possibilities, i.e. differences
in: 1) compensation per worker; 2) domestic content; and 3) labor intensity. We can illustrate
these three possibilities through comparing investment projects in clean energy versus non-
renewable sectors.

Compensation per worker. If there is a total of $1 million to be spent within a given year within
any given energy sector activity, and one employee earns $1 million peryear while employed at
this activity, then that obviously means that only one job will be created through spending the
$1 million. However, if, at some alternative enterprise, the average pay per worker is $10,000
peryear, then the same $1 million will generate 100 jobs at $10,000.

Domestic content. We have reviewed in detail in Chaptersissues around differences in domestic
content in the alternative national settings. These differences will of course impact the extent
of job creation within any given domestic economy for a given level of spending. The degree to
which variation in domestic content affects overall job creation will depend on the specifics as
to which clean energy sectors are expanding in any given country.

Labor Intensity. When proportionally more money of a given overall amount of funds is spent
on hiring people, as opposed to spending on machinery, buildings, energy, land, and other
inputs, then spending this given amount of overall funds will create more jobs. As we will see,
relative to spending within the non-renewable energy sectors within most national economy
settings, investments in clean energy - including the direct spending on specific projects plus
the indirect spending on purchasing supplies - entails spending more of its overall budget on
hiring people, and relatively less on acquiring machines, supplies, land (either on- or offshore)
and energy itself.

It is important to note here that differences in labor intensity are not identical to differences
in labor productivity. As one important example, with a given level of labor productivity,
differences in labor intensity can result through variation in spending on ground rent. This
specific factor can be especially relevant in considering the fossil fuel sector, in which ground
rent expenditures can be substantial. For the purposes of our discussion, we also need to
provide more clarity around issues of labor productivity itself. We turn now to this topic.
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Clean Energy, Productivity, and Employment

The most basic purpose of utilizing energy in economic activity is to raise productivity - i.e. with
the use of efficient machinery powered by energy, to be able to produce more goods and services
at lower costs than would be possible through using human effort alone or through combining
human effort with less efficient machinery. Within this context, it is therefore critical to consider
whether a clean energy investment project could produce an expansion in employment
opportunities simply through lowering productivity, and, correspondingly, whether any such
productivity decline also entails a reduction in overall welfare. In addressing such questions, it
is first critical that we be clear about what we mean in referring to “productivity,” including the
separate categories of energy productivity and labor productivity.

Energy Productivity. In Chapter 1, we presented evidence within different country settings on
their energy intensity ratios, which we defined as Q-BTUs/GDP. Energy intensity is definitionally
the inverse of energy productivity. Investing in energy efficiency measures is, correspondingly,
the means through which economies raise energy productivity and lower their energy intensity
ratio.

Labor Productivity. By a standard definition, labor productivity simply measures total output
per worker, assuming contributions from all other productive inputs remains equal. By this
standard definition, if we assume all additional productive input contributions are equal, if
we increase labor intensity through clean-energy investments, that also means we will have
reduced labor productivity in the energy sector through shifting spending toward clean energy.
Within this framework, the project of building a clean-energy economy would therefore entail
lowering labor productivity, as defined conventionally, even while we would also be raising
energy productivity through efficiency investments.

However, the idea of inverse trajectories for energy and labor productivity within a clean
energy investment project does not adequately capture the full story on the movement of labor
productivity within this framework. This is because it neglects two crucial considerations. First,
through raising overallemployment, clean-energy investments can provide new opportunities to
previously unemployed workers. This raises the productivity level for the formerly unemployed
workers from zero to a positive number. Any economy-wide measure of labour productivity has
to take account of this effect. Similarly, clean-energy investments can create new opportunities
for underemployed workers, thereby also raising their productivity.

Second, within the context of the global climate crisis, we need to begin consistently
incorporating environmental effects in the measurement of output and productivity. That is,
spending on fossil fuels creates the output ‘good’ of energy to power machinery. But it also
creates the output ‘bad’ of CO, emissions. Thus, with every unit of energy generated by clean-
energy investments as opposed to fossil fuels, the netincrease in output is greaterto the extent
that we are not producing the ‘bad’ of pollution and GHG emissions. This point has long been
recognised in discussions of the environmental costs of economic growth, and is included in
virtually every introductory economics textbook.

Clean-energy investments therefore have the capacity to raise economy-wide labor productivity
- defined appropriately - through two channels: 1) By expanding total employment per dollar of
expenditure in the economy, it provides new opportunities for unemployed or underemployed
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workers to become productive; and 2) by generating energy from clean sources, it increases the
level of ‘goods’ we produce and correspondingly reduces our production of ‘bads’.

Overall then, properly considered on a macro scale, the productivity effects of a clean energy
investment project - including both energy productivity as well as labor productivity - are likely
to be strongly favorable.

Time Dimension in Measuring Job Creation

Any type of spending activity creates employment over a given amount of time. To understand
theimpactonjobsofagiven spendingactivity, one must therefore incorporate atime dimension
into the measurement of employment creation. For example, a project that creates 100 jobs
that last for one year only needs to be distinguished from a another project that creates 100
jobs that continue for 10 years each. It is important to keep this time dimension in mind in any
assessment of the impact of on job creation of any clean energy investment activity.

There are two straightforward ways in which one can express such distinctions. One is through
measuring “job years.” This measures cumulative job creation over the total number of years
that jobs have been created. Thus, an activity that generates 100 jobs for 1 year would create
100 job years. By contrast, the activity that produces 100 jobs for 10 years would generate
1,000 job years.

The other way to report the same figures would be in terms of jobs-per-year. Through this
measure, we are able to provide detail on the year-to-year breakdown of the overall level of
job creation. Thus, with the 10-year project we are using in our example, we could express its
effects as creating 100 jobs per year for 10 years. This is the basic framework we will utilize
when we report on job creation figures within the context of clean energy investment projects
on the order of 1.5 percent of GDP per year. This is because, when we present employment
impacts in terms of jobs-per-year, we can observe these impacts within the standard units of
total employment levels, labor force participation and unemployment rates over the course of
a year. Within this framework, we can of course also estimate the number of years in which a
given jobs-per-year impact will be sustained. In the case of the clean energy investment project
we are developing, what we are proposing should be sustained at the level 1.5 percent of GDP
for of at least 20 years. The overall employment impacts, measured on a jobs-per-year basis,
should therefore be sustained at least over the course of these 20 years. Their impact would
also continue beyond the last year of the 20-year project cycle to the extent that investment
projects require more than one year to complete spending cycle, as would be typical. Ongoing
operations, maintenance and manufacturing activities would also continue after the period of
capital investments has ended.

One specific area where it is important to proceed clearly on this issue is in consideration
of construction industry job creation through clean energy investments. Construction sector
jobs created by clean energy investments are frequently regarded as being short-term, while
manufacturing jobs are seen as inherently longer term. However, especially in evaluating the
impact of alternative areas of spending within an overall clean energy investment agenda, the
distinctions are not so straightforward. Of course, any single construction project is limited by
the amount of time required to complete that project, while manufacturing activity in a single
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plant can continue indefinitely, as long as the manufacturer is able to sell the goods being
produced at a profit. But if we consider any large-scale green construction project, total job
creation over time can vary widely, depending precisely on the annual level of expenditure that
is laid out to complete the project.

Consider, for example, a project to retrofit the entire publicly-owned building stock within
Brazil, in which we assume the entire budget devoted to labor in the project is $50 billion, and
each worker on the project receives $5,000 peryear in total compensation. This means that, in
total, the project will generate 10 million job years, no matter how these job years are divided
up over time. If the annual budget for the project is $2.5 billion over 20 years, that means the
project will generate 500,000 jobs per year over 20 years, making it a long-term source of job
creation. However, if the annual budget could rise to the $5 billion that means the project
would generate 1 million job peryear over 10 years. In this case, the project is a more intensive
source of new job creation, but operating now only over a 10-year horizon rather than 20 years.

Self-Employment, Informal Sector, and Job Quality

In addition to this issue of being clear on how to count job-years, there is also the more familiar
question in the time dimension of employment as to whether the jobs are full- or part-time.
As purely a matter of measurement, one can of course convert part-time jobs into full-time
equivalents. But in terms of assessing the welfare effects of clean energy investments and
policy initiatives, one would want to distinguish the creation of full-time from part-time jobs,
especially since full-time jobs are generally more stable and of higher quality. While we do not
have data on the breakdown of jobs according to hours worked, we do provide an extensive
discussion on job quality issues associated with clean energy activities. This includes a
consideration of evidence on gender composition of various types of employment; wage versus
self-employment; the size of enterprises in which people are employed; and educational
attainment levels of workers. The main analytic issues are as follows>:

Treatment of self-employment. Countries which include the self-employed along with wage
earners tend to have higher employment multipliers, particularly in the agricultural sector.5
We will show evidence below as to the proportions of self-employed jobs that are generated
through the various specific clean energy and fossil fuel sectors.

Informal Labor. Related to the issue of self-employmentis that of informal labor, which has a very
large presence in developing countries, such as Indonesia, but will also be significantin middle-
and upper-middle income countries such as South Africa and Brazil. Informal employment
refers to jobs that do not include regular payment of wages and benefits, and that do not fall
undera country’s system of labor laws and standards. Informal places of employment are more
generally unregistered with government authorities and lie outside the formal regulatory and
tax structure. Informal workers are frequently agricultural day laborers, urban street vendors,

52 Appendix 4 describes our methodology for estimating these various detailed employment effects from clean energy and fossil fuel investments in
Brazil, Germany, Indonesia, South Africa, and the ROK.

53 Even while this statement is accurate, we do also have to recognize a further set of important considerations here. That is, if spending were to
increase by $1 billion, then employers will hire more workers to meet this demand in a wage-employment economy (we assume that prices and
wages remain fixed in the I-O model). But if self-employment dominates, then it is unclear that the number of employed would increase. Earnings
may increase instead while employment remains fixed. More precisely, a boost in final demand will, for certain, raise total earnings. But this increase
in total earnings could result through: 1) increasing the number of self-employed jobs at the prevailing earnings level; 2) increasing earnings while
keeping the level of employment constant, or 3) some combination of the first two possibilities. Working with the national I-O models, we cannot tell
how the increase in final demand will play out among the self-employed.
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or home-based textile workers. In many countries, women are disproportionately represented
in such jobs, which pay poverty-level wages or worse.

For the purposes of our discussion, it would be important to measure the extent to which, for
example, investments in building a clean-energy economy create opportunities not just for
employment per se for those now in informal jobs, but for higher-quality jobs. This would mean
better pay, better conditions, and more stability than informal workers experience at present.
We are not able to measure this directly through the data available to us, but we will be able to
draw some general inferences.

When there is a large informal labor market, this also means that the measured unemployment
rate in a country will be low. Typically, a slack labor market in this situation will not entail a high
rate of measured unemployment per se, but rather a larger informal labor market. As such, if
we show that clean energy investments are capable of generating net new employment, that
net new employment will not be moving people from “unemployed” to “employed,” typically.
It will rather, for the most part, move people from informal to formal employment. We will need
to analyze the impact of this in judging the overall impact of clean energy investments on well-
being.

Construction of Clean Energy Industrial Categories

To date, the grouping of industries in national I-O tables do not explicitly include “Renewable
Energy” or “Energy Efficiency.” They also do not include more specific industries, such as wind,
solar, hydro, bioenergy, building retrofits, industrial efficiency or electrical grid upgrades.
By contrast, the I-O tables do specifically identify fossil fuel industries, including oil and gas
extraction, coal mining, support services for these extraction activities, power generation and
distribution, and various petroleum- and coal-based manufacturing activities.

One can nevertheless work with the existing I-O tables to construct synthetic versions of the
renewable energy and energy efficiency sectors. The procedure for doing this is to identify the
various specific activities that produce inputs for a given renewable energy or energy efficiency
industry, and to combine those activities in a way that reflects their actual use in producing
renewable energy or energy efficiency outputs. For example, producing solar panels will require
electrical equipment and supplies, glass and metal products, research and development, and
construction. Producing bioenergy will require, cropping, forestry, refining, construction and
R&D. Retrofitting buildings, by contrast, will entail 100 percent construction-industry activity.

Of course, in creating these synthetic renewable energy and energy efficiency industries
within the I-O tables, one cannot simply identify the relevant set of activities. We also need
to assign relative weights to each of these activities as components of the overall energy-
producing process. For example, for building solar panels, what proportions should we assign
to producing the electrical equipment, glass and metal products, construction and R&D? Here
we have to exercise judgment, based on evidence outside the I-O tables that we can develop
on each of the renewable energy and energy efficiency industries. Again, taking the case of the
solar industry, we have assigned the following weights to the relevant activities in the specific
case of the ROK: 51 percent for electrical equipment and supplies; 5 percent for glass products;
13 percent for various metal products; 16 percent for construction and 15 percent for R&D.
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We follow this same procedure for all of the renewable energy and energy efficiency categories
foreach of ourfive selected countries. In doing so, we proceed from the methodology developed
in Miller and Blair (2009).54 We provide the details of our methodology, weighting schemes,
and data sources underlying these calculations in Appendix 3.

Scaling Job-Creating Activities

The main scalarthat we use forreporting employment creation levels through renewable energy
and energy efficiency spending is jobs created per $1 million in expenditure. We derive the job-
creation figures through calculations performed in using the respective national I-O tables for
Brazil, Germany, Indonesia, South Africa, and the ROK. In each of these national I-O tables, the
activity reported in the tables is expressed in national currencies. We converted the figures in
national currencies into dollar equivalents on the basis of the average market exchange rate
between national currencies and dollars in the year that each 1-O table is reported.

We used this approach to measuring job creation for all five of the selected countries so as
to be able to work with a uniform metric throughout this report. Beyond this, the jobs per $1
million is fully adequate for allowing us to make the most important observation we wish to
make with these calculations, which is the relative level of job creation for the various clean
energy activities in comparison with spending within the fossil fuel and nuclear energy sectors.

At the same time, to be able to compare the total number of jobs created between countries
from spending within each of the various energy sectors, it is also useful to scale the jobs
within the framework of each country’s national wage scale. That is, of course, $1 million
can purchase far more labor in, say, Indonesia than Germany. It would therefore be useful to
scale our dollar employment estimates relative to the wage scale that operates in each of the
selected economies. We have developed an approach to scaling the employment figures in this
way, which we describe in Appendix 5. This discussion includes a separate set of employment
estimates derived from this alternative scalar.

Assessing Relative Strengths and Weaknesses of I-O Models

Basic I-O models include a number of simplifying assumptions. This enables the models to be
relatively transparent and tractable. But these simplifying assumptions also create limitations
in the reliability of I-O models.

Linear Model. A basic I-O model is a linear model. That is, the basic I-O models assume that a
given amount of spending will have a proportionate effect on employment no matter how much
the level of spending changes, either up or down. For example, the impact of spending $1
billion on an energy efficiency project will be exactly 1,000 times greater than spending only $1
million on the exact same project. This will be approximately accurate in many situations, but

54 We have employed this methodology in several previous studies (see, e.g. Pollin et al., 2009) and in consulting work with the U.S. Department
of Energy. The estimating technique we developed for the U.S. Energy Department have been corroborated through survey work as well as through
data collected by the Energy Department as part of the energy provisions of the 2009 American Recovery and Reinvestment Act. At the same time, we
recognize that there are other valid methods for defining and measuring job creation through clean energy economic activity. As we note in Chapter
11, Kang et al. (2011) present a useful alternative approach for measuring “green jobs” within the ROK economy. Wei, Patadia, and Kammen (2010)
provide a survey of alternative approaches and findings for estimating the job impacts of operating renewable energy and energy efficiency sectors
within the U.S. economy.
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may not be in other situations. In using the I-O model for our estimation, we are assuming that
itis reasonable to work with the assumption of linearity for our purposes.

Absence of supply constraints. The most significant consequence of the linearity assumption is
that the I-O model takes no account of potential supply constraints in moving from a $1 million
project to a $1 billion project. Under some circumstances, this could be a serious deficiency
in the model. However, under the current conditions in the global economy - with widespread
slack and slow growth continuing in the aftermath of the Great Recession - it is reasonable to
assume that supply constraints are less binding than demand constraints. In the longer-term,
these same conditions are not likely to persist. The employment estimations will therefore
need to adjust to reflect this reality.

Relative prices fixed. Anotherresult ofthe assumption of linearity that a basicl-O modelassumes
that prices remain fixed, regardless of changes in demand. A more fully specified model would
take account of such factors. For example, if the prevailing slack economic conditions lead to
reduced demand for solar panels, then prices of the panels will fall. This price decline could
then perhaps mitigate the decline in demand.

Fixed industrial structures. Basic I-O models also assume that productive relationships remain
stable over the period of analysis. But it is certainly the case that industrial structures evolve
over time. This issue would seem especially relevant in considering employment conditions
within the clean-energy economy, since economies will certainly undergo significant structural
changes in the course of a clean energy transformation. How does structural change affect the
reliability of employment forecasts?

In fact, the use of workers in clean energy industries and services will not change at an
equivalently rapid pace over time, even though clean energy technologies will be advancing
substantially. For example, a high proportion of energy-efficiency investments - such as for
building retrofits, public transportation, and smart grid electrical transmission systems - will
rely heavily on the construction industry. Some aspects of the work involved in retrofitting a
building will change as retrofitting methods develop. But other aspects can be expected to
remain stable (i.e. the technologies are relatively mature and are not expected to change
quickly). Depending on the activity in question, the overall level of demand for workers to
conduct retrofits may remain fairly stable, at least in the short- to medium-term.

A similar situation is likely to hold with the production of renewable energy in the short-run,
regardless of whether the solar panels, wind turbines, or biofuel refining plants are more or
less efficient with technologies that convert their raw materials into useful energy. That is,
the need to employ workers to manufacture, transport, and install these newly developed
renewable energy products is likely to remain fairly stable as a proportion of overall activity in
the industry in the short- to medium-term. Therefore, the use of an I-O model should provide
an effective analytic framework for research scenarios in which technology and productive
relationships can be assumed to be fairly stable. Beyond this, the I-O model can, under many
circumstances, also serve effectively as the foundation for estimating employment impacts
even when technology and productive relationships are subject to change over time. This is
an important consideration that we explore in some detail in the last section of this chapter.

Treatment of time dimension. The I-O model generates estimates as though everything is
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happening at one fixed point in time. A more realistic picture of the economy would of course
have to recognize that the effects of public- and private-sector spending will take place in
sequences over time, and that these timing effects are important. Adding a time dimension
would make the model dynamic. If these considerations are of concern, a dynamic I-O model
could be used which allow for changes over time.

Overall Assessment of I-O Models

Recognizing all of the above simplifying assumptions of the I-O model, we nevertheless
conclude that it is the most effective available tool for estimating the employment effects of a
large-scale clean energy investment project in national economies throughout the world.

The model is most reliable when we can reasonably assume that supply-side constraints are
relatively insignificant. That is, the clean energy industry is able to expand without assuming
that that expansion will be strongly impacted by supply shortages, which in turn could cause
major changes in relative prices. We believe that such supply constraints on the expansion
of clean energy activities will be relatively insignificant in the foreseeable future. This is
especially the case since the expansion of the clean energy sector will occur in conjunction
with retrenchments in the non-renewable energy sectors. These retrenchments in the non-
renewable energy sectors will free up resources throughout the economy.

I-0O vs. Computable General Equilibrium Models

The strengths of the relatively simple and transparent I-O structure can be seen more clearly by
comparing this approach with a more complex approach, represented by Computable General
Equilibrium (CGE).

In fact, CGE models are simply I-O models with price dynamics, supply-side constraints, and
assumptions about technological change incorporated into the basic I-O structure. As such,
CGE models typically place a much stronger emphasis on the role that prices play in influencing
behavior and determining economic outcomes.

The core of a CGE model is typically an I-O model, showing the various relationships between
industrial sectors and final demand. The I-O framework is then typically supplemented by a
variety of elasticities, which describe how demand reacts to changes in prices. CGE models
also incorporate some kind of equilibrium condition, such as market clearing (prices adjust so
that supply must equal demand) or full-employment. This allows for the existence of a unique
solution to the system of equations.

CGE models are costly to develop. Moreover, given the high fixed cost of creating the models,
CGE models are often proprietary. This means that access to the model is restricted to the
organization or researchers that developed the model. This can raise concerns regarding
transparency and independent verification of the accuracy of the model’s assumptions. The
complex and proprietary nature of most CGE models makes it difficult to perform a careful
analysis of the assumptions used in different applications and to determine if the assumptions
are reasonable for answering any specific research question. This is because detailed
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descriptions of the models (including the equations which constitute the model) are often not
available. The individual assumptions are often difficult, if not impossible, to identify from the
general description of such models and the implications of specific assumptions are hard to
trace. The reliability of such models therefore depends first and foremost on an assessment
of the model’s assumptions. That is, are the assumptions realistic? Are they helping us to
understand important issues about the likely growth trajectory of the clean energy economy?
To give one important case in point, CGE models often assume the economy operates at full
employment at all times. Working with this assumption, it will of course be difficult to trace out
any possible impacts of clean energy investments as net source of new job creation.

Giventhese challengesin working with a CGE model, for our purposes of estimating employment
effects of clean energy investments, we have, again, concluded that the I-O model is our
preferred methodology.

Incorporating Labor Productivity Growth
and Variable Coefficients in Employment Estimates

Methodological Issues with I-O Models

Even while recognizing the relative strengths of the I-O approach in estimating the employment
effects of clean energy investments, it is also important to consider possible approaches
through which we can take account of changing production methods over time. As we have
noted above, production technologies do certainly shift over time, so that a different mixture of
inputs may be used to produce a given output. New technologies emerge while others become
obsolete. Certain inputs may become scarcer, and, as result, firms may substitute other goods
and services. The production process could simply become more efficient, so that fewer inputs
are needed to produce a given amount of output. Energy efficiency investments do themselves
produce a change in production processes - i.e. a reduction in the use of energy inputs to
generate a given level of output. In short, we recognize that the I-O relationships in any given
economy - including its employment effects of clean energy investments - are likely to look
different twenty years from now compared to the results we are presenting in this report.

This raises the question of how we might take into account these kinds of changes in production
technologies. Specifically, how would the employment estimates be affected if we were to take
into account productivity changes over time?

In principle, a basic approach would be to track changes in the underlying survey data within
an -0 model over time, and then use these patterns to forecast future I-O relationships. But the
first problem here is that the amount of information needed to construct reasonable I-O tables
is very large. This is why survey-based national I-O models are typically generated not more
frequently than once every 3-5 years. For some countries, the models are updated only once
every decade. In the absence of such detailed data, various forecasting techniques have been
used to try to forecast what future I-O models might look like. However, as surveyed in Miller
and Blair’s standard I-O textbook (2009), these methods for forecasting future I-O relationships
have been shown to be unreliable. This discussion draws on Miller and Blair and the underlying
literature they survey.
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One approach that has been used to predict future I-O coefficients is simple extrapolation. Two,
or possibly more, I-O tables, which have been derived from survey data, are compared and the
change in the coefficients is calculated. These changes are then extrapolated to some point in
the future, assuming the trends observed continue. A first problem with this approach is that
it is uncertain that the comparison of I-O coefficients for a limited number of points in time
- sometimes as few as two points - truly reflects long-run trends. Various shocks, statistical
variation, or survey-related issues could cause coefficients to vary in ways that have nothing
to do with the underlying productive relationships. Such errors are then likely to be amplified
into the future as these trends are extrapolated. Studies have therefore found that the most
recent survey-based I-O models outperform models based on extrapolation techniques, even
allowing that the survey model is out-of-date.

An alternative to extrapolation is to use marginal I-O coefficients to predict changes in
production over time, given a particular level of final demand. A marginal I-O model is
constructed by subtracting the coefficient in time -/ from the coefficient in time ¢, where i is
the number of years between the two survey-based models. The resulting marginal I-O model
is then used to predict changes in the output produced for a given level of final demand for
goods and services. However, again, marginal I-O models do not appear to perform better than
simply using the most recent survey-based model as a basis for estimating future production
relationships.

Hybrid approaches have been developed for updating I-O models when some additional
information is known, but the full set of survey data needed to construct a new model is
not yet available. These techniques are often used to generate interim I-O models between
“benchmark” years - that is, years in which the full set of survey data needed to produce a
comprehensive I-O model is available. An example of this methodology is the bi-proportional
technique (the “RAS procedure”) used to update I-O models. This technique requires that the
researcher know only the total output of each sector, the total inter-industry sales by sector,
and total inter-industry purchases of each sector in order to update the I-O model for the year
in which these three pieces of data are available. Using an iterative method, new coefficients
are estimated based on the older survey-based I-O tables, but incorporating these new pieces
of information. These partial-survey techniques require detailed information, by sector, of
output, sales, and purchases. If this information is not available, the technique cannot be used
and the most recent I-O tabulations are most likely the most reliable for describing productive
relationships between sectors.

Forthe purposes of this report of estimating employment effects of a given level of expenditure,
a simpler approach that may be workable would be to vary only the employment-output ratios
in each sector, as opposed to the full set of relationships, or even the more limited set required
for interim bi-proportional estimation. The employment-output ratio is simply the inverse of
labor productivity, with labor productivity being defined as the amount of output produced per
unit of labor. An increase in labor productivity will therefore reduce the employment-output
ratio. This in turn would lower the employment multipliers estimated from the I-O model.

In principle, trends in labor productivity could therefore be useful for updating the employment
estimates generated through I-O models. The employment-output ratios would then be
adjusted to take into account the long-run rate of change in labor productivity. Detailed time
series on labor productivity for each of the industrial sectors in a given I-O model may not
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be available. However, trends in labor productivity for broad sectoral divisions - agriculture,
industrial production and services - will normally be available. These trends could then be used
to estimate employment levels in an economy experiencing rising labor productivity over time.

Applications of Alternative Methodologies

To consider the impact of variable coefficients and rising labor productivity for our employment
estimates, we first examine two different sources of data on I-O relationships and labor
productivity. These are 1) output multipliers over time for alternative energy sectors based
on figures from annual I-O tables; and 2) data on labor productivity growth by energy sector
that we have derived on the basis of average productivity growth rates within agricultural,
industry and services. In Appendix 3, we present details on our methods of estimating both
output multipliers and labor productivity growth for alternative energy sectors. Following an
examination of data from these alternative sources, we then consider a broader set of issues
on the relationship between output, labor productivity and employment, in our five selected
economies as well as more generally.

Evidence from Output Multipliers

The World Input-Output Database (WIOD), a project of the European Commission, produces
annual -0 tables on a country-by-country basis.>> To date, they have produced tables for 40
countries over the years 1995-2011. The 40 countries include four of our five selected countries,
Brazil, Germany, Indonesia, and the ROK. These I-O tables enable us to generate output
multipliers for each the relevant energy sectors in each of these four economies. But they do
not contain sufficient information through which we can produce employment/output ratios.

We have used the information available to provide comparative output multipliers for the years
1995, the first year of the available WIOD tables, and 2007. We are using the 2007 I-O tables as
the end point in our time series, rather than 2011, the last year of available data, because we
want to avoid having the patterns we observe be influenced by the impact of the global 2008-
2009 financial crisis and Great Recession. Our focus here is longer-term developments in each
economy’s productive structures, not on cyclical effects.

We present the results of this exercise in Table 6.1, which reports the average annual change
in sectoral output multipliers over our 1995-2007 time period. As we can see, for three of our
four selected countries, Brazil, Germany and the ROK, the changes in the output multipliers
over 1995-2007 are negligible. The median average annual change in the clean energy sector
output multipliers are 0.1 percent for Brazil, -0.2 percent for Germany, and 0.3 percent for the
ROK. Assuming these figures are accurate, we can conclude that production relationships
between the domestic sectors in the I-O tables did not change significantly over the 12-year
period between 1995 and 2007. If we were to extrapolate this pattern into the future, we would
therefore be on reasonably safe grounds in assuming that output multipliers would change
only at a modest pace over the 20 years covering the clean energy investment project we are
advancing.

55 The full set of WIOD data can be found at: http://www.wiod.org/new_site/home.htm. An extensive discussion of the contents, sources and
methods used with WIOD is Timmer (2012).
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Table 6.1: Change in energy-sector output multipliers, 1995-2007

Figures are average annual percentage increases

Brazil Germany Indonesia The ROK
Renewables
Bioenergy 0.3 -0.2 4 0.6
Hydro 0.1 -0.1 5.2 0.4
Wind 0.1 -0.2 5.3 0.3
Solar -0.1 -0.3 5.1 0.3
Geothermal -0.1 -0.1 4.5 0.4
Energy efficiency
Building retrofits -0.2 -0.2 4.1 0.3
Grid upgrades o] -0.4 5.1 0.3
Industrial efficiency 0.1 -0.3 5.2 0.4
Fossil fuels
Oil and gas -0.2 o} 4.2 0.5
Coal -0.2 -0.8 3.5 0.2
Range of estimates for clean PAEE O = B e B3
energy sectors
Median estimates for clean
energy sectors 01 02 51 03

Sources: Authors’ calculations using Timmer (2012) further described in Appendix 3.

The data for Indonesia show a different pattern. As we see in Table 6.1, Indonesia’s output
multipliers in its energy sectors increased at a very rapid rate across the board. The range
in the average annual increase for the clean energy sectors was between 4-5.3 percent, and
the median annual rate of increase was 5.1 percent per year. Assuming the data are accurate,
such gains in Indonesia’s output multipliers between 1995-2007 could reflect two underlying
patterns: 1) stronger linkages between domestic sectors as a result of economic development;
or 2) major increases in domestic content for the relevant sectors of Indonesia’s economy.

In fact, Indonesia did achieve major gains between 1995-2007 in both its overall net export
position as well as its net exports for the sectors that serve as inputs to Indonesia’s clean
energy sectors. We can observe this through the data we present in Table 6.2. As we see there,
Indonesia’s net export position in total merchandise trade rose from 2.4 to 5.8 percent of GDP
between 1995 and 2007. This is a net gain of $15 billion, in 2007 dollars. Further, the biggest
single area of gain was in the machinery and transportation sector, which would be a major
supplier of components as Indonesia begins to build its clean energy sectors. As Table 6.2
shows, in 1995, Indonesia was a net importer of machinery and transportation equipment at
the level of 6.2 percent of GDP. As of 2007, this trade deficit position closed to 0.9 percent of
GDP. This is a $23 billion improvement in Indonesia’s net trade position, a major achievement
over only a 12-year period.

136



SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

Table 6.2: Indonesia’s trade balance, 1995 and 2007

Net exports or imports as percentage of GDP
Positive numbers = net exports; Negative numbers = net imports

1995 2007
Total merchandise: 2.4 5.8
Manufacturing -3.3 -2.1
Agriculture 1.0 3.1
Fuels and mining 3.3 1.0
Within manufacturing:
Machinery and transport -6.2 -0.9
Chemicals -2.3 -0.8
Iron and steel -1.0 -0.7

Sources: Authors calculations using World Trade Organization Statistics Database for trade figures:
http://stat.wto.org/Home/WSDBHome.aspx?Language=, World Bank Databank for GDP figures: http://databank.worldbank.org/data/home.aspx.

Nevertheless, even with Indonesia’s major gain in the domestic content share in its machinery
and transportation sector, it remains the case that, as of 2007, Indonesia’s energy sector output
multipliers had reached rough parity levels, but had not significantly exceeded, those for Brazil,
Germany, and the ROK. We can see this from the figures we present in Table 6.3, showing the
median levels of the output multipliers in the clean energy and fossil fuel sectors for Brazil,
Germany, Indonesia, and the ROK. As Table 6.3 shows, the Indonesian 2007 median clean
energy output multiplier, at 2.2, is modestly higher than that for the ROK, at 2, and somewhat
higher still than those for Brazil, at 1.8 and Germany, at 1.6. Indonesia’s median fossil fuel
output multiplier for 2007 is nearly identical to those of the other three countries. Thus, even
with Indonesia achieving majorincreases in its energy-sector multipliers between 1995-2007, it
would still be unlikely that this kind of pattern would continue in subsequent decades.

Table 6.3: Median energy-sector output multiplier levels, 2007

Clean energy Fossil fuels
Brazil 1.8 1.9
Germany 1.6 1.7
Indonesia 2.2 1.8
ROK 2.0 1.5

Source: Authors’ calculations using Timmer (2012), further described in Appendix 3.
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Evidence from Sectoral Labor Productivity Growth Estimates

In Table 6.4, we present figures on sectoral labor productivity growth rates for our alternative
energy sectors in each country. We calculated these figures based on the labor productivity
growth rates for agriculture, industry and services in each of the countries. That is, in each of the
energy sectors, we estimated the relative proportions of industry, agriculture and services that
contribute as inputs to each of the sectors, then use these proportions as weights in assigning
overall productivity rates for each sector. The figures are derived from the World Bank’s World
Development Indicators.

Table 6.4: Estimated energy sector labour productivity growth rates

Figures are weighted averages derived from annual growth in per capita value added in
agriculture, industry and services

Brazil Germany Indonesia South Africa ROK
1995-2007 1995-2007 1995-2007 2001-2010 1995-2007
(percentages)

Renewables
Bioenergy 2.1 3.0 1.1 5.0 4.9
Hydro -0.4 1.8 1.1 1.6 4.4
Wind -0.4 1.2 0.5 0.7 3.0
Solar -0.7 2.3 1.0 1.4 5.8
Geothermal -0.6 2.0 1.0 1.5 5.1
Energy efficiency
Building retrofits -0.9 2.5 0.9 1.2 6.8
Grid upgrades -0.9 2.5 0.9 1.2 6.8
Fossil fuels
Oil and gas -0.9 2.5 1.2 1.2 6.8
Coal -0.6 2.0 1.5 1.5 5.1
Range of estimates
for clean energy -0.9-2.1 1.2-3.0 0.5-1.1 0.7-5.0 3.0-6.8
sectors
Median estimates for
clean energy sectors 0.7 23 10 12 51

Sources: See Appendix 3.

In reviewing Table 6.4, the first pattern to note is that the labor productivity growth figures
for Indonesia are not especially high, unlike the pattern with Indonesia’s output multipliers.
For the clean energy sectors, we estimate that average annual labor productivity growth
ranges between 0.5-1.1 percent. The median clean energy sectoral productivity growth rate is
1.0 percent. These patterns underscore the fact that, for achieving major improvements in a
country’s output multipliers, labor productivity growth does not need to be especially strong as
long as 1) the country’s domestic content is rising sharply; or 2) linkages between a country’s
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domestic industrial sectors become stronger and denser as a result of economic development
and diversification.

However, we do now see a second major outlier pattern with the labor productivity data, in
this case with the ROK. Our average annual labor productivity growth estimates between 1995-
2007 forthe ROK’s clean energy sectors are very high, ranging between 3 and 6.8 percent, with
a median annual productivity growth figure of 5.1 percent. This contrasts with the slow rate of
increase in the ROK’s clean energy sector’s output multiplier, where, as we saw in Table 6.1,
the median clean energy output multiplier rate of increase was 0.3 percent. In the case of the
ROK, assuming the data are roughly accurate, this could be explained by the fact that major
structural changes in the ROK economy occurred prior to 1995, during the country’s period of
rapid industrialization. After 1995, the pace of structural change slowed and this is reflected in
the minimal change in the output multipliers. By contrast, the ROK’s rapid increases in sectoral
labor productivity conveys a pattern of rapid gains in labor-saving production processes as
opposed to structural changes that alter the relationship between the country’s industrial
sectors.

Overall, in assessing the figures we have estimated for output multipliers and labor productivity
growth, we can still reach some basic conclusions for our purposes, even after allowing for the
prospect of inaccuracies in some of the estimates. That is, it is reasonable to conclude that,
under most circumstances over the next 20 years, we are likely to see gains in labor productivity
growth in the clean energy sectors for Brazil, Germany, Indonesia, South Africa and the ROK that
are within the range of 1-2.5 percent per year. We are confident, in other words, that Brazil’s
clean energy sectors will not likely continue to experience zero, or even slightly negative,
productivity growth over the next 20 years, or that the ROK is likely to sustain a productivity
growth rate in the range of 5 percent per year in its clean energy sectors (assuming that this
range is accurate for 1995-2007).

There will still almost certainly be situations in which labor productivity growth will outside the
range of between 1 and 2.5 percent peryear. For example, labor productivity in Brazil’s existing
large bioenergy sector will certainly be rising in the coming years through mechanization (De
Almeda et al., 2007). Mechanization, and thus productivity gains will be encouraged through
recent legislation in Brazil that prohibits direct burning of sugar cane on fields. Nevertheless,
on balance, assuming that long-run sectoral labor productivity growth will range between 1 and
2.5 percent is a reasonable framework for generating broad macroeconomic trends.

It is similarly unlikely that there will be further dramatic shifts in the extent of domestic
content in the clean energy sectors for our five selected countries comparable to what we have
observed in the Indonesian case over 1995-2007. In Chapter 5, we have reviewed at some
length the prospects for shifts in domestic content as the clean energy project proceeds. As
we saw there, after allowing for declines in domestic tradable activities on the order of 20
percent as a result of expanded activity in the clean energy sectors, the range of potential shifts
in domestic content would be modest for all five countries. This, in turn, means that changes
in each country’s employment/output multipliers resulting from shifts in domestic content
would be correspondingly modest. Similarly, we do not expect the countries considered
here to undergo widespread structural changes that would raise their output or employment
multipliers significantly.
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Overall again, the most likely scenario for all five countries would be for labor productivity to
increase in their clean energy sectors at an average rate of between 1 and 2.5 percent per year.
Because domestic content is unlikely to change dramatically over this period, the consequent
employment/output ratios in each country would also most likely decrease at a rate of growth
that reflects the sectors’ rate of productivity growth - at a rate within the range of 1-2.5 percent.
As such, the next question to consider, to which we now turn, is what the impact is likely to
be on employment creation through the clean energy investment project when average labor
productivity growth does generally increase at rates between 1-2.5 percent per year.

Broader Issues with Productivity Growth and Employment

Working from the evidence we have presented on output multipliers and productivity growth,
there is a basic reason to conclude that, certainly as a first approximation, employment gains
through clean energy investments will likely grow over a 20-year time trend, even after taking
account of productivity effects on employment levels. This is true because, in addition to each
of our five economies experiencing productivity growth over time in their clean energy sectors,
most likely in the range of 1-2.5 percent per year, they will also be experiencing output growth
in their clean energy sectors, and GDP growth for their overall economies.

As we mentioned in Chapter 1, in the country-by-country estimation models that we present in
Chapter 8-12, we assume that, in each of our five selected countries, clean energy investments
will be maintained everyyearat 1.5 percent of GDP overthe full 20-year project period. Moreover,
in generating both our output and employment estimates in Chapters 8-12, and as we discuss
further in these later chapters, we make assumptions as to the average annual rate of GDP
growth for each of the five countries over the 20-year period. These average annual GDP growth
projections are, respectively: 3.7 percent for Brazil; 2.0 percent for Germany; 5.0 percent for
Indonesia; 4.0 percent for South Africa; and 3.3 percent for the ROK.5¢ We present these growth
projections in Table 6.5, along with actual GDP growth figures for each of these countries from
1995 to 2007; and from 2001 to 2010. Table 6.5 also presents the median figures for growth
in labor productivity and output multipliers for the various countries’ clean energy sectors, as
already presented in Tables 6.1 and 6.4.

56 As we discuss for each specific country case in Chapters 8-12, the 20-year GDP growth projections presented in Table 6.5 are conservative estimates
either taken directly from, or derived from various official sources. These sources include the International Energy Agency for Brazil, the IMF and OECD
for Germany and South African, the EIA for the ROK and the Indonesian government’s own growth projections. Such long-term GDP growth projections
can of course end up being inaccurate as actual economic activity proceeds over time. Nevertheless, these projections are useful for our purposes, in
that they provide reasonable broad parameters within which to assess each country’s 20-year clean energy investment prospects.
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Table 6.5: Growth rates of national GDP and clean energy sector labor productivity and
output multipliers

Clean energy sector growth
GDP growth rates of median labor productivity
and output multipliers
Projected Actual Actual 1995-2007, except for South Africa,
20-year rates 1995 — 2007 2001 - 2010 which is 2001-2010
Labor Output
productivity multiplier
growth growth
Brazil 3.7% 2.8% 3.5% -0.7% 0.1%
Germany 2.0% 1.6% 2.0% 2.3% -0.2%
Indonesia 5.0% 3.2% 5.0% 1.0% 5.1%
South Africa 4.0% 4.6% 4.0% 1.2% NA
ROK 3.3% 3.7% 3.3% 5.1% 0.3%

Sources: Sources for projected GDP growth presented in Chapters 8-12. Actual GDP growth rates from IMF International Financial Statistics. See Tables
6.1and 6.4 for output multipliers and productivity growth.

Because we are assuming that clean energy investments will be sustained at 1.5 percent of GDP
throughout the full period, it follows that we are also assuming that clean energy investments
will be growing annually at exactly the same rate as each country’s annual GDP growth rate. That
is, we assume that, over a 20-year investment cycle, clean energy investments will increase at
average annual rates of 3.7 percent in Brazil; 2.0 percent in Germany; 5.0 percent in Indonesia;
4.0 percent in South Africa; and 3.3 percent in the ROK.

What therefore is likely to be the combined effects of GDP growth and labor productivity growth
on the employment effects of clean energy investments? The answer is that it depends on the
relative rates of output and labor productivity growth. The data we have presented in Table 6.5
will therefore be valuable for addressing this question. But, even before considering these data
further, it will be useful to consider three broad sets of possibilities for both GDP and labor
productivity growth trajectories over time: that both GDP and productivity grow, alternatively,
at low, medium and high rates. As we present in Table 6.6, these three sets of possibilities
then produce nine alternative possibilities for employment growth, based on the alternative
trajectories for both GDP and labor productivity growth.
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Table 6.6: Possible impacts on employment from varying rates of GDP and labor productivity
growth

Rate of labor productivity growth

Low Medium High
Low No employment impact Smallde::ﬁ:]c;yment Large;err;{)ihoeyment

Small employment Small employment

Rate of GDP growth

Medium increase No employment impact decline
High Largg employment Smal! employment No employment impact
increase increase

Source: Authors’ own presentation.

As Table 6.6 shows, if output and labor productivity are both growing at the same rate - that is,
if both are growing at either low, medium, or high rates - there will be no change in employment
over the 20-year investment period relative to the effects that we estimate for year one. Each
additional unit of GDP will have been produced as a result of an exactly equal increase in
productivity.

