TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
sf TEXTiLES
A FEASIBIlITY STUDY OF BLANKET MANUFACTURETHE KINGDOM OF LESOTHO(DP/LES/73/030/11-01/06)
A Report prepared for

A. Johnels (Textile Technologist) and G. H. Oxtoby (Economist) experts of the

United Nations Industrial Development Organisation acting as Executing Agency for the United Nations Development Programme

THE KINGDOM OF IESOTHO

CONTENTS

Page
SUMMARY 1
CHAPTER 1. INTRODUCTION
1.1 Objective 7
1.2 Method 8
1.3 Country detail 9
CHAPTER 2. THE MARKET FOR BLANKETS
2.1 Total domestic consumption 12
2.1 .1 Estimates of total consumption based 13on import statistics
2.1.2 Estimates of total consumption based 15on trade sources
2.1.3 Estimates of total consumption based 16on income levels and expenditurepatterns
2.1 .4 Total consumption - Conclusions 20
2.2 Analysis of total consumption 20
2.2 .1 Classification of blankets 21
2.2 .2 Summary 29
Page
2.3 Trends in consumption and future 29developments
2.3.1 Trends in consumption 30
2.3.2 Future developments 30
2.4 Distribution of blankets 31
2.5 Costs and prices 32
2.5 .1 Costs, wholesale and retail prices 32and margins
2.5 .2 Regional price variations 35
2.6 Present sources of supply and the 36market for blankets in the SACU
2.6.1 Present sources of supply - the blanket 38
industry in the SACU
2.6 .2 The blanket market in the SACU 39
2.7 Conclusions 42
CHAPTER 3. TIE RESOURCE REQUIREMENTS FOR BLANKET
PRODUCTION
3.1 Blanket production in general 43
3.1 .1 Raw materials 43
3.1 .2 Technology 44
3.1 .3 The economic aspects 49
3.2 Raw materials 51
3.2 .1 Wool 53
3.2 .2 Man-made fibres and rayon 57
3.2.3 Cotton yarns 58
3.3 Human resources 59
3.3 .1 The supply of labour 59
3.3 .2 Remuneration 61
3.3 .3 Hours of work 63
3.3.4 Miscellaneous 63
Page
3.4 Services 64
3.4.1 Electricity 64
3.4.2 Water 65
3.4.3 Effluent disposal 67
3.5 Steam requirement 67
3.6 Buildings 68
3.7 Tax incentives 70
3.8 Transport 71
3.9 External economies 71
3.10 Location 72
CHAPTTR 4. THE FEASIBILITY OF BLANKET PRODUCTION
4.1 Technological alternatives 73
4.2 A blanket mill in Lesotho 75
4.3 Estimation of prime costs 77
4.3.1 The basis of the prime cost calculations 78
4.3.2 Method of calculating prime costs 79
4.4 Price comparisons - Lesotho mill and 80 present supplies
4.5 The feasibility of blanket manufacture 86
in Lesotho
4.5 .1 General consideration 86
4.5.2 The possible effects of varying the mill 88
size
4.5 .3 The use of quantitative 90
4.6 Conclusion 95
4.7 Other development possibilities in the 95 field of textiles

AFPENDIX A. TECHNICAL DEYAIL OF BLANKET MILL

1. Spinning 96
2. Weaving 102
3. Finishing 109
APPENDIX B. PRIIE COST CALCULATIONS
4. Spinning Department - Basis for prime cost calculation 119
5. Dyeing Department - Basis for prime cost calculation 1233. Weaving Department - Basis for prime costcalculation124
6. Finishing Department - Basis for prime cost calculation 131
APPENDIX C. PERSONS SEEN IN IESOTHO 143
APPEND ${ }^{\top \cdots}$ D. FUTURE TEXTILE POSSIBILITIES IN LESOTHO
7. Introduction 146
8. Wool production 146
9. Scouring 147
10. Top making 150
11. Fine woollen yarns $15 ?$
12. Coarser woollen yarms 154

CHAPTER 1. INTRODUCTION

The objective of this study is to determine the feasibility of establishing a blanket factory in the Kingdom of Lesotho to supply the donestic market. The consumption of blankets in Lesotho is thought to be relatively high; all the blankets are imported and they form about 8% of total imports; at the same time the country has a large unfavourable trade balance; and finally it is possible that domestically-produced wool might be used as part of the raw materials for blanket production.

The method of the study is simple. Chapter 2 provides information on the market for blankets. Chapter 3 looks at the resource requirements for blanket production and the general supply position in Lesotho. Chapter 4 examines the feasibility of manufacture by estimating the likely costs of production in Lesotho, converting these costs into prices, and then comparing these with the prices of present supplies.

CHAPTER 2. THE MARKET FOR BLANKETS
2.1 The total consumption of blankets is estimated to be about
700,000 pieces a year.
2.2 Although a wide variety of different types of blanket are
sold in Lesotho this total can be divided in four groups
as follows:

Fashion (or Fancy or Basotho)	350,000	50%
Domestic	140,000	20%
Rugs and shawls	105,000	15%
Greys	$\frac{105,000}{700,000}$	$\frac{15 \%}{100 \%}$

2.3 No significant changes in the demand for blankets, nor any important technical developments, are anticipated in the near future.
2.4 Wholesale distribution is mainly in the hands of four firms, who also operate at the retail level, along with many small traders.
2.5 Details of the costs and wholesale and retail prices of a number of representative blankets are given. The overall margin from mill cost to retail price varies from 40 to 55%.
2.6 Almost all the blankets are supplied by firms in a neighbouring country within the Southern African C•Istoms Union (SACU). The industry is dominated by one powerful firm supplying about 90% of the market which amounts in total (including all the countries of the SACU) to about 13 million blankets a year.

CHAPIER 3. THE RESOURCE REQUIREMENTS FOR BLANKET PRODUCTION
3.1 The raw materials and the technology used in blanket manufacture are discussed. After examining the relationship between costs and levels of output we conclude that a mill producing about 600,000 blankets would be appropriate for Lesotho.

A mill of this size would require 950 tonnes of raw material a year. Of the 1420 tonnes of clean wool produced in Lesotho only about 400 tonnes is suitable for blanket manufacture. The actual requirement is 231 tonnes and therefore a surplus would be available for export. The remainder of the raw materials consist of man-made fibres, rayon, and cotton yarns. All these would have to be imported, mainly from outside the SACU.

There is a good supply of unskilled labour and, although there are no skilled or semi-skilled operators of the type required, no problems are anticipated in training Easotho to fill these positions. All skilled technicians, supervisory and manasement staff would have to be expatriatos. After examining rates of pay in Lesotho and the SACU we adopt R 0.42 per hour as the rate for skilled machine operators and R 0.15 to R 0.31 for unskilled workers.
3.4 No problems are anticipated as far as electricity and water supplies are concerned, but the quality of the water will need further investigation. The mill will produce appreciable quantities of effluent. The disposal of this presents certain difficulties which will require examination.

Fairly large quantities of steam are required by a blanket mill but the provision of this should not present any particular problems.

It will be necessary to ensure reasonably stable climatic conditions inside the mill. We do not think that refrigeration will be necessary but some air conditioning will be required and the building will need to be well insulated. No problems are anticipated in constructing such a building.
3.7 The Govermment of Lesotho offers various tax incentives to firms. Two of these, a utility and transportation allowance and a citizen wage allowance are relevant to this study.
3.8 Transport within Lesotho presents no problem. Materials from the SACU will have to be transported by rail, which is slow and expensive. We consider that larger stocks than normal will have to be held by the mill and we provide for extra storage space.
3.9 A mill in Lesotho will suffer a disadvantage because of the lack of supporting industries and facilities.
3.10 We examine the question of location and conclude that the mill, if established, should be located at Maseru.

CHAPTER 4. THE FEASIBILITY OF BLANKET MANUFACTURE

4.1 The alternative ways of producing blankets are discussed and we conclude that a mill in Lesotho must carry out the full process from raw material to finished blanket.
4.2 In order to estimate the likely costs of producing blankets in Lesotho we construct a mill 'on paper'. Full details are given in Appendix A.
4.3 On the basis of this mill we estimate the prime cost of producing a number of representative blankets. The details and methods of calculation are given in Appendix B.
4.4 When Lesotho's prices are compared with those of present suppliers the position is as follows:

		Lesotho	Present Supplier's
		Price fand	Price Rand
Fashion blankets	Pitso	5.69	10.08
	Pitseng	4.74	6.60
	$\begin{aligned} & \text { Lilala } \\ & (75 \times 80 \mathrm{~cm}) \end{aligned}$	1.48	1.48
	$\begin{aligned} & \text { Lilala } \\ & (110 \times 115 \mathrm{~cm}) \end{aligned}$	2.75	2.97
Domestic	Mona Lisa	4.35	2.84
Rugs and shaw]s	Welwitschia	2.89	3.75

The Lesotho price is below the present supplier's price for the Pitso, Pitseng and Welwitschia; about the same for the Lilalas, and well above in the case of the Mona Lisa, a typical domestic blanket

These differences are explained by a number of factors. The bulk of the imported supplies come from one producer. This firm makes some 10 to 11 million blankets a year and has, by virtue of this large output, some considerable cost advantages over a small mill in Lesotho. It can gain economies by long production runs and by spreadig its overheads over a large output. It can buy raw materials well below the prices at which a small unit could obtain them. This is particularly important as raw materials form, on average, about 43% of the total cost of making a blanket. Lesotho will have some advantage over the present supplier because of lower wages but this will have little effect on the final price as labour costs account for only 13%, on average, of total costs. Thus the foreign supplier will have lower costs than a mill in Lesotho, though the cost advantage will be more marked in some products than in others.

Given that the major supplier has these lower costs the prices actually charged for particular products are determined by market conditions. Where strong elements of exclusiveness and prestige are attached to a blanket and there is little or no competition, then a high price relative to cost is charged. At the other end of the scale where the product is basically 'cheap' and meant to satisfy the requirements of large numbers of poorer people then the price must be low and closely related to the cost.
4.5 Although we consider that a mill in Lesotho would have higher costs than those of the foreign supplier we examine various policies which might, even in these circumstances, make the mill viable. These are: the adoption of a certain price and output policy by the mill; changes in the scale of production; the use of quantitative controls on imports of blankets; tariffs, and subsidies. We consider that
4.6 none of these will be effective and we therefore conclude that it would not be feasible to establish a blanket mill in Lesotho.
4.7 There may be other textile possibilities in Lesotho which might be worth investigating. A very brief outline of these is given in Appendix D.

CHAPTER 1

INTRODUCIIION

CHAPIER 1

INTRODUCTION

1.1 Objective

The objective of this study is to determine the feasibility of establishing a blanket factory in the Kingdom of Lesotho to supply the domestic market.

There appears to be a strong prima facie case in favour of undertaking this study. The consumption of blankets in Lesotho is thought to be relatively high as the Basotho use blankets as a form of apparel as well as for bedding purposes. All the blankets are imported and the total value of these imports in 1972 was R 3.3 million, or nearly 8% of total imports (R 43 million). In the same year total exports were only $R 6.1$ million. Hence Lesotho had a very large unfavourable trade balance. From another aspect the Kingdom is a large producer of wool and it was thought that this might form part, possibly the major part, of the raw material for the manufacture of blankets. Clearly if Lesotho could add value to her indigenous raw materials then this would be to her economic advantage. Finally, Lesotho urgently needs more employment opportunities for her people. One of the targets of her First Five-Year Development Plan was 'to create 10,000-15,000 new employment opportunities, mainly in non-agricultural activities'. A blanket factory would make some contribution towards the attainment of this target.

It is clear that if the production of blankets turns out to be feasitle then this would have important beneficial effects on the economy of Lesotho. Our task is to examine in detail the prima facie case outlined above and to report.

1.2 Miethod

The method of this study is simple and straightforward. Chapter 2 presents information on the market and Chapter 3 deals with various aspects of the production of blankets. Chapter 4 builds on the material provided in the two previous chapters and examines feasibility.

Our main objectives in Chapter 2 are to determine the size of the blanket market in Lesotho; to classify the products in appropriate groups, and to select from these groups representative blankets which we can analyse in detail and use subsequently for comparative purposes. We also consider future trends in consumption and possible technical developments, and we provide information on methods of distribution and the costs and prices of blankets. In conclusion we look at the sources of the present supplies of blankets and at the market for blankets in the whole of Southern Africa.

Chapter 3 is concerned with the resource requirements for blanket production. We first of all give information on blanket manufacture in general, dealing with the types of raw material used, the technology employed and the economic aspects, in particular the question of the economic scale of production. The remainder of the chapter examines the availability of the required resources in Lesotho. We look at raw materials, including the possible use of Lesotho's wool, human resources, services, buildings, transport, etc.

In Chapter 4 our objective is to compare the likely costs and prices of blankets produced in Lesotho with the costs and prices of present suppliers and so determine the feasibility of a new mill. We first construct a mill 'on paper'. We then estimate the costs of producing a number of representative blankets. The costs are converted into prices and these are compared with prices of current supplies. On the basis of these comparisons we reach our conclusions on feasibility.

1.3 Country detail ${ }^{1}$

The Kingdom of Lesotho ${ }^{2}$ is a small country of about 30,000 square kilometres which is entirely surrounded by another member-country of the Southern African Customs Union (SACU). It is bounded in the north and west by the Orange Free State, to the south by Cape Province and to the east by Natal.

About one quarter of the country lying to the west is lowland at a height of about 1500 metres above sea level. The remainder comprises foothills and mountains rising in the east to around 3500 metres. Although Lesotho is only about 800 kilometres from the Tropic of Capricorn the climate is strongly influenced by the altitude and tends to be extreme. In the lowlands temperatures vary from a maximum of $90^{\circ} \mathrm{F}$ or more in summer to a minimum of $20^{\circ} \mathrm{F}$ in winter. In the highlands the temperature range is considerably wider and temperatures as 10 w as $3^{\circ} \mathrm{F}$ are common in winter. Trost has been known in every month of the year.

1 It is only proposed to give here such general information about the country as appears to us to be particularly relevant to the study.

| 2 The country | Lesotho |
| :--- | :--- | :--- |
| The people | Mosotho - singular |
| | Basotho - plural |
| The language | Sesotho |

Accurate statistics of the size, distribution and rate of increase of Lesotho's population are not available. Total population is currently estimated as 1.15 million and it is assumed to be increasing at around 2.2% per annum ${ }^{3}$. About half the resident population live in the lowlands, a quarter in the foothills and the remainder in the mountainous regions to the east. Because of insufficient job opportunities at home large numbers of Basotho migrate and seak employment in other countries of the SACU. It has recently been estimated that about 60% of the Kingdom's active male labour force is employed outside lesotho ${ }^{4}$.

Lesotho is a poor country. Reliable national income statistics are not available but recent estimates ${ }^{5}$ suggest that GNP per capita has remained fairly stable in the last few years at around $R 150$.

Communications witnin the country have improved considerably in the last decade but in many parts still remain difficult. There are good metalled roads joining the towns of the northern and eastern lowlands and connecting these same town to centres in the SACU. However as one moves into the foothills, and particularly into the mountain areas, the position deteriorates considerably. The topography of the country and the late development of internal communications has meant that the economically important flows of trade and people have been, and still largely are, in and out, along a number of routes connecting Lesotho and the $S \Lambda C U$ rather than within the Kingdom itself. The improvements in the road network are obviously modifying this pattern but it still remains easier to supply many parts of Lesotho from a number of points on the periphery rather than to distribute from some central area. Economy of Lesotho, Keport No. 331a - LSO, IBRD, Washington, 1974, pp. $18-19$
5

```
IBRD, op. cit. pp. 14-15.
```

Lesotho is a member of the Southern African Customs Union. here are generally no barriers to trade between the members (his study we assume the following rates of

Lesotho is a member of the Southern African Customs Union. There are generally no barriers to trade between the members of this Union and they use the Rand as their common currency. Throughout this study we assume the following rates of exchange:

$$
\text { US } \not \phi 1=\text { Rand } 0.77 \quad \text { Rand } 1=\text { US } \not p 1.30
$$

CHAPTER 2

THE MARKET FOR BLANKEIS

THE MARKET FOR BLANKETS

In this chapter we present information on the market aspects of our study. In Section 2.1 we estimate the total market for blankets in Lesotho. In Section 2.2 we analyse the total consumption breaking it down into various categories. In doing so we not only describe the nature of the market but we try to identify representative or typical blankets which we can use later in evaluating the feasibility of production in Lesotho.

Section 2.3 gives our views on future trends in consumption and possible technical and product developments

In Section 2.4 we describe the system of distribution and in 2.5 we discuss the costs and prices of blankets, including wholesale and retail margins and regional price variations.

Finally in Section 2.6 we look outside Lesotho at the present sources of supply and at the blankat market of Southern Africa, of which Lesotho forms a part.

2.1 Total domestic consumption

There is no published information giving the consumption of blankets. As there is, as yet no domestic production then consumption should be given by the import statistics. However these latter figures have certain disadvantages and therefore in addition we use two other approaches. We make estimates on the basis of information gathered from a variety of trade sources and we endeavour to estimate total consunption by examining levels of income and related patterns of expenditure. None of these methods can be regarded as being completely satisfactory but we feel that a combination of the three may be enable us to reach reasonably reliable conclusions.

2.1.1 Estimates of total consumption based on import statistics

Details of the value of imports of blankets into lesotho are given in Table 2.1. There are no statistics for imports ir quantity terms.

Table 2.1 The value of blanket imports into lesotho, Rand 1000

Year	1970	1971	1972	1973	1974
1st quarter			529	724	955
2nd quarter			972	1215	
3rd quarter			904	1205	
4th quarter			877	1140	
Total year	1794	2034	3282	4302	

Source: Annual Statistical Bulletin.

The figures show an increasing trend over the period concerned. This is deceptive in that considerable changes have taken place in recent years in the methrds of collecting information on imports generally. Following the new Custons Agreement in 1969, which came into force 1 March 1970, Lesotho's share in the common revenue pool has been largely dependent on the value of its imports and special efforts have been made to improve the comprehensiveness and accuracy of import data ${ }^{1}$. In particular from 1 April 1972 the value of imports has been derived directly from declarations made at border posts by traders, migrant workers and personal shoppers, i.e. persons crossing the border on shopping expeditions. This change in procedure accounts in large measure for the substantial increase which took place in 1972

[^0]as compared with 1971. Since these basic changes in 1972 further efforts have been made to improve the accuracy of the data but it is generally thought that imports may still be somewhat understated.

If we are to estimate total consumption in quantity terms we need to know the average price of imported blankets. It is not easy to estimate this as blarkets may be imported at mill prices, at wholesale prices, or at retail prices, i.e. blankets bought by perconal shoppers in nearby towns or brought in by migrant workers returning to lesotho. In Section 2.2 .2 below we estimate that the average retail price of blankets in Lesotho in September 1974 was between R6 and R7 - say R6.50. In the last two years the retail price of blankets has increased by over 40\%, risink by 23.5% from October 1972 to October 1973 and by a further 18.2% by July 1974^{2}. If we assume that retail prices were on average 25% lower in 1973 as compared with September 1974 then this would give an average re ail price in 1973 of R 5.50 ; a wholesale price of R4.10 (assuming a 55% narsin wholesale to retail) and a mill price of $R 3.70$ (assuming a 10% margin).

Such infornation as we have suggests that the bulk of imports come in at wholesale prices. We shall assume that 50% of imports enter at the average wholesale price of $\mathrm{R} 4.10 ; 25 \%$ at the mill price of R 3.70 ; 15% are brought in by migrant workers at an average price of R12.00 (probably about 100,000 such workers enter Lesotho each year and it is reported that each worker almost invariably has at least one blanket to declare and this blanket is nearly always of the more expensive type costing upwards of R 10.00) and 10% are accounted for by personal shoppers at an average price of $\mathrm{R5} 50$. On this basis the average price of imports is R 5.40 and total imports in 1973 would amount to about 300,000 pieces.

[^1]Clearly this estimate is subject to wide margins of error. Apart from the obvious possibilities that our estimate of average retail price may be faulty and our assumptions concerning the proportions imported at the different prices may not be correct we have assumed that the total value of imports is consuned in the year in which the imports are recorded. In fact about 75% of the annual sales of blankets take place between the months of March and July and presumably most of the imports recorded in the first and last quarters of the year consist rf orders to meet the demand in the winter months. There is no data on stocks of blankets and it was not therefore possible to make allowance for these seasonal movements.

2.1.2 Estimates of total consumption based on trade sources

For a number of reasons it was not possible to obtain as much information on total consumption as we would have liked from trade sources in Lesotho. First, the blankets entering the country do so from a wide variety of sources. For example, the largest trading company in lesotho supplies its own retail outlets, numbering 50 , as well as about 1000 other retailers, from 3 wholesale depots in Lesotho itself and from 3 depots outside the country in the neighbouring towns of Bloemfontein, F'icksburg and Wepener. It proved difficult to separate the trade which some of these branches carried on in lesotho from that which was carried on outside the country. Additionally we were not able to interview the representatives of as many trading companies as we would have wished, partly owing to a shortage of time and partly due to certain administrative difficulties.

Nevertheless the company referred to above did provide us with details of its total sales of blankets in the period March to July 1974. They stated that 75% of their total sales take place in these months. Allowing for the balance sold in the remainder of the year this means that their total annual sales amount to about 260,000 blankets. In their view they have about 45% of the total blanket market. Assuming
this to be a correct estimate then this means that the number of blankets sold in Lesotho in a year is about 580,000. A very authoritative source in Lesotho considered that the market share of this company was much nearer 35%. In which case the total market would be 740,000 .

