

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

09374

DP/ID/SER.A/ <13 25 October 1978 English

RESIDE OTTED

LINEAGE STUDIES IN ENGINEERING INDUSTRIES

DP/300/75/002.

BANGLADESE .

R Technical report: Pre-feasibility report on local production of textile machinery (simple power looms)

Prepared for the Government of Bangladesh by the United Nations Industrial Development Organization, executing agency for the United Nations Development Programme

Based on the work of Adam Kolozynski, expert on textile machinery manufacture, in co-operation with Gronje Sj. Baeck, project manager

> United Nations Industrial Development Organization Vienna

id. 78-7529

Explanatory notes

References to dollare (\$) are to United States dollars.

The monetary unit of Bangladesh is the taka. During the period covered by the present report, the value of the taka in relation to the United States dollar was \$1 = taka 15.

A slash between dates (e.g. 1970/71) indicates a fiscal year.

A hyphen between dates (e.g. 1975-1979) indicates the full period involved, including the beginning and end years.

A full stop (.) is used to indicate decimals.

A come (,) is used to distinguish thousand and millions.

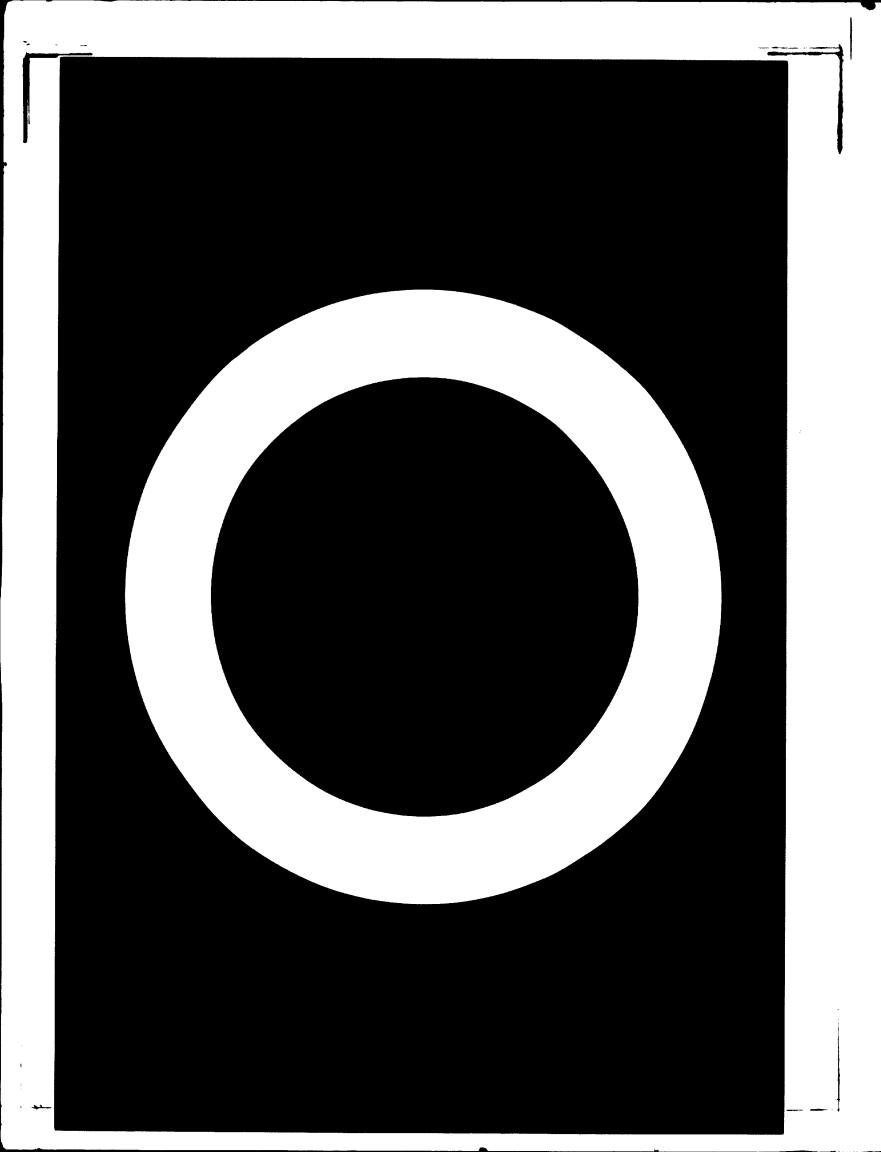
References to "tone" are to metric tone unless otherwise stated.

In tables a dash (-) indicates that the amount is nil or negligible.

Besides the common abbreviations, symbole and terms, the following have been used in this report:

Equivalents

1 lakh = 100,000
1 crore = 10,000,000
1 pound (1b) = 0.4536 kg
1 mound = 82.28 lb (37.3 kg)
1 square yard (yd²) = 0.836 square metres (m²)
1 inch (in.) = 25.4 millimetre (mm)


Organizations

383	Bangladesh Handloom Board
BAT	Bangladesh Machine Tools Factory
SREE	Bangladeeh Rural Electrification Board
BSEC	Bangladesh Steel and Engineering Corporation
BSIC	Bangladesh Small Industries Corporation
BTIC	Bangladesh Textile Industry Corporation
BTMC	Bangladesh Textile Mills Corporation
CDB	Cotton Development Board
DEW	Dockyard Engineering Works
JEMP	General Electric Manufacturing Plant
HCS	Handloom Co-operative Society

- IML Ispanhani Marshall Ltd.
- KSY Khulna Shipyard
- MIS Mohammedi Iron and Steel
- QIS Quality Iron and Steel

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Mention of firm names and commercial products does not imply their endorsement by the United Nations Industrial Development Organization (UNIDO).

ABSTRACT

With a population of about 34.7 million, Bangladesh has a very low <u>per</u> <u>capita</u> consumption of cloth. The current rate is estimated to be approximately $6 \text{ yd}^2 (5 \text{ m}^2)$. The current level of cloth consumption in the countries of South-East Asia is 20 yd² (16.7 m²) <u>per capita</u> per annum.

The annual requirement of cloth at the current rate of consumption for 84.7 million people is 508 million yd^2 . If the population continues to grow at 2.8 per cent per annum, it will be 121.50 million by the year 1990. If the consumption level <u>per capita</u> is to increase to the extent of 12 yd^2 by the year 1990, Bangladesh will require 1,458 million yd^2 of cloth.

The hand-loom industry plays an important role as regards the supply of cloth in Bangladesh. About 70 per cent of the domestically available cloth comes from cottage hand looms, and 15 per cent from Bangladesh Textile Mills Corporation (BTMC) weaving mills, and the rest from imports. The major function of 3TMC is spinning; it has no programme to expand its weaving. The task of weaving cloth will therefore depend on the hand-loom cottage industry. With the growing demand for cloth, the existing hand looms will be unable to cope.

In view of the growing need for cloth, there must be some technological changes in the traditional hand loom. Considering the present low level of productivity, it is clear that only the introduction of power looms can fulfil the growing demand for cloth. From an analysis of the different aspects of the country's problems and potentialities, the desirability of the gradual introduction of simple power looms has been established both from the technological and economic points of view.

The power loom should gradually replace the hand looms. The scheduling of such replacement should be such that 50 per sent of the existing hand looms be replaced by power looms by 1990. The proposed power looms should be iomestically produced by utilizing the country's existing installed capacity. After detailed study of the technological aspects of different Bangladesh Steel and Engineering Corporation (BSEC) enterprises, it is recommended that Ispahani Marshall Ltd. (IML) take the lead in manufacturing simple power looms. One should be designed and developed so that trial production oculd start in 1981 and the optimal production volume of 2,000 units oculd be reached by 1986.

The estimated cost of production of a typical simple power loom is about taka 31,000 (\$2,000). The price of a locally produced loom, as compared with

-5-

that of the imported one, would be much less in view of the low cost of labour in this country. If the loom were to be produced locally, it would create employment for about 420 people of different categories.

An adequate supply of yarn is a prerequisite for the weaving industry. Although the production of yarn is the main responsibility of BTMC, its present spinning machinery is insufficient. The situation in future will be much more difficult unless the spinning capacity of EMTC is expanded.

Analysis of the installed capacity and the extent of its utilization in BSEC enterprises reveals that 40 per cent of installed capacity of all the factories remain unutilized. Out of all the enterprises, Bangladesh Machine Tools Factory (EMTF) and the General Electric Manufacturing Plant (JEMP) are worth mentioning. EMTF is particularly capable of manufacturing high-precision spare parts. So the production of some spares will definately help in the utilization of the spare capacity and save a substantial amount of foreign exchange now going for imports.

The maintenance of EMTC mills is very poor, largely attributable to the unavailability of spare parts. At any given time, out of the installed spindles (about 1 million) approximately 25 per cent are operative, mostly owing to the lack of spare parts. Considering future demand, spinning capacity will have to be trebled. For the proper maintenance of the existing as well as future spindles, a smooth supply of necessary spare parts will have to be assured. Therefore, the production of some selected spare parts in economic quantities seems to be both technically possible and economically feasible.

The production of simple power looms will not require any substantial new investment; it would be possible with the existing facilities of IML in collaboration with GEMP and Mohammadi Iron and Steel (MIS). However, to achieve the final production programme, the expansion of IML would be necessary, which would require an investment of approximately take 45 million (\$3 million).

-6-

CONTENTS

<u>Chapter</u>		<u>P3.09</u>
	INTRODUCTION	10
I.	ASSESSMENT OF THE TEXTILE INDUSTRY IN BANGLADESH	13
	Bangladesh Textile Mills Corporation (BTMC)	13
	The hand-loom industry	14
	Raw material for spinning: cotton	15
	Findings	15
II.	PROSPECTS FOR THE DEVELOPMENT OF THE TEXTILE INDUSTRY	18
	Spinning: The Bangladesh Textile Mills Corporation	18
	Supplying future requirements for cotton cloth	2 0
	Findings	21
III.	SPARE PARTS	22
	Determination of requirements for spare parts for 3TMC, 1978-1990	23
	Findings	25
IV.	DETERMINATION OF THE DEMAND FOR POWER LOOMS	23
	Why power looms are needed	29
	The gap between demand and supply	30
	Conditions for introducing power looms	31
	Findings	32
₹.	ASSESSMENT OF THE EXISTING FACILITIES OF BSEC ENTERPRISES	33
	Existing workshop facilities	33 33
	Findings	
VI.	TECHNICAL DESCRIPTION OF THE PROPOSED POWER LOOM	
	Advantages of the power loom	35
	Production programme for power looms and spare parts	38
7 I I.	PROJECT IMPLEMENTATION	<u>10</u>
	Technical assumptions	20
	Organization and characteristics of technological production processes	<u>-</u>]
	Expansion of Ispahani Marshall (IML)	10
	Space requirements for the production of power looms and spare parts	13

Chapter		Page
	Manpower requirements	49
	Raw material requirements	53
	Findings	54
VIII.	FINANCIAL ANALYSIS	55
	Manufacturing cost of power looms	55
	Two alternatives for developing the power loom	56
	Economic benefit	57
IX.	FINDINGS AND RECOMMENDATIONS	58
	Findings	58
	Recommendations	59

Annexes

I.	Basis of selection of BTMC mills	63
	Consolidated statement of STMC mills and workshop facilities	65
III.	Performance of ootton textile mills, 1976/77	72
Π.	Annual requirements of spare parts of all STMC mills	75
٧.	Summary of some important aspects of BTMC enterprises	81
7 I.	Investment posts	84
VII.	Summary of the new investment required to establish an enterprise to manufacture spinning machinery	3 0

Tables

۰.	Textile mills under BTMC control	13
2.	Labour force of BTMC as of 30 June 1977	14
3.	Geographical distribution of hand looms under the control of Weavers' Co-operative Societies	15
4.	Number of spindles required at various levels of cloth consumption	19
5.	Requirements of spindles for corresponding quantities of yarm	20
ć.	Analysis of the technical condition of installed spinning and weaving machinery	22

-8-

P3.09

7.	Determination of spare parts requirements	27
9.	The gap between the demand and the supply of ploth	30
9.	Schedule for the replacement of hand looms by power looms	31
10.	Assessment of existing workshop facilities at some BSEC enterprises	34
11.	Technical data on various types of power looms	37
12.	Final production programme for power looms	39
13.	Five-year production programme for power looms and spare parts	42
14.	Summary of manufacturing work loads	43
15.	Summary of the equipment required to implement the production programme	45
16.	Summary of the costs of the technological production processes for power looms and spare parts	47
17.	Space requirements for the programme for the production programme for power looms and spare parts	48
18.	Summary of manpower requirements	3 0
19.	Structure of manpower requirements in successive years	51
20.	Schedule of professional training and its costs	32
21.	Raw material requirements	53
22.	Cost structure of the raw materials for a locally manufac- tured power loom (variant I)	55
23.	Cost of domestically manufactured power loom (variant I)	5 6
34	Turrantments naminal under the two mainst	z ź

Figures

I.	Shanges in the patterns of cloth consumption (1981-1990)	13
II.	Growth trend of textile machinery in BTMC	24
III.	Process flow of cotton yarn in a model mill	25
	1977/78 consumption and projected demand for textile Machinery spare parts	23
7.	Schedule for the production of power looms and the achievement of full productive capacity	11
71.	Scheiule for the production of spare parts and the achievement of full productive capacity	
7 1 1.	The stages of ievelopment of power loom ani spare parts production in BSEC according to variant I and variant II	ŝì
11.1.	Schedule for the development of textile power looms	ŧć

-)-

INTRODUCTION

Background

Bangladesh, with a population of about 35 million people in an area of 55,000 square miles, has a <u>per capita</u> consumption of cloth (approximately 5 square yards $(55m^2)$) which is one of the lowest in the world. The bulk (about 70 per cent) of the locally produced cloth is supplied by the traditional hand-loom sector. Large-scale industrial production of spun yarn and textile fabrics is carried on by 54 textile industry establishments, all of which are in the public sector and under the control of the Bangladesh Textile Mills Corporation (BTMC). This corporation is under the Ministry of Textiles, which was set up in July 1977 with the overall responsibility for maximizing the production of cloth for domestic consumption.

The large-scale spinning and composite textile mills operate at low levels of production and efficiency, largely owing to the unavailability of spare parts and inadequate maintenance. However, Bangladesh has a small but modern engineering industrial sector, but a major portion of its installed capacity remains idle. Most of the engineering industrial units are under the control of Bangladesh Steel and Engineering Corporation (BSEC).

In view of the above situation, the present project "Linkage studies in Ingineering industries" (DP/BGD/75/002) was set up to utilize the spare capacity of the BSEC units. The project "Pre-feasibility study of local manufacturing of simple power looms, textile machinery and spare parts", which forms the subject matter of the present report.

The study was conducted by a team of four, led by the UNIDO Project Manager, with the BSEC comprising the following persons:

Cronje Hj. Baeck, UNIDO	Project Manager
Adam Kolczynski	UNIDO expert in textile machinery manufacture
Mohammed Sirajul Islam	Engineering counterpart
Miril Ameen	Economic counterpart

Assistance in establishing the necessary contacts and provision of essential information was given by:

B. Anmed	Director (Planning and Development) BSEC	
Nazemudiin Ahmed	Director (Production and Engineering) 35	EC

A.S.M. Shahid	Director (Planning and Development) 3TMC
Sabih Uddin Ahmei	Chairman, Bangladesh Rural Electrification Board (BREB)
Mujibur Rahman	General Manager (Planning) BSEC
A.M.S. Hameed	General Manager (Implementation) BSEC
Murad Waiz	Member (Planning) Bangladesh Handloom Board (BHB)
S.N.H. Aurangzeb	Executive Director, Cotton Development Board (CDB)

Purpose and scope of the report

The aim of the present report is to present to the Government of Bangladesh the materials and information necessary to assess the techno-economic feasibility of local production of simple power looms and other simple textile machinery and spare parts for them.

The duties of the experts, as in the job description, were to:

(a) Review of the country's requirements in looms, including concise specifications;

(b) Assess the techno-economic feasibility of producing the looms defined above;

(c) Suggest a possible joint venture with international manifacturer for the above purpose;

(d) Elaborate a detailed programme for possible local production of spare parts for the textile industry.

Method of elaborating the report

The report on techno-economic feasibility of local production of a simple power loom, textile machinery and spare parts takes into account the existing situation and prospects for engineering industries as well as textile industry in Bangladesh.

In view of the objectives of the report, the team investigated the existing production potential of BSEC enterprises. To this end, it visited the major enterprises of BSEC, existing and under construction, in order to determine the following:

The number and types of installed machine tools Plans for expansion Present level of operational efficiency and extent of capacity utilization Present range of products and plans for new ones The team then examined the existing production potential of the textile industry in Bangladesh. To this end the team visited the selected textile mills under the control of BTMC and determined the number and type of installed textile machines used for cotton processing, including simple looms and the degree of their utilization (annex I).

As locally produced simple power looms will gradually be used to replace the hand looms, the team made all-out efforts to get socio-economic and technical information concerning the hand-loom industry in Bangladesh.

On the basis of available statistical data, the team estimated the present and future annual requirements of cotton fabrics in Bangladesh to the year 1990. The annual requirements of spare parts for existing and new textile machinery were also estimated and an analysis of the technical level and production capacity of the existing workshops of the individual textile mills was made.