However, as Table 6.6 also shows, in all cases in which output growth exceeds labor
productivity growth, the net effect will be that employment will expand over time relative to
the effects that we estimate in year one. For example, assume that Indonesia’s GDP growth is
indeed maintained at 5 percent per year over the 20-year investment period. Let us then also
assume that its rate of labor productivity growth in the clean energy sectors is maintained at
a rate equal to its median sectoral rate over 1995-2007, of 1.0 percent. This then means that
employment growth in Indonesia’s clean energy sector will grow by 4.0 percent per year over
the 20-year investment cycle.

As we show in Table 6.6, the only way in which employment from clean energy investments
will decline significantly over the 20-year investment period is when labor productivity growth
exceeds output growth by a significant amount. Consider the case of the ROK, which we
project as maintaining a 20-year average GDP growth rate of 3.3 percent per year. Then let us
also assume that labor productivity growth in the clean energy sectors is maintained at the
median annual rate of 5.1 percent that we estimated for 1995-2007. This would then mean that
employment growth for clean energy investments will be declining over time by 1.8 percent per
year.

However, the broader set of evidence suggests that the ROK will not sustain labor productivity
growth in its clean energy sectors in the 5 percent range that we estimated for 1995-2007.
Indeed, when we consider as a whole the labor productivity growth patterns presented in
Table 6.5 on the respective growth rates of GDP along with those for productivity and output
multipliers in the clean energy sectors, what emerges as the typical situation is that GDP growth
rises faster than labor productivity growth.

More generally, the literature on the relationship between labor productivity and output growth
shows that these two growth rates do generally move together, with output growth typically
increasing at a faster rate than productivity growth. This is for the simple reason that, as an
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arithmetic identity, output can increase through both a rise in the number of people working
and the number of hours people are employed at jobs, as well as through raising workers’
productivity levels during their time on the job. As such, when demand for a product increases,
this will lead to increases in the production of that product, and hence, more people employed
more hours to produce the product. An expansion in the demand for clean energy will therefore
produce an expansion in output and employmentin these sectors that should exceed increases
in labor productivity generated within these sectors.

The issue of the general relationship between output and labor productivity growth is generally
referred to in the literature as the Kaldor-Verdoorn effect. Overall, the empirical results from
this literature are robust in finding that increases in labor productivity growth are between
30-60 percent as large as any given increase in output growth. This would mean, for example,
if output grows by 4 percent over a given period of time, productivity should then typically
increase over this same period by between 1.2 and 2.4 percent.’” In the Indonesia case as we
discussed above, if output were to grow over our 20-year clean energy investment period by 5
percent per year, then we would typically expect labor productivity to increase at between 1.5
and 3 percent per year over this same period.

Overall then, if we operate broadly within the analytic framework of the Kaldor-Verdoorn law,
which is generally supported by the output and labor productivity growth figures we have
reviewed here, it is reasonable for us to conclude that the levels of employment that we
estimate in terms of the 2012 I-O relationships will be typically increasing over the 20-year
investment period. We should finally also add that the rate of increase in employment will
also likely be faster than the growth in each country’s population. As such, if anything, the
employment estimates that we generate from our estimates with the 2012 data will grow both
in absolute terms and relative to each country’s population beyond 2012, over the full 20-year
clean energy investment period.

We will return to these issues in Chapters 8-12, when we review our country-by-country
estimates for employment gains through each country’s 20-year clean energy investment
project. In these discussions, we provide projections of employment creation for clean energy
investments both for Year 1 and Year 20 in our 20-year investment cycle. Our Year1 estimates
are generated directly from each country’s recent I-O tables. For our Year 20 projections, we
assume two separate rates for average annual labor productivity growth in each country’s clean
energy sectors, 1 percent and 2.5 percent per year. We derive this 1-2.5 percent range from the
actual labor productivity data over 1995-2007 that we have reviewed above. From this range
of assumptions on average labor productivity growth, in combination with our assumption for
average GDP growth in each country over the 20-year cycle, we are then able to generate a
range of estimates as to how much employment will be created after 20 years in each country

57 Storm and Naastepad (2012) review the empirical research on the Kaldor-Verdoorn effect from the original work of Verdooorn through studies
published in 2010. Observing primarily studies focused on OECD economies, they report that the relationship “has been confirmed in the overwhelming
majority of these studies, irrespective of the differences in econometric methods and data employed. The effect is found statistically significant for
cross-section estimations across countries or regions and for specific industries, but also for time series econometric studies for single countries or
regions (2012, p. 82). The evidence for developing countries also generally supports this result (Timmer and Szirmani, 2000). However, even where
the results for developing countries appear to be more mixed (e.g. Mamgain, 1999), the issue is that labor productivity growth may not consistently
accelerate along with output growth, not that productivity growth is consistently exceeding output growth. Recognizing this robust general pattern
between aggregate output and productivity growth does not imply that the relationship should hold constantly over all industries and all time periods.
For example, Baily and Bosworth (2014) show that with the U.S. manufacturing sector over 1987-2011, a sharp disparity emerged between the very
rapid rates of productivity growth in the computer and electronics industry, and the non-computer manufacturing industries, in which productivity
growth was below the economy-wide average. Similarly, Haraguchi and Rezonja (2013) document how the relationship between the growth rates
of productivity, employment, output in manufacturing vary at different stages in a country’s development and according to whether the economy’s
growth trajectory is either profit-led or wage led.
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through its clean energy investment project. As we will review in Chapters 8-12, we find that
employment creation through clean energy investments will increase over time underalmost all
the scenarios we consider. This is precisely because, under most of the scenarios we consider
- including when we assume labor productivity growth at its high-end figure of 2.5 percent per
year - GDP is still increasing, by our assumptions, at a faster pace.
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CHAPTER 7: EMPLOYMENT
CREATION THROUGH CLEAN
ENERGY INVESTMENTS

In this chapter, we present the results of our estimates on employment creation through
spending on renewable energy and energy efficiency within Brazil, Germany, Indonesia, South
Africa, and the ROK. The specific renewable energy and energy efficiency sectors that we have
modeled within each country’s national I-O model are bioenergy, hydro, wind, solar, and
geothermal power among the renewable sectors; and building retrofits, industrial efficiency
and electrical grid upgrades within energy efficiency. In Appendix 3, we show the specific
weighting of inputs through which we define each of these sectors within the national I-O
models. We then also report employment figures on coal and oil/gas production in each of the
five countries. Finally, to provide broader reference points for our discussion, we also show
employment generation figures through spending within each country’s overall economy.

We report two sets of estimates for each of the five selected countries. The first set is comprised
of estimates of overall job creation generated by spending within the respective energy-
producing sectors. This includes both direct and indirect employment. We present these overall
job creation estimates within two scenarios. Under the first, we assume domestic content is
stable as renewable energy and energy efficiency investments expand significantly. Under
the second, we assume that a country will need to increase its proportion of imported inputs
to meet the demands within the rapidly expanding renewable energy and energy efficiency
sectors. In Chapter 5, we described in detail our methodology for estimating these alternative
scenarios with respect to domestic content and imports. Our basic calculation is to assume
that, with all tradable activities linked to each of our renewable energy and energy efficiency
sectors, import content rises by 20 percent relative to its current level. This is in response to the
expansion of demand in that sector and our assumption, with this second set of calculations,
that domestic resources will not be adequate for meeting the increased demand.

We first present our full set of results in terms of jobs created per $1 million spent. To facilitate
comparisons on job creation levels across sectors, we then present summary tables, focusing
on weighted averages of the employment creation figures for renewables, energy efficiency and
fossil fuels under the stable domestic content assumption.

We have used the following weighting scheme in aggregating the specific sectors within each
energy-producing industry: With renewable energy, all sectors - bioenergy, hydro, wind, solar,
and geothermal - are weighted equally. With energy efficiency, we have assigned a 50 percent
weight to building retrofits, to reflect the centrality of this area of energy efficiency. We then
weighted the other two energy efficiency sectors, industrial efficiency and electrical grid
upgrades, at 25 percent each. With fossil fuels, we have weighted coal and oil/gas equally. We
recognize that, in any given country setting, the actual size of any given sector in all energy-
producing areas, will depend on the specific conditions in each country. But we have assigned
this one basic weighting scheme in the interests of simplicity and clarity across all of our
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selected countries here.s®

Inthe second set of employment estimates, we then decompose the overall job creation figures
- including, again, both direct and indirect jobs - in order to provide some specificity as to the
features of employment in each sector and the quality of jobs.

Data onwages and otherincomeindicators were not uniformly reliable across our five countries.
As such, we utilized four alternative indicators for describing the types of jobs linked to each
energy sector. These four indicators are: 1) the proportions of female employment; 2) the levels
of educational attainment; and the proportions 3) in self-employment and 4) working in micro-
enterprises. The educational attainment levels associated with each energy sector provide a
measure of the quality of jobs available in each sector. The proportions of workers linked to
each energy-producing sector that are self-employed as opposed to earning wages; and that
work in micro-enterprises, as opposed to larger-scale operations, provide measures of the
extent of informal employment as a share of total employment. Details of the methodology
we used to generate these disaggregated employment estimates are presented in Appendix 4.

In Appendix 4, we also provide additional evidence on the occupational characteristics within
the various industries that are engaged in both clean energy and the fossil fuel sectors. That is,
we show within, for example, the agricultural, construction and machinery industries in all five
countries the proportions of self-employment, microenterprise employment and educational
attainment relative to economy-wide averages for these sectors. We also report in Appendix
4 figures on economy-wide average earning levels in each of the five countries, and what we
estimate the approximate range of earnings is likely to be in the relevant clean-energy and
fossil-fuel sectors relative to these economy-wide averages.

The figures we report in this chapter are based fully on the methodologies we describe in
Chapter 6 concerning the I-O tables, and our discussion in Appendix 4 for decomposing the
total job creation into categories. We do not attempt to incorporate into this discussion broader
considerations, such as skill needs for workers in each country as clean energy investments
expand. We also do not consider here issues of how to most equitably handle the transitional
issues facing workers who are currently dependent on the fossil fuel sectors, as these sectors
contract. We rather have taken up these more qualitative matters in our Chapter 5 discussion
on labor market issues within industrial policies.

58 At the same time, in Appendix 6, we examine the impact on our employment multiplier estimates from varying the relative weights within the
renewable energy sectors. We also shift the relative weights between renewables and energy efficiency to equal proportions. As we show in Appendix
6, forthe most part, these shifts in the weighting schemes do not exert a significant influence on our overall findings with respect to employment levels
generated by clean energy investments.

146



SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

Brazil
Overall Employment Creation

InTable 7.1, we show our full set of estimates in terms of employment per $1 million. Considering
initially our estimates on renewables, it is first of all clear that by far, the most labor-intensive
sector is bioenergy, in which direct jobs for producing bioenergy is at 73.1 per $1 million. This
contrasts with a range of about 14-19 for hydro, wind, solar, and geothermal. Of course, the
difference here is that, with bioenergy, the basic input is agricultural products. Producing
these in Brazil - and as we will see, in most other countries as well - is significantly more labor
intensive than, for example, the manufacturing, transportation and construction activities that
are major inputs in the other renewable areas. As we will discuss more below, the quality of
jobs in bioenergy also tends to be poor, due to low wages and bad working conditions for
most agricultural workers in Brazil. But as we also discuss below, working conditions in Brazil’s
bioenergy sector are likely to improve over time as the sector becomes more mechanized. This
will also mean that the employment levels per dollar of expenditure will decline.

Table 7.1: Brazil. Employment creation through spending in alternative energy sectors, 2005

Jobs per $1 million

Domestic content stable Domestic content declines

Direct jobs | Indirect jobs incﬁi;eccttj; bs Direct jobs | Indirect jobs inzireeccttj; bs
Renewables
Bioenergy 73.1 8.7 81.8 73.1 8.5 81.6
Hydro 13.9 11.7 25.5 13.7 11.5 25.2
Wind 18.9 10.3 29.2 18.5 10.1 28.6
Solar 14 11.7 25.7 13.5 11.6 25.1
Geothermal 17.7 11.1 28.7 17.5 10.9 28.4
\fl\é(relrge:teevtjaabvlzrsage 27.5 10.7 38.2 27.3 10.5 37.8
Energy efficiency
Building retrofits 34.2 12 46.2 34.2 11.9 46.0
Industrial efficiency 13.6 11.6 25.1 12.0 11.8 23.9
Grid upgrades 13.0 13.2 26.2 12.1 13.0 25.1
Weigh.te.d average 23.7 12.2 35.9 23.1 12.1 35.2
for efficiency
Fossil fuels
Coal 10.0 12.3 22.4 NA NA NA
Oil/natural gas 10.6 9.3 20 NA NA NA
\f’g‘:ifgogts‘?l‘jfﬁ:fsrage 10.3 10.8 21.2 NA NA NA
Overall economy 20.1 16.0 36.1 NA NA NA

Source: See Appendix 3.
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In terms of indirect jobs - those jobs generated through the supply chains associated with
renewable energy production - we see that the range is narrow across all renewable sectors, at
about 9-12 jobs per $1 million.

We average the overall employment effects within renewable energy based on our simple
weighting scheme in which each of the five renewable sectors each account equally for 20
percent of the total amount of employment generation. Based on this weighting approach, we
then generate the result that spending $1 million in Brazil on renewable energy generates about
38 jobs, including 27 direct and 11 indirect jobs. When we recalculate these figures assuming
that domestic content declines in these sectors according to our criteria that domestic inputs
decline by 20 percentin all tradable activities, the impactis modest-i.e. the overalljob creation
figure falls only from 38.2 to 37.8 jobs per $1 million.

Our estimates for energy efficiency spending in Brazil are not dramatically different than those
forrenewable energy. Considering our three energy efficiency categories, spending on building
retrofits is significantly more labor intensive than electrical grid upgrades. Retrofits require
about 46 jobs per $1 million, while grid upgrades and industrial efficiency entail, respectively,
only 26 jobs and 23 jobs per $1 million. But in aggregating an “energy efficiency” sector,
because we assume that building retrofits accounts for 50 percent of our total energy efficiency
category, with industrial efficiency and grid upgrades each accounting for 25 percent, overall
job creation through energy efficiency is about 36 jobs per $1 million in spending. In this case
as well, we see that allowing for a decline in domestic content in these activities according to
our criteria has only a minor impact on overall job creation through energy efficiency spending
activities.

With respect to fossil fuels, in the case of Brazil as well as the other four economies, we can work
with data that comes directly out of the national I-O model. In generating overall employment
figures for the fossil fuel sector, we assume that spending levels for coal and oil/gas are equal,
so that they receive equal weights in our calculations. The result of these calculations is that
overall spending on both coal and oil/gas range between about 20-22 jobs per $1 million.

In the last row of Table 7.1, we show our estimated employment multipliers for the overall
Brazilian economy. As we see, that figure is 36.1 jobs per $1 million, only slightly less than the
weighted average figures for Brazil’s renewables and efficiency sectors.

Table 7.2 provides summary figures on these job estimates for Brazil. As the table shows, first
the aggregated clean energy sector generates, on average about 37 jobs per $1 million, while
the fossil fuel sector produces about 21 jobs per $1 million. The basic story then is, for Brazil,
spending on the clean energy economy will produce about twice as many jobs per dollar of
expenditure than an equal amount of spending on fossil fuels. A clean energy investment
strategy will not increase or decrease job creation significantly relative to overall spending
within the Brazilian economy. As such, the major benefits for Brazil through advancing a
clean energy investment strategy are focused within the energy system itself and the related
environmental impacts. Clean energy investments will produce both major reductions in CO,
emissions and increase job opportunities relative to maintaining the country’s existing fossil
fuel based energy systems.
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Table 7.2: Brazil. Summary employment figures, 2005

Direct + indirect employment with stable domestic content

Jobs per $1 million

Renewable energy 38.2
Energy efficiency 35.9
Clean energy total

(with equal renewables and efficiency weights) 371
Fossil fuels 21.2
Clean energy relative to fossil fuels o
(percentage) 757
Overall economy 36.1
Clean energy relative to overall economy 2.8%

(percentage)

Source: Generated from Table 7.1. Underlying calculations from Appendix 3.

Composition of Employment

We present ourresults on the composition of employmentin Brazil’s clean energy and fossil fuel
sectors in Tables 7.3 and 7.4, including our four measures of employment composition: female
share of employment; percentages in self-employment and working in micro-enterprises; and
educational attainment levels.
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Table 7.3: Brazil. Composition of employment generated through alternative energy sector

spending, 2005

e Gender composition of workforce
e lWage vs. self-employment
e Micro vs. non-micro enterprises

® Educational attainment levels (separate table below)

Total employment emﬁ:‘;r:leen t Self-employment Mi::pf:;:g;itse
$€%’Z Ili)oe/:) (Percentage)

Renewables
Bioenergy 81.8 34% 66% 41%
Hydro 25.5 21% 31% 41%
Wind 29.2 19% 32% 42%
Solar 25.7 20% 36% 47%
Geothermal 28.7 15% 40% 53%
Energy efficiency
Building retrofits 46.2 10% 45% 60%
Industrial efficiency 25.1 19% 32% 41%
Grid upgrades 26.2 21% 33% 43%
Fossil fuels
Coal 22.4 21% 33% 37%
Oil/natural gas 20.0 23% 30% 38%

Source: See Appendix 4.
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Table 7.4: Brazil. Educational profile of employment generated through alternative energy
sector spending, 2005

No education or
less than primary Primary level Secondary level Tertiary level
level
(Percentage)
Renewables
Bioenergy 13% 62% 19% 6%
Hydro 4% 56% 35% 5%
Wind 4% 56% 35% 4%
Solar 4% 56% 35% 5%
Geothermal 5% 61% 30% 4%
Energy efficiency
Building retrofits 6% 66% 26% 3%
Industrial efficiency 4% 54% 37% 5%
Grid upgrades 4% 54% 37% 5%
Fossil fuels
Coal 7% 56% 32% 5%
Qil/natural gas 3% 51% 40% 6%

Source: See Appendix 4.

Gender Balance. As a first indicator of the composition of jobs in Brazil’s various energy
sectors, we see in Table 7.3 that all sectors disproportionately employ males over females.
With renewables, the highest proportion of female employmentis in bioenergy, at 34 percent of
total employment. This relatively large figure reflects the high representation of female workers
employed in domestic agricultural production. With all other renewable energy sectors, female
employment ranges between only about 15-20 percent.

The female representation is lower still in building retrofits, with only 10 percent female
employment. This is due to the construction industry being dominated by males, in Brazil
and elsewhere. With industrial efficiency and grid upgrades, the female share is, as with most
renewables, in the range of 20 percent of total employment. We also see that this same roughly
20 percent female share holds in both of our fossil fuel sectors, coal and oil/gas.

Broadly speaking, it is clear that job opportunities in all areas of Brazil’s energy economy
are weighted heavily towards males. Bioenergy is the only exception. But here the higher
proportion of jobs for females are in agriculture, where incomes, opportunities and security
are relatively low.

This pointis worth highlighting more here, since Brazil operates with a major bioenergy sector.
A 2007 joint study sponsored by the OECD and the International Transit Forum describes
conditions in Brazil’s biofuels industry as follows:
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The majority of jobs created are for sugarcane plantation and harvesting activities, which
are low quality jobs, since they involve insalubrious activities (manual harvesting).
Another problem of the sugarcane plantation is the seasonality of the production
process. Therefore, a large part of the workers dedicated to sugarcane harvesting
work only 7 months per year. The Ministry of Labor has strengthened the regulation on
working conditions. Although working conditions have improved considerably in the last
decades, it is still a controversial subject. The mechanization of harvesting is expected
to improve working conditions. Harvesting machines will replace unskilled temporary
workers. The average productivity and salary tend to rise. However, the labor intensity
of ethanol production will decrease with a substantial impact on the unemployment rate
(De Almeida, Bomtempo and De Souza E Silva, 2007, p. 7).5°

Self-Employment and Micro Enterprises. In terms, first, of self-employment, we see that only
in bioenergy are the majority of workers - in fact, 66 percent - self-employed. Building retrofits
are next highest, at 45 percent self-employment. Otherwise, with respect to other clean energy
sectors as well as fossil fuels, self-employment constitutes about 30-40 percent of total
employment.

In both building retrofits and geothermal energy, the majority of workers are employed in
micro-enterprises. Otherwise, the proportion in the remaining clean energy and fossil-fuel
sectors that work in micro-enterprises is mostly about 30-40 percent again - a minority, but a
significant minority nonetheless.

Educational attainment. As we see in Table 7.4, educational attainment levels are also mostly
comparable across both the clean and fossil fuel energy sectors in Brazil. Here again, the one
exception is bioenergy, in which 13 percent of workers have had either no education or less
than a primary education level. In the other clean energy sectors, those with less than primary
level range between 3 and 7 percent, with no strong differences between any of the individual
energy sectors. Primary education attainment ranges between about 50 and 60 percent across
both clean energy and fossil fuel sectors, and secondary is mainly in the range of between
30 and 40 percent. Workers having tertiary educational attainment levels are also basically
comparable across energy sectors, at between 4 and 6 percent. Building retrofits is lower at 3
percent and industrial efficiency is somewhat higher at 10 percent.

As an overall assessment on employment issues for Brazil’s clean energy sectors, six general
points seem most salient here:

1. Building a clean energy economy will be a major source of new job creation in Brazil
relative to expanding or maintaining the existing level of operations in the fossil fuel
sectors. It will have no discernable impact on job opportunities relative to spending
overall within the Brazilian economy.

2. Expanding the clean energy sector in Brazil will greatly favor male over female
workers, unless areas such as construction and manufacturing open up employment
opportunities to women to a significant extent. A major expansion in clean energy
investments could be seen as an opportunity to break down gender-based employment
patterns if appropriate complementary policies are advanced concurrently.
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3. The share of informal employment in clean energy appears to be high, though, for the
most part, the majority of workers are employed in non-micro enterprises, and are paid
in wages. Nevertheless, the expansion of the clean energy economy could be seen here
as well as an opportunity to formalize the very high percentage of workplaces that are
still informal.

4. Educational attainment levels are not especially high in the clean energy sectors. Given
this current distribution of education levels among the relevant working pool, there
should not be significant supply constraints in building a clean energy economy in
terms of facing shortages of higher-credentialed workers.

5. The profile of workers and workplaces employed in the renewable energy and energy
efficiency sectors is not substantially different than those for coal and oil/gas. As such,
undertaking a large-scale transition from fossil fuel energy sources to clean energy
should not create major supply bottlenecks in terms of the availability of workers at the
various levels of credentials and experience. In particular, the proportion of workers
with tertiary educational levels is roughly the same in clean energy and the fossil fuel
sectors. It should therefore not place special demands on Brazil’s higher educational
system when the clean energy economy grows amid the contraction of the fossil fuel
sector.

6. Bioenergy is clearly the outlier among both clean energy and fossil fuel energy sources.
The level of employment per $1 million in expenditures is much higher than other
sectors, as are the shares of both female workers and those with lower educational
attainment levels. Expanding the biofuel sector could be seen as an opportunity to raise
productivity in agriculture, and thereby to create more opportunities for women, and
those with fewer educational credentials. At the same time, the expected significantrise
in agricultural productivity will of course mean fewer jobs per level of production. But
employment levels should still be maintained at a high level as the level of production
of bioenergy rises.

Germany
Overall Employment Creation

We present the full set of figures on employment multipliers for Germany in Tables 7.5 and 7.6.
As with Brazil, the differences in employment generation between the cases of a stable level of
domestic content and the case when domestic content declines as clean energy investments
expand are not dramatic. With renewable energy the overall difference is about 1 job per $1
million in spending, from 9.3 to 8.4 jobs. With energy efficiency, the difference is more modest,
from 10.0t0 9.5 jobs. Relying increasingly on imports within Germany’s tradable sectors should
not therefore have major effects on the employment opportunities generated through the
German clean energy investment project.
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Table 7.5: Germany. Employment creation through spending in alternative energy sectors, 2007

Jobs per $1 million

Domestic content stable Domestic content declines
Direct jobs | Indirect jobs iniireecct‘% bs Direct jobs | Indirectjobs in zlrreegj; bs
(Jobs per $1 million)
Renewables
Bioenergy 8.3 2.7 11.0 7.0 2.5 9.5
Hydro 5.3 3.5 8.8 4.5 3.3 7.8
Wind 5.5 2.9 8.4 4.9 2.6 7.5
Solar 5.7 3.1 8.8 5.1 2.9 7.9
Geothermal 6.3 3.4 9.7 5.8 3.1 8.9
for rencwables | 67 31 03 55 = B4
Energy efficiency
Building retrofits 8.7 3.1 11.8 8.7 2.8 11.5
Industrial
efficiency 5.5 3.2 8.6 4.0 3.7 7.7
Grid upgrades 5.3 2.8 8.1 4.7 2.6 7.3
Weighted average
for efficiency 7.0 3.1 10.1 6.5 3.0 9.5
Fossil fuels
Coal 6.1 3.8 10 NA NA NA
Oil/natural gas 2.8 2.5 5.3 NA NA NA
pegmeaen o sa e | owm o | om
Overall economy 6.2 2.7 8.9 NA NA NA

Source: See Appendix 3.

In terms of individual clean energy sectors, the overall differences in employment creation
between the sectors are relatively modest. With renewable energy, bioenergy is again more
labor intensive, but in this case only modestly more than the other renewable sectors. In the
stable domestic content case, bioenergy generates 11 direct and indirect jobs per $1 million,
while the other renewable sectors generate between 8.4 and 9.7 jobs. With energy efficiency,
building retrofits is again more labor intensive, as these are all construction sector-linked jobs.
We estimate that industrial efficiency and grid upgrades generate about 8-9 jobs per $1 million
in spending.

With fossil fuels, coal is still relatively labor intensive in Germany, at 10.0 jobs per $1 million.
This figure is nearly twice as high as that for oil and gas, which generate 5.3 jobs per $1 million.
The weighted average for both fossil fuel sectors is therefore 7.6 jobs per $1 million.

154



SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

In the last row of Table 7.5, we show our estimated employment multipliers for the overall
German economy. As we see, that figure is 8.9 jobs per $1 million, which is about 9 percent less
than the 9.7 figure weighted average figure for Germany’s renewables and efficiency sectors.

Table 7.6 provides a summary comparison between clean energy and fossil fuel employment in
Germany. As we see, overall, clean energy generates about 27 percent more jobs per $1 million.
This differential is far less than that for Brazil. Nevertheless, it is clear from these figures that,
overall, employment levels in the energy sector will not fall, and almost certainly will rise by
a significant amount as Germany continues its ongoing aggressive transition toward a clean
energy economy. A clean energy investment project will increase job creation only modestly
relative to overall spending within the German economy. As such, the major benefits for
Germany through advancing a clean energy investment project are focused within the energy
system itself and the related environmental impacts. Clean energy investments will produce
both major reductions in CO, emissions and increase job opportunities relative to maintaining
the country’s existing fossil-fuel based energy systems.

Table 7.6: Germany. Summary employment figures, 2007

Direct + indirect employment with stable domestic content

Jobs per $1 million

Renewable energy 9.3
Energy efficiency 10.1
Clean energy total 9.7
Fossil fuels 7.6
ge:;;lei?;ﬁ}/ relative to fossil fuels 27.6%
Overall economy 8.9
Clean energy relative to overall economy 9.0%
(percentage)

Source: Generated from Table 7.5. Underlying calculations from Appendix 3.
Notes: The clean energy total is calculated with equal renewables and efficiency weights.

Composition of Employment

We present the German figures on composition of employment in Tables 7.7 and 7.8. The main
findings are as follows:

Gender balance. The clean energy sectors of the German economy, are, like the case of Brazil,
dominated by male workers, though the female proportions tend to be somewhat higher in
Germany than Brazil. For the most part, in all renewable and energy efficiency areas, the female
share of employment ranges between about 25 and 35 percent. The two areas where the female
ratios are significantly lower are in building retrofits, at 18 percent and coal, at 19 percent.
These figures reflect the almost entirely male workforce in both construction and coal mining.
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Table 7.7: Germany. Composition of employment generated through alternative energy sector
spending, 2007

e Gender composition of workforce

e Wage vs. self-employment

e Micro vs. non-micro enterprises

* FEducational attainment levels (separate table below)

Total employment emﬁ::l;r:leen t Self-employment Miecr:loptleon;'er:'z;itse
Jobs per $1 million (Percentage)
Renewables
Bioenergy 11.0 29% 27% 36%
Hydro 8.8 36% 10% 13%
Wind 8.4 25% 9% 13%
Solar 8.8 29% 10% 14%
Geothermal 9.7 29% 14% 22%
Energy efficiency
Building retrofits 11.8 18% 17% 25%
Industrial efficiency 8.6 33% 11% 16%
Grid upgrades 8.1 26% 10% 14%
Fossil fuels
Coal 10.0 19% 5% 8%
Oil/natural gas 5.3 27% 11% 17%

Source: See Appendix 4.

Self-employment and Micro Enterprises. Not surprisingly, in the case of Germany, ourindicators
of informal employment are generally low. In most cases, self-employment constitutes only
about 10 -15 percent of jobs linked to either renewable energy or energy efficiency. The one
standout-case here is bioenergy, where self-employment is at 27 percent. With size of firms,
bioenergy stands out again, with 36 percent of employment is at the level of micro-enterprises.
The micro-enterprise proportions are between 13 and 25 percent otherwise. With fossil fuels,
the coal industry has only 8 percent of employment coming from micro-enterprises. Oil and
natural gas are comparable to most clean energy areas, at 17 percent.

Educational attainment. Note, first of all, that the reporting on educational attainment
categories is different in Germany than with Brazil, Indonesia, South Africa and the ROK. In
the German case, the lowest attainment category includes up to a middle-school education.
The second category includes those with secondary and non-secondary educational levels,
including those graduating from vocational colleges. The highest category includes those with
university-level education, including advanced degrees. The results are shown in Table 7.8
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Table 7.8: Germany. Educational profile of employment generated through alternative energy
sector spending, 2007

Secondary and R
Middle school or less non-university post- LT e
secondary post-graduate
(Percentage)

Renewables
Bioenergy 16% 61% 23%
Hydro 11% 51% 38%
Wind 15% 60% 24%
Solar 14% 57% 29%
Geothermal 12% 56% 31%
Energy efficiency
Building retrofits 16% 64% 20%
Industrial efficiency 12% 54% 34%
Grid upgrades 15% 60% 25%
Fossil fuels
Coal 16% 66% 18%
Qil/natural gas 13% 64% 24%

Source: See Appendix 4.

We see in Table 7.8 that there are no large differences in the educational attainment patterns
across the clean energy sectors. About 60 percent of all workers are in the middle educational
attainment category - i.e. secondary or vocational school educational levels. For the most part,
about 20-30 percent have either university or graduate level educational attainment levels.
Between about 11-16 percent are in the lowest category, in which people have middle-school
levels of education or less. The only standout is in hydropower, where 38 percent of workers
are at high attainment levels. These same patterns also follow with coal, oil and natural gas.

As we discuss elsewhere in this report in more detail, Germany is already advancing strongly
toward building a clean energy economy through large-scale investments in renewable energy
and energy efficiency. It will continue to create more job opportunities through expanding these
investment areas as opposed to either expanding or maintaining its existing fossil fuel sectors
at their current scales. It is not surprising that the composition of the workforce employed in
clean energy is fairly stable across specific sectors and that there are also no large differences
relative to the workforce employed in the fossil fuel industries. Thus, there is no evidence
that building a clean energy economy in Germany will be constrained by shortages in terms of
workforce experience or educational levels.

At the same time, the continued expansion of a clean energy economy in Germany should be
seen as providing an opportunity to create a broader set of employment prospects for women.
Women constitute 46 percent of the overall German workforce, but only about 25-35 percent of
the clean energy workforce in most areas.
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Indonesia
Overall Employment Creation

As we see in Tables 7.9 and 7.10, overall employment creation in Indonesia through spending
in renewable energy and energy efficiency investments will be much higher than the current
level of employment generation within the fossil fuel economy. This is true across all renewable
energy and energy efficiency sectors. In the Indonesian case as well, the results are not
significantly affected by a decline in domestic content as investment in clean energy expands.
That is, following our assumption that domestic content in tradable sectors declines by 20
percent due to the expanded demand for clean-energy based inputs, the overall effect is to
reduce direct and indirect employment by about 2 jobs per $1 million of spending in both
renewable energy and energy efficiency - from 118.8 to 116.2 jobs per $1 million in renewables
and 79.4 to 77.3 jobs in energy efficiency.

Table 7.9: Indonesia. Employment creation through spending in alternative energy sectors, 2008

Jobs per $1million

Domestic content stable Domestic content declines

Direct + Direct +

Direct jobs | Indirect jobs b Direct jobs | Indirect jobs fillea s

Renewables

Bioenergy 237.0 73.5 310.5 237.0 72.7 309.7
Hydro 29.4 46.5 75.9 24.9 45.3 70.2
Wind 19.6 60.1 79.7 18.1 59.2 77-3

Solar 18.9 44.5 63.4 17.4 43.4 60.8
Geothermal 18.4 46.2 64.7 18.1 44.9 62.9
\fAéflri:fvc\i/aablersage 64.7 54.2 118.8 63.1 53.1 116.2
Energy efficiency

Building retrofits 36.3 61.7 97.9 36.3 60 96.3
Industrial efficiency 12.8 46.8 59.6 11.8 45.5 57.3

Grid upgrades 17.0 45.2 62.2 15.5 44.1 59.6
\f'gf'egfgtggnacvyerage 25.6 53.8 794 25 52.4 77.3

Fossil fuels

Coal 7.1 33.5 40.6 NA NA NA

Oil/natural gas 2.7 0.8 3.5 NA NA NA

\f'gf'f%zt;ldfsgsrage 4.9 17.1 22.0 NA NA NA

Overall economy 155.1 27.2 182.2 NA NA NA

Source: See Appendix 3.
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Focusing then on the case of stable domestic content, we do here see, even more so than Brazil,
that the bioenergy sector is by far the largest proportional source of job creation, with 310 jobs
generated per $1 million in spending. These, again, will be mostly jobs with low compensation
and poor working conditions in agriculture. In the other renewable energy areas - hydro, wind,
solar and geothermal - total direct and indirect job creation ranges fairly narrowly, between 64
and 79 jobs per $1 million.

With our energy efficiency categories, building retrofits generates substantially more jobs per
$1 million in spending, at 97.9 jobs. Here again, these are all jobs linked to the construction
industry. With industrial efficiency and grid upgrades, the range is narrow, between 60 and 62
jobs per $1 million.

These job figures are far greater than those for coal, oil and natural gas. The coal industry, at 40
jobs per $1 million in spending, is relatively capital intensive in Indonesia compared with even
the more capital-intensive renewable energy and energy efficiency sectors, such as solar and
industrial efficiency. But even more so, oil and natural gas are highly capital intensive even by
global standards, at 3.5 jobs per $1 million. As we saw, in Germany, the comparable figure is
5.3 jobs per $1 million.

In the last row of Table 7.9, we show our estimated employment multipliers for the overall
Indonesian economy. As we see, that figure is 182.2 jobs per $1 million. This is fully 46 percent
greater than the 99.1 jobs per $1 million weighted average figure for Indonesia’s renewables
and efficiency sectors.

The overall result in terms of job creation, as we see in Table 7.10, is that a combined renewable
energy and energy efficiency investment agenda will create 350 percent more jobs in Indonesia
than comparable levels of spending in the current fossil fuel industries. At the same time, we
have to also recognize that a clean energy investment project will not increase job creation
relative to overall spending within the Indonesian economy. Rather, for Indonesia to invest in
the clean energy economy will generate nearly 50 percent fewer jobs per dollar of expenditure
than simply expanding overall spending within Indonesia.

But of course, Indonesia, as with all other economies, cannot function without operating a
large-scale energy sector. As such, the critical comparison here is between the clean energy
vs. fossil fuel energy systems as a source of job creation, in which clean energy clearly offers
far greater opportunities. Thus, as with the other countries, the major benefits for Indonesia
through advancing a clean energy investment project are focused within the energy system
itself and the related environmental impacts. Clean energy investments will produce both
major reductions in CO, emissions and increase job opportunities relative to maintaining the
country’s existing fossil fuel based energy systems. Of course, we do need to also consider the
quality of these jobs, the issue to which we now turn.

159



GLOBAL GREEN GROWTH

Table 7.10: Indonesia. Summary employment figures, 2008

Direct + indirect employment with stable domestic content

Jobs per $1 million

(percentage)

Renewable energy 118.8
Energy efficiency 79.4
Clean energy total (with equal renewables and efficiency weights) 99.1
Fossil fuels 22.0
Clean energy relative to fossil fuels o
(percentage) 350-3%
Overall economy 182.2
Clean Energy relative to Overall Economy -45.6%

Source: Generated from Table 7.9. Underlying calculations from Appendix 3.

Composition of Employment

Tables 7.11 and 7.12 present our results on the composition of employment in Indonesia’s

various energy sectors.

Gender composition. As in the cases of Brazil and Germany, employment in the clean energy
sectors is male dominated. The highest proportion of female employment is in bioenergy, at 37
percent. Otherwise, the percentages range between 22 and 32 percent. As in the other cases,
investments to build a clean energy economy should be seen as an occasion to provide a whole
range of new opportunities for women. Employment opportunities for women in fossil fuels is

overall worse than in the various clean energy sectors.
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Table 7.11: Indonesia. Composition of employment generated through alternative energy
sector spending, 2008

e Gender composition of workforce

e Wage vs. Self-Employment

® Micro vs. Non-Micro Enterprises

® Educational attainment levels (separate table below)

Total employment | Female employment | Self-employment M::;opf:;::zgitse

(Jobs per $1 million) (Percentage)
Renewables
Bioenergy 310.5 37% 91% NA
Hydro 75.9 31% 62% NA
Wind 79.7 32% 65% NA
Solar 63.4 29% 61% NA
Geothermal 64.7 26% 64% NA
Energy efficiency
Building retrofits 97.9 22% 65% NA
Industrial efficiency 59.6 32% 62% NA
Grid upgrades 62.2 32% 60% NA
Fossil fuels
Coal 40.6 33% 63% NA
Oil/natural gas 3.5 12% 22% NA

Source: See Appendix 4.

Wage employment and micro enterprises. Unfortunately, the Indonesian labor force survey
data do not provide a breakdown according to the size of the enterprises at which workers are
employed. We will therefore need to rely more on the self-employment data as an indicator
of the extent of informalization in the clean energy sectors. As we see, self-employment is
dominant in the Indonesian bioenergy sector, at 91 percent of total employment. It is also
prevalent in all the rest of the renewable energy and energy efficiency sectors, at around 60
percent in all cases. Indeed, the oil and gas sector is the only one in the energy area in which
wage employment is prevalent, with self-employment constituting only 22 percent of the total.

Most likely, the self-employed jobs are mainly in low-income and low-productivity work
situations. These conditions could create some supply bottlenecks, assuming the Indonesian
clean energy economy does begin growing at a rapid rate. At the same time, the high proportion
of informal employment in the Indonesian clean energy sectors does also establish major
opportunities for Indonesia to formalize these workplaces as clean energy-linked sectors
undergo a major expansion.

Educational attainment. Not surprisingly, the educational attainment levels in the clean
energy sectors are relatively low, though basically not less so than in the fossil fuel sectors.
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Throughout the renewable and energy efficiency areas, between about 15 and 20 percent of
workers have less than a primary education (See Table 7.12). If we combine those with no more
than a primary education, the percentages range between 70 and 9o percent. This is also true
for Indonesia’s coal sector. The oil and gas sector is the only one in which more than half
of the workers have either secondary or tertiary educational attainment levels. In short, here
again, we see an indication of a high degree of informalization and probably relatively low
productivity levels in the clean energy sectors. At the same time, if we just consider those with
tertiary educational attainment levels, this ranges narrowly between 5 and 6 percent of total
employment. The one exception is bioenergy, where only 1 percent of workers have tertiary
education levels. But generally, this level of tertiary education attainment in the clean energy
sectors is equal to that of Brazil. As such, the relatively low level of workers with middle levels of
educational attainment may not pose a significant supply constraint for expanding Indonesia’s
clean energy economy, as long as the higher-level managerial positions include a reasonable
share of technically trained workers.

Table 7.12: Indonesia. Educational profile of employment generated through alternative
energy sector spending, 2008

No education or
less than primary Primary level Secondary level Tertiary level
level
(Percentages)
Renewables
Bioenergy 15% 74% 10% 1%
Hydro 20% 53% 22% 5%
Wind 21% 52% 23% 5%
Solar 21% 48% 25% 6%
Geothermal 21% 52% 22% 5%
Energy efficiency
Building retrofits 22% 54% 20% 5%
Industrial efficiency 20% 48% 26% 6%
Grid upgrades 20% 46% 28% 6%
Fossil fuels
Coal 20% 52% 22% 6%
Oil/natural gas 13% 15% 51% 21%

Source: See Appendix 4.

Overall, building a clean energy economyin Indonesia, as opposed to maintaining or expanding
its existing fossil-fuel dominated energy system, will generate both major opportunities and
challenges in terms of its employment effects. The opportunities exist because, even allowing
that productivity would grow rapidly as the clean energy sectors mature, the overall level of
employment will still be far greater than that for fossil fuels. The challenge then will be precisely
to encourage these workplaces to become increasingly formalized. This, in turn, will allow for
higher productivity and, thereby, a more rapidly growing clean energy sector in Indonesia.
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South Africa

As we show in Tables 7.13-7.14, employment creation in South Africa linked to the clean energy
investment agenda will generate a major increase in employment opportunities across all
renewable energy and energy efficiency sectors relative to spending within the fossil fuel
sectors. Moreover, as we will see in Tables 7.15 and 7.16, our estimates suggest that the quality
of employment within most renewable and energy efficiency industries is comparable to job
quality in fossil fuel industries. Job quality is, on average, relatively low in the key clean energy
areas of building retrofits and bioenergy, but these patterns are balanced by the relatively high
level of formality and educational attainment levels in the other clean energy sectors.