2.1.3 Estimates of total consumption based on income levels and expenditure patterns

In this section we try to estimate the total consumption of blankets by attempting to calculate the expenditure on blankets in Lesotho and hence the number of blankets purchased. We look first at the urban households.

In 1972/1973 a household budget survey was carried out in the principal lowland towns of Maseru, Butha-Buthe, lllotse, Teyateyaneng, Mafetung and Mohales Hoek ${ }^{3}$. The areas covered accounted for 90% of the total urban population. The details relevant to this study are shown in table 2.2.

Table 2.2. Urban Households - Incomes, size of households, and expenditure on blankets. 1972/73.

Incomes. Rand			Households		Expenditure on blankets. Rand	
Strata	Range	Average	Number of	Average size	Annual per household	Total
1	$0-199$	146	2737	3.48	5.04	13794
2	$200-499$	342	3096	4.05	11.04	34180
3	$500-999$	692	1938	4.72	15.48	30000
4	$1000-$	2249	1582	5.96	19.80	31324

Source: 1972/73 Urban Household budget survey

3 Bureau of Sitatistics, 1972/73 Urban Housekold Budget Survey Report, Maseru, October, 1973.

The table shows the division of incomes into four strata: the average income in each strata; the number of households in each strata and their average size; the average annual expenditure on blankets per household in each income strata, and total expenditure. It will be seen that the total annual expenditure on blankets was R 119 298. If we make allowence for the 10% of the urban population not covered by the Survey this total then becomes R132 500.

Only 5% of the population of lesotho live in urban areas. There is no information similar to the above relating to the vast bulk of the people who live in the countryside. As far as incomes are concerned we use some recent estimates and details are given in Table 2.3.

Table 2.3. Rural Households - Incomes, number and size of households by regions, 1970.

	Lowlands	Foothills	Mountains	Orange River Valley
Annual household income (liand) From crop cultivation From livestock	$\begin{aligned} & 5 ; .35 \\ & 30.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.35 \\ & 26.45 \\ & \hline \end{aligned}$	$\begin{array}{r} 40.75 \\ 81.45 \\ \hline \end{array}$	$\begin{aligned} & 31.30 \\ & 37.15 \\ & \hline \end{aligned}$
Total farm income From labour outside Lesotho From labour in Lesotho	$\begin{aligned} & 84.05 \\ & 93.80 \\ & 21.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 67.80 \\ & 78.00 \\ & 15.45 \\ & \hline \end{aligned}$	$\begin{array}{r} 122.20 \\ 57.80 \\ 17.55 \\ \hline \end{array}$	$\begin{array}{r} 68.95 \\ 92.50 \\ 24.25 \\ \hline \end{array}$
Total incoue	199.35	101.25	197.55	188.70
Number of households Average size of household	$\begin{gathered} 72080 \\ 5.39 \end{gathered}$	57740 5.04	$\begin{aligned} & 39590 \\ & 5.34 \end{aligned}$	$\begin{gathered} 18020 \\ 5.37 \end{gathered}$

Source: I.B.R.D., The Economy of Lesotho, Report No. 331a - LSO June, 1974, Table 1%

These figures relate to 1970 and if we are to use them in conjunction with those for the urban areas then some adjustment is necessary to allow for changes in rural incomes up to 1973. There are several reasons for thinking that the latter showed an appreciable increase in period concerned. In particular the prices of agricultural products rose considerably during these three years. For example, the value of exports of wool, mohair, and hides and skins increased from K 1.5 million in 1970 to R3.2 million in 1972^{4}. This is of particular relevance to households in the mountain areas who draw a higher proportion of their income from livestock than is the case in the Lowlands and Foothills. On the other hand these latter two areas gain a high proportion of their household income from labour outside lesotho. Over this period, whilst the number employed in the mines has increased by about 13% from 1970 to 1972, voluntary deferred pay has grown from R2. 5 million in 1970 to K 4.7 million in 1973 and remittances from R2.1 to R4.0 million ${ }^{5}$. In addition to those Basotho who are employed in the mines appreciable numbers are engaged in other occupations outside lesotho and it is likely that they have also benefitted from the general increase in wages which has taken place in recent years.

It seems likely that these increases in farn income by way of higher prices for farm produce and greater earnings from labour outside Lesotho may well have raised average total rural household income into the range of R300-350. We have no information which could be used to stratify rural incomes on the lines applied to urban households but the evidence suggests that they are much more evenly distributed than is the case in urban areas ${ }^{6}$. Comparison with equivalent urban income levels (Strata 2, R200-499, with an average income of R342) would suggest an annual expenditure per household on blankets of R11.04. This assumes the same expenditure pattern for both urban and rural households. We do not however consider that this is a valid assumption. First, the average size of the rural

```
4
Annual Statistical Bulletin, 19/2, Table: 31.
5 Bureau of Statistics
6
I.B.R.D., op cit, p. 22.
```

household is greater than that of the urban, 5.27 persons as compared with 4.05 for sitrata 2 and 4.34 for all urban households. It is obvious that household demand for blankets is partly a function of household numbers, and figures given in Table 2.2 above provide some statistical evidence for this. In addition other factors are likely to result in higher levels of expenditure on blankets in the countryside as compared with the towns. Well over half the rural households live in areas which generally are colder than that of the lowland towns. In rural areas housing is less adequate and fuel is probably more difficult to obtain and certainly more expensive than in urban areas. Finally, rural society is undoubtedly more traditional in its dress than urban. One has only to move into the countryside to observe how much more common is the use of blankets as a form of apparel as compared with the more 'western' dress in the towns. Whilst the above factors clearly point to some modification of expenditure patterns in rural areas in comparison with the same income groups in towns it is difficult, without carrying out a detailed and expensive survey such as was conducted in urban areas, to decide precisely what adjustments should reasonably be made.

We have suggested above that the total spending on blankets by urban households in 1972/73 was R132,500. Assuming an average blanket price of R 5.50 this puts total sales at about 24,000 . If we accept that average rural household income in 1973 was in the range R300350, say R325, and, if we assume for these rural houstholds the same expenditure pattern as for Strata 2 of the urban households then total rural spending in blankets would be R2. 1 million, or 376000 blankets. However in view of our previous discussion we think we should assume a higher level of expenditure on blankets in rural areas ${ }^{7}$. It would

7 It is also possible that we should use a higher average price for blankets purchased in rural areas, partly because rural consumers may tend to buy a larger proportion of the more expensive types of blanket and partly because blanket prices may be higher in rural areas, but we do not feel that we have sufficient evidence on these points to make any realistic adjustments.
seem reasoriablo to suggest tr.4, with an averas household income of R325, annual speriding on kiankets would lie between R15 and li20. If we use the lower figure th i total mal expenditure would be R2. 13 millior, or about 500,00 blankets. Thi:s would mean that the total consumplion of blankets Lesotho would be about 525,000 . If we use the higher figure © ': h20 total mural sperding would amount to $[3.7$ million; the number in blankets to, 000 and total consumption to 707,000 .

2.1.4 llotal consumption - 'onclusions

We have atternpted to estimate the total consumption of blankets using three different methods. We ecoennise the weaknecs of much of the data used and we are conscion of the flailty of some of the assumptions we have been obliged to make. Our examination suffests an armual consumption of 900,000 using the statistios of imports; between 580,000 and 740,000 on the basis of tride information, and applying the income/ expenditure method a range bet veen 525,000 and 707.000. On balance we consider that the last two methods are the mont reliable and our judgement is that the annual msumption of blankets lies between 650 and 750,000 . For the purpos $;$ of the remainter of this study we shall assume a fisure of 700,000 . In money terns the annual value of this quantity of blarkets would be 24.5 million, assuming an average price of R6. 5 per blanket.

In this section we classify the blankets sold into a number of groups and detail the significant claracteristics of the blankets contained within each category. In over to further our study we select from each group one or more blankets which we consider to be typical or representative of that group. In subsequent chapters we use these 'representativel blankets as $+1 / 3$ basis for estimating fibre requirements and generally for examining the feasibility of blanket production in lesotho.

2.2.1 Classification of t.lnkets

The stock lis:t of the leading irading company in lesotho details about 80 different makes or sands of blanket and if all the size variations are included the 1^{i} sure rises to over 160 . Nor would this company claim to stock $a^{\prime \prime}$ the different blankets that are available. Clearly the rane of blankets on alo in The Kingdom is considerable. However ther may be classilied into four fairly clear groups - tashion blanket: Domestic blankeis, Travelling rugs and shawls, and Grey blankets. We examine each group in turn.

Group 1. Etashion blankets

These are scmetimes referred to as fancy, or Basotho, or tribal blankets but the term fashion is in common use and we shall refer to them as such. The vast n jority of the blankets used by the Basotho as wearing apparel al of this type, the balance being rugs and shawls which we discuss 1 diter.

Fashion blankets are generall: woven on Jacquard loons in powerful patterms and colour combinations often of double-weave construction giving a different colour on the side. The designs range from what appear to be fairly traditiors! patterns to modern ones incorporating aeroplane and gun motifs. New designs are introduced periodically both by the blanket manufacturers and by the leading trading company which has them made to its specification by the blanket producers. This trading company has a numer of registered designs, such as the 'Sefate', the 'Victory', and the 'Victoria' which appear to be in good demand and command appreciable prices. Certain of the more highly-priced blankets are kernly sought after by some buyers because of the prestige which appears $1 ; 0$ accrue to the owners of such blankets. In recent years some blankets !nade on plush looms have been introduced, such as the 'Sandringham', selling at R 55.00 but these form a very small part of total sales.

Almost without exception the r , bre composition of these blankets is stated on the label. Practi :illy all of then were made with a cotton warp. Some of the mor expensive types contained about 90% wool. The lower-priced quali ifes had a much reduced wool content, for example, the 'pitsent' will. 27% and the 'lilale' with 3%. The balance was made up mainly of mayon with some man-inade fibre, usually of an unspecified type.

The normal adult size for faction blankets is 150×160 or $155 \times 165 \mathrm{~cm}$. In the 'lilala' quality a rary of childreri's and maids' sizes is also made. Details of these are fiven later in this section.

The prices of the blankets rase from R7.2') for a 'hilala' (150 x 160 cm) to R29.00 for a 'Magician' or : 'Sandringham' at kj 4.00 . In between these extremes are the popula' 'Fitseng' or 'itandard' at around R10.50 and the 'Crown/Pitso' at about, R15.75.

We estimate that fashion blar ...ts account for abut 50% of the total sales of all blankets. The 'iilala' range forms about half the fashion blankets sold, or in "her words, 25% of all blankets sold. The 'pitseng/Standard' range $i \cdot$.. the next most popular forming 14% of the total sold. The 'Pit: ' meets (\% of the total demand and 5\% is taken up by the more exper: ! ve qualities and heavy blankets of the 'Mountain' type. We sumnari:s: below the significant features of the four categories of blanket that make up the fashion group.

The 'Lilaia'

Sizes $\quad 75 \times 80 \quad 75 \times 10085 \times 9010 \times 110110 \times 115115 \times 120130 \times 135.150 \times 160 \mathrm{~cm}$ Area per

blanket $\quad 0.10$| | 0.75 | 0.77 | 1.10 | 1.27 | 1.38 |
| :--- | :--- | :--- | :--- | :--- | :--- | Weight

 Weight per m^{2} - all the same at. 578 g Fibre composition - all the ese-3.2\% wool, 39.2% Rayon, 7.6% Cotton \% Sales of each
$\begin{array}{lllllllll}\text { size } & 14 & 4 & 14 & \because 2 & 16 & 11 & 14 & 5\end{array}$
Weight of one average Lilala ulanket - 0.72 kg
Share of total warket - 25\% equivalent to 175,000 blankets.

The 'Pitseng'

Size
155×165 m
Area
$2.55 \mathrm{~m}^{2}$
Weight per m ${ }^{2}$
551 g
Weight per blanket 1.48 kg
Fibre composition - Wool 27. $\mathbf{C l}^{\prime}$. Nylon 5. 1\%, Rayon 54.9\%, Cotton 12. 5% Share of total market - 14\% equivalent to 98,000 blankets.

The 'Pitso'

Size
Area
Weight per m m^{2}
Weight per blanket
$155 \times 165 \mathrm{~cm}$ $2.55 \mathrm{~m}^{2}$
563 g
1.53 kg

Fibre composition - wool 80.4\% Nylon 7.8\%, Cotton 11.8\%.
Share of total market - 6% equi.valent to 42,000 blankets.

```
The 'Mountain' types, etc. (Mre difficult to classify - these
                                in'e the typical dimensions)
Size \(\quad 150 \times 160 \mathrm{rm}\)
Area \(\quad 2.40 \mathrm{~m}^{2}\)
Weight per \(\mathrm{m}^{2} \quad 700 \mathrm{~g}\)
Weight per blanket 1.68 kg
Fibre composition - assumed to ne Wool 40\%, Other fibres, mainly
Rayon, \(52 \%\), Cotton \(8 \%\)
Share of total market - \(5 \%\) equi alent to 35,000 blankets
```

Group 2. Domestic Blankets

These blankets are used almost xclusively for sleeping purposes. They are usually produced in ploin pastel shades but invariably have one or two stripes of sor contrasting colour at each end. Looms equipped with dobby or c...-operated shafte are used to manufacture these products. ite a lot of different constructions are used, but the most common aie is a simple twill sometimes woven with two different sides i.e. a double-weave.

Domestic blankets are made in sout a dozen different sizes but by far the most popular are the si:gle bed sizes of $150 \times 180 \mathrm{~cm}$ and $150 \times 200 \mathrm{~cm}$. Prices in the $150 \times 200 \mathrm{~cm}$ size typically lie in the 4 to 7 fiand range.

There are probably about 35 to 40 different qualities of domestic blanket on sale in Lesotho but certain ones sell particularly well and can be regarded as typical of the whole group.

First in terms of sales comes the 'Mona Lisa'. Its size is 150 x 200 cm and it weighs 1.75 kg . In terms of fibre composition it contains, on a cotton warp, about 6% of wool, 2% of nylon, and 86% of rayon.
> 'Iypical of another popular gr"up are the 'Swallow', the 'Misty', and the 'Impala'. They are identical in size and weight to the 'Mona lisa' but have a sJirghtly different fibre composition.

Rru' "rative of a rather herier blanket is the 'Comfy', of the same size as those above, but veighing $2.1 k_{\xi}{ }^{\prime}$ per blanket.

Finally there are the acrylic blankets which have become popular in recent years and may be emwoted to increase their share of the market in the future. Inse contain 9% acrylic fibre, usually on a cotton warp.

We estinate that domestic blentets account for about 20% of the total market, equivalent to 140,000 pieces. Details of the four categories that we have discureed above are given below:

Whe 'Mona Lisit'

Area per
blanket
$3 m^{2}$
Weight per
blanket $\quad 1.75 \mathrm{~kg}$
Weight per $\mathrm{m}^{2} \quad 570 \mathrm{~g}$
Fibre composition \% Wol ú.2, Nylon 2.2, Rayon 86.0, Cotton 5.2
Share of total market - 10\% equivalent to 70,000 blankets

The 'Swallow', etc.

Area per
blanket
Weight per
blanket
Weight per m^{2}
Fibre composition $\%$ Wool 3.5, Nylon 5.0, Rayon 83.5, Cotton 8.0.
Share of total market - 4% equivalent to 28,000 blankets.

The 'Confy', etc.

$$
\begin{array}{ll}
\begin{array}{l}
\text { Area per } \\
\text { blanket } \\
\text { Weight per } \\
\text { blanket }
\end{array} & 3 \mathrm{~m}^{2} \\
\text { Weight per } \mathrm{m}^{2} & 2.1 \mathrm{~kg} \\
\text { Fibre composition } \% & 700 \mathrm{~g} \\
\text { Share of market total }-2 \% & \text { equion } 5.0, \text { Rayon } 89.0 \text {, cotton } 7.0
\end{array}
$$

Acrylics

Area per
blanket
$3 m^{2}$
Weight per
blanket $\quad 1.75 \mathrm{~kg}$
Weight per m ${ }^{2} \quad 570 \mathrm{~g}$
Fibre composition $\% \quad$ A~yylic 93, Cotton 7.0
Share of market total - 4\% e :"ivalent to 28,000 blankets

Note: All the above blankets re size $150 \times 200 \mathrm{~cm}$.

Group 3. Travelling rugs and shawls

These products are nainly used as wearing apparel particularly by female Basotho. Rugs tend to be worn round the shoulders in winter and be replaced in summer by shawls often tied round the waist.

Rugs and shawls are generally woven on looms with dobby or ex center shafts and consequently have erometrical patterns. Both products usually have fringes. In tho case of rugs these are formed from the warp yarns and hence ther are fringes on two sides only. Shawls of $t \in n$ have a fringe on : 11 four sides, as do a few rugs.

In terms of fibre composition rarying proportions of wool, cotton, and man-made fibres are used, with the rugs tending to be made of better material than the shavi:

Shawls are made in the folloving sizes: in m, 125×110, 150×125, 150×150, $150 \times 1(0$ and 150 . 165 , with the sizes around 150×150 being the most popular. Rue are available in a rather more ?inited range of sizes i.e. $150 \times 200.175 \times 225$ and $180 \times 230 \mathrm{~cm}$.

The prices of shawls vary frc: 184.00 to R7.00 whilst ruc prices show a much wider variation rangir from 85.00 to r 20.00 but with the bulk of products in the R 7.00 :O R11.00 range.

We estinate that rugs and shemis account for about 15% of the total blanket market, equivalent tc 105,000 pieces per arnum, of which half are rugs and half shawis.

We selected the popular 'Welwi schia' shawl as being typical of its category, and our representat e rug is based on a 'Waverley' product. Details of buth of these are riven below:

Travelling liug

Dimensions	$150 \times 2 \mathrm{~cm}$
Area	$3 \mathrm{~m}^{2}$
Weight	1.7 kg
Weight per m^{2}	550 g
Fibre composition	$\% \quad$ Nool 85.00, Nylon 15.0.
Share of total market $-7 \frac{10}{2} \%-$ equivalent to 52,500 blankets	

Shawls

Dimensions
Area
Weight
Weight per m^{2}
Fibre composition $\%$ (re-used) 57.00, Acrylic 43.00
Share of total market - $7 \frac{1}{2} \%$, duivalent to 52,500 blankets

Group 4. Grey blankets

This catefory comprises grey and cot,tor blankets and the emphasis, in this section of the marke', is on cost. I're blonkets, in various shades of grey or br"n, are made from the cheapest materials available. The warp is cot'a, though in some cases tais may include some rayon to lower tie cost even furtiner, and the weft is likely to be made from cheap layon or man-made fibre waste.

There are probably twenty to 'wentyfive different varieties of grey blanket on wale irl lesotho. They are made in the following sizes (in cm), although 150×180 and 150×200 are the most popular.

| 110×120 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Prices vary from about R 2.00 t) about 15.00 although there are a few types lying outside this raņ' ${ }^{\prime}$.

Grey blankets account for abrist 15% of the total blanket market in Lesotho, equivalent to about 195,000 pieces.

We cons 1 der that the 'Super Crey' blanket is fairly typical of this section of the market and details of this product are given below:

Grey blankets

Dimensions	$150 \times 200 \mathrm{~cm}$
Area	$3 \mathrm{~m}^{2}$
Weight	1.7 kg
Weight per $\mathrm{m}^{2} \quad$	570 g
Fibre composition	$\% \quad$ Nylon 4.00, Rayon 88.00, Cotton 8.00
Share of total market -	15% squivalent to 105,000 blankets.

2.2.2 Sumary

In l'able 2.4 below we sumari:" our classification of the blanket market and we also give our $\epsilon:+$ imate of the average prices of each category and for blankets as "whole.
'rable 2.4 Classification ut the blanket mu'set and estimate of average prices

Groler	rket share		Fstimate of average price kand
	\%	1000	
1. Fashion lillala Pitseng Pitso Mountain etc	\%)	175	4.00
	14	98	
	6	42	12.00
	5	35	15.00
	50	350	8.30
2. Domestic 3. Rugs and shawls 4. Grey	20	140	5.00
	15	105	7.00
	15.	105	3.50
	100	700	6.70

We obtained samples of the representative blankets. These were tested and the laboratory report is included in Appendix A as Table A. 15 .

2.3 Trends in consumption and future developments

We were asked to show any apparent trends in blanket consumption and to forecast any likely future developments.

2.3.1 Trends in consumptin

There is not sufficient reli ble data upon which to base any detailed doscription of past rends or any confident forecast of future consumption. Our investigations, in particular our discussions with traders in lwsotho, would not sugeest any sienificart trends in recent rears. There appears to be some consumer resistance to the ront increase in the prices of blankets and this undoubtedly will have some elfect on the total sales. Giver the lack of data it is impossible to say kow great this effect will be, bit it seems reasonable to assume that the demand for blankets is relatively pricu-inelastic, and therefore the fall in salm will be samll.

With regard to the future denand for blanicts we do not anticipate any fall in total demand in, $r y$, the next decade. The population of Lesotho is increasing at at out $2.2,0$ and we do not expect any of the factors which have caused istagnation in the blanket market in developed countries to operat. in Lesotho in the foreseeable future. In ten years time lesotho will still be a country of extreme temperature variations; the majority of its population are still likely to live in the rural areas and fuel will 'till be scarce ami probably even more expensive. All these factor will tend to maintain the demand for blankets. On the other hand it seems almost inevitable that there will be some decline in the wearing of blankets as more Basotho adopt western-style dress. However, given the importance of the blanket in the culture of Lesotho, we would not expect this trend to have any significant effect on total consumption in the near future.

