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A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a

model is also proposed for simulating the local energy transfer during the ball milling process under no-slip condition.

Based on the kinematics of ball motion, the collision frequency and power are described and the normal impact forces

and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate

these models, after having established some relationships among geometric, dynamic, and thermophysical parameters.

Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the

vial-to-disk speed ratio ω/Ω on other kinetic parameters have been investigated. As a result, the optimal ratio ω/Ω to

obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, which is equal to 1.15.
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1. Introduction

Several previous studies have reviewed the de-

velopment of kinetic models related to mechanical

milling. Many attempts[1−13] have been made to sim-

ulate the kinetics of the milling process in terms of

ball velocity, frequency of impact, and kinetic energy

transferred to the powder during milling.[1−13] How-

ever, the physical and chemical changes induced by the

violent impact and accompanying shear forces during

the milling are still puzzling. A variety of powder co-

alescence and fragmentation mechanisms play great

roles in the milling process. The conversion efficiency

of the total power, generated by an impact, to effective

power transferred from the ball to the powder during

an impact and the impact frequency are the two im-

portant parameters determining the efficiency of the

milling process.[1] Recent experimental researches con-

centrate on both the sway ball mill and the plane-

tary ball mill: the impact velocity of the milling ball

and the temperature of the vial can be experimentally

monitored during milling, and the mechanisms of en-

ergy conversion can thus be studied.

Several models for describing the kinetics and

trajectory of the milling ball have been proposed by

Burgio,[5] Magini,[6] Abdellaoui,[9] Dallimore,[12] and

Chattopadhyay,[13] so that both the velocity of the

milling ball and its energy transfer can be calculated.

Zidane et al.[14] have established an equation describ-

ing the contact temperature at the impact point as

a function of other parameters. A back-propagation

(BP) neural network technique was applied to predict

the properties of milling powders for various milling

parameters and has proved suitable.[16]

Davis et al.[17] have tested the impact velocity of

the milling ball in a sway SPEX mill, and obtained

the results of 19 m/s (maximal) and 6 m/s (average)

with the impact energy mainly ranging from 10−3 to

10−2 J. By virtue of the geometry simplified model,

Maurice and Courtney[1] predicted that the sway fre-

quency of the SPEX mill was 1020 times per minute,

and the average impact velocity was 3.9 m/s. Mu-
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las et al.[18] and Loiselle et al.[19] used calorimetry to

test the impact speed of the SPEX mill, and obtained

the results of 3.8 and 3.6 m/s, respectively. Contact

temperature increases with the impact velocity in the

experiment conducted by Zidane et al.[14]

The operating principle in the planetary ball mill

is as follows: either four or two vials are settled sym-

metrically on a planetary disk. Each vial rotates

around its center C, as well as around the origin O

located at the center of planetary disk in the opposite

direction (Fig. 1); such movement confers high kinetic

energy to the ball. The centrifugal force induced by

rotation drives the ball to move along the vial wall,

while strong friction, induced by the speed differences

between the vial wall and ball, acts on the samples to

be milled. As the driving speed increases, the Cori-

olis force (rotation bias force) forces the milling ball

to leave its position from the vial wall. Subsequently,

the ball starts to move inside the vial, hit the sam-

ples against the moving vial, and thus liberate mas-

sive impact momentum. The combination of impact

momentum and friction force confers a high grinding

capacity to the planetary ball mill.

Fig. 1. Schematic drawing of the operating principle of

the planetary ball mill.

2. A kinetic model for the trajec-

tory of a single milling ball in

a planetary ball mill

As shown in Fig. 2, a kinetic model is established

in the Cartesian reference space on the basis of the

model established by Chattopadhyay et al.[13] The

kinematic analysis of ball motion is presented here in

terms of a spherical Cartesian reference frame with

its origin (O) located at the center of the planetary

disk.[13] Here, the distance between the origin O and

center C of the vial is rd, and rv is the radius of the

vial. The rotational speed of the disk is Ω in the an-

ticlockwise (or normal) direction and determined by

the rotational speed of the line OC. In accordance

with the planetary motion of the mill, the rotational

speed of the vial in the clockwise direction relative to

the line OC is ω. Here, P0(x0, y0) is a point on the

vial surface lying on the line OC, which is taken as

the initial point of the ball motion.