Overall Employment Creation

Tables 7.13 and 7.14 show that the range of employment creation in South Africa through
renewable energy investments is narrow, excepting the usual case of bioenergy. With bioenergy,
the estimate we generated is that $1 million in investments will generate 78 jobs. With the
other renewable sectors - hydro, wind, solar, and geothermal - we estimate that between 55-70
jobs are generated directly and indirectly through spending $1 million. As a weighted average,
spending in the renewable energy sectors generate about 65 jobs per $1 million.
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Table 7.13: South Africa. Employment creation through spending in alternative energy
sectors, 2005

Jobs per $1 million

Domestic content stable Domestic content declines
Directjobs | Indirect jobs incli)l'iizézcctl}; bs Directjobs | Indirect jobs in Z;Zit/; bs

Renewables

Bioenergy 50.1 28.1 78.2 50.0 26.5 76.5
Hydro 25.4 36.2 61.6 24.9 34.4 59.3
Wind 29.9 30.6 60.5 27.8 29.2 56.9
Solar 19.6 35.9 55.6 18.3 34.1 52.4
Geothermal 31.2 38.2 69.5 30.8 36.4 67.2
¥Z$Irger:1teev€aabvleersage 31.3 33.8 651 303 321 28
Energy efficiency

Building retrofits 56.5 37.5 94.0 56.5 35.7 92.1
Industrial efficiency 24.6 35.9 60.5 22.8 34.5 57.2
Grid upgrades 24.3 31.6 55.9 22.9 29.8 52.7
\flgfiegf?cei:nac\;erage 40.5 35.6 76.1 39.7 33.9 73:5
Fossil fuels

Coal 5.3 24.1 29.4 NA NA NA
Oil/natural gas 11.7 25.1 36.8 NA NA NA
pemE | ws we | oma | owmo | owm | owm
Overall economy 52.2 70.1 122.3 NA NA NA

Source: See Appendix 3.
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Table 7.14: South Africa. Summary employment figures, 2005

Direct + indirect employment with stable domestic content

Jobs per S1 million
Renewable energy 65.1
Energy efficiency 76.1
Clean energy total (with equal renewables and efficiency weights) 70.6
Fossil fuels 33.1
Clean energy relative to fossil fuels (percentage) 113.2%
Overall economy 122.3
Clean energy relative to overall economy (percentage) -42.3%

Source: Generated from Table 7.13. Underlying calculations from Appendix 3.

The range is greater in our respective energy efficiency sectors. That is, the employment levels
are high with building retrofits, at 94 jobs per $1 million. This reflects the low wage levels for
construction industry jobs in South Africa. Industrial efficiency and grid upgrades generate,
by our estimates, between 56-61 jobs per $1 million in spending. Given that we are weighting
building retrofits as 50 percent of all energy efficiency spending, with the other two sectors as
25 percent each, this generates a weighted average for job creation in energy efficiency at 76.1
jobs per $1 million.

In terms of our consideration of domestic capacity constraints as clean energy investments
expand, we find in the case of South Africa, as with the situations in Brazil, Germany and
Indonesia, that increasing the import content of inputs by 20 percent for tradable activities
does not generate a large decrease in employment. Renewable energy job creation falls from
65.1t0 62.5 jobs while energy efficiency job creation falls from 76.1 to 73.5 jobs.

Overall then, as Table 7.14 shows, we estimate that the overall clean energy investment
package produces a weighted average of 70.6 jobs, which is 113 percent higher than the 33.1
jobs generated, on average, in coal, oil and gas. Moreover, in the case of South Africa, the
levels of employment creation in coal versus oil and gas are relatively modest. In short, again,
our estimates show that South Africa will certainly gain in terms of overall levels of employment
through undertaking a transformation out of fossil fuels and into renewable energy and energy
efficiency.

At the same time, similar to the case of Indonesia, we have to also recognize that clean energy
investment project will not increase job creation relative to overall spending within the South
African economy. Rather, as we see in Tables 7.13 and 7.14, for South Africa to invest in the
clean energy economy will generate about 40 percent fewer jobs per dollar of expenditure than
simply expanding overall spending within South Africa. Of course, South Africa, as with all other
economies, cannot function without operating a large-scale energy sector. As such, the critical
comparison here is between the clean energy vs. fossil fuel energy systems as a source of job
creation, in which clean energy clearly offers far greater opportunities. Thus, as with the other
countries, the major benefits for South Africa through advancing a clean energy investment
project are focused within the energy system itself and the related environmental impacts.
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Clean energy investments will produce both major reductions in CO, emissions and increase
job opportunities relative to maintaining the country’s existing fossil fuel based energy system.

Composition of Employment

Tables 7.15 and 7.16 report on our estimates for job composition for the various energy sectors
in South Africa. Our main findings are as follows:

Table 7.15: South Africa. Composition of employment generated through alternative energy
sector spending, 2005

e Gender composition of workforce

e \Wage vs. self-employment

e Micro vs. non-micro enterprises

® Educational attainment levels (separate table below)

Total employment | Female employment | Self-employment Mt;opf:;:z;itse
(Jobs per $1 million) (Percentage)
Renewables
Bioenergy 78.2 29% 19% 33%
Hydro 61.6 30% 15% 33%
Wind 60.5 24% 12% 27%
Solar 55.5 28% 14% 32%
Geothermal 69.4 24% 15% 32%
Energy efficiency
Building retrofits 94.0 15% 11% 24%
Industrial efficiency 60.5 27% 13% 29%
Grid upgrades 55.9 25% 11% 28%
Fossil fuels
Coal 29.4 28% 10% 26%
Oil/natural gas 36.8 28% 13% 34%

Source: See Appendix 4.
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Table 7.16: South Africa. Educational profile of employment generated through alternative
energy sector spending, 2005

N;:]:: l:)cr?rt;g:yol:;:sls Primary level Secondary level Tertiary level
(Percentages)

Renewables

Bioenergy 28% 44% 24% 4%
Hydro 17% 40% 35% 8%
Wind 14% 48% 33% 5%
Solar 16% £41% 36% 7%
Geothermal 18% 43% 33% 7%
Energy efficiency

Building retrofits 15% 61% 22% 3%
Industrial efficiency 13% 45% 35% 7%
Grid upgrades 14% 48% 33% 5%
Fossil fuels

Coal 15% 43% 36% 6%
Oil/natural gas 15% 43% 36% 6%

Source: See Appendix 4.

Gender composition. As with Brazil, Germany, and Indonesia, the proportion of women working
in the renewable energy and energy efficiency sectors is low. With the exception of building
retrofits, there is a narrow range between all of the sectors, at between 24 and 35 percent
female employment as a share of total employment. The disparity is even more pronounced
with building retrofits, which, as discussed before, we have defined as being 100 percent
construction industry activity. Women hold only 15 percent of the direct plus indirect jobs in
the construction industry. Thus, once again, a major expansion of activity in renewable energy
and energy efficiency should be seen as an occasion to open up job opportunities for women,
in areas such as manufacturing, transportation and construction.

Self-employment and micro enterprises. According to our estimates, the proportions of self-
employment and employment at micro-enterprises - our indicators of informal employment
conditions - appear to be relatively low for the South African case. As we see, less than 20
percent of workers whose jobs are directly or indirectly linked to the renewable energy and
energy efficiency sectors are self-employed - i.e., across the board, more than 8o percent are
wage-earners. These figures, for example, are significantly higher than those for Brazil. The
proportions working in micro-enterprises in the various clean energy sectors is between 24 and
33 percent in most cases. Overall, as with the case of Brazil, the presence of micro-enterprises
is not insignificant in the clean energy sectors, even while most workers are employed at larger
enterprises. However, the fact that most workers are also receiving wages, as opposed to
being self-employed, suggests that these micro-enterprises may be somewhat less informal
establishments than would be the case, say, in Brazil.

167



GLOBAL GREEN GROWTH

Educational attainment. As we see in Table 7.16, the levels of educational attainment are
basically stable here, across all renewable energy and energy efficiency sectors, with the two
exceptions of bioenergy and building retrofits. In most of the clean energy sectors, between
40 and 48 percent of workers have primary educations, between 14 and 18 percent have less
than a primary education, 24-36 percent have secondary educations, and 5-8 percent have
higher educations. With bioenergy, we estimate that nearly 30 percent of workers have less
than a primary education. The percentages of workers in bioenergy with secondary educations,
at 24 percent, and tertiary levels, at 4 percent, are somewhat lower than those in the other
clean energy sectors. With building retrofits, the proportion having received secondary-level
education is relatively low, at 22 percent, while those with primary educations only is higher,
at 61 percent. The patterns of educational levels for coal and oil and natural gas are basically
the same as those for hydro, wind, solar, geothermal, industrial efficiency and grid updates.

Overall, our evidence shows, again, that South Africa would benefit substantially in terms of
numbers of employment opportunities created through a large-scale expansion of clean energy
investments. This is because spending within the clean energy sectors creates, according to
our estimates, 114 percent more jobs than the same level of spending on coal, oil and natural
gas. In terms of composition of employment, the level of formalization within the clean energy
sectors - as measured by the proportions of workers who are self-employed and are working in
micro-enterprises - is already relatively high. The share of formal employment should therefore
not be expected to change dramatically through a large-scale expansion of clean energy
investments. Finally, again, it will be important to create more job opportunities for women
in the areas of the South African economy that are linked to renewable energy and energy
efficiency, as these sectors expand.

The Republic of Korea
Overall Employment Creation

Aswe show in Tables 7.17 and 7.18, our estimates for the level of job creation for most renewable
energy and energy efficiency sectors range fairly narrowly. Again, the one big exception is
bioenergy. With the other renewable sectors - hydro, wind, solar, and geothermal - we estimate
direct plus indirect job creation as being between about 11-15 jobs per $1 million in spending
in our first scenario, in which domestic content proportions are stable. With bioenergy, we
estimate direct plus indirect job creation at about 28 jobs per $1 million. As with our four
other selected countries, this is because agriculture accounts for 5o percent of all value added
in bioenergy in our model, and the compensation levels in agriculture in the ROK are well
below those for other sectors, such as manufacturing, refining, and transportation, that are
heavily represented in clean energy. These figures produce a weighted average estimate for all
renewable sectors at 16.2 jobs per $1 million.
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Table 7.17: Republic of Korea. Employment creation through spending in alternative energy

sectors, 2008

Jobs per $1 million

Domestic content stable

Domestic content declines

Directjobs In.direct . D-irect.+ e ot In.direct ; D.irect-+
jobs indirect jobs jobs indirect jobs
(Jobs per $1 million)
Renewables
Bioenergy 23,1 4,8 27,9 18,8 4,6 23,3
Hydro 75 7.8 15,2 6,9 7.3 14,3
Wind 5,9 6,5 12,4 5,2 6,1 11,3
Solar 4,7 6,3 11,0 4,1 5,8 9,9
Geothermal 7,2 7,2 14,3 6,3 6,7 12,9
renewantos 0.6 65 16.2 83 61 %3
Energy efficiency
Building retrofits 5,9 8,0 13,9 5,9 yan 13,2
Industrial efficiency 5,3 71 12,3 3,8 73 11,1
Grid upgrades 5,2 6,7 12,0 4,7 6,2 10,9
Weighted average for
efficiency 5,6 75 13,0 5,0 71 12,1
Fossil fuels
Coal 10,1 4,0 14,1 NA NA NA
Oil/natural gas 9,9 3,3 13,1 NA NA NA
Weighted average for o 26 o6 NA NA NA
fossil fuels
Overall economy 9,9 7,5 17,5 NA NA NA

Source: See Appendix 3.
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Table 7.18: Republic of Korea. Summary employment figures, 2008

Direct + indirect employment with stable domestic content

Jobs per S1 million

Renewable energy 16.2
Energy efficiency 13

Clean energy total (with equal renewables and efficiency weights) 14.6

Fossil fuels 13.6

Clean energy relative to fossil fuels (percentages) 7.1%
Overall economy 17.5

Clean energy relative to overall economy (percentages) -16.6%

Source: Generated from Table 7.17. Underlying calculations from Appendix 3.

With energy efficiency, in our stable domestic content scenario, we estimate that about 12 jobs
per $1 million will be generated in both industrial efficiency and grid upgrades. With building
retrofits - which accounts for half of all spending on efficiency within our framework - at about
14 jobs per $1 million, our estimated weighted average for the three efficiency categories is
14.8 jobs per $1 million.

The case of the ROK is the only one in which our second scenario, of a 20 percent domestic
content decline in the relevant tradable sectors generates a noticeable impact on our overall
employment estimates, specifically within the renewable sectors. For example, the direct job
creation in bioenergy falls from 23 to 19 jobs per $1 million. Our estimated weighted average for
renewables falls from 16.2 to 14.3 jobs per $1 million. These downward effects on job creation
reflect the ROK’s status as an advanced economy with high tradable proportions in major
sectors.

Another unique feature of the ROK case is that our estimated employment multipliers for coal,
oiland natural gas are basically comparable to those for the clean energy sectors. Once we take
account, in our second scenario, of an increase in imports tied to clean energy investments,
our estimated aggregated employment ratios for clean energy and fossil fuels are basically at
parity - both are at basically 14 jobs per $1 million in spending.

Considering these estimates, we can conclude that, in the case of the ROK, there is not likely
to be any significant overall level of positive job creation through advancing a clean energy
agenda as opposed to maintaining the existing fossil fuel energy infrastructure. But this does
also mean that there should not be any significant sacrifice in job creation as clean energy
investments expand and fossil fuel spending contracts. It is also the case that advancing a
clean energy investment agenda will favor certain sectors over others in the ROK as elsewhere.
Agriculture is a clear case in point with bioenergy. To the extent the ROK may want to see an
expansion in job opportunities and perhaps an accompanying rise in conditions in agriculture,
generating a high productivity bioenergy sector could thereby provide broad benefits.

In the last row of Table 7.17, we show our estimated employment multipliers for the overall the
ROK economy. As we see, that figure is 17.5 jobs per $1 million. This is about 17 percent more



than the weighted average figures for the ROK’s renewables and efficiency sectors. What this
figure shows is that a clean energy investment project would modestly decrease job creation in
the ROK relative to overall spending within the ROK economy. As such, the benefits for the ROK
through advancing a clean energy investment project are focused within the energy system
itself and the related environmental impacts. Clean energy investments will produce both
major reductions in CO, emissions and can achieve this without entailing any sacrifice in job
opportunities relative to maintaining the country’s existing fossil-fuel based energy systems.

Composition of Employment

We report our estimates for employment composition in the ROK in Tables 7.19 and 7.20. Our

main findings are as follows:

SECTION 2: ESTIMATING EMPLOYMENT EFFECTS

Table 7.19: Republic of Korea. Composition of employment generated through alternative
energy sector spending, 2008

e Gender composition of workforce

e Wage vs. self-employment

Micro vs. non-micro enterprises
Educational attainment levels (separate table below)

Total Female Self- Micro enterprise
employment employment employment employment
Jobs per $1 million (Percentage)

Renewables

Bioenergy 27.9 45% 74% NA
Hydro 15.2 27% 27% NA
Wind 12.4 28% 23% NA
Solar 10.9 32% 23% NA
Geothermal 14.3 24% 19% NA
Energy efficiency

Building retrofits 13.9 24% 20% NA
Industrial efficiency 12.3 30% 24% NA

Grid upgrades 12.0 30% 21% NA
Fossil fuels

Coal 14.1 11% 9% NA
Oil/natural gas 13.1 11% 8% NA

Source: See Appendix 4.
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Table 7.20: Republic of Korea. Educational profile of employment generated through
alternative energy sector spending, 2008

No education or
less than primary Primary level Secondary level Tertiary level
level
(Percentage)
Renewables
Bioenergy 14% 33% 39% 14%
Hydro 1% 7% 51% 41%
Wind 1% 6% 52% 41%
Solar 1% 6% 50% 42%
Geothermal 1% 7% 51% 40%
Energy efficiency
Building retrofits 1% 8% 52% 39%
Industrial efficiency 1% 6% 48% 44%
Grid upgrades 1% 6% 51% 43%
Fossil fuels
Coal 1% 7% 63% 29%
Oil/natural gas 1% 6% 62% 31%

Source: See Appendix 4.

Gender composition. As we can see in Table 7.19, we find that, as Brazil, Germany, Indonesia
and South Africa, most renewable energy and energy efficiency sectors in the ROK are male
dominated. Again, the one exception is bioenergy, in which females occupy fully 45 percent
of the direct and indirect jobs associated with this sector. Otherwise, we estimate that
female employment ranges between 24-30 percent in the other clean energy sectors. This is
substantially below the national average of 41 percent female employment. Nevertheless, it
is well above the proportions for the coal, oil and natural gas sectors, which are at 11 percent
female. As such, expanding spending in clean energy sectors while reducing spending on fossil
fuels should encourage some improvement in the gender composition of employment in the
ROK’s energy-based sectors.

Self-employment and micro enterprises. The figures reported in the ROK’s labor force survey
did not enable us to produce results for micro-enterprise employment. Working then just with
the estimates for self-employment in the clean energy sectors, we see, overall, that wage
employment is predominant in all sectors other than bioenergy. Self-employment ranges
between 19-27 percent in hydro, wind, solar and geothermal, among the other renewable
sectors. In the energy efficiency sectors, we estimate self-employment as being between 21-
24 percent. With bioenergy, by contrast, we estimate self-employment to be quite high, at 74
percent.

The figures on self-employment are lower still for fossil fuels, at only 9 percent for coal and 8
percent for oil and gas. As such, the shift from fossil fuels to clean energy would likely entail
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some increase in the extent of informalization, most especially to the extent that the ROK was
to begin producing bioenergy to a significant extent.

Educational attainment. Overall, we estimate that educational attainment levels for the ROK
workersinthe clean energy sectorsis quite high, once again with the one exception of bioenergy.
Outside of bioenergy, we estimate the percentages of workers with either secondary or tertiary
educational attainment levels are in the range of 9o percent in all cases. With bioenergy, the
attainment levels are much more spread out, with 14 percent having less than a primary level,
33 percent with primary education, 39 percent with secondary, and 14 percent with tertiary.

The attainment levels in the fossil fuel sectors vary somewhat higher than the average for
clean energy, with 92-93 percent of workers having either secondary or tertiary educational
levels. But these figures are not substantially different than those for clean energy other than
bioenergy.

Overall, the transition to a clean energy economy in the ROKwould not generate dramatic shifts
in either the level or composition of its employment opportunities. The increased demand for
agricultural products as inputs in the bioenergy sector is the one exception here. This one
shift toward a large-scale bioenergy sector would raise the share of women and self-employed
workers as well as those with lower educational attainment levels. Depending on how the ROK
was to manage this shift, it could be seen as generating benefits for less well-off segments
of the labor force as well as an opportunity to increase agricultural productivity. But it could
also produce supply bottlenecks if the ROK were to seek to expand bioenergy production
significantly without also improving agricultural productivity concurrently.
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CHAPTER 8: BRAZIL — CLEAN
ENERGY INVESTMENTS,
EMISSIONS REDUCTIONS

AND EMPLOYMENT EXPANSION

Level of Development and CO2 Emissions

In Table 8.1, we review the basic statistics from Chapter 1 indicating Brazil’s current level of
development and the operations of its energy system. According to the World Bank Indicators,
Brazil is an upper-middle income country, with, as we see in Table 8.1, average income per
capita at $11,600 as of 2010. Overall energy consumption is at 11.3 Q-BTUs and overall CO,
emissions are at 450 mmt.%°

Table 8.1: Brazil. Basic energy indicators, 2010

Brazil World
Per capita GDP
(2005 PPP dollar) $11,600 $10,300
}gt_aélrt[ejrsrgy consumption 11.3 Q-BTUs 510.5 Q-BTUs
Per capita energy consumption i )
(M-BTUs/population) 58 M-BTUs 74.0 M-BTUs
Total CO, emissions
(mmt) 450 mmt 31,502 mmt
Per capita CO, emissions - 3 i
(mmt of emissions/population) 3 4
Energy intensity ratio i i
(Q-BTUs/$1 trillion GDP) SRR 7 CEEAE
Emissions intensity ratio mmt 65.0 mmt
(CO, emissions/Q-BTUs) 39:9 59

Source: See Tables 1.1 and 1.4.

60 The figures in Table 8.1 are compiled from two sources, the World Bank Indicators and the EIA International Energy Statistics, as noted at the bottom
of Table 1.1. We also draw on two other statistical sources in this chapter: the IEA’s 2013 World Energy Outlook and the 2011 Brazilian Energy Balances,
published annually by the Brazilian Ministry of Mines and Energy. There are discrepancies between these various sources. One major factor appears
to be that measurement of the energy supplied from traditional biomass sources is treated differently by the different sources. For the purposes of this
report, we have relied primarily on the data sources that provide statistics on an international scale, i.e. the EIA, IEA and World Bank figures. This is
not because we assume these figures are necessarily more reliable than those published by national data sources, such as that for Brazil, but rather
to maintain consistency in methodology as much as possible between the different countries we are examining.
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The Brazilian economy operates with a unique energy infrastructure. We have already obtained
a sense of this in the figures we presented in Chapter 1. In particular, Brazil’s per capita
emissions level, at 2.3 mt, is half the world average of 4.6 mt, and basically equal already
to the target 2.4 mt level that is needed throughout the globe to reach the 20-year emissions
reduction goal. This is while Brazil is still producing domestic output atan upper-middle income
level. Brazil has achieved this very low level of emissions per capita level among upper-income
countries through both relying heavily on clean renewable energy sources and operating at a
high efficiency level. Thus, as Table 8.1 shows, Brazil’s energy intensity ratio, at 5.1 Q-BTUs per
$1 trillion of GDP, is nearly 30 percent below the global average of 7.1. Its emissions intensity
ratio - i.e. CO, emissions per Q-BTU - at 39.9 is 42 percent below the global average of 69.1.

We can see more clearly how Brazil has achieved its low level of CO, emissions through
considering its present energy mix, as shown in Table 8.2. The key feature in this mix is that
hydro power provides 14 percent of all of Brazil’s energy supply, while the share going to coal is
correspondingly small, at 6 percent. We note also, and discuss more later, that Brazil operates
a very large bioenergy sector, providing 29 percent of Brazil’s total energy supply. However,
to date this sector contributes only modestly to reducing Brazil’s emissions, since the most
prevalent feedstock for Brazil’s bioenergy supply is sugarcane. As we saw in Chapter 3, ethanol
from sugarcane feedstock generates only 26 percent fewer CO, emissions than gasoline over a
30-year cycle. Still the fact that Brazil already has a large bioenergy sector should enable it to
transition more readily from high- to low-emissions bioenergy over the next 20 years.

Table 8.2: Brazil. Energy consumption and emissions, 2010

Total energy consumption 11.3 Q-BTUs
Energy intensity ratio
(Q-BTUs/$1 trillion GDP) 5.1 Q-BTUs
Energy mix:
Qil 41.0%
Coal 6.0%
Natural gas 9.0%
Nuclear 1.0%
Renewables 43.0%
e Hydro 14.0%
e Bio - High emissions 29.0%
® Bio - Low emissions 0.0%
e All others 0.1%
Total CO, emissions 450 mmt
Emissions intensity ratio
(€O, emissions/Q-BTUs) 39-8 mmt
CO'z emission§ per capita‘ ' S
(with population = 195 million)

Sources: See Tables 1.1 and 1.4; IEA (2013), “World Energy Outlook 2013” Tables for Scenario Projections, pp. 640-643; EIA 2013b “International Energy
Outlook 2013.”
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Atthe same time, Brazilis also unique in that its share of total GHG emissions generated by CO,
is substantially less than that the world average. As we discussed in Chapter 1, for the world as
awhole, CO_ emissions constitute 75 percent of all GHG emissions, including methane, nitrous
oxide and other GHG emission sources in addition to CO,.** In Brazil, this proportion is only 39
percent. This is not only because Brazil relies more heavily on hydro power, thereby reducing
the share of emissions than would otherwise result through generating electricity by burning
fossil fuels. The less favorable factor here is that Brazil generates high levels of methane and
nitrous oxide emissions from deforestation of the Amazon and the corresponding growth in
agriculture. We summarize these two unique features of the Brazilian energy infrastructure -
its production of hydropower and its high share of other GHG emissions as a share of total
emissions - in Table 8.3.

Table 8.3: Brazil relative to world averages in share of hydro power and CO2 emissions, 2010

Brazil World average
Hydro power as share of total energy supply 14.1% 3.2%
CO, emissions as share of total GHG emissions 39.0% 75.0%

Sources: Authors’ calculations based on IEA (2013), "World Energy Outlook 2013” Tables for Scenario Projections, p. 640 (for hydro shares); World Bank
(2014), “World Bank Indicators” Table 3.9.

Thus, as a project for mitigating overall GHG emissions, it is appropriate in the short term
for Brazil to devote a relatively large share of its overall resources to issues other than the
energy sector. D’Avignon (2013) summarizes the key features of Brazil’s current GHG emissions
mitigation program as follows:

e Underthe 2009 Copenhagen Accord, Brazil voluntarily committed to reducing emissions
by between 36.1 and 38.9 percent relative to BAU by 2020;

e The Brazilian government made an unconditional pledge to curb deforestation in
Amazonia by 8o percent in 2020 relative to 2005. Recent data show that Brazil is
keeping to this commitment;

e After the 2020 mitigation target is achieved, d’Avignon’s assessment is that emissions
may begin to rise again due to an increase in energy-related GHG emissions.

What is clear here is that, given both the high levels of renewable supply and efficiency
already achieved, as well as the very high percentage of overall emissions in Brazil resulting
from non-energy sources, Brazil should be devoting a large share of its resources through
2020 in bringing down GHG from sources other than the energy sector. That is, it may be that
a somewhat smaller share of GDP should go to clean energy investments, at least through
2020, than the 1.5 percent of GDP that we have assigned in our country-specific discussions on
Indonesia, South Africa and the ROK. This would free up more funds to address other projects
aimed at mitigating GHG emissions. At the same time, the final point raised by d’Avignon on
the prospects for rising energy-based emissions after 2020 provides a strong motivation for us
to also focus on reducing energy-based CO, emissions in Brazil over a 20-year cycle.

61 Other greenhouse gas emissions, which provide a relatively small share of the emissions total, are by-product emissions of hydrofluorocarbons,
perfluorocarbons, and sulfur hexafluoride.
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We turn now to reviewing how we might address effectively both sets of concerns. Before doing
so, itis perhaps also useful to underscore again a point we emphasized in Chapter 1: that none
of Brazil’s emissions reduction strategies or goals should be altered at all as a consequence
of the large-scale “pre-salt” oil deposits that have been discovered offshore. Indeed, if Brazil
were to increase its oil consumption levels due to the development of these new resources, the
impact will be to only raise Brazil’s emissions levels. More generally, as we have emphasized,
the burning of oil, coal and natural gas will need to contract substantially in absolute terms
throughout the globe to achieve the IPCC’s emissions reduction targets. This conclusion is
unaffected by whether new fossil fuel reserves are discovered, including the “pre-salt” deposits
in Brazil or elsewhere. It is also unaffected by whether new technologies, such as fracking, are
employed to produce fossil fuel energy more cheaply.

BAU vs. Low-Carbon 20-year Scenarios

Table 8.4 reports on two 2030 scenarios for Brazil’s energy consumption, published by the
IEA in its 2013 World Energy Outlook. These figures are from the same set of estimates we
described in Chapter 1, regarding world emissions projections for 2030. We now show these
two 2030 scenarios for Brazil along with actual energy consumption in 2010. The IEA describes
these alternative scenarios - which they themselves term the “Current Policies Scenario” and
the “450 Scenario”, but we will call them the BAU and Low Carbon Scenarios respectively - as
follows:

BAU (Current Policies) Scenario is based on the implementation of the government
policies and measures that had been enacted by mid-2013.

Low Carbon (450) Scenario sets out an energy pathway that is consistent with a 50

percent chance of meeting the goal of limiting the increase in average globaltemperature
to 2°C compared with pre-industrial levels (p. 645).
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Table 8.4: Brazil. Energy consumption and emissions:
2010 actuals and alternative official projections

2030 |IEA BAU 2030 IEA Low
2010 actuals q q
scenario Carbon scenario
Total energy consumption 11.3 Q-BTUs 18.2 Q-BTUs 15.7 Q-BTUs
Energy intensity ratio
Q-BTUs/$1 trillion GDP;
Assumes 2030 GDP is $4.8 trillion via 3.7 percent 5 QHRILS 2B QI 25 QR
GDP growth
Energy mix:
Qil 41% 35% 27%
Coal 6% 6% 4%
Natural gas 9% 18% 12%
Nuclear 1% 2% 3%
Renewables 43% 41% 52%
e Hydro 14% 12% 14%
e Bio - High emissions 29% 22% 18%
® Bio - Low emissions 0% 7% 18%
e All others 0.1% 2% 2%
Total CO, emissions 450 mmt 702 mmt 435 mmt
Emissions intensity ratio 8 mmt 8.6 mmt 977 mmt
(€O, emissions/Q-BTUs) — e oy
CO, emissions per capita
(with population = 195 million for 2010 and 220 2.3 mt 3.2 mt 2.0 mt
for 2030)

Sources: See Tables 1.1 and 1.4; IEA (2013), “World Energy Outlook 2013” Tables for Scenario Projections, pp. 640-643.

Note: For the IEA's 2030 BAU projection we assume a breakdown of 8o percent high-emissions bioenergy/20 percent low-emissions bioenergy. In this
BAU scenario, that amounts to 3.9 Q-BTUs, with 1 Q-BTU of low-emissions bioenergy. For the IEA's Low Carbon scenario, we assume the breakdown
becomes 50 percent each for high- and low-emissions bioenergy sources.

As we noted in Chapter 1, in assessing the IEA’s Low Carbon scenario, we should, to begin with,
not be satisfied with its goal of advancing a project that is consistent with only a 50 percent
chance of meeting the overall emissions targets for controlling climate change. As such, we
should consider this Low Carbon scenario for Brazil as representing a most conservative
version of what could be considered an acceptable emissions mitigation path. At the same
time, throughout this report we have tried to work with conservative assumptions in advancing
clean energy investment projects. In this sense therefore, the IEA’s scenario serves us well
here.®?

62 As with our methodological point noted in footnote 1, here again, for two reasons, we focus on the IEA’s model rather than the Brazilian Ministry
and Mine’s 10- and 20- year projections - the Plano Decenal de Expansao de Energia and its National Energy Plan 2030. The first is because the IEA’s
projections are for all regions of the world and a range of countries, and therefore is more conducive to international comparisons. In addition, the
IEA’s projections for 2030 are more conservative, and therefore consistent with our general approach in this report. We do, however, refer to the figures
from the National Energy Plan 2030 below.
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As we see under this Low Carbon scenario, overall energy consumption is at 15.7 Q-BTUs in
Brazil as of 2030. This is 4.4 Q-BTUs more than the actual level for 2010, a 39 percent increase.
But it is also 2.5 Q-BTUs, or 14 percent, lower than the BAU case, at 18.2 Q-BTUs.®3 We can
interpret this 14 percent reduction in consumption relative to the BAU case as a result of
increasing investments in energy efficiency. This is not a dramatic improvement in efficiency.
But one must recognize that because Brazil is already operating at a very high efficiency level,
further gains are more challenging to achieve.

According to the IEA, the sector with the largest potential for significant efficiency gains is
transportation. Within transportation, the biggest potential source of improvements is with
raising fuel efficiency standards for automobiles. The IEA also stresses that large efficiency
improvements can be achieved through moving freight transportation out of trucks and onto
rail and waterway systems.

In addition to these efficiency gains, a major change in the Low Carbon Emissions scenario
relative to the 2010 actual figure and the 2030 BAU case is the large increase in the share of
renewables. We do see hydro, wind, solar all growing relative to 2010, while geothermal is not
projected to be a significant energy resource in Brazil at any point. Hydro’s growth from 2010-
2013 is in rough proportion to the overall rise in consumption, since it represents 14 percent
of overall consumption in both 2010 and the 2030 Low Carbon case. Wind and solar rise from
a negligible base in 2010 to 0.3 Q-BTUs, or 2 percent of total supply. But the critical source of
new renewable supply is bioenergy. Combining both high- and low-emissions bioenergy, they
account for 36 percent of total supply as of 2030.

On this point, we need to emphasize that the breakdown shown in Table 8.4 between these
two sources of bioenergy - at 18 percent each of total supply in the Low Carbon scenario - is
an assumption that we have built into the scenario. This breakdown is not explicitly stated in
the IEA’s presentation of the scenario. But something like this breakdown is implicit in their
qualitative discussion of developments in Brazil’s bioenergy sector. It is worth reviewing the
IEA’s perspective on this in some detail, as in the following:

Interestin advanced biofuels is increasing in Brazil. As productivity improvements in first
generation biofuels show signs of diminishing, advanced (second generation) ethanol
has the potential to generate another leap in output without expanding the harvested
area. The existence of an established biofuels industry, the availability of low cost
cellulosic feedstock such as bagasse, a move towards mechanized harvesting (and a ban
on field burning) and a desire to move into higher value-added sectors all contribute to
making advanced ethanol production an attractive proposition in Brazil. Another form of
advanced biofuels is biodiesel from palm oil, with potential yields per land area that are
an order of magnitude higher than soybean-based biodiesel, potentially reducing the
future land demand for biodiesel by millions of hectares.

International companies are becoming increasingly visible in Brazil’s ethanol business
and some have clear plans relating to advanced biofuels, drawing on international
expertise and technology to build demonstration and commercial plants....Advanced
biofuels production costs are currently well above those of other fuels, due to the early

63 The 2030 estimates from Brazil’s National Energy Plan 2030 are 18.8 Q-BTUs of total energy consumption under its BAU scenario and 12.3 Q-BTUs
under its Low Carbon scenario. Thus under the National Energy Plan’s estimates, overall energy consumption in 2030 is 0.6 Q-BTUs higher than the
|IEA’s estimate under the respective BAU scenarios, but 3.4 Q-BTUs lower under the Low Carbon scenarios.
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stage of technology development and small scale of production. Efforts to develop the
sectorare expectedto focus on building capacity and reducing investment costs, reducing
the costs and enhancing the productivity of the enzymes and improving the efficiency of
feedstock collection. With significant support from BNDES (Brazil’s development bank),
the first commercial-scale advanced ethanol plant is scheduled to be operational in 2014.
Given the supportive growing conditions, policy environment, and funding programs,
several more commercial-scale production facilities can reasonably be expected by the
end of the decade (IEA, 2013a, p. 390).

In terms of overall emissions, we see that with the IEA’s low carbon case, Brazil’s overall CO,
emissions basically remains flat as of 2030 relative to 2010. Emissions per capita fall from 2.3
to 2 mt, a level that is 17 percent below the average global target of 2.4 mt per person within 20
years. This is while, according to the IEA’s assumptions, GDP is growing at an average annual
rate of 3.7 percent, to reach $4.8 trillion by 2030. Average per capita incomes thereby roughly
double by 2030, to $22,000 per person. In short, this Low Carbon scenario developed by the
IEA is a reasonable framework for advancing a viable clean energy investment project in Brazil
over the next 20 years.

Cost Estimates for Low Carbon Case

We do still need to establish some cost parameters for achieving the IEA’s Low Carbon Case for
Brazil. Aswe see in Table 8.5, the total reduction in energy consumption in the IEA’s Low Carbon
case versus the BAU for 2030 is 7.8 Q-BTUs. This includes 2.5 Q-BTUs in efficiency savings and a
5.3 Q-BTU expansion of clean renewables.

We based our estimates for the costs of achieving these gains in both efficiency and renewables
at $11 billion per Q-BTU for efficiency investments and $125 per Q-BTU for expanding clean
renewable capacity. We derived these two rough average cost figures as follows.

First, as presented in Chapter 4, in particular in Table 4.2 and the accompanying discussion,
the $11 billion per Q-BTU figure for savings from efficiency investments is the middle-range
figure in Table 4.2, which comes out of the 2010 McKinsey and Company study discussed in
Chapter 4 along with other estimates from the World Bank and the U.S. National Academy
of Sciences respectively. McKinsey reported that their average figure is derived from a wide
sample of projects throughout Africa, India, the Middle East, South East Asia, Eastern Europe
and China.

The $125 billion per Q-BTU for expanding clean renewable capacity is derived from the U.S. Low
Technology Cost case forthe bioenergy sector, as developed by the EIA, for 2035, and presented
in Table 3.9 and the accompanying text. Forvarious reasons, this figure is an appropriate rough,
if conservative, benchmark for renewable energy investment costs in Brazil over our full 20-year
investment cycle. To begin with, as we have seen in Table 8.4, within the framework of the IEA’s
2030 Low Carbon Scenario, most of Brazil’s clean renewable expansion will be concentrated in
the area of clean bioenergy. Moreover, the costs of expanding clean renewables in Brazil will
certainly be well below those for the U.S., since expanding the clean bioenergy sector will be
concentrated within Brazil’s agricultural sector. Labor costs in Brazil’s agricultural sector are
themselves certainly well below those for the U.S. We do not have reliable figures for relative
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unit labor costs in Brazil’s agricultural sector, but in manufacturing, as we report in Appendix
5 (Table As.1), wages are about 12 percent those in the U.S. Hence, by using the U.S. Low Cost
Technology figure for 2035, we are more likely to have a reasonable high-end approximation
of Brazil’s average costs to expand clean bioenergy capacity over the full 20-year investment
cycle. The IEA’s Low Carbon scenario does also anticipate major expansions in wind, solar, and
geothermal power. But these other clean renewable sectors are most likely to begin expanding
substantially when the costs of expansion begin to reach rough parity with clean bioenergy.
Overall then, $125 billion per Q-BTU is a reasonable rough benchmark approximation for the
costs of expanding clean renewables capacity in Brazil over our 20-year investment cycle.

Working with these figures - i.e. $11 billion per Q-BTU of efficiency gains and $125 billion, on
average, to expand clean renewable capacity by 1 Q-BTU - we then generate results for total
costs to reach the IEA’s Low Carbon case for Brazil. As we see in Table 8.5, we estimate these
total costs as $28 billion for the efficiency gains and $663 billion for the renewable supply
expansion, for a total of $691 billion over 20 years. This then equals $34.4 billion per year
over 20 years, with $1.4 allocated to efficiency investments and $33 billion to renewables.
Considered over the full 20-year investment period, this level of annual investment would be
equal to about 0.9 percent of the midrange figure for Brazil’s GDP over this time span. We
note that this relatively low level of clean energy investment spending as a share of GDP will
free resources that Brazil can used to definitively control emissions from methane and nitrous
oxide, as well as undertaking positive measures for preserving the Amazon.

Table 8.5: Brazil. Estimated cost for Brazil to move from IEA’s 2030 BAU to Low Carbon case

Costs per Q-BTU of renewable energy expansion and efficiency gains

4. Average
2. Assumed 3. Total costs annual costs
1. Q-BTUs y (= column for 20 years
cost per Q-BTU
1x3) (= column
3/20)
Expansion of clean renewables: Low ) $125 billion per - $33.0 billion
carbon vs BAU 5:3 Q-BTUs Q- BTU 6 ol ot peryear
Gains in energy efficiency: Low carbon i $11 billion per - $1.4 billion per
vs BAU 2.5 Q-BTUs QBTU $28 billion e
- $34.4 billion
Totals 7.8 Q-BTUs - $691 billion ST
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2012 GDP $2.3 trillion
Projected 20-year average annual GDP growth rate 3.7%
?v;?t]‘;;t;dpzecr)?eznfs\ferage annual GDP growth) $4.8 trillion
Midrange GDP value for investment spending estimates S3eeitnilllon
(= (2012 GDP + 2032 GDP)/2)

Average annual clean renewable investments $33 billion
Average annual energy efficiency investments $1.4 billion
Total annual clean energy investments $34.4 billion
Renewables + efficiency investments as share of midrange GDP 0.9%

Source: Authors’ calculations based on Table 8.4 and text in Chapter 8.

Employment Generation through Clean Energy Investments

Table 8.6 presents our estimates as to the effects on overall annual employment levels through
a clean energy investment project in Brazil in keeping with the IEA’s Low Carbon scenario for
2030. Our estimates of employment impacts follow from the employment modeling results we
generated in Chapter 7. We focus for this analysis on the Domestic Content Stable scenario,
as opposed to assuming Brazil’s imports will have to rise to meet the demands of its clean
energy investment project. This is because Brazil is a strongly industrializing economy, with
well-established and innovative clean energy sectors. The fact that its clean energy investment
project is also relatively small, at 0.9 percent of GDP, also means that the increased demands

on domestic resources will also be relatively modest.
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Table 8.6: Brazil. Employment impact of clean energy investments vs. fossil fuel spending
Figures are jobs in Year 1 of 20-year project

e Assumptions of IEA Low-Carbon Program:
- Total investment = 0.9 percent of GDP
- 94 percent clean renewables;
- 6 percent energy efficiency
e “Domestic Content Stable” scenario
e Additional assumptions:
- 70 percent of investment for capacity creation/production
- 30 percent for financing costs

Brazilian labor force, 2011 = 103 million

Net employment

Clean energy investments Fossil fuel spending effects of clean energy
investments
Direct + indirect total
542,000 307,000 235,000

employment in Year 1

Direct + indirect
employment as share of 0.5% 0.3% 0.2%
total labor force in Year 1

Source: See Chapter 7 and Appendix 3.

We have estimated the costs of the IEA’s Low Carbon scenario to be in the range of $34.4 billion
peryear in spending above what would have been needed under the IEA’s BAU scenario. This
is equal to about 0.9 percent of the midrange GDP figure for Brazil over the 2010-2030 period,
assuming a 3.7 percent average annual GDP growth rate.

Of course, given the relatively modest level of investment in clean renewables and energy
efficiency as a share of Brazil’s GDP, it follows that the extent of job creation will also be modest
relative to the size of Brazil’s overall labor force of 103 million. The impact on job creation
will be further diminished by the fact that, of the total annual budgetary allocation for clean
energy investments, we assume that only 70 percent is used for the activities linked to either
generating energy or raising efficiency standards, while 30 percent covers financing costs.

Considering these factors, it is nevertheless the case, as we see in Table 8.6, that the clean
energy investment project at this level will generate about 542,000 jobs for Brazilians. In
absolute terms, thisis clearly a large number of jobs. By comparison, we estimate that spending
the same amount of money in Brazil on maintaining the economy’s existing fossil fuel energy
system would create about 307,000 jobs. As such, to the extent that we considered this project
as a process of shifting resources out of fossil fuels and into clean energy, the net impact will
be an expansion of employment opportunities throughout Brazil of about 235,000 jobs.
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In Table 8.7, we present our projections for employment creation in Year 20 of Brazil’s 20-year
clean energy investment project. These figures are based on two separate assumptions as to
the average growth rate of labor productivity in Brazil’s clean energy sectors over this 20-year
period - a 1 percent low-end average annual labor productivity growth rate assumption and a
2.5 percent high-end assumption.