2.3.2 Future developments

We have given our views above cn the future demand for blankets. We are concerned here with the product and techrological aspects of change.

8
Annual Statistical Bulletin. 1972, Table 85.

A fairly recent development has been the production of blankets on plush-type looms. These blersets have had a iaixed reception some selline extremely well . . sthers very pooriy. At present they occupy a very small part of t! market and although we think it likely that their share will icrease somewht in the future we do not anticipate that it will ever las large.

There appears to have been a liirly rapid increase in the use of acrylic fibres in blankets in he last few years. Acrylic blankets for domestic use have becomic mpular and increasing quantities of acrylic fibpe have been used in apparel blanket;, largely at the expense of rayon and some nylm. We do not think that the use of wool, either virgin or re-use"l. will decline as some kind of moistureabsorbing material is essenti:al to make a blanket comfortable to use. This increased use of acrylic: does not raise any particular technical problems as these fibres can th processed on the same machinery as is used for the other man-made filres.
2.4 Distribution of blank:'s

The distribution of blankets i: Lesotho is some what complex. The wholesale trade is doninated hy four large fims, three of whom have their headquarters outside Lesotho. These four firms have wholesale depots within the country and probably account for about 75% of the wholesale business. In addition other wholesilers from outside are active within the Kingdon. Firthermore sonc of the larger retailers are able to buy direct from the blanket manufacturers and thus by-pass the wholesaler. All these surplies enter fesotho by a variety of routes. Some are delivered from depots in the SACU to wholesale depots in lesotho for re-distribution to the retail section. Others are delivered direct to the retail trader from depots in towns just across the border, such as Poniesburg, Hicksburg, Weperter, etc. Finally some blankets move by various chanmels direct from the manufacturer to the larger retiilers.

The main fusction of the wholsale firms is, of course, to supply the retail traders but some of themalso operate otores and trading stations lealine direct with the consumer. for example the largest trading company has eleven wh: esale depote, three of which are in lesotho; one hundred and sis: fretail outlets, fifty of which are in lesotho and in addition seres over ore thousard traders. These figures indicate not only the mxtent to which his company is involved in the retail side but illustrate the fact that most of the company's interests Lie outside lesotho. Ihis is true of three of the four large wholecale firms. In atier words these companies have a welldeveloped distributive organ ation goine far bejond the boundaries of Lesotho.

This bricf review of the distribution arrangements in Lewotho tends to confirm our view expressed in Section 1.3 that it is easier to supply the Country from a nums of points lathar than distribute from one or two depots. Thi: situation and other facturs sugeest that, should a blanket factor, be established in lesotho, then there would be much to be said in 1: our of it using the established distributive system provided n, the present, wholesaiers. They have considerable knowledge and exmerience in thic field. They distribute blankets alonf with other goch; thus reducine transport and other cosis, and, very important, they have access to wider markets outside Lesotho.

2.5 Costs and prices

2.5.1 Costs, wholesale and retail prices and margins

Table 2.5 shows the cost, and the wholesale and retail prices and margins of a selection of blarfets. It is based on information obtained from a variety of sources. The cost refers to the price charged by the major supplier lor blanketis delivered to the Lesotho border. Jhis supplier only acepts large orders upon which he gives
a discount of 10%. The wholesale margin is the percentage mark-up on this lower price. The rotizil price is the price at which the blankets are sold in the lowland towns.

The wholesale margin on cost :aries from 4 to $1 \boldsymbol{J N O}_{\prime \prime}$. If we take into account the chare of the diffisent groups of blarikets in the total we estimat: the average mark.up to be about 9,

The figures in the table shor a retail margin ranging from 35 to 44%. This latter figure is somewh exceptional. The typical range for all blankets is from 35 to $4{ }^{\prime}$. the mark-up varying because of the need to have a convenient selling price based on a multiple of 25 cents, or the desire of the retailers t. establish a range of appropriate prices over a number of sizes or que i ties. The only prominent exception to the $35-40 \%$ margin appears j : the fashion blankets. Here the cheaper blankets tend to have a large: margin than the very expensive types e.g. the small Lilala sizes win a retail price of between h 2.25 and 134. 75 have a mark-up of just \cdots er $40, N$ whereas the Magician, the Sandringlam, and the Victoria "etailing at R29.00, R34.00 and F26.00 respectively have 20 to 25% a ed to the wholesale price.

If we combine the wholesale ant retail margins we get a total mark-up from cost to retail of 40 to 5%. We do not consider that this overall margin is unreasorable.

Tabte 2.5 Costs, whole:; and retail prices of blankets and margins. 1 ices in Rand.

Type of blanket	Size	Cost		Wholesale		Retail	
	cmi	Mil	Less 10\%	Irice	$\left\lvert\, \begin{gathered} \operatorname{Mar}_{6} \sin \\ \% \end{gathered}\right.$	Price	$\left\lvert\, \begin{gathered} \text { Marein } \\ \% \\ \% \end{gathered}\right.$
P'achion							
lilala	150×160	5.19	5.13	5.35	4	7.25	36
Pitsents	155×165	7. 0	6.60	7.55	14	10.50	39
litso	155×165	11. 0	10.08	11.50	14	15.75	37
Major	155×165	6.12	5.51	勺.18	5	7.95	37
Domest.ic							
Mona Lisa	150×200	3.15	2.84	2.97	5	4.00	35
Swallow	150×200	2.12	2.54	2.69	6	3.75	40
Misty	150×200	3.17	3.13	$\therefore .28$	5	4.50	37
Itrpala	150×200	4.0	3.78	4.04	7	5.75	41
Demon	150×200	5.40	4.86	5.05	4	6.75	34
Harcot (Acrylic)	150×200	4.23	3.80	4.38	15	0.15	40
hues							
Waverley	150×200	6.20	6.12	¢. 98	14	9.75	40
Eme	150×200	14.50	13.05	14.65	12	20.25	38
Shawls							
Welwitschia	150×160	4.15	3.75	4.23	13	5.75	36
Kalahari	150×150	3.70	3.33	3.78	13	5.25	39
Traveller	125×110	2.75	2.48	2.81	13	3.95	40
Greys							
Super Grey	150×200	2.3	2.15	2.42	12	3.50	44

2.5.2 Hecional price var tions

The prices of blankets appearel to be fairly uniform in the lowland towns. The leading trading mpany informed us that their policy was to charge the same pricer for blankets in all such areas. In any case in these urban arear there are suifi.ient numbers of outlets to ensure that competition kros prices at reasorable levels.

We were informed on a number occasions that prices were much higher in the rural areas, ant particularly so in the more inaccessible regions. Time did not permit us to investigate this matter fully but we did visit fokhotlong. : :mall town in the mountains, in order to compal prices there with those in Maseru. The results of our findings eregiven in lable 2.6 below.

Table 2. A comparison of blanket priced in Hokhotlone and Maseru

Type of blanket	Price (Rand)		\% Inifference Mokhotiong over Haseru
	Moktw,long	Maseru	
F'ashion			
Pitseng	14.90	10.50	+ 33
Sefate	21.50	17.50	+ 23
Sandringham	36.50	34.00	+ 7
Pitso	16.15	15.75	+6
Victory	16.00	16.50	- 3
Lilala 150×160	7.00	7.25	- 3
100×110	3.00	3.50	- 14
Standard	9.50	-10.50	- 9
Domestic			
Demon	6.00	6.75	- 11
Cornoisseur (Acrylic)	14. 15	14.15	+ 4
Shawl			
Kalahari	5.10	5.25	- 5

It is difficult to draw any fim conclusions from this limited data. First, our visit took place at the end of the main blanket selling season. Stocks werw clearly at a luw level and possibly some prices reflected ceasonal adjustments. It may also be that Mokhothoner is not typical of the remoter regions, for the presence of at least four stores in the town ensured a lair degree of competition. However, accejting these qualifications, the data does sugeest that generally it higher-priced blankets appear to be dearer in the mountains ar compared with the lowlands and the cheaper ones appear to be sel ing at lower priues as compared with Maseru. We were not able to investigate the reasons for these differences but it seems like 1% that the traders recognise two sections of the warket. In the one containing the high-priced fashion blankets they can inc"ase their markira. (Erestige or scarcity factor: are importar: in the case of all the first four blankets listed above) but in the sect.! on containinf; the cheaper products they are obliged, because of the ret, ure of the dermad, to accept lower prices.

Our investigation of regional price differences was very limited. We were not able to determine if i,he pattern found in Mokhotlong was typical. However, given the lifficulty of commurication in many parts of Iessotho and the monc "ly position which many traders must of necessity occupy in the renoter areas, it would seem almost inevitable that prices in thes areas will be well above those prevailing in the lowland towns.

2.6 Present sources of supply and the market for blankets in the SACU

There are three reasons why it is necessary to examine in some detail the present sources of supply of blankets to Lesotho and the market for blankets in the SACU.

First, it is not likely to lw in the economic interests of Lesotho to produce blarkets unless hey can be manufactured at the same or lower cost than those of present suppliers. It is indeed one of the ceritral tasks of this sinly to compare the estimated costs in Lesotho with those of current, producers, and as part of this process we need infumation about tre latter. Some of this we provide in this section.

Second, we have to see the rasibility of producing blanisets in Lesotho in the context of tre total blanket mirket of the wACU. Production of blankets in Le:ntho will add to the total supply of blankets to this market. H... big this new slice of output is in relation to the total market ill determine the extent of the market adjustment required. Clearly, for example, if the output from Lesotho was a lare proportion of the present total output the market adjustments required in term of reductions in price or output, or both, would be greater than it the new output was a small proportion of the precent total. Information is therefore needed about the size of the present market and about the number and size of firms supplying that market, for the structure of the industry may have an important bearing on the rea: ion of establiched firms to the new entrant, i.e. the producer i.i lesotho.

Third, it is not possible for one mill to meet the blanket needs of Lesotho and simply concentrate on the requirements of that market. One mill could not economically supply the variety of blankets demanded and even if it could do so it could not hope to take the complete market from establirhed suppliers. in mill in Lesotho will have to limit its range of products and sell sone of its output in the comestic market and the blance in other countries of the SACU. We therefore need information on the blanket market in Southern Africa.

2.6.1 lresent cources of duply - the blanket industry in the andu

Almost all the blankets consmed in Lesotho are marmufactured within the shcu. There are : few blankets on sale in lesotho which are made in lingland but these form a minute proportion of the total.

The total output of blankets ia 1973 from firms within the SACU was 12.7 million. The indur ${ }^{\prime}$ y consists of 3 tirms operating 15 plants in total ${ }^{9}$. rhree o: the firms are extremely suall employing lears than 100 persc: each, so the buik of the industry consists of y firms comprisir 12 mills with a total employment of about 8500. the industry is tominated by the Frame Group of companies which cortrols 8 of ihe 12 establishments referred to above and is responsible for anout $y 0 \%$ of the total output. In addition it has blanket mills in Malawi, Hhodesia and Zambia. It is reputed to be the largest "irm of' blanket mandacturers in the world. The bead of the Fran Group, Mr. Philipp Frame, has a very considerable reputation withju the $\$ \mathrm{BCU}$ ass a tough and shrewd businessman who does not ligr !!y tolerate any developments which threaten the established posi :on of his companies. In this connectior, and of interest t, our purposes, is the announcement that Pep Etores, who operate ?out 210 stores in the SACU (including one in Maseru) are about to stirt blanket production ${ }^{10}$. The plant, to marnfacture about 1 millicn blankets a year, is expected to be completed in July 1975 and reach full production in 1976. The blankets will initially be soid through the group's retail outlets, with the possibility of selling to other retailers at a later stage. It is many years sirce a new tirm of this size has entered the blanket market and there is much speculation in the MACII as to what the reaction of Mr. Frame will be to this new venture.

9 The sources of this inform tion are: The Industrial Census, 1967/68, and the Bureau of Market Rwearch Industrial Directory.

10 'Will Frame respond to Pep': blanket venture'', Southem Africa
Textiles, Johannesburg, Au, ist, 1974.

There is no reliable informet ion on the number and types of machinery and equipment in ire. Such informstion as we have suggests that the majority w the weaving equipacht is ofd but some re-equipment has titen place very recently, includine the installation of a number of wide shuttleless weaving machines.

2.6 .2

The blanket markel in the aACU

I'able 2.7 whow the productin of blankets in whe SACU from 1963 to 1973. There are some impori:: but these are relatively smal1 ${ }^{11}$ and for our purposes we can rega : these production figures as representine the total market.

Examination of the total fig"es shows that, whilst there have beer considerable fluctuations fro year to year, the average annual rate of growth has been just under 5% per annum. 'she indications are that the period 1974 to 1976 will e one in which domerd will stagnate, with some fall in consumption in 1974 and 1975 ard slight growth in 1976 .

The output of the blanket inllistry has expanded steadily over the years to meet the increasing ymand. There is no shortage of capacity in the industry. In fact at the present time there is evidence of erowing under-utilisation of machinery because of the slowing down in the rate of rowth, or even docline, of the market. We should note here that the entry of Peps Stores in 1970 with an output of about 1 million blenkets will further widen the gap between capacity and demand.

We were not able to carry out a detailed survey of the market for blankets outside Lesotro but in relation to our study the following two points are relevant.

11
The import tariff on blanets is 25% ad vit lorem or between $\frac{1}{2}$ and 11^{2} cents per pound (dependint on fibre composition) whichever is the higher. It is believed that his is to be raised in the near future.

Table 2.7 Production of b! nkets in the Siouthern Africa
Customs Union. 1000 blankets

Year	Wool	Wool blend.	Cotton \& Fayon Mixtures	hayor	Others	Total
1963	245	711	3500	260%	333	7392
1964	317	863	3436	267	938	8263
1965	341	918	4125	3140	986	9510
1906	340	1141	4081	3514	620	9690
1967	307	1485	3925	3987	541	10332
1968	378	1201	3374	4279	610	9848
1969	515	1388	2959	4827	1077	10466
1970	709	1575	2624	4268	1124	10300
1971	926	1899	3465	4155	994	11319
1972	770	1894	3956	4277	906	11803
1973	260	1918	4473	4935	1081	12722

Source: Quarterly Bulletill of Statistics. Pretoria

First, in general the types or blankets bournt outside Lesotho are the same as those consumfil within the country. This is certainly truc of the donestir: and grey types. The typical Basotho blanket i.e. the faskion type, is not widely purchased in other artas of the SACU bul there is a food demand for such blankets from Africans livine in areas adjacent to hesothc and from Basotho who are working in other parts of the gacu.

Second, it is clear that manj of the bier buycrs of blarkets, such as the retail chains and the '"ading companies within the sAcU, are dissatisfied with the policic: pursued by the major blanket producer and would in principle welcon" new sources of supply. We should not conclude from this that thm market for blankets would be 'easy'. Hven assuming that amill in Lesotho could compete on price and quality it would oril:. be able to supply a whall proportion of the needs of these buyers ether in terms of the quantities or types of blanket required. In these eircumitinces the monopoly supplier misiot well put pressure on the buyers by threatening to restrict suppies of other blokets to them unless they confined all their purchases to him. In the other hand some of these buyers purchase appreciable proportions of the supplicris output and may well be able to resist such frissures. The success of a mill in Lesotho will cleerly depend to some extent on the reaction of the established major producer. Where are a number of possibilities and we return to this matter in Chapter 4 when we discuss the basic question of feasibility.

Chin PTER 3

2.7 Conclusions

We have examined the market for blankets and related matters. Our main findings are, that the amal consumption of blankets in Lesotho is of the order of 700,000 pires; that these are mainly supplied by one manufacturer who dominate: the blanket industry in Southerm Africa, and that there is a very lare market for blankets outside lesotho in other countries of the SACU.

Our conclusions are that a mill in lesotho must regard its total market as that of the SACU and not be exclusively concerned with domestic dematu. As we have lready said above one mill could not economically supply all the v iety of products required in Lesotho, nor even if it could meet thal requiremert, could it hope to completely take over the market from exis'ing manufacturers. The major market difficulties facing a mill in esotho are the presence of a dominating supplier, uncertai: ly about his reactions to the entry of a new producer, and the prylems associated with the overcapacity which is likely to evist in the blanket industry during the next few years.

Abstract

In this chapler we give infor ation on the resources which are required for the production of olankets and examine the availability of such resources in Lesotho. Section 3.1 discueses blariket production in general, dealir, with the raw materials required, the technolugy involved and 1% economic aspects. In Sections 3.7 to "." we look at the sitnuion in lesotho and consiter raw materials, hunan resources, services, etc. Section 3.10 deals with location.

3.1 Blanket production ir eneral

3.1.1 Haw miterials

Before the advent of synthetjr: wool was the main raw material used for the manufacture of blanke \because. In the industrially developed countries this was predominarily cross-bred type wool. It was either local or imported, ustaly from South Aimerica, and had a fibre diameter of around 28μ. Wool of this diameter will give a fairly soft blanket with a ruringy, airy texture. In developing countries local wool was alsc ised but this was of ten coarser in diameter.

Virgin wool has always been a fairly expensive raw material and often re-used wool and cheaper fibres such as cotton were (and still are) used in order to reduce the price. These cheap blankets were often woven with a cotton warp and λ coarse woollen spun weft of low quality.

With the introduction of remerated and synthetic fibres, this type of new raw material he': come to be used in blanket manufacture. Low nuality, 'yon is mixed with a small proportion of wool, acylic (polyacrylnitrile) fibse, nylon or similar material to make cheap blan \quad ts. liayon can also be used in the warp yarn, either mixed with cotton, or by itrelf. For donestic uses blankets of 100% acryli, fibre in the weft are used more and inore.

Thus wool is not necessary ! r producing blankels, but even in rather low cuality blankets here is usually a small p:oportion of viregin or reclaimed wool in order to introduce a springiness to the blanket and give it in open and airy texture. The crimpiness of the wool fibre. which is retained after washing, will make a blanket with a juportion of woul, less heavy and compact, leaving it lighter. Cuffier, and softer to the touch.
3.1.2 Trechmology

Blankets are fenerally wover fabrics and are consequent 1 y manufactured by combining tho systems of thseads, warp and weft. As we have sald above, befor synthetic fibres came to ke used as spinning material, wool was the usual raw material for both warp and weft. This is still tho case for very exclusive and lightweight blankets. The main bulk of blankets is today made with a very fine warp yarn mostly of cotton or synthetic fibre. The weft is much coarser and can consist of wool, mixtures of wool and synthetic or rayon fibres, or entirely of the two latter types of fibre. If rayon is used it is generally mixed with a small percentage of synthetic fibres like nylon, polyester or acrylic fibre. The fibres used are not necessarild virgin or new and of ten the spinning material for the weft yarn i : oade up of reused material, steming from rags, waste from other f'sesses, etc.

Cotton yarns need to be proded on a large scale in order to reduce the cost. Ience a blinket maruffacturer will normally buy his cotton warp yarns fros specialist cotton spirming companies rather than produci:g them himself.

On the other hand, the weft $\because \because r n$ should be prodnced by the blanket manufacturer. The whole ec \cdots omy of making the coarse weft yarn necessary for blankets lies in the skilful blending of raw materials. The marrufacturer must make a lend which, thourh using cheap materials, will still produc a yarm that is strone enough and good enoush to make a blanket, of acceptable quality and at the appropriate price. The subr quent procewses of opimineg and weaving need to be carried oll as economically as possible but they are rot as important for successtul blanket minufacture as the initial selection and mi : ng of raw materials.

Yarris for blankets are gener:" ly spun by the wollen spinning system. We disregard in this context arp yarn of cotton. In the woollen system the components of raw interis ls used in the blends are mixed either by hand, or in (.) antries with hiqu wages, by fairly complicated and expensive mi: " 1 E machinery. in a country like Lesotho it will not pay to us: blendinf mechinery of this type for two reasons:

1. Any blanket mill we can foresee in Lesotho is too small for an automatic blending unit.
2. The wages in Lesotho are low and it is cheaper to make the blend by hand rather than by mitchine.

After the blending the material is put into bif carding machines and in the carding a number of things happen to the raw material. The ard consists of a number of erlinders covered by so-called card clothing equipped with a lare number of tiny pins. Between the
surfaces of the cylinders, wilich have a differont surface. speeds, the material is opened up, firres are made praliel and to a certain extent mixed. The riterial will emere from the last cylinder ats a fine web of par llel iibres. In tho woollen spinning eystem this web is $/$ vided into atrado by a device at tached to the carding mach:le called a tape condenser. The carding web is consequently itivided into a number of equally wide and heavy strands which are \because und up to a kind of crosswound package which is used as a yarn or r, ing in the subsequent spirning operation.

The spinning is done on conv "tional spinning frames and because the yarr is fairly coarse th. bobbins produced on the spindles are feirly big. 'The bobbins ca: oe used in the witaving department, with or without rewinding, dependi:s on the type of weaving machinery employed.

Cards used in the woollen s.: cem are very expencive, and it is essential that these cards an used on three shifts and at the maximum production per machis: hour in order to reduce the cost of the yarn. A modern card ill produce about $100 \mathrm{~kg} / \mathrm{h}$ and consequently it is of importi: :se that the production in a woollen spimning mill is proportional to a multiple of this production.

The spinring frames used in tio woollen manufacture are also very expensive. Every ring spinning frame has a number of spindles, and this number can be adjusted to suit the production of yarm per hour. If the number choren is such that all the spindles are fully occupied for three shifts; then capital costs per kg of yarn will be minimised.