On the basis of its findings the team presented:

A production programme for power looms with an aim of gradually replacing hand looms

A production programme for spare parts

A techno-economic analysis of the two foregoing production programmes

The team irew up various forms and tables to obtain information from BSEC and BIMC enterprises.

In the course of gathering the required information, the team had meetings and consultations with officials of the following agencies:

> Bangladesh Steel and Engineering Corporation (BSEC) Bangladesh Textile Mills Corporation (BTMC) Bangladesh Handloom Board (EHB) Bangladesh Rural Electrification Board (BREB) Handloom Co-operative Society (HCS) Cotton Development Board (CDB) Ministry of Textiles

In collecting the statistical data and information presented in this report, the team regrets that it must state that it got very little help from the various sources concerned. Since very few primary data were available, the team was obliged to make tentative estimates on the basis of the scarce available information.

I. ASSESSMENT OF THE TEXTILE INDUSTRY IN BANGLADESH

Bangladesh Textile Mills Corporation (BTMC)

After independence, as part of its policy for public ownership of large-scale industry, the Government nationalized all textile mills and placed them under the control of the Bangladesh Textile Industry Corporation (BTIC) in 1972. This corporation has been renamed the Bangladesh Textile Mills Corporation (BTMC). Prior to July 1977, when a separate Textile Ministry was formed, BTMC was under the administrative control of the Ministry of Industries.

There are 65 textile enterprises under the control of BTMC. These include 10 spinning mills under construction and 1 specialized enterprise. A classification of those enterprises, along with the looms and spindles is shown in table 1, and a consolidated statement giving vital information regarding the textile mills is shown in annex II.

Particulars	Number	Spind	lles	Loons
Existing mills				
Spinning only	24	346	500	
Spinning and weaving	25	584	256	7 982
Specialized textile mills	5	4	582	55
Mills under construction				
Spinning mills	10	2 37	500	-
Specialized textile mill	1	•	-	-

Table 1. Textile mills under BTMC control

From table 1 it is clear that **STMC** places great emphasis on spinning. It is of interest that of the 11 mills under construction, 10 are pure spinning units. When all of them go into production, the installed number of spindles will be 1,172,938.

Production

The production of yarm during the fiscal year 1375/77 was 32.4 million 1b (37.4 million kg) and the production of cloth for the same period was 68.1 million square yards (56.9 m²). The yarm produced by the spinning mills varies from 20 counts to 30 counts. The cloth manufactured is usually medium and coarse material for the use of the rural population. The BTMC weaving mill uses only 15 ter cent of the yarm manufactured by its 51 existing mills; the rest is used by the hand-loom industry, which is spread over the whole of rural Bangladesh. Their performance as regards spinning and weaving in 1976/77 is shown in annex III.

Employment

In terms of industrial employment, the cotton textile industry is second only to the jute industry. The labour force of the cotton textile mills and BTMC head office and zonal office is shown in table 2.

Classifications	Textile mills	Specialized textile mills	BTMC head office	BTMC zonal office	Mills under counstruction	Total
Officers	1 027	55	177	11	36	1 356
Staff	8 610	265	322	54	<u>521</u>	<u> </u>
Sub total	9 637	320	499	65	607	11 128
Skilled workers	21 279	681	-	-	-	21 960
Semi-skilled	19 636	152	-	-	696	20 484
Unskilled	11 642	_232	-	-	<u> </u>	11 874
Sub total	52 557	1 065			696	54 318
Grand total	62 194	1 385	499	65	1 303	65 446

Table 2. Labour force of BTMC as of 30 June 1977

The hand-loom industry

Traditional hand looms operated by rural artisans are the major source of domestically-produced cloth. These consume more than 30 per cent of the yarm manufactured by the spinning mills and supply approximately 70 per cent of the domestically available cotton cloth. The hand-loom sector contributed 50 per cent, 68 per cent, 72 per cent and 67 per cent of the domestically available cloth during 1967/68, 1968/69, 1972/73 and 1973/74, respectively. Despite the overwhelming importance of this industry, it is difficult to find the actual number of hand looms now operating; there has been no comprehensive survey in the recent past. However, a survey conducted by Bangladesh Small Industries Corporation (BSIO) in 1962/63 concluded that there were 250,000 hand looms in operation at that time, but industry sources believe that there may be as many as 400,000. It should be noted that the productivity of these loans is very low: only about 1.5 yi² (1.3 m²) hour. A recent figure obtainable from the Joint Registrar of Weavers' Jo-operatives Societies Ltd showed that 223,304 were under its control.

The existing hand looms are mainly of two types, commonly known as the pit-loom (a very old and primitive type) and the Chittaranjan loom, which is much more productive. The hand looms are spread all over the country; this geographical distribution is shown in table 3.

District		Number of	hand loo			
	Pit	OODS	Chit	taranjan	To	tal
Dacca	48	758	57	764	106	522
Tangail	26 8	377	11	010	37	877
Comilla	22 (581	1	695	24	376
Pabna	2 3	191	23	168	46	359
Kushtia	_13_	315		335	13	<u> 570</u>
Total	134 8	322	93	972	228	304

Table 3. Geographical distribution of hand looms under the control of Weavers' Co-operative Societies

These hand looms supply the bulk of the country's cotton cloth and provide employment for very many men and women.

Bangladesh Handloom Board (BHB)

In order to protect the interests of this traditional industry, the Government has recently set up an organization entitled the Bangladesh Handloom Board (BHB), under the control of the Textile Ministry. This board has undertaken a comparative survey of the hand looms in Bangladesh. The result of the survey should be available by the end of September 1978.

Findings

The primary findings of the study were:

(a) The country's major production of cotton cloth (approximately 70 per cent) comes from rural hand looms;

(b) The modern textile mills of Bangladesh concentrate mainly on spinning yarn for use by these hand looms;

(c) Despite its important role in the economy of Bangladesh, the handloom industry is largely unorganized and loes not receive the attention it deserves.

Raw material for spinning: cotton

While cotton is the basic raw material for spinning yarn in Bangladesh, sythetic yarns spun from short staple fibres are being used increasingly, alone or in blends. Bangladesh is currently conducting experiments on the possibility of oultivating potton. At present, all requirements are imported. On the basis of the present installed spindle capacity (935,438) of BTMC about 300,000 bales (400 lb or 180 kg = 1 bale) of raw cotton would be needed to feed the spinning machines in the 49 mills. When the ten new mills of BTMC, with their 500 spindles, some into production the additional requirements for raw cotton will be approximately 100,000 bales by 1982. The entire present demand for cotton is met by imports at a cost of approximately taka 150 crore, that is, 1,500 million taka (\$100 million). The cotton is now being imported mainly from Egypt, Pakistan, Turkey, Union of Soviet Socialist Republic and United States of America.

To satisfy the growing demand for cloth resulting from population growth, the number of spindles must be increased over the years, and eventually the demand for raw cotton by the textile industry will be much higher. It is estimated from the foregoing factors that the expected increase of spindles will be approximately triple the present number, and that the country will need about 900,000 bales of raw cotton by 1990.

The demand for raw cotton will increase markedly over the years, but the price of raw cotton is also rising every year in the international market. The future development of the textile industry will therefore depend largely on the availability of domestically grown cotton. The CDB and various press reports indicate that the cultivation of cotton in Bangladesh shows every promise of success.

With the success in recent experimental production, CDB has launched a three-year pilot project for the intensive cultivation of cotton on 3,500 acres (1,400 ha) of land during 1977/78, 6,000 acres (2,400 ha) during the fiscal year 1978/79 and 9,000 acres (3,600 ha) by 1980.

Last year's production of about 30,000 maunds (1,100,000 kg) of seed cotton, which is about 12,000 (450,000 kg or 2,500 bales) of cotton indicates good possibilities in the coming years. Moreover, in the opinion of the Directorate of Soil Survey of Bangladesh, cotton can be grown on 3.2 lakhs acres (372,600 ha) of land in different areas of the country, which would give a possible production of 32 lakh maunds (340 million kg) of seed cotton, giving about 750,000 bales of raw cotton.

Findings

From the above figures it seems that, if everything goes according to plan, the country will be able to supply about 80 per cent of the total raw potton

demand of the spinning mills in the near future, that is, by the year 1990. The prospects for the development of the textile industry in the country are consequently very bright.

۱

II. PROSPECTS FOR THE DEVELOPMENT OF THE TEXTILE INDUSTRY

The need for clothing, and thus for cloth, is second only to that for food. Indeed, the standard of living of a country can be ascertained by the <u>per capita</u> consumption of cloth by its population. Although it is quite difficult to obtain these figures, they have been estimated in several studies as follows: 1966/67, 6.9 yd²; 1967/68, 6.3 yd²; 1968/69, 6.3 yd²; 1972/73, 5.0 yd²; and 1973/74, 5.6 yd². 1/2

Bangladesh ranks as one of the least developed countries as regards clothing consumption. The consumption level is under 6 yd² per person/year compared with about 20 yd² per person/year in other countries of South Asia. There is thus a large unsatisfied and increasing demand for cloth that will require substantial expansion of the textile sector as regards both spinning and weaving.

No marked increase in the level of textile consumption in Bangladesh can be expected in the near future owing to the scarcity of foreign currency available for imports. Even if the annual consumption level were to be only 3 yd^2 per person in 1982, the cloth requirement would be approximately 778 million yd². In this connection it is estimated that consumption in other South Asian countries is presently 20 yd² per person. Even if Bangladesh were to make available 12 yd² per person in 1990, it would have to make available 1,458 million yd² of cloth for 121.5 million people.

Spinning: The Bangladesh Textile Mills Corporation

In view of the projected increase in demand for cloth, the spinning capacity of the country must also be increased. Of the existing 321,298 installed spindles, only 685,233 are in operation, producing 32.1 million 1b of yarm in absolute terms during 1976/77. With all of the yarm produced by BTMC mills, only 339 million yd² can be manufactured. (In general, 1 1b yarm = 1 yd² of cloth.) As has been noted, this is far below the present requirements of the country. In recent years, domestic spinning mills have been able to supply 30 per cent to 90 per cent of the yarm requirements; the balance was imported.

The number of spindles required in the coming years will depend on the expected level of cloth consumption <u>per capita</u> per year. Comparative figures are given in table 1.

Source of data for 1966/67 to 1968/69 was A.Z. Muslim's <u>Market Report</u> of <u>Cotton Industry in East Pakistan</u> (Dacca, EPIDC Planning Division, November 1969), p. 15 and for 1972/75 and 1973/74 from "Bangladesh survey of the jute and otton textile industries", World Bank Survey, 25 September 1970, p. 5, table 2.

Table 4.	Number of spindles $\frac{3}{2}$ required at various levels
	of cloth consumption (millions)

Years		1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Population Consumption (yards)	6/ 19.07	94.65	97.30	100.02	102.60	105.68	108.68	111.68	114.30	113.19	
(square yards/	year)										E - 14
ó	0.98	1.01	1.04	1.07	1.10	1.13	1.16	1.19	1.23	1.26	•
7	1.15	1.18	1.21	1.25	1.28	1.32	1.36	1.39	1.43	1.47	-51
8	-	1.35	1.39	1.42	1.46	1.50	1.55	1.59	1.64	1.68	73
10	-	1.69	1.73	1.78	1.83	1.88	1.94	1.99	1.05	2.11	•
12	-	2.02	2.08	2.14	2.19	2.26	2.32	2.39	2.46	2.52	

Note: a/ Average annual production of a spindle is 140 lb (63.5 kg) of yarn. b/ Rate of population growth, 2.8 per cent (1974/75 base estimate, 77.40 million).

The gradual change in the consumption pattern from 8 yards in 1981 to 12 yards in 1990 is shown in figure I.

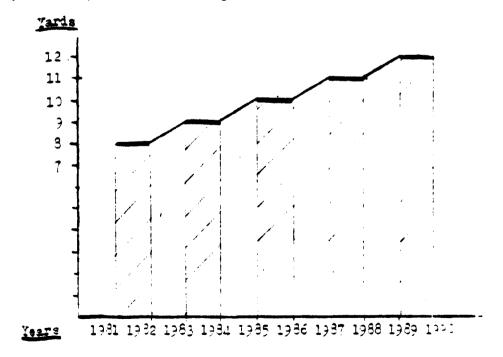


Figure I. Changes in the pattern of cloth consumption (1931-1990)

Given the situation depicted in figure I the required quantity of yarn and the corresponding number of spindles will be as shown in table 5.

Year Consumption (rd ²)	1981	1983	1985	1987	1989	1990
8_	-	~				
Yarn	189	200	211	223	236	243
Spindles	1.39	1.42	1.50	1.59	1.68	1.73
10						
Yarn	236	250	264	279	295	304
Spindles	1.69	1.78	1.88	1.99	2.11	2.16
<u>11</u>						
Yarn	260	275	290	307	325	334
Spindles	1.85	2.01	2.07	2.19	2.32	2.38
12						
Tarn	283	300	317	336	354	364
Spindles	2.02	2.14	2.26	2.39	2.52	2.60

Table 5. Requirements (millions) of spindles for corresponding quantities (lb/million) of yarn (1981-1990)

Although it has been assumed that the productive capacity of the installed spindles will be 100 per cent, this is highly improbable when one considers that the current productivity of BTMC spindles is between 75 per cent and 80 per cent. Ordinary yarn will have to be imported apart from the special-quality yarns which will always be required for certain textiles.

There are 7,359 installed looms in BTMC mills, of which only 5,388 are operable. It also appears that BTMC plans no increase in its looms. Consequently the bulk of the required cloth must come from the cottage hand loom sector, that is, from the private sector.

Supplying future requirements for cotton cloth

It would appear very unlikely for the hand-loom industry, as presently constituted, will be able to meet the country's demand for cloth in the years to come. If, as shown in table 4, the per capita consumption of cotton cloth will reach 12 yd² (10 m²) in 1980, the total required for the projected population of 121.5 million would be 1,458 million yd². This would be about triple the present quantity available. Consequently, the future role of hand looms should be increased or whether simple power looms should be introduced gradually.

-20-

Pindings

1. The present <u>per capits</u> annual consumption of cloth at the rate of 6 yd^2 is very low in comparison to other South Asian countries.

2. The annual rate of population growth is 2.3 per cent, one of the highest in the world.

3. Both the spinning and weaving capacities of the country will have to be expanded substantially to meet the requirements of this growing population.

4. In view of future requirements, it must be decided whether new and modern technologies should be introduced into the rural weaving sector.

-21-

III. SPARE PARTS

Under the present circumstances, spare parts are required for the rehabilitation or renovation of inoperative machinery and for routine replacements.

During the visits of the team to selected BTMC mills, it was noted from discussions with the local managements that the non-availability of sufficient spare parts causes disturbances in production, resulting in lower product quality.

In almost all cases some machines were cannibalized; that is, dismantled to supply parts to keep other machines running. This severe lack of spare parts is probably the explanation of the divergencies in the figures for installed epindles as compared with spindles in operation given in table 6.

Year	Installed spindles	Operational spindlee	Inoperstive spindles	Percent of inoperative
	•	(thousands)		inoperstive spindles
1966	654	573	81	12
1967	661	555	106	16
1968	668	569	99	15
1969	731	646	35	11
1970	750	560	90	12
1971	836	650	136	22
1972	836	650	136	22
1973	346	626	220	2 6
1974	858	657	201	23
1975	390	692	198	22
1976	306	660	246	27
1977	921	685	2 36	26

Table 6.	Analysis of	the	technical	. condition	of	installed
	spinnin	g and	. weaving	machinery		

в.	Weaving	machinery

Year	Inetalled looms	Workable looms	Loom in operation
1973/74	7,375	6,375	4,315
1974'75	7,563	6,563	4,792
1975/76	7,636	ó,lé <u>5</u>	4,847
1976/77	7,359	6,388	4,531

-22-

Determination of requirements for spare parts for STMC, 1978-1990

Assumed method

The range of demand for spare parts was determined on the following bases: Analysis of spare parts consumption in the existing conditions specified in annex V Analysis of the technical condition of installed machines given in table 6 Growth of spare parts demand resulting from development of existing textile mills Range of indispensable imports estimated for basic machines, eliminating high-precision spare parts manufactured by specialized firms

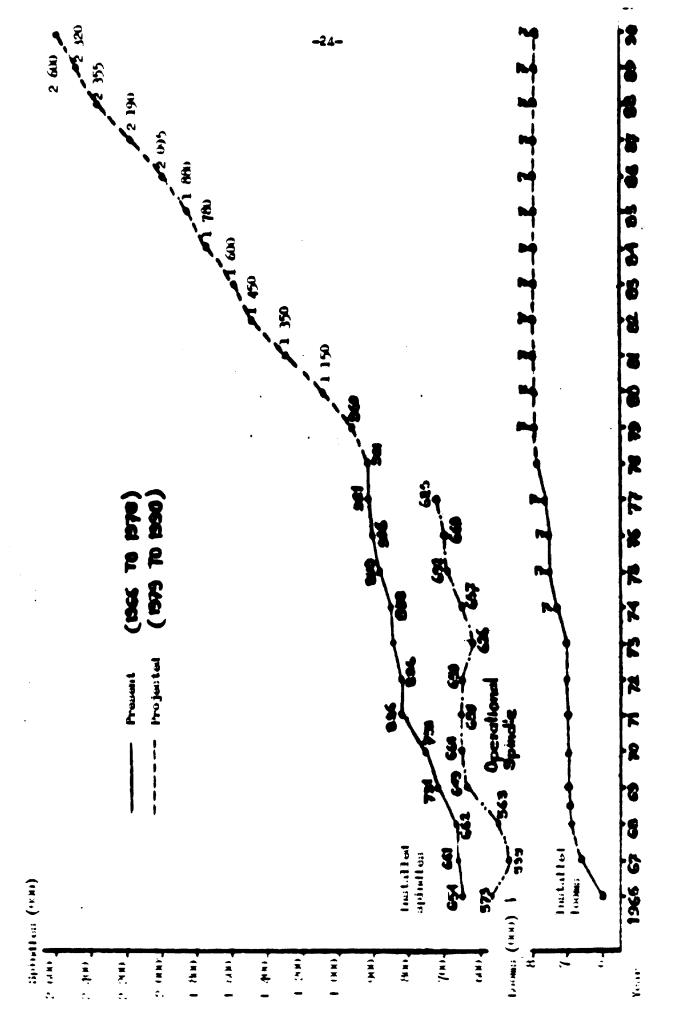
Included in this type are:

Impression arms

Card sheathings and saw wires

Other accessories requiring very high precision achieved by mass production

Heddles, reeds, shuttles and ring travellers


To formulate a iemand programme, on analysis of spare parts consumption in selected mills was carried out.