Table 8.7: Brazil. Projected employment impacts of clean energy investments after
20 Years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections:
e Baseline year-one employment levels given in Table 8.6
e 20-year average annual GDP growth is 3.7 percent
e Average annual labor productivity growth ranges between 1-2.5 percent
e Population figure is projected 2035 population
e Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 118 million

Midpoint between 1

Scenario with 1 percent | Scenario with 2.5 percent
percent and 2.5 percent

average annual labor average annual labor

.. .. productivity growth
productivity growth productivity growth scenarios
Year 20 direct + indirect 923,400 688,000 e

total employment

Year 20 direct + indirect
employment relative to 70.4% 26.9% 48.7%
Year 1 employment

Direct + indirect
employment as share of 0.8% 0.6% 0.7%
Year 20 labor force

Sources: See Chapter 7 and Appendix 3.

Working with these assumptions, as well as with the other assumptions on GDP growth,
population and labor force participation listed above Table 8.7, we generate the following
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation
through clean energy investments will rise to about 923,000 in Year 20. This is a 70
percent increase relative to employment creation in Year 1.

2. Under this 1 percent labor productivity growth assumption, employment creation
through clean energy investments will rise to about 0.8 percent of Brazil’s Year 20 labor
force relative to the 0.5 percent figure as of Year 1.

3. Assuming average labor productivity in Brazil’s clean energy sectors increases at the
higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation
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will then be reduced. Year 20 employment creation through clean energy investments
then reaches about 688,000. This is still a 27 percent increase over the Year 1 figure.
Under this scenario, employment creation through clean energy investments still rises
modestly as a share of Brazil’s overall labor force in Year 20, to around 0.6 percent.

4. In the last column of Table 8.7, we report midpoint employment creation figures, that
are simply based on averaging the Year 20 employment levels derived from both the
1 percent and 2.5 percent labor productivity growth assumptions. These figures give
some additional perspective on the extent of job opportunities that will result through
Brazil’s 20-year clean energy investment project. As we see, this midpoint figure is
about 806,000 jobs, which is about 0.7 percent of Brazil’s Year 20 labor force.

Overall, as we see, employment creation through Brazil’s clean energy investment project
operating at 0.9 percent of GDP per year will expand over time under a wide range of plausible
assumptions as to the growth of labor productivity over the 20-year investment cycle.

Conclusion

Brazil has long been highly innovative in the operations and development of its energy system.
As we have seen, it is already a world leader both in terms of its level of energy efficiency and in
its low level of emissions relative to its aggregate output. At the same time, Brazil is also high in
the global rankings in terms of generating GHG emissions from sources other than the burning
of oil, coal and natural gas. Given this combination of circumstances, a reasonable strategy
for Brazil at present is to spend relatively less money on clean energy investments than other
countries. This will allow Brazil to focus on reducing emissions from methane and nitrous oxide
and to preserving the Amazon, in addition to keeping CO, emission levels low.

The IEA’s Low Carbon scenario for Brazil for 2030 provides a valuable framework for Brazil in
proceeding with a clean energy investment agenda through 2030. The plan is relatively modest
in terms of its costs. We estimate them to be in the range of $34 billion per year for 20 years.
But at this level of spending, we do still see emissions fall by 38 percent relative to the 2030
BAU case, and decline by 13 percent relative to 2010. As a result, Brazil will continue to operate
with one of the lowest emissions per capita ratios, at 2 mt. This figure is significantly below the
target level of 2.4 mt for the world as a whole within the next 20 years.

Meanwhile, inaccomplishing these emissions reduction goals, Brazil’s clean energy investment
project will also generate an expansion of job opportunities throughout the country — 542,000
in total for advancing the Low Carbon scenario relative to the BAU case in Year 1; and 235,000
more jobs than would be created through spending the same funds on oil, coal, and natural gas
rather than on hydro, clean bioenergy, wind and solar power. Assuming a wide range of growth
rates for labor productivity in Brazil’s clean energy sectors, the gains in employment creation
will also then increase over time throughout the 20-year clean energy investment cycle.
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CHAPTER 9: GERMANY - CLEAN
ENERGY INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT
EXPANSION

Level of Development and CO2 Emissions

As is well-known, Germany occupies a unique place in the global project of building a clean-
energy economy and controlling climate change. Itis fairto say that Germany has made the most
thoroughgoing commitment to this project among the world’s large high-income countries, and
perhaps among all countries at all levels of development. Germany has, first, committed to
creating a nearly emissions-free economy as of 2050, i.e. a level of CO, emissions at 156 mmt.
Thiswould represent an 85 percent decline in emissions relative to the 1990 level of 1,042 mmt,
and a per capita emissions level of 2.1 mt (assuming 2050 population at about 75 million).
They have also embraced this ambitious project while also aiming to eliminate entirely their
reliance on nuclear energy over this same period. It is evident that the German case is of great
importance, both in terms of its impact within Germany itself, and through advancing a set of
ideas, products, and experiences from which the rest of the world can learn.

In Table 9.1, we review the basic statistics from Chapter 1 indicating Germany’s current level of
development and the operations of its energy system. According to the World Bank Indicators,
Germany is a high-income country, with, as we see in Table 9.1, average per capita income at
$41,500 as of 2010. Overall energy consumption was at 13.9 Q-BTUs in 2010, and overall CO,
emissions were at 793 mmt.
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Table 9.1: Germany. Basic energy indicators, 2010

Germany World
Per capita GDP
(zoo5F;PPP) et $10:300
}gt_e;Tzrsrgy consumption 13.9 Q-BTUs 510.5 Q-BTUs
Per capita energy consumption i i
(M-BTUs/population) 170.4 M-BTUs 74.0 M-BTUs
Total CO, emissions
(mmt) ’ 793 mmt 31,502 mmt
Per capita CO, emissions mt 6 mt
(mt of emissions/population) 9-7 4
Energy intensity ratio ) i
(Q-BTUs/$1 trillion GDP) (R CEATE 7 S
Emissions intensity ratio 1 mmt 65.0 mmt
(Co, emissions/Q-BTUs) 57 59

Source: See Tables 1.1 and 1.4.

Per capita CO_ emissions were at 9.7 mt, which is a bit more than twice as high as the global
average of 4.6 mt, and four times higher than the global 20-year goal of 2.4 mt per person
necessary forthe globe to achieve an adequate path for stabilizing global average temperatures
by 2050. Nevertheless, as we had reviewed in Chapter 1, Germany’s per capita emissions levels
are far below those of other high-income countries. The figure for the U.S., as we saw in Chapter
1, is 18.2 mt per person.

The main factor responsible for Germany’s low emissions levels is the high level of energy
efficiency at which the economy operates. This is evident through its energy intensity ratio,
which measures Q-BTUs of energy per $1 trillion in GDP. As we have seen, Germany’s index is
4.1. This is 73 percent below the world average of 7.1. It is also 50 percent lower than the U.S.
figure of 6.1 and 1/3 of China’s ratio of 12.1.

To date, Germany’s energy mix is not unusually weighted toward clean energy. Its emissions
intensity ratio - the ratio of CO, emissions per Q-BTU - is 57.1. This is only modestly lower than
the global average of 65.9 and basically at parity with the U.S.

We get a more fully specified picture of Germany’s energy mixin Table 9.2. As we see, Germany’s
consumption is dominated by traditional non-renewable sources, with oil at 34.4 percent, coal
at 23.7 percent, natural gas at 21.6 percent, and nuclear at 11.4 percent. The only renewable
source that makes a significant contribution as of 2010 is bioenergy. But to date, Germany’s
bioenergy sources are generated almost entirely through high-emissions processes. Hydro,
wind, solar and geothermal power combined account for less than 2 percent of Germany’s total
energy supply as of 2010.
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Table 9.2: Germany. Energy consumption and emissions, 2010

Total energy consumption 13.9 Q-BTUs
Total CO, emissions 793 mmt
CO, emissions per capita
(Wizth population = 82.3 million) 9.7 mt
s O
Emissions intensity ratio
(Co, emissions/Q-BTUs) 57.1mmt
Energy mix (2008):
Qil 34.4%
Coal 23.7%
Natural gas 21.6%
Nuclear 11.4%
All renewables 8.0%
e Bio - High emissions 6.3%
® Bio - Low emissions 0.0%
e Hydro 0.5%
e Wind 1.0%
e Solar 0.2%
e Geothermal 0.01%

Sources: See Tables 1.1 and 1.4; EIA (2013b) “International Energy Outlook 2013”; Schlesinger, Lindenberger and Lutz (2010), Table A 1-2.

Germany’s Transformational Project: The Energiewende

As is evident from the figures reviewed above, Germany has both made major advances in
reducing CO, emissions relative to other high-income countries, but equally, still faces major
challenges ahead to become a low-emissions economy as of 2050. Germany faces two basic
problems moving forward. The first is that most of its emissions reductions achievements to
date have been achieved through energy efficiency investments. Precisely because Germany
already operates at a high level of efficiency, it could be more difficult for them to obtain further
major efficiency improvements. The second problem is that, moving forward, Germany intends
to rely to a major extent on clean renewable energy supplies. This is despite the fact that, to
date, the contributions of all clean renewables as a share of overall energy supply remains
negligible. It is therefore critical to review the project Germany has set and the opportunities
available to them with respect to new large-scale investments both in energy efficiency and
clean renewable energy sources.%

64 See Hockenos (2013a) for a valuable overview assessment of the Energiewende to date, as well as an analysis of the major challenges ahead.
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Alternative 2030 Scenarios

We can obtain a good sense of the basics of Germany’s transformational project through
2030 via the government’s projections of energy supply and consumption patterns within two
scenarios set out in its 2010 Energy Concept document (BMUB, 2010). We present below two
of the scenarios developed in that document. The first is the government’s Reference case,
to which we refer as their “BAU scenario.” The second is its 1A case, through which Germany
reaches its 2050 target level of 156 mmt in CO, emissions, i.e. the target of an 85 percent
emissions decline relative to the 1990 level. We refer to their 1A case as the “Low Carbon
scenario.” We present these two scenarios, along with the actual figures for 2008, in Table 9.3
below.

Table 9.3: Germany. Energy consumption and emissions: 2008 actuals and alternative official
projections

German Environmental Ministry, Energy Concept
2008 actuals 2030 BAU Scenario 2030 Low Carbon Scenario
Total energy consumption 14.4 Q-BTUs 10.4 Q-BTUs 9.3 Q-BTUs
Ege;%s';';f';:'[m;agg o 5.1Q-BTUs 2.1Q-BTUs 1.9 Q-BTUs
Emissions intensity ratio
(€O, emissions/Q-BTUs) 52.9 mmt 55:5 mmt 47.:2 mmt
Total CO, emissions 732 mmt® 577 mmte 439 mmt
CO, emissions per capita 8.9 mt 7.2 mt 5.5 mt
Energy mix:
Qil 34.4% 35.8% 32.3%
Coal 23.7% 17.3% 16.1%
Natural gas 21.6% 23.9% 21.9%
Nuclear 11.4% 0.0% 0.0%
All renewables 8.0% 22.8% 30.0%
° E::i;::)gnhsd 6.3% 0.0% 0.0%
° E::i;slz_i%vr:s 0.0% 14.6% 19.6%
e Hydro 0.5% 0.9% 1.0%
e Wind 1.0% 4.2% 5.4%
e Solar 0.2% 2.0% 2.4%
e Geothermal 0.0% 1.1% 1.2%

Sources: BMUB (2010), “Energy Concept of 2010”; EIA (2013b), “International Energy Outlook 2013”; Schlesinger, Lindenberger, and Lutz (2010),
Table A 1-2.

Notes: a) Calculations based on assumption of 2 percent real GDP growth from 2010 base of $3.3 trillion. b) The emission figures for 2008 come from
the World Bank Indicators. They are lower than those reported above for 2010, which come from the EIA International Energy Outlook. This is one case
where the need to rely on more than one source creates some statistical inconsistencies. But it was necessary to use these various sources for the
purposes of internal consistency within each separate table of figures. c) These figures were derived from the levels of energy consumption assigned
to oil, coal, and natural gas, with the emissions per Q-BTU figures presented in Table 2.2. The figures taken directly from the Energy Concept source are
somewhat lower: 503 mmt under the BAU case and 403 under the Low Carbon case. d) As discussed in the text, we assume that, by 2030, the entire
supply of bioenergy in Germany comes from low-emissions sources. This is not explicitly stated as a feature of the 2030 projections.
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The first thing to note is that Germany achieves major advances in energy efficiency under
both its BAU and Low Carbon scenarios for 2030. Thus, under the BAU scenario, Germany’s
energy intensity falls from 5.1 Q-BTUs per $1 trillion in 2008 to 2.1 in 2030, a nearly 60 percent
improvementin efficiency. The additional efficiency gains from the BAU to the Low Carbon case
are modest, from a 2.1 to a 1.9 energy intensity ratio.

The major difference between the BAU and Low Carbon cases is with the change in the energy
mix. As we see in Table 9.3, under the BAU case, the emissions intensity ratio - i.e. emissions
per Q-BTU - actually rises modestly as of 2030 relative to 2008, from 52.9 to 55.5 mmt of
emissions per Q-BTU. However, with the Low Carbon scenario, the emissions intensity ratio
falls to 47.2 mmt per Q-BTU, a 15 percent decline relative to the BAU case.

We see the overall impact of both the gains in efficiency and the expansion of clean renewables
supply through the trajectory for overall emissions and emissions per capita as of 2030. In the
2030 BAU scenario, total emissions do fall by a substantial 21 percent relative to 2008, from
732 to 577 mmt. With the Low Carbon scenario, the emissions decline is to 439 mmt, a 40
percent reduction relative to 2008.

We obtain further perspectives on these two 2030 scenarios by examining the changes in
the specific energy mix in both cases. In both cases, the main changes with respect to non-
renewable sources are the absolute elimination of nuclear energy, from having contributed
over 11 percent to Germany’s total energy supply in 2008. The share of energy supplied by coal,
also declines significantly - from nearly 24 percent of total supply in 2008 to 17 percent under
the 2030 BAU scenario and 16 percent with the Low Carbon scenario.

The relative declines for nuclear power and coal are then matched by a large expansion in
renewables supply. Wind, solar and geothermal all grow substantially, both under the BAU and
Low Carbon cases. The share from wind rises from 1 percent in 2008 to 4.2 percent under the
2030 BAU case and to 5.4 percent in the Low Carbon case. Solar rises from only 0.2 percent
in 2008 to 2.0 percent in the 2030 BAU case and 2.4 percent under the Low Carbon scenario.
These are alllarge proportionalincreases. But they all remain as relatively modest contributions
to Germany’s overall energy supply in 2030, under both the BAU and Low Carbon scenarios.

The most important factor in terms of renewables is the large expansion in bioenergy - from
6.3 percent of total supply in 2008 to 14.6 percent in 2030 under the BAU scenario and to
19.6 percent under the Low Carbon scenario. What is also critical here is that, between 2008
and 2030, Table 9.3 shows that the bioenergy supply shifts entirely from high-emissions to
low-emissions processes. That is, the table shows that low-emissions bioenergy is at zero
percent of total supply as of 2008, but then, as of 2030, under both the BAU and Low Carbon
scenarios, high-emissions bioenergy is at zero percent, while low-emissions bioenergy provide
100 percent of the bioenergy supply. In fact, this breakdown in the relative proportions of high-
and low-emissions bioenergy is not explicitly stated in the BMUB’s Energy Concept document.
We have, instead, inferred these shifts in the shares of high- and low-emissions bioenergy
sources based on changes in emission levels in the 2030 scenarios relative to 2008. That is, it
would not be possible for overall emissions to fall to the extent presented in the Energy Concept
document if Germany were to continue to generate bioenergy through the high-emissions
practices that dominated as of 2008.
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We discuss thisissue of bioenergy sources further below, as part of our discussion of Germany’s
strategies for achieving its highly ambitious emissions reductions goals for 2030. We first
consider developments in the area of energy efficiency, then take up investments in renewable
energy.

Energy Efficiency

Despite the fact that Germany is already operating at a very high efficiency level, the
government’s policy framework, the 2010 Energy Concept document developed by the BMUB,
has developed a path through which its energy intensity ratio will still fall much further, from
the 2008 level of about 5 Q-BTUs per $1 trillion in GDP to about 2 as of 2030 - a roughly 60
percent efficiency improvement. Germany’s efficiency strategy to date and future plans are
well summarized in the IEA’s 2013 Energy Efficiency Market Report. The IEA’s study begins by
noting that “Germany’s state-owned development bank, KfW, plays a crucial role by providing
loans and subsidies for investment in energy efficiency measures in buildings and industry,
which have leveraged significant private funds,” (2013, p. 149). The IEA study also believes
that Germany’s progress to date can indeed continue into the foreseeable future, as long as
government policies continue to support efficiency investments on a large-scale basis. The
IEA’s assessment of Germany’s prospects is as follows:

The outlook is bright for energy efficiency markets in Germany, where a combination of
government policy requiring better energy performance, a history of industry engaged
in providing energy efficient products, and financial support available to consumers for
energy efficiency, mean that significant investment is expected to continue. European
carbon dioxide emissions regulations for cars will require the large German car
industry to continue investing in fuel-efficient technology. Potential opportunities for
energy efficiency investment can also be found in industry, where energy management
programmes are now necessary to access certain tax relief programmes.

Buildings are likely to remain an area with further potential for investment in energy
efficiency. The 2 percent renovation rate target set in the Energy Concept strategy should
translate into further investment opportunities for energy efficiency refurbishments,
involving both a larger number of buildings and deeper retrofits. Although much
progress has been made, significant investment opportunities remain in the buildings
Sector over the next five to ten years.

Markets for energy efficiency services, notably energy advice, energy management and
energy contracting, have experienced steady growth over the last five years in Germany.
However, they are not considered to have met their potential, and further growth will
likely be driven by policy in the medium term. Continuing barriers to market development
are also largely related to policy; moves to facilitate market activity, such as through
certification and determining transparent definitions of products and services, are
expected to spur continued growth in energy efficiency markets (IEA, 2013b, p. 159).
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Renewables

As documented by Eichhammer (2013), the expansion in the supply of wind and solar energy
production in Germany have been substantial. Germany has also been a major exporter in
both areas. Prospects are also favorable for a major development in concentrated solar power
systems for the Middle East and North Africa, with the energy generated there potentially being
transported back to Europe.

To date, the major driver behind the successful expansion of the solar and wind sectors has
been the provision of feed-in tariffs, which guarantee a sale price for electricity generated
through the renewable sources and preferential access to the grid. The 2012 OECD economic
report on Germany provides a favorable overall assessment of the impact of Germany’s feed-in
tariff policies, while also suggesting the need for further policy innovations over time:

These tariffs are in general well designed; they are transparent and predictable (thus
fostering long-term investment) and are decreasing over time (thus encouraging
innovation). Tariffs also vary across technologies; while this is potentially supporting
non-mature but promising power sources more than others, it increases CO, abatement
costs for certain technologies to excessive levels. Given the relatively high costs of feed-
in tariffs, efficiency improving adjustments to the system should be considered. It is
thus welcome that the government revised the photovoltaic tariffs; it should continue to
monitor the generosity of the feed-in tariffs and adjust them tightly in line with market
developments (OECD, 2012, p. 21).

Another major factor supporting developments in the solar and wind sectors has been
technical innovations. The OECD study reports that the number of triadic patents - i.e. those
filed simultaneously within the European Union, the U.S. and Japan - for renewable energy
technologies was second only to Japan between 1996 to 2008. The share of GDP allocated in
Germany to R&D in renewable energy is fourth among OECD economies, after only the ROK,
Finland and Japan, and is roughly twice as high as the US.

One important area of R&D development in Germany is creating a flexible energy supply load
curve for renewables, as the demand for energy varies over the course of days, weeks, and
seasons. Figure 9.1 below, reproduced from Eichhammer (2013), provides an example of the
type of flexible load management systems being developed for Germany’s renewable energy
mix as of 2050. As we can see, the management systems will have to take account of the
relative capacities of domestically produced wind, bioenergy, solar, and hydro to contribute
at any given time, the capacity to store renewable energy supplies over time, the prospects for
developing export markets, and the potential residual demand for imports.
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Figure 9.1: Germany. A model of a flexible renewable energy supply system for Germany, 2050

The figure depicts a possible load curve and supply in Germany in 2050, week 42.
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Source: Eichhammer (2013).

However, the single largest set of issues with respect to developing a large-scale supply of clean
renewable sources by 2030 will be in the area of bioenergy. As we have discussed elsewhere in
thisreport, in particularin our Chapter3 overview with respectto Brazil’s majorbioenergy sector,
the environmental impacts of generating bioenergy vary greatly, depending on feedstocks and
energy-producing processes involved. For example, as we have seen, emissions generated by
burning corn ethanol that has been refined through coal-firing processes actually generates
34 percent greater emissions over a 30-year cycle than burning gasoline. By contrast, using
corn stover or switchgrass as the feedstock for ethanol, and using renewable energy in refining
processes, is actually a net absorber of atmospheric CO_. At present, Germany relies almost
entirely on high-emissions bioenergy sources in supplying 6.3 percent of its total energy
supply. But the Low Carbon scenario in the BMUB’s Energy Concept has bioenergy as providing
nearly 20 percent of Germany’s total energy supply in 2030. It will be imperative for Germany
to transform its bioenergy sector into low-emissions methods in order to meet its overall 2030
emissions reduction targets.

These issues have recently been debated intensively in Germany. Thus, an analysis published
in 2012 by the German National Academy of Sciences Leopoldina, Bioenergy - Chances and
Limits - argues that the negative impacts of bioenergy outweigh the positives, and that the
realistic prospects for expanding a low-emissions bioenergy sector are limited. One observer
of Germany’s energy project Paul Hockenos reported on this study as follows in a January 2013
European Energy Review article:

A group of 20 experts from various disciplines branded the sector as a bit player in the
transition to renewables and charged that the net environmental impact is negative.
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The cultivation and use of energy crops, it concluded, leads to high emissions of
greenhouse gases, damages ecosystems, and competes with food crops. Germany’s
biomass imports...effectively export the harmful impact of intensive bioenergy-based
agriculture. The report recommends bolstering other renewables like PV solar power
and wind power, as well as finding strategies for increasing energy efficiency rather than
investing further in the bioenergy branch. Bioenergy makes sense, it concludes, only in
the limited circumstances when animal or other kinds of waste (residuals) serve as the
biomass (Hockenos, 2013b).

However, Hockenos also reports that Germany has developed highly stringent and, to
date, effective certification schemes that were designed explicitly to address bioenergy’s
environmental shortcomings. Indeed, he writes that “Germany has been the pioneer in
designing and implementing these controls at home as well as having standards turned into law
for the EU-27.” Most critically, Hockenos reports that, following Germany’s lead, the European
Commission is aiming to phase out bioenergy generated with food crops altogether and to use
only bioenergy produced from residual biomass, waste and selected dedicated crops grown on
surplus land that cannot be used for the cultivation of food or animal feedstocks. According to
Hockenos, the authors of the National Academy study did not take adequate account of these
policy innovations that are already underway in Germany.

Cost Estimates for Clean Energy Investments

It is evident that Germany does face major challenges in implementing its clean energy
transformation. The costs of this project are likely to be in the range of 1.5 percent of GDP
per year, at least through 2030. The Energy Concept document which developed the two 2030
scenarios we have described estimates that the total costs for Germany to move from the
BAU to the Low Carbon scenario is likely to be in the range of $500 billion through 2050. That
would be an average annual cost of $12.5 billion over 40 years. This in turn would represent
about 0.4 percent of Germany’s current GDP level of $3.3 trillion. However, as we have seen,
the differences between the BAU and Low Carbon scenarios for 2030 are much smaller than
either scenario relative to the actual figures for 2008. Indeed, with respect to energy efficiency
gains, there is only a modest difference between the BAU and Low Carbon scenarios. The major
transformations are already embedded in the BAU case.

The differences between the BAU and Low Carbon cases are larger with respect to renewables.
Still, even in the BAU case, solar power goes from 0.03 to 0.2 Q-BTUs and wind goes from 0.14
to 0.44 between 2008 and 2030. Most significantly, at least as we have interpreted the 2030
BAU case, clean bioenergy goes from a zero baseline in 2008 to fully 1.5 Q-BTUs in 2030.

Overall then, if the Concept estimates that the costs of moving from the BAU to the Low Carbon
case at about 0.4 percent of Germany’s 2010 GDP of $3.3 trillion, it is reasonable to expect that
moving from the 2008 baseline to the BAU case will entail roughly another 1.1 percent of GDP.
This means roughly another $36 billion per year, for a total of about $50 billion.

This figure would then rise annually in correspondence with the economy’s growing GDP. Over
the full 20-year period from 2010-2030, the midrange level of spending would be $62 billion,
assuming Germany’s GDP grew at an average annual rate of 2 percent per year.
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Employment Generation through Clean Energy Investments

Table 9.4 presents our estimates as to the effects on overall annual employment levels through
a clean energy investment project corresponding with the Low Carbon case in Germany’s
Energy Concept document. Our employment estimates are based on the results of the
employment models we presented in Chapter 7. We focus for this analysis on the Domestic
Content Stable scenario, as opposed to assuming Germany’s imports will have to rise to meet
the resource demands of its clean energy investment project. This is because Germany is an
advanced economy, which has already built the most innovative clean energy sector among
large advanced economies.

Table 9.4: Germany. Employment impact of clean energy investments vs. fossil fuel spending
Figures are jobs in Year 1 of 20-year clean energy investment strategy

e Assumptions of IEA Low-Carbon Investment Strategy:
- Total investment = 1.5 percent of GDP;
- 67 percent clean renewables;
- 33 percent energy efficiency
e “Domestic Content Stable” scenario
e Additional assumptions:
- 70 percent of investment for capacity creation/production;
- 30 percent for financing costs.

German labor force in 2011 = 42.3 million

Net employment

Clean energy Fossil fuel
X . effects of clean energy
investments spending 4
investments
Direct + indirect total
331,500 263,300 68,200

employment at Year 1

Direct + indirect
employment as share of 0.8% 0.6% 0.2%
total labor force at Year 1

Source: See Chapter 7 and Appendix 3.

We have roughly estimated the costs of achieving the goals of the Low Carbon case as being
about 1.5 percent of Germany’s GDP through 2030. We then also assume that, of the total annual
budgetary allocation for clean energy investments, 70 percent is used for the activities linked
to either generating energy or raising efficiency standards, while 30 percent covers financing
costs. We estimate employment creation only on the basis of the 70 percent of spending going
towards expanding renewable energy capacity or raising efficiency standards as opposed to
the financing costs of undertaking those investment activities.
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Considering these factors, we see that Germany’s clean energy investment project, as we have
specified it, will generate about 330,000 jobs within Germany in Year 1 of the 20-yearinvestment
project. This represents about 0.8 percent of Germany’s total workforce. By comparison, if
Germany were to spend that same 1.5 percent of GDP within its existing fossil fuel sectors,
the level of employment creation would be about 263,000 jobs, or 0.6 percent of Germany’s
workforce. The net effect from shifting funds out of fossil fuels and into energy efficiency and
renewables would be to increase the overall number of jobs within the German economy by
close to 70,000 jobs.

In Table 9.5, we present our projections for employment creation in Year 20 of Germany’s 20-
year clean energy investment project. These figures are based on two separate assumptions
as to the average growth rate of labor productivity in Germany’s clean energy sectors over this
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption
and a 2.5 percent high-end assumption.

Table 9.5: Germany. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections
e Baseline year-one employment levels given in Table 9.4
e 20-year average annual GDP growth is 2 percent
e Average annual labor productivity growth ranges between 1-2.5 percent
e Population figure is projected 2035 population
e Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 40 million

Midpoint between 1

Scenario with 1 percent | Scenario with 2.5 percent
percent and 2.5 percent

average annual labor average annual labor

. A productivity growth
productivity growth productivity growth scenarios
Direct + indirect total
404,500 299,900 352,000

employment

Year 20 direct + indirect
employment relative to 22.0% -9.5% 6.2%
Year 1 employment

Direct + indirect
employment as share of 1.0% 0.7% 0.9%
total labor force

Sources: See Chapter 7 and Appendix 3.
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Working with these assumptions, as well as with the other assumptions on GDP growth,
population and labor force participation listed above Table 9.5, we generate the following
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation
through clean energy investments will rise to about 404,000 in Year 20. This is a 22
percent increase relative to employment creation in Year 1.

2. Under this 1 percent labor productivity growth assumption, employment creation
through clean energy investments will rise to about 1 percent of Germany’s Year 20 labor
force relative to the 0.8 percent figure as of Year 1.

3. Assuming average labor productivity in Germany’s clean energy sectors increases at the
higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation
will then be reduced. Year 20 employment creation through clean energy investments
then reaches about 300,000. This is about a 9 percent reduction over the Year 1 figure.
The reason thatemployment contracts through clean energy investments in this scenario
is that we are assuming Germany’s average annual GDP growth is a relatively slow 2
percent. GDP growth would thereby be below our assumed high-end labor productivity
growth assumption of 2.5 percent. Under this scenario, employment creation through
clean energy investments declines by 0.1 percent as a share of Germany’s overall labor
force in Year 20, to around 0.7 percent.

4. In the last column of Table 9.5, we report midpoint employment creation figures
that are based on averaging the Year 20 employment estimates derived from both
the 1 percent and 2.5 percent labor productivity growth assumptions. These figures
give some additional perspective on the extent of job opportunities that will result
through Germany’s 20-year clean energy investment project. As we see, the midpoint
employment level for Year 20 is about 350,000. This would represent about 0.9 percent
of Germany’s Year 20 workforce.

Overall, employment creation through Germany’s clean energy investment project operating
at 1.5 percent of percent of GDP per year will expand over time under most scenarios as to the
growth of labor productivity overthe 20-yearinvestment cycle. Itis only when labor productivity
in Germany’s clean energy sectors rise at a rate fasterthan our assumed relatively slow average
annual GDP growth rate of 2 percent that the gains in employment through clean energy
investments decline over time. Nevertheless, even under such scenarios of labor productivity
rising faster than GDP growth, the clean energy investment strategy will still generate positive
gains in employment, both absolutely as well as relative to spending within Germany’s fossil
fuel sectors.

Considering these employment estimates as a whole, the impact on job opportunities of the
German clean energy investment project will be favorable. On their own, they will not generate
a dramatic improvement in employment opportunities throughout the German economy. But
there will positive job benefits that accrue while Germany undertakes its transformational
project of building a clean energy economy.

200



SECTION 3: INDIVIDUAL COUNTRY STUDIES

CHAPTER 10: INDONESIA - CLEAN
ENERGY INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT
EXPANSION

Growth Trajectory and Emissions

We begin by reviewing in Table 10.1 the basic statistics from Chapter 1 indicating Indonesia’s
current level of development and the operations of their energy system. As we see in Table 10.1,
Indonesia is at present a lower-middle income country, with average per capita GDP at $3,600
as of 2012. Overall energy consumption is at 6.0 Q-BTUs, and overall CO, emissions are at 415
mmt. Emissions per capita are at 1.7 mt, which is roughly one-third the global average of 4.6
mt. It is also below the targeted global average figure of 2.4 mt needed for achieving the 20-
year global CO, emissions reduction target. In terms of both the energy intensity and emissions
intensity ratios, Table 10.1 shows that Indonesia is presently close to the global average.

Table 10.1: Indonesia. Basic energy indicators, 2010

Indonesia World
Per capita GDP
(2005F,‘)$PPP) $3,600 $10,300
}gfgﬁ};ﬁrgy consumption 6.0 Q-BTUs 510.5 Q-BTUs
Per capita energy consumption i )
(M-BTUs/population) 25.2 M-BTUs 74.0 M-BTUs
Total CO, emissions
(mmt) 2 414.6 mmt 31,502 mmt
Per capita CO, emissions 1.7 mt 6 mt
(mt of emissions/population) 7 4
Energy intensity ratio i )
(Q-BTUs/$1 trillion GDP) SERHEICE 7.1 QBTUs
Emissions intensity ratio
(€O, emissions/Q-BTUs) 691 mmt 65.9 mmt

Source: See Tables 1.1 and 1.4.
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Between 2003-2012, the Indonesian economy has grown at an average annual rate of 5.7
percent. This sustained strong growth performance has also generated rapid increases in
energy consumption throughout the country. Nevertheless, the country’s provisioning of energy
services is still seriously underdeveloped. As of 2012, 35 percent of households do not have
access to electricity. The country experiences daily power blackouts averaging 4 hours a day.

The economic growth target of the State Ministry of National Planning (BAPPENAS) is for
Indonesia to move onto a long-term GDP growth path of around 7 percent peryearthrough 2030
(Republic of Indonesia, 2011). This would represent a very rapid long-term growth trajectory,
roughly comparable to Japan, the ROK, China and the smaller Asian Tiger economies during
their strongest growth phases. This growth trajectory would generate a rough tripling of average
per capita incomes in the country, to around $10,000 per person. If such average income gains
from growth were equitably distributed, the impact would be a dramatic reduction in poverty.

Of course, we cannot know whether Indonesia will be able to achieve this kind of growth
performance. But we do know that if they attain anything roughly along these lines while also
maintaining its existing energy infrastructure more or less intact, the result will be to generate
a huge increase in the country’s CO, emissions. This is precisely the quandary that will confront
not only Indonesia, but all low and lower-middle income countries that aim to achieve a rapid
growth rate on a foundation of fossil-fuel dominated energy systems.

InTable 10.2, we can seetheimpactofindonesia’s rapid growth path underwhat the government
assumes as its BAU energy consumption assumptions through 2030, as presented in its 2010
document, Indonesia’s Second National Communication under the United Nations Framework
Convention on Climate Change (UNFCCC). Thus, as we see in the top row of the second column
of Table 10.2, under the BAU assumptions, Indonesia’s overall energy consumption rises to
25.8 Q-BTUs by 2030, a 330 percent increase relative to the actual 2010 level. Moving down the
second column, we can also see how Indonesia’s energy mix is projected to change over this
time period, with most of the expansion in overall supply coming from coal. The proportion of
overall energy supplied by coal rises from 32.6 to 47.3 percent.
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Table 10.2: Indonesia. Energy consumption and emissions: 2010 actuals and alternative

official projections

2010 actuals 2030 BAU scenario 2030 :l.:'\:\;ﬁzrbon”
Total energy consumption 6.0 Q-BTUs 25.8 Q-BTUs 19.7 Q-BTUs
Ege;%s';';f?f"[m;agg Py 6.8 Q-BTUs 11.2 Q-BTUs 8.6 Q-BTUs
Energy mix:
Qil 39.1% 21.4% 25.7%
Coal 32.6% 52.0% 30.5%
Natural gas 19.2% 20.2% 30.4%
Nuclear 0.0% 0.0% 0.3%
High-emissions renewables 4.0% 2.5% 5.4%?"
Clean renewables 5.1% 3.8% 7.9%
* Hydro 4.2% 2.7% 4.0%
e All others 0.9% 1.1% 3.9%°
Total CO, emissions 415 mmt 2,200 mmt 1,450 mmt
?2;?2';?;:2;?}3%;3;0 69.2 mmt 85.3 mmt 73.6 mmt
T s s2m

Source: See Tables 1.1 and 1.4; Republic of Indonesia (2010), “Indonesia’s Second National Communication to the United Nations Framework
Convention on Climate Change”; EIA (2013b), “International Energy Outlook 2013.”

Note: a) Calculations based on average annual GDP growth of 5 percent; b-c) Assumption is that clean bioenergy supplies 20 percent of all bioenergy
under 2030 “low carbon” scenario.

The impact of this large increase in energy consumption with a rising proportion supplied
through burning coal, the most heavily emitting CO, energy source, is that overall emissions
will rise from 415 mmt in 2010 to 2,200 mmt in 2030 under the 2030 BAU scenario, a 430
percent increase. Assuming Indonesia’s population in 2030 is around 280 million, this then
also means that per capita CO, emissions rise from 1.7 to 7.8 mt. This figure is 70 percent higher
the current global average per capita emissions level of 4.6 mt, and more than three times
higher than the 2.4 mt average per capita level that the world needs to achieve as its 20-year
emissions reduction target.

The Indonesian government fully recognizes the problem. Thus, its 2010 communication to
the UNFCCC also presents alternatives to the BAU scenario, which seek to reduce the rise
in CO, emissions within the context of the country’s growth process (Republic of Indonesia,
2010). The third column of Table 10.2 presents the results of the government’s most ambitious
scenario, which we have termed its “Low Carbon” case (the document itself terms this scenario
“Climate 11”). In this case, overall emissions in 2030, at 1,450 mmt, are 50 percent lower than
in the BAU case. Most of the improvement here is the result of fuel-switching from coal to
natural gas. As Table 10.2 shows, in the Low Carbon scenario, natural gas rises from 18.1 to
27.4 percent of overall supply relative to the BAU case while coal falls from 47.3 to 30.5 percent.
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Clean renewables also rises relative to the BAU case, from 3.8 to 5.4 percent. The Low Carbon
case also assumes a first-time contribution from nuclear power, if at a still quite modest level
of 0.3 percent of total supply.

The most critical result emerging out of Indonesia’s Low Carbon scenario is that per capita
emissions are still at 5.2 mtin 2030. That is, with this Low Carbon case, per capita emissions as of
2030 are still more than twice as high as the 2.4 mt global average emissions level needed to reach
the 20-year emissions reduction target. Clearly, as a framework for beginning to control climate
change over the next 20 years, even this Low Carbon scenario is not viable for either Indonesia
itself or other low- to lower-middle income economies aiming for rapid economic growth.

Emissions Reductions through Clean Energy Investments

In Table 10.3, we present our alternative framework, in which Indonesia’s growth process
incorporates clean energy investments - i.e. investments in renewable energy and energy
efficiency - at a rate of 1.5 percent of GDP annually over a full 20-year period. For the purposes
of our discussion, as sketched earlier in this chapter, we assume that this 1.5 percent of GDP is
allocated with 1 percent of GDP funding the expansion of clean renewable production while 0.5
percent of GDP is channeled into energy efficiency investments.

Table 10.3: Indonesia. Clean energy 20-year investment growth trajectory

2012 GDP $880 billion
Projected 20-year average annual GDP growth rate 5.0% peryear
Projected 2032 GDP $2.3 trillion
(with 5 percent average annual GDP growth) 3
Midrange GDP value for investment spending estimates $1.6 trillion
(= (2012 GDP + 2032 GDP)/2) :

Average annual clean renewable investments $16 billion
(= 1 percent of midrange GDP)

Average annual energy efficiency investments $8 billion
(= 0.5 percent of midrange GDP)

Source: Authors’ calculations based on World Bank (2014) “World Development Indicators,” GDP (current dollars).

Growth assumptions for clean energy project. For the purposes of our discussion, we are
assuming that Indonesia’s average annual GDP growth rate over this 20-year period is 5 percent
ratherthan 7 percent. For our purposes, it is reasonable to work with a more conservative, if still
rapid, projection for long-term GDP growth. But note that, in any case, even under a 7 percent
average growth scenario over 20 years, if Indonesia were to devote 1.5 percent of its more
rapidly growing GDP levels to expanding its clean energy sector, the absolute expansion of this
clean energy sector would be faster with a 7 percent GDP growth rate.

As Table 10.3 shows, when we assume a 5 percent average annual growth rate over 20 years,
this would mean that Indonesia’s GDP in 20 years would be $2.3 trillion. To then estimate
an average level of clean-energy investment spending over this 20-year period, we simply
calculate the midrange GDP value between 2012 GDP at $880 billion and 2032 GDP at $2.3
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trillion. That figure is $1.6 trillion. This then means that the average level of annual spending
on clean energy would be 1 percent of $1.6 trillion peryear for renewables, which is $16 billion,
and o.5 percent for energy efficiency, which is $8 billion per year.

Capacity for Clean Energy Project. Indonesia has an existing well-developed energy
infrastructure based around the production of oil, coal and natural gas. Indonesia had long
been an oil-exporting country and member of OPEC, before the rapid increases in its domestic
energy consumption converted the countryinto an oilimporterin 2011. Nevertheless, Indonesia
is still the world’s 20™" largest oil-producing country in 2011. It was also the world’s largest
exporter of coal by weight and its 18" largest exporter of natural gas. In short, Indonesia has a
demonstrated record of maintaining a large-scale energy infrastructure, capable, among other
things, of servicing major global export markets.

Clean Renewables. Indonesia’s level of clean renewable production is still modest, even while
significant projects are active in selected parts of the country (Satyakti, 2013). Traditional high-
emissions biomass is a major source of energy, generating about 2 Q-BTUs in 2011 (EIA, 2013a).
Much of this biomass supply frequently goes unreported in surveys since it is produced in the
residential sectors of the country’s more remote areas. These are regions of the country that
remain, to a large extent, unconnected to the electrical grid. In addition, Indonesia is currently
the world’s third largest generator of geothermal energy, after the U.S. and the Philippines.
This geothermal production still amounts to only about 0.02 Q-BTUs. However, Indonesia
also has about 40 percent of the world’s potential geothermal supply, located mostly in Bali
and Java. The Ministry of Energy itself estimates that the country has the natural resources
to expand geothermal supply to nearly 1 Q-BTU - a more than 20-fold expansion. Indonesia’s
solar radiation is also 50 percent higher than in Europe, offering the prospect for a solar sector
that, with efficient technologies, could generate large-scale amounts of energy at costs that are
closer to the low end of the range that we cited for “other Asia” in our Chapter 3 discussion.
That range, at present is between 14-70 cents per kWh, but these figures, as they apply to
Indonesia specifically, should be coming down rapidly as technologies mature over the next
decade. Large-scale hydro is operating at about 0.25 Q-BTUs. The government estimates that
there is room for significant expansion here, including through small-scale projects.

Energy Efficiency. As we have seen, the government’s own Low Carbon scenario for 2030
includes a 24 percent decline in energy consumption relative to its 2030 BAU projection. This
is close to the level of savings we estimate to be attainable through investing o.5 percent of
GDP peryearin efficiency.