Fig. 2. Motion trajectory of a ball, showing the succes-

sive positions of the ball on the vial surface at the points

of initiation (t = 0), detachment (t = t1), and collision

(t = t1 + t2).

Resolution of the centrifugal force, originating

from the rotation of the vial and disk (Fv and Fd)

along the direction P1C0, yields the net reaction force

(Fc) acting on the ball (Fig. 2). At the point of de-

tachment (i.e., at t = t1), the resultant reaction on the

ball is reduced to zero (i.e., Fc = 0), and thus the ball

leaves from the wall of the vial. The motion of the ball

continues for an interval t2 without acceleration until

it collides with the vial surface (Fig. 2), thus entering

the next cycle of its movement.

To simplify the analysis, the following hypotheses

for the kinetic system are proposed:

(1) The motion system in a vial, virtually involv-

ing a number of balls, is considered as the linear cu-

mulative of a single ball motion. In other words, the

balls are assumed not to interfere with each other’s

motion, and hence the kinematics of a single ball rep-

resents the overall process.[5,9]
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(2) The equations proposed do not take into ac-

count the slip factor, really existing during the me-

chanical milling process. Nevertheless they make a

good approach to prove that the injected shock power

is responsible for the ball milled end product.[9] The

ball adherent to the peripheral points P0(x0 and y0)

or P2(x2 and y2) moves without rolling or sliding on

the inner wall.

(3) After a succession of hits with the inner wall,

the ball adheres to the inner wall, and then is acceler-

ated by the vial again, ready for the next flight.

(4) The ball is regarded as a mass point.[9]

The time period from 0 to t1 corresponds to the

interval during which the ball moves from position

P0(x0, y0) to P1(x1, y1). At any instant t during this

period, the position vectors x and y of the ball can be

expressed as[13]

x = rd cosΩt+ rv cos(Ω − ω)t, (1)

y = rd sinΩt+ rv sin(Ω − ω)t. (2)

Thus, the respective velocity components in the x and

y directions, i.e. vx and vy, can be obtained

vx =
dx

dt

= −Ωrd sinΩt− (Ω − ω)rv sin(Ω − ω)t, (3)

vy =
dy

dt

= Ωrd cosΩt+ (Ω − ω)rv cos(Ω − ω)t. (4)

The physical forces applied to the ball are its weight

(gravitational action) and the vial reaction. The

ball weight is negligible as compared with the vial

reaction.[9] Based on the fundamental dynamic prin-

cipal, at t = t1, the centrifugal force Fc acting on the

ball can be obtained, which originates from the rota-

tion of the vial and disk (Fv and Fd) and points to

the axis of the vial:

Fc = Fv − cos γFd , (5)

Fd = mrdΩ
2, (6)

Fv = mrvω
2, (7)

γ = π − ϕ. (8)

Substitute Eqs. (6)–(8) into Eq. (5), we obtain

Fc = mrvω
2 + cosϕmrdΩ

2. (9)

The milling ball detaches from the vial wall since

Fc ≤ 0, i.e., the take-off rotation angle ϕ1 satisfies

cosϕ1 = −rv(Ω − ω)2

rdΩ2
. (10)

The time required during the movement from the po-

sition P0 (x0, y0) to P1 (x1, y1) can be expressed as

t1 =
ϕ1

ω
. (11)

The take-off speed (v) of the milling ball at the posi-

tion P1 (x1, y1) reads

v =
√
Ω2r2d + (Ω − ω)2r2v + 2Ω(Ω − ω)rvrd cosϕ1.