The findings are given in figure II.

It can be seen that, although more spindles are installed each year, the number in actual operation either remains the same or irops. Table 5 also shows an increasing number of idle spindles. This situation undoubtedly reflects a progressive shortage of spare parts.

There is a tendency to blame much of the difficulties on the take-over of the spinning mills by the public sector in 1972. It would seem fair to say that, with the passage of so much time, mill management should have been able to adapt to public ownership.

There are very real obstacles to the regular and smooth procurement of spare parts. During the visits to the mills, the team got the impression that everyone realizes that the procurement of parts must have a very high priority. A list of the spare parts required is given at annex IV.

Migure Ji. Growth trend of textile muchinery in MTMC

The annual requirement of spare parts of all STMC mills has been estimated, based on a standard composite model mill with 12,500 spindles and 280 looms. In order to estimate the requirement for spare parts, the process of manufacturing yarm and cloth has been divided functionally along with the required number of machines, as shown in figure III. The estimated annual spare parts costs for such a mill are shown in table 7.

Findings

Any increase in the number of operative spindles resulting from the inetallation of new machines would be much more coetly than repairing inetalled, unserviceable once; the coet of the latter might be but a fraction of the capital investment in the former. The team also recommended an accurate listing of all parts that are manufactured locally, and the distribution of these lists among the members of BTMC to avoid duplication.

The 1977/78 consumption of textile machinery spare parts and the projected 1990 demand for them are presented graphically in figure IV.

Proper maintenance of the machinery should be ensured. There should be a set maintenance schedule which should be followed strictly.

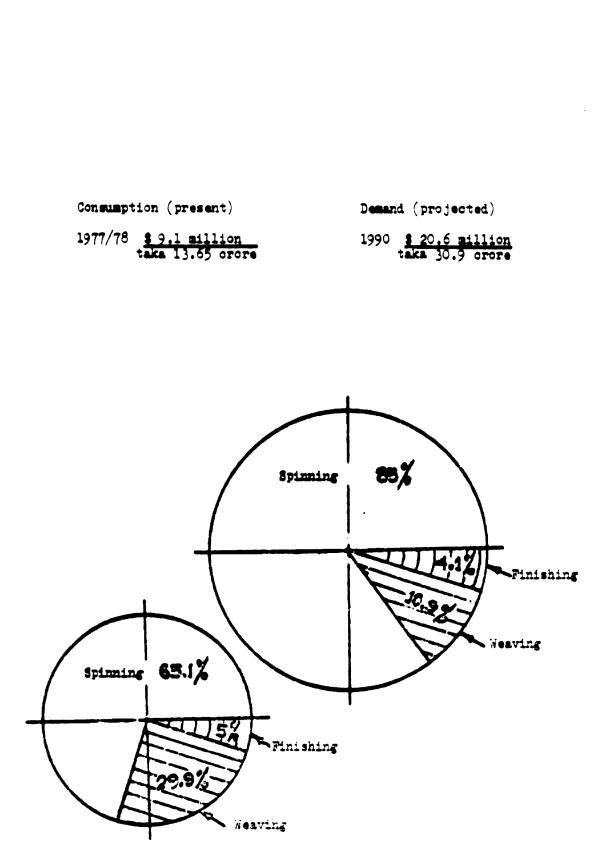
To help to achieve specialization, the existing mill workshops should be utilized to manufacture certain specific items in bulk instead of manufacturing all items.

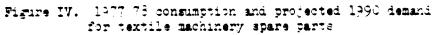
Workehops should be established immediately in mills that now have none, and the existing mill workshope should be expanded and modernized.

The size and facilities of such workshope might not be very large but should be well-enough equipped to meet basic preventive maintenance of the mills and to carry out the manufacture of specific items, as mentioned above.

Cotton in bales
Blow room equipment
Opening line, blending and picking
<u> </u>
Carding
Drawing
······································
Roving frame
Ring spinning
Winding
Warping
Sizing
Looms
Finishing machinery
1
Ready cloth

Spinning Number of machines 1 24 6 2 (400 spindles) 31 (12,500 spindles) Weaving 2 (400 spindles) 1 1 280


Figure III. Process flow of cotton yarm in a model mill


-26-

	1979	1980	s 1981	ipare parts 1982	Spare parts requirement 1982 1983	nt 1984	1985	1986-90
Groups of machinery		1		(thousand	dollars)			
Spinning								
Opening line and blow-room 202.	om 202.7	239.2	279.8	327.4	350.3	205.4	423.9	2 861.4
Carding with wire	1 668.3	1 956.9	2 209.7	2 678.9	2 866.3	3 153.0	3 468.1	23 411.5
Drawing frame	368.5	434.8	508.8	595.3	636.9	700.7	1.011	5 202.5
Spindles, roving	245.7	20.9	339.2	396.8	424.6	467.1	513.8	3 468.3
King apindles	3 142.5	4 327.4	5 062.8	5.923.5	6 338.3	<u>6 671.8</u>	1 669.3	51 765.5
flotal	6 142.5	7 248.2	8 480.3	9 921.9	10 616.4	11 678.0	12 845.8	86 709.2
l eaving								
Winding	82.5	82.5	8 n. 0	82.5	85.0	87.5	C.68	445.0
Warping machine	152.4	152.4	150.0	152.0	157.5	161.4	165.5	827.5
Scizing machine	2.761	2.761	134.5	0.761	139.0	143.0	148.5	742.5
Meaving Looms	2 381.6	2 301.6	2 334.5	2 295.8	2 065.3	2 054.9	1 970.4	1.961 9
Total	2 754.0	2 754.0	2 700.0	2 655.0	2 548.8	2 446.8	2 373.4	11 153.1
Pinishing								
and other	459.0	1.164	535.3	588.9	647.7	712.5	783.7	4 271.6
Grand total	9 355-5	10 493.3	11 715.6	715.6 13 165.8	13 812.9	14 837.3	16 002.9	102 133.9
			(10	0 million taka)	taka)			
	14.033	15.73	17.57	47.61	20.73	22.25	24.00	153.19

Table 7. Determination of spare parts requirements

-27-

IV. DETERMINATION OF THE DEMAND FOR POWER LOOMS

The present <u>per capita</u> annual consumption of textiles in Bangladesh, as shown earlier in the present report, has been estimated at 6 yd^2 , and 70 per cent of the yarm used to produce the total available textiles is spun in domestic cotton mills.

In view of the increased requirement for textiles for the increasing population and also because of the anticipated elevation of the quality demanded, it is now time to consider:

(a) Whether the hand-loom cottage industry will be able to continue to supply requirements at the present rate of 70 per cent of the textiles available in the country;

(b) Whether there should be radical technological changes in the existing hand looms to improve their productivity;

(c) Whether simple power looms should be introduced alongside the existing hand looms to ensure satisfaction of the quality and quantity of the textiles demanded.

Why power looms are needed

Analysis of the existing situation brought the team to the view that simple power looms should be introduced by 1980 to permit gradual replacement of hand looms by simple power looms and to meet the increased quantitative and qualitative demand.

The team arrived at the above conclusions in view of the following considerations:

(a) The major activity of BTMC is spinning. This is apparent from its expansion programme;

(b) All STMC mills under construction are purely spinning units. With their current weaving capacity they can hardly meet 15 per cent of the country's demand;

(c) There appears to be little possibility in bringing any striking change in the productivity of the existing traditional hand looms;

(d) The Government has embarked on a plan to electrify the rural areas of Bangladesh. The introduction of power looms would ensure better utilization of the rural electrification programme;

(e) The introduction of synthetic staple fibres, which has become compulsory in view of the high price of cotton, has adversely affected the operational efficiency of the hand looms;

(f) Certain qualities of fabrics cannot be manufactured on hand looms;

(g) The introduction of simple power looms would not mean the total elimination of the hand loom cotton industry, since certain fabrics can be manufactured only on them:

(h) The apprehension that the introduction of simple power looms would bring unemployment to a good many rural weavers is unfounded. On the contrary, it would require intensive pre-manufacturing and post-manufacturing activities, among them beaming, sizing, dying, marketing, servicing and many other ancillary activities as the demand for cloth increases.

The gap between iemand and supply

The replacement of hand looms by simple power looms will be required because of the failure of the traditional hand looms to keep pace with the growing need for textiles. As the consumption level will gradually increase, the gap between the demand for and the quantity of cloth domestically available will also increase. Table 8 below shows the increasing gap under varying assumptions.

	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Population (millions)	94.6	97.3	100.0	102.6	105.6	108.6	111.6	114.8	118.1	121.5
Level of con- sumption per <u>capita</u> (square yards)		8		9		10		11	1	2
Total demand (million square yards)	7 57	778	900	9 2 3	1 026	1 086	1 228	1 262	1 418	1 458
Total domestic supply (in million square yards)	630	644	730	746	310	860	959	983	1 106	1 135
Gap (million square yards)	127	134	170	177	2 08	226	269	279	312	3 2 3

Table 8. The gap between the iemand and the supply of $\operatorname{cloth}^{\frac{3}{2}}$

a/ The above calculation has been based on the following assumptions: BTMC will not increase the number of its looms

The number of hand looms continues to multiply in order to be able to supply approximately 70 per cent of the total available textiles A population growth of 2.3 per cent per annum (1974/75) base figure of 77.40 million)

The consumption level is arbitrary. The increased level is shown keeping in view that the current level of cloth consumption in the South Asian countries is 20 square yards per person/year.

-30-

Conditions for introducing power looms

The programme for introducing simple power looms in Bangladesh will involve designing a special type of low-cost simple power loom. It must be produced domestically in order to make it especially suitable to local conditions as well as to ensure the maximum utilization of the installed capacity of the domestic engineering industries.

The replacement of hand looms by simple power looms must be done gradually. This must be done at such an increasing rate so that by 1390 25 per cent of the hand looms will have been replaced. From that time onward, no more hand looms should be installed. Additional demand for cloth must be met only by power looms.

The Government will have to come forward with the following:

(a) Extension of loans on easy terms to the weavers' co-operatives for the procurement of looms;

(b) Ensuring a steady supply of yarn, iyes and electricity and the like;

(c) Extension of facilities by establishing technical support centres to train weavers to use the new loans;

(d) Provision of fiscal benefits such as tax holidays;

(e) Protection of the industry from unequal competition from imported fabrics:

(f) Ensuring marketing facilities as well as the elimination of middlemen in the process as far as practicable.

Rate of replacement

The number of power locas which the country will require is shown in table 3.

Table 9.	Schedule f	for the	replacement	or	hand	looms	ъу	power	looms	<u>b</u> /
-										
		_								

	1981	1982	1983	1984	1985	1986	1987	1988	1930	194
Power looms for replacement of hand looms	500	625	750	875	1 000	1 125	1 250	1 375	1 500	1 7:50
Power looms required to meet additional demand	-	_	-	-	137	537	1 477	1 735	1 904	2 1:4
Total	500	625	750	875	1 137	1 ćć2	2 727	3 110	3 304	3 862

a/ The calculations were done on the following basis:

The number of operating hand looms in the country is estimated at 250,000In terms of productivity, one power loom = 4 hand looms Replacement begins by 1981 at 1 per cent of the total operating looms and increases by 0.25 per cent annually till 1990. This slow rate of replacement is assumed because it will take time to acquire the required efficiency

Additional power looms will be required only from 1985, because in that year the gap between the total requirements for cloth and the iomestic supply will increase beyond 15 per cent of the total requirement

Findings

Handlooms of the present productivity will be unable to meet the demand of the growing population and the expected increase in textile consumption.

Power looms should be introduced immediately to replace hand looms.

The introduction of power looms will not create unemployment, as may be feared; rather it will generate employment.

Government agencies will have to take the initiative in introducing power looms.

The introduction of power looms will be of physiological benefit to the workers, since much less physical effort is needed with a power loom than with a hand loom.

V. ASSESSMENT OF THE EXISTING FACILITIES OF BSEC ENTERPRISES

Existing workshop facilities

The assessment of the techno-economic prefeasibility for the production of simple power looms and spare parts in BSEC enterprises are based on extensive review of the spare parts production capacities of the existing BSEC enterprises, and technical conditions of the machinery, taking into account the prospect of future development.

For the purpose of the present study, the 44 BSEC enterprises are considered under the following three groups:

(a) <u>Engineering industries</u>: Responsible for the manufacture of various types of machinery and parts such as machine tools, electrical machinery and appliances, and spare parts for various machines and equipment;

(b) <u>Manufacturing industries</u>: Responsible for producing durable consumer goods and intermediate industrial inputs such as enamelled copper wire, welding electrodes, and cans and containers;

(c) <u>Steel industries</u>: Responsible for the production of raw steel and steel products such as sheets, rods, angles and bars.

The above groupings have been made in order to identify the activities which are to be carried out by the enterprises in the manufacturing of simple textile power looms and spare parts for textile machinery.

Selection of enterprises

For the selection of enterprises for the manufacture of simple power looms and textile machinery spare parts, an analysis was made to see the different aspects of BSEC enterprises (annex 7). The team also visited some BSEC enterprises to see the present situation at first hand.

In the selection of enterprises to be visited, the following factors were also considered important:

Type of industry and production programme Available machinery, equipment and other facilities Availability of unused capacity Size and cabilities of the workforce Infrustructural factors such as electricity, water, fuel, and transport

<u>Type of industry</u>. Of the three main groups of BSEC enterprises, the engineering industries were considered as best suited to take part in the manufacture of power looms and spare parts. From the third group (steel industries) two important casting foundries are selected for the programme.

-33-

<u>Size and capabilities of the workforce</u>. This factor was also duly considered in selecting Ispahani Marshall Ltd (IML), Dockyard and Engineering Works (DEW) and the Khulna Shipyard (KSY). Silled manpower and low machine-hour cost are assets of these factories.

<u>Infrastructural factors</u> were also given due importance. The selected enterprises are well connected with each other and with the main cities by road, rail and water.

By analysing the various aspects and existing facilities of the BSEC enterprises and taking into consideration the above-mentioned factors, the following enterprises were selected to co-operate in the manufacture of a simple power loom and some selected textile-machinery spare parts: Bangladesh Machine Tools Factory (EMTF), Quality Iron and Steel (QIS), General Electric Manufacturing Plant (JEMP), Mohammedi Iron and Steel (MIS).

Unused capacity

It has been established from a comparative statement, as shown in 9th column of annex V, that a considerable amount of installed capacity of most of the 3SEC enterprises remains unutilized. Moreover, it is expected that a substantial amount of new capacity will be generated, a good portion of which will be sparable, after the completion of the large projects, namely EMTF, JEMP and Chittagong Dry Dock. The real objective of the present study is to find out how to utilize the excess capacities of the BSEC enterprises by introducing new products such as simple power looms and spare parts.

The spare parts capacities of the selected enterprises have been carefully estimated in order to match them with the estimated work-load for the production programme of the specified items, namely looms and spare parts. The assessment of existing workshop facilities and available excess capacities of the selected enterprises are shown in table 10.

> Table 10. Assessment of existing workshop facilities of some BSEC enterprises

Name and location of enterprises	Existing workshop facilities			
Dacca area				
Bangladesh Machine Tools Factory (BMTF)	All types of facilities (machining, treatment, foundry, forge etc.) available			
Dockyari and Engineering Works Ltd. (DEW)	Machining and foundry			
Quality Iron and Steel (QIS)	Foundry - quality castings			

a. In addition to enormous capacities available in both EMTF and GEMF, each of the listed enterprises has sufficient capacities that oculi be utilized for manufacturing textile power looms and spare parts.