The weaving of blankets is a f'itirly straightforward process. Ordinary shuttle looms are used. The only difference from ordinary looms found in other trades of wool menufacture is
that shuttles with big solid rops are used in blanket loons, making these machines fairly :low producink, Blankets are generally woven as plain wean's, or as twills. [f a blanket with a different colour on thererse side is required, then simple two-weft cloth constrmitions are used. Very of ten blankets have bié patterrs, al if a nulti-colone patterm is required, a loom with shutthe boxes on each side of the reed is necessary. Such fabrics ine characterised b_{y} a chasipe of weft yarn lor each single wett thread being inserted into the fabric.

Today, fabric making machine niher than the ordinary shuttle looms are available for blanket mannacture. There are a number of different types of shattleler looms, which are characterised by a special weft inserting arrersement. The weft is drawn into the warp thread shed by other neans than by a shutile. As the inertia of the whuthe is the ain reason for the low speed of the shuttle looms, these 'shul ile-free' looms work faster. Dependint on construction, mown types of weavine machines are divided into rigid-rapier loc';, flexible-rapier loons, and gripper-shuttle loons, just thmention the mos l commonly used types.
'Shuttle-free' looms are much nore expensive, but more productive than shuttle looms. The choice between the two will largely depend on the cost of labour. In countries where labour is expensive then 'sr'attle-free' Looms will give lower production costs. Where wages are low the situation is reversed.

A disadvantage of modern shuttle-less weaving machines is that true selvedges are not formed. Tho selvedges are usually not stable enough to be used in the finjshed blanket and consequently blankets made on moderm machinery have lo be bound, by means of a tape or a ribbon, which is folded alon ξ, he edges and stitched. On very cheap blanketis, this is an eytia cost to be considered.

The preparation of warp and vect before weaving will offer no technical difficulties. The varping can be matc on an ordinary warping machine of the norma: type. The weft preparation, in the case of solid cops, is me: 1 ? on quite normal cop winding machinery.

It should be pointed out that, dany blankets nave a bige, complicated pattern, which cannot be procnaed by using shatti in the loom. In this case a jacquard machine "ust be used in order to give the shedding neces:ary for these ...mplicated patterms. Because the blanket weave is of fairly ccinse construction onty a fairly cheap jacquard with a restricted $s: 3$ is used. HVEH so, jacquard patterns are a little more ex ponsive to produce than plain patterms, obtained by using shafts for the warp shedding.

I .. finishirg of blankets wi]; differ widely depending on the quality the blanket. Very expens ire, all-wool blarkets will ha'e a fairly complicated finishing locedure. 'Ihe very cheap blankets on cotton warp ard with a ver: low quality wert might just be given a steaming with or without py . rious raisirg.

Nomal blankets, as sold in lusotho, will need to be finished by washing, drying, some form of raising, and by steaming. The washing is generally done in order to remove impurities and to relax the blanket. The raising wi?: add a certain amount of nap which is needed in order to produce wasmth and give the blanket a soft surface. In steaming the blankets are treated in a machine where steam is blown through them and they are brvolied at the same time by roller brushes. This will ultimately give a certain amount of 'set' to the blanket and reduce shrinkage in housthold washing.
3.1.3 the economic aspect.

In Section 3.1 above we ha: discussed in eencral terms the raw material sidu of blanket prowetion and in Section 3.1 .2 we have outlined the teehnology invol ed. Here we consider the economic aspects and in particular the question of the economic scale of blarket production. Those vitters are of comern to us in that we have evernbually to docide in the scale of output for a blanket mill in lesotho.

We can look at the problem br comparing the costs for different sizes of mill. From the ternical point of view the production of blankets requires at least one carding machine plus the equivalent spinuing spindles and loons. (In addition we require appropriate dyeing and finis:ig equipment). A large mill will simply be a multiple of the 'aller mill. Ihere wi'l be no charge in technoloy and provided $t \cdots t$ there is a correct balance between the different types of machi: $r y$ then the costs of production will not differ between mills of liffcrent sizes. llowever a large mill will gain economies over a surll one in a number of ways. It will be able to reduce costs by pusessing lareer batches of material thus cutting down on changeo: r time, etc. and permitting greater specialisation by personnel, machincry, and departments within the mill. Overheads can be sprtal cver a greater output and both raw materials and other supplies can be bought at lower prices. Some of the above advantages will te even more marked where a firm operates a rumber of mills fur it will then be poseible to concentrate production of a limited number of qualities in each of the firm's establishments. Mills producing a few products, each in some quantity, are much easier and cheaper to manage than those that make small quantities of a wide variety of qualities. It should be noted that many of the above advantages fained by the large mill are based on its ability to process large quantities of material. Where this is not possible, sy because of market considerations, then the small unit will be able to compete on more equal terms with the larer one.

It is not easy to quantify the costs of production of blankets at different scales of outjut. A fairly recent study sugeests that the maximum econcmies in the spinnine of woollen blanket yarris will be attained with on output of about $5500 \mathrm{k} \mathrm{k}_{5}$ per hour. At half this output, 2750 kr . then costs would be about $2 \mathrm{~s} u \mathrm{up}$, at 1200 kE about 7% up, anc st 800 kE about $14 . \%$ higher. The position is similar with $r E_{i \prime}$ rd to weaving though the advantages of large seale production aw less manked. If we conbine spinringe am weaving and in: k in terms of mumers of blankets then the position is probabl: something like lhis. The lowest costs are ε iven with an out\%t of about 7 million blankets a year; at ball' this scale, "sts increase by ? to ly; around 1 million coste are up by 71010%, and at 5 to 600,000 they are likely to be 15 to 20% abov the minimum possible. We should note that these fieures relato purely to protuction cosis. They do not inelude any allowance for the buying alvantages that a large mill may have. We should aiso remember that the estimates relate to modern mills in Europe, and whilst the foneral pieture presented is likely to be the same in couthern Africa, we should not expect detailed contormity.

Before we consider the size if mill to be established in Lesotho it is interesting to look at thr sizes of mills currently in operation in the SACU. We have emplorment figures for these mills and, assuming that output is related proportionately to the numbers employed the following is tho approximate position with regard to size of output.

1
National Economic Developaent Office, Ihe strategic future
of the Wool rextile Industry, H.M.S.O. London, 1969.

The largest mill produces arond 4 million blankets a year. There are four establishment: making around 1.2 willion each; two with 1 million each; three with 800,000 etch and two each producine too,000. Thus the are no mills in Southern Africa likely to have the very lowe I cooti. Compared with the largest mill, producinf; around 4 mil! :on blankets, a mill producing 1 million is likely to have $a \quad$ or 4% cost disadvantage and a mill making 5/000.000 blankets on of 13-14,

With regard to the size of $m: 1 /$ for lisotho we nave decided to assume at this stage that it iill produce about 100,000 blarikets a year and in all our future cilculations we shall use this figure. An output of this size will rable us to have a balanced mill in terms of machinery and equiprost. The capital cost will be around R 2.2 million. We appreciat that a plant of this size is likely to be at some cost disadvanten compared with much larger urits but generally we think Lesotho shilld, if possibie, start in a relatively small way and if feasible gro. later. We return to this question of size in Section 4.5 when we consider feasibility. We shall then consider the possible effects of changes in the size of mill.

3.2 Faw materials

Assuming an output of 600,000 hlankets a year and a composition of qualities based on the present Lesotho market the annual raw material requirement. will be $950,000 \mathrm{kr}$. The breakdown of this total is given in Table 3.1
Table 3.1 Anrual consumption of raw materizle for a mill procucinã 600 ，oco blarisets

Groun	Que？ivy											
		Total 1006 こe ／year	$\%$									
			Wool	N－T－	Farror．	Acm－2in	Cotar	1200	aylor．	Fanon	Acrolio	Cotion
1．Fashion blankets	1．1 Lilaia 1.2 こitsenE 1．3 Pitso	130 149 66	3.2 27.2 80.4	5.1 7.5	89.2 55.2 -8	－	7.5 12.5 11.8	4.2 40.6 52.1	-6 5.6	115.0 82.2 -8.	－	9.3 18.5 7
2．Domestic	2．1 Mona Lisa 2.2 Ewallow etc 2．3 comfy etc 2．4 Acrylice	12 42 21 42	6.2 3.5	2.2 5.0 5.0	86.0 83.5 83.0	- - -83.0	5.2 8.0 7.0 7.0	｜c｜c $\begin{gathered}-7 . \\ 7.8 \\ 1.5 \\ - \\ -\end{gathered}$	- 2.3 2.0 1.0 -	2.0 108.8 35.1 18.5 -	- - - - 39.1	4.0 6.6 3.4 1.5 2.9
3．Trave：1－ in \tilde{E}^{2}	3.1 Fuas 3.2 Shavle	98 38	25.0 57.0	15.0	－	43.2	－	79.2 21.7	12.8 -	－	－	
4．Greys								－	7．－			1.7 .7
Total		9ここ	24.1	4.2	58.4	5.9	7.4	ここ？ 1	39.5	55.6	53.4	70.7

$Y=$ all cotton is in the form of 2－fold yarm
3.2 .1 Wool

Table 3.2 below gives details of the production of wool in Lesotho in recent yedrs and Table $3 . \%$ shows the production by district in 1972/73
Table 3.2 Wool productior :n lesotho

Year	Bales Mumber	WE int	Sales value M hand	$\begin{gathered} \text { Average } \\ \text { price } \\ \text { c/kg } \\ \hline \end{gathered}$	Clean yield
1959/60	20,623	3, ćy,000	1.1	50.2	30.0
1964/65	2r, 130	3,7.11,000	1.1. 1	41.9	37.7
19(1)/70	31,295	4,5 , , 000	1.22	35.4	35.0
1970/71	27,761	4,1\%,000	0.96	23.1	n.a.
1971/72	23,904	3, $6, \cdots, 000$	3.53	96.2	n.a.
197.3/74 ${ }^{1}$	21,858	3, $0 \cdot 000{ }^{2}$	$2.85{ }^{\circ}$	93.2	38.7

Source: Wool Board, SACU

1. Preliminary according to 15 pools
2. is poois (Pool 152-168, ; trading types)
3. First payment R 1,548,87 : second payment not noted (75\%)

Table 3.2 Wool production by district - 1919/73

District	Weight kg	$\%$
Mafeteng	192,000	5.2
Maseru	$1,045,000$	28.4
Mohaleshoek	214,000	5.8
Quthing	217,000	5.9
Quachas Nek	544,000	14.8
Leribe	567,000	10.0
Buthe-buthe	377,000	10.3
No:hotlong	220,000	6.0
Unallocated	498,000	13.6
	$3,675,000$	100.0

Source:
Woot Board, SACU

The figures eiven above for the production of wol are based on levies paid to the Wool Board in the SACL and must be treated with reserve. Communicatios:: in many parts of lecotho are poor, especially in the mountainous zasterr parts where there are no truck-roads, and quite a lot.. the chip is transported over the border on pack horses.

This quantity is not covered in the statistics of the Wool Board. Another estimate ${ }^{2}$ gives a totali clip for lesotho of 4 M k for $1973 / 74$ and a yield of 50%. Je should note that this quantity is 30% higher than that giver in Table 3.2 above.

The Wool Board have produced : 'lype List' for the 1974/75 season. Table 3.3 is derived from this list and shows the quantities of the different types of wool wich way be expected from the forthcoming clip.

Table 3.3 Eictinate of tyr of wool - $1974 / 75$ reason

Type of wo	Weight kf	$\%$
Top making group	283,301	9.3
Fleece wool	$1,161,542$	33.0
Bellies, pieces, locks	775,542	25.3
Coarse and colournl	839,015	27.4
	$3,093,5 \% 1$	100.0

Source: Wool Board, SACU

[^2]We cannot however accept thes figures without taking into account the work currently being done ty the Livestock Marketing Board in cooperation with the Wool Bcan. By the end of 1974 about 100 shearing stations will have k, n established ail over hesotho. The objective is to collect t'... clip in these irverrment stations and have the wool graded immel ately. It is of prime importance that the wool is sorted at the shearing staje, for subsequent sorting cannot completely r fy mistakes which are nade earlier. The result of these developmen's will be that the better wools will not be mixed with the lower gydes and a higher average price will be obtained for the clip as a hole. It will mean that a higher proportion of the total will minsist of the better qualities of wool e.g. at least 20% will be top akine types as compared with only 9% previously, etc.

Table 3.4 gives some revised armates, taking into account these new developments, and is base on a total clip of 4.0 Mkg greasy wool a year.

Table 3.4 Hatimate of typ of wool by end-ase - $1974 / 75$ season

Type of wool by end use	Creasy M kg	M of Creasy Weight	Y Yield	Clean M kg	Mof Clean Woight
For top making For fine woollen yarns	0.84	21	42.5	0.36	25
For coarse woollen yarns	1.20	49	34.6	0.66	47
	4.00	100	36.0	1.42	100

Source: Fstimates made by the Livestock Marketing Board and the Wool Board.

Having established the quantities and types of wool produced in hesotho we can now turn to tha question of their suitability for use in blanket manufacture. lesotho wool is a fine wool of the werino type, the fibre diame :r of the bulki of the clip being about 20-21. It is als a very soft wool, iupartine a soft 'handle' to fabrics made fre, it. In wone cases it can replace 'lambs' wool ia products whe... extreme softres: is required. Lesotho wool is excellent fo mixing with syntietic fibres e.g. in blended fabrics for mers "ar. It has valuable ustes in the fine woollen trade, especial: in making clotho of the flamel type, and because of its goo: felting properties it is used extensively in the nanufactur of felts for hats. When blended with other types of wool e.g. Australiar, it produces good knitting yarns.

Wools of this uality are no mormally used by furopean blanket manufacturers. They use a rarser, stiffer and more 'springy' wool e.E. a South American cy sbred wool with a diameter of about $28, \mu$. In the wouthem part ir Africa coarse wool like harakul is used for some blankets. The wrices of these low quality blanket wools are much lower than thres for the top making and fleece (for fine woollen yarns) wools from Lesotho. New '.eatand wool, $50-52 \mathrm{~s}, 28-30 \mu$ will cost :if Durban $1.65-1.80 \mathrm{~N} / \mathrm{k}$. i and Buerios Aires, Montevideo or inmta Arenas wool, 50s, staple 2 - 2 2", $1.45 \mathrm{k} / \mathrm{kg}$. These frices may be compared with $1.90 \mathrm{~N} / \mathrm{kg}$ for Lesotho top making wool and fleece wool at $1.05 \mathrm{~K} / \mathrm{kg}$

However the traditional Basoth blanket is of a softer 'handle' and not so spriney and airy as the European one. rhis means that the finer and softer lesotho wool could be used to form the wool component of the blankets prod.ced in Lesotho. The wool to be used would be that suitable for coarse woollen yarns as shown in Table 3.4.

On the basis of a mill produc ing 600,000 blankets a year, lable 3.1 shows that $2 ; 1,000 \mathrm{~kg}$ of wool :rould be required. $400,000 \mathrm{~kg}$ of suitable wool is available. 'his would leave a surplus of 170,000 for export along witr 11 the top making wools and the wools for fine wooller yarns. We estimate the price of the wool to be used for blankets in US $\$ 1.89 / \mathrm{kg}$ and we have used this figure in our calculation: in Chapter 4.

2.2.2 ilan-made fibres and 'ayon

Table 3.1 above shows that tho requirement for wari-made fibres and rayon is roughty as follows, in tonnes:

$$
\begin{aligned}
& \text { Nylon } 40-4 \text { 小inier } \\
& \text { Rayon } 554-2.5 \text { or } 6 \text { denier } \\
& \text { Acrylic } 55-4 \text { nier }
\end{aligned}
$$

These fibres are obtainable in three forms - as first quality staple as sub-standard staple, and a:: waste. The latter two types are the cheapest and are perfectly sa!isfactory for producing the type of blanket we are concerned with. None of these fiores are produced within the GACU and there are ery limited supplies of waste. The bulk of the fibres needed wouli therefore have to be imported. There are no tariffs on such inports. Suitable fibre and waste can be obtained from a very wille variety of sources throughout the world

The prices we have adopted and use in Chapter 4 are as follows:

$$
\begin{array}{ll}
\text { Nylon } & \text { US } \not \$ 1.60 / \mathrm{kg} \\
\text { Rayon } & \text { US } \$ 1.25 / \mathrm{kg} \\
\text { Acrylic } & \text { US } \$ 1.30 / \mathrm{kg}
\end{array}
$$

Phese prices are based on in "rmation obtained from sources in Europe, North Nmerica and th. SACU. The prices of all textile fibres have fallen consideral: y in the last si: montha. The prices wo use are those previ. ling in wouthorn Africa before this f'all took place ${ }^{3}$ and they are sices which a relatively swall will in lesoth would have to pay o obtain the stated quantities. In the contsxt of this study th." relationsinp between the price paid. for raw materials and the que, ity purchased is an jmportant one. In Chapter 2 we pointed out $1:$ it the blankel indu:try in the CACU was dominated by the srame Gi..tp who produce about yon of the blankets. \quad.n 197; this prok...nly amounted to mbout 11 million pieces. Assuming an average deight of blanke of 11 kes this would mean a total raw material rec irement of about. 11.500 tornes, compared with ajout 880 tonne for a mill in lewotho. Inis gives the Frame Group a considerabl: advantage. we were re ilabiy informed that they are freque sy able to buy at up to 20, and rore below the normal market …ice. We will returr to this matter when we consider feasillity in Chapter 4.

3.2.3 Cottonyarns

We estiuate that a mill producing about 100,000 blankets would require qbout 70 tomnes of cotton yarl. Within the shcu there is only one independent cotton spirming firm. The remainder of the spinning capacity is controlled by the frame Group. We do not think that a mill in Lesotho can rely on tuis latter source for its supplies of cotton yarn. Unfortunately the independent firn has limited capacity, and whilst it could at the present time supply yarns as trade is currently depressed, nomally it would not be able to do so. In these circumstances we think tiat the cotton yarns will have to be imported. Fuch two-fold yarr: bear an inport tariff of 25% ad valorem.

3 This is the raw material prine upor which we presune the prices of present supplies of blankets are baser. If we are to compare Lesotho and present suppliers' prices then we must, as far as possible use the same raw material price.

In subserluent parts of our "udy we use the following prices for cotton yarns:

$$
\begin{aligned}
& \mathrm{Nu} 10 / 2-\mathrm{K} 1.97 \mathrm{~g} \\
& \mathrm{Nu} 12 / 2-\mathrm{K} 2.03 \mathrm{E}
\end{aligned}
$$

3.3 Iluman resources

3.3.1 The supply of labow:

A blanket factory in lesotho yould reauire the following broad ca'egories of labour. The 'tual numbers would of course depend on the size of mill.

Ca!egory

1. Unskilled
2. Skilled and semi-
skilled operators
faijl, large, the majo ity of the work Force
3. Skilled technicians
4. Supervisors or foremen
5. Management
a fel

Appr:ximate number Niture ol duties
general duties, movement of materials, elc. machine minders, e.g. weavers, spinners. warpers, pirn winders, etc
machine setting, repairs, maintenance, etc
seneral supervision
technical and commercial management

With regard to categories 1 ann 2 there is good supply of skilled labour and whilst there are at present no skilled or semi-skilled workers of the required type wit are confident that this need could be met by training. Our discusions with employers in Lesotho indicated that the Basotho reswnded well to training and showed
considerable aptitude in per rming work of the type with which we are concerned.

The position of eategories 3 , 5 i: vely different and raises particular problems. There i:s an acute shortase of skilled technicians of all types. ribis partly reflects the stage of the economic and social developin', of Lesotho. It is also due to the fact that until recently fe educational ritem was not geared towards the provision of comr cial ard techmical skills. Additionally, and most import \cdot, skilled worker: tend to leave lesotho and work in other cou'ries whore the waess are higher.

In textile factories the supe 'isory and technical roles are often combined and what we have saj' above on technicians would therefore apply to such supervisors. "wever even if we ervicage a supervisor performing fairly non-techinic ${ }^{\prime}$ duties then such persons are not readily available in Lesotho, Lthough over a period of time we think that suitable people cold be found and trained to occupy these positions.

On the manaferaent side succes:ul blanket producioon requires technical and commercial skil:" of a very his order. Such skills are not available in Lesotho, ror, we venture to sugest, are they likely to be for some considerble time to come. Ihese would therefore have to be provided ly expatriates.

Our general conelusions on the supply of labour are that we would not envisage any difficulty with unskilled labour, nor, given suitable training, with skill and semi-skilled operatives; but there are problems with the romaing categories of technicians, supervisurs, and management.

3.3.2 hemmeration

There are no official statis'iss of wate rater, earnings, or hours of wor'r. The followin! information was fathered during the course of discussions wit: the Department uf limbour, certain public utilities, and some prirate business corncorns.

The rate of payment for unskiled labour appears to be about 10 cents an hour. Th Gove : nent pays its unskilled workers between 1.5 ard 9 conts; one of the jublic utilities pays 10 to 11, and a hand weaving concej" pays aboit 10 cento to untrained weavers. This latter rate is probably " Little above the rate that is really required to obtain such labor but it is the policy of the firm to pay higher whes. This is frety because the firm thinks it socially right to do so and f, $t l y$ because it is atie to hire the best quatity of labour at ilable.

It is more difficult to give a typical wafe for skilled workers for so much depentis on the level it skill and training involved. The following are the hourly rate: in cents paid by the Government to its employees: apprentices ${ }^{\prime \prime}$, technicians Cirde C 19, Grade B 25, and Grade A 50-6. It was :uggested to us that a loom mechanic would fall into the Grade A c.'egory. One of the public utilities pays its artisars 48 to 50 cents an hour and a hand weaving concern pays about 16 cents an hour for fully trained weavers.