(12)

The position vectors for take-off and collision points

P1 (x1, y1) and P2 (x2, y2) are relevant, i.e.,

(x2 − xc2)
2 + (y2 − yc2)

2

= (x1 − xc1)
2 + (y1 − yc1)

2. (13)

The milling ball moves in a straight line, and P2 (x2,

y2) is given by

x2 = x1 + vxt2, (14)

y2 = y1 + vyt2. (15)

Equation (13) can be changed into a nonlinear equa-

tion with an unknown parameter t2, i.e.,

v2t22 + 2(x1vx + y1vy)t2

− 2
[
x1rd cos(ϕ1 +Ωt2) + y1rd sin(ϕ1 +Ωt2)

]
− 2t2

[
vxrd cos(ϕ1 +Ωt2) + vyrd sin(ϕ1 +Ωt2)

]
+ 2(x1xc1 + y1yc1) = 0. (16)

The angle between the take-off velocity (v) at the

point P2 (x2, y2) and the radial direction of the vial

can be described as

φ = β − α, (17)

where β is the angle between the radius C2P2 and the

horizontal line, i.e., β = tan−1((y2 − yc2)/(x2 − xc2));

α is the angle between the velocity v and the hori-

zontal line, i.e., α = tan−1(vy/vx). Substituting the

above formulae into Eq. (17), we have

φ = tan−1

(
y2 − yc2
x2 − xc2

)
− tan−1

(
vy
vx

)
. (18)

A dynamic cycle of the milling ball starts from the

moment when it detaches from the vial wall. After a

certain time of movement t2, the milling ball adheres

to the vial wall for a certain time t1. Then, the ball

detaches from the vial wall and enters into the next
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operation cycle. The total time for a complete cycle

of ball motion can be computed according to

tcycle = t1 + t2, (19)

The frequency of ball motion is

f =
1

tcycle
. (20)

The impact kinetic energy of the milling ball can be

calculated by

Et = 0.5mbv
2
r , (21)

where vr is the relative velocity of the milling ball to

the vial, which can be calculated by

vr = |vpi − vflight| , (22)

where vpi is the velocity vector of the vial at the po-

sition P2 (x2, y2), and vflight is the velocity vector of

the milling ball at position P2 (x2, y2).

The impact power of the milling ball is given as

follows:[9]

Pt = fEt. (23)

3. A model for the local energy

transfer during the ball milling

process

In the model illustrated in Ref. [1], collision may

occur over a range of impact angles, and this geo-

metrical feature might have an important effect on

the relative tendencies for coalescence and fragmen-

tation of the powder. For example, several types of

fracture can occur, depending on the impact angle,

normal collision, shear friction, etc. The powder par-

ticles trapped between the colliding balls undergo se-

vere plastic deformation, which flattens them. Under

the cumulative effect of ball milling, the powder parti-

cles distributing evenly on the surface of ball become

finer, leading to new surface areas.

During collision, various kinds of forces can be

classified into normal collision force (Fn) and shear

force (Ft), as shown in Fig. 4. The Hertzian impact

theory applies, if the kinetic energy dissipation associ-

ated with the relative motion of the colliding bodies is

much less than the elastic energy content of the bodies.

In the model, the relative velocity of the milling balls

is much less than the speed of sound in the material,

which meets the above requirement.[18,19] We reach

the following conclusions: the collisions are perfectly

elastic, without energy loss; gradual compression of

the milling balls is assumed, where kinetic energy is

gradually transformed into stored elastic energy; since

the Hertz radius (rh) is much smaller than the radius

of the milling ball, the milling surface of the collision

can be assumed to be flat, as shown in Fig. 4.[1,18]

Fig. 3. (a) Normal collision force and (b) shear force

acting on the milling ball during collision.

Fig. 4. The contact surface of the collision of milling

balls.

The Hertzian impact theory is applied to the col-

lisions occurring during mechanochemical treatment

(MC). Thus, impact time (τ), impact radius (rh), de-

formation of milling ball at maximum compression

(δmax), as well as normal impact pressure (Pn) and

the thickness (h0) of powder film can be calculated

based on the following formulae:[1]

τ = gτv
−0.2
n (ρB/Eeff)

0.4rb, (24)

rh = grv
0.4
n (ρB/Eeff)

0.2rb, (25)

δmax = r2h/2rb, (26)

Pn = gpv
0.4
n (ρB/Eeff)

0.2Eeff , (27)

h0 = [16(L− 2rb)ρB/3ρpCR]

× [nBr
3
b/(3LD

2
m − 16nBr

3
b)], (28)

where gτ , gr, and gp are coefficients depending on the

collision geometry. Their values are given in Table 1

for some common MC configurations. The vn is the

normal impact velocity of milling balls, ρ is the density

of milling balls, Eeff is the effective flexibility modulus

of collision media, rb is the radius of milling balls, Dm
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is the diameter of the vial, L is the height inside the

vial, nB is the number of milling balls, ρB and ρp are

the densities of milling balls and powder, respectively,

and CR is the ratio of milling ball mass and the power

mass.