-34-

Chittagong area				
Ispahani Marshall Ltd. (IML)	Foundry, machining			
General Electric Manufacturing Plant (GEMP)	Machining and heat treatment			
Mohammedi Iron and Steel Works Ltd. (MIS)	Steel casting (nodular cast iron) and ordinary casting available			
Khulna area				
Vhulps Shipmond Itd (VSV)	Toundary sechining and secondary			

Khulna Shipyard Ltd (KSY)

and stamping facilities available

The future development programme in respect of some BSEC enterprices as shown in annexure V have also been taken into coneideration.

It is expected that the necessary expansion will take place on the basis of future developments and requirements. It would thus be quite premature to estimate anything at this time.

Findings

From the analysis of the existing workshop facilities of the selected BSEC enterprises, it has been established that the production of simple power looms is quite possible technologically. Even without adding any new machinery to any of the selected enterprices, it would be possible to manufacture the complete loom by collaboration among the concerned enterprises. This linkage system is shown in table 10.

If it is iscided to utilize the experience and skill of IML in machine manufacturing, the factory will need some balancing and modernization.

As regards textile spare parts, it would be possible to produce many of them with the existing facilities. However, with respect of two important selected spare parts, namely the spindle and bolster (complete) and the ring cup, it would be necessary to seek collaboration or the purchase of technical know-how, as these items require a high standard of technical skill to produce. The annual requirements of these parts are very high.

VI. TECHNICAL DESCRIPTION OF THE FROPOSED POWER LOOM

Power looms are designed to produce light cloth up to an approximate weight of 250 g/m^2 of cotton and natural and artificial silk (rayon).

Freedom from vibration and stable operation at high picking speeds are ensured by side frames with tube fastenings. The power loom is capable of weaving a wide range of ordinary fabrics, thin to thick, simple to delicate, from cotton, synthetic and blanded yarns.

The power loom consists of ten major components as shown below, totalling to approximately 300 parts:

```
Frame and elements

Picking

Sley

Cloth take-up

Crank-chaft control arrangement

Shuttle boxes

Warp take-up mechanisms

Metre wheel and clutch and break arrangement

All gears and cams

Commercial elements such as pins, muts, bolts, rings and washers
```

A simple power loom can be installed with dobby, Jacquard or various twillmotion apparatus as required.

Table 11 shows the different aspects of typical power looms compared with automatic rapier looms.

Advantages of the power loom

Until fairly recently, over 30 per sent of all looms produced by European machine-building firms were shuttle power looms.

Power looms have only one ordinary system in weft-yarn feeding, are superior to any conventional automatic loom and have a number of advantages to satisfy the current needs of the cottage industry. Textiles of many kinds can be produced because of the wide versatility of loom operation, with specific features such as the following:

> High efficiency for high-quality bloth Great stability in operation A large assortment of produced factios

-36-

		Puter 1		utomatic	Paniar An
				loom Samrer (Suit-onloud)	
Specification	(Inden)	(ineque)	(1990) 198	100 ML	AVA NVA
Real length (페)	1 600 (63 in.)	1 600 (63 in.)	1 600 (63 in.)	1 600 (63 in.)	1 600 (63 in.)
Shuttle box	lx1, 2x1, 4x1	lrl, 2rl, 4rl	lzl	lxl, 2xl, 4xl, 4x4	1
Drawing method	Individual motor drive	Individual motor drive	Individual motor drive	Individual motor drive	Individual motor drive
Take-up	Pickles	Pickles	Pickles	Pickles und various	Pickles and various
Nutor remired	I KN	1 ku	NN 6.0	1.7 kM	2 kn
Attachable accessories	Dobby, Jaxquard	Bribby, Jacquard	Dobby, Jeoguard	Dobby, Jacquard, external can mechaniam	Dubby, Jacquard, various twill motions
Adaptation for manufacturing	Kaay	Kaay	Theat	Difficult	Very difficult
Expected rate of output per hour (per cent of rated capacity)	3	ક	ક	100	180
Mumber of main parts	300	006	350	2 000	3 000
Main tenance	(art)	Rinity	Tay	Cood	Complicated
Approximate import price per unit c.i.f. Chittagong (\$)	3 000	3 500	4 000	1 000	23 000

Table 11. Technical data on various types of power looms

-37-

Convenience in maintenance, owing to minimum maintenance cost Low cost of equipment More labour effective than hand loom Low production cost with consequent reduction of fabrics The technological level for the production of simple power looms is not very much higher than for hand looms

Features and advantages of power looms as regards to production and maintenance

The main unit of the power loom is a four-link middle-pick motion with a steel picking shaft and noses. The design and materials used for manufacturing the picking motion should ensure reliable and precise loom operation.

All principal running parts of the power loom are provided with bronze bearings, while power bushings have been adopted throughout for bearings that are not easily accessible for lubrication. As a result, the smooth running of the loom is ensured and maintenance greatly reduced.

Simplified construction makes the power loom easy to operate, while accurate machining minimizes the wear of parts and, consequently, the cost of maintenance.

All important parts are made from selected materials, machined within specified tolerances and to the surface finish by means of special-purpose machine tools, jigs, fixtures, and gauges to ensure interchangability, which facilitates installation of the loom parts.

Production programme for power looms and spare parts

The subject of the programme is the production of simple power looms and spare parts for textile machinery, under the control of the BTMC mills.

Assumptions for the programme

The fundamental assumption for determination of the production programme was the requirement of textile weaving locms, specified in chapter IV, "Determination of the demand for power looms".

After analysis of the report, the team made the following proposals with regard to starting the production of textile machinery:

Simple power looms	2-300/ year
Spare parts for textile machinery require a high standard technical efficiency	Approximate value \$1.5 million/year

-38-

The quantity of power looms suggested is considered optimal for production purposes. Collaboration between the manufactuers of specialized elements such as bearings for spindles is necessary for the success of the scheme.

To achieve a better result, it is recommended that the optimum quantity of power looms to be produced should be 2,000. The stages of production are presented later in the present report.

Pinal production programme

Based on the neede as established in chapter IV, the final production programmee have been worked out as shown in table 12.

					Nor	k load		Value
			Weig	ht (tons)		and hours)		ousand 3)
Description	Nu	ber	Unit	Programme	Unit	Programme	Unit	Programme
Power looms	2	000	0.8	1 600	0 .29	580	2	4 000
Spare parts								
Spindles	150	000	-	105	-	300	•	1 050
Rings	150	000	-	9	-	105	•	225
Tension shafts	36	000	-	40	-	61	-	72
Roller stands	36	000	-	40	-	47	-	126
Gears and others	20	000	-	12	-	14	-	50
Sub total				206		527		1 523
Grand total				1 806		1 107		5 523
						(- taka	8.28 crore

Table 12. Final production programme for power looms

VII. PROJECT IMPLEMENTATION

Technical assumptions

For elaboration of the technical data on power looms and spares, the following factors deemed to be essential were given due consideration.

The enterprises listed in table 10 would execute the final production programme of:

Power looms

2.000/year

Spare parts for textile machinery

Spindles, rings and others 206 tons by weight (table 12)

The schedule of production of power looms and spare parts as shown in figure V and figure VI.

The production programme for a five-year period commencing 1980 is shown in table 13.

The BSEC enterprises will collaborate in the manner shown below in order to manufacture power looms and textile spare parts.

Selected BSEC enterprises taking part in the execution of the production programme

Dacos sres

EMILE

Chittagong irea

IML (Leader for loom manufacture) Spare parts: not recommended

Looms: casting of major part ' assemblies

MIS

Spare parts: steel, castings, good-quality items

Looms: quality casting of selected items

Spare parts: machining and heat treatment

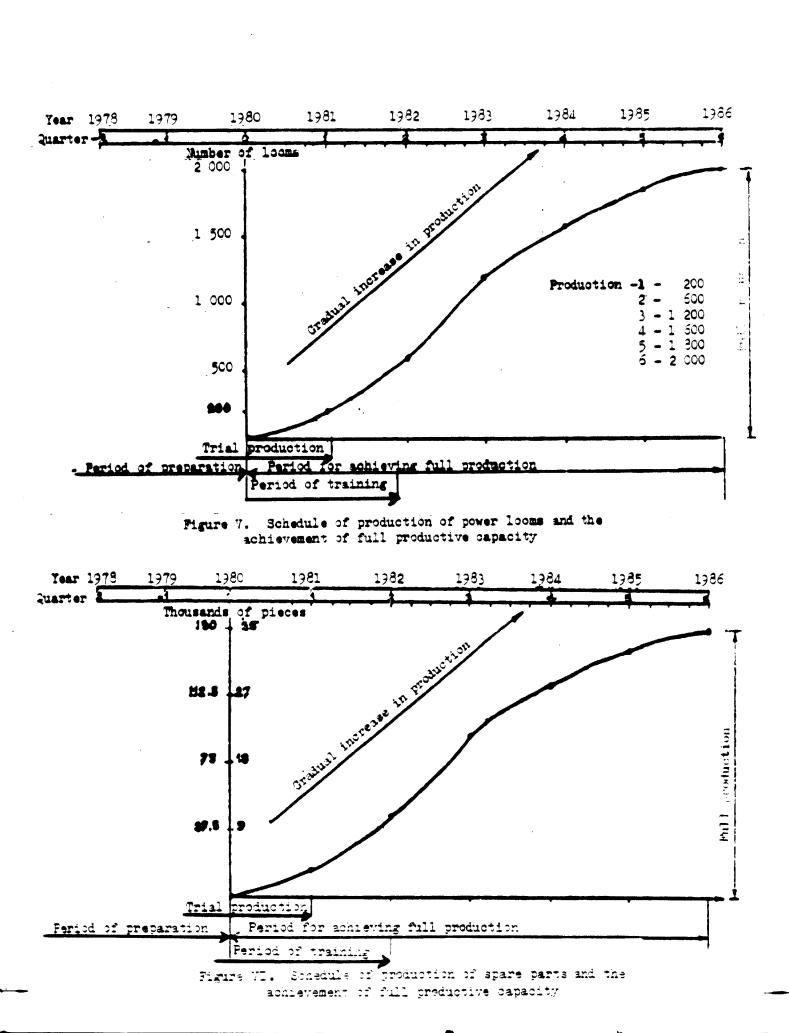
Looms: Machining and heat treatment

DEW. Narayanganj

Spare parts: complete manufacturing

(especially spindles and ring cups)

Spare parts: not recommended


Looms: casting and machining of large parts

QIS Tejgaon

Spare parts: good quality castings

Looms: medium-sized good quality castings

-40-

				Starti	17-21	Starting-up and achieving full production capacity	ieving	IIN	product	ion ca	pacity			
	14	1980		1981		1982	1981	83	19	1984	-	1985	191	1986-1930
Specification	No.	Value ⁵ /	₽/ 1 60.	Value	2	Value	.	Value	No.	Value	No.	Value	жо.	Value
Power looms ^b	15	30	200	400	600	1 200	1 200	2 400	1 600	3 200	1 800	200 1 200 2 400 1 600 3 200 1 800 3 600 10 000 20 000	000 01	20 000
Stare parts (thousards)														
Spindtes	I	ŀ	15	105	8	210	9	420	112	784	130	910	750	5 250
Rings	ı	I	15	22.5	8	42	3	8	112	168	130	195	750	1 125
Tension shafts	I	ı	l	S	6	18	18	36	27	X	32	3	180	360
Noller stands	I	I	I	٩	9	21	18	X	27	81	R	96	180	540
Gears	I	I	0.5	1.)	T	10	8	ଛ	12	8	16	8	100	250
Sub total (spare parts)	re par	ts)	32.5]	133.8	82	016	164	620	200	711 I 062	340	1 205	1 960	7 525
Sub value (Lakh taka)	h taka	•		<u> 19.95</u>		46.5		6	-1	167.55		204.3	,	1 128.75
Grand total (looma and spare parts	I	90	1	533.8	I	1 510	1	3 020	1	4 317	I	4 805	1	27 525
In Lakh taka		4.50	-	Bu.u7	I	226.50	4	453-00	9	647.55		744	-	4 128.76

parts
spare
and
looms and
power 1
for
programme
production
Pi ve-year
13.
Table

≝∕ \$1,000. b∕ At \$2,000 each.

ı

The enterprise will operate on two shifts. The work time was found to be as follows:

> Manual time (single shift) = 2,100 hours/year Machine time (double shift) = 4,300 hours/year Labour input in the manufacturing industry for this country is estimated to be 40 per cent higher than in Europe

Work loads

The work load specified for the assumed final production programme is given in table 14.

		Wor	k load pe	r programme)	
		wer loogs			are parts	
Activity	Machine work load (hours)	Namual work load (hours)	Total	Machine work load (hours)	Mamual work load (hours)	Total
Foundry	15 000	55 000	70 000	1 100	4 400	5 500
Machining	29 0 0 00	50 000	340 000	402 200	75 700	477 900
Heat treatment	-	11 600	11 600	-	24 000	30 600
Assembly	12 000	2 4 000	36 000	-	-	-
Painting	-	14 400	14 400	-	-	-
Other	20 000	38 000	58 000	6 000	4 000	11 000
Total	337 000	193 000	530 000	409 300	108 100	525 000

Table 14. Summary of manufacturing work loads

Organization and characteristics of technological production processes

The technological production processes of power looms and spare parts contained in the production programme will comprise the following basic processes: foundry, machining, heat treatment, assembly, painting and stores.

Machining

With exception of commercial parts, all metal parts included in the production programme will be machined.

Working on machine tools

Machining on universal and turret lathes

Machining on vertical, horizontal and universal milling machines

Machining (drilling, milling, grinding, shaping) in bench and radial drilling machines Machining of gears in gear-hobbing machines and gear shapers Grinding on cylindrical-grinding, internal-grinding, centreless-grinding

Heat treatment

The heat treatment process includes the following operations:

and surface-grinding machines

Induction hardening of shafts, sleeves and gears Toughening Hardening Carburising Tempering Clearing

Testing of hardness will be done by means of Rockwell and Brinell testers.

Ass ombly

The designated technical process of assembly consists of the following operations:

Washing and supplying corrosion-resistant elements (spindles) Assembly of mechanical subunits and units Assembly of electrical subunits and units Main assembly of power looms Performing mechanical tests Final painting Transferring the goods to the store then dispatching them to the customers

Painting operations

Taking into consideration the overall dimensions of painted elements, the following are assumed:

Painting of elements in cabins and drying them in furnaces Painting large elements and ready-made products, with natural drying Spare parts, which must be painted according to technological process Complete power looms after assembly

Woodworking shop

The woodworking shop should be equipped with necessary machines to produce the wooden parts of the power looms as well as good and accurate patterns for pasting.

-44-

Selection of the required equipment

The quantity of basic equipment for the production departments was calculated on the basis of the determined work load in a two-shift operation of the plant and by working time found for machines equal to 4,300 hour/year, as well as by utilizing 70 per cent of the installed capacity of the co-operating enterprises.

The quantity of basic equipment for the auxiliary impartments was determined according to needs. A summary of the machines and equipment required to implement the assumed final production programme for power looms and spares is presented in table 15.

	astingted number	
Activity	TOWET LOODS	Spare parts
Foundry department	Various	3
Nachining	96	102
Heat treatment	Various 7	13
Assembly	15	•
Painting	Various 10	-
Other	Various	-
Total production	140	118
department	Various	Various
Tool room and overheal shop	38	25
Quality-inspection section	Various	Various
Gaugee and measuring room	Various	-
Physicochemical laboratory	Various	-
Stores	Various	•
Total auxiliary	38	25
department	Various	Various
Grand total	178	143
	Various	Various

Table 15. Summary of the equipment required to implement the production programme

-45-

Expansion of Ispahani Marshall (IML)

Machining department

Taking into consideration the total requirement of machinery for the final production programme as shown in table 12 with the existing machine tools of IML, it is suggested that the following 40 machine tools be required for future expansion:

Universal and copying lathes	13
Bench, column and radial drilling machine	6
Horizontal boring machines	2
Universal and vertical milling machines	5
Planer	1
Broaching machine	1
Grinding machines	2
Slotting machine	1
Gear-cutting machines	2
Netal saws	2
Thread-cutting machine	1
Presses	2
Guillotine shears and sheet-working Eachines	2

Estimated cost for these 40 machine tools is \$1,750,000.

Assembly department

The assembly department will be equipped with:

Loom assembly lines	2
Fitter's benches	7
Test stands	2
Element-washing arrangement	1
Rydraulic press	1
Dynamic balancing machine	1
Drilling machine	1

The estimated cost for the assembly department is \$90,000.

Inspection section

A technical inspection section with a measuring room should be provided with the necessary arrangements, utensils and measuring tools for testing power looms.

The estimated cost for the technical inspection section is \$40,000.

Painting section

Basic equipment for the painting section should consist of:

Painting cabinets	2
Electric driers	1
Carriages on rails	2
Stands for paint preparation	2
Painting tables	5

The estimated cost for the painting section is \$40,000.

The costs of the technological equipment for all departments and sections of production processes in the production programme for power looms and spare parts are summarized in table 16.