As described by Indonesia’s Directorate General of New Renewable Energy and Energy
Conservation (2012) as well as in recent reports issued by the IEA (2013), Mudiantoro (2013),
United States AID (Anastasia and du Pont, 2007) and the European Commission’s most recent
Indonesia country report (Macdonald, 2010), the potential is substantial for large-scale gains
through energy efficiency investments in Indonesia. This includes investments in all major
areas of buildings, industry, and transportation. The only issue is what the cost levels are likely
to be needed to achieve major efficiency gains. We will work with the cost assumption of $11
billion per Q-BTU, based on the 2010 McKinsey study described in Chapter 4. As we saw in
Chapter 4, the World Bank provided a much lower cost range, on the order of $1.9 billion per
Q-BTU. The broader point is that various sources do appear to converge in support of the idea
that widespread efficiency gains are attainable in Indonesia at reasonable costs.
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Clean Energy Capacity and Emissions

InTable 10.4, we estimate the levels of capacity expansion for both clean renewables and energy
efficiency. We based our estimates for the costs of achieving these gains in both efficiency and
renewables at $11 billion per Q-BTU for efficiency investments, as noted above, and $125 per
Q-BTU for expanding clean renewable capacity. These are the same average cost figures we
used for the case of Brazil. The reasoning for using these figures as rough benchmarks is the
same as we presented for the Brazilian case in Chapter 8. Given that labor costs in Indonesia
are significantly lower than those for Brazil, if anything, these cost assumptions for achieving
energy efficiency savings and expanding clean renewable productive capacity in Indonesia are
likely to be high-end figures.

Working with these assumptions, we then estimate the two alternative cases. Under Case
1, the clean energy investment project begins promptly, which means that Indonesia begins
accumulating a growing capital stock of renewable energy and energy efficient processes over
the full 20-year time period. Under Case 2, a more conservative scenario, we assume a 3-year
delay from the time the investment project begins until when Indonesia first sees renewable
energy and energy efficiency capacity expand. Thus, under Case 2, the accumulation of new
capacity grows for only 17 years of the full 20-year investment cycle. We are assuming that the
second scenario is more realistic, and therefore we focus our discussion on this case.

Table 10.4: Indonesia. Cost assumptions and capacity expansion for clean renewables and
energy efficiency investments

Clean renewable energy Energy efficiency
1) Cost assumptions $125 billion per Q-BTU of capacity $1¢ billion per .Q'BTU Ol
savings
] $16 billion per year $8 billion per year
2 A S el (=1 % of midrange GDP) (= 0.5 % of midrange GDP)
CASE 1: No delay in implementing
program: 20- year spending cycle
2 ToieL spendmg Uik P $320 billion $160 billion
spending cycle?
¢4) Total capacity expansion or energy
savings through 20 year spending 2.6 Q-BTUs of new capacity 14.6 Q-BTUs of energy savings
cycle®
CASE 2: 3-year delay in implementing
program: 17- year spending cycle
5) Total spending with 17-year - -
T $272 billion $136 billion
6) Total capacity expansion or energy
savings through 17- year spending 2.2 Q-BTUs of new capacity 12.4 Q-BTUs of energy savings
cycled

Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; ¢) Calculated as row 2 multiplied by 17; d) Calculated as row
5 divided by row 1.

Source: Authors’ calculations.
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We see under Case 2 that total investment spending on renewables would be $272 billion
over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy efficiency
investments would be $136 billion, again, based on a 17-year spending cycle and a 3-year start-
up period.

We then show the net effects of Case 2 in the bottom row of Table 10.4. That is, after 20 years,
Indonesia would have created 2.2 Q-BTUs of clean renewable energy capacity. This would
include a mix of clean renewable productive capacity that would, of course, be determined
through examining a full range of options. As documented by Satyakti (2013) and elsewhere,
Indonesia does have favorable prospects, in varying degrees, in all clean renewable areas.
Indonesia would have also been able to save 12.4 Q-BTUs of energy consumption through
having invested $136 billion in energy efficiency processes. We can then apply that 12.4 Q-BTUs
of efficiency as energy savings relative to the government’s 2030 BAU energy consumption
level of 25.8 Q-BTUs.

Table 10.5 shows the impact of this clean energy investment project for Indonesia on its overall
emission level in 20 years. We show this by comparing energy consumption figures under the

government’s 2030 BAU scenario with our more conservative Case 2 investment trajectory.

Table 10.5: Indonesia. Impact of clean energy investment relative to 2030 BAU scenario

20-year clean energy investment

L DL LD (Case 2: 3-year start-up delay)

13.4 Q-BTUs
Total energy consumption 25.8 Q-BTUs (with 12.4 Q-BTUs
of energy-efficiency savings)
3.2 Q-BTUs
Total clean renewable energy supply 1.0 Q-BTUs (with 2.2 Q-BTUs of additional
clean renewables)
Total nuclear power supply 0.0 0.0
Total fossil fuel + High-emissions renewables 24.8 Q-BTUs 10.2 Q-BTUs
714 mmt
Total CO, emissions 2,200 mmt (Based on 7o mmt average emissions

per Q-BTU for fossil fuels)

Total CO, emissions per capita

(with population = 280 million) 7:9 mt 2SI

Source: Authors’ calculations.

As we see, under the government’s BAU assumptions, Indonesia’s total energy consumption
level in 2030 is, again, 25.8 Q-BTUs. This level now falls to 13.4 Q-BTUs due to the energy
efficiency investments, which we estimate would generate 12.4 Q-BTUs of energy saving
relative to the BAU scenario. Total clean renewable capacity in Indonesia now rises to a total of
3.2 Q-BTUs. This includes the 1 Q-BTU that was built into the government’s BAU scenario, plus
the 2.2 Q-BTUs that would be generated through investing 1 percent of GDP per year over a 17-
year period, following the initial 3-year start-up phase.
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The net effect of these energy efficiency and renewable investments can then be seen in terms
of Indonesia’s residual demand for fossil fuel energy sources. As we see, the demand for all
fossil fuel sources falls from 24.8 Q-BTUs under the BAU scenario to 10.2 Q-BTUs under the
clean energy investment scenario. This is a reduction of 14.6 Q-BTUs, or 58.9 percent, in the
consumption of oil, coal and natural gas.

This decline in fossil fuel consumption in turn has a dramatic impact on Indonesia’s overall
CO, emissions within 20 years, as we see in the bottom two rows of Table 10.5. We assume an
average emissions level for Indonesia’s fossil fuel energy mix at 7o mmt per Q-BTU, which is
approximately equal to the country’s actual emissions levels per Q-BTU in 2010. Under this
assumption, Indonesia’s overall emissions fall from the BAU figure of 2,200 mmt to 714 mmt,
a 68 percent decline. Emissions per capita are now 2.6 mt. This figure is only slightly above the
20-year global target level of 2.4 mt. But now, as a result of the 20-year clean energy investment
project, Indonesia would have essentially stabilized its per capita emissions at the global target
level while the economy would have also grown by 5 percent peryear for 20 years, and population
would have increased from 250 to 280 million people. This means that per capita income would
have risen from its 2010 level of $3,600 to $8,200 - a 144 percent increase - while still maintaining
a level of per capita emissions close to the global target level of 2.4 mt as of 2032.

Employment Generation through Clean Energy Investments

Table 10.6 presents our estimates of the effects on overall annual employment levels through
an Indonesian clean energy investment project at the level of 1.5 percent of GDP. Of course, our
results are derived from our employment estimates presented in Chapter 7 of numbers of jobs
generated per $1 million in spending.

Table 10.6: Indonesia. Employment impact of clean energy investments vs. fossil fuel spending
Figures are jobs in Year 1 of 20-year clean energy investment strategy

Assumptions for clean energy investments:
e Total investment = 1.5 percent of GDP
- 67 percent clean renewables;
- 33 percent energy efficiency
e “Domestic Content Declines” scenario
¢ 70 percent of investment for capacity creation/production
e 30 percent for financing costs

Indonesia labor force in 2011 = 115.9 million

Clean energy Fossil fuel Net employment effects of
investments spending clean energy investments
Direct + indirect total employment in Year 1 953,900 203,300 750,600
Direct + indirect femployment as share of 0.8% 0.2% 0.6%
total labor force in Year 1

Source: See Chapter 7 and Appendix 3.
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Working within that framework, we have calculated the effects of the 1.5 percent of GDP
investment project given a spending breakdown at two-thirds renewables and one-third energy
efficiency. We also make two other assumptions. First, we use the results from our “Domestic
Content Declines” scenario. This provides a more conservative assessment as to the capacity
of Indonesia to expand clean energy activities on the basis of their current proportions of
domestic resource use. It assumes, in other words, that Indonesia will need to increase its
imports while advancing its clean energy investment scenario. Indonesia is a rapidly growing
economy, and anticipates sustaining an even faster growth trajectory over the coming 20 years.
Still, building out clean energy sectors on a large scale will probably create significant strains
on the country’s resources of technological capacity and skilled labor.

We then also assume that of the total amount of spending on the clean energy investment
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for
spending on creating capacity and producing, refining, transporting and marketing energy.

From these assumptions, we estimate that the total amount of direct plus indirect employment
generated through the clean energy investment project at 1.5 percent of GDP would be about
950,000 jobs. This is, of course, a very large number of jobs. But, as we show, it is still only 0.8
percent ofthe overall Indonesian labor force of 115.9 million people as of 2011. The impact of the
clean energy investment project would therefore be strongly positive in terms of employment,
but its overall scope would be relatively small.

To gauge the net benefits of this level of job creation, we do also need to compare these figures
with the job creation that would occur through maintaining spending in Indonesia’s existing
fossil fuel industry, as opposed to shifting funds into clean energy. We see in Table 10.6 that
the same level of spending in the coal, oil and natural gas sectors in Indonesia would create
203,000 jobs. As such, the net gain in employment through shifting funds out of fossil fuels
and into clean energy at the level of 1.5 percent of Indonesia’s GDP would be 750,000 jobs, or
0.6 percent of Indonesia’s 2011 workforce.

In Table 10.7, we present our projections for employment creation in Year 20 of Indonesia’s 20-
year clean energy investment project. These figures are based on two separate assumptions
as to the average growth rate of labor productivity in Indonesia’s clean energy sectors over this
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption
and a 2.5 percent high-end assumption.
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Table 10.7: Indonesia. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections
Baseline year-one employment levels given in Table 10.6
20-year average annual GDP growth is 5 percent
Average annual labor productivity growth ranges between 1 — 2.5 percent
Population figure is projected 2035 population
Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 145 million

Midpoint between 1

Scenario with 1 percent | Scenario with 2.5 percent
percent and 2.5 percent

average annual labor average annual labor productivity growth
productivity growth productivity growth scenarios
Blli2ss o lielicE et 2.1 million 1.6 million 1.8 million

employment

Year 20 direct + indirect
employment relative to 119.1% 63.9% 91.5%
Year 1 employment

Direct + indirect
employment as share of 1.4% 1.1% 1.3%
total labor force

Sources: See Chapter 7 and Appendix 3.

Notes: Labor force at end of 20-year investment cycle = 145 million. Assumptions for 20-year employment projections: a) Baseline year-one employment
levels given in Table 10.6; b) 20-year average annual GDP growth is 5 percent; c) Average annual labor productivity growth ranges between 1-2.5
percent; d) Population figure is projected 2035 population; e) Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio.

Working with these assumptions, as well as with the other assumptions on GDP growth,
population and labor force participation listed above Table 10.7, we generate the following
results:

1. Assuming labor productivity increases at 1 percent per year, total employment creation
through clean energy investments will rise to about 2 million in Year 20. This is a nearly
120 percent increase relative to employment creation in Year 1. This strong gain in
employment creation results through our assumption that GDP growth will average 5.0
percent peryear over the 20-year clean energy investment cycle - a 4 percent faster rate
than labor productivity in the clean energy sectors. GDP growth at 5 percent per year in
turn means that clean energy investments will also be growing at 5 percent per year, to
remain as a fixed 1.5 percent of GDP every year over the 20-year investment cycle.

2. Under this 1 percent labor productivity growth assumption, employment creation
through clean energy investments will rise to about 1.4 percent of Indonesia’s Year 20
labor force relative to the 0.8 percent figure as of Year 1.

3. Assuming average labor productivity in Indonesia’s clean energy sectors increases
at the higher-end rate of 2.5 percent over the 20-year investment cycle, employment
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creation will still be rising significantly, given that we assume GDP growth will average
5.0 percent per year. Year 20 employment creation through clean energy investments
then reaches 1.6 million. This is still a nearly 64 percent increase over the Yeari figure.
Under this scenario, employment creation through clean energy investments rises as a
share of Indonesia’s overall labor force in Year 20, to around 1.1 percent, a 0.3 percent
increase relative to the Year 1 figure of around 0.8 percent.

4. In the last column of Table 10.7, we report midpoint employment creation figures, that
are based on averaging Year 20 employment levels derived from both the 1 percent and
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is 1.8
million jobs, which is about 1.3 percent of Indonesia’s Year 20 labor force.

Overall, as we see, employment creation through Indonesia’s clean energy investment project
operating at 1.5 percent of GDP per year will expand significantly over time under a wide range
of plausible assumptions as to the growth of labor productivity over the 20-year investment
cycle. As such, we can conclude that the clean energy project for Indonesia, scaled at about
1.5 percent of GDP per year, will generate, first, huge reductions in CO, emissions while,
concurrently, providing expanding employment opportunities throughout the country over the
full 20-year investment cycle.
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CHAPTER 11: SOUTH AFRICA -
CLEAN ENERGY INVESTMENTS,
EMISSIONS REDUCTIONS AND
EMPLOYMENT EXPANSION

Growth Trajectory and Emissions

In Table 11.1, we review the basic statistics from Chapter 1 indicating South Africa’s current
level of development and the operations of their energy system. According to the World Bank
Indicators, South Africa is at present an upper-middle income country, with, as we see in Table
11.1, average per capita GDP at $7,500 as of 2010. Overall energy consumption is at 5.6 Q-BTUs
and overall CO, emissions are at 473.2 mmt. Emissions per capita are at 9.5 mt, which is more
than twice the global average of 4.6 mt. It is also nearly four times greater than the targeted
global average figure of 2.4 mt needed forachieving the 20-year global CO, emissions reduction
target. In terms of both the energy intensity and emissions intensity ratios Table 11.1 shows that
South Africa is both inefficient and dirty, relative to global averages, in its use of energy. These
figures reflect the fact that South Africa relies heavily on its own abundant coal reserves to
provide the economy with low-cost energy.

Table 11.1: South Africa. Basic energy indicators, 2010

South Africa World
Per capita GDP
(2oo5§§PPP) $7,500 $10,300
}gt_e‘;thlejrSrgy consumption 5.6 Q-BTUS .
Per capita energy consumption i )
(M-BTUs/population) 111.8 Q-BTUs 74.0 M-BTUs
Total CO, emissions
(mmt) ’ 473.2 mmt 31,502 mmt
Per capita CO, emissions nt o mt
(mt of emissions/population) 9-5 4.
Energy intensity ratio ) )
(Q-BTUs/$1 trillion GDP) 14.6 Q-BTUs 7.1 Q-BTUs
Emissions intensity ratio — P
(€O, emissions/Q-BTUs) 4.5 5.9

Source: See Tables 1.1 and 1.4.
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Between 2003 and 2012, the South African economy grew at an average annual rate of 3.5
percent. Projections by the government and other agencies, including the IMF and OECD,
assume that this average growth rate will accelerate to at least around 4 percent over the next
decade. This growth trajectory would generate a rough doubling of average GDP per capita in
the country, from its current level of $7,500 to about $14,500. If such average income gains
from growth are equitably distributed, the impact would be a large reduction in South Africa’s
poverty rate, which is presently at 23 percent of the population, according to the government’s
official measure. But for South Africa to sustain a healthy growth trajectory while maintaining
its existing energy infrastructure more or less intact will also generate large increases in the
country’s per capita CO, emissions. These CO, increases would then be on top of a level, which
is already twice the average global level.

In Table 11.2, we show the impact of South Africa’s growth path under our rough estimate as
compared to its BAU scenario for energy consumption through 2030. We are unaware of any
official energy consumption projections for 2030. But the Department of Environmental Affairs
does provide a range of projections for CO, emissions for various years. We present those
projections in full laterin this chapter. Based on assumptions we can make as to the ratio of CO,
emissions per Q-BTU of energy, we were then able to provide energy consumption projections
derived from these official emissions-level figures. As we have seen, under the actual figures
from 2010, emissions per Q-BTU were 84.5 mmt. For the purposes of our estimate, we assume
that ratio declines modestly to 80 mmt under the BAU scenario, reflecting a modest decline
in the proportion of coal as a share of total consumption and a modest improvement in the
efficiency in the country’s fossil-fuel energy technologies.
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Table 11.2: South Africa. Energy consumption and emissions:
2010 actuals and alternative official projections

2030 “Low Carbon”

2010 actuals 2030 BAU Scenario N
Scenario

8.7 —15.0 Q-BTUs” | 5.3 —8.2 Q-BTUs®

Total energy consumption 5.6 Q-BTUs Midpoint = 11.9 Midpoint = 6.7
Q-BTUs Q-BTUs
AR 46 150 5.4
Energy mix:
Oil 19% NA NA
Coal 67% NA NA
Natural gas 2% NA NA
Nuclear 2% NA NA
High-emissions renewables 10% NA NA

Clean renewables

e Hydro 1% <1% <1%
e All others o <1% <1%
Total CO, emissions 473.2 mmt 952 mmt¢ 503 mmte

Emissions intensity ratio

f g
(Co, emissions/Q-BTUs) L A Ol 75 mmt

CO, emissions per capita

(with population = 55 million) 9-5mt 17:3 mt S s

Sources: Authors’ calculations based on “South African Department of Environmental Affairs (2014); EIA (2013b), “International Energy Outlook
2013”; See Tables 1.1 and 1.4.

Note: a) Calculations based on average annual GDP growth of 4 percent; b-g) The energy consumption projections are derived from South Africa’s
Department of Environmental Affairs projections on CO2 emissions. In generating the energy consumption levels from the emissions estimates, we
assume an average level of CO2 emissions at 80 mmt per Q-BTU under the BAU scenario and 75 mmt per Q-BTU under the “Low Carbon” scenario.
This difference in emission levels per BTU reflects the assumption that, under the Low Carbon case, the share of coal in overall consumption
declines relative to alternative sources.

Because the Environmental Affairs Department projects a range of emissions levels for various
years as opposed to single data point, we show in Table 11.2 a range for energy consumption.
As we see, that range is between 8-7 and 15 Q-BTUs. As a reference point, we then also report
the midpoint within that range, which is 11.9 Q-BTUs. We work with this midpoint figure in
considering our full set of emissions and employment scenarios for South Africa here. But, as
isindicated in Table 11.2, we did not have enough detailed data to generate estimates of energy
supply levels for the specific energy sources.

As Table 11.2 shows, working from this 11.9 Q-BTU level of overall energy consumption under
South Africa’s 2030 BAU case, the result is that CO, emissions would rise to 952 mmt. This
amounts to 17.3 mt per person, assuming that South Africa’s population is around 55 million as
of 2030. This figure is 82 percent higher than South Africa’s 2010 per capita emissions figure of
9.5 mt. Itis also 7 times higher than the 2.4 mt average per capita level that the world needs to
achieve as its 20-year emissions reduction target.
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As we also see in Table 11.2, the Environmental Affairs Department has also developed
alternative CO, emissions projections, including a “Low Carbon” scenario. Working with this
alternative emissions projection, we then derived another set of energy consumption figures,
following the same approach that we used for the BAU scenario. The one difference in the
calculations with the Low Carbon scenario is that we assumed that the emissions intensity
ratio is somewhat lower, at 75 mmt. This lower figure reflects both a relative decline in the
country’s reliance on coal as well as greater efficiencies in generating energy from coal and
other fossil fuel sources. We show in the last column of Table 11.2 that our range for overall
energy consumption under the Low Carbon scenario is 5.3-8.2 Q-BTUs. The midpoint estimate
in this case is 6.7 Q-BTUs.

Based on this midpoint estimate, South Africa’s overall emissions as of 2030 would then be
503 mmt and emissions per capita would be 9.2 mt. What these figures show is that, under
South Africa’s Low Carbon scenario, CO, emissions would remain flat through 2030, even as
average incomes roughly double. This would certainly be a positive development. But it would
also mean that South Africa’s average per capita emissions would still be nearly four times the
20-year global target figure of 2.4 mt. It is therefore imperative to explore further possibilities
for achieving dramatic reductions in South Africa’s emissions levels over the next 20 years
through a large-scale clean energy investment project.

Major Developments Supporting Clean Energy Investment Project

Overall Frameworks and Projections. According to South Africa’s Department of Environmental
Affairs:

South Africa is a signatory to the United Nations Framework Convention on Climate
Change (UNFCCC), as well as the Kyoto Protocol. ... Furthermore, South Africa has
associated itself with the Copenhagen Accord, and was a Party to the decisions of the
sixteenth Conference of the Parties (COP16) under the auspices of the UNFCCC in Cancun
in 2010 (Marquard, Trollip and Winkler, 2011, p. 8).

Within these stated commitments, South Africa’s formal submission to the UNFCCC in a letter
of January 29, 2010 proposes that the country “will take nationally appropriate mitigation
action to enable a 34 percent decline from the BAU emissions growth trajectory by 2020 and a
42 percent decline by 2025” (Parramon-Gurney and Gilder, 2012). The baseline was not stated
in this document, but has been widely assumed to be the BAU baseline presented as part of
the country’s 2011 Long Term Mitigation Scenario.% These baseline emissions are projected to
be 760.5 mmt for2020 and 9o1.5 for 2025. The declines from this baseline of 34 and 42 percent
respectively imply national emissions target levels of 501.9 mmt as of 2020 and 522.9 mmt as
of 2025.

Figure 11.1 below, reproduced from the Department of Environmental Affairs website page
titled “South Africa’s Position on Climate Change,” shows further documentation on these
alternative scenarios.® This figure shows the trajectory for the BAU case versus what it terms
its “Peak, Plateau, Decline,” scenario, which we have termed above the “Low Carbon” case.

65 Marquard, Trollip, and Winkler (2011).

66 Figure 11.1 here is a replica of the image on the DEA’s website, which was produced using data in Department of Environmental Affairs (2011a).

216



SECTION 3: INDIVIDUAL COUNTRY STUDIES

As we see in Figure 11.1, under the BAU case, emissions are expected to continue increasing,
although the range for these projections is quite wide. The Peak, Plateau and Decline trajectory
shows a possible range of emissions from 398 to 614 mmt as of 2030, or about 50 percent
below the BAU projections Department of Environmental Affairs (2011a).

Figure 11.1: South Africa. Alternative greenhouse gas emissions trajectories through 2050:
BAU vs “Peak, Plateau and Decline” (PPD)
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M The BAU Emission Range
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o
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Source: South Africa Department of Environmental Affairs, http://www.climateaction.org.za/cop17-cmp7/sa-government-position-on-climate-change.

In addition to these emissions reduction goals, South Africa’s Department of Energy announced
its Vision 2014 and Vision 2025 in its 2012 Revised Strategic Plan. The first goal aims to achieve
universal access to modern energy carriers by 2014, while the second aims for clean energy
sources, including nuclear power, to supply 30 percent of all energy by 2025.

As yet, there have been no official projections as to how much it would cost for South Africa to
achieve these energy supply and clean energy targets. But broadly, the government projects
the range as being between 1 and 2.5 percent of South African GDP. Our own working estimate
forthe clean energy investment project at 1.5 percent of GDP is therefore close to the mid-level
within this range provisionally projected by the government.

Electricity Sector. The Department of Energy does provide more detailed projections for
electricity supply specifically in its Integrated Resource Plan (IRP) 2010-2030 (Department of
Energy, 2011). We show those figures in Table 11.3 below. As we see, in 2010, coal provided 90
percent of all energy used for generating electricity. Hydro and nuclear power each accounted
for 5 percent. Underthe 2030 BAU scenario, the share for coal rises slightly, to 91 percent, even
while total electricity consumption rises from about 0.9 to 1.5 Q-BTUs. The shares for hydro
and nuclear decline slightly under the BAU scenario, while there is a modest development
of gas turbine capacity. Under the Low Carbon scenario, the share of total supply provided
by coal declines sharply, to 65 percent. The big difference in this case is a large expansion of
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nuclear energy, to where it would provide 20 percent of all electricity generating power. Wind
and solar energy are shown as beginning to also grow under the Low Carbon scenario, with
wind accounting for 5 percent and solar for 4 percent of total electricity-generating supply as of
2030. Itis notable also that, with this Low Carbon electricity scenario, there is no reduction in
overall supply relative to the BAU case. That is, under both 2030 scenarios, electricity-based
energy consumption is fixed at 1.5 Q-BTUs. We will therefore need to consider other references
to obtain a sense of the prospects for energy efficiency investments in South Africa.

Table 11.3: South Africa. Electricity consumption levels and sources of supply under alternative

scenarios, 2010-2030

E:)e:::idty 2010 actuals 2030 BAU scenario 2030 Low Carbon scenario
Q-BTUS Shasrj :If’;otal Q-BTUS Shasrs :g{;otal Q-BTUS Shasrspzz‘[;otal

Coal 0.782 90% 1.36 91% 0.97 65%
Hydro 0.043 5% 0.06 4% 0.075 5%
Nuclear 0.043 5% 0.045 3% 0.3 20%

Gas turbines o] o) 0.03 2% 0.015 1%
Wind o} o ¢} o 0.075 5%
Solar o o o o 0.06 4%
Total 0.869 100% 1.49 100% 1.49 100%

Source: Department of Energy (2011); and authors’ calculations.
Notes: Figures for gas turbines includes open- and combined-cycle turbines. Figures for solar power include solar PV and concentrated solar power (CSP).

Renewables. In considering renewables in South Africa, we must first recognize that fuel wood
is the most commonly used source of renewable energy, though it is not used to produce
electricity. Beyond this, we see that the Low Carbon scenario in the Integrated Resource Plan
assumes that modern renewable capacity - hydro, wind, and solar - will grow to about 14 percent
of total electricity generating supply as of 2030. But a broadly-held view in South Africa is that
the potential for growth in renewables is much larger. These prospects include the following:

e The technical potential for solar energy is more than 6,000 times the country’s current
needs. Solar panels are already widely used in remote rural areas that are off the grid.
Butthereis great potential for further expansions of solar power, both through supplying
the grid and on off-grid distribution systems.

e Wind energy potential is estimated to exceed 30 gigawatts. This is three times greater
than the capacity level as of 2011.

e The national bioenergy policy includes a 2 percent target for biofuels in transportation
fuels as of 2030. This would mainly take the form of biodiesel liquid fuels, derived from
soybeans, canola oil, sunflower oil, or ethanol from sugar cane and sugar beets. Ethanol
from corn is excluded in the target.
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e Biomass from waste resources is starting to be used in industrial co-generation, and
biogas is produced from waste biomass. These are both relatively clean processes for
utilizing biomass sources. According to South Africa’s Second National Communication
to the UNFCCC:

The development of biomass energy is being highlighted in ‘Working for Energy’ (WfE),
South Africa’s national renewable energy programme. The purpose of the programme is
to develop and apply practical approaches for sustainable, labour intensive, renewable
energy and energy management type projects in rural areas.®

In terms of more developed areas of the country, Ayogu (2013) describes major opportunities
foradvancing a solar sector in Gauteng, South Africa’s economic hub. Gauteng accounts for 25
percent of South Africa’s population and 35 percent of its GDP. Ayogu says that Gauteng enjoys
excellent solar radiation levels. Solar PV systems could be placed widely on rooftops, mine
dumps, dolomitic areas and other sites that are either not habitable or fit for agriculture. Ayogu
describes an initial roll-out of solar PV technology over 8 million square meters of rooftops in
Gauteng, providing 300 MW of solar capacity. The development of an economy-wide renewable
investment strategy could build from such initial initiatives in Gauteng.®®

Energy Efficiency. While the 2010 Integrated Resource Plan did not incorporate policies or
projections regarding energy efficiency for the electricity sector, the South African government’s
2011 National Energy Efficiency Strategy set targets, as of 2015, to reduce energy intensity by 10
percent for commercial and public buildings, 15 percent for the residential sector, 10 percent
for the transport sector, 15 percent for industry and 15 percent for the mining sector, as part of
its Green Economy Accord.®

In addition, a 2006 paper by Harald Winkler specifies efficiency strategies and potential energy
savings in various sectors.” Winkler’s major findings are as follows:

e The industrial sector has the potential of reducing energy demand by 12 percent
compared to BAU scenario, the highest among all sectors. The strategies include greater
use of variable speed drives, efficient motors, compressed air management, efficient
lighting, heating, ventilation and cooling (HVAC) system efficiency and other thermal
saving. Winkler covers these areas of energy saving potential in detail in his 2006 study
(see pp. 112-13 in particular).

e The policy interventions proposed by Winkler to improve energy efficiency in the
residential sector focused on the end uses. These include solar water heaters, geyser
blankets™, liquid petroleum gas for cooking, efficient housing shells, and compact
fluorescent lights (CFLs) for lighting. But Winkler also emphasized that only urban
higher-income electrified households could afford building retrofits to improve energy
efficiency, while suggesting that geyser blankets should be generally used for poorer

67 Department of Environmental Affairs (2011b, p 19).

68 Ayogu also cites the important work by the EnerKey project in Gauteng, which is a collaboration between South African and German researchers on
developing and commercializing the most effective renewable energy and energy efficiency technologies. See, for example, the EnerKey Technology
Handbook (IER, 2012).

69 South African Government (2011).

70 Ayogu (2013) provides a good overview of similar types of energy efficiency initiatives and prospects, especially as they are developing in Gauteng
Province.

71 A geyser blanket is an insulator that is wrapped around a geyser to reduce wasted heat loss.
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households with electricity, due to their low costs.

e AccordingtoWinkler's modeling results, the commercial building sectorhas the potential
for about 12 percent in energy savings. Strategies include new building thermal design,
HVAC retrofit and for new buildings, installing variable speed drives for fans, efficient
lighting systems, heat pumps for water heating, solar water heating and fuel switching.

e The transport sector accounts for roughly 25 percent final energy consumption in South
Africa. It uses three-quarters of South Africa’s petroleum products. The main areas
for energy efficiency investments here would include the introduction of more energy
efficient automobiles and the introduction of licensing differentials according to a car’s
engine efficiency, and roadworthy tests, with a targeted energy demand reduction of
9 percent by 2014. The transport sector also could achieve major gains in efficiency
through the development of high-quality mass transit and rail systems.

Emissions Reductions through Clean Energy Investments

In Table 11.4, we begin to present the main features of our clean energy investment framework.
In fact, this framework is closely aligned with the approach advanced by the various South
African government agencies that we have reviewed above. This includes the government’s
broad view that the level of clean energy investments needed to achieve its Low Carbon (“Peak,
Plateau, and Decline”) scenario will be in the range of 1to 2.5 percent of GDP on an annual basis
for 20 years or more. Our framework attempts to provide further specificity to this approach.
We begin with the assumption that South Africa’s growth process incorporates clean energy
investments at a rate of 1.5 percent of GDP annually over a full 20-year period. We define “clean
energy investments” as including clean renewable energy sources and energy efficiency only.
We do not include nuclear power or high-emissions renewables such as corn ethanol as clean
energy sources. For purposes of our discussion, as with our other country-specific analyses, we
assume that this 1.5 percent of GDP is allocated with 1 percent of GDP funding the expansion of
clean renewables while 0.5 percent of GDP is channeled into energy efficiency investments. We
are also assuming that South Africa’s average annual GDP growth rate over 20 years will be 4
percent. This figure is in line with the long-term growth projections for South Africa developed
by the IMF and OECD, and is also close to South Africa’s actual growth experience from 2003-
2012.
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Table 11.4: South Africa. Clean energy 20-year investment growth

2012 GDP $363 billion
Projected 20-year average annual GDP growth rate 4.0%
Projected 2032 GDP $ billion
(with 4 percent average annual GDP growth) 795
Midrange GDP value for investment spending estimates $ billion
(= (2012 GDP + 2032 GDP)/2) 579
Average annual clean renewable investments $=.8 billion
(= 1 percent of midrange GDP) >
Average annual energy efficiency investments -
(= 0.5 percent of midrange GDP) Sy Bilen

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” GDP (current $US).

AsTable 11.4 shows, when we assume a 4 percent average annual growth rate over 20 years, the
result is that South Africa’s GDP in 20 years would be $795 billion. To then estimate an average
level of clean-energy investment spending over this 20-year period, we simply calculate the
midrange GDP value between 2012 GDP at $363 billion and 2032 GDP at $795 billion. That
midrange figure is $579 billion. This then means that the average level of annual spending on
clean energy would be 1 percent of $579 billion per year for renewables, which is $5.8 billion,
and o.5 percent for energy efficiency, which is $2.9 billion.

Clean Energy Capacity and Emissions

In Table 11.5, we then estimate the levels of capacity expansion for both clean renewables
and energy efficiency that will result through investing 1 percent of GDP annually in clean
renewables and 0.5 percent of GDP in energy efficiency. Our estimates are derived from the
assumptions that the costs of achieving gains in both efficiency and renewables are: $11 billion
per Q-BTU for efficiency investments, as noted in Chapter 3; and $125 per Q-BTU for expanding
clean renewable capacity. These are the same average cost figures we used for the case of
Brazil. The reasoning for using these figures as rough benchmarks is the same as we presented
for the Brazilian case in Chapter 8.
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Table 11.5: South Africa. Cost assumptions and capacity expansion for clean renewables and

energy efficiency investments

Clean renewable energy

Energy efficiency

1) Cost assumptions

$125 billion per Q-BTU of

$11 billion per Q-BTU of

capacity energy savings
- $2.9 billion
. $5.8 billion RS .
2) Annual spending levels R ey (= 0.5% of midrange
GDP)
CASE 1: No delay in implementing program:
20-year spending cycle
3) Total spending with 20-year spending cycle? $116 billion $58 billion

4) Total capacity expansion or energy savings

0.9 Q-BTUs of new capacity

5.3 Q-BTUs of energy

through 20-year spending cycle® savings
CASE 2: 3-year delay in implementing program:
17-year spending cycle
5) Total spending with 17-year spending cycle $99 billion $49.3 billion

6) Total capacity expansion or energy savings
through 17-year spending cycle?

0.8 Q-BTUs of new capacity

4.5 Q-BTUs of energy
savings

Source: Authors’ calculations as developed in Chapter 11.

Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; ¢) Calculated as row 2 multiplied by 17; d) Calculated as row

5 divided by row 1.

Working with these assumptions, we then estimate the two alternative cases. Under Case 1,
the clean energy investment project begins promptly, which means that South Africa begins
accumulating a growing capital stock of renewable energy and energy efficiency processes over
the full 20-year time period. Under Case 2, the more conservative scenario, we assume a 3-year
delay from the time the investment project begins until the time when South Africa first sees
renewable energy and energy efficiency capacity expand. Thus, under Case 2, the accumulation
of new capacity proceeds for only 17 years of the full 20-year investment cycle. We are assuming
that the second scenario is more realistic, and therefore we focus our discussion on this case.

We see under Case 2 that total investment spending on renewables would be $99 billion
over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy efficiency
investments would be $49 billion, again, based on a 17-year spending cycle and a 3-year start-

up period.

We then show the net effects of Case 2 in the bottom row of Table 11.5. That is, after 20 years,
South Africa would have created 0.8 Q-BTUs of new clean renewable capacity. This would
include a mix of clean renewables that would be determined through examining the full range
of options as described, for example, by Ayogu (2013). South Africa would have also been
able to save 4.5 Q-BTUs of energy consumption through having invested roughly $50 billion in
energy efficiency processes. We can then apply that 4.5 Q-BTU of efficiency as energy savings
relative to the 2030 BAU scenario with our more conservative Case 2 investment trajectory.
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We can then see the impact of these expanded levels of investment in renewables and efficiency
in Table 11.6 below. As we see, under our rough estimate of the government’s BAU assumptions,
South Africa’s total energy consumption level in 2030 is, again, 11.9 Q-BTUs. This level now
falls to 7.4 Q-BTUs due to the energy efficiency investments, which we estimate would generate
4.5 Q-BTUs of energy saving relative to the BAU case. Total clean renewable capacity in South
Africa now rises to a total of 0.9 Q-BTUs. This includes the 0.1 Q-BTUs that was built into the
government’s BAU scenario, plus the 0.8 Q-BTUs that would be generated through investing 1
percent of GDP per year over a 17-year period, following the initial 3-year start-up phase.

Table 11.6: South Africa. Impact of clean energy investments relative to 2030 BAU scenario

20-year Clean Energy Investment scenario
(Case 2: 3-Year Start-Up Delay)

7.4 Q-BTUS

2030 BAU Scenario

Uizl ey e i ELLEEIES (with 4.5 Q-BTUs of energy efficiency savings)
0.9 Q-BTUs
Usizal Gl (e ole ey 0.1 Q-BTUs (with 0.8 Q-BTUs of additional clean
supply
renewables)
Total nuclear power supply 0.05 Q-BTUs 0.05 Q-BTUs

Total fossil fuel + High-

emissions renewables e/ QEEEE o/, QRN

936 mmt
(Based on 8o mmt
average emissions per
Q-BTU for fossil fuels)

480 mmt
(Based on 75 mmt average emissions per
Q-BTU for fossil fuels)

Total CO, emissions

Total CO, emissions per capita

(with population = 55 million) 17.0mt 8.7 mt

Source: Authors’ calculations as developed in Chapter 11.

The net effect of these clean renewable and energy efficiency investments can then be seen in
terms of South Africa’s residual demand for fossil fuel energy sources. As we see, the demand
for all fossil fuel sources falls from 11.7 Q-BTUs under the BAU scenario to 6.4 Q-BTUs in the
clean energy investment scenario (after also taking account of nuclear energy supply at 0.05
Q-BTUs). This is a reduction of 5.3 Q-BTUs, or 45 percent, in the consumption of oil, coal and
natural gas.

This decline in fossil fuel consumption in turn has a major impact on South Africa’s overall CO,
emissions within 20 years, as we see in the bottom two rows of Table 11.6. As noted earlier,
we assume an average emissions level for South Africa’s fossil fuel energy mix as 80 mmt
per Q-BTU in the BAU case and 75 mmt per Q-BTU in the Clean Energy scenario. Under these
assumptions, South Africa’s overall emissions fall from the BAU figure of 936 mmt to 480 mmt,
a 49 percent decline. Emissions per capita are now 8.7 mt. This figure is still 3.6 times greater
than the global target figure of 2.4 mt within 20 years. But it also is an 8 percent absolute
decline from the 2010 per capita emissions figure of 9.5 mt. This would occur while South
Africa’s population will have grown by 10 percent and per capita incomes would have roughly
doubled.
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Employment Generation through Clean Energy Investments

Table 11.7 presents our estimates of the effects on overall annual employment levels through
a South African clean energy investment project at the level of 1.5 percent of annual GDP. Of
course, our employment results are derived from our estimates presented in Chapter 7 of
numbers of jobs generated per $1 million in spending.

Table 11.7: South Africa. Employment impact of clean energy investments vs. fossil fuel
spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy

Assumptions for clean energy investments:
e Total investment = 1.5 percent of GDP
- 67 percent clean renewables;
- 33 percent energy efficiency
e “Domestic Content Declines” scenario
e 70 percent of investment for capacity creation/production
e 30 percent for financing costs

South Africa labor force in 2011 = 18.6 million

Clean energy Fossil fuel Net employment effects of
investments spending clean energy investments
Direct + indirect total employment
. 252,200 126,200 126,000
in Year1
Direct + indirect employment as o o o
share of total labor force in Year 1 1.4% 0.7% 0.7%

Source: See Chapter 7 and Appendix 3.

Working within that framework, we have calculated the effects of the 1.5 percent of GDP
investment project given a spending breakdown at two-thirds renewables and one-third energy
efficiency. We also make two other assumptions. First, we use the results from our “Domestic
Content Declines” scenario, which assumes that South Africa will need to increase its imports
as aresult of advancing its clean energy investment scenario. South Africa’s economy has been
growing at a healthy rate over roughly the past decade. It anticipates sustaining an even faster
growth trajectory over the coming 20 years. Nevertheless, it is reasonable to anticipate that
building out clean energy sectors on a large scale will probably create significant strains on the
country’s resources of technological capacity and skilled labor.

We then also assume that of the total amount of spending on the clean energy investment
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for
spending on creating capacity and producing, refining, transporting and marketing energy.

From these assumptions, we estimate the total number of direct plus indirect employment
generated through the clean energy investment project at 1.5 percent of GDP is 250,000 jobs.
That is a very large number of jobs in absolute terms. But it is also only 1.4 percent of the South
African labor force of 18.6 million as of 2011. The impact of the clean energy investment project
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would therefore be strongly positive in terms of absolute employment, but its overall scope
would be limited.

To gauge the net benefits of this level of job creation, we also need to compare these figures
with the job creation that would occur through maintaining spending in South Africa’s existing
fossil fuel industry, as opposed to shifting funds into clean energy. We see in Table 11.7 that
the same level of spending in South Africa’s coal, oil and natural gas sectors would create
about 126,000 jobs. That is, investing in clean energy in South Africa at a level of 1.5 percent
of the economy would produce a net expansion of roughly 126,000 jobs in comparison with
maintaining the country’s existing fossil fuel energy infrastructure.

In Table 11.8, we present our projections for employment creation in Year 20 of South Africa’s
20-year clean energy investment project. These figures are based on two separate assumptions
as to the average growth rate of labor productivity in South Africa’s clean energy sectors
over this 20-year period - a 1 percent low-end average annual labor productivity growth rate
assumption and a 2.5 percent high-end assumption.

Table 11.8: South Africa. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections
e Baseline Year 1 employment levels given in Table 11.7
e 20-yearaverage annual GDP growth is 4 percent
e Average annual labor productivity growth ranges between 1-2.5 percent
e Population figure is projected 2035 population
e Laborforce/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 21.4 million

Scenario with 1 percent | Scenario with 2.5 percent | Midpoint between 1 percent

average annual labor average annual labor | and 2.5 percent productivity
productivity growth productivity growth growth scenarios
Direct + indirect total
455,500 339,700 398,000

employment

Year 20 direct + indirect
employment as share 80.6% 34.7% 57.6%
of Year 1 employment

Direct + indirect
employment as share 2.1% 1.6% 1.9%
of total labor force

Sources: See Chapter 7 and Appendix 3.
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Working with these assumptions, as well as with the other assumptions on GDP growth,
population and labor force participation listed above Table 11.8, we generate the following
results:

1.

Assuming labor productivity increases at 1 percent per year, total employment creation
through clean energy investments will rise to about 450,000 in Year 20. This is about
an 8o percent increase relative to employment creation in Year 1. This strong gain in
employment creation results through our assumption that GDP growth will average 4.0
percent peryear over the 20-year clean energy investment cycle - a 3 percent faster rate
than labor productivity in the clean energy sectors. GDP growth at 4 percent peryearin
turn means that clean energy investments will also be growing at 4 percent per year, to
remain as a fixed 1.5 percent of GDP every year over the 20-year investment cycle.