The normal impact force Fn can be given by

Fn = Pnπr
2
h. (29)

The shear force (Ft) is a function of the tangential

component (vt) of the relative collision velocity (vr)

of milling balls and the rotation velocity (vg), where

vg = ωrrb, and ωr is the rotation angular velocity. Its

expression is given by

Ft = m
d

dt
(vt + ωrrb). (30)

Position P2(x2, y2) obeys the law of conservation of

momentum, i.e.,

d

dt
[mvtrb +m(r2b + r2g)ωr] = 0. (31)

Thus, ωr can be removed by integrating Eqs. (30) and

(31)

Ft = − m

(1 + r2b/r
2
g)

(
dvt
dt

)
. (32)

Given that the velocity of the milling ball is re-

duced from vt to zero in an interval of τ/2, by inte-

grating Eq. (32) we have∫ τ/2

0

dt = −Ft
m

(1 + r2b/r
2
g)

∫ 0

vt

dv. (33)

Thus, the expression of shear impact force Ft can be

obtained

Ft =
m

(1 + r2b/r
2
g)

2vt
τ

. (34)

The elastic energy for deformation per unit vol-

ume equals P 2
n/2Eeff , and the volume deformation

caused by collision equals 2πr2bδmax/3. Thus, the elas-

tic impact energy Ee and the effective power P e per

impact can be expressed as

E e =
πp2nr

2
bδmax

6Eeff
, (35)

P e = fE e . (36)

The equation of the effective power found here will

be applied to identify the optimum milling condition

through mathematics, rather than experiments.

Table 1. Geometrical constants for various mill configurations. For a curved surface having a negative

radius of curvature −r2, χ is defined as −r2/rb.

Type of collision gτ gr gp

Ball on ball 5.5744 0.9731 0.4646

Ball on flat surface 6.4034 1.4750 0.3521

Ball on curved surface 6.4034[(χ− 1)/χ]0.2 1.4750[χ/(χ− 1)]0.4 0.3521[(χ− 1)/χ]0.6

4. Applications of the trajectory

and energy models

4.1. Simulation of the effect of disk rota-

tion velocity on kinetic parameters

For commercial planetary ball mills, the rotation

velocity of the disk Ω and vial ω are generally in a

fixed ratio. In this simulation, the variation of the

ratio ω/Ω ranges from 1.0 to 2.0, covering all appli-

cations of conventional milling balls, e.g. Kexi (Nan-

jing), Fritsch, Retsch et al., while the rotation velocity

of the disk Ω ranges from 200 to 900 rpm.

The setup operating parameters and interrelated

physical parameters are shown in Table 2. Figure 5

represents the variations of the frequency of collision

f , the total kinetic energy of milling ball Et and the

collision power Pt as a function of Ω; those are ob-

tained from Eqs. (1)–(23) established in the kinetic

model for the trajectory of a single milling ball.

As shown in Fig. 5, the values of f , Et, and Pt in-

crease monotonically with Ω. Specifically, f increases

linearly, while Et and Pt show a parabolic increase,

which is similar to that reported by Abdellaoui et

al.[9] and Chattopadhyay et al.[13] The variation ten-

dencies of Pt and Et are similar to that of the ratio

ω/Ω. That is to say, the values of Pt and Et manifest

a monotonic increase with the ratio ω/Ω. This is be-

cause that for a given Ω, the increase of the rotation

velocity of the vial enhances the energy input to the

milling ball. However, the frequency of collision f ap-

proaches its plateau and bottom at ω/Ω = 1.25 and 2,
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Table 2. The operating parameters for the simulation condition.