Department or section		Loong (\$ 000 \$)	/		Spare (\$ 000	
Department of section	LC		Total	LC	PC .	Total
Machining	350	1 400	1 750			
Assembly	50	40	90			
Painting	5	35	40			
Technical inspection	20	20	40			
Storage and transport	10	50	90			
Others	50	150	200			
Subtotal	485	1 725	2 210			
Pooling for production pro-						
Patterns	17	10	27	4C	10	50
Dies, jigs and fixtures	20	10	30	27 0	100	370
Tools	15	5	20	10	30	100
Gauges	<u>;</u>		13	10	20	30
Subtotal	60	30) 0	330	220	550
Grand total	545	1 755	2 300	330	220	530

Table 16. Summary of the costs of the technological production processes for power looms and spare parts

a/ LC, Local currency; FC, Foreign currency (local currency equivalent).

Space requirements for the production of power looms and spare parts

The space requirements for the programme for the production of power looms and spare parts are presented in table 17.

	Area (m²)					
Department or section	Power Loom	Spare parts				
Production operations						
Foundry	1 100	100				
Machining	2 900	3 800				
Heat treatment	400	700				
Assembly	1 200	2 00				
Painting	400	-				
Other	1 500	200				
Total	7 500	5 000				
Auxiliary departments						
Overhaul department and tool room	30 0	600				
Stores	1 600	1 000				
Other suxiliary	300	2 00				
Offices and social area	600	500				
Total	3 300	2 300				
Grand total	10 800	7 300				

Table 17. Space requirements for the production of power looms and spare parts

Area required for expansion

After comparison of the existing area and the required expansion of Isphahani for production of power looms, it is considered that the following areas would be required for new sections.

Machining	1 CCC m ²
Assembly	1 200 m ²
Painting	400 m ²
Stores	
Total	3 000 m ²

-48-

The Civil engineering costs for this expansion of new area of about 3,000 n^2 have been estimated to be approximately $100/n^2$.

The above estimated total cost of \$300,000 can be broken down as follows: Local currency (30 per cent) equivalent of \$240,000 Foreign currency (twenty per cent) equivalent of \$60,000 Total \$300,000

Manpower requirements

According to the plan of the loom and spare parts production, the manpower requirements were determined as shown in the tables 18, 19 and 20.

		Por la	Power Loom	3			Spare	e parts		
			Horkers							
Specifications	Direct product	Indirect product	Total	Officers and staff	Potal	Direct product	Indirect product	f otal	Officers and staff	Total
Poundry	33	8	41	5	46	£	2	5	I	6
Machiniug	162	5	161	16	207	161	27	218	12	230
Heat treatment	6	2	8	Ţ	6	14	2	15	2	11
Assembly	ł	6	8	4	7	t	J	ł	ŀ	ł
Painting	L	5	6	1	10	1	1	1	ŧ	ı
Other	27	•	ĸ	2	99	e	8	5	ł	Q
#otal	216	12		12	8		1=		91	8
Overhaul department	• •	9	ą	ŝ	\$	I	R	રો	•	ff
ant tool room Stores	I	-	4	Ţ	ŝ	,	•	£	I	4
Other auxiliary and servicing	I	ſ	•	I	•	1	£	.	-	4
Officers	1	ł	I	•	9	ı	I	t	•	•
	I	1	1	1	I		I	I	ł	
Total	ł	47	11	13	3	J	£	35	6	44
	1						{			
Grawl total	276	101	Ш	4	614	211	89	278	જ	ŝ

requirements
of manpower
Sumary C
18.
Table

-50-

ļ

	umber	of person	ns required	in suc	Cessive	years
Specification 7		ver looms			are part	
	937]	Year 2	[ear]	Year :	Zear 2	Tear
Turners	19	45	42	30	50	43
Milling operators	11	21	25	12	19	18
Grinding operators	2	3	8	13	23	18
Drilling operators	7	17	10	5	3	7
Heat treatment operators	2	3	1	4	6	5
Assembly fitters	14	19	16	•	•	-
Foundrymen/patternmakers	10	14	13	-	•	-
Others	2	26	24	5		
Total operators	78	154	133	70	115	103
Officers and staff	14	13		10		_7
Grand total	92	173	144	80	123	110
Sources of trained manpower	2					
Own professional training:	72	120	100	60	90	35
BATF Training Centre						
CEMP Training Centre ¹						
Training centres in the	20	53	44	20	33	15
Dacos area and in Chittagor Total	16 – 92	173	144	30	123	110

Table 19. Structure of manpower requirements in successive years

3/ BMTF and CEMP, the two new factories of 3SEC, are equipped with very modern training centres and facilities capable of training new operators.

		24	Power Looms	18			Sp	Spare parts		
	Befo	Before starting	ling	After s	After starting	Befo	Before starting			After starting
	-4	production	UK	produ	production	đ	product i on		produ	production
	Tenth	Sixth	One	Until	Six to	Tenth	Six to ten	One	Until	Six to
Specification	month before	month before	month before	six months	ten months	month before	months before	mon th before	six months	ten monthu
Training of envineers										
21 power looms 7 abroad, 14 locally										
18 Spare parts 5 abroad 13 locally	Abroad 2 Locally 4		32			~	~00		1	ł
Training of technical supervisor abroad a/ Training of operators locally b/ Fuer looms 8 abroad, 52 tocally c/										
Spare parts 8 abroad, 4	Abroad Locally	~	12 2	-8	10	11	~0	2 10	3 4	1 80
Training cost will amount to abroad \$400,000 locally \$200,000	Included: two experts for two Years									

onal training and its costs of not e fut States 8 Tall e $\frac{1}{2}$ The above training cost includes two foreign experts for 12 man/months each = 24 man/months.

h/ The training of 12 engineers abroad for 6 man/months each = 72 man/months and for 8 technicians for 8 mun/months each = 24 man/months.

 $\frac{d}{dt}$ have training for both groups, 6 man/months each x 121 persons = 726 man/months.

Raw material requirements

All of the raw material required for the production of looms and spare parts will have to be imported except for some worden loom parts. The quantities and types of raw materials required for the production of looms and spare parts are shown in table 21.

Type of raw materials	Unit	Quantity	Total per programme
Power looms			
Mild steel	kg	165	330 000
Medium-carbon steel	kg	60	120 000
figh-carbon steel	kg	10	2 0 000
Steel strip and sheets	ke	10	2 0 000
Shaped steel bars	ke	40	80 000
Steel pipes	ke	20	40 000
Cast-iron castings	ke	600	1 200 000
Non-ferrous metals	ke	114	225 000
Standard and commercial parts	ke	40	8 0 000
Bearings	8 units 2 kg		4 000
Wood	a ²	0.015	30
Phamels, paints and oils	ka	3.3	6 600
Mectrical equipment	kg	4	8 000
Others	ke	29 . 3	58 600
Sub total	kg	1 097	2 134 000
Spare parta			
Spindle (carbon steel)	ke	0.9	135 000
Bolster carbon steel, for toughening)	K.C.	0.4	60 000
Ring (carbon steel)	ke	0.55	82 500
Other (cast steel)	ke	0.5	10 000
Sub total			287 500
Grand total			2 471 500

. Table 21. Raw material requirements

Findings

For the production of power looms, IML at Chittagong will take the lead and ZEMP and MIS will also participate by co-operating in machining, heat-treatment and supplying comparatively small but necessarily good castings.

For the spare parts, it is recommended that EMTF take the lead in casting iron and steel of high quality at Dacca, while at Narayanganj should co-operate with EMTF in supplying some castings, if necessary.

For the successful implementation of the scheme to produce looms and spare parts, it is recommended that separate sections or cells be formed in the two leading factories, namely EMTF and IML.

These selections are based on the skill, technical level of their work forces and the condition of their available machinery and equipment. The economic costs have also been given due consideration.

The well-equipped technical training centres of BMTF and GEMP can be utilized to train the new operators and technical staff needed.

For the fulfilment of the final programme of producing power looms, the expansion of IML will be necessary, as shown earlier. If the required extension is not feasible immediately, some balancing work and the creation of an assembly line for looms will be necessary. The technical planning and methods office will also need to be modernized and expanded.

The production of power locms and spare parts has been estimated on the basis of batch production.

To achieve the best result in starting the production of looms and spare parts, it is advisable to proceed strictly according to the schedule presented in table 13.

As regards investment cost, two variants have been presented for power loom production. Variant I envisages independent local construction; variant II envisages construction under license from abroad. The cost of variant II is estimated to be considerably higher that that of variant I, owing to the cost of license fees and the intention of the licensor to maintain standards. These variants are considered in detail in annex VI.

-54-

VIII. FINANCIAL ANALYSIS

Manufacturing cost of power looms

The cost of manufacturing a simple power loom in the BSEC anterprises is estimated to be take 31,450 or \$2,096. Raw materials, except for a small quantity of wood, will be imported. The raw materials cost structure of a power loom, when locally manufactured, will be as shown in table 22.

		(In taka)			
energen mannanan an e shinna 's Erre erre'	Asount	Market	value		value . price)
	(kz)	per kg	Total	Der Ka	Total
Cast iron	005	3	5 400	4	3 200
Steel (mild)	200	20	4 000	10	2 000
Commercial parts					
(a) Imported items	-	1 500	1 500		
(b) Wood (oubic foot)			500		
Total			12 400		6 200

Table 22.	Cost	structure	of th	10 TSW	materials	for	3.
locally	7 Barn	ifactured	power	1002	(v aria nt I)		

It appears from the above that the direct foreign exchange involvement in manufacturing a loom will be take 5,200 (\$413).

The c.i.f. price for the cheapest type of imported simple power locm is approximately taka 45,000 (\$3,000), whereas the estimated requirement of foreign exchange for a locally manufactured power loom is taka 5,200. This is only 14 per cent of the foreign exchange required for importing a built-up locm.

The local manufacturing of power looms will not only result in substantial savings in foreign exchange but will also ensure the utilization of installed capacity of ESEC enterprises, plus increased technical skills.

It is planned to produce the power looms with the existing installed capacity of IML and DEMP. Both of these organizations are located in the port (day) of Chittagong. The breakdown of the cost of the loom is in table 23.

	Raw material value	Process cost ^{3/}
Cast-iron parts	6 400	4 53 2
Steel parts	4 000	14 000
Commercial parts		
Imported items	1 300	-
Wooden parts	-	500
Assembly and painting	-	413
Total	11 900 +	19 550 = 31 450 (approx. \$2 000)

Table 23. Cost of a domestically manufactured power loom (variant I) (In taka)

a/ Casting, machining and other treatments.

IML is an old establishment and has accumulated much technical proficiency in the field of manufacturing engineering goods. However, most of its machinery is antiquated.

With the proposal to manufacturing power looms in IML, it is necessary to balance the existing workshop and to add assembly facilities to it. Much of the machining and heat-treatment operations of the steel parts will be done in CEMP.

Two alternatives for developing the power loom

Co-operation between IML and GEMP will continue as long as the latter has excess capacity to undertake production other that of its own products. Thus, when GEMP eventually becomes 100 per cent engaged for its own production programme, IML will have to be expanded. Even without expansion of workshop facilities, it will be essential to make certain investments under the two ifferent assumptions noted in the previous chapter and considered in detail in annex VI. The investment requirements are shown in table 24.

lariar Item 30 Designing and documentation 30 225 255 570 600 300 Specifications and technological 00F 1 200 500 3 000 3 600 documentation. Production auxiliary 300 300 300 1 200 1 500

Table 24. Investments required under the two variants $\frac{3}{7}$ (In thousand taka at 1977/73 prices)

Licence and know-how	-	-	-	150	2 100 2 2	250
Training	1 800	4 200	<u>6 000 1</u>	800	<u>4 200 6 0</u>	200
Grand total	2 430	5 325	7 755 2	880	11 070 13 9) 50
Equivalents (thousand dollars)	162	355	517	192	738 9	30

LC, local currency; FC, foreign currency (local currency equivalent).

If the loom is designed and developed locally (variant I), the initial investment required will be \$520,000. On the other hand, if the loom is manufactured under a licence agreement from a foreign manufacturer, the initial investment required will be \$930,000.

Economic benefit

The production and introduction of simple power looms in Bangladesh will result in manifold benefits to the economy in general. Among the most important are the three following:

Imports of cloth will be reduced, thus saving substantial amounts of foreign exchange

If power looms are to be imported, the country would have to draw on its already strained foreign exchange balance. Local production would mean import substitution

It is proposed that power looms manufactured in Bangladesh without adding any substantial new capacity in the engineering sector would mean rational utilization of installed capacity now lying idle

-57-

IX. FINDINGS AND RECOMMENDATIONS

Findings

The country's existing cotton fabric manufacturing capacity is sufficient to meet neither present nor anticipated demand. The hand-loom industry is capable of making only coarse and medium fabrics.

Despite the overwhelming importance of the hand-loom industry in the country's economy, it is difficult to find an agreed figure as to how many of them are operating.

The supply of yarn, dyes, chemicals to the hand looms is inadequate. The Technical Support Centres established by BSIC to supply the hand looms did not attain their objectives.

The requirement of cloth in terms of both quantity and quality during the coming years will increase in view of the anticipated rise in consumption <u>per</u> capita and of a population growth rate of 2.8 per cent per annum.

Although the major emphasis of 3TMC is on spinning yarn, the present supply does not satisfy the demand.

The existing textile enterprises suffer seriously because of non-availability of spare parts.

The existing workshops of BTMC mills are poorly equipped. The central BTMC workshop at Tongi should be expanded with more machinery and heat-treatment facilities.

It would be possible to manufacture some of the more complicated spinning machines in EMTF under a technical know-how agreement from a reputed manufacturer of textile machinery.

It will be necessary to introduce simple power looms by the end of 1980 in order to supplement, and eventually to replace, the traditional hand locms. Electrical power will soon be available in the riral areas of Bangladesh, which will permit their introduction.

Simple power looms can be designed and manufactured in the BSEC enterprises; sufficient excess capacity is currently available in them. The installed capacity of only three enterprises would be needed.

The inmestic production of 2,000 power looms annually year would result in a saving of a substantial amount of foreign exchange.

The introduction of power looms would not cause unemployment, since their manufacture would create many new jobs.

While cotton is now imported, there is a possibility of growing it in the alluvial soil of Bangladesh.

Some of the costly and potentially useful machines installed in some BSEC enterprises have not been used for years even though some enterprises require them.

Recommendations

To cope with the growing quantitative and qualitative demand for cloth in the country, the introduction of simple power looms to replace traditional hand looms is necessary.

The optimal production quantity of power looms should be 2,000 units/year up to 1990. The initial production should start at 200 in 1981, reaching full production of 2,000 in 1990.

IML, with its accumulated experience in the manufacture of various engineering products, should assume responsibility for designing and manufacturing a suitable simple power loom.

The existing facilities of IML are inadequate for the independent manufacture of power looms. It can, however, avail itself of facilities such as machining and heat treatment from JEMP and other facilities such as the special casting facilities of MIS in Chittagong.

The Technical Support Centres formerly established by BSIC and now under the control of BHB should be modernized and expanded to ensure adequate auxiliar, and preliminary services to aid in the introduction of power looms. With their introduction, the steady supply of essential materials such as yarn, iyes, chemicals and power should be taken into consideration.

The introduction of power looms will require a certain basic level of technical knowledge. In order to disseminate it, existing vocational institutions shouli introduce simple courses in textile technology.

Considering the economic condition of the rural weavers, the Rovernment will have to provide financial support in the form of easy loan facilities. This may be done by an existing institution or a separate organization like THE could be established.

-59-

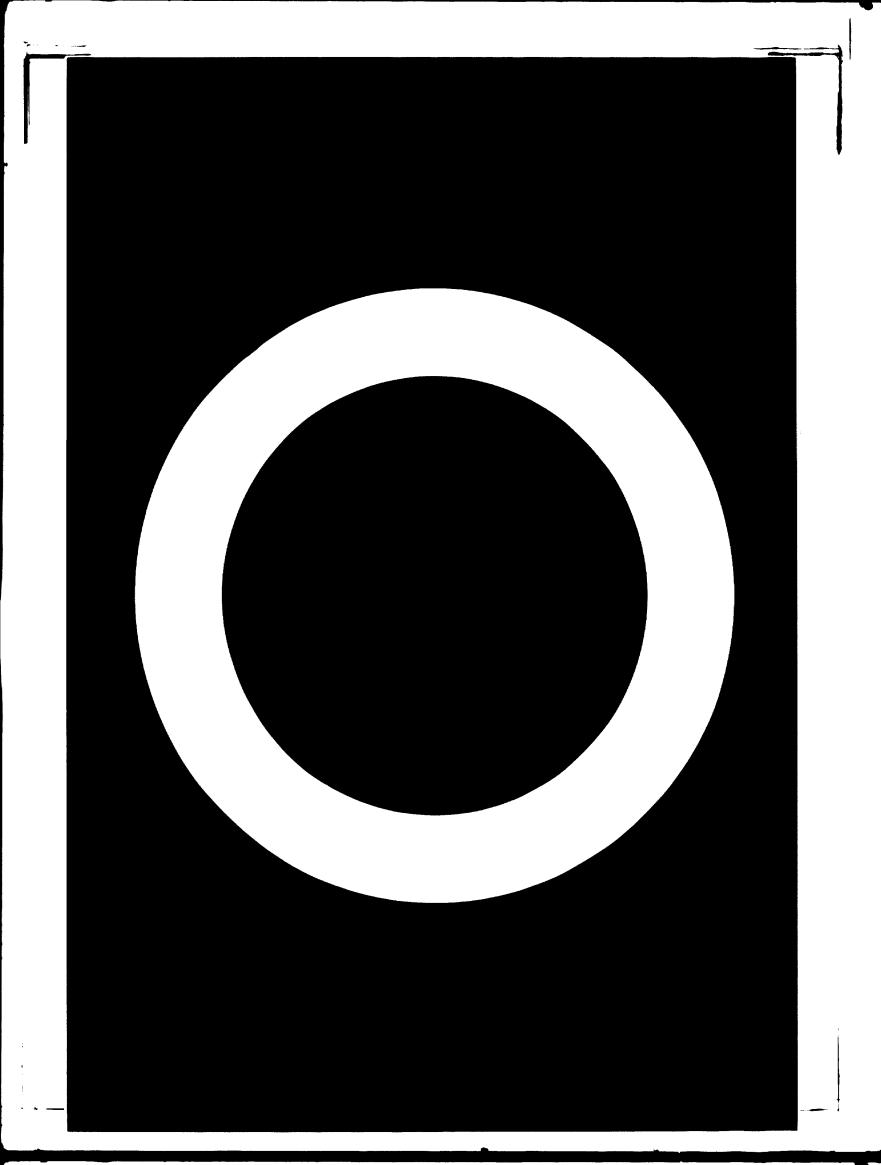
The Government will have to protect the weaving industry from foreign competition. To encourage the spread of power looms, the Government will have to consider giving certain fiscal benefits such as tax holidays for certain periods, customs duty concessions, subsidized power supplies and the issue of import permits for raw materials to the weavers.