The wages paid in the textile industry within the SACU are also relevant to our study. First, we shall eventually be comparing Lesotho costs with the costs of foreign suppliers and second, to some extent the wages paid to isasotho must probably be related to the wages they might get if thry chose to work outside the country. We return to this point in the next paragraph.

Our information on textile wa: s outside lecotho is that in industrial centres weavers ea 35 to 50 cents/11, though one mill paid $\boldsymbol{\prime} ?$ o for a weaver afding 2 plain lomm and 50 for jacquards. In the Border Arms wages are much lower, ckilled mill operatons receiving $19 t, 27$ cents and skilled females 13 to 20 cents/ili.

In deciding what rate we shoula adopt in lesotho there are a number of points to consider. All :illed labour must be trained, or attracted from the WACU . Wh. it is fully trifed it mast receive a wage related to what it coun obtain in neifnbouring areas outside lesotho. Possibly the wage $n \in d$ not be equal to that obtained in foreign employment for no doul many workers would accept a sonewhat lower reward if they can rema i, in their homelaid; but, if the wage is too low, they may mierate \cdot other countries of the stacu. Similar considerations will anly to those who attracted back into lesotho. Finally, thou whe trade unions are in their infancy at present, they may become b..ter organised in the coming years and may well press for wages "at are comparable with those in the saciu. llakine, all these fact".'s into accourt whe adupted R 0.42 (US 0.54) per hour a : the rate for skilled machine operators and between $R 0.15$ ($U: \$ 0.2$) and R 0.31 (U: $\neq 0.4$) for unskilled workers. 'These rates have bon used to make our estimates of the prime costs of production in "hapter 4. It will be seen there that we present our cost estimates in such a way that different wage costs may be used, should the view be taken that our present assumptions are incorrect.

3.3.3 Hours of work

With regard to hours of work, i2 to 45 hours a week appear to be the normal practice. There are .. me regulations jaid down in the Employment Act No. 22 of 1967 "ut these seea to be fairly flexible and in any case exemption from some of its provisions nay be granted on application to the !finister of Comerce and Industry.

The maximun hours of work per orker per wetk are 45. Establisiments may work a 'y or a day week. In the latter case 's hours per day may be worked on the first 5 days and 5 hours on the th. If a 5 day week is in operation with a 9 bour day then tiore must be a 1 hour continuous break during each ity.

Tiere is a 12 hour per week lit on overtime with an annual limit of 150 hours. If work takes plae on Sundays then one day's pay is to be made for the first 5 hours a double-time is to be paid thereafter. There are no lestrictions on \mid e operation of shif't work systems either for male or fenale labour.

3.3.4 Miscellaneous

In this final section we deal triefly with a number of the more social aspects of employment. The fremeral picture is, that as yet, there is little legislation covering surh matters as factory conditions, employec compensation, sick lwve, redundancy, etc, and what there is tends to be permissive rathre than obligatory. The Government of Lesotho is reviewing the situation and in due course expects to bring forth new measures. The following preserts the position as it is at the moment.

There are no factory regulatins and employers to not have to pay any social charges.

Workmen's compensation, say f an injury receivel in the course of his employment, is entirely the employer's reoponsibility. There are no statutory arrangement:, If injured the employee is entitled to half pry and if death ensi.. then the employee's dependents are entitled to 10 morths' wage ($\cdot \mathrm{R} 1 / 00$, whichever is the lower.

If a female worker is pregrnar ' she carmot be dismisoed within six weeks of the exper' d date of hor ouninement. She may get maternity leave with pay ! it this will depond on the terms of her acreement with her employer. Special arramemonts may also be made for her in the six weeks foll , ing the confinement.

Normally 12 days holiday witt , lay are given each year. A new employee would normally start :o qualify for holiaty at the rate of one day per month after havir completed three months service with the firm. 'Jhere are no stat,'ory arrangement: cuncerning retirement or redundarioy pay.

The general conclusion is the social charges are minimal and we have not allowed for any in cost calculations.

3.4 Services

3.4.1 Eilectricity

We were informed by the Lesotio Electricity Corporation that the supply of electricity would nol present any proolem. The tariff is $R 3.0$ per kW of maximum effect (registered monthly) and $R 0.75 / \mathrm{kWh}$ for the first $100,000 \mathrm{kWh}$ and $1 ; 0.60$ for consumption above this figure. Combining the two tariffs the rate is about $R 0.14$ (US $\not \subset 0.18$) per kWh. We have added a little to thi: figure to allow for contingencies and use US $x 0.20 / \mathrm{kWh}$ in our estim ines of prime cost in Chapter 4 . As the cost of electricity is a ry small part of the total cost this will have a negligible effect.

3.4.2 Water

A blanket mill of the size undre consideration would consume about $100,000 \mathrm{~m}^{2}$ of water a year. luring the dry season in lesotho the water in the rivers falls to a very low level and supplies often have to be drawn from reserve: provided by a matural lake or reservoir. I'here are such al'angements in Maseru and we were informed by an official of th Water Authority that they could watisfy the requirements of th. blanket mill.

The cost of the water today i. R $0.50 / 1000$ falluns, equivalent to US $\not \approx 0.14 / \mathrm{m}^{3}$ but a Large cons"er could anticipate a reduction of this price to US $\not 20.07$ or $0.12 / \mathrm{m}^{3}$. A blanket mill not only requires appreciable quantiti\% of water but it must be of a suitable quality, rot only for the finishine of blankets but especially if it is to be user as feed water for boilers.

Table 3.5 shows an analysis of the Maseru water. It is derived from tests carried out in con ction with a brewery in 197\%. Water to be used for textile dyeing ind finishing should be as follows: total dissolved solids - about $5 \mathrm{mg} / 1$ and total hardness - CaCO_{3} $<25 \mathrm{mg} / 1$. Thus the Maseru !ater needs softening in order to reduce total hardness. Forthately water-softening equipnent is not expensive and is available within the whCU. The analysis does not specify the content of heavy metals like manganese and iron, nor refer to the colour of the water. IThese matters would require investigation before the water could be used. The standard requirements are: $\operatorname{Mn} 0.01-0.05 \mathrm{mg} / 1$, Fe $0.10-0.30 \mathrm{mg} / 1$, and colour < 5 pt - Co units.

Table 3.5 Water analysis Maseru

Composition	Town sample $\mathrm{mg} / 1$	Hotel $m e / l$
pH	6.3	6.0
Conductivity u.s.	199	207
Total dissulved solids	140	144
loss on ipmition	22	20
Trotal harduess as CaCO_{3}	70	80
Ca^{++}as $\mathrm{Ca}^{+} \mathrm{O}_{3}$	56	58
Mg^{++}as CaCO_{3}	20	22
Sodium as Na	5.0	5.2
P as CaCO_{3}	0	0
M as CaCO	24	24
HCO_{3}^{-}ass CaCO_{3}	24	24
$\mathrm{CO}_{3}{ }^{--}$as laCO_{3}	0	0
Ofl as CaCO ;	0	0
Chlorides as Cl^{-}	3.5	3.4
Nitrates as N	2.8	2.8
Sulphates ats $\mathrm{SO}_{4}{ }^{--}$	18.1	23.2
$\mathrm{S}_{1} \mathrm{O}_{2}$	20.5	21.5
KMO_{4} value as 0	0.4	0.4

Source: Maseru Brewery, Henrik Foss, 29,3,1973

Note: I'wo samples were analysed, the normal drinking water of the town and the drinking water of the Holiday Inr.

3.4.3 liffluert dicposal

A blarket mill will produce $a_{\text {: }}$ reciable quantilies of effluent which will have to be dispose' of. There are, as yet, no regulations in lesotho in thi: area. Untreatei water could therefore, from the purely le: 1 point of vicw, be discharged into the Caledon liiver but thi. is likely to cause conciuerable pollution when the river fall to luw levels during the dry season. Ir: any case the river forms the boundary between two states and this course of action could p . bably not be pursuod without consultation with Lesotho's n :ighbour. bifluent treatment is costly and especially so in ti.. case of water frof wool scourine. The waste water from dyeing a finishing can be treated by combined ciemical and biologi•1 methods for about $180.75 / \mathrm{m}^{3}$ (US $\not \subset 1.0$) but for a small $\mathrm{pl} \cdots$, these figures should be increased
 by any established method at " asonable cost. J.n countries having a serious water shortage, such as Japan, distillation methods are used. This is a fairly larg scale operation and costs li $2-3 / m^{3}$. We have no estimates for a sin 'l plant but it wuld certainly be more expensive. There are clearl" a number of matter; concerning effluent disposal which require further consideration and we do not take account of any of the costs imolved when we make our cost estimates in Chapter 4.

シ. 5 Stean requirement

The blanket mill will require about 6-8000 ton of steam a year. It will not be economic to proluce such large quantities of steam using electric power. Coal or oil must be used and there is apparently no problem in obtaining these from the SACU. Coal is the cheapest and can be bought to Maseru by rail. A suitable boiler is the so-called 'stea: bloc' type. These are supplied ready to install, including $\mathrm{f} w \mathrm{~d}$ water-numpa, ele. Equipment for chemical-dosing would also ha in to be obtained but this, and the boilers, are available within the GACU.

3.6 Buildings

We discussed this question w: A firm of architects in maseru. No particular problems will : rise with regard to the actual construction of an industria? building. However in textile processine it is necessary to svoid wide variatims in temperature and humidity inside the mill. The insulation standards of a mill and whether air conditioning :.tin or without refreferation in necessary are detemnined by 1 : climatic conditions in the area concerned. lesotho is a coiniry with strong sunlight and with appreciable temperature varie ions, but one wifich is dry in the sense that hicg relative humj'ity is unusual. 'j'ne position is illustrated in Figure 3.1.

Refrigeration is expensive to rastall and run and in thesc climatic conditions we think that its u:e can probabl:" be avoided provided that the building is suitable :nsulated and wo do not use the more advanced technology. This is another reason lor selecting older type machincry for the blanke mill (see secior 4.2). If we take the most difficult climatic c :ditions durinf, the year, a sumer day around 1400 hours, we can ant inpate a temperature of $32^{\circ} \mathrm{C}$ and $35 \% \mathrm{PH}$. The enthal py of this air is $1: 5 \mathrm{k}$ cal $/ \mathrm{kg}$ dry air. If we accept e. \mathcal{E}. $26^{\circ} \mathrm{C}$ and 65 lll inside the mill this air will contain $16.5 \mathrm{k} \mathrm{cal} / \mathrm{ke}$ dry air. It is difficult to sa, , without making up a complete heat balance for the building in Irotho, if this difference between the enthalpy of the air inside ard outside the building is sufficient to cool the building in summer time with only venifilation and evaporative cooling inside. Our guess is that it would just about be possible and our mill is desiened on thr basis of this assumption. On the other hand, air conditioning would be necessary in some parts of the building. The insulation of the walls, windows, and particularly the roof of the building must he extremely food. 'lhe heat conductahility expressed in e.t゙. k cal/ $/ \mathrm{m}^{2}$, $\mathrm{n}, \mathrm{o}_{\mathrm{C}}$, or $\mathrm{W} / \mathrm{m}^{2}$, ${ }^{\mathrm{o}} \mathrm{C}$ (the k value) should be about 0.3 ir the roof and 0.4 for the walls.

lliurnal bariat ion of tom "ature bated on anmanourly value:

We were informed that a builllag of this type wolld coct I 85 per m^{2} withunt air-conditionisg but includine: toilets, cloakrooms, etc. Full air conditioning • Juld add $\mathrm{I} 25 / 1 i^{2}$. It wa: estimated that a buildiny of the requisel size and type would take about seven months to build.

3.7 T'ax incentives

The Goverrment of lesothe off... considerable taz incentives to companies establiching or exf eding their operaing within the Kinedow. Fuil details are ε^{i} en in The lioneer Industries Encouragement fut, 1909. Ho '. of the incentives consist of allowances adeinst the capitel costs of plant, midinery and buildings. These would bene: t a company in the carly days of its existence. We are more . neerned with the longer torm situation after the company h. become establicicd. Essentially we wish to determine the comp \cdot itiveness, and lence the viability, of a mill in lesotho as compa d with its condetitors within the SACU. We absume that the in:lial difficulties have beer overcome and that the aswociated costs ave been wet

There are two alluwances whici relate to this loneer term situation: First, a utility and transporistion allowarice equal to 15% of the cost to the manufacturer of elfctric power, water or sewerage services, transportation within the countries of the SACU of goods used for marnfacture or finisifed products; and second, a citizen wage allowance equal to 10% of the wages or salary paid to Lesotho citizens employed by that manwacturer. We consider the effects of these in Section 4.4

3.8 Transnort

We do nut foresee any particular problems with rospard to the movenerit of finished goods w.'tin Lesotho. 'lransport irou other parts of the MACU to Lf : \sin tho is more of a problea. As we have seen in fiection 3.2 e.t.jve the mill will have to import large quantities of raw mates ils from the incu and from other parts of the world. These vi l have to be movel to Lesotho by rail which i: not only expens ; re but alsu cluw and unreliable. The tax allowance referred to in Section 3.7 above will help to reduce the cost but little $c_{c} ;$ be done to deal with the tine aspect. B... of this pre, lem we think it facessary for the mill to holl it ...uter level c" stocks of raw material than would otherwise be the case and we the made provicion for this.

3.9 Exisrral economies

By this phrawe we refer to thr advantages which a firm may gain by being located near to, or ithin easy reach of other firns in associated, or even very diffetent, industries. lor instance, if we consider the position ot a blanket mill in the country bordering Lesotho, it will hav: fairly easy aveess to a range of services provided by other branches of the textile industry, by the electrical and mechanical engineering industries, and by firms engaged in merchanting, shippirg, etc. These services are not available in lesotho and a mill located there will suffer a real disadvantage because of their absence. There is little that can be done in the short mun to ronedy this situaticn. The mill will have to try to be more self-ryliart than would normally be the case. In the long run the development, of other industries in Lesotho may provide sone of the services inentioned.

3.10 location

Whilst we can appreciate the 1 sire of the Guverment of Lesotho to locate industry away from He Capital we consider that Maseru would be the best site for tho blanket mill. It is one of the few places where water suppli, are adequate and reliable. It is on the rail head and if a ouring plant is established ther the blanket mill should clear, be nearby.

ShPTER 4

In Chapter 2 we presented j ॥ormation on the market for blankets and in Chapter 3 w discussed in eeneral terms the resource requirements for b nket production. In this chapter we come to the core of our udy. We first of all examine in Section 4.1 the technologic : alternatives avaltable in the production of blankets. So..tion 4.2 cives details of a 'paper mill' which we have construr ind order to estinate the costs of production in Lesotho. 'liese estimates are fiven in Section 4.3 and in the subsequent serion they are converted into prices and compared with those of $t h$ foreigr suppliev. Section 4.5 deals with feasibility and conclusions ate given in the final section.

4.1 Techological alterm! ives

At first sight it might appe" that the simplest way of starting to make blankets would be to wave then from youn which was bought from an outside supplier. It would then only be necessary to have a weaving plant and some simple finishing. The inrestment required would be sulall. There are a number of reasons why we do not think that this method is feasible in Lesotho.

First, the weft yarn is normally ${ }^{1}$ produced on the woollen system.

1
An alternative method is t use the semi-worsted system. However this system is technically mo: complicated and calls for more expensive material than is presently usu in lesotho blankets.

As has been described earliej (Section 3.1.2) this syster requires the preparation of a blend of ribres and the subsequent processing of this blend on a carding me'sine preparatory to the spinning stage. The composition of this blenc in terns of different fibres of different qualities and price." is vital in deteruinine rot only the price and nature of the yarn poduced but more important the price and quality of the final blar. t . It is thorefore essential that a blanket manufacturer contwis the composition of the original blend. To buy yarn from an 'Mtside supplier would meari a considerable reduction in his ability to (.: so and he would sulfer appreciable disadvantagen as compared wit' his competitor" who operated integrated plants.

Second, even if the disadvant ees referred to above could be overcome (which is very doubtful) and rn was bought irom outside, other problems arise. If the yam as bought in colvurs ther, in order to reduce delivery times, tin required for shate approval, ete, it would almost certiainly have t." be purchased fon a country withirn the WACU, but there is only one $s^{\prime} 11$ independert woullen spinner in that area and he could not meet the requirements ot a will in Lesotho. It is hardly conceivable that a nlanket marnutacturer could purchase coloured woollen yarn from countries o:side the SACU.

Another alterrative would be tor buy undyed woollen yarn and dye it as required. Ihis would overcome the delivery problen but this course of action is precluded for another reason. It is not possible, in our experience, to dye low quatity woollen yarrs uniformly enough for blanket manufacture.

I'hird, we have suggested that a small proportion of Lesotho wool could be used in blanket manufactur. It would be clearly advantageous to use such indicenous raw material, but it would hardly be feasible to export the wool in a greasy srite, have it scoured and spun, and then import it back into lesotho. In any case ass we have already said there is no sumpus spinning wpacity in the :hol and therefore ore could not expect to have the rk done on comisoion at an acceptable
price. A further problem is that the bulk of the Lesotho wool to be used in blanket manufac' re would be used as part of a blend of man-made fibres and rayon :id it would again hardly be feasible to have this spun abroad.

For these ranons then a blani: t mill in Lesot'o must produce its own weft yarn. 'i'his would b. spun from material, blended and dyed at the mill. No such proble ". arise with cotton yarns for use as warp threads. These are ava' able in standard qualities; only one or two yarn counts are requir , and they are used in an undyed form. They can be bought from any p. t of the world where the price is acceptable. Uur conclusion : Serefore is that, if a blarket mill is erected in lesotho, it should consist of dycing, spinning, weaving and finishing.

We have referred to the use 0° some Lesotho wool, anounting to about $230,000 \mathrm{~kg}$, in blanket produc ion in iesotho. Before this wool can be used it must be scoured. ie know that i,he losotho National Developmert Corporation is ne "tiating witil a firm from outside Lesotho with the objective of $\operatorname{stablishing}$ a scourinc plant to scour the whole lesotho clip. If $"$ is project is inplemented this will of course facilitate the use a Lesotho wool in a blanket factory. If the scouring plant does not waterialise then it will be necessary to have the wool scoured abrowl or alternatively, and preferably, to scour it usine hand-operated nechinery in hesotho itself.

4.2 A Ulanket mill in Lesutho

We have argued in the previou': section that a blanket mill in Lesotho must carry out the full production process from raw material to finished blanket. We have crostructed such a mill 'on paper' and details are given in Appendix \wedge. This mill is used as the basis for estimatiner the costs of praducing a number of representative
blankets (Section 4.3) and these costs are subsequently compared with the mill-price, "present supplies (section 4.4). We should emphasize that this ill has been constructed purely in order to carry out these c it-price comparisons. It is not meant to represent an actual "ill which would be erected.

The proposed mill is designed :o produce 00,000 blanketi a year on the basis of 3-shift workil: in the main departments. The numbers and types of blankets o be produced are as in trable A. 5

The machinery consists of 2 c.lding machires, jo spinning spindies and 48 loons, plus associated "quipment for preparation and finishing. We have gencrally chosen simp'. machinery of the most latour-intensive type. This machinery, being insophisticated, is easy and simple to maintain. Only in cases whe:" considerations of quality are important, e.e. in carding, h ee we chosen the latest equipment. We should point out that thes modern machires are no more difficult to operate than the older typ: Appendix A fives full technical details of the mill including 'he metrods of processing, machinery requirement:, production at ewh stage, etc.

The total employment will be 1 proximately 240 persons. About $6500 \mathrm{~m}^{2}$ of floorspace will be required and the mill will have air-conditioning where required.

The total capital cost will ve about UG of 2.0 million (R 1.5 million) for machinery and auxiliary equipment and US $\$ 0.9$ million (R 0.7 million) for buildings.

4.3 listimation of prime cuts

Before explaining the basis ct our estimates of prime cost and the method of calculation use.l we should make three general points.

First, we sidid above that the olanket mill had been constructed for the purpose of comparison and , hat it was not meant to represent in detail an actual mill. s:uilarly the prime cost estimates are made in order to compare the 1 kely costs of produciref blankets in Lesotho with the prices of bl kets currently beine supplied. They are not, nor are they ir nded to be, precise costings of particular products. However despite this leck of precision we consider that they can be usel with some confidence for comparative purposes.

Necond in presenting these pri.e cost estimates we indicate clearly the information and assumptio.. upon which thoy are based and show the methods of calculation us... We have also tried to structure the final estimates in such a ay that the varlous cost elements are easy to manipulate should we (others) wish to adopt assumptions different from our initial on
'l'hird, the estimates relate t, a mill which has been running for a few years. We therefore take no account of ary costs associated with the establishment of the mill and its 'running in' e.g. training costs etc.

4.3.1 lhe basis of the pr ae cost calculations

We give below the information and assumptions unon which our prine cost ca!oulations are based. The prices we ure tor raw materials, labour etc are those given is hapter 3 when we discussed the gereral question of resource requirer mbs. for machinery the prices are those ruline today plus the crit of transpurt ind erection. We do not at this stage take any ac ount of the tax allowances wich would reduce sone of the costs. gh: effect of these is considered later in Section 4.4

In allowing for the use of cepital, either fixud on working, we have used a rate of interest of 14% The current rate for loans from the commercial banks in Lesotl", is between 12 atd 14%. We have adopted the higher figure. Gien estimatine the anmual capital cost of a machine we have used a method that is in common use in parts of Lurope. We have as mod that a machine will last for 10 years and will then have $r^{\prime \prime}$ value. Wo have assuned that the money capital to finance the \quad "rchase of tre moline has been borrowed at 14% and that the pital is repaid in equal minual instalments over the life of $t e$ machine. 'ime interest payable on the balance of the capital utstanding averagers out over the 10-year period at r\% per annus and we have therefore made an annual charge of 1% of the initial v lue of the machine. It will be observed that this method make: no specific provision for the replacement of the machine at the end of the period. One could of course regard our $1 \% \%$ chars as consisting of 10% for depreciation and 7% as a contribution to the cost of the capital. There is room for some difference of opinion on this matter, but, as our estimate of total prime cost is divided into capital lavour and other costs, it is possible to make adjustrents depending on the view taken.