Ω/rpm ω/Ω rd/mm rv/mm rb/mm L/mm nB ρB/g · cm−3 mb/g Eeff/GPa

200–900

1.00

1.25

1.50

1.75

2.00

65 20 4.9 40 1 7.77 3.6 210

respectively, for a given level of Ω. Since the vari-

ations of the angle of incidence and the distance of

movement resulted from the ratio ω/Ω leads to the

variation of f .

Fig. 5. (colour online) Variations of (a) the collision

power Pt, (b) the collision frequency f , (c) the total ki-

netic energy Et as functions of the rotation velocity of

the planetary disk Ω for different levels of the vial-to-disk

speed ratio ω/Ω.

The present simulation has confirmed[13] that the

level of f is determined by both ω and Ω, but the

limiting value of f is determined by the ratio ω/Ω.

There is a difference in the variation of Pt with ω be-

tween the report of Chattopadhyay et al.[13] and the

present simulation result: Pt depends on ω evidently

rather than Et in the former research; while in the

latter one, both Pt and Et manifest a small increase

with ω, which may be due to that the ratio ω/Ω > 1.

Figure 6 represents the variations of the normal

impact force Fn, the shearing force Ft, and the normal

pressure Pn as functions of Ω, which are obtained from

Eqs. (24)–(36) established in the model for the local

energy transfer during the ball milling process and the

defined collision relative velocity vr and angular φ.

Fig. 6. (colour online) Variations of (a) the normal im-

pact force Fn, (b) the normal pressure Pn, and (c) the

shearing force Ft as functions of the rotation velocity of

the planetary disk Ω for different levels of the vial-to-disk

speed ratio ω/Ω.

As shown in Fig. 6, Fn, Ft, and Pn manifest a

monotonic increase with Ω. The values of Fn and Pn

gradually decrease while Ft increases with the increase

of ratio ω/Ω for a given level of Ω, since the collision

angular φ exhibits a gradual increase with the ratio

ω/Ω. The results obtained are in good agreement with

that obtained by Chattopadhyay et al.[13]

4.2. Simulation of the influence of ratio

ω/Ω on kinetic parameters

It has been proved that the milling ball becomes

adherent to the vial wall, without rolling or sliding on

the inner wall, when the value of ω/Ω is either less

than 0.7 or greater than 3.17. Consequently, we focus
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on the variation of ω/Ω in a range from 0.7 to 3.17.

In addition, the rotation velocity of the disk ranges

from 200 to 900 rpm, and the values of other relevant

parameter are summarized in Table 3.

As shown in Fig. 7, the velocity of collision vr
manifests a gradual increase with both Ω and ω/Ω,

which is consistent with the variations of Et and Pt,

as reported in Section 3.1. As the ratio ω/Ω increases,

the angle between impact direction and vial wall grad-

ually declines from 90◦ to 0◦ at ω/Ω = 2.17, increases

gradually until becoming perpendicular to the vial

wall, then declines again until tangentially adherent

to the vial wall. When ω/Ω > 3.179, the milling ball

no longer detaches from the vial wall to move into the

vial, since the centrifugal force originating from the

rotation of the vial is much greater than that of the

disk. Thus, the angle of collision depends primarily

on ω/Ω, The kinetic trajectory of a milling ball is de-

fined for a given ratio ω/Ω; while the collision velocity

is determined by Ω and ω/Ω.

Fig. 7. Vector relationships between the velocity of col-

lision (vr) of the milling ball and the rotation velocity of

the disk Ω and the vial-to-disk speed ratio ω/Ω.

According to the results reported previously, the

variations of certain kinetic parameters including f ,

Et, Pt, Fn, Ft, and Pn with Ω are similar. Thus, the

variations of these parameters with ω/Ω can be stud-

ied for a given Ω.

As shown in Fig. 8, the simulation calculation is

carried out at Ω = 800 rpm. The values of vr and

Pt increase monotonically with ω/Ω. Since the rota-

tion velocity of the vial increases gradually with ω/Ω,

the vr and Pt increase with the kinetic energy of the

system input. While the increasing tendencies of vr

and Pt are different since the frequency of collision

increases non-monotonically.

Fig. 8. Relationships between the velocity of collision vr,

the collision frequency f , the collision power Pt, and the

vial-to-disk speed ratio ω/Ω at Ω = 800 rpm.