To ensure an adequate supply of yarn for weaving, more spinning machinery will have to be added in the coming years.

Approximately 25 per cent of the imported spinning machinery is inoperable owing to a lack of spare parts and inadequate maintenance. At least 30 per cent of the out of order machinery could be made operable by repair or renovation. This would help to conserve much foreign exchange, whereas the import of new machinery would acquire expenditure of it.

In order to establish new textile mills, it is advisable to establish necessary facilities in the country to manufacture textile machinery such as spinning-machines and spare parts needed for textile mills (annex VII).

Initially, instead of setting up a new establishment to manufacture textile machinery, the existing facilities available in EMTF can be used. They would have to be modernized in collaboration with some reputed foreign manufacturer of textile machinery. In the next phase, when the country had reached a certain level of technical efficiency, an independent industry in this field should levelop. The growth of requirements in the levelopment programme for textile machinery would justify planning for the erection of further spinning-machine manufacturing works after 1985.


For emergency and preventive maintenance, the BTMC workshop should be equipped to a reasonable level, and the central BTMC workshop at Tongi (Engineering Industry Ltd.) should be up-graded to a modern workshop with all necessary equipment and facilities.

Since there are good prospects for oction-growing in Bangladesh, intensive cultivation shouli be started immediately.

A survey should be conducted to identify the machines available in different BSEC enterprises but not in use for many years or not at all required by particular enterprises. These may be transferred to enterprises where they are needed; this might be done through internal arrangements by BSEC.

-60-

In order to implement the production programme of power looms and spare parts by using the facilities of various BSEC enterprises, a special cell, called the linkage office, should be established in BSEC. This office should also keep close contact with BTMC and other concerned agencies. Detailed rules and procedures for setting up such a cell have been submitted to BSEC earlier from this project.

Annex I

On the basis of the following factors, the team visited 11 BTMC mills in different areas of Bangladesh:

Type of mill	Composite or non-composite				
Location	Various zones/areas of Bangladesh				
Condition of mill	Old, new and medium agei				
Products	Specialized and general types of textiles				
Origin/supplier of Bachinery	Federal Republic of Germany, India, Japan, the Union of Soviet Socialist Republics (USSR) and United Kingdom				

Visits to selected mills

Decca area

Zennat Textile Mills, Tongi Established in 1954-1955 Origin - Ingolstadt, Federal Republic of Germany Spindles, 25,200; looms, 430 (composite mill) Dakeswari Cotton Mills. Established 1925-1937 Narayanganj Howard and Bullough, England Spindles, 51,720; 100ms, 1,364 (composite mill) Comilla area Mainamati Textile Mills Ltd. Established 1965 Howa, Japan Spindles, 12,400 (spinning mill) Halima Textile Mills Ltd. Established 1962 Howa, Japan Spindles, 12,400 (spinning mill)

<u>Noakhali</u> Dost Textile Mill, Feni

Established 1964 Toyoda, Japan Spindles, 12,800 (spinning)

Chittarong area

Chittagong Textile Mills Ltd. Establish Howa, Ja; Spindles.

Valika Woolen Mills Ltd.

Established 1954-1962 Howa, Japan Spindles, 37,200 (composite mill): looms, 566 Established Specialized Origin, Japan textile mills Spindles, 3,200; looms, 40

Pylon and Karilin Silk Mills	Established Origin, Japan Spindles, 1,260; 100ms	Specialized textile mills 12 14
Bogra Cotton Mills Ltd.	Established 1954-1960 Origin, Japan (Howa) Spindles, 20,000; looms 205	Specialized textile mills
Rajshahi Textile Mills Ltd.	Under construction Origin, India Proposed No. of spindl	es, 25,000
<u>Other</u> Kishoreganj Textile Mills Ltd.	Established 1977 Origin, Japan	

Origin, Japan Spindles, 25,000

-64-

	Year of	No. of textile machines	e machines		Existing workshop facilities	
Name and address of enterprise	establishment and origin	Spindles	Looms		Kind of treatment available	Kemarku
Adarsha Cotton Spinning and Weaving Mills, Marayanganj, Nucea	1925 Howard and Bollowgh Uhited Kingdom	11 432	145	Ś	Lathe, drilling, grinding, welding and fitting works	
Ahumed Hauwarny Textile Mills, Demnta, Radda	1955, 1962 Howa 1955, 1962 Platts 1955	£06 6£	LX	રે	Lathe, shaper, milling, drilling, power hacksaw, welding, grinding and fitting works	
Alhaj Textile Wills Ishurdi, Pabua	1966 Tuyoda	20 000	176	8	Lathe, drilling, grinding, welding and fitting works	
Amin Textiles Limitol Chittagong	1961 Poyoda	18 400	I	L	Lathe, milling, drilling, grinding welding and fittings	
Ashraf Textile Mills Touri, Ikusea	1962 Howa 1962 and Platts 1968	24 760	ŧ	ł	1	
Asiatic Cotton Mills, Hathajari Kosl Chittageng	1994 Ishikawa (Japan) 1954 and Platta, Saco-Lowell 1970	26 600	50L	•	Lathe, whaper, grinding, drilling, welding and fittings	
Afsar (otton Wills Savar, Dasca	Platts, Suco-Louell 1970	106 B	!	I	1	

CONSOLLIMED STATEMENT OF BITHC HILLS AND MORKSHOP PACILITIES

-65-

			I	I	I	Small foundry available	Picker mauufacturing	Small foundry
There is a small workshop for urgent repair and main- tenance, but no list is available	Ele ctric and gas v elding	Lathe, milling, shaper, grinding, drilling, welding, blacksmith	I	I	I	Lathe, shaper. milling, hacksaw, drilling, welding, blacksmith and foundry (40 mannds)	Lathe, shaper, milling, drilling, welding, grinding, press etc.	Lathe, shaper, milling grinding, hacksaw, ball press, welding, moulding and foundry
1	2 mete	¢	I	I	I	ଝ	8	14
I	Ś	105	152	I	I	£	2 66	206
12 400	20 000	20 000	29 0 00	15 120	12 413	MOE 61	37 200	049 11
1962 Howa 1962	1954 Houe 1954 and 1960	1954 Ishikawa 1954	1958 Toyoda 1958, 1961, 1962, 1968	1965 Howa 1965	1968 Platts 1968	1949 Okk (Japan) 1949	1954 Houna 1954, 1955 and 1962	1952, 195 8, Toyoda 1952, 195 8, 1962
Bengal Textile Wills Monpure, Jessore	Nogra Gotton College Koad <mark>, Bogr</mark> a	Rungladesh Textile, Narayanganj, Dusod	Chand Textile Mills, Katamtali, Davoa	Chisty Textile Wills, Dowlatpur, Comilla	Calice Cotton Mills, Kajapur, Pubua	Chittaranjan Gotton, Karayanganj, Baosa	Chittagong Textile North Kattali (Pahartali)	lkussa Cotton Postogola, Danasa

-66-

Dhakesmari Gotton Nill No. 1	1925 Howard and Bullough 1925, 1933	9 4 96	0	4	Lathe, shaper, drilling, milling, slotting, wawing, welding, blacksmith, carpentry, foundry	Nedium-uized Foundry
uhakeshwari Cotton Mill No. 11	1925 Noward and Bullongh 1925, 1933	21 200	554	15	Lathe, shaper, drilling, welding, blacksmith, carpentry, foundry	Nedium-sized foundry
Dost Textile Peni, Noakhali	1964 Yoyoda	12 800	ı	ı	I	I
Kugle Stur Textile Punzderhat, Chittayong	1971 Howa 1971 Toyoda 1975	50 J.Y	I	Ś	Velding, grinding and fittings	ł
Pine Cotton, Моннониузаг Тонуј, Викса	1961 Poyula 1961	12 400	I	a	Lathe, millirg, ahaper, welding, die, press, drilling	
Gamsia Gotton, Marapara, Karidpar	1961 Tuyoda 1961 and Platts 1968	24 000	212	l. I	Vacant space for workshop exists	
Goalumlo Textile, Allahatipur, Parid u r	1971 Howa 1971	10 368				
Hamlima Textile Kothari, Comilla	1962 Howa 1962	12 400	172	L	Lathe , drilling, grinding, welding and fittings	
Tbrahim Cotton Mathajard Road Chittarowr	1:962 Hima 1:962	12 400	176	•	Brilling, welding, grinding and fittings	
Jalil Textile Manjderhat, Chiltagoog	1962 Nowa 1962	12 400	132	6	Lathe, grinding, drilling, welding	

-67-

ļ

					-68-		Heat treatment t	
Drilling, grinding, welding, and fitting	I	lathe, shaper, drilling, grinding, welding		Lathe, planer, Shaper, drilling, milling, grinding, welding, sawing	Lathe, drilling, ahaper, milling, grinding, welding, tool grinding, carpentry, foundry	Lathe, milling, shaper, welding, drilling, press machine	Lathe (Capstan-1), H milling, hacksaw, tool-ginding, slotting, grinding, bhaper, drilling, blacksmith, carpentry, heat treatment	Klectric and gas welding
4	ł	Q		16	71	n	ιť	5
I	91	ł		žč	163	I	9 4	176
<i>(11</i> m	12 448	12 400	12 400	60€ 51	69 (61	15 744	40 840	12 720
1964 0 m, Japan 1964	ł	1963 Toyoda 1963 1964	1970 Platts 1970	1949 0 mm, (J apun) 1949	192 0 Howard and Bullowgh 1928	1960 Ishikawa 1960	1953 Tuyoda 1953, 1962	1962 Toyuda 1962
Jaba Textile Narsingdi, Ikoca	Khulua Textile Mills, Khulna	Kokil Textile Brahmanbaria, Comilla	Knshtia Textile, Swastipur, Kushtia	larminarayan Cotton, Narayanganj, Ikasa	Mohini Mills Ltd. Kushtia	Mouwo Textile Tongi, Unoca	Muslin Cotton, Kaliganj, Ikucca	Neghna Textile Thangi, Ikena

			Poundry							
lathe, drilling, ahaper, eawing, welding and grinding		Lathe, drilling, shaper, sawing, welding and grinding	Lathe (Capstan-1), shaper, milling, drilling, grinding, welding, sawing, foundry		Lathe , shaper, gr inding, drilling		Morkshop exists, but no list available	Lathe, drilling, Erinding, welding	Drilling and welding (both gas and electric)	
ŝ	ł	٢	ଝ		13		I	Q	ſ	1
I	I	218	362	I	476	1	I	I	I	1
12 46 0	12 400	13 012	ж 1 ж	10 000	00¥ 0€	15 200	12 528	51 024	12 163	2 400
Platte Seco-Howell 1968	1965 Nowa 1965	1954 Platts 1954	1954 Okk 1954 Ishikawa 1962, 196 3	1962 Toyuta (Jap u n)	1954 Toyuda 1954, 1958, 1962	1962 Toyodia 1962	1971 Howa 1971	1964 Toyota 1964 and 1969	1971 Houa 1971	1964 Neiter (Swiss) 1964 Howa 1964 Whilin (USA)) 1964
Mwla Textile. Fatullah, Dacca	Mainawati Textile, Durgapur, Comilla	Mational Cotton Mohemikkadi, Chittagong	Olympia Textile, Tongi, Ducca	Orient Textile Mirarbugh, Uknoa	Pahartali Textiles, Pahartali, Chittagong	Quaderi Textile. Tongi, Daoca	Quasem Cotton Mills Joydevpur, Ducca	k.k. Textile, Bashbari, Chittagong	llaz Pextile Noapura, Jessore	Satrang Textile, Tongi, Dacca

-69-

		·	Heat treatment	-70-						
Lathe, drill, grinding, welding, blacksmith and editing works		Lathe, shaper, drill, grinding, welding	Lathe, drilling, shaper, milling, grinding, welding, heat treatment							
с С		Ø	16							
176	I	I	9					•		
12 400	12 400	12 400	S00 2	2 ⁵ 000	25 000	12 500	25 000	25 000	25 000	25 000
1962 Howa 1962	1962 Ishikawa 1962	1962 Toyoda 1962	1954 Ingolatad (Mad) 1954 1955	1972 Larmi-Reiter 1973, Tata Textile 1973, Platts 1972	1974 Laxhi-Reiter 1974, Tata Textile 1974	1962 Tvyoda	(KSK and Twhia 1974	USSN and India 1974	1974 India	1976 Howa 1976
£			ī	342	inter i Sere					

		•				
Rangamati Textile Mills	Nowa	1976 Howa 1976 Toyoda 1976	12 500	Q		
Mudariyur Textile, Mudariyur, Paridjur			25 000			
Sylhet Textile Sylhet	-	Romania	12 500	20		
						-71-

Annex 111

PERMONANCE OF COPTON TEXTILE NULLS 1976/77

Spinning

	Avera	capa		Produc-	Production during the year	n during	Percentage	Average
	during the Installed O	year	(spindles) le Running	tion target	In abso- lute terms	1 13	of produc-	spindle shift produc-
Mill name				(lakh lb) in 32s	(actual in lakh lb)	in 32s (lakh 1b)	tion target	tion (oz)
Adarsha Cotton	11 432	9 2)2	5 158	8.27	9.12	5.38	65.05	1.90
Ahmed Bawany	39-903	30 865	27 683	40.79	32.55	32.16	78.84	1.76
Alhaj Textile	28 080	25 000	20 278	28.35	20.00	24.40	86.06	2.28
Amin Textile	18 400	17 600	16 463	25.09	20.07	26.90	107.21	2.87
Ashraf Textile	24 760	24 760	20 944	38.65	26.85	38.95	100.77	2.80
Asiatic Cotton	24 559	24 175	606 6t	29.42	23.80	26.92	91.50	2.63
Arsar Cotton	104 B	7 06 8	5 916	(0°L	6.08	8.54	120.45	2.97
Burgal Textile	12 100	12 000	10 518	22.13	14.72	20.77	93.85	3.23
Begra Cotton	20 000	16 8 00	12 914	15.15	12.99	14.07	92.81	1.79
Bungladesh Textile	20 000	14 400	13 659	20.04	17.85	18.23	79.02	2.14
Cheard Textile	29 000	23 600	16 997	26.46	14.69	20.66	78.08	2.17
Cali co Cotton	12 443	10 887	7 488	11.12	6.15	11.01	90.92	2.57
Chittanunjan Cotton	108 GU	18 000	15 92)	20.87	20.63	11.61	12.16	2.24
Chittagong Textile	37 200	34 000	28 946	41.35	35.83	35.72	86.38	2.08
Chisty Textile	15, 120	13 484	10 904	18.25	14.43	16.15	88.4)	2.33
Dacca Cotton	14 640	14 200	018 11	17.98	19.25	16.68	92.77	2.60
Dhakeswari Cotton I	30 440	13 801	7 120	35.95	11.54	01.6	64 56	2.19
Dhakeswari Cotton II	21 280	19 059	12 715		11.54	14.11		2.13
bost Textile	12 800	12 000	12 227	16.68	15.71	18.54	31.111	2.77