As far as investment in auxiliary equipment, such as trucks, bobbins, spare parts, etc. ar" concerned we use the same method as for machines except that in assume a life of 5 years. The annuai charge is therefore 1% of the initial cost of such items.

In the case of buildings we essume a 20-year lire with no value at the end of the period. Hing the same method as for machines this gives arn anmual charge ol 12%. We are assuming here that the buildings are provided by he mill compary itself. However it is likely that the buildir: ; would be provided by the lesotho National Levelopment Corporat:in and leased to the company. The Development (:orporation would urobably require a return of about 12% on their investment, so whother this anmual charge is regarded as the payment of rent or a cuital charge is not material.

Mill inventory consisting of :"ocks of raw matecial, work-in-progress and finished groods are financ at 14%.

4.3.2 Method of calculatir prime costa.

Full details of the method of alculating prime costs are fiven in Appendix B. We give here an rutline of the procedure.

We first estimate the annual costs of machinery, auxiliaries, buildings, materials (e. ξ_{5}. dyes, power, witer etc) and labour for each step of production. For example, ill the spiming stage we do this for the steps of warehouse, opening and mixing, blendink, cardin氏 and spinning. For each step we have to decide on the unit that is to be the basis for costing. Tuis differs as between the different steps. In carding it is the l:g; in spinning, the spindle-hour; in weaving 1000 picks, etc. Hhe total annual cost is divided by
the appropriate cost unit and 'his gives the total cost per unit for each step. This tcint is divided into capital, labour, and other costs. Try sum of the cosbs of tach step comprisine a stage oi production will Eive the total costs for that stage. Calculations ar carried out in hits way (see Appendix B) for spining dye ef, weaving and finishine. The same method is used for over ads.

The total priue cost for a paricular blanket is the sum of the costs per unit of the steps cr stages necescary for the production of that particular blanket; the charge for store, inventory and mill overheads, and the cost the raw materials. We have calculated in this way the prie costs of six representative blankets. The method and re ilts are shown on the Product Data Sheets included at the end Ap; ndix B.

4.4 Price comparisons - I otho mill and prcent supplies

Tlable 4.1 shows, for 6 representive blanikets, hice elements of prime cost, total prime costs, and t. prices ${ }^{1}$ for , in Lesotho and the prices (competitor's pric) charged by present suppliers of these blanket:s. All costs and prices are expressed in Rand.

1 In order to set a selling price for Lesotho blankets ve have added 10% to the total prime cost. In estimatine the latter (Section 4.3.1) we provided for the finance of inventory and assuming that our charge for machinery represents depreriation and a return on capital of $\%$, the margin of 10% will provile for the finance required to service any working capital not alread: provided for and increase the return on the investment in machinery to $16-17 \%$
Reprosentative blarkets－Lesotro prime costs and orices arà mil prics of present suppliers．Ir Banà

Type of blariet	Prime Cost							$\begin{gathered} \text { Zesot:co } \\ \text { Erics } \end{gathered}$ （3）	Present Fupgliexs Price （9）
	Capiさal （1）	Iaとour （2）	0tさにとこ （3）	$\begin{aligned} & \text { Eters } \\ & \text { an } \\ & \text { Inent- } \\ & \text { ory } \\ & (4) \end{aligned}$	crincad （5）	$\begin{gathered} \text { Fan } \\ \text { Eteri=2 } \\ \text { (6) } \end{gathered}$	To： （7）		
Pitso	0.82	0.55	0.72	0.29	0.18	2.62	5．18	5.69	10.08
Pitseng	0.67	0.47	0.65	0.23	0.15	2.08	4.31	4.74	6.60
52 $(75 \times 80 \mathrm{~cm})$	0.21	$0.2<$	0.25	0.11	0.05	0.45	1.35	1.45	1.45
$\begin{aligned} & \text { Lilala } \\ & (110 \times 115 \mathrm{~cm}) \end{aligned}$	0.46	0.35	0．4＇	0.18	0.10	0.95	2.50	2.75	2.97
Mora Lisa	0.49	0.27	0.72	0.31	0.18	1.99	3.95	4.35	2.54
Wenutscinia	0.51	0.50	0.40	0.18	0.09	0.95	2.63	2.99	3.75

Product Data Sheets．Apperdize E
Table 2.5

In discussing, the price diffelances there are sone general pointa which it is useful to bear ir inind. First, we should note the relative importance of the dif "erent categorios of cost that make up the tutal priue cost. Table 4.2 shows the percentage shares of edch cost element j! this total.

Table 4.? percentage char of cost elemont: in total prime costs

'Type of blanket	Capital	1:bour	Otners	: tore luventory ard Overheade	Raw material	'Iotal
Pitso	$1{ }^{i}$	11	14	9	50	100
Pitseng	15	11	15	10	49	100
Iilala (75 x 80 cm)	20	16	13	12	34	100
Lilala (100×115 cm)	18	14	18	11	39	100
Mora lisa	12	7	18	12	51	100
Welwitschiat	19	19	15	10	37	100
Average	17	13	16	11	43	100

At this stafe it is interestire to note the relatively small importance of labour costs and the large percentage of total cost accounted for by raw materials.

Second, in Nection 2.6 we noter that the bulk of the blarkets supplied to Lesotho come from one large firm. In Section 3.1 .3 we discussed the relatiorship between costs and output and concluded that significant cost reductions are possible provided that the production is both large and standardised. We would therefore expect this big producer to have some cost advantage over smallar units in certair product areas, but probably not in all. Similarly on the markit side the power of this

Laree supplier to raise pric of the market deperding on t : competition in the particula,
will vary in different segmerits nature of demand and the state of segment concormed.

If we now look at the lesoth prices and the competitore' prices (Table 4.1 Colums 3 and 9)... can see that the lesotho price is below the competitors' price or the pitso, lra l'itsene and the Welwitochja. It is the sam or very much the same, for the Lilala blankets and is well .iove for the foni lisa.

The Pitao and the Pitceng ar, poth fairly axclusive fashion blankets. Hogether they form about 20%, f the total blanket market in Lesotho, or about 140,000 pieces. Le:rtho prices are considerably below competitors' prices, particu rly in the cate we the Pitwo. The Lesotho price for the latter ; K 5.69 comparad with $R 10.08$ and for the pitseng R 4.74 as age ist R f.co. We might first question the accuracy of our cost est. Wes. We do rov pretend that these are completely without error the the price differences are so freat that any reasonable, or even wite lare chames in our cost elements would not substantially alter fhe general picture. The most likely source of error in our estime: :s probably lien in our raw naterial cost figure. We cannot be s:re trat we are basinic our price on the same raw material cost as hat used by the competitor. lowever even if we acid 50% to our material costs Lesothu still remains very competitive with the foreign product. Another way or looking at the matter is to compare in gener.i terms the likely cost differences between lessutho and the compel.tors - in particular, the main supplier. We consider that the competiton's capital costis are likely to be lower than those of lesotho, partly because of the freater levels of output but mainly because of the lowe depreciation charges on the old machinery in use. The competi+irs' labour costs are almost certainly higher than in lesotho but we sh uld note that such costs generally form quite a shall proportion if total costa. ' 'he competitors' other costs are probably a litlle lower and certainly their overhead costs will be less as they ar spread over a lariser output.

I-IOI

0 F

0 8 8 88

The main supplier will also hree some advantage in buying raw materials at a lower cost then a relatively small unit in Lesotho, though in the case of these $t^{\prime \prime}$ particular blankets we do not think this will be very great. Overall we have little doubt that the competitors' costs are basically somewhat lower than thoce of Lesotho. The position is clerly one where the main supplier is charging a very high price for these two blankets (especially for the Pitso) in relation to heir cost. He is able to do this, first, because there is very little, if any competition in this section of the blanket market, and second, buth these blankets are in keen denand because of the restige and exclusiveness which they are thought to confer on their owners.

The Lilala is also a fashion blanket but in a much lower price-range than the two types we have discussed above. The Lilala range accounts for about 25% of the total mariet, equivalent to 175,000 blankets. In the smaller size of $75 \times 80 \mathrm{~cm}$ the Lesotho price is the same as the competitors', i.e. R 1.48. The Lesotho price for the larger size of $110 \times 115 \mathrm{~cm}$ is slightly lower than that of the imported product R 2.75 compared with R 2.97. Our general view of the relative costs of production in Lesotho and ontside it would be much as outlined above when we discussed the Pitso and the Pitseng. Possibly Lesotho would have some advantage here as it:: wages are lower and labour costs are a higher proportion of total onsts for the Lilalas as compared with the two higher-priced fashion blankets. The present supplier will certainly have lower raw material costs due to his ability to buy rayon, the main raw material for these blankets, at a lower price than Lesotho but this advantage is reduced somewhat as raw materials form a lower proportion of total costs than the average. It seems to us that the main supplier makes only a modest profit on the Lilalas. Although there is little competition from other producers the price is kept fairly close to the cost of production largely because of market considerations. The Lilala is designed as a cheap substitute for the more expensive fashion blanket and is bought by the mass of people in Lesotho who cannot afford the latter. A higher price could be charged by the main supplier but he finds it more profitable in these market conditions to sell the larger quantity at the lower price.

The Lesotho price for the Mont Lisa is about 50% above the competitors' price and even "izeable changes in our cost elements do not make much difference the the situation. If, for example, we reduce Lesotho's raw material cost by one half and all other costs by one quarter Lesotho is even then not quite competitive. We have chosen the Mona Lisa ns typical of the domestic blanket section of the market. The types of blanket account for about 20% of the lesotho market, equivalent to 140,000 pieces but here we have to take into account the very much larger market for these same blankets outside Lesoth". The total market for domestic blankets within the SACU is mobably at least 2.5 million, the bulk of which is supplied by one licm. With a market of this size the major producer can reap tine economies of long production runs and product standardisation, and he can take full advantage of his power as a large buyer of rav materials and other inputs. In this situation it is not surprisins: to find that a relatively small producer in lesotho cannot mitoh the prices quoted for domestic blankets.

The market for Grey blankets ins similar characteristics to that for domestics. There is a large narket within the SACU and the same eoonomies are available to th: major supplier. We have not analysed a representative Grey blanket and hence have not estimated the costs of production but we are confident that a mill in lesotho could not produce at a price to match the imported product.

The Welwitschia shawl is typical of the shawls sold in Lesotho. The Lesotho price of $R 2.89$ is appreciably below the competitors price of R 3.75. It seems likely that the costs of this product in Lesotho are closer to the competitors' costs than is the case with any of the other products considered. The min supplierts buying advantages are counterbalanced to some extent by the fact that the cost of raw materials forms a smaller part of total costs than is usual. On the other hand labour costs are a relatively high proportion of total costs and this works to the advantage of Lesotho with her lower wages. Present suppliers are chargin appreciably above costs for this product although the margin is well below that applied to the Pitso
and the Pitseng. This is a saction of the market where the major supplier has keen competition from other producers and this may well explain these lower prices.

Shawls are part of the section of the blanket market which we call Rugs and Shawls in Chapter 2. This section accounts for about 15% of the total market, equivalent to 105,000 pieces. We have not analysed or costed a represent.tive rug but we think that the position would be much the sarr as for shawls. Most of the products in this section seem likely to have a greater than average share of labour costs and a reduced ra material component and both these factors operate to the advant t of Lesotho.

In comparing these prices we have not so far taken into account the effects of the tax allowances referred to in Section 3.7. These are a utility and transportation allowance of 15% of their cost and a citizen wage allowance equal to 10% of the wages or salary paid to Lesotho citizens. We have already seen that labour costs are a relatively small proportion if total costs. On average a reduction of 10% in them woul reduce total prime costs by less than 1%. Similarly payments to utilities and for transportation are relatively unimportant and a 15% allowance would only have a very small effect on total cost. We do not therefore consider that these allowances for utilities, transport and labour will change in any way the conclusions made earlier.
4.5 The feasibility of blanket manufacture in Lesotho

4.5.1 General consideration

In the previous section we conciluded that the costs of producing blankets in Lesotho are likely to be above the costs of the present suppliers, the excess varying as between the different products. It therefore seems that a mill could not operate profitably in the Kingdom.

However, even in this situation, it might be sugcested that a mill in Lesotho could operate at a profit given the prices currently being charged by the present ruppliers. If, for example, a mill was established in Lesotho a was able to sell 600,000 blankets consisting of say, 400,000 fe: hion blankets, shawls and rugs and 200,000 domestics and greys; and, if the prices of the fashion blankets rugs and shawls werr raised above the selling prices previously discussed (Table 4.1 column 8) but kept below the competitors' price, whilst the latter's price was matched for domestics and greys; then, $f^{\prime \prime}$ ren these assumptions, a mill could make a handsome profit, for the profits on the 400,000 would more than offset the losses on the remaining 200,000 .

Unfortunately this happy siturtion is not likely to prevail. A mill in Lesotho will not be able to gain such a large share of the total market nor will it gair ;o great a share of the presently profitable fashion, shawls and rugs section. There are several reasons for this view. First, such a small mill could not produce all the varieties of blanket required in lesotho. It would have to confine its procinction to a limited number of qualities and thus would not be able to 'cover' the whole market. Second, and to some extent allied to our first point, consumers in Lesotho have attachments of varying degrees of strength to the present products. A new mill could hope to break down some, but not all, of the preferences. In this connection it would clearly help if the leading trading company were to transfer the production of its registered designs to the new mill but we do not think that this would significantly change the position. Third, it is almost certain that the entry of a new firm into the Lesotho market would result in someprioe reductions by the main supplier and as its costs of production for all the types of blanket are below those of a Lesotho mill it could, if it wo wished, undercut the latter on every product. Already Lesotho cannot compete on domestics and greys
accounting for about 35% of tho total market. A small reduction in the prices of the Lilala rige and about a 25% reduction in the prices of shawls and ruge would increase this proportion to 75% and if the main supplier $\%$ ose to reduce the price of the Pitseng by 30% then in 90% of the market the lesotho mill would not be competitive in price. We have so far been concerned with the market in Lesotho but even if say that the new mill could sell within the SACU the same consiterations apply.

Our conclusion is that whatev." is the reaction of the present supplier to the establishment of a mill in lesotho the new plant will not be able to gain a profitable share of the market.

4.5.2 The possible effects of varying the mill size

We have pointed out the diffjollties which a blanket mill in Lesotho would face. We would like rou to consider if constructing a plant of a different size would be likely to reduce these difficulties. In Section 3.1.3 we discussed the question of the relationship between costs and scale of ovli,ut. We decided to base our estimates on a mill producing about 600,100 blankets a year. If we built a larger mill producing, say 1 million blankets, costs of production might be $6-8 \%$ lower than those of the smaller unit. If the mill was larger still, say at 2 million, costs might fall by about another 2-3\% These larger mills would clearly be in a better position to compete with the dominant surplier in the SACU but they would still be at some disadvantage because they would lack the ability to buy raw materials as cheaply as this very big producer does.

However the main problem in establishing a larger mill would, we think, be on the market side. We discussed the total size of the blanket market in the SACU in Section ?.6.2. Total sales were around 12.7
million pieces in 1973. We nticipate a fall in demand in 1974 and 1975 to between 12 and 15 million. In 1976 total sales should be just over 13 millin and are likely to be approaching 14 million in 1977. We noted ill the same section that there is ample capacity to satisfy demand at the 1973 level of 12.7 million. In fact it seems likely that the full capacity of the present blanket industry is rather greater then this figure, probably around 13 million. In addition we mentioned earlier that Pep Stores, a trading group within the $S A C{ }^{\prime}$, are to set up a blanket factory. This factory, producing 1 milion pieces, will be in full operation in 1976. So this means tha: in 1976 there is likely to be surplus capacity as consumption will robably be about 13 million whilst the industry could produce about 14 million and this imbalance is likely to persist into 1977. We $d:$ not think that in this situation it would be of advantage to have a lareor mill in Lesotho. Competition is bound to be very keen and the entry of a new firm would make it still keener. Furthermore the lays the new firm was the greater would be the disturbance in the market and the fiercer would be the reaction of the main supplier.

Our view then is that there vuld be no advantage in building a larger mill in Lesotho, for :my advantages gained on the cost side wow \& be more than counterbaifnced by market disadvantages.

If this is our view it may be asked: "How is the F'ep stores' venture going to survive and how do the other small plants in the SACU manage to exist?" As lar as the new entrant is concerned we cannot yet say that it will be successful but it starts off with the great advantage of controlling outlets for its products. It can secure the share which lesotho would find so difficult to gain. The other four small producers with anrual outputs ranging from 0.8 to 1.2 million blankets have been established for some considerable time. We think they overcome some of their disadvantages as compared with the big producer by specialising on a relatively narrow range of products, or competing in other ways, such as on service or delivery. Certain!y one of them appears to concentrate
on shawls and rugs, but we cannot see any way in which Lesotho could emulate their policies. Additionally it is not uncommon for a dominating producer to tolerate other small firms within an industry in order to preser e the semblance of competition. It was in fact suggested to vos that this was the case in the blanket industry within the SA;U but we have no evidence on the matter.

4.5.3 The use of quantitative restrictions, tariffs and subsidies

It may be sufgested that the uce of one or more of the above methods might enable a blanket mill to operate profitably in Lesotho. Before we look at these possibilities it may be useful to outline the benefits and some of the costs which would result from the successful establishment of $s i h$ a mill. If we assume that 600,000 blankets were produced and sold in Lesotho instead of being bought from a foreign supplier then the consumer would be able to buy some blankets at lower prices. Hovever the net gain would be very smil amounting in total to about $\& 200,000$, about 20 cents a head or 33 cents per blanket. We shoull note that the domestic production of blankets would involve a fall in the prices of some blankets and an increase in the price of other. The prices of the Pitso and Pitseng, together accounting for about $\% \%$ of the market, and the orly excessively priced imported blankets, would fall. On the other hand the prices of domestics and greys would rise considerably. These account for 35% of the mirket and are costly to produce domestically relative to the illiported product. Against any gain to consumers must be set the loss due to a reduction in choice as a single mill in Lesotho could not produce the present variety of blankets. A mill in Lesotho would provide employment for about 230 Basotho and this would clearly be of benefit. The economy of Lesotho would gain as domestionlly-produced goods replaced imports. Making reasonable assumptions about the product-mix 600,000 blankets would cost about R 2.5 million if imported and R 2.3 million if produced in Lesotho. The saving on imports would not however amount
to the full R 2.5 million. T's produce $R 2.3$ million of blankets in Lesotho would probably require about $R 1.5 \mathrm{mjlli}$ ion of imports (fibres, materials, etc). Thus the net gain would amount to R 1.0 million. Naturally is the production of the Lesotho mill fell below the 600,000 then itis gain would be correspondingly reduced. Finally, Lesotho wcild benefit fron the external economies arising from the esioblishment of the mill. These effectsare difficult to measixa but include the development of industrial skills and knowledfo, possible growth of ancillary services, etc.

As we consider the various mentures which might render blanket production profitable it may be helpful to bear in mind the nature and extent of the bencfits referred to above.

Quantitative restrictions

We have seen in Section 4.5 .1 that a mill in Lesotho is not likely to gain a profitable share of the blanket market. One way to ensure that it did do so might be to use scme form of administrative control. Quantitative restrictions on the movement of domestic products (i.e. goods produced in any territory of the SACU) within the area of the SACU are not permitted. However it was suggested to us that conditions might be attached to a trader's licence requiring him to buy some proportion of his total purchases from the domestic mill. The legality of this course of action would need to be investigated but we will assume that it would be possible to impose such conditions. The question then arises as to what share of the total market should be allocated to the local mill. It would not be feasible to distinguish between different types of blanket and allocate those which are profitable to the domestic mill and give the less profitable to the foreign supplier. If traders were required to make all their purchases from the Lesotho mill then prices would certainly rise as the mill was faced with a captive market and it would not be long before the consumger was not only paying more for his blankets
but he would also be sufferin:, a serious diminution of cnoioe, and probably of quality. Additionally such a restrictive. policy would raise problems with persons crossing the border on shopping expeditions; would result in an increase in illegal importation of blankets, and wuld use valuable and scarce administrative resources. If traders were required to obtain, say, half their requirements from the mill; and, as we have said, it was not possible to snecify the composition of this half, then the policy would not achieve its aim of ensuring the profitability of the mill in Lesotho.

Tariffs

A second course of action which might be pursued would be to impose a tariff on imported blankets. It is poosible, under the terms of the Customs Union Agreement, for Lesotho to do this in order to protect a new ind try and enable it to meet competition from other producers within th, customs area. Such protection cannot normally be for more thin eight years. Again, as with quantitative restrictions, it ould not be possible to have a tariff which differentiated b ween the different types of blanket. If a tariff was applied it would have to apply to all blanketr. The objective of a tariff would bo to ensure that the domestic mill gained a sufficient share of the markst to operate profitably and it would do this by raising the price of imports. We should note that this will inevitably result in increased prices for all domesticallyproduced blankets - indeed this is partly the objective. The question then is, what whould the level of the tariff be? At present prices (see Table 4.1) the only product which is clearly uncompetitive with foreign imports is the Mona Lisa. (We take this blanket as typical of the domestics and greys). Its Lesotho prioe is R 4.35 compared with the import price of R 2.84. In order to make Lesotho competitive a tariff of 36% would be required.