As shown in Fig. 9, the frequency of collision fre-

quency f increases to a peak at ω/Ω = 1.4, then de-

creases to its minimal value at ω/Ω = 2.3, and finally

approaches its maximum rapidly. The value of f is

determined by the operating cycle tcycle = t1 + t2. As

the ratio ω/Ω increases, t1 decreases, and t2 increases

to its maximum at ω/Ω = 2.3, and then decreases to

0, i.e., the ball becomes adherent to the vial wall.

Fig. 9. Relationships between solid time t1, moving time

t2, the operating cycle tcycle, the collision frequency f ,

and the vial-to-disk speed ratio ω/Ω at Ω = 800 rpm.

Table 3. The values of operating parameter.

Ω/rpm ω/Ω rd/mm rv/mm rb/mm L/mm nB ρB/g · cm−3 mb/g Eeff/GPa

200–900 0.7–3.17 65 20 4.9 40 1 7.77 3.6 210
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As shown in Fig. 10, the normal impact force

Fn decreases gradually to 0 with the increase of ω/Ω

at ω/Ω = 2.17, and then increases monotonically to

its maximum at ω/Ω = 2.86, and finally decreases

to 0. The shear force Ft increases to a peak at

ω/Ω = 1.90, decreases slightly until ω/Ω = 2.10, in-

creases to another peak at ω/Ω = 2.40, decreases to

0 at ω/Ω = 2.86, and increases afterwards.

Fig. 10. Relationships between normal impact force Fn,

shear force Ft, and the vial-to-disk speed ratio ω/Ω at

Ω = 800 rpm.

The effective power P e per impact is an impor-

tant parameter to measure the kinetic energy trans-

ferred by the ball, which greatly affect the powder

by collision, leading to the mechanochemical reac-

tion. The conversion efficiency ηt reflects the con-

version efficiency from total power to effective power:

ηt = P e/Pt×100%. As shown in Fig. 11, P e increases

smoothly with ω/Ω at first, and reaches its first peak

at ω/Ω = 1.15. Then, it decreases to its minimal

value at ω/Ω = 2.17 and increases to another peak at

ω/Ω = 2.86. Finally, it decreases rapidly. Despite the

monotonic increase of the total power with ω/Ω, there

are two peaks of the conversion efficiency ηt which exit

close to the two peaks of P e , respectively.

Fig. 11. Relationships between the total kinetic energy

Pt, the effective power P e , the conversion efficiency ηt,

and the vial-to-disk speed ratio ω/Ω at Ω = 800 rpm.

From the theoretical viewpoint, the optimal oper-

ating condition should be chosen at ω/Ω=1.15 or 2.86

in order to obtain the highest impact energy. How-

ever, since the rotation velocities of the disk and vial

are generally in a fixed ratio for commercially-applied

planetary ball mills, the ratio ω/Ω is required to be

below 2. Conventional ball mills, e.g. Fritsch P5 and

Retsch P7, have ω/Ω = 1.25 and ω/Ω = 1, respec-

tively, thus to obtain high impact energy.

5. Conclusions

The trajectory and energy models presented here

illustrate the relationships between the kinetic and dy-

namic parameters. The effects of the rotation velocity

of the disk Ω and the vial-to-disk speed ratio ω/Ω

on other kinetic parameters have been studied. All

other kinetic parameters increase monotonously with

the increase of the rotation velocity Ω. With the vari-

ation of the ratio ω/Ω, the impact angle of the milling

ball ϕ ranges from 90◦ to 0◦. Thus, the ideal values

of the normal impact force Fn and tangential force Ft

can be obtained. When the dynamic parameters of

the planetary ball mill are given, the highest impact

energy P e can be obtained for the optimal value of

ω/Ω. The optimal ratio ω/Ω is found to be 1.15 at

Ω = 800 rpm.

The established models can improved by taking

account of the slip factor. Nevertheless, this work

verifies the practical consistency of the models, and

provides a governing principle to predict an optimal

milling condition. The application of the models can

predict the parameters needed to obtain a certain

and optimal milling condition with higher milling ef-

ficiency.
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