-72-

Kagle Star Textile	20 736		648 L1	96.76	33.20	36.9	95.38	3.04
Pine Cotton	12 400		11 226	22.18	1.51	19.43	87.60	2.70
Gawasia Outton	24 880		16 918	25.92	15.17	18.37	70.87	2.02
(Malundo Textile	10 388	10 368	7 276	16.6	10.09	12.28	123.91	3.06
Halima fextile	12 400		10 642	16.59	9.92	12.93	11.94	1.79
Ihrahim Cotton	12 400	11 200	10 220	14.02	11.35	12.73	90.80	2.26
Jalil Textile	12 400	11 600	9 962	17.15	12.82	13.62	79.42	2.45
Jaha Textile	11 733		9 497	13.54	8.07	06.6	73.12	1.79
Khulua Textile	12 448		9 462	86.71	12.84	12.83	72.98	2.25
Kokil Textile	12 400		10 465	20.60	15.87	17.86	86.70	2.63
Kushtia Textile	12 460	12 48u	6 947	N.5	7.60	10.47	61.06	2.92
laxminarayan Gotton	15 309		56L II	15.44	15.47	11.11	86.20	2.04
Mohini Mills	19 369		13 319	15.81	13.90	10. 36	65.53	1.55
Monnoo Textile	15 744	15 744	13 718	23.80	23.85	21.81	91.64	2.34
Muslin Cotton	48 800	44 000	37 496	44.94	36.08	38.27	85.16	1.79
Mughna Textile	12 720	12 720	10 056	20.83	14.01	15.50	74.41	2.26
Mwla Textile	12 480	10 400	89868	15.90	8.30	13.90	87.42	2.60
Mainamati Textile	12 400	9 535	10 173	13.52	9.08	10.32	76.33	1.59
National Cotton	13 012	12 800	10 539	12.51	64.11	66.11	12.06	1.95
Ulympia Textile	32 736	30 336	23 076	38.69	61.06	1.34	00.18	2.07
Orient Textile	10 000	9 200	197 B	13.25	10.39	11.04	83.32	2.16
Pahartali Textile	and ne	28 000	24 281	40.46	60-05	31.63	78.17	2.37
Quateria Textile	15 200	14 000	10 980	21.57	13.68	17.22	8 9. 83	2.24
Quasem Cotton	12 528	12 046	11 484	21.00	12.8)	21.30	101.43	3.32
R.K. Textile	27 U24	27 U24	22 515	41.58	27.58	93.79	31.26	2.64
kaj textile	12 163	12 163	10 166	17.53	13.07	18.17	103.65	3.47

-73-

Satrang Textile	12 400	11 600	10 693	17.98	13.25	14.45	80.37	2.07
Sharmin Textile	12 400	11 600	10 918	18.98	19.61	16.67	87.83	2.34
Serajganj Spiming	12 AN	11 200	10 164	14.33	9.46	11.69	81.58	1.03
Taugail Cotton	12 400	12 000	9 682	61. 61	15.62	15.84	82.80	2.45
Zeenat Textile	25 200	23 200	18.351	06.16	22.40	23.09	13.77	2.06
total	962 126	829 555	685 233	1 090.00	824.22	934.24	85.77	2.42
			Heaving	ring				
				(lakh yd ²) in 54a	(lakh yd ²)	548 (1akh yu ²)		(yu ²)
Adarsha Cotton	14 5	144	161	21.70	20.35		82.72	15.62
Atmed Bawany	LZT	241	190	51.92	38.60	45.74	6 0°66	20°03
Alhaj Textile	176	176	102	61.11	17.67	19.74	63.29	21.72
Asiatic Cotton	207	185	147	24.33	20.75	20.49	85.22	
Rogra Cotton	205	8	R	13.47	10.92	10.60	78.69	20.33
Nangladesh Textile	061	125	93	21.57	9.28	10.27	47.61	20.53
Churd Textile	152	128	III	22.88	14.36	15.96	61.69	14.68
Chittaranjan Cotton	395	395	332	44.86	54.88	48.04	60°201	20.42
Chittysong Textile	7 06	7 64	256	83.81	36.02	40+22	66-14	18.90
Dacca Cotton	206	594	140	34.30	33.52	29.67	86. 50	23.72
Dhakeswari Cotton I	018	530	191	122.19	69 . 61	17.21	47.47	18.72
lhak cowari Cotton 11	554	£€ ₹	316	I	44.30	42.43		13.50
Gansia Cotton	212	200	137	21.30	13.51	13.74	64.51	19.62
Halima Textile	172	160	141	21.62	14.08	13.96	64.57	14.16
Ibrahim Cotton	176	110	10)	15.92	15.08	16.21	101.82	23.35
Julil Textile	132	132	72	8.65	6.06	1.n	81.13	18.04

-74-

.

1

Khwlna Textile	16	L 6	67	18.99	81.61	13.63	n.n	18.89
Laxminarayan Cotton	306	276	243	71.96	56.85	13.23	<i>LR</i> .16	22.18
Mohini Milla	783	470	424	48.83	50.42	04-6£	80.69	15.47
Muslin Cotton	9 ()	90	215	55.72	38.57	42.39	76.00	15.70
Maghna Textile	176	155	115	35.01	23.42	25.24	72.09	19.77
National Cotton	218	200	152	20.18	24.32	24.44	86.73	25.40
Olmpia Textile	262	312	241	56.27	11.04	45-44	80.75	18.32
Pahartuli Textile	476	040	Loc	75.30	37.61	43.24	57.42	14.74
Sharmin Tertile	176	176	R	16.16	11.28	16.01	63.80	12.39
Zenat Textile	430	00	172	59.6 6	16.26	86.66	67.01	22.32
Valika Wolen	1	ı	ا	,	,	ł	r	'
fotal	6.9 1	6 38 6	4 531	00.076	681.1 6	606.20	P0.75	18.90

•

-75-

Annex IV

ANNUAL REQUIREMENTS OF SPARE PARTS OF ALL BINC MILLS

Spinning Total No. of spindles 1 million (approximately)

Name and specification	Origin	Quantity required (approx.)
Spindle with bolster (5 in.to 3 in.lift)	Japan	150 000
Ring cup (various sizes)	Japan	150 000
Snail wire	Japan	75 000
Rubber cots for F.T. roller	Japan FRG	200 000
Synthetic rubber apron (top) (various sizes)	Japan	50 000
Top rollers	FRG/Japan	150 000
NSK ball bearings of various numbers	Japan	75 000
Front roller bearing 2B-15 Z-7A	Japan	150 000
PK-211 top weighing arm	FRG/Japan	150 000
Bottom apron 86x30x1 mm	Japan	4 500 000
Kanai brand ring traveller of various mumbers (say 4/0,5/0,6/0)	Japan	40 0 0 0 box
Cam meter	Japan	1 000
Canvas belts, various sizes	Japan	2 500 000
<u>Middle bearing of various sizes</u> for blowroom	Japan	3 000 pieces
Flat tap, flat pieces	Japan	20 000 pieces
Flat chain for card	Japan	3 JOC pieces
Metalic wire for cylinder and doffer	Japan	600 sets
Stripping wire 28s	Japan	3 000 coils
Circular brush	Japan	10 000 pieces
Signal lamp	Japan	5 000 pieces
Clearer rubber tube for drawing	Japan	50 000 pieces
Pressure for simplex (various sizes)	Japan	130 000 pieces (1.5 lakhs)
Bottom chain for ring lifting motor and also top chain	Japan	10 000 pieces
Jariles	Japan	200 000 (2 lakhs)
Lappet	Japan	100 000 (1 1akn)
Bobbin holier (umbrella type)	Ja pan	150-303 (1.5 lakhs)

-76-

Balloon control room Japan 200 000 (2 lakh) UK/Japan Duplex chain 50 000 pieces 20 000 pieces Motor pully (various size) Japan Separator Japan 50 000 pieces Microswitch Japan 5 000 pieces Card-gauge measuring tools Japan 40 pieces Tin roller (GE) Japan 500 pieces Tin roller (M) Japan 2 500 pieces Tin roller (OE) Japan 500 piecee Front roller (shaft (RL)) Japan 600 pieces Front fluted roller (RL) varioue Japan 600 eete types Middle roller with shaft Japan 300 sets Trumpet Japan 4 000 pieces Ring rail, lifting bracket 2 JOO piecee Japan Button roller RL Japan 500 sete Poker bar bracket Japan 4 000 piecee Magnet Japan 100 pieces Connecting lever Japan 200 pieces Cylinder under casting 600 Japan Taner in under caeing 500 Japan Sub-assembly of detaching roller end 400 Japan Back sliver guide for comber Japan 5 000 Front sliver guide Japan 5 000 Needle bar for comber Japan 200 Flat needling bar for top comb-setting Japan 100 needle size 22/32x7/16 Power-grip belt 1,250 300 Japan Bearing (R&M I/L j 10 E) for tube 300 Japan wheel Distance cap (Blaese) Japan 5 000 Syceflyer with pressure Japan 5 000 Claw clutch Japan. 100 Side claw clutch Japan. 200 Complete boss for spindle footstep 10 000 Japar. for D/Simplex 10 000 Collector Japan. C.B. 135 first runner assembly (complete) Japan. 7 000 Middle Funner assembly (complete) 7 000 Japan.

-77-

	Japan	7 000
Middle runner assembly (complete)	•	7 000
Quide bracket, G.E. Quide	Japan	5 000
Tension device assembly (complete)	Japan	-
Bobbin holder pivot assembly	Japan	10 000
F. 134 Cane	Japan	
Feeder wire	Japan	50 000
Stopping horse	Japan	50 000
Balance weight	Japan	50 000
Starting handle	Japan	10 000
Ratelet bar	Japan	5 000
Bobbin holder stand	Japan	20 000
Upper pan	Japan	20 000
Lower pan	Japan	20 000
Sprocket	Japan	2 000
Tension-rod bracket (R)	Japan	1 000
Tension-rod bracket (L)	Japan	1 000
Drawing frame section		
Fluted bottom roller (front, R and L)	Japan	3 000
Sealed bearing (60052)	Japan	1 000
Bottom roller joint: all types	Japan	20 000
Stop ring	Japan	5 000
Gear box for tube gear irive (while shaft bearing all set)	Japan	4 000
Special spanner for Fo 28	Japan	4C sets
Stop-ring for 3403	Japan	2 0 000
Bracket for top arm (all types)	Japan	50 000
Nylon brush E. 53	Japan	10 000

Weaving: No. of total looms 3,000 (approximately)

Nylon cap

Spring for top cover

Spring for ratchet pin

Spring for front top cleaner

Hopper Stand D-50B-1A	Japan f or a Sakam oto	3 300 pieces
Bobbin guide SOB 3A	Cop change (automatic)	10 300 pieces
Rivet for bobbin guide for \$03-3	Looma	5 CCO piece s

Japan

Japan

Japan

Japan

5 000

5 000

5 000

20 000

-78-

<u>Model</u> 1964

Hold-back pawl stud SOB-5	1964	7 000 pieces
Transferer SOB-64	1964	7 000 pieces
Spring for transferrer for SOB-ó	1964	8 000 pieces
Traneferrer spring colour 30B-8	1964	8 000 pieces
Feed pawl SOB-10	1964	7 000 pieces
Feed pawl stud SOB-13BL	1964	7 000 pieces
Transferrer fork SOB-13BL	1964	5 000 pieces
Tranferrer knock pin SOB-14	1964	7 000 pieces
Hold-back pawl SOB-22	1964	8 000 pieces
Dobbin support D-SOB-24A	1964	8 000 pieces
Bolt for bobbin support A for 30B-24A	1964	8 000 pieces
Spring for bobbin support B for SOB-24A		
Feed-pawl spring	Japan	4 000
Latch stand	Japan	5 000
Latoh finger	Japan	3 000
Pinger guide for fork release	Japan	100 000
Feeler epring	Japan	4 000
Stick buffer support (varioue types)	Japan	200 000
Temple-holder 3.5.	Japan	3 000
Temple-holder B.S.	Japan	3 000
Temple-holder cap pin	Japan	3 000
Temple-cutter blade-stop Pokt.	Japan	4 000
Temple-cutter blade	Japan	2 000
Temple-cutter action pin	Japan	2 000
Action roller	Japan	2 000
Blade pin	Japan	2 000
Short blade	Japan	2 000
Blade spring	Japan	2 000
Alade-spring nut	Japan	2 000
Blade cover	Japan	2 000
Stiffing-rod action lever spring	Japan	1 500
Feed-pawl spring	Japan	1 300
Ratchet stop lever spring	Japan	10 300
Weft feeler finger engine bracket	Japar.	10 000
Driving pulley	Japan	5 000

Vinyl pipe end (various types)	Japan	50 000
Plain tappet for 56 in.	Japan	1 000 pieces
Stripper	Japan	500 coils
Plate for brass shoe	Japan	5 000
Brasses for middle bracket (various types)	Japan	2 000
Shuttle	Japan	10 000
Reed (stud) (various sizes) steel dropper	Japan	200 000

-06-

Arnes V

.

SUMMARY OF SOME INFORTANT ASPECTS OF BITHC RUTTERFRISTES (Based on 1976/77)

							Attained	Expansion
	led l	Employees				Attain-	capacity	programme
Name of enterprises With location	Officers and staff	Horkers	Total	Products	Ukiit	able capacity	in 1976/ 77 (per cent)	during 1978/79 in (lakhs Taka)
Bangladesh Welding Eletrodes Ltd Chittagong	23	27	R	Welding Electrodes SWG 6-16	Rrt.	180	73 (41)	
Daeva Kulio Kleetronics Ltd, Davea	æ	35	F	Transistor radio	Nos.	10 000	2 268 (22)	
Bastern Cables Chittagong	144	118	262	Power and domestic cables	TORS	6 000	1 234 (4)	10.00
Eastern Tubes, Nacca	51	6	011	Pluorescent tube light	Рі юсев	900 00£	230 168 (72)	-81-
Pacto Inhistries Ltd Dacca	II	11	କୁ	NDBC and PVC wires, plastic	Ton Pi eces	200 200 000	22 (11) 7 756 (8.6)	
Pacto Yamayen Ltd Decca	16	84	64	Madio and television sets	Pieces Pieces	15 000 1 200	1 956 (13.04) 270 (22.5)	
Gazi Wires Ltd Chittagong	3	8	811	SECN and HDBC	Tons	200	142 + 28 (60.7)	0.65
Meher Tralustries Ltd Naca	ŧ	u	116	Radio, gau atovea, conduit pipea	Pieces Pieces Lakhs Nrt.	20 000 3 750 1.5	1 740 (87)	
Metalex Corporation Ltd Pongi, Ducca	æ	8	184	Ceiling fama PT Choke	Pi eces	20 000	17 106 (85.5) 9 325 (46.62)	10.75
Burgladeah Diesel Plant Joydevpur, bacca	121	ш	232	Dicael engine	Pieces	8 000	1 118 (14)	
Nachmi Gan Co. Ltd Chittagong	3	247	π	Assorted cans	Tons	1 800	926 (51)	

						-8	2-							
		09 °C		4.90	14.50	5. 22	24.00		2•86	2.50		2.15		7.80
12 838 (91.7) 162 671 (95.68)	(11) 00L LL		142 (47)	2 555 (8 ¹)	3 236 (53)	2 786 (81)	102 000 (73)	(4) (4) (2 938 (42)	3 946 (57)	18.94 (19)	5 387 (98)	2 080 (34)	5 140 (93)
a 14 000 a 170 000	7	l 000 (single shift) s	90	3 000	4 000	3 500	140 000	1 000	J 000	000 L	100	3 500	6 000	5 500
Duzenis Pieces Tonis	llozens	Tons Pi oces	Long tons	Long	Long tons	Lung tons	Tons	Long tons	Long tous	Long tons	Lakhs Rft.	Such	Long tons	TOUR
h icket, Paris, Jalkats	Enamel wires	Tea garden machinery and uparroo steel poles	C.I. Sanitary fittings	Water vessels	Water vessel	N.S. rods	Steel inguts	M.S. rods	M.S. rods and sections	M.S. rods and sections	Steel pipe	M.S. rods	N.S. rods	steel ingots
117	122	235	£	1 155	1 175	8	3 581	116	156	156	(*	4 6	116	961
16	100	252	4	JBU	153	19	2 653	75	105	105	11	R	VI.	A <u>v</u> 1
3 9	22	4 .	15	315	422	61	878	41	R	51	23	ы Э.	L	K
New Kra Judua tries Ltd Chittagong	Prantic Traters, Baca	Ispahani Marshall Ltd Chittayong	Quality Iron & Steel Denca	Dockyard & Bug. Nork Nurayanganj, Daoca	Khulna Shipyard Ltd Bacca	kawsal Metul Tudustries Durosa	Chittagong Steel Mills Ltd 878 (CSM) Chittagong	Daooa Steel Works Ltd Daeca	General Iron & Steel Chitlagong	G.M. Steel Ltd Chittagong	lkesain Industries Ltd Chittagong	Khulna Judustrial & Truding Corporation, Khulna	Malik Re-rolling Mills Ltd. Chittarong	Moheemmeeti Fron and Steel Works Ltd, Chittagong

National Tubes Utd Tongi, Ducca	149	103	P (77)	Mild steel cast iron pipes	70	6 000 9	3 784 (63)	(7 •01
Nutional Iron & Steel Industries Ltd	Jú	æ	160	Wild steel rods and baling hoops	Tons	000 6	6 005 (100)	
New Brot Steel Mills Ltd Chitteenne	æ	16	8	Mild steel rods	Tous	7 000	(11) 1986 3	1.70
Prince Iron & Steel Ltd Bacca	4	72	115	Mild steel rods Libbed or ton steel	Tons	000 L	6 961 (94)	5.50
Quaraishi Steels Liud Khulha	8 2	15	14 5	Wild steel rods	Tons	1 500	5 333 (TI)	
Nahman Motal Industries Durca	44	ાગ	50 2	Wild steel rods Aluminium utemsils	Tons	4 500	2 119 (47) 153 (84)	4.90
Atlas (kangtatedi) Ltd	84	61	115	Notorcycl cu	Pi wes	3 000	2 010 (67)	
kungladesh Cycle Ltd bacca	5	211	₩ 81	Bi cycles	Pieces	20 000 40 000 (2 shifts)	29 236 (96)	
Progoti Industries Lid Chittagong	(KL	441	780	Bases, trucks, Jeeps, cars	Pieces	1 200	1 015 (66)	
burr', Dacca (unter construction)	<u>2</u>	61 3	1 038	Nachine tools, cutting tools, pumps and agri- culture and tex- tile machinery	·		1	
(aon e, Chittacong (under construction)	661	18	211	1	1	I	I	

pecial machines engaged in particular type of the the the the the the tent. Putal capacity utilized - 57.76 per cent.

