

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

FOAM SECTORS

Department of Environment Montreal Protocol Division United Nations Industrial Development Organization (UNIDO) Milan Demko

4 May 2016

- Foam What the foam is?
- Importance of polymeric foams.
- Importance for UNIDO. Does MP technology conversion projects fit with ISID?
- Environment and human health protection. Energy saving?
- Challenges and way forward. Saving of natural resources?

Foam

Foam is 2-phase colloidal system where a liquid is the dispersing medium and a gas is the dispersed medium.

FOAM

- Foam is 2-phase colloidal system where a liquid is the dispersing medium and a gas is the dispersed medium.
- The dispersed gas is separated by a viscous liquid film, which is determining the overall stability of the foam.

POLYMERIC FOAMS

The preparation of a polymeric foam involves:

- 1. formation of gas bubbles in a liquid system, followed by,
- 2. the growth and stabilization of these bubbles as the viscosity of the liquid polymer increases, resulting ultimately in the solidification of the cellular resin matrix (viscosity reaches ∞).

Foams may be prepared by two fundamental methods:

- a) gas is dispersed in a continuous liquid phase to yield a colloidal system with the gas as the dispersed phase (physical blowing, auxiliary blowing agent is added).
- b) gas is generated within the liquid phase and appears as separate bubbles dispersed in the liquid phase (chemical blowing, blowing agent is generated by chemical reaction).

Polymeric foams in the focus of MP/UNIDO

• Polyurethanes

Polymeric foams in the focus of MP/UNIDO

• Polystyrene

• Polyethylene

UNIDO MP programme

Projects - Substance	Approved Funding (US\$)	ODP to be Phased Out	ODP phased out	Projects	Disbursement End 2015
Other with ODP impact	240,897,097	1,062.9	1,012.7	862	186,451,840
CFC	30,476,142	9,992.7	9,653.6	38	29,860,870
CFC-11	215,121,215	27,038.3	25,318.3	326	213,554,658
CFC-113	9,797,356	774.1	800.9	22	9,797,776
CFC-12	43,579,776	10,575.3	10,382.9	122	43,499,760
CTC	26,089,585	5,730.5	4,891.1	53	26,090,050
Halon-1211	1,267,835	2,286.7	2,002.8	11	1,267,836
HCFC-141b	39,543,725	910.7	453.5	37	28,680,961
HCFC-142b	1,718,901	47.9	28.9	2	360,694
HCFC-22	68,873,219	502.9	99.7	61	38,865,331
MB	62,192,112	5,176.9	5,238.5	74	61,168,075
TCA	3,006,684	113.7	113.7	20	3,006,684
Other without ODP impac	1,529,107	-	-	17	573,739
Grand Total	744,092,754	64,212.5	59,996.4	1,645	643,178,273
Sectors	%	%	%	%	%
Foam	34.46	43.6	43.0	22.2	37.7
Refrigeration	15.11	17.3	17.5	11.1	12.8
MB	8.36	8.1	8.7	4.5	9.5
Solvent	5.23	10.3	9.7	5.8	6.0
Halon-1211	0.17	3.6	3.3	0.7	0.2
CFC, early MP projects	4.10	15.6	16.1	2.3	4.6
Other	32.58	1.7	1.7	52.4	29.0

Insulation is important. Weight, strength, sturdiness too

Material	Thermal conductivity [mW/mK @25C]		
Cyclopentane	11		
Xenon	5		
Polyurethane foam	~ 30		
Polystyrene foam	30 - 35		
Wood	55 - 170		
Dense brick brickwork	150 – 1,600		
Concrete	100 – 1,800		
Carbon steel	54,000		
Copper	401,000		

Foaming processes and blowing agents

Isocyanate is consumed to generate CO₂

b) Physical blowing

added gas is dispersed in a continuous liquid phase

GLOBAL BLOWING AGENT TECHNOLOGY- APPLIANCES

Refrigerators/Freezers

Other Appliances (water heaters, display unit)

GLOBAL BLOWING AGENT TECHNOLOGY – SANDWICH PANELS Continuous process

Discontinuous process

Composite panels

GLOBAL BLOWING AGENT TECHNOLOGY - SPRAY FOAM

Spray foam

BLOWING AGENT PROPERTIES

(Past and Present Blowing Agents)

BLOWING AGENT	MW	BP (°C)	DENSITY (gm/cm3 @ 20C)	GAS λ-VALUE (mW/mK @10C)	GWP (100 year ITH)	FLAMMABLE LIMITS IN AIR (% VOL)
CFC-11	137	24	1.49	7.4	4,680	None
HCFC-141b	117	32	1.25	8.8	713	7.3-16
HCFC-22	86	-41	1.49	9.9	1,780	None
n-pentane	72	36	0.63	14	<25	1.4-8.0
iso-pentane	72	28	0.62	13	<25	1.4-7.6
c-pentane	70	50	0.75	11	<25	1.4-8.0
HFC-152a	66	-27	0.89	14.3	125	3.8-21.8
HFC-227ea	170	-16.5	1.54	11.6	3,140	None
HFC-245fa	134	15	1.32	12.05	1,020	None
HFC-365mfc	148	40	1.25	10.6	780	3.8-13.0
*H ₂ 0/CO ₂	44	-78		14.6	1	None
Methylformate	60	32	0.97	10.7	<20	LEL/UEL 5/23
HFO FEA 1100 DuPont	164	33	1.36	10.7	8.9	None
HFO 1233zd	130	19	1.27	10.2	<5	None

* Properties of CO₂

Hydrofluoroolefins: HFO-1234yf (2,3,3,3-tetrafluoroprop-1-ene); FEA 1100 (1,1,1-4,4,4-hexafluorobut-2-ene) etc.etc. including Trans- 1-chloro-3,3,3-trifluoropropene (very small ODP! Admitted)

[Chem. 1]

Cis (Z) isomer normal boiling point: 39.0° C.

Trans (E) isomer normal boiling point: 21.0° C.

Hydrofluoroolefins; HFOs; u-HFCs

FEA 1100 (1,1,1-4,4,4-hexafluorobut-2-ene)

DuPont, Formacel® 1100

ODP = 0

GWP_{100y} = 8.9 Hazard code F in Chemical Book <u>http://www.chemicalbook.com/ChemicalProductProperty_EN_CB8467094.htm</u> Atmospheric life = 22 days

Hydrofluoroolefins HFOs; u-HFCs

Trans- 1-chloro-3,3,3-trifluoropropene Honeywel, [®]Solstice LBA

ODP ~ 0 small ODP admitted GWP = <5 Atmospheric life = 26 days Possibility of hazardous reactions: Polymerization can occur Specific hazards during fire fighting: Decomposition products may be produced, such as: hydrogen fluoride, hydrogen chloride, carbonyl halides

Barriers for uptake of natural substances

- Awareness.
- Technology & Standards
- Regulations policy framework
- Financial incentives e.g. MP Decision 74/56 has allowed funding up to a maximum of 25% above cost effective threshold to introduce low GWP alternatives and 40% for SMEs consuming less than 20 MT

Challenges

- maintain Awareness.
- Technology & Standards research and develop
- maintain Regulations policy framework rational
- Financial incentives value for money, for sustainability

Thank you Q&A