Under this 1 percent labor productivity growth assumption, employment creation
through clean energy investments will rise to about 2.1 percent of South Africa’s Year 20
labor force relative to the 1.4 percent figure as of Year 1.

. Assuming average labor productivity in South Africa’s clean energy sectors increases

at the higher-end rate of 2.5 percent over the 20-year investment cycle, employment
creation will still be rising significantly, given that we assume GDP growth will average
4.0 percent per year. Year 20 employment creation through clean energy investments
then reaches nearly 340,000. This is still a nearly 35 percent increase over the Year1
figure. Under this scenario, employment creation through clean energy investments
rises as a share of South Africa’s overall labor force in Year 20, to around 1.9 percent, a
0.5 percent increase relative to the Year 1 figure of around 1.4 percent.

In the last column of Table 11.8, we report midpoint employment creation figures, that
are based on averaging Year 20 employment levels derived from both the 1 percent and
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is
nearly 400,000 jobs, which is about 1.9 percent of South Africa’s Year 20 labor force.

Overall, as we see, employment creation through South Africa’s clean energy investment
project operating at 1.5 percent of GDP per year will expand significantly over time under a
wide range of plausible assumptions as to the growth of labor productivity over the 20-year
investment cycle. Moreover, this net gain in employment opportunities through clean energy
investments will result in correspondence with the economy also making significant absolute
declines in CO, emissions through the clean energy investment project over the next 20 years.
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CHAPTER 12: THE REPUBLIC

OF KOREA - CLEAN ENERGY
INVESTMENTS, EMISSIONS
REDUCTIONS AND EMPLOYMENT
EXPANSION

Growth Trajectory and Emissions

In Table 12.1, we review the basic statistics from Chapter 1 indicating the ROK’s current level of
developmentandthe operations of their energy system. According to the World Bank Indicators,
the ROK is a high-income country, with, as we see in Table 12.1, average per capita GDP at
$22,000 as of 2010. Overall energy consumption is at 10.8 Q-BTUs and overall CO, emissions
are at 581 mmt. Emissions per capita are at 11.6 mt, which is 2.5 times the global average of
4.6 mt. Itis also five times higher than the targeted global average figure of 2.4 mt needed for
achieving the 20-year global CO, emissions reduction target. According to the energy intensity
ratio - i.e. Q-BTUs/$1 trillion GDP — the ROK is operating an inefficient energy system. Its energy
intensity ratio of 9.8 is nearly 40 percent higher than the global average of 7.1.

At the same time, its energy mix is relatively clean compared with the global average. Its
emissions intensity ratio - CO_ emissions/Q-BTUs - is 53.8. This is about 18 percent below the
global average of 66. Itis also a lower figure than either the U.S. or Germany. As we will see, the
ROK can realistically reduce its per capita CO, emissions roughly in half over the next 20 years.
It can achieve this while still maintaining a healthy GDP growth rate over this 20-year period
and while expanding employment opportunities relative to maintaining its existing fossil fuel
dominated energy infrastructure.
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Table 12.1: Republic of Korea. Basic energy indicators, 2010

ROK World
?;;;?.;Igzgw $22,000 $10,300
}gt_a‘;szrsrgy consumption 10.8 Q-BTUs 510.5 Q-BTUs
Per capita energy consumption ) i
(M-BTUs/population) 218.2 M-BTUs 74.0 M-BTUs
Total CO, emissions
o) 2 581 mmt 31,502 mmt
Per capita CO, emissions
(mt of emissions/population) FEL{3 [l G
Energy intensity ratio )
(Q-BTUS/$1 trillion GDP) 9-8 Q-BTUs 7.1 Q-BTUS
Emissions intensity ratio 8 mmt
(Co, emissions/Q-BTUs) 53 65.9 mmt

Source:See Tables 1.1 and 1.4.

Between 2003-2012, the economy of the ROK grew at an average annual rate of 3.9 percent. The
average growth rate projection through 2040 that the EIA reports under a range of alternative
assumptions - including its Reference case, as well as its high- and low-growth cases, and
its high- and low-oil price cases - is between 3.2-3.3 percent. These are conservative growth
projections given the ROK’s past growth performance, but for the purposes of our discussion,
it is better to work with relatively conservative assumptions. In generating our own estimates
on clean energy investments and employment in this discussion, we will therefore assume that
the ROK’s average growth rate through 2030 will be 3.3 percent.

This growth trajectory would generate a near-doubling of average incomes in the country, from
its current level of $22,000 per capita to $42,000, given that the projections are also that the
ROK’s population will remain roughly constant at around 50 million people through 2030.

In Table 12.2, we show the ROK’s energy consumption and emissions levels for 2030 under
the EIA’s BAU scenario. As we see, the EIA estimates that the ROK’s total energy consumption
rises from 10.8 to 14.7 Q-BTUs between 2010-2030. This is a 36 percent increase in energy
consumption over the 20-year period, which amounts to an average annual increase of 1.6
percent. As such, the EIA is projecting that the ROK will make significant gains in energy
efficiency over the next 20 years, given that they project GDP to grow at an average of 3.3
percent. We see this directly through the change in the energy intensity ratio, which falls from
9.8 in 2010 to 7 by 2030, a 29 percent improvement, according to the EIA’s BAU model.
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Table 12.2: Republic of Korea. Energy consumption and emissions: 2010 actuals and alternative
official projections

2010 actuals 2030 EIA BAU scenario
Total energy consumption 10.8 Q-BTUs 14.7 Q-BTUs
AR 9.5 Q-BIUs 70 0BTUs
Energy mix:
oil 42% 36%
Coal 29% 22%
Natural gas 14.3% 14%
Nuclear 13% 8%
High-emissions renewables NA NA
Clean renewables NA NA
¢ Hydro 0.9% 2.0%
e All others NA NA
Total CO, emissions 581 mmt 666 mmt
Emissions intensity ratio
(Co, emissions/Q-BTUs) 53-8 mmt 45-3 mmt
(C(.)z emissior!s per capit.a). 1.6 mt 13.3 mt
(with population = 50 million for 2010 and 2030)

Source: Authors’ calculations based on EIA (2013), “International Energy Outlook 2013.”

In addition to these significant gains in energy efficiency, there are also changes in the ROK’s
energy mix under the BAU 2030 assumptions. The most important ones are that the level of
coal consumption remains flat, and that most of the growth in overall energy consumption is
absorbed by natural gas. The EIA estimates natural gas supply to more than double, from 1.8
to 4.7 Q-BTUs. Clean renewables is also projected to experience a major expansion. But it is
operating from a very low base, so that, in absolute terms, its total supply as of 2030 would
remain a modest 0.3 Q-BTUs, 2 percent of the ROK’s overall 2030 energy supply.

The gains in energy efficiency, combined with a major coal-to-natural gas fuel switching
transition does then mean that the ROK’s energy mix becomes significantly cleaner, with its
emissions intensity ratio falling from 53.8 to 45.3. Yet overall emissions do still rise, because
energy consumption is still rising, albeit at a relatively slow rate. The overall effect is that
emissions per capita do still rise, from 11.6 mtin 2010 to 13.3 mtin 2030. That is, even with the
ROK achieving major gains in energy efficiency and undertaking a major coal-to-natural gas fuel
switch, the netimpact is that its emissions per capita ratio, at 13.3 is still 5.5 times greater than
the Year 20 global target ratio of 2.4 mt.

It is therefore clear that it is necessary to explore the prospects for a still more ambitious
clean energy transformation for the ROK over the next 20 years. The central premises of such a
strategy would fully coincide with the commitment the government of the ROK to be a leader in
pursuing an innovative Green Growth policy agenda moving forward.
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Major Developments Supporting Clean Energy Investment Project

The Republic of Korea’s Green Growth Strategy

Since the presentation of its first National Basic Energy Plan in 2008, the government of the
ROK has begun a major project of defining and advancing what it has called a Green Growth
strategy.”> The statement of the first National Basic Energy Plan for 2008-2030 sets out its
vision as follows:

The first Basic National Energy Plan suggests a society that realizes healthy growth
while consuming less energy; a society that minimizes environmental pollution even
when using energy; a society where energy industries create jobs and growth engines;
and a strong energy self-reliant and welfare society despite energy crises as a long-term
energy policy vision.

As the implementation blueprint for the vision, the Basic National Energy plan also
suggests realization of a ‘low energy-consuming society’ through improvement of
energy intensity...independence from fossil energies in energy supply through a 4.6-fold
expansion of the new and renewable energy ratio to 11 percent by 2030 from the present
2.4 percent while reducing the fossil energy ratio...including oil, to 61 percent by 2030
from 83 percent at present...

The implementation plan also aims to raise the energy technology level, including ‘green
technology’ compared with advanced countries to the world-class level by 2030 from the
present 6o percent; nurture the energy industry into a growth engine; realize a self-reliant
energy and welfare society by increasing self-development rates of oil and gas to the
30 percent level by 2030 from the present 4.2 percent, and addressing all energy-poor
classes, which currently stand at the 7.8 percent level (Government of Korea, 2008, p. 5)

As outlined by Kang (2013), six key features of the ROK’s Green Growth strategy have been
developed since the presentation of the National Energy Basic Plan. These are:

1.

The formation of the Presidential Committee on Green Growth (2009).

The establishment of legislation of the Framework Act on Low Carbon, Green Growth
(2010).

The establishment of the National Greenhouse Gas Reduction Target (2009). This set
the 2020 target as a 30 percent reduction in all GHG emissions at 30 percent below BAU
through 2020.

The establishment of a Green Budget for 2009-2013, with 2 percent of GDP devoted to
Green Growth Policies.

Organizing the Green Technology Development project for 27 core areas of green
technology.

72 See UNEP (2010) for a detailed overview of the Green Growth Strategy.
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6. The establishment ofthe ROKas aninternational leaderin fostering global green growth.
The formation of the Global Green Growth Institute in 2010 was one major initiative
within this international project.

Kang (2013) further writes that the ROK’s Green Growth strategy consists of three key strategies,
which incorporate 10 policy directions within the three strategies. These are:

Strategy 1: Measures for climate change and securing energy independence.
e Reducing carbon emissions;

e Decreasing energy dependence on oil and enhance energy sufficiency;

e Supporting adaptation to climate change impacts.

Strategy 2: Creation of a new growth engine.

e Developing green technologies as future growth engines;
e Greening of industry;

e Developing cutting-edge industries;

e Setting up a policy infrastructure for green growth.

Strategy 3: Contribution to international community

e Green city and green transport;

e Green revolution in lifestyle;

e Enhance national status as a global leader in green growth.

Table 12.3 below shows the Government of the ROK’s overall fiscal expenditures on green
growth, and the breakdown of spending according to strategic areas, as developed by Kang.
As we see, total spending over the period 2009-2013 has been $122.8 billion (converted from
current KRW to dollars at average annual exchange rates), for an average of $24.6 billion per
year. As the table also shows, this figure is approximately 2.2 percent of the ROK’s average
annual GDP between 2009-2013.73

73 We estimated the ROK’s 2013 GDP based on a growth rate for the year at 3.4 percent. This is taken from figures from the first three quarters of the
year and projections for the rest of the year. See Jun (2013).
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Table 12.3: Republic of Korea. Fiscal expenditure on green growth, 2009-2013

Current dollars at average annual KRW/Dollar exchange rate

Shares of total spending
Mitigation of climate Creating new engines Improvement in quality
Total spending change & energy g new eng of life and enhanced
m for economic growth | . A R
independence international standing
2009 $22.3 billion 49% 27% 24%
2010-11 $54.7 billion 60% 22% 18%
2012-13 $45.8 billion 46% 31% 23%
$122.8 billion
Average spending per o o o
All years year = $24.6 billion 52% annual average | 27% annual average 21% annual average
2.2 percent of GDP

Sources: Kang (2013) for spending figures, presented in KRW. Converted to dollars from IMF International Financial Statistics database.

Note: GDP figure for 2013.4 estimated on basis of 3.4 percent growth rate for 2013.

We also see from Table 12.3 that roughly half of the ROK’s green growth budget has been
devoted to mitigation of climate change and energy independence, while the other half
has been divided between “creating new engines of economic growth,” at 27 percent, and
“improvement in quality of life and enhanced international standing,” at 21 percent. The focus
of our project is on the first strategy, mitigation of climate change and energy independence,
which has received an average of about 1.1 percent of the ROK’s GDP, or $12.8 billion per year.

This figure is basically in line with our working assumption that each of our five selected
economies devotes 1.5 percentof GDPtoinvestmentsin renewable energy and energy efficiency.
However, tothe best of ourknowledge to date, there are two significant differencesin comparing
the Government of the ROK’s budget allocation with the budgetary assumptions we use in this
report. The first is that the ROK’s budgetary figures includes funds to support the development
of domestic oil and gas industries, following the goal expressed in the National Energy Basic
Plan to increase “self-development rates of oil and gas to the 30 percent level by 2030 from the
present 4.2 percent.” Our funding allocation is targeted exclusively for investments in energy
efficiency and clean renewable energy sources. The second is that the Government of the ROK’s
spending figure is, again, to the best of our knowledge to date, funds allocated by the public
sector only. Our funding figures are inclusive of all public plus private spending within the
economy of the ROK on clean renewable and energy efficiency investments. Nevertheless, our
own clean energy investment figures are still in rough alignment with the large-scale funding
commitments that the ROK’s government has made since 2009 to clean energy.
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Developments in Renewable Energy and Energy Efficiency

The impacts of these large-scale government green growth funding commitments are reflected
in the recent advances as well as the prospects for renewable energy and energy efficiency
investments. We review briefly some of the major developments in these two areas.

Clean Renewables

According to the most recent actual data, the levels of energy supplied from all clean renewable
sources is negligible, less than 1 percent of the 10.8 Q-BTUs of total supply for 2010. This
includes all hydro as well as clean bioenergy, wind, solar and geothermal energy sources. At
the same time, major developments are underway, as described in the government’s 2011
document Low Carbon, Green Growth.” These include the following.

Hydro.Hydrois currently the leading source of renewable energy supply in the ROK. Economically
feasible hydro production is estimated at being around 19,000 GWh per year, including small-
scale hydro. Current installations generate about 5 percent of this potential level of production.

Tidal. The ROK has built the largest tidal plant in the world at Sihwa Lake, which opened in
2011. It has the capacity to supply power for about 500,000 homes. According to Park (2007),
it also should be able to play a major positive role in restoring the Lake Sihwa ecosystem
and water quality through the continuing circulation of seawater. Because a dam has been
operating at the lake, this led to a cut-off of tidal currents and the rapid increase of population
and industrial waste loads from factories in the neighborhood. Other plants are also under
development.

Biomass. This is considered a critical future resource in the ROK, which is a largely forested
country. The governmentwants to promote production and use of wood pellets for electricity and
heat. In 2007, biomass accounted for 6 percent of renewable production, but the Government
of the ROK expects it to account for 30 percent by 2030, including both domestic production
and imports.

Biofuels. The ROK is currently producing modest levels of biodiesel, as well as purchasing
imports. There is potential for more biodiesel production from waste oils and algal sources.
These can be harvested on bodies of water and thereby avoid some of the land-constraint
problem facing other biofuels in the ROK.

Wind. Wind production has been increasing rapidly over the last decade, from about 5,900
MWh in 1999 to over 900,000 in 2012. Offshore wind projects are currently being developed,
including one 500 turbine offshore project. Offshore wind is considered to have major
untapped potential, in the range of 190 TWh per year - i.e. roughly 200 times the current level
of generation. Onshore wind is considered to have less potential, because of terrain and siting
issues.

74 This document is the Government of the ROK’s Third Annual National Communication under the United Nations Framework Convention on Climate
Change.
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Solar. The use of solar panels has recently declined. However, the ROK aims to become one of
the top five countries in the world in terms of solar panel usage by 2015. Among the specific
short-term goals within this broader project is to install solar panels on 60 percent of allhomes
in the ROK.

Energy Efficiency

The IEA 2013 Energy Efficiency Market Report assesses developments to date in the ROK as
follows:

Korea has a robust energy efficiency regime, founded on the Energy Use Rationalization
Act, and strong related policies Label and Standard Program. Energy efficiency markets
have grown remarkably due to strong government leadership, assertive regulations and
industry-driven technical innovations in appliances and automobiles. Three important
market sub-sectors stand out: appliances, transport, and energy service companies
(IEA, 2013, p. 178).

According to the 2013 IEA study as well as the government’s 2011 Low Carbon, Green Growth
report, the main areas for energy efficiency market expansion include the following:

Transportation. Increasing the development and deployment of highly energy-efficient
automobiles as well as the expansion in public transportation systems.

Residential and commercial buildings. Improving home appliance and building energy
efficiency standards through labeling programs, insulation standards and improved
equipment.

Promotion of energy management systems (EMS). EMS allow entities to monitor, control
and optimize the performance of their energy systems. The application of EMS will
enable the ROK to draw on its competitive information and communications technology
for energy-efficient related information for components such as sensors, software,
hardware and controlling techniques. EMS can be applied to a variety of sectors,
including factories, buildings and homes.

Government Spending on Environmental Research
and Development

The prospects for the ROK to advance rapidly in both renewables and energy efficiency are
being strengthened greatly by the high level of government commitment to R&D spending on
environmental technologies. Figure 12.1 provides useful perspective on this, as it shows the
ROK’s environmental R&D spending levels compared with other OECD members. As we see, as
a share of the economy’s GDP, the ROK’s R&D spending is the highest among OECD members
- indeed, by a considerable margin compared with most other OECD countries. As Figure 12.1
shows, the ROK’s R&D spending was about 0.13 percent of GDP as of 2012, equal to about
$1.3 billion. By comparison, environmental R&D spending is about half that share of GDP in
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Germany. In the U.S., the share of environmental R&D spending is about one-quarter the share
of GDP as in the ROK.

Figure 12.1: Republic of Korea. Government R&D spending on environment and energy relative
to other OECD countries

Percent of GDP, 2010 or latest

KOR FIN JPN DEU SWE AUS NOR EST SVN CZE ITA AUT LUX IRL ISL BEL USA GRB HUN NLD SVK

Source: OECD (2012) “OECD Economic Surveys: Germany 2012,” OECD Publishing, Figure 9 (p. 31). http://dx.doi.org/10.1787/eco_surveys-deu-2012-en.

Emissions Reductions through Clean Energy Investments

In Table 12.4, we begin to present the main features of our 20-year clean energy investment
framework for the ROK. As we have noted before, this framework is closely aligned with the
government’s Green Growth strategy. It is distinct in that our framework is more narrowly
focused on investments in the areas of clean renewables and energy efficiency, in contrast
with the broader agenda advanced under the Green Growth strategy. In addition, our annual
budgetary allocation of 1.5 percent of GDP is a figure that is meant to apply to all public plus
private spending. Our understanding of the funding levels we reported on Green Growth from
2009 to 2013 in Table 12.3 above, again, were public allocations only.
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Table 12.4: Republic of Korea. Clean energy 20-year investment growth trajectory

2012 GDP $1.1 trillion
Projected 20-year average annual GDP growth rate 3.3%
Projected 2032 GDP $2.1 trillion
(with 3.3 percent average annual GDP growth) ’
Midrange GDP value for investment spending estimates $1.6 trillion
(= (2012 GDP + 2032 GDP)/2) .
Average annual clean renewable investments $16 billion
(= 1 percent of midrange GDP)

Average annual energy efficiency investments $8 billion
(= 0.5 percent of midrange GDP)

Source: Authors’ calculations based on World Bank (2014), “World Development Indicators,” GDP (current $US).

In our discussion, we assume that 1.5 percent of annual GDP is allocated with 1 percent of
GDP funding the expansion of clean renewables while 0.5 percent is channeled into energy
efficiency investments. We are also following the EIA in assuming that the ROK’s average
annual GDP growth rate over the next 20 years will be 3.3 percent.

As Table 12.4 shows, when we assume a 3.3 percent average annual growth rate over 20 years,
the result is that the ROK’s GDP in 20 years will be $2.1 trillion. To then estimate an average
level of clean-energy investment spending over this 20-year period, we calculate the midrange
GDP value between 2012 GDP at $1.1 trillion and 2032 GDP at $2.1 trillion. That midrange figure
is $1.6 trillion. This then means that the average level of annual spending on clean energy
would be $16 billion per year, equal to one percent of the midrange GDP figure, for renewables
and $8 billion per year for energy efficiency, at 0.5 percent of the 20-year midrange GDP level.

Clean Energy Capacity and Emissions

In Table 12.5, we then estimate the levels of capacity expansion for both clean renewables and
energy efficiency. The average cost assumptions that we work with are: 1) Expanding clean
renewable capacity will cost $125 billion per Q-BTU, the same figure we have used for Brazil,
Indonesia, and the ROK, following the reasoning we described for the Brazilian case in Chapter
8; and 2) Energy efficiency savings relative to the BAU case will cost $20 billion per Q-BTU.
As we reported in Table 4.2, this $20 billion figure is at roughly the midpoint between the $11
billion per Q-BTU estimated in the 2010 McKinsey and Company study for projects throughout
Africa, India, the Middle East, South East Asia, Eastern Europe and China and the $29 billion
per Q-BTU estimated for the U.S. in the 2010 National Academy of Sciences study.
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Table 12.5: Republic of Korea. Cost assumptions and capacity expansion for clean
renewables and energy efficiency investments

Clean renewable energy Energy efficiency

S ot SRR $125 billion per Q-BTU of $20 billion per Q-BTU of

capacity energy savings
$16 billion $8 billion
2) Annual spending levels (=1 percent of midrange (= 0.5 percent of midrange
GDP) GDP)
CASE 1: No delay in implementing program:
20-Year spending cycle
3) Total spending with 20-Year spending cycle? $320 billion $160 billion

4) Total capacity expansion or energy savings

through 20-Year spending cycle® 2.6 Q-BTUs of new capacity | 8.0 Q-BTUs of energy savings

CASE 2: 3-Year delay in implementing program
17-Year spending cycle

5) Total Spending with 17-Year Spending Cycle® $272 billion $136 billion

6) Total capacity expansion or energy savings

through 17-Year spending cycle? 2.2 Q-BTUs of new capacity | 6.8 Q-BTUs of energy savings

Notes: a) Calculated as row 2 multiplied by 20; b) Calculated as row 3 divided by row 1; ¢) Calculated as row 2 multiplied by 17; d) Calculated as row
5 divided by row 1.

Source: Authors’ calculations as developed in Chapter 12.

Working with these cost assumptions, we then estimate the two alternative cases. Under
Case 1, the clean energy investment project as we have defined it begins promptly - i.e. the
increased levels of investments in clean renewables and efficiency build immediately off of the
developments already underway through the Green Growth project. This means that the capital
stock for clean renewable capacity and energy efficiency processes grows every year over the
full 20-year cycle. Under Case 2, a more conservative scenario, we assume a 3-year delay in the
implementation of this expanded focus on investments in renewables and energy efficiency.
Thus, under Case 2, the accumulation of new capacity proceeds for only 17 years of the full
20-year investment cycle. Even though the ROK is already well underway in implementing its
national Green Growth project, we are still assuming that the second scenario is more realistic.
We therefore focus our attention on this case.

We see that under Case 2, total investment spending on clean renewables would be $272
billion over 20 years, with a 17-year spending cycle after the 3-year start-up period. Energy
efficiency investments would be $136 billion, again, based on a 17-year spending cycle after a
3-year start-up period.

We then show the net effects of Case 2 in the bottom row of Table 12.5. That is, after 20 years,
the ROK would have created 2.2 Q-BTUs of clean renewable capacity. This would of course
incorporate a mix of clean renewables that would be determined through examining the full
range of options as described, for example, in the government’s 2011 Low Carbon, Green
Growth report. The ROK would have also been able to save 6.8 Q-BTUs of energy consumption
through having invested $136 billion in energy efficiency processes over 20 years. We can then
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apply those 6.8 Q-BTUs of saving relative to the EIA’s 2030 BAU scenario.

We can then see the impact of these expanded levels of investment in renewables and
efficiency in Table 12.6 below. We begin again, with the EIA’s BAU assumption that total energy
consumption in 2030 will be 14.7 Q-BTUs. This level now falls to 7.9 Q-BTUs due to energy
efficiency investments, which we estimated would generate 6.8 Q-BTUs of energy saving
relative to the BAU case. Total clean renewable capacity in the ROK now rises to a total of 2.5
Q-BTUs. This includes the 0.3 Q-BTUs that was built into the BAU scenario, plus the 2.2 Q-BTUs
that would be generated through investing 1 percent of GDP per year over a 17-year period,
following the initial 3-year start- up phase.

Table 12.6: Republic of Korea. Impact of clean energy investments relative to 2030 BAU scenario

20-year clean energy investment
2030 BAU scenario scenario
(Case 2: 3-year start-up delay)

7.9 Q-BTUS
Total energy consumption 14.7 Q-BTUs (with 6.8 Q-BTUs of energy
efficiency savings)
2.5 Q-BTUs
Wil llealiy e ansilils esia) 0.3 Q-BTUs (with 2.2 Q-BTUs of additional
supply
clean renewables)
Total nuclear power supply 1.2 Q-BTUs 1.2 Q-BTUs
Total fossil fuel + High-emissions
renewables 13.2 Q-BTUs 4.2 Q-BTUs
Total CO, emissions 666 mmt 294 mmt
Total CO, emissions per capita 13.3 mt 5.9 mt

(with population = 50 million)

Sources: EIA (2013b) for BAU Scenario; discussion in text for 20-year scenario.

We then factor in total energy supplied by nuclear power. We assume that this level will remain
constant at 1.2 Q-BTUs relative to the BAU case.

The overall net effect of these clean renewable and energy efficiency investments can then be
seen in terms of the ROK’s residual demand for fossil fuel energy sources. As we see, according
to this scenario, the demand for all fossil fuels falls to 4.2 Q-BTUs. Assuming an average
emissions level of 70 mmt of CO, emissions per Q-BTU from the ROK’s mix of oil, natural gas,
and coal consumption in Year 20 of its clean energy investment cycle, this then means that the
ROK’s total CO, emissions would be at 294 mmt as of Year 20. This amounts to 5.9 mt of CO,
emissions per capita - a 56 percent decline in per capita emissions relative to the ROK’s 2030
BAU scenario of 13.3 mt of per capita CO, emissons, as well as a 50 percent decline relative to
the ROK’s actual emission level for 2010.
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Employment Generation through Clean Energy Investments

Table 12.7 presents our estimates of the effects on overall annual employment levels through a
ROK clean energy investment project at the level of 1.5 percent of annual GDP.

Table 12.7: Republic of Korea. Employment impact of clean energy investments vs. fossil fuel
spending

Figures are jobs in Year 1 of 20-year clean energy investment strategy

Assumptions for clean energy investments:
e Totalinvestment = 1.5 percent of GDP
- 67 percent clean renewables;
- 33 percent energy efficiency
e “Domestic Content Stable” scenario
e 70 percent of investment for capacity creation/production
e 30 percent for financing costs

Labor force in 2011 = 25.2 million

Net employment

Clean energy investments Fossil fuel spending effects of clean energy
investments
Direct + indirect total
174,800 157,100 17,700

employment at Year 1

Direct + indirect
employment as share of 0.7% 0.6% 0.1%
total labor force at Year 1

Source: See Chapter 7 and Appendix 3.

Our employment results are derived from our estimates presented in Chapter 7 as to the
numbers of jobs generated per $1 million in spending through spending 1.5 percent of GDP
peryearon investments in clean renewables and energy efficiency. As such, our project should
be seen as complimentary to, but distinct from, the important study by Kang, Oh, Lee, Jang,
Hwang, Lee and Kim, Green Growth: Green Industry and Green Jobs (2011). The Kang et al. study
is more broadly gauged. It attempts to estimate levels of employment for all green activities
in the economy of the ROK, as defined within the economy’s overall Green Growth project, as
described above. In our case, we are estimating the number of jobs peryear produced through
investing 1.5 percent of the country’s GDP per year in renewable energy and energy efficiency.
We then compare the extent of job creation through these clean energy investments with the
job creation generated by spending the same amount of money within the oil, coal and natural
gas sectors.

Working within our own framework, we have calculated the effects of the 1.5 percent of GDP
investment project given a spending breakdown at two-thirds renewables and one-third energy
efficiency. We also make two other assumptions.

First, we focus for this analysis on the Domestic Content Stable scenario, as opposed to
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assuming the ROK’s imports will have to rise to meet the resource demands of its clean energy
investment strategy. This is because the ROKis an advanced economy, which has already been
actively engaged in developing Green Growth initiatives throughout the economy. The ROK
also has a long-term record of success as an economy capable of effective adaptation to new
technologies. This basic strength of the economy of the ROK will only be enhanced with time
through its major commitment to clean energy R&D spending.

In addition, we assume that, of the total amount of spending on the clean energy investment
project, 30 percent is allocated to cover financing costs. This leaves 70 percent available for
spending on creating capacity and producing, refining, transporting, and marketing energy.

From these assumptions, we estimate the total amount of direct plus indirect employment
generated through the clean energy investment project at 1.5 percent of GDP is about 175,000
jobs. This is a very large number of jobs in absolute terms. But it is also only 0.7 percent of the
ROK’s total labor force of 25.2 million as of 2011. The impact of the clean energy investment
project would therefore be strongly positive in terms of absolute employment, but its overall
scope would be limited.

To gauge the net expansion in job opportunities, we also need to compare these figures with
the job creation that would occur through maintaining spending in the ROK’s existing fossil fuel
industry, as opposed to shifting funds into clean energy. We see in Table 12.7 that the same
level of spending in the ROK’s coal, oil, and natural gas sectors would create close to the same
number of jobs, at 157,000. That is, overall, there is a net gain of about 18,000 jobs through
pursuing the clean energy investment agenda rather than standing pat with the fossil fuel-
based infrastructure. We thus again see that, compared with maintaining the ROK’s current
fossil fuel based energy infrastructure, the clean energy investment project will be a net source
of job creation, though this net gain in employment will be modest within the context of the
ROK’s overall labor market.

In Table 12.8, we present our projections for employment creation in Year 20 of the ROK’s 20-
year clean energy investment project. These figures are based on two separate assumptions
as to the average growth rate of labor productivity in the ROK’s clean energy sectors over this
20-year period - a 1 percent low-end average annual labor productivity growth rate assumption
and a 2.5 percent high-end assumption.
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Table 12.8: Republic of Korea. Projected employment impacts of clean energy investments
after 20 years under alternative labor productivity assumptions

Figures are jobs per year

Assumptions for 20-year employment projections
e Baseline Year 1 employment levels given in Table 12.7
e 20-year average annual GDP growth is 3.3 percent
e Average annual labor productivity growth ranges between 1-2.5 percent
e Population figure is projected 2035 population
e Labor force/population ratio at end of 20-year investment cycle equals 2011 ratio

Labor force at end of 20-year investment cycle = 27.2 million

- - Midpoint between 1
Scenario with 1 percent | Scenario with 2.5 percent
percent and 2.5 percent
average annual labor average annual labor . .
o A productivity growth
productivity growth productivity growth A
scenarios
Direct + indirect total 15700 5 00 276.000
employment 315,7 35,4 76,
Year 20 direct + indirect
employment as relative to 80.6% 34.7% 57.6%
Year 1 employment
Direct + indirect
employment as share of 1.2% 0.9% 1.0%
total labor force

Sources: See Chapter 7 and Appendix 3.

Working with these assumptions, as well as with the other assumptions on GDP growth,
population and labor force participation listed above Table 12.8, we generate the following
results:

1.

Assuming labor productivity increases at 1 percent per year, total employment creation
through clean energy investments will rise to about 316,000 in Year 20. This is about
an 8o percent increase relative to employment creation in Year 1. This strong gain in
employment creation results through our assumption that GDP growth will average 3.3
percent per year over the 20-year clean energy investment cycle - a 2.3 percent faster
rate than labor productivity in the clean energy sectors. GDP growth at 3.3 percent per
year in turn means that clean energy investments will also be growing at 3.3 percent
peryear, to remain as a fixed 1.5 percent of GDP every year over the 20-year investment
cycle.

Under this 1 percent labor productivity growth assumption, employment creation
through clean energy investments will rise to about 1.2 percent of the ROK’s Year 20
labor force relative to the 0.7 percent figure as of Year 1.

. Assuming average labor productivity in the ROK’s clean energy sectors increases at the

higher-end rate of 2.5 percent over the 20-year investment cycle, employment creation
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will still be rising, though more modestly, given that we assume GDP growth will average
3.3 percent per year. Year 20 employment creation through clean energy investments
then reaches 235,000. This is still a roughly 35 percent increase over the Year 1 figure.
Under this scenario, employment creation through clean energy investments rises to
around 0.9 percent as a share of the ROK’s overall labor force in Year 20.

4. In the last column of Table 12.8, we report midpoint employment creation figures, that
are based on averaging Year 20 employment levels derived from both the 1 percent and
2.5 percent labor productivity growth assumptions. As we see, the midpoint figure is
276,000 jobs, which is about 1 percent of the ROK’s Year 20 labor force.

Overall, as we see, employment creation through the ROK’s clean energy investment project
operating at 1.5 percent of GDP per year will continue to expand over time under a wide range
of plausible assumptions as to the growth of labor productivity over the 20-year investment
cycle. As such, the overarching conclusion we reach here is that, through the clean energy
investment project as we have described it, the ROK would be able to build on its major
accomplishments to date in advancing a green growth policy framework. In fact, through this
clean energy investment project at the level of 1.5 percent of GDP over the course of 20 years,
the ROK could realistically reduce its absolute per capita emissions by 50 percent relative to
actual 2010 emissions and by 56 percent relative to the EIA’s 2030 BAU scenario for the ROK.
Moreover, this dramatic level of emissions reduction can be accomplished without having to
make any sacrifices overall in terms of creating job opportunities for its citizens.
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CHAPTER 13: CONCLUSION

This report addresses the profound challenge now facing humanity to control climate change.
According to the IPCC, to successfully control climate change over the next 35-40 years, we
need to reduce total GHG emissions by 40 percent as of 2030 and 8o percent as of 2050 relative
to current emissions levels.

The purpose of this report has been to show how the IPCC’s intermediate emission reduction
target can be achieved. We have been particularly focused on how it can be accomplished
through a clean energy investment projectthatis also capable of expanding decent employment
opportunities throughout all regions of the world. Any project to control climate change, which
entails reducing decent job opportunities will also create major difficulties for all countries
to raise average living standards and reduce poverty. These difficulties will be experienced
most sharply in developing countries, where the imperative to fight poverty and raise average
living standards is strongest. Limiting opportunities for countries to proceed on a healthy
economic growth trajectory will also face formidable political resistance. This in turn will create
unacceptable delays in proceeding with effective policies to control climate change.

Because of this report’s sharp focus on achieving the IPCC’s 20-year emission reduction
targets while also expanding decent job opportunities, we do not compare the relative costs
and benefits of investments that can reduce CO, emissions versus investments that can, for
example, promote a successful high-tech sector. Correspondingly, it is only within the context
of reducing CO, emissions that we explore the impact of a clean energy investment agenda
on generating decent job opportunities. This is because it is only through investing in clean
energy resources that we are able to deal with the challenge of achieving a country’s emissions
reduction targets. Within all country settings, there is, of course, a wide range of additional
issues that need to be explored on behalf of the goals of promoting economic growth and
employmentopportunities. Many of these issues are not particularly concerned with a country’s
energy sector. It is of course critical that other researchers continue to explore this broader set
of questions along with the energy- and environment-focused themes of this report.

Focusing on energy-based CO_ emissions, which account for nearly 8o percent of all global GHG
emissions, we present in Chapter 1 the IPCC’s intermediate emission reduction target in terms
of average emissions per capita for the entire global population. As of 2010, average annual
global per capita CO, emissions were at 4.6 mt. This figure will need to fall to 2.4 mt within 20
years, after taking account of increasing population.

The basic idea of the strategy we have developed for achieving the IPCC’s emission reduction
target is simple. It proposes that most countries - including especially most large countries, in
terms of either GDP or population levels - devote about 1.5 percent of GDP peryearto investments
in energy efficiency and clean renewable energy resources. In advancing this proposal, we
have focused on the challenges faced by five countries - Brazil, Germany, Indonesia, South
Africa, and the ROK. These are sharply distinct countries, in terms of their regions, levels of
development, as well as their current energy infrastructures and emissions levels. But they are
also all leading economies within their respective regions, and as such, represent important
case studies. We conclude that the 1.5 percent of GDP clean energy investment project applies
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well to four of our five case study countries.

Brazil is the one exception, for two reasons. The first is that Brazil is already a very strong
performer in both its reliance on renewable energy and its level of energy efficiency. As we saw
in Chapter 1, per capita emissions in Brazil are presently at 2.3 mt - that is, at a level already
slightly below the 2.4 mt global average level that is targeted for Year 20 based on the IPCC’s
emissions reduction goals. In addition, Brazil is unique among our five selected countries in
that CO_ emissions from energy-based sources account for less than 40 percent of the country’s
total GHG emissions. As such, for roughly the next decade, Brazil should devote a relatively
large share of its resources to controlling methane and nitrous oxide emissions from non-
energy sources. We saw that Brazil could reduce its CO, emissions to 2.0 mt per capita within
20 years through investing about 0.9 percent of GDP annually in clean renewable energy and
energy efficiency, rather than the 1.5 percent that would apply to most other countries.

One of our starting points in developing the idea of a 1.5 percent of GDP clean energy
investment strategy for most countries was that policymakers in our five selected countries
have themselves proposed clean energy strategies at roughly along these lines - i.e. between
1-2 percent of their country’s GDP. In addition, for all five of our selected countries and
throughout the world more generally, there are no viable paths for achieving the IPCC’s 20-
year emissions reduction target through maintaining dependence on non-renewable energy
sources at anything approximating current levels, much less through allowing consumption
of non-renewables to increase. We reported in Chapter 1 the global emissions projections for
2030 of both the EIA and the IEA. Both the EIA and IEA project that, under their global energy
consumption Reference cases for 2030, global CO, emissions will be more than twice as high as
the IPCC’s 20,000 mmt target level. Even under the IEA’s “New Policies Case,” for 2030, which
incorporates “broad policy commitments...to address energy-related challenges,” (IEA, 2013A,
p. 645), the IEA still projects 2030 emissions at 36,493 mmt. This is 82 percent higher than
the 20,000 mmt target. Increasing global fossil fuel consumption levels through any means -
including utilizing existing resources and technologies; finding new reserves such as Brazil’s
pre-salt deposits; or deploying advanced technologies such as fracking - will, in all cases, only
raise emission levels further.

Some analysts believe that CCS technologies and nuclear energy can effectively expand non-
renewable energy supplies without producing emissions. But we conclude that neither CCS
nor nuclear energy offer viable long-term solutions. CCS technologies aim to capture emitted
carbon and transport it, usually through pipelines, to subsurface geological formations, where
it would be stored permanently. Such technologies have not been proven at a commercial
scale. The dangers of carbon leakages from flawed transportation and storage systems will,
in any case, only increase to the extent that CCS technologies are commercialized. Nuclear
power does generate electricity without producing CO, emissions. But it also creates major
environmental and public safety concerns, which have only intensified since the March 2011
meltdown at the Fukushima Daiichi power plant in Japan.

In Chapters 3 and 4, we review the body of evidence from around the world as to the costs of
building capacity in both clean renewable energy supply and energy efficiency. This body of
evidence provides the critical basis supporting our conclusion that investments in these two
areas can be the foundation for achieving the 20-year global emissions reduction target.
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With respect to clean renewables, cost estimates from both IRENA and the EIA support the
view that generating electricity from onshore wind, small-scale hydro, geothermal and clean
bioenergyare alleitherat, oratleastrapidly approaching, cost parity with non-renewables under
average conditions. Solar is not yet approaching cost parity, but solar costs are diminishing
rapidly. Through technical innovations and expanded market opportunities over the next two
decades, solar promises to become the cleanest, safest, and most abundant renewable energy
source. The range of costs are still generally greater for all clean renewables, given differences
in, among other things, the amounts of sun, wind, and fast-flowing rivers between regions and
specific locations. But this wider range can be controlled through policies that utilize the most
cost-effective combination of renewable sources within any given setting.

In addition, these cost comparisons between clean renewables and non-renewables do not
factor in any impact of carbon cap or carbon tax policies that would raise the relative prices
of oil, coal, and natural gas. As we review in Chapter 3, renewables would become still more
competitive if the market prices of fossil fuels incorporated some reasonable measure of the
environmental costs generated by burning oil, coal, and natural gas. Using a simple mark-up
approach to estimating such price effects, we show in Chapter 3 that, with a $75 per ton carbon
price utilized in the EIA’s energy forecasting models, price mark ups for fossil fuels would range
between about 20 percent for crude oil, 64 percent for natural gas, and 250 percent for coal.
The price increases would of course be higher still with a higher carbon price, such as the $125
per ton figure used by the IEA in its policy modeling exercises.

With respect to energy efficiency costs, we reported in Chapter 4 on the wide range of cost
estimates presented by alternative studies. For example, a 2008 World Bank study by Taylor
et al. of 455 projects in 11 industrialized and developing economies estimated the average
costs of achieving one Q-BTU of energy savings at $1.9 billion. A 2010 study by McKinsey and
Company of a range of non-OECD economies estimated average energy efficiency energy costs
at $11 per Q-BTU. The U.S. National Academy of Sciences estimates average costs within the
U.S. at roughly $30 billion per Q-BTU.

These alternative studies do not provide sufficiently detailed methodological discussions
that would enable us to identify the main factors generating these major differences in cost
estimates. But it is at least reasonable to conclude from these figures that there are likely to
be large variations in costs on a project-by-project basis. At the same time, for the purposes
of our estimates in this report, we needed to proceed with some general rules-of-thumb for
estimating the level of savings that are attainable through a typical set of efficiency projects in
our five selected countries, as well as in other settings.