If however the foreign supplicr reduced his price by 10% then 52% would be needed and this level would be applied to all blankets. There is no doubl that the prices of all blankets would increase considerably haind this tariff wall to the detriment of the consumer. These increases would bear particularly hard on the poove consumers e.E. the cheaper blankets such as the Mona Liea and the Lilala range would become much more expensive. Thus tha tariff policy would bring losses to the consumer, but it is $a: \Leftrightarrow$ doubtful if it would ensure a profitable share of the markt t unless the tarifis were set at very high levels. We should also note the hieh administrative costs involved and the fact tinat smuggling would be encouraged which might prove difficult to control given Lesotho's long border.

Subsidieg

A final possible course of act ion would be for the Government of Lesotho to subsidise the mill over and above ary tax allowances that are already given. We lidly appreciate that this raises a number of wider policy issues leyond the scope of this report but for the moment we will assume that it is possible. This immediately raises several questions. What form should the subsidy take? How effective is it likely to be and what will it cost? In Lesotho's situation it is not likely to be to her advantage to reduce the cost of capital. If labour was subsidised to the extent of 100% it would reduce the price of the average blanket by about 12% but we do not think that tinis would enable a mill in the Kingdom to gain a profitable share of the blanket market. The cost of such a subsidy would depend on the composition of the blankets produced but assuming a total figure of 000,000 and making rasonable assumptions about the product-mix it would be about in 211,000.

Another altermative would bo to give an open subsidy to the mill. This would involve a commitment to make up any deficit between revenue and expenditure. fiart from the effects such a subsidy might have on efficiency, il is extremely difficult to say how much this subsidy would turn sut to be. If the present main supplier were to cut his prices very considerably and the Iesotho mill was to gain only a ver. mall share of the market then the subsidy could easily rise to vell over R 0.5 million. A less vigorous reaction by the forrign firm and a larger share gained by the domestic mill might roluce the figure to around $R 100,000$. In this situation we cannot tiank that it would be desirable for the Government of Lesotho to n nter into such an open-ended commitment and in any case muh wider issues of economic policy are raised if subsidies of this type are to be employed.

We have briefly examined the use of quantitative restrictions, tariffs and subsidies as pos"ible methods of ensuring the viability of a blanket mill in Lesotho. All the methods involve the use of scarce administrative skills and resources. None are likely to encourage efficien: production. Guantitative restrictions and tariffs may not achieve tleeir aims, and if they do, the cost to the consumer will be very high and the saving in imports will be small. Subsidies are likel: to involve an open-ended commitment which we trink cannot be accepted. For these reasons alone we do not consider that it would be dnsirable to use any of these methods. In addition there is a basic objection to all these courses of action. They all seek to make profitacle a mill which basically has costs above those of its competitors. This might be acceptable if in the long run its costs would be reduced but we do not think, in the circumstances, that this will he possible and we do not think that it would generally be in the interests of Lesotho to artificially support such an enterprise. Furthermore a blanket mill in Lesotho faces a particularly difficult market situation and we cannot at the moment forsee any amelioration of the position.

4.6 Conclusion

In orfer to deternine the fersibility of blanket production in Lesotho we estimated the likely costs of production and from these costs we derived price's which we compared with those of present suppliers. In some cases Lesotho prices were well below those of the imported product, in others about the same, and in one important section of the market they were considerably above. These differences car be explained by a combination of market and cost factors but or overall conclusion was that Lesotho will have somewhat hieher costs than her competitors, the difference varying as between the products concerned. Given this cost situation and oearing in mind the preserce of a dominating supplier the vietility of a blanket firm in Lesotho depends on whether it can obtrin a profitable share of the market. Even if the price reaction of the major producer is relatively slight we do not think that sum a share of the market can be gained and if the establishec firm were to cut prices drastically then a firm in Lesotho would ho doomed to failure. Nor do we consider that the use of controls, tariffs or subsidies would be effective or desirable in this case. We therefore conclude that it would not be feasible to establish blanket production in lesotho.

4.7 Other development possibilities in the field of textiles

In the course of conducting our enquiries into the feasibility of blanket production it has occurred to us that there may be other possibilities in the textile field which might be more promising than the field we have just looked at. We do not have time, nor have we been requested, to lonk at these in detail but a brief outline of them is given in Appendix D.

APEEMDIX A

TECHIICAL DETAIL OF BLANKET MILL
APPENDI A A
THCHNICAL DETAIL BLANKET MILL

1. SPINNING
1.1 Weft yarn - count requirement

In order to produce 600,000 blankets a year, equal to $880,000 \mathrm{~kg}$ yarm a year, the following quantitiss of weft yarn counts are needed:

Table A. 1 Weft yarn - count requirement

	' m/year in yarn counts below			
	Nm	Nm 2	Nm 4	Nm 6
Lilala	\square	-	120.2	-
Pitseng	\cdots	-	130.4	-
Pitgo	-	-	58.2	-
Mountain	5.5 .2	-	-	-
Domestic	177.6	-	-	-
Aorylics	\square	39.1	-	-
Travelling rugs	92.0	-	-	-
Travelling shawla	\cdots	-	-	38.0
Greys	169.4	-	-	
Total ton $=880$ ton/year	494.2	39.1	308.8	38.0
$\begin{aligned} & \text { Iroduction in } \mathrm{kg} / \mathrm{h} \\ & =\text { about } 160 \mathrm{~kg} / \mathrm{h} \end{aligned}$	91.5	7.2	57.2	7.1

The spinning mill is designea to work on three shifts equal to 5400 $h /$ year

1.2 Warehouse

Consumption of raw material for weft yarn is about 880 ton/year. The main part of raw material is bought from overseas and because of transport time it is advisinle that the warehouse should be able to take five months storage, or 370 tons. 60% of floor space occupied by material; storage height is 4 m ; density of material is 0.2 , and total floor space is $800 \mathrm{~m}^{2}$. In the storage we recommend one combined clamp and lift truck and one very simple baling machine. Three worker:; per shift are expected to work here. The warehouse is workig on two shifts only.

1.3 Opening and mixing

Because of the output of the naohines used here, only two-shift operation is necessary, of $3600 \mathrm{~h} /$ year. Here we need two Willey machines (Fearnaught). Produrtion is $4-600 \mathrm{~kg} / \mathrm{h}$. Suitable machinery can be obtained fron:

| a. Fearnaught, | UK |
| :--- | :--- | :--- |
| b. Rolando, | Italy |
| c. La Roche, | France |

1.4 Dyeing

We assume that 800 tons of raw material a year is dyed on a three shift operation i.e. $5400 \mathrm{~h} /$ year. We get a production of about $150 \mathrm{~kg} / \mathrm{h}$. If we assume that the time for an average machine oycle is three hours, we get a batch-weight of 45 kg . It is suitable to have two machines each about 250 kg per batch, coupled together. Price for two maohines inclusive of two extra material carriers is

US $\$ 150,000$ (Longclose UK). Laboratory equipment, US $\$ 15,000$. Drier for the dyed material imslusive of hydroextractor is US \$\% 46,000 (Petrie McNaught UK).

1.5 Blending

A two shift operation, $3600 \mathrm{k} /$ rear. After initial teazing and dedusting of the raw materia], the blending is done manually by arranging the components of tha raw material in layers on top of each other on the floor. The material is then manually put through a Fearnaught (Willey mochine equipped with a hopper feed and oiling equipment). From i,he Willey machine the material is transported pneumatically into bins. Finally the material will be passed into similar bins situated in front of the woollen cards. Cost for the machine consisting of the hopper, deduster, Fearnaught, emulsion spray, bins and piping is US of 110,000. The makers of this equipment are:

Rolando,
Spencer \&: llalstead, Duesberg Bnusson,

Italy
UK
Belgium

The production is $4-600 \mathrm{~kg} / \mathrm{h}$.
1.6 Woollen carding

As yarm is of Nm 1, 2, 4 and 6, Two cards are necessary, one for Nm 1 and 2, and one for $\operatorname{Nm} 3-6$. The production of the first card is theoretically $110 \mathrm{~kg} / \mathrm{h}$ and the number of good ends is 96. The card for fine yarm, Nm 3-6, will produce up to $100 \mathrm{~kg} / \mathrm{h}$ and has 132 good ends. The production per hour or per card follows in the table below:

Table 1.2 Carding

It should be observed that the cards are not completely utilised on three shifts, $5400 \mathrm{~h} /$ year.

1.7 Woollen spinning

Table A. 3 Woollen spinnine uroduction

YarnCount Nm	Twist r/m	$\begin{aligned} & \text { Spindle speed } \\ & \mathrm{r} / \mathrm{min} \end{aligned}$		Efficiency	Production $\mathrm{kg} / \mathrm{sph}$	Production kg / h	Necessary Spindles	$\left\lvert\, \begin{gathered} \text { Sph pa } \\ \text { kg } \\ \text { yarn } \end{gathered}\right.$
		at 30 $\mathrm{m} / \mathrm{min}$	Practicall. y					
1	75	2250	2250	0.70	1.26	91.5	73	0.79
2	100	3000	3000	0.70	0.63	7.2	12	
4	145	4350	3500	0.75	0.27	57.2	210	
6	175	5250	3500	0.75	0.15	7.1	48	6.70
							343	

Three machines with each 120 spindles are necessary.

The three spinning machines witih spindles on only one side will have the following properties:

Gauge 165 mm ; Ring diameter 127 mm ; Tube length 600 mm ; net cop weight
Maximum spindle speed is restricted by maximun delivery speed, $30 \mathrm{~m} / \mathrm{min}$.

Suitable machines can be obteined from:

Carniti,	Italy
Gaudino,	Italy
Duesberg Bousson,	Belgium
Tatham,	UK

The spin bobbins will be used directly at the weft spooling machines in the weavery.
2.

WEAVING

2.1 Produation details

Production 600,000 blnkets (units of different size and construction $5400 \mathrm{~h} /$ year, 3 shift operation)

Table A. 5 Weaving - Produltion details

The production of blankets car be split in 2 categories, maybe 3, depending mainly on fabric width. It is not practical to make all fabric widths on looms of the same width in reed. The ready width of fabrics varies in tha table above between 0.75 and 1.55 m . As a practical compromise and without proper investigation we suggest 2 widths in reed of the looms, 130 cm and 190 cm . A complication is if blankets with frirges on all 4 sides are to be made. In this case extra width in reed in necessary for the fringes, but with 190 cm in med it is probably nossible to make the 150 m ready width. For the prime cost calculation this assumption is satisfactory. Another problem is the number of looms equipped with jacquerd:, dobby or tappet shedding. Even here an investigation is necossary before a mill is built, but with some reasonable assumptions the prime cost calculation can be made.

2.2 Storage for warp and weft yarns

The warp yarns are probably bought from overseas in the form of crosswound packages and arrive in wooden or cardboard boxes. Due to long transport we estimate that a storage space for warp yarn corresponding to 5 months corsumption is advisable. 70 ton cotton yarn is consumed per year. 5 months correspond to 30 ton.

Weft yarn will be stored in boxes and here about $2-4$ weoks storage is sufficient as weft yarn is made in own spinning mill. Maximum weft in storage is about 7.0 ton. All yarm together about 40 tons at most. Storage on shelves 2-3 in height. Area nocessary $350 \mathrm{~m}^{2}$.

2.3 Warping and storage of beams

The warpine can be done on a very ordinary horizontal, section warper with a fixed creel for about 400 crosswound warp yarn packages. The number of ser!ions per warp is decided by total number of warp threads per wirp and the practical upper limit for the width of one section on the warper. A modest warper will have a machine speed of \quad, 10 to $400 \mathrm{~m} / \mathrm{min}$ and an efficiency of 12% with the simple creel sagested. Production per hour is $0.12 \times 400 \times 60=2900 \mathrm{~m} / \mathrm{h}$ effictively (in the form of one section). From Table A. 5 we take figures in column 2 and multiply with corresponding figure in coluri; 3 and get the length of each type of fabric as demonstrated in the table below.

Table A. 6 Warping requirene it

Type of Blanket	$\begin{gathered} \text { Total Jongth } \\ \binom{\text { A }}{\hline} \end{gathered}$	Sections in warp	Machine hours $\mathrm{A} \times \mathrm{B} \div 2900$
Lilala	16500	3	17
	58 m	3	6
	1850)	3	19
	36600	3	38
	28500	3	29
	19000	3	20
	28800	4	39
	12800	5	22 (190)
Pitseng	138600	6	287
Pitso	59400	6	123
Mountain	48000	5	83
Domestio	193800	5	334
Acrylics	48000	5	83
Travelling rugs	90000	5	155
Travelling shawls	67590	5	116
Greys	180000	5	310
	99180		1681