Tutal employees = 12,417.

-83-

Annex VI

INVESTMENT JOSTS

The estimated investment cost for introducing power looms and spare parts as shown in the final production programme, covers the following activities:

Designing documentation

This documentation consists of:

Assembly drawings, parts drawings, specifications and engineering extracts Testing quality control and the like Operation and maintenance instructions

Alternatives

Variant I: Local design

Variant II: Manufacture under licence

Details may be seen in figure VI and figure VII.

Estimated cost \$0003/

		Varian	tI	٦	Tariant	II
	LC	FC	TOTAL	LC	FC	TOTAL
Power looms	2	15	17	2	38	40
Spare parts	-	-	-	4	26	30
Total	2	15	17	é	64	70

a/ 10, equivalent in local currency; F0, equivalent in foreign currency.

Technological iccumentation

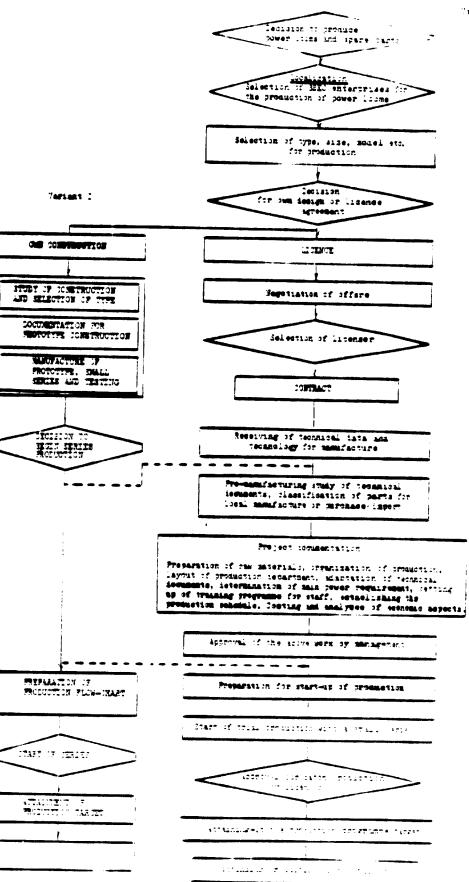
This document consists of:

Technological instructions with unit time of individual operations, with calculation of materials consumption

Summary of materials specification

Specification of tools and workshop aids

Workshop drawings of special tools


Estimated cost \$000ª

		Varian			Variant	
	10	FC	TCTAL	ĹĴ	30	TCTAL
Power looms	20	50	90	40	200	240
Spare parts	_	_	_		<u>60</u>	
10 72	20	52	3	<u>=</u> ;	260	

E. LJ, equivalent in local currency; FO, equivalent in foreign currency.

• 24 •

Figure 711. Stages of levingment of power loss and spare lands providence in 3030 according to variant 1 and variant 11

Cariant II

:74 1 3 -----1 : M11-1 1 1 1 12 14 16 12 22 11 25 15 711100 Specification Hanths 2 2 .: . 1. Indiaton to produce the wer loom 2. Selection of 3SEC enterprises for production 3. Selection of the type and medal for production 2. Decision for own lesign "mariant 1" or lidence "mariant 11" Own construction Tariant I 5. Jun construction 54. Liaence Study of construction and selection of type 5. Commentation for construction of prototype Mamifacture of prototype in small series and testing 7. Decision to approve protetype 3. Preservion for everying-up of production, sequestion of the saterial 3. Approval for bates production 10. Attaining the production programs target TAPLAT II 11. Continuation of production Jeast ververs licence se per target 12. Segutiation of offers 1 . Selection of ligenser 11. Statisture of contract 17. Receiving reconnical lata for namufacture from the licenser 12. Pro-manufacturing study of teomical itoumenta: tracsification of parts for local manufacture or "LETTELS" 1". Project itrusections Project iorumantation: Propartium of rue material. of terminotion idearthent, sayrat if terminotion idearthent, sayration of terminotic ioruments, production arr suils, tooting sha analysis if edu. mio satects 17. Storoval of the above work by the tanagement authors ---14. Reenstation for staff-up of officiality 20. Chart this, prostation of anall 1401.00 21. Katarra, of catal representer SV lights a ----12. Addition the providing coordinate ranget 15. Continuing troduction as the *127+1 Alfan Carl a saa 132.3.11 - Prwer List - Scare: - Scare: - Stare of

Figure VIII. Soneaule for the invelopment of textule power foom scare carta orthauction in BSEC

. . .

Plant designing documentation

This documentation consists of:

Plant technological design

Assumptions of technological installation for machines and equipment layout

Estimated cost \$0003/

	1	Variant	I	Variant II			
	21	IC.	Total	<u>ic</u>	IC.	Total	
Power looms	5	35	40	10	170	180	
Spare parts	-	-	-	5	25	90	
Total	5	35	40	15	255	270	

§/ LC, equivalent in local currency; FC, equivalent in foreign currency.

Investment for production equipment

The cost of technological equipment was determined on the basis of labour consumption for the production programme for IML according to chapter VI of present report. These new expansions of equipment should guarantee the production by IML of almost all necessary cast components and steel parts for power looms.

Estimated cost \$000ª

		Variant	I		Variant	II
	LC	PC	Note	LC		Total
Power looms	485	1 725	2 210	800	2 610	3 410
Spare parts	-	-	-	-	-	-
Total	485	1 725	2 210	300	2 510	3 410

3/ LC, equivalent in local currency; PC, equivalent in foreign currency.

Auxiliary means of production

This heading includes the following special tools, made in metal for individual types of machines:

Patterns, iies and fixtures

Special cutting tools, gauges

Setimated cost \$000

	7	ariant (Ţ.	Variant II			
	LC	30	Total	LĊ	30	Tota i	
Power Looms	20	•	20	20	30	100	
Spare parts	-	-	-	30	90	120	
Total	20	-	20	30	170	220	

g/ LC, equivalent in local currency; FC, equivalent in foreign currency.

Licences and know-how

Estimated cost 2000

	1	Tariant	1	Tariant II			
	5	HC.	No 7 M		30	Total	
Power looms	•	-	•	•	100	100	
Spare parts	-	-	-	-	50	50	
Total	-	-	•	-	150	160	

a/ LC, equivalent in local surrency; FC, equivalent in foreign surrency.

Training

Estimated cost \$000

	٩	Variant	1	1	Variant	II
<u>_</u>	LC		Total	10		1074
Power looms	120	130	300	280	190	570
Spare parts	•	-	•	-	•	•
	120	130	300	280	190	370

3. 10. equivalent in local surrency; FD, equivalent in foreign surrency.

Civil engineering works

Covering construction works for expansion of IML according to chapter 72 of the present report. The estimated cost of the above works is assumed to be as follows:

3,000 =2 = \$100/=2 = \$300,000

Cost sumar

Ine posts of the above eight categories are summarized in the accompanying table.

cost
investment
estimated
of
Sumary

(1977/78 prices \$0005

			ą	Power loome			5	Spure parts	3
		Variant			Variant	t 11		Jariant II	
Description	2	2	Potal	2	Ľ	rotal	3		Total
Desiration documentation	2	15	11	2	8	¢	-	26	8
Specification/technological	20	60	8	4	200	240	10	99	QL
documentation Plan designing documentation	ŝ	75	8	10	170	160	5	B	8
Technolorical antipaent	Ð	1 725	2 210	800	3 790	4 590	ł	ł	ł
Anviliary production	ଝ	1	ନ୍ଥ	ଝ	8	100	8	8	120
Licenses and know-how	I	I	ı	10	140	150	5	55	99
	120	200	00	120	200	004	8	120	200
Civil engineering works	240	93	00	240	99	00	'	'	1
Total	892	2 215	3 107	1 242	4 758	6 000	KI	436	570
Total value (Lakha Taka)	MET	332	9 4 4	186	દાદ	906	ଝ	69	88

 $a/1\mathcal{L}$, equivalent in local currency; W, equivalent in foreign currency.

-89-

Annex 711

SUNCKARY OF THE NEW INVESTMENT REQUIRED TO ESTABLISH AN ENTERPRISE TO MANUFACTURE SPINNING MACHINERY

The existing spinning capacity of the country will be unable to keep pace with the growing demand, as the population is increasing by 2.3 per cent per annum. Furthermore, <u>per capita</u> consumption is also rising. If the consumption level is estimated to be at 12 yd^2 (10 m^2) <u>per capita</u> in the year 1990, the country will require approximately 1.60 million spindles. Details are given in chapter II.

In view of the need to expand the country's spinning capacity, it is considered necessary to establish an industry to manufacture the required spinning machinery.

The team that prepared the present report has calculated the investment requirement for the manufacture of the three spinning machines listed below. The production programme, with the number of units of each type of machine, is as follows:

Machine	Units/year
Ring-spinning frame	400
Assembly-winder frame	200
Ring-twisting frame	120

The above numbers of machines would be enough for the installation of about 200,000 new spindles per year. The principal elements to be considered for the implementation of this programme - 1. Production programme for spinning machinery manufacture; 2. Manpower requirements; 3. Summary of specifications and quantities of machines and equipment; 4. Space requirements; and 5. Estimated investment cost - are presented in tabular form below.

1. Production programme: spinning machinery manufacture (1977.78 prices)

	Mumber of	Weiz	nt (tons)	7 1 1u	e (\$000)
Specification	pieces per programme	Unit	Fer programme	Unit	Per programme
Spinning frames (108 spindles)	400	á.ć	2 610	11)	16 760
Cylinder winder frames (13 spindles)	100	2.0	200	29	2 300

-90-

Grand total	720	-	4 318	-	34 000
Spare parts (15 per cent of value)	-	-	500	-	4 400
Total machines	720		3 818		29 600
Ring-twisting frames (384 spindles)	120	5.7	684	42	5 040
Assembly winder frames (48 spindles)	100	2.4	240	49	4 900

Summary of specifications of work loads for the production programme

Specification	Total hours of wor Machine hours	k consumption per Manual hours	programme Total	
Foundry		115 800	115 800	
Machining	573 900	164 850	738 750	
Assembly	18 750	197 150	215 900	
Heat treatment	•	61 750	61 750	
Electroplating	•	73 900	73 900	
Painting	•	61 450	61 450	
Others	•	46 650	46 630	
Total	592 650	721 550	1 315 800	

Specification	Direct	Indirect	Total	Officers and staff	Total
I. Production departments					
Foundry	<u> 60</u>	50	110	18	128
Machining	344	52	396	32	428
Sheet-metal works and welding	41	6	47	6	53
Assembly	111	16	127	12	139
Painting	31	4	35	3	38
Heat treatment	31	1	35	3	38
Electroplating	38	5	43	3	4ć
Others	25	2	27	2	2 9
Total production department	681	139	820	79	399

2. Manpower requirements

II. Auxiliary departments					
Tool room	•	75	75	Э	34
Overhauling	•	45	45	5	50
Other auxiliary	-	16	16	2	19
Stores and transport	•	43	43	ó	49
Total auxiliary departments	•	179	179	22	201
Total I + II	681	318	399	101	1 100

 \underline{s} / It is assumed that the production programme will be executed on a two-shift basis. A worker's time is assumed to 1,930 hours/year.

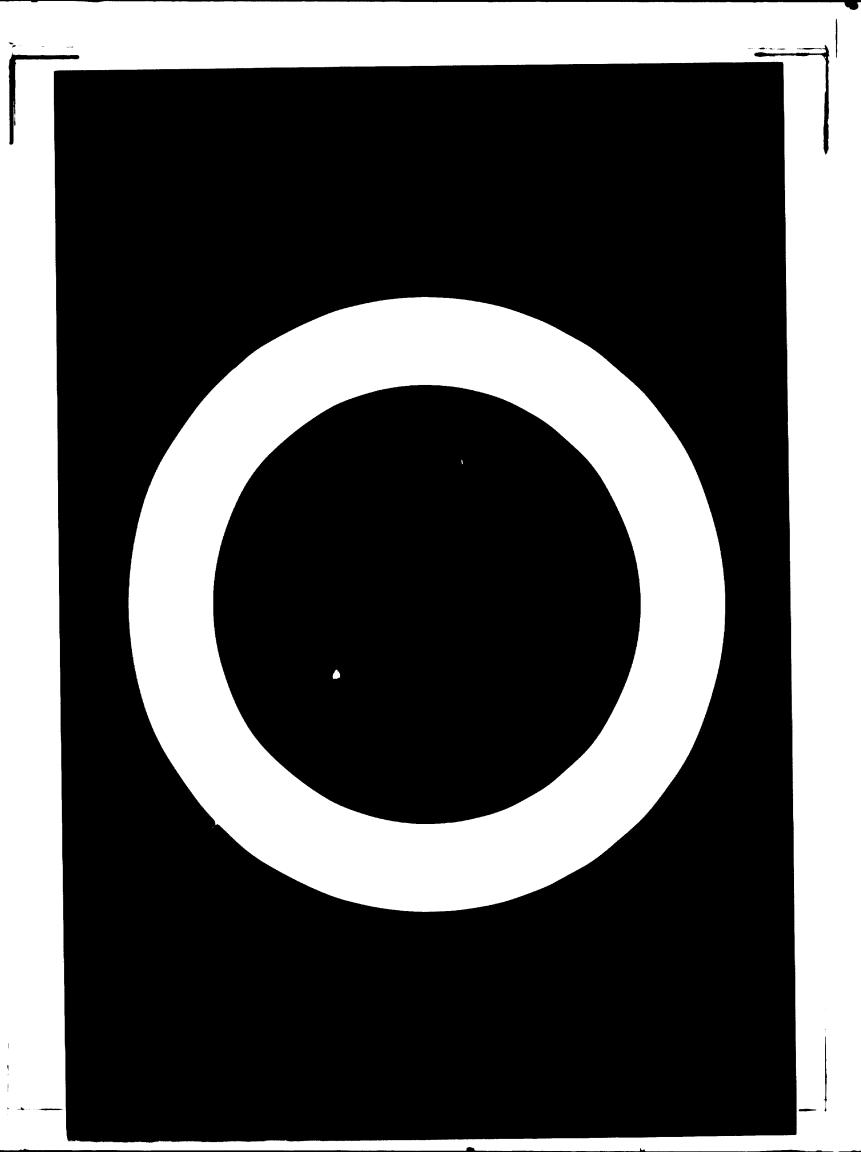
3. Summary of specifications and quantities of machines and equipment: quantities for final production programme

Specification	Number of machines		
I. Production departments			
Foundry	Various		
Machining department	174		
Sheet metal and welding shop	6 2		
issembly department	32		
fetal-cutting shop	7		
leat-treatment department	Various (15)		
Painting lepartment	Various		
Electroplating department	Various		
Total	275 and various		
I. Auxiliary ispertments			
Col-rocm	22		
Col grinding shop	12		
Verhaul shop	16		
Mality inspection	Taribuz		
Jauges and measuring room	Various		
hysio-chemical laboratory	Various		
Stores	Various		
Compressors station and boilers room	Various		
thers	Various		
Total	50 and Various		
Total plants I + II]25 ani Various		

-93-

Requir	enents
--------	--------

. .


Specification	Covered area (square metres)
I. Production lepertments	
Foundry	2 000
Machining department	4 400
Sheet-metal and welding shop	1 000
Assembly department	2 000
Painting department	900
Heat treatment	500
ectroplating department	900
Cutting shop	300
Roads and passages	2 000
Total	14 000
II. Auxiliary departments	
Fool-room with tool-grinding shop	800
Overhaul shop	1 100
Stores and transport	2 800
Other auxiliary	900
Offices and social area	2 400
Total	8 000
Total plants I + II	22 000
Site area	75 000

^{5.} Estimated investment cost^{2/}

(3000)

Description	LC	70	Total
Adaptation of design documentation	10	50	60
Technological documentation	100	300	400
Plant design	30	270	300
Technological equipment (machinery and equipment etc.)	4 000	24 4 00	28 400
Production auxiliaries	200	500	700
Licence and know-how	9C	550	640
Training	2 00	600	800
Civil engineering works, including all utility services	5 000	1 000	6,000
Miscellaneous	1 000	1 700	2 700
Total	10 630	29 370	40 000
Value in lakhs taka	1 594	1 105	5,000

a. This estimate has been prepared very roughly so as to give a preinvestment idea of the scale of the project.

30.12.09