Our approach has been to assume relatively high-end average costs both for expanding clean
renewable productive capacity and achieving major gains in energy efficiency. Specifically, we
derived our clean energy investment cost assumptions as follows: 1) With clean renewables, we
worked from both IRENA’s region- and country-specific figures on costs per kWh of electricity
and the EIA’s U.S.-based figures on capital expenditures for building renewable capacity; and
2) For energy efficiency, we utilized the three studies described in Chapter 4 - from the World
Bank, McKinsey and Company, and the U.S. National Academy of Sciences respectively - on
investment costs per Q-BTU of energy savings. Working with these various studies, for the
cases of Brazil, Indonesia, and South Africa, we assumed the average costs of expanding clean
renewable capacity at $125 billion per Q-BTU and the costs for efficiency investments at $11
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billion per Q-BTU of savings. For the ROK, we assume the same $125 billion average figure for
clean renewable investments but a higher figure, $20 billion per Q-BTU, for efficiency gains.
With Germany, we directly incorporated the government’s own cost estimates for their 2030
Low Carbon Scenario.

The key here is not that these cost assumptions are necessarily accurate in any of the countries,
and certainly not on an individual project-by-project basis, but rather that they err, if anything,
on the high side. This is because we need to assess whether investing 1.5 percent of GDP in
clean renewables and energy efficiency can bring down CO, emissions sufficiently within a
framework of relatively high-end cost assumptions in all cases. Our support for a 1.5 percent of
GDP clean energy investment project would not be robust if we could demonstrate its viability
only on the basis of highly aggressive low-end assumptions on costs, including an assumption
of rapid cost reductions through technological learning.

In working with these cost figures, we should also emphasize again that, in all cases, the
payback period for such energy efficiency investments are generally estimated to be relatively
short - in most cases, less than three years for full payback. The 2011 survey research by UNIDO
that we discussed in Chapter 4 provided more careful evidence on mean internal rates of
return for the 119 energy efficiency projects they analyzed. UNIDO found that mean IRRs ranged
between 25 percent for projects with a three-year lifespan to 5o percent for 10-year projects.

We do also consider in Chapter 4 the prospect that large-scale efficiency investments may
not have their intended effect, as a result of the rebound effect. However, we concluded that
any rebound effect that may emerge as a by-product of an economy-wide energy efficiency
investment project will not be large enough to counteract the emissions and cost reductions
these efficiency investments can achieve. Still, the most effective way to limit rebound effects
is to combine efficiency investments with complementary measures to expand renewable
energy capacity and to establish a price on carbon emissions.

Assessing the likely employment effects of clean energy investments in Brazil, Germany,
Indonesia, South Africa, and the ROKrequired us to first estimate the numbers of jobs generated
by a given amount of spending in each country’s various clean energy sectors. We estimated
these employment effects on the basis of the I-O modeling approach we developed in Chapter
6 as well as the assumptions we described in Chapter 5 on each country’s domestic content
proportions as demand increases along the clean energy sectors’ supply chain. Overall, we
find here that, per $1 million in spending in each country (converted at current exchange rates),
clean energy investments generate, on average, about 37 jobs in Brazil, 10 jobs in Germany,
100 jobs in Indonesia, 70 jobs in South Africa, and 15 jobs in the ROK. Critically, as mentioned
above, we also find that the clean energy investments create more jobs in all five countries
than spending the same amount of funds within each country’s fossil fuel sectors. In the cases
of Brazil, Indonesia, and South Africa, the net employment gains for clean energy investments
are substantial. They are more modest in Germany and especially the ROK. Still, in all cases,
we find that investing in building a clean energy economy will also be a net positive source of
job creation.

In Chapter 7, we also provide disaggregated statistics showing the types of jobs that would be
created through an expansion of clean energy investments. We look at four criteria - gender
balance; the proportions in self-employment and working in micro-enterprises; and the
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educational attainment levels of people employed in energy-linked activities. Not surprisingly,
these disaggregated employment results varied significantly by country, and sectors. We
observe, for example, a high proportion of employment in informal sectors in Brazil, Indonesia,
and South Africa, and, to a somewhat lesser extent, the ROK, as indicated by our figures on
both self-employment and micro-enterprise employment. This pattern is tied, first, to the large
proportion of agricultural employment that will be generated by the growth of clean bioenergy
production. It is also associated with the large increase in construction work that would result
through the expansion of energy efficiency building retrofit projects. The major increase in
investment funds flowing into construction and agriculture should provide opportunities to
raise the level of formalization for these sectors.

In its current composition, employment in clean energy areas is heavily male dominated in all
five countries. This is due to the significant role played by both manufacturing and construction
in overall clean energy investments. Advancing major clean energy initiativesin all five countries
(and elsewhere) could therefore be seen as an opportunity to open up decent job opportunities
for women in these heretofore male employment strongholds. In general terms, the levels of
educational attainment in the clean energy areas are not especially high. This suggests that, at
least at the level of general educational levels, there should not be major challenges in finding
qualified workers to cover the rising employment needs for expanding clean energy activities.
At the same time, some of these new employment activities will entail new activities and skills.
Countries advancing clean energy investment projects will therefore need to make provisions
for new types of training and related skill acquisition initiatives.

InChapters 8-12, wethen presentedthe overall effects on emissionsreductionsand employment
expansion through clean energy projects in each of our five selected countries. For Brazil in
Chapter 8, we estimated that clean energy investments will need to be at about 0.9 percent of
GDP on average over the 20-year investment cycle to achieve the IEA’s Low Carbon Scenario,
through which Brazil’s per capita emissions would fall to 2.0 mt as of 2030. For Germany,
Indonesia, South Africa, and the ROK in Chapters 9-12, we assume clean energy investments at
1.5 percent of GDP every year over the 20-year cycle. We were able to generate these estimates
of emission reductions and employment expansion on the basis of: 1) our cost estimates for
investments in clean energy and energy efficiency; 2) our estimates of employment creation
per dollar of expenditure in each of the five countries; and 3) our assumptions for average
GDP growth in each country over the 20-year cycle. We deliberately work with conservative
GDP growth assumptions, derived from projections by the IEA, IMF and the countries’ own
forecasting models. Once again, our point in working with these conservative GDP growth
forecasts is not that they should necessarily be accurate but that, if anything, they err on the
low side. If our five selected countries experience faster GDP growth than we assume, this then
also means that they have more resources to channel towards clean energy investments, since
our clean energy investment levels for all countries are a fixed ratio of each country’s GDP (1.5
percent of GDP in all cases but Brazil, with Brazil at 0.9 percent of GDP).

In Table 13.1, for each of our five selected countries, we summarize the impact of our 20-year
clean energy investment project on emissions levels and employment creation as of Year 20.
Panel A of Table 13.1 shows the main results of our estimates for all countries, and Panel B
presents the main underlying assumptions underlying our estimates.
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Table 13.1: Summary of emissions reduction and employment expansion effects through
20-year country-specific clean energy investment projects

a) Main results from estimates

Brazil Germany Indonesia South Africa ROK

Emissions reductions

Year 20 per capita

ity 2.0 mt 5.5 mt 2.6 mt 8.7 mt 5.9 mt

Year 20 per capita
emissions relative to -13.0% -43.3% +52.9% -8.4% -49.1%
2010

Year 20 per capita
emissions relative to -37.5% -28.6% -66.7% -49.7% -55.6%
2030 BAU

Employment
expansion

Clean energy jobs per

$1 million 37.4 jobs 9.5 jobs 103.3 jobs 66.2 jobs 15.1 jobs

Clean energy minus
fossil fuel jobs per $1 16.2 jobs 1.9 jobs 81.3 jobs 33.1jobs 1.5 jobs
million

Midpoint Year

20 employment
through clean energy
investments

806,000 352,000 1.8 million 398,000 276,000

Midpoint Year 20
employment as share 0.7% 0.9% 1.3% 1.9% 1.0%
of labor force

Sources: For emissions figures, Tables 1.4, 8.4 9.3, 10.5, 11.6, and 12.6. For employment figures, Tables 7.1, 7.5, 7.9, 7.13, 7.17, 8.7, 9.5, 10.7, 11.8, 12.8.

b) Main assumptions underlying estimates

Brazil Germany Indonesia South Africa ROK
tzrzg(gar Rl 3.7% 2.0% 5.0% 4.0% 3.3%
Clean energy
investments as share 0.9% 1.5% 1.5% 1.5% 1.5%
of GDP
Costs of clean Direct
renewable capacity $125 billion government $125 billion $125 billion $125 billion
expansion per Q-BTU estimates
e
. y $11 billion government $11 billion $11 billion $20 billion
improvements per -
Q-BTU estimates

Sources: Tables 8.5, 9.3, 10.3, 10.4, 11.4, 11.5, 12.4.
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As the table shows, in all cases, the clean energy investment project generates major gains
in emissions reductions relative to both 2010 levels and BAU assumptions as of Year 20.
Brazil is at 2.0 mt per capita emissions under the clean energy strategy. This is a 38 percent
improvement over the BAU model, even while Brazil is devoting only 0.9 percent of GDP to the
project. We assume that Brazil is also channeling major resources toward controlling other GHG
emissions from non-energy sources. Germany is at 5.5 mt per capita emissions through our
clean energy investment project. This is a 43 percent improvement relative to 2010 and a 29
percent improvement relative to Germany’s 2030 BAU scenario. Indonesia is at 2.6 mt within
20 years under our investment project. This figure is 53 percent higher than Indonesia’s actual
2010 level. But, critically, it is also 67 percent lower lower than Indonesia’s BAU framework for
2030, and it is still only slightly higher than the 20-year target figure of 2.4 mt per capita of CO,
emissions. This result for Indonesia underscores how Indonesia can proceed on a rapid GDP
growth trajectory (our assumption being 5.0 percent for the 20-year period) without generating
major increases in its per capita emissions. The Indonesian case thus suggests a workable
approach for other low- and lower-middle income countries to follow, enabling them to grow
rapidly while still keeping emissions levels within close range of, if not below, the 20-year 2.4
mt target. The situation is similar for South Africa, even while the South African economy is ata
much higher per capita GDP level than Indonesia. Nevertheless, we show that South Africa can
support a 4.0 percent GDP growth trajectory while still lowering its emissions within 20 years
by nearly 50 percent relative to its 2030 BAU scenario. Similarly, with the ROK, we show that
investing 1.5 percent of GDP peryear over the 20-year investment cycle can lower the country’s
per capita CO, emissions by fully 56 percent relative to the 2030 BAU Scenario.

In conjunction with these major across-the-board gains in emissions reductions, we also see
in Table 13.1 that clean energy investments will be a positive source of net job creation for all
five countries. As we have discussed, these positive job effects are proportionally larger for
South Africa, Indonesia, and, operating on a somewhat smaller scale project, Brazil. They are
relatively modest in Germany and the ROK, because the levels of employment creation per
dollar of expenditure are more similar to those in the fossil fuel sectors in these countries.
Therefore, for Germany and the ROK, the job increases generated by clean energy investments
will be more closely matched by the job losses produced by retrenchments in the oil, coal and
natural gas sectors.

The most critical point of our report nevertheless remains valid for all five selected countries.
In all five cases, our research finds that the clean energy investment project is capable of
achieving dramatic reductions in CO_ emissions while overall job opportunities are expanding
and GDP growth proceeds along a healthy long-run growth trajectory.

Effective industrial policies, for all countries at all levels of development, will certainly be
necessary to advance these emission reduction and employment expansion outcomes. In
Chapter 5, we reviewed some of the main considerations with respect to advancing effective
industrial policies. This begins with governments playing a leading role in adapting clean
energy technology. As the UNIDO 2013 Industrial Development Report usefully summarized
specifically with respect to uptakes of green technologies in manufacturing, “technological
change rarely takes place in a vacuum, and often requires incentives. Success stories of new
energy technologies are the product of forward-thinking ambitious government policies,”
(2013, p. 124). Governments will also need to play a leading role in delivering affordable and
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flexible financing arrangements for clean energy investments to be sustained on a large-scale
basis.

Ambitious government policies will also be needed to effectively manage the unavoidable
major retrenchments in the oil, coal and natural gas industries. As we review in Chapter 5,
all owners of fossil fuel assets, including public sector entities as well as private oil, coal and
natural gas corporations, will, by necessity, experience a major decline in the value of their
holdings. Along with this, workers tied to the oil, coal, and natural gas industries will inevitably
face job losses as a consequence. Economic policies are needed in all countries to assist these
workers, as well as their families and communities, with transitional support into new areas of
economic activity, where decent job opportunities are expanding. In most countries, the energy
efficiency and clean renewable energy sectors will be among the most important new areas of
expanding job opportunities.

Overall again, the overarching conclusions that emerge from this report are straightforward. We
conclude that there is a clear path for the global economy to achieve the 20-year CO, emissions
target from energy-based sources of 20,000 mmt, or, on a per capita basis, 2.4 mt of emissions.
We show that the large-scale investments necessary to build a clean energy economy over the
next 20 years will also promote expanded job opportunities, even while the fossil fuel sectors
will be contracting. Further, pursuing these clean energy investments will not act as an obstacle
to countries sustaining healthy long-term growth trajectories. In large measure, this is due to
the fact that costs of generating energy from clean renewable sources are approaching parity
with non-renewables. Equally important is that investments in energy efficiency are highly cost
effective over time.

In short, this report has advanced a realistic framework for dramatically reducing CO_ emissions
and thereby taking major strides towards controlling climate change over the next 20 years. It
is also a project that can expand job opportunities and does not depend on slowing down GDP
growth in any country or regional setting. This, indeed, is what makes the project realistic. It is
a unified framework for controlling climate change and improving living standards in all country
and regional settings.
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APPENDIX 1: CALCULATIONS AND
CONVERSIONS FOR ESTIMATING
THE EFFECTS ON FOSSIL FUEL
PRICES OF A CARBON PRICE

We present here the calculations through which we estimate the impact on the prices of oil,
coal and natural gas of a $75 per ton carbon price, operating in 2035. As described in the main
text in Chapter 3, we work within a simple price mark-up framework. That is, we assume that
the cost and price increases on fossil fuels from the carbon price policy follow proportionally
from both the stipulated level of the given carbon price policy - in this case the $75 per ton
carbon price - and the amount of CO_ emissions generated by burning oil, coal, and natural
gas to produce energy. Our figures on emissions are those that we present in Table 2.2, and
show again in Table 3.8. These are expressed in terms of emissions per Q-BTU of energy: oil is
approximately 69 mmt per Q-BTU, coal is at 100 mmt per Q-BTU, and natural gas is at 56 mmt
per Q-BTU.

Calculations for Oil
1. Converting CO,_ emissions figures from millions of tons to tons.

€ 1 Q-BTU of energy emits 69 mmt of CO,, then:
e 1 billion BTUs of energy emit 69 mt of CO,. Therefore:
e 1tonof CO, is produced by ~14.5 M-BTUs of oil
» (i.e. 1 billion BTUs/69 mmt of Co))
e The cost of the $75 per ton carbon price would therefore be $75 per 14.5 M-BTUs of
oil

2. Converting oil units from BTUs to barrels of oil

@ 1 barrel of oil = 5.6 M-BTUs of energy; therefore
@ 2.6 barrels of oil = 14.5 M-BTUs of oil

3. Carbon price in barrels of oil

@ If 2.6 barrels of oil = 14.5 M-BTUs of oil, it follows that 2.6 barrels of oil will generate 1
ton of CO, emissions; and that

@ 1 barrel of oil will generate ~ 0.4 tons of emissions (i.e. = 1 ton CO,/2.6 barrels of oil)

@ Ifcarbon priceis $75 perton, that means the price of barrel of oil will go up by about $30
per barrel of oil (i.e. $75 * .4 = $30).
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4. Scaling carbon price increase for oil

@ The EIA reference case for the price of oil in 2035 is ~ $140 per barrel.
@ Thus, the impact of a cost mark-up through the carbon price would be a price increase
of 21.4 percent (= $30/%$140).

Calculations for Coal
1. Converting CO2 emissions figures from millions of tons to tons.

@ 100 mmt of CO, emissions are generated per 1 Q-BTU of coal-fired energy; therefore:
e 1 billion BTUs of energy emit 100 mt of CO_; therefore
e 1tonof CO, is produced along with 10 M-BTUs of coal-fired energy; and
e o.1tons of CO, are produced by 1 M-BTUs of coal-fired energy.

2. Carbon price per 1 M-BTUs of coal energy
€ 1 M-BTUs of coal-fired energy will carry a carbon price of $7.50 (i.e. $75 perton/o.1tons).

@ The EIA’s reference price for coal in 2035 is ~ $3.00 per 1 M-BTUs.
e The market price of coal would therefore rise from $3.00 to $10.50 per 1 M-BTUs.
e This means the carbon price would raise the overall price of coal in 2035 by 250
percent - an increase of $7.50, from $3.00 to $10.50.

Calculations for Natural Gas
1. Converting CO2 emissions figures from millions of tons to tons.

@ 56 mmtof CO_ are generated per 1 Q-BTU of natural gas-fired energy; therefore:
* 1 billion BTUs of energy emit 56 mt of CO_; and
e 1tonof CO, is produced with 18 M-BTUs of natural gas-fired energy; and
* 0.06tons of CO, are produced by 1 M-BTUs of natural gas-fired energy

2.Carbon Price per 1 M-BTUs of natural gas energy

€ 1 million BTUs of natural gas-fired energy will bear a carbon price of $4.50 (i.e. $75 per
ton/0.06 tons).
e The EIA’s reference price for natural gas in 2035 is ~ $7.00 per 1 M-BTUs.
e The market price of natural gas would therefore rise from $7.00 to $11.50 per 1
M-BTUs.
e The carbon price would therefore raise the overall price of natural gas in 2035 by 64.3
percent - an increase of $4.50, from $7.00 to $11.50.

254



TECHNICAL APPENDICES

APPENDIX 2: ESTIMATING
DOMESTIC CONTENT OF CLEAN
ENERGY INVESTMENTS

Domestic content is defined as the proportion of a good or service that is produced in
domestically as opposed to being imported. For each country in our report, we use country-
specific data on imports and domestic production from the I-O tables in order to calculate
domestic content in each industry. For the constructed renewable energy sectors, as defined in
Appendix 3, we calculate weighted average domestic content figures for each energy category.

The domestic content percentage of each industry (DC) is calculated as

Domestic Production;
DCi= :

Domestic Production; + Imports;

The weighted domestic content for each energy category is the sum of the domestic content of
each component industrial sector multiplied by the weight of that industry in the category (see
Appendix 3 for weights and industries):

DC.= ?=1(DCL- * W;) where w,is the weight of industry i within category c.

The domestic content of each energy category will be affected both by what the industry
composition is, and what the domestic content is in each industry. For example, weatherization
has avery high domestic content since itis comprised of the construction industry, which tends
to have domestic content close to 100 percent. Categories with more manufactured goods,
such as solar and wind, will generally have lower domestic content, since a larger share of
manufactured goods are imported.

Itis important to note here that since we calculate employment based on the I-O model, and we
proxy clean energy industries using the industrial sectors as defined in the I-O tables, it is quite
possible that the actual domestic content values for industries such as wind or solar could
differ from those presented in this report. The results presented in this report show what the
domestic content could be if these proxy industries were producing clean energy goods, given
the relationships captured by the I-O model.
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Two Cases of Domestic Content:
Baseline and Reduced Domestic Content

We present two different scenarios — one in which the domestic content of all industries remains
the same even as production scales up. This we consider the “aggressive industrial policy
scenario” since it implies that all industries will scale up production as more investments are
made in clean energy, and one in which domestic content in “tradable” industries is reduced by
20 percent. This we call the more conservative scenario, since it implies that not all industries
will be able to scale up production and that some increase in imports will be necessary in order
to meet increased demands for clean energy.

We identify all industries in the 1-O models of each country as either “non-tradable” or
“tradable.” Non-tradable industries are those that have a domestic content of 9o percent or
above. The country is nearly or completely self-sufficient in meeting demands for the goods or
services of these industries, and they are often location-specificindustries such as construction
or education. Industries with less than 9o percent domestic content are considered “tradable”
since there is already more than 10 percent of imported good or services in these industries.

We generate weighted-average domestic content and employment estimates for both the
originaldomestic content and the reduced domestic content scenarios. Inthe reduced scenario,
we reduce the domestic content of “tradable” industries by 20 percent from their current level.
Thus, an industry that is currently meeting its demands with 85 percent domestic production
and 15 percent imports, we reduce the domestic content from 85 percent to 68 percent. This
enables us to calculate domestic content and employment in a scenario in which industries are
not able to adequately scale up to meet increased demands. For calculating weighted average
domestic content in this “reduced” scenario, the procedure is the same as above. In order to
calculate employment, we reduce employment levels by 20 percent in each of the “tradable”
industries contained throughout the supply chain of each energy category and then recalculate
our employment multipliers as described in Appendix 3.
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APPENDIX 3: METHODOLOGY AND
DATA SOURCES FOR AGGREGATE
EMPLOYMENT ESTIMATES

Input-Output Methodology

The employmentimpacts of investments in renewable energy or energy efficiency are estimated
using an I-O model. I-O tables are national accounting systems that show linkages between
industries and are used to analyze how changes in final demand affects industrial output
and employment. I-O models are constructed from country-specific data, including firm-level
information. I-O models have been widely used to estimate employment since they were first
developed by Wassily Leontief in the 1930s, and have recently been used by economists to
study the impacts of clean energy investments.’s

Miller and Blair (2009) note that the two main assumptions in I-O tables are those of fixed
technical coefficients and fixed input proportions. Fixed technical coefficients means that the
inter-industry flows from industry i to industry j depend entirely on the output of industry j.
In other words, if the output of industry j doubles, its input from industry i will also double
i.e. the models assume that the production technology exhibits constant returns to scale.
Fixed proportions implies that industry j will use the same mix of inputs from all industries
even as demand increases for industry j’s output — the basic I-O model does not allow input
substitution.

Given these assumptions, I-O tables are best suited to studying the current state of the
economy and making short-term projections. We should therefore exercise caution when using
I-O models to conduct long-range forecasts. The assumption of constant returns to scale is
relevant only for relatively small changes in levels of output. If an industry increases output by,
say, 5 or 10 percent, we might be able to assume constant returns to scale. But a doubling of
the size of the industry, such as we might expect to occur with renewable energy, may lead to
changes in the returns to scale. Furthermore, because I-O data is captured at a point in time
(such as through an annual census), the resulting I-O tables themselves are static. Thus, we
must be aware of not only homogeneity and proportionality, but also of fixed prices. If, over
time, input prices change, then we would expect industries to substitute cheaperinputs for the
more expensive inputs.

The limitations of the I-O model lie in these three assumptions (homogeneity, proportionality,
and fixed prices), which are made to simplify the analysis. Its strength, however, lies in the
transparency of the model and the relatively limited number of assumptions in comparison
to more complex general equilibrium models that typically rely on a far greater number of
assumptions.”® Richardson (1972) says that part of the appeal of the I-O model is that it is

75 For a detailed discussion of the I-O method, including data collection and the mathematical underpinnings, see the Horowitz and Planting (2009).

76 For example, typical assumptions in CGE include profit-maximization, perfect competition, market-clearing conditions, production at full capacity,
and full employment.
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“value-free” and “neutral” and thus is useful for economic impact studies in a wide variety of
settings — from capitalist to planned economies.

I-O tables can essentially be used in one of three ways: To determine the current state of
economic interactions (static); to change assumptions regarding production functions or
prices, or to change final demand (comparative static); or to incorporate technological change
or permit expansion of the economy by introducing capital accumulation into the framework
(dynamic). In this report, we use the I-O model for comparative static analysis. Namely, we will
study the employment effects of an increase in final demand for renewable energy and energy
efficiency.

The industrial categories in the economic censuses and I-O tables of the featured countries
in this report currently do not explicitly identify ‘Renewable Energy’ or ‘Energy Efficiency’
industries. While traditional energy industries such as oil/gas extraction, coal mining,
support services for these extraction activities, power generation and distribution, and
various petroleum- or coal-based manufacturing activities are identified within the accounts,
renewable energy sectors such as wind, solar, biomass, geothermal, and so on, are not defined
as distinct sectors. Similarly, energy efficiency industries such as building weatherization,
industrial energy efficiency, and so on are not included as distinct sectors. Nonetheless, the
component activities of these industries are captured within the explicitly defined industrial
sectors that comprise the I-O model.

For example, the manufacture of hardware and electrical equipment used for solar panels
are categorized respectively in the hardware and electrical equipment industries. If we can
thus identify the various components and their weights that make up the REEE industry, we
can study the impact of increased demand for REEE products and services. The methodology
for this strategy is presented in Miller and Blair (2009). PERI economists have employed this
methodology in a variety of studies’” and in consulting work for the U.S. Department of Energy.
The estimates produced by PERI have been corroborated through survey work as well as
through data collected by the U.S. Department of Energy as part of the energy provisions of the
American Recovery and Reinvestment Act of 2009.

In this report, we construct employment requirements tables for each of the five featured
countries using their national I-O tables and industry-specific employment/output (E/O) ratios.
Multiplying the Leontief Inverse Coefficient Matrix by the industry-specific E/O ratios yields
the employment requirements table, from which the number of jobs (both direct plus indirect)
associated with a given amount of expenditure on the final demand for the products or services
of a given industry or set of industries.

77 See, for example, (Pollin, Heintz and Garrett-Peltier, 2009)

258



TECHNICAL APPENDICES

Incorporating Variable Coefficients and Labor Productivity into
Employment Estimates

Estimates of output multipliers. The data used to estimate the change in output multipliers
over time were taken from the World Input-Output Database (WIOD), a project of the European
Commission. The WIOD produces annual I-O tables for select countries. I-O tables exist for four
out ofthe five countries in this report: Brazil, Germany, Indonesia, and the ROK. The WIOD tables
are more aggregated than the ones used to produce the employment estimates presented in
this report. The sectors in the WIOD are standardized across countries. There are 34 industrial
sectors in the I-O tables for Brazil, Germany, and the ROK and 33 sectors for Indonesia. The
missing sectorin the Indonesian tables is “sale, maintenance, and repair of motor vehicles and
motorcycles”. This industrial category does not feature in the estimates of output multipliers
for the various energy sectors considered in the report and its absence should not affect the
results.

Output multipliers are calculated from the Leontief inverse for each of the four countries. The
Leontief inverse matrix is given by L=(I-A)* in which L is the Leontief inverse matrix, / is the
identify matrix, and A is the matrix of I-O coefficients derived from the WIOD tables. The energy
sectors analyzed in this report are synthetic sectors — in that they represent weighted averages
of the sectors that actually appear in the I-O tables. The weights for determining the output
multipliers of these sectors correspond to the weights used in the employment estimates
presented in the report. Since the WIOD tables are more aggregated than the I-O tables used in
the primary analytics of this report, the weights had to be adjusted to match the 34 (or, in the
case of Indonesia, the 33) sectors of the WIOD tables.

Estimates of labor productivity growth rates. The data used to calculate labor productivity growth
rates were taken from the World Bank’s World Development indicators. Labor productivity
was defined as value-added per worker and as estimated for three broad sectors: agriculture,
industry, and services. Total employment in these broad sectors was estimated from the size
of the working age population, the employment to working age population ratio, and the share
of total employment in agriculture, industry, and services. Total value added was expressed in
constant local currency units —i.e. labor productivity was measured in real terms. Note that the
data used to calculate labor productivity was only available for South Africa beginning in 2000.

Annual growth rates in labor productivity were estimated by calculating the percent change
in labor productivity over the relevant time period and then converting these total percent
changes into annualized values. The change in labor productivity for each of the energy sectors
was then calculated as a weighted average of the change in labor productivity in agriculture,
industry, and services. The weights correspond to the weights used elsewhere in the report.
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Modeling Clean Energy

The national I-O accounts in this report do not explicitly identify clean energy industries as
such. We therefore created “synthetic” industries that are proxies for various renewable energy
(RE) and energy efficiency (EE) industries. Based on past modeling experience by PERI as well as
various publications on the components and costs of renewable energy and energy efficiency
installations?®, we construct renewable energy and energy efficiency categories that are similar
across countries but based on the specifics of each country’s I-O tables. The weighting scheme

for each country is presented in Table A3.1.

Table A3.1: Industries and weights for renewable energy, energy efficiency and fossil fuels in

the I-O models

Brazil

Category 1-0 industry Weight
Agriculture, forestry, logging 50%
Construction 25%

Bioenergy
Petroleum refining and coking 12.5%
Other services 12.5%
Construction 30%
Manufacture of steel and steel products 5%
Machinery and equipment, including maintenance and repairs 6%

solar Machinery, equipment and material 7%
Electronic material and communication equipment 35%
Information services 18%
Appliances 4%
Electronic material and communication equipment 14%
Machinery and equipment, including maintenance and repairs 11%
Manufacture of steel and steel products 14%

Wind Transport, storage and mail (belong to the service sector, for example, o
transport here could mean using transportation to deliver goods, etc.) i
Construction 22%
Cement 15%
Information services 8%
Information services 30%
Oil and natural gas (drilling) 15%

Geothermal
Construction 45%
Machinery, equipment and material 10%

78 See, for example, IRENA (2012) and various other studies in the “Renewable Energy Cost Analysis” studiesseries produced in 2012 by Agency

IRENA.
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Information services 43%
Cement 18%
Hydro Construction 18%
Machinery and equipment, including maintenance and repairs 7%
Appliances 14%
Weatherization Construction 100%
Construction 25%
Grid upgrades Machinery and equipment, including maintenance and repairs 25%
Electronic material and communication equipment 50%
Machinery and equipment, including maintenance and repairs 50%
Lnf:siitr:gl ENEI8Y | Information services (includes R&D) 30%
Construction 20%
Other mining 50%
Coal
Petroleum refining and coking 50%
Oil and natural gas 70%
Oil/gas
Transportation 30%
;Eir:ge\\llxable Bioenergy, hydro, wind, solar, geothermal 20% each
Weatherization 50%
“Energy efficiency” | Industrial energy efficiency 25%
Grid upgrades 25%
“Fossil fuels” Coal, oil/gas 50% each
Germany
Category 1-0 industry Weight
Products of agriculture, hunting 25%
Forestry and DL 25%
Bioenergy Bauinstallations and other construction work 25%
Coke, refined petroleum products and nuclear materials 13%
Research and development services 13%
Prep site work, civil engineering work 30%
Foundry products 18%
Solar Electrical machinery and apparatus, nec- 18%
Nachrtechn, Rundf. -. Televisions and electron. Components 18%
Research and development services 18%
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Prep site work, civil engineering work 26%
Plastic products 12%
Foundry products 12%
Wind Machinery 37%
Electrical machinery and apparatus, nec- 3%
Nachrtechn, Rundf. -. Televisions and electron. Components 3%
Research and development services 7%
Research and development services 30%
0il, gas, DL for petroleum, natural gas extraction (Drilling) 15%
Geothermal
Bauinstallations and other construction work 45%
Machinery 10%
Research and development services 43%
Pig iron, steel, pipes and products thereof 18%
Hydro Prep site work, civil engineering work 18%
Machinery 7%
Electrical machinery and 3apparatus, nec- 14%
Prep site work, civil engineering work 50%
Weatherization
Bauinstallations and other construction work 50%
Machinery 20%
Industrial energy Electrical machinery and apparatus, nec- 30%
efficiency Bauinstallations and other construction work 20%
Research and Development Services 30%
Prep site work, civil engineering work 25%
Machinery 25%
Grid upgrades
Electrical machinery and apparatus, nec- 25%
Nachrtechn, Rundf. -. Televisions and electron. Components 25%
Mining and quarrying Other mining and quarrying products 50%
Coal Coal and peat 50%
Qil, gas, DL for petroleum, natural gas extraction 50%
Oil/gas Coke, refined petroleum products and nuclear materials 20%
Otherwise. Landv.leistungen, transportation via pipelines 30%
;EZ:;\;V,,able Bioenergy, hydro, wind, solar, geothermal 20% each
Weatherization 50%
“Energy efficiency” | Industrial energy efficiency 25%
Grid upgrades 25%
“Fossil fuels” Coal, oil/gas 50% each
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Indonesia
Category 1-0 industry Weight
Rice 12.5%
Maize 12.5%
Wood 25%
Bioenergy
Refining 12.5%
Construction 25%
Other services 12.5%
Construction 30%
Manufacture of fabricated metal products 17.5%
Solar
Manufacture of machine, electrical machinery and apparatus 35%
Other services 17.5%
Manufacture of rubber and plastic wares 12%
Manufacture of fabricated metal products 12%
Wind Manufacture of machine, electrical machinery and apparatus 43%
Construction 26%
Other services 7%
Crude oil, natural gas and geothermal mining (drilling) 15%
Manufacture of machine, electrical machinery and apparatus 10%
Geothermal
Construction 45%
Other services 30%
Manufacture of non metallic mineral products 18.2%
§ Manufacture of machine, electrical machinery and apparatus 21%
Hydro
Construction 18.20%
Other services 42.90%
Weatherization Construction 100%
Manufacture of machine, electrical machinery and apparatus 50%
Inqu.strlal ENETEY | Other services 30%
efficiency
Construction 20%
Construction 25%
Grid Upgrades
Manufacture of machine, electrical machinery and apparatus 75%
Coal and metal ore mining 50%
Coal
Manufacture of chemicals 50%
Crude oil 50%
Oil/gas
Petroleum refinery products 50%
Renevxable Bioenergy, hydro, wind, solar, geothermal 20% each
energy
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Weatherization 50%
“Energy efficiency” | Industrial energy efficiency 25%
Grid upgrades 25%
“Fossil fuels” Coal, oil/gas 50% each
South Africa
Category 1-0 industry Weight
Agriculture (Including live animals) 25%
Forestry 25%
Construction 12.5%
Bioenergy
Construction services 12.5%
Petroleum products 12.5%
Research and development 12.5%
Electrical machinery 48%
Glass products 5%
Non-ferrous metals 5%
Solar Structural metal products 7%
Engines, turbines 4%
Construction 16%
Research and development 15%
Construction 13%
Construction services 13%
Plastic products 12%
Other fabricated metal 12%
Wind
General machinery 37%
Lifting equipment 3%
Electrical machinery 3%
Research and development 7%
Research and development 30%
Petroleum products (Drilling) 15%
Geothermal
Construction 45%
Pumps, compressors 10%
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Research and development 42.9%
Plaster, cement 18.2%
Hydro Construction 18.2%
Engines, turbines 7%
Electrical machinery 14%
Construction 50%
Weatherization
Construction services 50%
Special machinery 30%
General machinery 10%
Industrial energy Engines, turbines 10%
efficiency Research and development 30%
Construction 10%
Construction services 10%
Construction 12.5%
Construction services 12.5%
Grid upgrades General machinery 25%
Electrical machinery 37.5%
Electricity and Gas 12.5%
Coal and lignite 50%
Coal
Petroleum products 50%
Other minerals 50%
Petroleum products 10%
Oil/gas
Coal and lignite 10%
Transport 30%
gﬁirrlgeﬂable Bioenergy, hydro, wind, solar, geothermal 20% each
Weatherization 50%
“Energy efficiency” | Industrial energy efficiency 25%
Grid upgrades 25%
“Fossil fuels” Coal, oil/gas 50% each
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Republic of Korea
Category 1-0 industry Weight
Cropping 25%
Forestry 25%
Bioenergy Building construction and repair 25%
Refined petroleum 12.5%
Research and development 12.5%
Electrical equipment, and supplies 44%
Glass products 5%
Nonferrous metal ingots and primary nonferrous metal products 5%
Solar Fabricated metal products except machinery and funiture 8%
Electrical equipment, and supplies 7%
Building construction and repair 16%
Research and development 15%
Building construction and repair 26%
Plastic products 12%
Fabricated metal products except machinery and funiture 12%
Wind Machinery and equipment of general purpose 37%
Other transportation equipment 3%
Electronic components and accessories 3%
Research and development 7%
Research and development 30%
Mining of coal, crude petroleum and natural gas (drilling) 15%
Geothermal
Building construction and repair 45%
Machinery and equipment of general purpose 10%
Research and development 42.9%
Cement and concrete products 18.2%
Hydro Civil engineering construction 18.2%
Machinery and equipment of general purpose 6.9%
Electrical equipment, and supplies 14%
Weatherization Construction 100%
Machinery and equipment of general purpose 10%
Machinery and equipment of special purpose 30%
Lnf_glcjiit:fyl ENET8Y | Electrical equipment, and supplies 10%
Building construction and repair 20%
Research and development 30%

266




TECHNICAL APPENDICES

Building construction and repair 25%
Machinery and equipment of general purpose 25%
Grid upgrades Electronic components and accessories 25%
Household electrical appliances 12.5%
Electrical equipment, and supplies 12.5%
Coal mining + support activity 52%
Coal
Coke and hard-coal 48%
Mining of coal, crude petroleum and natural gas 50%
0il/Gas Refined petroleum products 20%
Gas and water supply 30%
;E(;?ge\\llxable Bioenergy, hydro, wind, solar, geothermal 20% each
Weatherization 50%
“Energy efficiency” | Industrial energy efficiency 25%
Grid upgrades 25%
“Fossil fuels” Coal, oil/gas 50% each

Source: Authors’ own estimates.

Data Sources

Brazil

We obtain the 55-sector level I-O Leontief Inverse Coefficient Matrix for year 2005 from the
National Statistic Office of Brazil, the IBGE (Instituto Brasilerio de Geografia e Estatistica). These
I-O tables are the most updated and most detailed available as of 2013.7 We use the 2005
PNAD (Pesquisa Nacional por Amostra de Domicilios) household survey data and adjust the
results by the relevant population weights to estimate national-level employment by sectors.®

Germany

The German I-O data are extracted from the database of the Federal Statistical Office of
Germany.® There are 71 sectors in the model, with 2007 as the latest available information at
such a detailed level. The labor force data used to construct the E/O ratios is extracted from the
2007 Microcensus data for Germany.®? Adjustments are made, as described above, to match

the industrial sectors in the survey data with those of the I-O model.

79 IBGE (2013).
80 IBGE (2005).

81 Federal Statistical Office (2011).
82 Federal Statistical Office (2014).
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Indonesia

The Indonesian |-O tables are based on 2008 data and include 66 industrial sectors. Employment
estimates for Indonesia are derived from the 2008 National Labor Force Survey. Both the I-O
tables and the labor force survey data are from Statistics Indonesia (Badan Pusat Statistik).®

The Republic of Korea

The I-O table for the ROK case comes from the Bank of Korea.® The I-O model used is based on
2008 data and contains 77 industrial sectors. Employment estimates are based on 2008 data
from the Household Survey on Employment Established by Region. This data set was chosen to
provide employment estimates that would correspond to the industrial sectors in the I-O model
for the same year and which would allow us to generate disaggregated employment estimates
on the basis of such categories as sex of the employed and employment status.

South Africa

The I-O table we used for the calculations in this report is derived from supply- and use- tables
developed by Statistics South Africa (as detailed in the 2010 publication, Final Supply and Use
Table, 2005).% The I-O matrix based on the supply- and use- tables is comprised of 95 distinct
sectors. Data from the 2005 South Africa Labor Force Survey (September) were used to produce
the employment estimates.8¢

General discussion of differences in employment multipliers

The employment impacts of energy investments are largely determined by the labor intensity
of the production process. The labor intensity of an industry can be measured by the
employment/output ratio, which is the number of workers per $1 million of output (in this report
we have converted the output of each country in its local currency to output per $1 million).
Industries such as agriculture and education tend to have high E/O ratios while those such as
manufacturing have lower ratios. The employment multipliers derived through the 1-O model
are not, however, just the E/O ratio of a given industry, but rather are the result of the E/O
ratios of all the industries in a supply chain. Thus the employment multiplier for wind power,
for example, is a function of the labor intensities of steel, hardware, construction, and all the
industries directly and indirectly involved in wind power production.

Across the countries in this report, we note the trend that the bioenergy industry tends to have high
employmentmultipliers (due mainlytothe agricultural component) while renewable energyindustries
with manufactured components tend to have lower employment multipliers. Each country will have
its unique set of employment multipliers. This is due both to the fact that production processes differ
across countries (so for example manufacturing metal products is more labor intensive in Brazil than
in Germany), and also that the size and presence of various industries differ across countries.

83 Statistics Indonesia (2013) for I-0 tables and (2008) for labor force survey.
84 Bank of Korea (2010).

85 Statistics South Africa (2010).

86 Statistics South Africa (2006).
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APPENDIX 4: EMPLOYMENT
DECOMPOSITIONS BASED ON
LABOR FORCE SURVEY DATA

Data and Methodology for Employment Decompositions

Aggregate employment numbers were disaggregated into specific subcategories using data
from household and labor force surveys. The surveys used for each of the five countries are
listed in Table A4.1. In each case, the survey year was chosen to match the year of the I-O model
used in the employment analysis. The subcategories of employment included employment by
sex, employment status (self-employment and wage employment), employment by educational
attainment, and employment by enterprise size (micro and non-micro enterprises).

Table A4.1: Data sources for employment decomposition estimates

Country Survey

Brazil Pesquisa National por Amostra dos Domicilios (National Household Survey), 2005
Germany Microcensus, 2007

ROK Household Survey on Employment Established by Region, 2008

Indonesia National Labor Force Survey, 2008

South Africa Labour Force Survey, September 2005

The industrial sectors used to classify employmentin the labor force and household surveys do
not always correspond to the industrial categories of the corresponding I-O models. Therefore,
the first step in the analysis is to map the industrial categories in each of the surveys to the
relevant I-O model. Once this is done, aggregate employment estimates for each of the I-O
industrial sectors are generated using the labor force or household survey data and the
relevant population weights to produce national-level estimates. In each case, the employment
estimates are based on the working age population only (i.e. estimates of child labor and those
individuals below the bottom age threshold of the working age population are not included).

The aggregate population numbers are disaggregated into the relevant subcategories using
the relevant variables contained in the household surveys. These subcategories are expressed
as percentages of the total employment numbers. The definitions of each of the subcategories
are as follows:

Employment by Sex — total employment of men and women in each of the I-O model’s industrial
sectors is estimated.

Employment Status — total wage employment and total self-employment in each of the I-O
model’s industrial sectors is estimated. Wage employment consists of all paid employees.
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Self-employment consists of own-account workers, employers, and unpaid contributing family
workers. In the case of Indonesia, employment in more detailed categories is estimated:
wage employment, unpaid contributing family workers, employers with regular paid workers,
employers with nonregular/unpaid workers, and own-account workers.

Enterprise Size - Enterprise size estimates are available for Brazil, Germany, and South Africa.
Micro-enterprises are defined as those with fewer than 5 paid employees (South Africa and
Germany) or 5 or fewer paid employees (Brazil).
Educational Attainment — Educational attainment is measured as a highest level of education
completed, based on each country’s own education system. For Brazil, the ROK, Indonesia,
and South Africa, educational attainment is classified as “less than primary”, “primary”,
“secondary”, and “tertiary” (i.e. post-secondary). For Germany, categories based on official
ISCED (International Standard Classification of Education, version of 1997) are used.?”
Within the ISCED, education is broken down into seven educational levels:
Level o: Pre-primary education: nursery school
Level1:  Primary education: primary school
Level2: Lower secondary education, including secondary general school,
intermediate school, grammar school, vocational extension school and pre-
vocational training year.
Level 3: Upper secondary education, including vocational training.
Level 4: Post-secondary non-tertiary education.

Level 5:  Undergraduate/masters level tertiary education

Level 6: Advanced tertiary education: doctor’s degree and post-doctoral lecturing
qualifications

The educational attainment estimates for Germany use the following three categories:

Low educational attainment: ISCED levels o, 1 and 2

Medium educational attainment: ISCED levels 3 and 4

High educational attainment: ISCED levels 5 and 6
Once the estimates for each of the subcategories are developed, the proportions that each
category represents of totalemploymentare used to disaggregate the I-O employment estimates
into the relevant labor market categories. This is done at the level of each of the I-O industrial

sectors. For instance, the proportion of men and women employed is determined for each of
the individual industrial sectors in the I-O model. This allows an I-O analysis to be performed

87 ISCED tables produced by UNESCO (n.d.).
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for each of the employment subcategories. In effect, this involves calculating employment to
output ratios for the I-O sectors in which employment refers to a specific subcategory. The
employment estimates for the composite sectors used in the energy analysis (e.g. wind or
biofuels) in this report are simply the weighted sum of the employment effects of each of the
componentindustrial sectors — disaggregated by the relevant subcategory of employment (e.g.
employment status, enterprise size, sex, and educational attainment).

Comparing Energy-related Employment Characteristics to
National Averages

The five countries in this report differ in terms of the average earnings from employment.
Table A4.2 shows average monthly earnings (2012) for the five countries in local currency
units. Earnings were converted into U.S. dollar equivalents using market exchange rates and a
purchasing power parity (PPP) conversion factor. The dollar earnings calculated using market
exchange rates are useful for comparing labor costs internationally (e.g. to compare levels of
competitiveness). Earnings adjusted for PPP are better for comparing average living standards.
The PPP adjustment is meant to show how much a given level of earnings can purchase if prices
were equivalent to those in the U.S. economy. Since domestic prices of goods and services are
often lower than their equivalent in the U.S., PPP-adjusted earnings tend to be higher than
dollar earnings calculated using market exchange rates.

Table A4.2: Average monthly earnings in local currency units, 2012

Country Local currency Dollars (market exchange rate) PPP dollars
Brazil 1,342.7 687.0 882.0
Germany 3,749.0 4,952.0 4,964.0
Indonesia 1,580,882.0 168.0 427.0
ROK 2,566,585.0 2,278.0 3,027.0
South Africa 6,744.0 821.0 1,363.0

Sources: 1LOStat: “Mean Nominal Monthly Earnings of Employees,” (Accessed July 2014); The World Bank: World Development Indicators “PPP
conversion factor, GDP (LCU per international $),” (Accessed July 2014).

To get a sense of the relative earnings of jobs in different sectors within a country, we identified
the industrial sectors that would experience the largest employment gains for a given level
of spending on clean energy technologies and spending on nuclear, coal, natural gas, and
petroleum. The average characteristics of workers, jobs, and firms were then determined
— wage versus self-employment, micro-enterprises versus larger enterprises, and the
level of educational attainment. Each of the industrial sectors was then compared to the
national average to determine whether the sector had above- or below-average educational
attainment, self-employment, or share of microenterprises. We expect wages to be lower in
micro-enterprises, in many forms of self-employment, and for workers with lower educational
attainment. Wages increase with educational attainment, size of the firm, and, often, with the
prevalence of wage employment. Given these broad trends, we can estimate whether we would
expect wages to be lower than average, average, or higher than average in each of the sectors
associated with the largest employment effects. This analysis is summarized in Table A4.3.
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Table A4.3: Comparison of energy-related employment characteristics to national averages

Brazil

Self-employment

Microenterprise

Education

Estimated
earnings

Clean energy investments

Agriculture & forestry

Above average

Above average

Below average

Lower

Construction

Above average

Above average

Below average

Lower

Machinery

Below average

Below average

Above average

Higher

Metal products

Below average

Below average

Above average

Higher

Cement

Below average

Below average

Below average

Average

Non-metallic mineral products

Below average

Below average

Below average

Average

Trade

Above average

Above average

Above average

Lower-Average

Transport services

Below average

Average

Average

Average

Business/prof services

Below average

Below average

Above average

Higher

Nuclear, coal, petroleum, and n

atural gas

Mining Below average Average Below average Lower-Average
Utilities Below average Below average Above average Higher
Transport services Below average Average Average Average

Trade Above average Above average Above average Lower-Average
Business/prof services Below average Below average Above average Higher
Germany
Self-Employment | Microenterprise Education EEsat::ltli?‘ted
gs
Clean energy investments

Agriculture & forestry Above average Above average Below average Lower
Construction Above average Above average Below average Lower

Machinery

Below average

Below average

Average

Average-Higher

Metal products

Below average

Below average

Below average

Lower-Average

Non-metallic mineral products

Below average

Below average

Below average

Lower-Average

Electrical machinery

Below average

Below average

Average

Average-Higher

Research and development

Below average

Below average

Above average

Higher

Business services

Above average

Above average

Above average

Average-Higher

Nuclear, coal, petroleum, and natural gas

Coal mining

Below average

Below average

Average

Average-Higher

Utilities

Below average

Below average

Above average

Higher

Auxiliary transportation

Below average

Below average

Average

Average-Higher

Business services

Above average

Above average

Above average

Average-Higher
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Indonesia
Self-employment | Microenterprise Education E:atm?‘t::
Clean energy investments
Paddy Above average n.a. Below average Lower
Maize Above average n.a. Below average Lower
Other agriculture Above average n.a. Below average Lower
Wood Average n.a. Below average Lower
Construction Below average n.a. Average Average
Other mining Above average n.a. Below average Lower
Rubber Above average n.a. Below average Lower
Machinery Below average n.a. Above average Higher
Non-metallic mineral products | Below average n.a. Below average Lower
Road transportation Below average n.a. Average Average
Trade Average n.a. Above average Ave-higher
Nuclear, coal, petroleum, and natural gas
Coal and metal ore mining Below average NA Above average Higher
g;?git?gnand L G Below average NA Above average Higher
Utilities Below average NA Above average Higher
Chemical products Below average NA Above average Higher
Road transportation Below average NA Average Average
Auxiliary transportation Below average NA Average Average
Republic of Korea
Self-Employment | Microenterprise Education E:::m:ﬁ:
Clean energy investments
Crops Above average NA Below average Lower
Forestry Above average NA Below average Lower
Construction Below average NA Average Average
Mining (energy) Below average NA Average Average
Machinery Below average NA Above average Higher
Metal products Below average NA Average Average
Electrical equipment Below average NA Above average Higher
Wholesale trade Above average NA Average Average
Research and development Below average NA Above average Higher
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Business services Below average NA Above average Higher
Nuclear, coal, petroleum, and natural gas
Mining (energy) Below average NA Average Average
Electric utilities Below average NA Above average Higher
Gas & water Below average NA Above average Higher
Wholesale trade Above average NA Average Average
Land transport Above average NA Average Average
Other business services Below average NA Below average Lower
South Africa
Self-employment | Microenterprise Education E:::mztge;i
Clean energy investments
Agriculture Above average Above average Below average Lower
Forestry Below average Below average Below average Lower-Average
Construction Below average Below average Below average Lower-Average
Cement Below average Below average Below average Lower-Average
Structural metal products Below average Below average Average Average
General machinery Below average Below average Above average Higher
Specialized machinery Below average Below average Above average Higher
Electrical equipment Below average Below average Above average Higher
Trade Above average Above average Average Lower-Average
Other business services Below average Below average Average Average
Nuclear, coal, petroleum, and natural gas
Coal mining Below average Below average Average Average
Other mining Below average Below average Below average Lower-Average
Petroleum manufacturing Below average Below average Above average Higher
Electricity and gas Below average Below average Above average Higher
Construction Below average Below average Below average Lower-Average
Other business services Below average Below average Average Average

Source: See Tables A4.1 and A4.2.

In general, the employment associated with clean energy investments spans a wider range of
jobs than that associated with nuclear, coal, natural gas, and petroleum. The clean energy jobs
include relatively low earnings/low credential employment (e.g. in agriculture), average jobs
(e.g. trade), and higher-end jobs (machinery manufacturing). In contrast, the jobs associated
with fossil fuel energy sectors tend to be somewhat higher in earnings and credentials, but
there is a smaller range of jobs created by spending in these areas. Countries differ somewhat
in these patterns, as can be seen in Table A4.3.
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APPENDIX 5:
SCALED EMPLOYMENT EFFECTS

Tables As.1-As.7 present our employment estimates for Brazil, Germany, Indonesia, South
Africa, and the ROK scaled according to two sets of calculations. Our first set of calculations
is our estimates of jobs created per $1 million - the figures on which we focus in our Chapter 6
methodology discussions as well as the actual figures we report in Chapter 7. We then adjust
these jobs per $1 million figures through scalars based on each country’s average domestic
wage level relative to U.S. average wage levels.

More specifically, in the estimates presented in the main text of this report, the job creation
effects are measured on the basis of number of jobs per $1 million of in spending in the various
energy-sector activities. This allows for comparison between industries within a country, but
makes it difficult to draw comparisons across countries. In order to make some cross-country
comparisons, we scale the results of each country.

The most straightforward way to scale the results for each country based on their own domestic
wage levels would be to use average wages in each country and index them to one country (in
this case, we index to the U.S. = 1). However, we were unable to find adequate data on average
wages for all five countries in our report. We therefore created a scalar that is an average of
three types of data:

1. Total compensation/All employed persons in labor force. For this, we use World Bank
World Development Indicator data on total compensation in the economy, as well as the
unemployment rate and the size of the labor force (to calculate total number employed).
This produces the index in column 1 of Table 1.

2. Average wages in manufacturing. For this, we use the BLS International Labor Statistics
“Average Hourly Compensation Costs In Manufacturing, U.S. Dollars, 2011.”% This
produces the index in column 2 of Table 1.

3. GDP (in 2005 PPP) per employed person. From the Penn World Table.®? This produces the
index in column 3 Table 1.

Finally, we average the three indexes and scale our employment results. The results of these
calculations are then presented in Tables As.1-A5.7 below.

88 BLS (2012).
89 Heston, Summers, and Atten (2012).
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Table As.1: Indexes to employment estimates scaled by domestic wage levels

@ (@) (©) ()
comp.lt:ltsa;tion / ma:t‘llfe;calfﬁ'ing e Gl e Average
employed persons wages person
Brazil 0.30 0.12 0.18 0.20
Germany 0.42 0.99 0.74 0.72
Indonesia 0.05 0.14 0.10 0.10
South Africa 0.35 0.23 0.21 0.27
ROK 0.28 0.40 0.59 0.43
u.s. 1.00 1.00 1.00 1.00

Source: Authors’ own estimates.

Table As.2: Brazil. Employment effects of alternative energy investments scaled by domestic

wage levels

Jobs per S1 million

Scaled by domestic wage levels

. . . . Direct + . . . . Direct +

Direct jobs Indirect jobs Ihdirect jabs Direct jobs Indirect jobs Inditect]obs
Renewables
Bioenergy 73.1 8.7 81.8 14.6 1.7 16.4
Hydro 13.9 11.7 25.5 2.8 2.3 5.1
Wind 18.9 10.3 29.2 3.8 2.1 5.8
Solar 14.0 11.7 25.7 2.8 2.3 5.1
Geothermal 17.7 11.1 28.7 3.5 2.2 5.7
Weighted
average for 27.5 10.7 38.2 5.5 2.1 7.6
renewables
Energy
efficiency
Building
retrofits 34.2 12.0 46.2 6.8 2.4 9.2
Tneltsiil 13.6 11.6 25.1 2 2 o}
efficiency 3 ’ > 7 3 5
Grid upgrades 13.0 13.2 26.2 2.6 2.6 5.2
Weighted
average for 23.7 12.2 35.9 4.7 2.4 7.2
efficiency
Fossil fuels
Coal 10.0 12.3 22.4 2.0 2.5 4.5
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Oil/natural 10.6 20.0 2.1 1 0
- . 9.3 R . .9 4.
Weighted

average for 10.3 10.8 21.2 2.1 2.2 4.2
fossil fuels

Source: Authors’ own estimates and Table 7.1.

Table As.3: Germany. Employment effects of alternative energy investments scaled by
domestic wage levels

Jobs per $1 million

Scaled by domestic wage levels

. . . . Direct + . . . . Direct +

Direct jobs Indirect jobs Soelias flobs Direct jobs Indirect jobs Atz ol
Renewables
Bioenergy 8.3 2.7 11.0 6.0 1.9 7.9
Hydro 5.3 3.5 8.8 3.8 2.5 6.3
Wind 5.5 2.9 8.4 4.0 2.1 6.0
Solar 5.7 3.1 8.8 4.1 2.2 6.3
Geothermal 6.3 3.4 9.7 4.5 2.4 7.0
Weighted
average for 6.2 3.1 9.3 4.5 2.2 6.7
renewables
Energy
efficiency
Building
retrofits 8.7 3.1 11.8 6.3 2.2 8.5
Industrial
efficlency 5.5 3.2 8.6 4.0 2.3 6.2
Grid upgrades 5.3 2.8 8.1 3.8 2.0 5.8
Weighted
average for 7.0 3.1 10.1 5.0 2.2 7.3
efficiency
Fossil fuels
Coal 6.1 3.8 10.0 4.4 2.7 7.2
Oil/natural
gas 2.8 2.5 5.3 2.0 1.8 3.8
Weighted
average for 4.5 3.2 7.6 3.2 2.3 5.5
fossil fuels

Source: Authors’ own estimates and Table 7.5.
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Table As.4: Indonesia. Employment effects of alternative energy investments scaled by
domestic wage levels

Jobs per $1 million

Scaled by domestic wage levels

. . . . Direct + . . . . Direct +

Direct jobs Indirect jobs ittt i Direct jobs Indirect jobs et
Renewables
Bioenergy 237.0 73.5 310.5 23.7 7.4 31.1
Hydro 29.4 46.5 75.9 2.9 4.7 7.6
Wind 19.6 60.1 79.7 2.0 6.0 8.0
Solar 18.9 44.5 63.4 1.9 4.5 6.3
Geothermal 18.4 46.2 64.7 1.8 4.6 6.5
Weighted
average for 64.7 54.2 118.8 6.5 5.4 11.9
renewables
Energy
efficiency
Building
retrofits 36.3 61.7 97.9 3.6 6.2 9.8
Industrial
efficiency 12.8 46.8 59.6 1.3 4.7 6.0
Grid upgrades 17.0 45.2 62.2 1.7 4.5 6.2
Weighted
average for 25.6 53.8 79.4 2.6 5.4 7-9
efficiency
Fossil fuels
Coal 7.1 33.5 40.6 0.7 3.4 4.1
Oil/natural 5 0.8 o o1 o
- 7 . 3.5 3 . 4
Weighted
average for 4.9 17.1 22.0 0.5 1.7 2.2
fossil fuels

Source: Authors’ own estimates and Table 7.9.
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Table As.5: South Africa: Employment Effects of Alternative Energy Investments Scaled by
Domestic Wage Levels

Jobs per $1 million

Scaled by domestic wage levels

. . . . Direct + . . . . Direct +

Direct jobs Indirect jobs ittt b Direct jobs Indirect jobs it o
Renewables
Bioenergy 50.1 28.1 78.2 13.5 7.6 21.1
Hydro 25.4 36.2 61.6 6.9 9.8 16.6
Wind 29.9 30.6 60.5 8.1 8.3 16.3
Solar 19.6 35.9 55.6 5.3 9.7 15.0
Geothermal 31.2 38.2 69.5 8.4 10.3 18.8
Weighted
average for 31.3 33.8 65.1 8.5 9.1 17.6
Renewables
Energy
efficiency
Building 6 o . 1041 5
retrofits 56.5 37-5 94. 53 . 54
Industrial
efficiency 24.6 35.9 60.5 6.6 9.7 16.3
Grid upgrades 24.3 31.6 55.9 6.6 8.5 15.1
Weighted
average for 40.5 35.6 76.1 10.9 9.6 20.5
efficiency
Fossil fuels
Coal 5.3 24.1 29.4 1.4 6.5 7-9
Qil/natural
gas 11.7 25.1 36.8 3.2 6.8 9.9
Weighted
average for 8.5 24.6 33.1 2.3 6.6 8.9
fossil fuels

Source: Authors’ own estimates and Table 7.13.
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Table A5.6: Republic of Korea: Employment effects of alternative energy investments scaled
by domestic wage levels

Jobs per S1 million Scaled by domestic wage levels
. . . . Direct + . . . . Direct +
Direct jobs | Indirect jobs e Directjobs | Indirect jobs oy
Renewables
Bioenergy 23.1 4.8 27.9 9.9 2.1 12.0
Hydro 7.5 7.8 15.2 3.2 3.4 6.5
Wind 5.9 6.5 12.4 2.5 2.8 5.3
Solar 4.7 6.3 11.0 2.0 2.7 4.7
Geothermal 7.2 7.2 14.3 3.1 3.1 6.1
Weighted
average for 9.6 6.5 16.2 4.1 2.8 7.0
renewables
Energy
efficiency
Building
retrofits 5.9 8.0 13.9 2.5 3.4 6.0
Industrial X 12 5 1
efficiency 5-3 7 -3 -3 3. 5.3
Grid upgrades 5.2 6.7 12.0 2.2 2.9 5.2
Weighted
average for 5.6 7.5 13.0 2.4 3.2 5.6
efficiency
Fossil fuels
Coal 10.1 4.0 14.1 4.3 1.7 6.1
Qil/natural 121 ) 6
gas 99 3.3 3. 4.3 4 5.
Weighted
average for 10.0 3.6 13.6 4.3 1.5 5.8
fossil fuels

Source: Authors’ own estimates and Table 7.17.

Table As.7: Summary of aggregate job creation estimates by country, scaled to domestic
wage levels

Renewable energy Energy efficiency
(weighted average) (weighted average)
Direct jobs Indirect jobs inc?iireeccttj; bs Direct jobs Indirect jobs inchiize;Cttj; bs

Brazil 5.5 2.1 7.6 4.7 2.4 7.2
Germany 4.5 2.2 6.7 5.0 2.2 7.3
Indonesia 6.5 5.4 11.9 2.6 5.4 7-9
South Africa 8.5 9.1 17.6 10.9 9.6 20.5
ROK 4.1 2.8 7.0 2.4 3.2 5.6

Source: Authors’ own estimates.
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APPENDIX 6: ALTERNATIVE
WEIGHTING PROPORTIONS FOR
AGGREGATE CLEAN ENERGY
INVESTMENTS: ROBUSTNESS
TESTS OF CLEAN ENERGY
EMPLOYMENT ESTIMATES

As noted in Chapter 7 of the main text, we use the following weighting scheme in aggregating
the specific sectors within each energy-producing industry: With renewable energy, all sectors
- bioenergy, hydro, wind, solar, and geothermal - are weighted equally. With energy efficiency,
we have assigned a 50 percent weight to building retrofits, to reflect the centrality of this area of
energy efficiency. We then weighted the other two energy efficiency sectors, building efficiency
and electrical grid upgrades, at 25 percent each. Finally, in aggregating investment proportions
fora “clean energy” sector overall, we then assigned a 67 percent weight to renewable energy
and a 33 percent weight to energy efficiency.

We recognize that, in any given country setting, the actual size of any given sectorin all energy-
producing areas, will depend on the specific conditions in each country. But we assigned this
one basic weighting scheme in the interests of simplicity and clarity across all of our selected
countries here. In this appendix, we examine what would be the impact on our employment
estimates that would result through altering the weights of the five renewable technologies.
Altering these relative weights imply a change in the country’s investment allocation between
the various clean energy sectors. We present the results of these exercises in Tables A6.1 and
A6.2.

Altering Renewable Energy Sector Proportions

In Table A6.1, we first present figures with the original weights used in the main text of the
report, then present three alternative scenarios. The first alternative prioritizes bioenergy, the
second prioritizes wind and solar, and the third removes geothermal and gives equal weights
to the other four renewables. We calculate the total employment (direct plus indirect jobs) per
$1 million and then calculate the percentage difference from the original estimates presented
in Chapter 7.
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Table A6.1: Alternative weighting proportions for aggregate renewable energy investment

First set of Robustness Tests for Clean Energy Employment Impacts

a) Proportions of total renewable energy investment (percentage)

Energy Type Equal weights ::;:)?ilt‘i!;a Wi:goarrilt(:zizlar No geothermal
Bioenergy 20% 40% 10% 25%
Hydro 20% 15% 10% 25%
Wind 20% 15% 35% 25%
Solar 20% 15% 35% 25%
Geothermal 20% 15% 10% 0%

b) Weighted average of direct + indirect jobs per $1 million

Country Equal weights ::;fr?t?;z Wi:::oar?t':zse‘:ilar No geothermal
Brazil 38.2 49.1 32.8 £40.6
Germany 9.3 9.8 9.0 9.3
Indonesia 118.8 166.8 95.2 132.4
South Africa 65.1 68.4 61.6 64.0
ROK 16.2 19.1 13.9 16.6

c) Percentage difference relative to equal weighting for all renewables

Country Equal weights ::;Li?g;iz Wi:::oarriltt:zs;zlar No geothermal
Brazil - +28.6% -14.1% +6.2%
Germany - +4.4% -4.0% -1.0%
Indonesia - +40.3% -19.9% +11.4%
South Africa - +5.0% -5.4% -1.7%
ROK - +18.2% -13.8% +2.9%

Sources: See Appendix 2.
Note: Employment multipliers in report are presented in tables 7.1, 7.5, 7.9, 7.13, and 7.17. Estimates presented in this research were calculated using

equal weights.
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As we see in Table A6.1, the effects of the alternative weighting schemes are minimal in some
countries and significantin others. In Germany and South Africa, employment estimate changes
by no more than about 5 percent. The biggest difference in all cases results from increasing the
bioenergy industry in Indonesia, which results in a 40 percent increase in the employment
multiplier for renewable energy. This highlights the fact that bioenergy is highly labor-intensive
in Indonesia. There are significant differences in the overall renewable energy employment
multipliers in Brazil and the ROK as well when bioenergy is prioritized.

The second scenario, prioritizing wind and solar, again results in a small change in employment
forGermanyand South Africa, buta 14-20 percentreduction in employment forBrazil, Indonesia,
and the ROK relative to equal weighting framework. Since employment multipliers are actually
fairly similar for wind, solar, and hydro in most countries (see Tables 7.1, 7.5, 7.9, 7.13, and 7.17),
the difference in the weighted average renewable estimate is less a function of increasing wind
and solar and more a function of decreasing bioenergy, which has an outsized impact in most
countries because of the current level of labor intensity in agricultural production.

Removing geothermal has the least impact, mainly because the geothermal multiplier is
quite similar to the hydro, wind, and solar multipliers in most cases. However it is useful to
observe these differences particularly since in some countries, such as Brazil, there are limited
geothermal resources that are economically feasible to develop.

The results of these alternative specifications show us that our estimates are in fact quite
robust to changes in the investment allocation for renewable energy, with the exception of
changing the importance of bioenergy. The other four renewable industries have fairly similar
multipliers, and thus if a country chose to change the investment allocation among any of
these four technologies, the employment results would be similar to those we present in the
main text of the report.

Weighting Energy Efficiency and Renewables Equally

In Table A6.2 we show the results of altering the investment allocation between renewable
energy and energy efficiency. That is, we allocate total clean energy investments in equal
proportions between renewables and energy efficiency in our alternative framework, as
opposed to the 67 percent for renewables/33 percent weighting that we utilize in the main text
of the report.
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Table A6.2: Alternative weighting proportions for aggregate clean energy investments
between renewables and energy efficiency

Second set of robustness tests for clean energy employment impacts

Clean energy investment allocation

67 percent renewable energy;
33 percent energy efficiency
(Assumptions for main text)

50 percent renewable energy;

50 percent energy efficiency Percentage
difference

Direct + indirect jobs per $1 million

Brazil 37.4 37.1 -1.0%
Germany 9.6 9.7 1.4%
Indonesia 105.7 99.1 -6.2%
South Africa 68.8 70.6 2.7%
ROK 15.1 14.6 -3.5%

Sources: See Appendix 2.
Note: Employment multipliers in report are presented in tables 7.1, 7.5, 7.9, 7.13, and 7.17.

As we see in Table A6.2, the results do not vary significantly, ranging from a 6.2 percent lower
level of total employment in Indonesia to a 7.2 percent higher level in South Africa. As with the
case of adjusting within renewables, these results on efficiency and renewables investments
combined show the robustness of the estimates to changes in the clean energy investment
allocation.
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Brazil, 147, 150-153, 178, 181-184
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emissions control, 76-77
emissions levels from use of, 49-51
environmental and safety concerns, 196-197
food prices, effect on, 62, 78-81
Germany, 154, 193, 196-197
high emissions bioenergy, 51
Indonesia, 159
Korea, Republic of, 168-169, 173
South Africa, 163-164, 218-219
Bioenergy - Chances and Limits, 196
biofuels. see also bioenergy
food prices, effect on, 62, 78-81
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electricity generation costs, 68
emissions control, 76-77
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prospects for, 61-62
South Africa, 218-219
Bolinger study, 109-110
Brazil, 25-26, 30, 244
average income per capita, 177, 183
BAU vs. low-carbon scenarios, 180-183
bioenergy, 150.151, 178, 182-183
biofuels, 182-183
clean renewables, generally, 182-183
component parts of emissions per capita ratio, 37
composition of employment, 149-153
cost and savings estimates of efficiency projects, 88-89, 183-185
cost estimates for Low-Carbon case, 183-185
domestic productive resources for clean energy investment, 111-116
educational attainment of workers by sector, 152-153
emissions mitigation program, 179, 183-188
emissions per capita, 33-35, 177-183, 25-26
employment generation through clean energy investments, 147-149, 185-188, 247-249
employment multipliers, 148-149
energy consumption levels, 116-117, 177-178, 180-183
energy efficiency spending, estimates of, 147-149
energy intensity, 96, 177-178
female employment, 150, 151-152
fossil fuel exports as share of GDP, 117-119
fossil fuel sector, employment figures for, 147-151
GDP, clean energy investment as share of, 184-188, 247-249
hydro power, 179, 182
indirect job creation, 147-148
input-output tables, 135-137
labor productivity growth rates, 138-140, 187
low-carbon scenarios, 180-183
micro enterprises, 152
one million dollars in spending, jobs resulting from, 147-149
overall job creation, 147-149
pre-salt oil deposits, 29, 180
present energy mix, 178
public benefit “wire-charge” mechanism,104
retrofits, 148-170 passim
self-employment, 152
summary, 188
transportation sector, 182
unique energy infrastructure, 178-180
Brookes study, 92
Business-as-usual model. see BAU model
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carbon cap or tax, 71 245

carbon capture and sequestration, 21-22, 39, 54-56, 244
cost in expanding clean renewables, as, 70-74
Romm study, 54-55
stabilization wedge, as, 55

294



TECHNICAL APPENDICES

carbon dioxide (CO,) emissions. see also greenhouse gas emissions
alternative energy sources, emissions from, 49-51
bioenergy, from, 76-77
biomass, from, 76-77
carbon cap or tax (see carbon cap or tax)
carbon capture and sequestration (see carbon capture and sequestration)
carbon price (see carbon price)
component parts of emissions per capita ratio, 36-39
emissions from alternative nonrenewable sources, 49-54
GHG Price case, 71
options for reducing, 20-21, 39-40
projections for 2030, 20, 35-36, 244
reduction targets, 20, 27-31, 99, 243—244, 247-250
weighted averages for emissions levels, 51-52

carbon price, 71-74, 245
fossil fuel prices, impact on, 72-74, App. 1

Carbon Tracker study, 120-121

Carty study, 80

CCS. see carbon capture and sequestration

Chang study, 102

China
component parts of emissions per capita ratio, 36-38
efficiency gains, 89-90
emissions, 19
emissions per capita, 34-35
energy consumption, 19, 31-33
private energy efficiency financing in, 104

clean energy industrial categories, 129—-130

clean energy policy agenda, 28-29. see also industrial policies
alternative ownership forms, 108-111
carbon cap or tax (see carbon cap or tax)
carbon capture and sequestration (see carbon capture and sequestration)
carbon price (see carbon price)
domestic productive resources for clean energy investment, 111-116, App. 2
industrial categories, creation of, 129—130

clean renewables
costs of expansion (see costs of expanding clean renewables)
geothermal energy (see geothermal energy)
hydro power (see hydro power)
job growth from investment in (see job growth)
prospects for, 22-23, 61-62
solar power (see solar power)
wind power (see wind power)
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CCS and (see carbon capture and sequestration)
electricity generation, 70, 71
emissions levels from use of, 49-51
environmental and safety concerns as to mining of, 55
Indonesia, 118-119, 202-203
Korea, Republic of, 229
natural gas as substitute for coal-fired electricity, 56-60, 229
South Africa, 30, 118, 213
The Coal Question, 92
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Committee on World Food Security study, 78-79
costs of expanding clean renewables, 23-26, 61-73, 126-127, 245-246
alternative weighting proportions for aggregate clean energy investments, App. 6
bioenergy, 68
capacity utilization rate, 63
capital costs, 63
capital expenditures to produce electricity, 74-76
carbon cap or tax, 71-72, 245
carbon capture and sequestration, 70-74
carbon price (see carbon price)
differences in cost by region, 65-68
electricity, 63-74
fixed operations and maintenance, 63
fossil fuel costs compared, 69-71, 73-74
geothermal, 68
Global Greenhouse Gas Abatement Cost Curve, 86-87
hydro projects, 66-67
IRENA study, 61, 63-68
non-OECD countries, in, 68-70
range of levelized costs, 63-71
renewable electricity costs in U.S., 69-71
renewables versus conventional sources, costs for, 73-74, 245
solar energy, 67-68, 73-76
transmission costs, 63
U.S., costs for, 69-71
variable operations and maintenance, 63
wind projects, 65-66
“curse of natural resources,” 120-121
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D’Avignon study, 179
De Almeda et al. study, 139
Department of Energy, 86
domestic content
Brazil, 111-116
clean energy investments, of, 111-116, App. 2
defined, App. 2
Domestic Content Declines scenario, 147-148, 153-154, 158, 164, 169, 209, 224
Domestic Content Stable scenario, 113-115, 147, 154, 158, 164, 169, 185, 198, 239
domestic productive resources for clean energy investment, 111-116, App. 2
Germany, 153-154
Indonesia, 158-159, 209
job growth, effect on, 125, 139, 145
Korea, Republic of, 168-170, 239-240
South Africa, 111-116, 224
Duke University study, 57-58
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educational attainment levels, 247
Brazil, 151, 152-153
Germany, 156-157
Indonesia, 156-157
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job growth by, 24-25, 43
Korea, Republic of, 172, 173
South Africa, 167, 168
Eichhammer study, 195, 196
electricity
biomass energy and, 68
capital expenditures to produce, 74-76
coal-fired production of, 71
costs of expanding clean renewables, 63-74
feed-in tariffs (see feed-in tariffs)
geothermal energy, generation costs from, 63-65, 68
levelized costs of production through renewable sources, 63-74
natural gas, levelized costs for electricity from, 56-57
natural gas as substitute for coal-fired electricity, 56-60, 229
nuclear power, generation by, 70
privatization, effect of, 109
R & D projects, 108-109
renewable electricity costs in U.S., 69-71
Emanuel, Kerry, 27
emissions, 247-249
carbon capture and sequestration (see carbon capture and sequestration)
carbon dioxide emissions (see carbon dioxide (CO,) emissions)
greenhouse gas emissions (see greenhouse gas emissions)
high emissions bioenergy, 51
IEA projections, 20, 35-36, 244
intensity ratio, 190, 193, 213
natural gas, from use of, 49-52
per capita (see per capita emissions)
employment effects, 18, 246-248
aggregate employment, 24, 124-125
methodology and data sources for, App. 3
alternative methodologies to measure, 135
Brazil (see Brazil)
clean energy investments, of, 23-26
disaggregated employment effects, 24-25
employment decompositions based on labor force survey data, App. 4
Germany (see Germany)
incorporating labor productivity growth into employment estimates, 133-137
Indonesia (see Indonesia)
industrial policies (see industrial policies)
Korea (see Korea, Republic of)
labor productivity growth rates (see labor productivity)
methodology, 24, 123-144, App. 3, App. 4
scaled employment effects, App. 5
scaling job-creating activities, 130
skill requirements and training for clean energy jobs, 105-108
South Africa (see South Africa)
superfund for workers, 107
transitional support for communities and workers, 106-108
variable coefficients in estimates, 133-137
wage data, 146
Energy Concept document, 88, 192, 193, 194, 196
energy consumption, 31-33, 111-115
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Brazil, 116-117, 177-178, 180-183
China, 19, 32
country-specific perspectives, 19-20
declining fossil fuel export markets, 116-121
energy efficiency (see energy efficiency)
GDP, relative to, 33-36
Germany, 88, 116-117
Indonesia, 88, 116-117, 202-204, 206-208
Korea, Republic of, 116-117, 227-229
South Africa, 116-117, 213-216, 222-223
United States, 19, 32
energy efficiency. see also specific countries
backfire effect, 92
estimating costs of gains, 88-89
failure to benefit from, 89-91
GDP, effect of gains on, 85
Global Greenhouse Gas Abatement Cost Curve, 86-87
investment in (see investment)
levels of efficiency by country, 87
potential savings, 85-86
prospects for, 22, 83-91
rebound effects (see rebound effects)
Energy Efficiency Market Report, 83, 104—105, 194, 234
Energy Information Administration
carbon price scenario,71-74
emissions projections, 35-36, 49-51
GHG price case, 71
nuclear power, 53
energy intensity, 96, 126
Brazil, 96, 177-178
Germany, 96, 190-191
Indonesia, 201
Korea, Republic of, 96, 227-228
South Africa, 96, 213
United States, 96
energy productivity, 126
environmental and safety concerns
bioenergy, 196-197
coal, from mining of, 55
fracking (see fracking)
hydro power, 22, 62
leaks from CCS repositories, 55
nuclear power, 40, 52-54
Environmental Protection Agency, 76-77
ethanol, 62, 76, 77, 196
European Energy Review, 196-197
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Fair and Just Transition, 107-108
feed-in tariffs, 110
German policy, 195
female employment. see gender gap in employment
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bioenergy’s effect on prices, 62, 78-81
Committee on World Food Security study, 79
fossil fuel consumption
declining fossil fuel export markets, 116-121, 250
exports as share of GDP, 117-119
South Africa, 223
fossil fuel sector
Brazil, employment figures for, 147-151
carbon price’s impact on, 71-74, App. 1
coal (see coal)
consumption of fossil fuel (see fossil fuel consumption)
contraction of, 116-121, 250
costs of expanding clean renewables compared, 69-71, 73-74
Germany, employment figures for, 154-156
Indonesia, 159, 158—160, 161
oil (see petroleum)
South Africa, employment figures for, 164-165,166
450 Case. See Low-Carbon case
fracking, 18, 56-58
natural gas, 70
Freimant
community-owned renewable sources in, 110-111
Fukushima, 21, 53, 244
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Gavankar and Geyer study, 93

GDP, 17-18, 25-26, 28-30, 140—142, 243-244, 246, 247-249. See also specific countries

clean energy investment as percentage of, 29, 44, 81, 99
component parts of emissions per capita ratio, 36-39
energy consumption relative to, 33-35
fossil fuel exports as share of, 117-119
gains in energy efficiency, effect of, 85
labor productivity growth and, 140-144
gender gap in employment, 247
Brazil, 149-151
Germany, 155-157
Indonesia, 160-161
Korea, Republic of, 171-172
South Africa, 166-167
geothermal energy
electricity generation costs, 63-65, 69-70
Indonesia, 205
job growth from expansion of (see job growth)
German National Academy of Sciences, 196
Germany, 19-20, 25-26, 30
alternative 2030 scenarios, 192-194
average per capita income, 189-190
BAU scenario, 192-193, 197
bioenergy sector, 154, 192-193, 196-197
challenges to low-emissions economy, 191, 197
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clean renewables, generally, 193-197
community-owned renewable sources in, 110-111
component parts of emissions per capita ratio, 37-38
composition of employment, 155-157
cost estimates for clean energy investments,183-185
differences in job growth between sectors, 153-155
domestic productive resources for clean energy investment, 154-155
educational attainment of workers by sector, 156-157
emissions intensity ratio, 190-191
emissions levels, 189-191
emissions per capita, 25-26
employment generation through clean energy investments, 39-40, 153-157, 198-200, 247-249
employment multipliers, 153-155
Energiewende, 191
Energy Concept document, 88, 192, 193, 194, 197
energy consumption goals, 88
energy consumption levels, 116-117
energy efficiency, generally, 190-191, 194, 197
energy intensity ratio, 96, 189-191
energy mix, 190-191
feed-in tariff policies, 195
female employment, 155-156
fossil fuel exports as share of GDP, 117-119
fossil fuel sector, employment figures for, 154-155
GDP, 197-200
clean energy investment as share of, 249-250
government-financing policies, 104-105
indirect job creation, 154
input-output tables, 135-137
labor force participation, 200
labor productivity growth rates, 138-140, 199-200
Low-Carbon cases, 193, 196, 197-198
micro enterprises, 156
nuclear power, elimination of, 193
OECD economic report, 195
one million dollars in spending, jobs resulting from, 153-155
overall employment creation, 153-155
R&D, 195
self-employment, 156
transformational project, 191-194, 200
triadic patents, 195
wind power, 110-111, 195, 196, 197
Gilbert study, 79
Global Greenhouse Gas Abatement Cost Curve, 86-87
Global Trends in Renewable Energy Investments, 81
government intervention. see industrial policies
Grantham Institute on Climate Change and the Environment study, 120-121
Green Jobs, 105-106, 108
greenhouse gas emissions, 19-20, 33-35, 243-244
carbon dioxide (see carbon dioxide (CO,) emissions)
component parts of emissions per capita ratio, 36-37
country-specific analyses, 25-26
GHG Price case, 71
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Global Greenhouse Gas Abatement Cost Curve, 86-87
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reduction targets, 17, 27-29, 99

role of energy conservation in reduction of, 83

weighted averages for emissions levels, 51-52
Greening, Greene and Difiglio study, 93,94
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hydraulic fracturing technology. see fracking
hydro power
Brazil, 178-179, 182
costs of projects, 66-67, 69-70
environmental concerns, 22, 62
hydrofracturing (see fracking)
job growth through expansion of (see job growth)
Korea, Republic of, 233
prospects for expansion, 41, 62

|
imported/exported energy, 23, 116-121
coal, 118, 213
fossil fuel exports as share of GDP, 117-120
Indian Renewable Energy Development Agency, 104
Indonesia, 19, 25-26
average per capita income, 201
BAU assumptions, 202-203
bioenergy, 158, 159
biomass energy, 205
clean energy capacity, 206-208
clean renewables, generally, 203-205
Climate Il, 202
coal
emissions from, 203
exports of, 118-119
component parts of emissions per capita ratio, 37
composition of employment, 160-162
cost and savings estimates of efficiency projects, 88-89, 221-223
Directorate General of New Renewable Energy and Energy Conservation, 205
Domestic Content Declines scenario, 209
domestic productive resources for clean energy investment, 158-159
educational attainment of workers by sector, 161-162
emissions, generally, 30, 201-208
emissions per capita, 249
emissions reductions through clean energy investments, 204-205
employment generation through clean energy investments, 39-40, 158-160, 208-211, 247-248, 249
employment multipliers, 159
energy consumption goals, 88
energy consumption levels, 116-117, 202-203, 206-208
energy efficiency projections, 205
energy intensity, 96, 205
female employment, 160-161
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self-employment, 161
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industrial policies. see also specific countries
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domestic productive resources for clean energy investment, 111-115
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innovation-led growth, 102

labor market issues within, 105-108
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Germany, report on, 194
World Energy Outlook (See World Energy Outlook)
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International Labour Office, 106
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deployment of renewables, 61
renewable energy costs, 63-68
investment. see also specific countries
annual rate of growth, 141
capital expenditures for U.S. renewable energy investments, 74-76
China, private energy efficiency financing in, 104
clean energy investments, 23-26 126-127
costs of expanding clean renewables (see costs of expanding clean renewables)
domestic productive resources for clean energy investment, 111-116
employment creation through clean energy investments, 145-173
energy efficiency investments, 17, 22-23, 83-91, 246
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industrial sector (see industrial policies)
internal rate of return estimates for energy efficiency projects, 85
overview of costs, 245-246
poverty reduction thorough, 25
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IRENA. see International Renewable Energy Agency
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job growth, 25-26, 40, 145-146
aggregate employment effects, 24, 124-125
alternative methodologies to measure, 135
Brazil (see Brazil)
clean energy investments, through, 23-26, 142-144, 145-173
construction sector jobs, 127-128
direct job creation, 124-125
disaggregated employment effects, 24
domestic content, effect of, 125, 139-140, 145
educational level, by, 24, 43
estimates per million dollars of expenditure, 42-43, 130, 246
full-time v. part-time, 128
Germany (see Germany)
incorporating labor productivity growth into employment estimates, 133-137
indirect job creation, 125
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induced job creation, 125
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scaling job-creating activities, 130

self-employment, 128
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time dimension in measuring, 127-128
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clean energy capacity, 236-238
clean renewables, generally, 233-234
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component parts of emissions per capita ratio, 37, 39
composition of employment, 171-173
cost and savings estimates of efficiency projects, 88-89
Domestic Content, 168-170, 239-240
Domestic Content Stable scenario, 239-240
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emissions reduction targets, 227
emissions reductions through clean energy investments, 235-238
employment generation through clean energy investments, 39-40, 168-171, 239-242, 247-248, 249
employment multipliers, 170, 171
energy consumption levels, 116-117, 227-229
energy efficiency, generally, 234
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fossil fuel exports as share of GDP, 117-120
GDP,227-228, 236, 239
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biomass energy, 219
clean energy capacity, 222-223
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energy consumption levels, 116—117, 213-215, 223
energy efficiency
alternative cases for, 221-223
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