One warper will cope with the production in about one shift operation The storage of warp beams in traming racks of paternoster type. The warp beams can be standardised and about 20 beams in storage should be sufficient.

```
2, racks, each 10 beams each
Necessary area inclusive of storage

\subsection*{2.4 Weft-preparation (winling of super cops)}

70 spindles, cost US \(\not f 39200\) (iuuschamp UK)
Necessary area inclusive stor of weft boxes
Number of boxes 200; cost US; 5000. Simple shelves cost US \(\$ 1000\)

Required area for weft windinc machines and storage of 150 boxes weft \(y \cdot n\) is \(100 \mathrm{~m}^{2} \quad 100 \mathrm{~m}^{2}\)

\subsection*{2.5 Looms}

The question of type of weavine equipment is always debatable. Sophisticated machinery like twier looms are not economical in countries with low wages as 1 ! Lesotho. Furthermore true selvedges are not obtained on these machines. Many considerations speak for using ordinary shuttle looms, which are cheap, easy to repair and maintain. A loom will work at different speeds depending mainly on width in reed and equipment used for shedding. Of course, the material in warp and weft yarn is also of prime importance. ihree shift working i.e. \(5400 \mathrm{~h} /\) year.

Table A. 1 Weaving - loom details
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fabric & \begin{tabular}{l}
Width \\
in reed II
\end{tabular} & \[
\begin{gathered}
\text { Equipment } \\
\text { for } \\
\text { sheddir: }
\end{gathered}
\] & speed picks /min & M picks per year & Efficiency of looms & Number of 100ms \\
\hline Lilala & 1.30 & Jacquard & 110 & 224 & 0.7 & 10 \\
\hline \begin{tabular}{l}
Pitseng \\
Pitso
\end{tabular} & 1.90 & Jacquar:d & 100 & 490 & 0.7 & 23 \\
\hline Mountain & 1.90 & Dobby & 100 & 132 & 0.7 & 6 \\
\hline Travelling & 1.90 & Tappet shedd. & 100 & 91 & 0.7 & 5 \\
\hline Greys & 1.90 & \begin{tabular}{l}
Tappet \\
ahedd.
\end{tabular} & 100 & 72 & 0.7 & 4 \\
\hline & & & & 1009 & & 48 \\
\hline
\end{tabular}

All these locms have \(4 \times 4\) shuttle boxes.

There is a choice between tappt and dobby shedding. The use of dobby has advantages in cornection with a change of fabric construction as compared witr tappet shedding. Dobbies are, on the other hand, more exper itive. In the prime cost calculation we have counted with 34 jacquard ard 14 dobby looms.

The preparation of the warp tous is simple as the warp yarn is coarse and th re are few ends wer beam. We sugest that all preparation is made by hand ent consequently only simple racks are necessary for operations like drawing-in (or the warp threads through the eyes of the heald: ); drawing ends through the reed; putting on fallers (dropwires) for warp-stop-motion etc. The tying on of warp beams at the looms should also be made by hand.

\subsection*{2.6 Windine}

From warping we get remnants, about \(20 \%\) of total production, \(0.2 \times 70\) ton/year \(=14\) ton/year need rewinding. A simple, hand-operated winding-machine 1 ill produce about \(1 \mathrm{k}_{\mathrm{g}}\) warp yarn per h , spindle. Daytime operation \(1800 \mathrm{~h} /\) year. 12 spindles will give the smallest windine machine (e.g. Schlafhorst, W. Germany, type BKN US \(\$ 10000\).
Table A. 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Process} & \multicolumn{3}{|l|}{Machines} & \multicolumn{3}{|l|}{Spares, Auxiliaries} & \multicolumn{3}{|l|}{Floor space} \\
\hline & Type & Nos. & Total cost US \(\not \subset\) & Type & Nos & Total cost US \(\phi\) & \(\mathrm{m}^{2}\) & \(\not 7 \square^{2}\) & \[
\begin{aligned}
& \text { Total } \\
& \text { cost } \\
& \text { US } \mathrm{f} \\
& \hline
\end{aligned}
\] \\
\hline Storage & Truck & 1 & 6000 & Shelves & - & 1500 & 350 & & 45500 \\
\hline Warping and Warp preparation & Warper, creel Transport & 1 & \(\begin{array}{r}20000 \\ 2000 \\ \hline\end{array}\) & \begin{tabular}{l}
Storage \\
Warp beams \\
Beam truck \\
Frames, prep
\end{tabular} & 2
30
1 & \begin{tabular}{l}
3000 \\
2800 \\
2900 \\
2000 \\
\hline
\end{tabular} & 220 & 158 & 34800 \\
\hline Weit prep. & 70 spindies & & 39200 & \[
\begin{aligned}
& \text { Byse } \\
& \text { boxes } \\
& \text { Trucks }
\end{aligned}
\] & & \[
3000
\] & 150 & 158 & 23700 \\
\hline Weaving & \begin{tabular}{l}
Jacquard looms \\
130 cm \\
190 cm \\
Dobby 190 cm \\
Transport \\
Erection \\
Domestic loom \\
Winder, sample
\end{tabular} & 10
24
14

1
1 & \[
\begin{array}{r}
84000 \\
210000 \\
94000 \\
80600 \\
14400 \\
2700 \\
500
\end{array}
\] & \begin{tabular}{c} 
Ass harmess \\
\("\) \\
\hline\("\)
\end{tabular} & 12
30
8 & \[
\begin{array}{r}
7800 \\
21000 \\
10500 \\
\hline
\end{array}
\] & 1100 & 158 & 174000 \\
\hline Winding & Winder & & 12000 & & & & & & \\
\hline & & & 565400 & & & 60500 & 1820 & & 278000 \\
\hline
\end{tabular}

\section*{3. FINISHING}
3.1 Finishing requirement

The blankets sold in Lesotho are generally of low quality. In spite of this fact most blant ts have an edging (braid) attached to the blanket on all four sidss. Only greys and some mountain blankets have an overstitchily along the two shorter sides to prevent fraying; at the lom sides the bare selvedge was left untouched.

Only a restricted number of finishing techniques are necessary for this kind of blanket and listed in the table below. This table has only been erected as a besis for prine cost calculation.

Table A. 9 Estimate of blenkets to be finished
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 \\
Type of blanket
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Total sale in blankets per year
\end{tabular} & \begin{tabular}{l}
\% of total \\
sale ver \\
blaykat size
\end{tabular} & 4
Blanket
size
\(\mathrm{m} \times \mathrm{m}\) & \[
\begin{gathered}
\text { Sale in } \\
\text { m } \\
\text { per year }
\end{gathered}
\] & Sale in \(\mathrm{m} /\) year per type \\
\hline \multirow[t]{10}{*}{1. Lilala} & \multirow[t]{10}{*}{150,000} & & & & \\
\hline & & 14 & \(0.75 \times 0.80\) & 16,800 & \\
\hline & & 4 & \(0.75 \times 1.00\) & & \\
\hline & & 14 & & 0,000 & \\
\hline & & 14 & \(0.85 \times 0.90\) & 18,900 & \\
\hline & & \(2 ?\) & \(1.00 \times 1.10\) & 36,300 & \\
\hline & & 16 & \(1.10 \times 1.15\) & 27,600 & \\
\hline & & 11 & \(1.15 \times 1.20\) & 19,800 & \\
\hline & & 14 & \(1.30 \times 1.35\) & 28,300 & \\
\hline & & 5 & \(1.50 \times 1.60\) & 12,000 & 167,900 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
2. Pitseng \\
3. Pitso
\end{tabular}} & 84,000 & \(\cdots\) & \(1.55 \times 1.65\) & - & 138,600 \\
\hline & 36,000 & \(\bullet\) & \(1.55 \times 1.65\) & & 130,600 \\
\hline & & - & \(1.55 \times 1.65\) & - & 59,400 \\
\hline 4. Mourtain & \multirow[t]{2}{*}{30,000} & - & \(1.50 \times 1.60\) & - & 48,000 \\
\hline Domestic except & & & & & 48,000 \\
\hline Acrylics & 96,000 & - & \(1.50 \times 2.00\) & - & 192,000 \\
\hline Acrylics & 24,000 & - 1 & \(1.50 \times 2.00\) & & \\
\hline Trav. rugs & 45,000 & - 1 & \(1.50 \times 2.00\) & & 48,000 \\
\hline shawls & 45,000 & & \(1.50 \times 2.00\) & - & 90,000 \\
\hline \multirow[t]{3}{*}{Greys} & 45,000 & 1 & \(1.50 \times 1.50\) & - & 67,500 \\
\hline & \multirow[t]{2}{*}{90,000} & \multirow[t]{2}{*}{- 1} & \(1.50 \times 2.00\) & - & 180,000 \\
\hline & & & & & 991,400 \\
\hline
\end{tabular}

\subsection*{3.2 Finishing routines}

Table A. 10 Finishing routines


Soaping - A very simple fouland. Speed \(25 \mathrm{~m} / \mathrm{min}\), efficiency 0.2 , giving \(\mathrm{Mm} /\) year \(1.1 \mathrm{Mm} /\) year on 2 shift operation, \(3600 \mathrm{~h} /\) year. Only \(0.1 \mathrm{Mm} /\) year ne aded. 1 machine on 2 shifts is necessax because milling is on 2 shifts.

Milling - Milling time (cyclo time) \(2.4 \mathrm{~h} /\) batch of 30 units \(=\) about \(50 \mathrm{~m} /\) batoh. \(3600 \mathrm{l} /\) year. 1.5 machines necessary, say 2 machines as amowt of milling can increase with changes in weft-composition. A reserve of \(\frac{1}{2}\) machine needed.

Scouring - Cycle-time \(4 \mathrm{~h} /\) batch. 120 units per scouring machines (about \(170 \mathrm{~kg} /\) batcil). Length of one unit 1.4 m . About 7 machines vorking on 2 shifts necessary.

Drying - About 650 ton blarkgts have to be dryed per year. With \(10 \%\) reparation and refinishing we get 715.000 kg per year. If the drying maclinery (stenter frame) works on 2 shifts ( \(3600 \mathrm{~h} /\) year) and the cloth has a moisture quotient of 0.65 , we get \(0.65:: 715,000=465,000 \mathrm{~kg}\) water per year to be evaporated. If the efficiency of the drying machine is 0.7 the machine nust have a drying capacity of \(185 \mathrm{~kg} / \mathrm{h}\). A stenter frame will evaporate abuut \(13 \mathrm{~kg} / \mathrm{m}^{2}\), h \(185: 13=15 \mathrm{n}\) evaporation length. The length of a section is generally 3 m . We need consequently \(15: 3=5\) layers or 2 sections with 3 layers each (equal to 6 layers in total).

\section*{Raising.}

About \(1 \mathrm{Mm} /\) year to be raised. 2 shifts \(=3600 \mathrm{~h} /\) year. Production per hour \(=276 \mathrm{~m} / \mathrm{l}\). Machine speed \(15 \mathrm{~m} / \mathrm{min}\), efficiency 0.7 and each blans t needs averagely 2.5 rounds in a raising machine.

Table A. 11 Raising
\begin{tabular}{|l|c:c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
1 \\
Type of blanket
\end{tabular}} & \begin{tabular}{c}
2 \\
Nos. of \\
rounds
\end{tabular} & \begin{tabular}{c}
3 \\
m per year \\
per type
\end{tabular} & \begin{tabular}{c}
\(2 \times 3\) \\
\(m /\) year
\end{tabular} \\
\hline Lilala & 2 & 167,900 & 335,800 \\
Pitseng & 4 & 138,600 & 554,400 \\
Pitso & 5 & 59,400 & 297,000 \\
Mountain & 3 & 48,000 & 174,000 \\
Domestic & 3 & 48,000 & 144,000 \\
Acrylics & 4 & 157,500 & 630,000 \\
Travelling & 2 & 180,000 & 360,000 \\
Greys & & & \(2,500,000\) \\
\hline & & \\
\hline
\end{tabular}
1.1 machine necessary, say 2 machines

A grinding machine for grindings oard wire on rollers in the raising machine necessary.

\section*{Steam and brushing}

About 1 Mm per year to be stecined and brushed. Machine speed \(20 \mathrm{~m} / \mathrm{h}\); efficiency 0.6 ; 2 shift \(=3600 \mathrm{~h} /\) year. On two shifts we need 0.25 machines; this is to say one machine will be busy about \(1000 \mathrm{~h} /\) year.

\section*{Shearine}

In finishing Table A. 9 only 48,000 m per year blankets need shearing, one time on each sidz. A very simple shearing machine is necessary; speed \(25 \mathrm{~m} / \mathrm{min}\), solid rest, one cylinder, efficiency 0.3. Operation time per yecr is \((48,000 \times 2):(25 \times 0.3 \times 60)=\) \(250 \mathrm{~h} /\) year. It is difficult to say how many blankets need steaming as it depends entirely on firm length of material used.

\section*{Edging}
0.83 Mm per year need edging of some kind. The main part of the blankets need edging, either in form of narrow strip of material, e.g. knitted fabric or lace at:fached to the edges of the blanket ( \(811,400 \mathrm{~mm} /\) year) or overstitohing along the cut edges of the blanket to prevent fraying ( \(1 \mathrm{p}_{2}^{\prime}\) ), 000 m ).

\section*{Table A. 12 Figing}
\begin{tabular}{|c|c|c|c|c|}
\hline Type & \[
\begin{gathered}
\hline \text { Size } \\
\mathrm{m} \times \mathrm{m} \\
\hline
\end{gathered}
\] & Blankets jer year & Edging Blanket & \[
\begin{array}{ll}
\text { I Per: } \\
\text { year }
\end{array}
\] \\
\hline Lilala & \(0.75 \times 0.80\) & 21,000 & 3.1 & 65,000 \\
\hline & \(0.75 \times 1.00\) & 6,000 & 3.5 & 21,000 \\
\hline & \(0.85 \times 0.90\) & 21,000 & 3.5 & 73,500 \\
\hline & \(1.00 \times 1.10\) & 33,000 & 4.2 & 138,600 \\
\hline & \(1.15 \times 1.20\) & 16,500 & 4.7 & 77,600 \\
\hline & \(1.30 \times 1.35\) & 21,000 & 5.3 & 111,300 \\
\hline & \(1.50 \times 1.60\) & 7,500 & 6.2 & 46,500 \\
\hline Pitseng & \(1.55 \times 1.65\) & 84,000 & 6.4 & 537,600 \\
\hline Pitso & \(1.55 \times 1.65\) & 36,000 & 6.4 & 230,400 \\
\hline Mountain & \(1.50 \times 1.60\) & 30,000 & 6.2 & 186,000 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Domestic \\
Acrylics
\end{tabular}} & \(1.50 \times 2.00\) & 120,000 & 7.0 & 840,000 \\
\hline & & & & \(2.3 \mathrm{Mm} / \mathrm{year}\) \\
\hline
\end{tabular}

Travelling rugs have generally fringes on the two short sides (in some cases just overstitching of short sides). Travelling shawls have fringes all round.

\section*{Fringes:}
\begin{tabular}{|c|c|c|}
\hline Travelling rugs & \(45000 \times 3\) nunit & \(=135000 \mathrm{~m}\) with fringes \\
\hline Travelling shawls & \(45000 \times 6 \mathrm{~d} / \mathrm{mit}\) & \(=\underline{270000} \mathrm{~mm}\) with fringes \\
\hline & Totalily & 405000 mm per year \\
\hline
\end{tabular}

\section*{Overstitching}

Greys \(\quad 90000 \mathrm{~m} \times 3 \mathrm{~m} /\) blanket \(=270000 \mathrm{~m}\) overstitching per yeas


Edging takes \(3-4 \mathrm{~min} /\) blanke \({ }^{1}\), \(150 \times 160 \mathrm{~cm}\); of \(110 \mathrm{~m} / \mathrm{h}\), worker Overstitching takes \(2 \mathrm{~min} / \mathrm{blan} k\) et
Fringes take \(\quad 15 \mathrm{~min}\) per shawl
Fringes take \(\quad 7 \mathrm{~min}\) per rug

Edging 2,300,000: \(110=210001\) man \(\mathrm{h} /\) year. \(1800 \mathrm{~h} /\) year, worker. 210,000: \(1800=12\) workers totally or 6 per shift, 2 shift operation.

Overstitch \(330,000 \mathrm{~m}: 90 \mathrm{~m} / \mathrm{h}=3600 \mathrm{~h} /\) year or 2 workers, one on each shift

Fringes \(405,000: 24=16,901 \mathrm{~h} /\) year or 10 workers, 5 on each shift
Workers per shift \(\quad\) Edgin* 6 workers/shift
Overstitch 1 worker/shift
Fringes 5 workers/shift
Total 12 workers/shift

\section*{Table A. 13 Average lengt! of blankets in different finishing scoups.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type of Blanket} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 \\
\text { length } \\
\mathrm{m}
\end{gathered}
\]} & \multirow[t]{2}{*}{blankets per year} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \times 2 \\
& \text { m/year }
\end{aligned}
\]} & \multicolumn{5}{|c|}{Finishing groups} \\
\hline & & & & & I & II & III & IV & V \\
\hline \multirow[t]{8}{*}{Lilala} & 0.80 & 20600 & & 16480 & X & \multirow{19}{*}{X
X} & \multirow{19}{*}{X} & \multirow{19}{*}{X
X} & \multirow{19}{*}{X} \\
\hline & 1.00 & 5800 & & 5800 & x & & & & \\
\hline & 0.90 & 20600 & & 18810 & X & & & & \\
\hline & 1.10 & 33300 & & 36630 & X & & & & \\
\hline & 1.15 & 24800 & & 25520 & x & & & & \\
\hline & 1.20 & 15800 & & 18960 & X & & & & \\
\hline & 1.35 & 21300 & & 28755 & X & & & & \\
\hline & 1.60 & 8000 & & 12800 & X & & & & \\
\hline Pilseng & 1.65 & 84000 & & 130600 & X & & & & \\
\hline Pitso & 1.65 & 36000 & & 59400 & & & & & \\
\hline Mountain & 1.60 & 30000 & & 48000 & & & & & \\
\hline & 2.00 & 60000 & & & & & & & \\
\hline Domestic & 2.00 & 24000 & \(960 \%\) & 192.000 & X & & & & \\
\hline & 2.00 & 12000 & & & & & & & \\
\hline Acrylic & 2.00 & 24000 & & 48000 & & & & & \\
\hline Rugs & 2.00 & 45000 & & 90000 & & & & & \\
\hline Shawls & 1.50 & 45000 & & 67500 & & & & & \\
\hline \multirow[t]{2}{*}{Greys} & \multirow[t]{2}{*}{2.00} & \multirow[t]{2}{*}{90000} & & 180000 & & & & & \\
\hline & & & & 987255 & & & & & \\
\hline
\end{tabular}
Average length of all blankets1.65 m
Average length of blankets in finishing group I ..... 1.50 m
Average lencth of blankets in finishing group ..... 1.63 m
Average length of blankets in \(\ddagger\) inishing group III ..... 2.00 m
Average length of blankets in finishing group IV ..... 1.75 m
Average length of blankets in finishing group \(V\) 2.00 m

Table A. 15 Laboratory Report
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Pitso & Welwitschia & Mona Lisa & Pitseng & Lilala \\
\hline Weight \(\mathrm{g} / \mathrm{m}^{2}\) & 563 & 302 & 569 & 551 & 578 \\
\hline Weave & \(\frac{1}{3}\) twill & Plain & Plain & \(\frac{1}{3}\) twill & double cloth \\
\hline Warp count Tex & 56 & 134 & 47 & 66 & 43 \\
\hline Weft count Tex & 240 & 134 & 1036 & 345 & 246 \\
\hline Warp ends/inch & 29 & 23 & 10 & 29 & 23 \\
\hline Yeft enas, ínoh & 49 & 2 & 19 & 46 & 三5 \\
\hline Composition & 11.8\% cotton (warp) & 57/43 wool/acrylic & 5.2\% cotton (warp) & 12.5\% cotton (warp) & \\
\hline & 80.4\% wool & & 6.2\% wool & 27.2\% wool & 7.6\% polyester \\
\hline & 7.8\% nylon & & 2.2\% nylon & 54.9\% viscose & 3.2\% wool \\
\hline & & & 80\%\% viscose cotton & 5.1\% nylon & 89.3\% viscose \\
\hline Micron of non-wool component & 21,unylon & 21, wacrylic & 17, u(cotton viscose) & 25.2,4viscose & 25.3..viscose \\
\hline Denier & 3.5 & 3.25 & 2.5 & 5.0 & 5.0 \\
\hline
\end{tabular}

\section*{APPENDTX B}

\section*{PRTYE COS!' CALCULATIONS}
1. Spinning Department - Bsis for prime cost calculation
1.1 Warehouse, unit of cost is kg. 880 ton/year, 2 shift

Capital cost for:
USS 8/year US cents/kg
Buildings \(800 \mathrm{~m}^{2} \times \neq 130 / \mathrm{m}^{2}\) of 104,000;

1.2 Opening, mixing; unit of cost kg; 880 ton/ year, 2 shift
Capital cost for:
Machines \(\neq 67,000 ; 10\) year. \(14 \% \quad 11,390\)
Buildings \(\$ 39,000 ; 20\) year. \(14 \% \quad \underline{4,680}\)
\(\begin{array}{ccrl}\text { Labour } & 5 \text { workers/shift; } ? \text { shift } & & \\ 5 \times 2 \times 1800 & 0.54 & 9,720 & 1.10\end{array}\)
Material 0il
2.40

Electricity Machines \(32 \mathrm{~kW} 32 \times 0.04 \times 3600 \times 0.02922\)
Light \(800 \mathrm{~m}^{2} \times 0.005 \mathrm{~W} / \mathrm{m}^{2} \times 5400 \mathrm{x}\)
\[
0.02 \mathrm{c} / \mathrm{kWh}
\]

Steam \(\quad 1,000\) 2,354
0.27
5.59

US 8/year US cents/kg

15,300

3,120
18,420
2.09

3,888
0.44

\section*{Material}

Electricity
Light \(200 \mathrm{~m}^{2} \times 0.04 \mathrm{~W} / \mathrm{m}^{2} \times 5400 \mathrm{~h} /\) year \(\times\) \(\$ 0.02 / \mathrm{kWh}\)

864
Power \(30 \times 0.4 \times 3600 \times 0.0\) ?
864
Air conditioning \(200 \times 0.01 \times 3600 \times 0.02576\)
Stean
500
2,804
0.32
2.85
1.4 Carding \(300 \mathrm{~m}^{2}\left(\$ 154 / \mathrm{m}^{2}\right) 880\) ton/year, 3 shift (not mmpletely, \(80 \%\) of \(5400 \mathrm{~h} /\) year). Unit kg.

Machines \(\not \approx 481,000,10\) years \(14 \% \quad 81,770\)
Buildings \(\$ 46,200,20\) yerrs \(14 \%\)
5.544

87,314
9.92

Labour 3 workers/shift, shifts \(3 \times 3 \times 1800 \times 0.54\)
Material
\begin{tabular}{|c|c|c|}
\hline Condenser bobbins \$8 24,000; 5 years, 14\% & 6,480 & 0.74 \\
\hline \multicolumn{3}{|l|}{Electricity} \\
\hline Light \(\quad 300 \times 0.04 \times 5400 \times 0.02\) & 1,296 & \\
\hline Power \(60 \times 0.8 \times 0.8 \times 5400 \times 0.02\) & 4,147 & \\
\hline Air conditioning \(300 \times 0.04 \times 5400 \times 0.02\) & 1,296 & \\
\hline Steam & 750 & \\
\hline & 7.489 & 0.85 \\
\hline & & 12.50 \\
\hline
\end{tabular}

US \&/year US cents/sph
1.5 Spinning \(880 \mathrm{ton} /\) year. 3 shift, \(5400 \mathrm{~h} /\) year 2,257,000 syly year; Unit = cents/ipindle hour

Capital cost for:
Machines \(\$ 149,625,10\) year: \(14 \% \quad 25,400\)
Buildings \(\$ 138,600,20\) years. \(14 \% \quad 17,000\)
\begin{tabular}{rrrr} 
Labour & 42,400 & 1.70 \\
\hline \(5 \times 3 \times 1800 \times 0.54\) & 14,580 & 0.60
\end{tabular}

Materials
\begin{tabular}{llrl} 
Tubes \(\$ 35,000,5\) years. \(14 \%\) & 9,450 & 0.42 \\
Electricity \\
Light \(700 \times 0.04 \times 5400 \times 0.02\) & & \\
Power \(107 \times 0.7 \times 5400 \times 0.02\) & 3,888 & \\
Air conditioning \(900 \times 0 . C 4 \times 5400 \times 0.02\) & 8,090 & \\
Steam & 3,888 & \\
& 1,000 & \\
& & 16,866 & \(\underline{0.75}\) \\
& & & 3,47
\end{tabular}

Yarn

1.6 Spinning Department - Summary of prime cost calculation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Costing arce & Quantity per year & Uni \({ }^{1}\) usel & Prime co Capital & tin U: habomer & \begin{tabular}{l}
cents \\
Others
\end{tabular} & unit qotal & Notes \\
\hline 1.1 Warehouse & 880 t & \(k_{i}\); & 1.86 & 0.61 & 0.12 & 2.65 & \\
\hline 1.2 Opening Mixing & 880 t & \(\mathbf{k i}^{\prime}\) & 1.82 & 1.10 & 2.67 & 5.59 & \\
\hline 1.3 Blendine & \(880 t\) & \(\mathbf{k}^{\prime \prime}\) & 2.09 & 0.44 & 0.32 & 2.85 & \\
\hline 1.4 Carding & 880 t & \(\mathbf{k}^{\text {i }}\) & 9.92 & 0.99 & 1.59 & 12.50 & \\
\hline 1.5 Spinning & 880 t & \[
\operatorname{spi}_{1}
\] & 1.70 & 0.60 & 1.1i & 3.47 & 1. \\
\hline
\end{tabular}
1.
\begin{tabular}{cc|c|c|c|c} 
& Spindle h & \multicolumn{4}{|c}{\begin{tabular}{c} 
Prime cost in US cents/k; \\
Nm \\
per ke
\end{tabular}} \\
Capital & Labour & Others & Sotal \\
\hline & & & & & \\
1 & 0.79 & 1.33 & 0.49 & 0.92 & 2.74 \\
2 & 1.99 & 2.70 & 0.96 & 1.84 & 5.52 \\
4 & 3.70 & 6.29 & 2.22 & 4.31 & 12.84 \\
6 & 6.10 & 11.39 & 4.02 & 7.84 & 23.25
\end{tabular}

The whole spinning process

2. Dyeing Departinent - Basig for prime cost calculation

Dyeing 800 ton/year. Unit of cost is kg US \(\phi /\) year US cents \(/ \mathrm{kg}\)
Capital cost for:
Machines, 2 machines +2 exira carriers
\begin{tabular}{|c|c|c|}
\hline & & \$815000 \\
\hline Lab. & 1 machine & \% 1 ¢, 100 \\
\hline Dryer & & \% 4,00 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Water \(601 / \mathrm{kg}\) mat \(8 \mathrm{c} / \mathrm{m}^{3}\)} & 3,840 & 0.48 \\
\hline \multirow[t]{3}{*}{Steam heating water ( \(60 \times 90\)
Steam drying} & 4.5 kg steam & 33,600 & \\
\hline & \(\underline{2.5} \mathrm{~kg}\) steam & 37,440 & \\
\hline & \(7.0 \mathrm{~kg} \not \underline{\prime}\) 6/ton & & 4.68 \\
\hline
\end{tabular}
\begin{tabular}{lcccl} 
Cost for & Dyestuff & Chemicals & Total & \\
Light shades & 8 & 3 & 11 & \(\mathrm{c} / \mathrm{kg}\) \\
Medium shades & 16 & 3 & 19 & \(\mathrm{c} / \mathrm{kg}\) \\
Dark shades & 25 & 3.5 & 28.5 & \(\mathrm{c} / \mathrm{kg}\) \\
Medium dark & 21.5 & 3.5 & 24.0 & \(\mathrm{c} / \mathrm{kg}\)
\end{tabular}

We calculate with average medium shades
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Capital \\
4.80
\end{tabular} & \begin{tabular}{l}
Labour \\
0.49
\end{tabular} & Chemical Dyes & Others
\[
5.79
\] & Total
\[
11.1
\] \\
\hline Light shade & 4.80 & 0.49 & 11.0 & 5.79 & 22.1 \\
\hline Medium shade & 4.80 & 0.49 & 19.0 & 5.79 & 30.1 \\
\hline Medium dark & 4.80 & 0.49 & 24.0 & 5.79 & 35.1 \\
\hline Dark shade & 4.80 & 0.49 & 28.5 & 5.79 & 39.6 \\
\hline
\end{tabular}
3.1 Storage of wary and wet yarn

800 ton/year, 2 shift
Unit for caloulation is kg
Capital cost for:

Trucks, shelves \(\$ 7,500 ; 5\) years, \(14 \%\) 2,025
7,485
0.94

Light, steam
1,000
0.13

Labour 1 worker/shift, 2 shifts
\(1 \times 2 \times 1800 \times 0.54\)
1,944
3.2. Warping 70 ton/year; Unit, Machine hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
0 \\
\text { Type }
\end{gathered}
\] &  & \[
\begin{gathered}
2 \\
\text { length } n
\end{gathered}
\] & \begin{tabular}{l}
\[
3
\] \\
Units per year
\end{tabular} & \begin{tabular}{l}
4 \\
Threads per warp beam
\end{tabular} & \begin{tabular}{l}
\[
5
\] \\
Sections
\end{tabular} & \[
\begin{gathered}
6 \\
2 \times 3 \times 5 \\
\hline 2900
\end{gathered}
\] & ```
        7
Nachine h
per 100 m
    warp
``` & \[
\begin{gathered}
8 \\
2 \times 3.64 \\
\times 10^{6} \times 4
\end{gathered}
\] \\
\hline \multirow[t]{8}{*}{Lilala} & 0.75 & 0.80 & 20600 & 675 & & & & \\
\hline & 0.75 & 1.00 & 5800 & 675 & 3 & 17 & 0.10
0.10 & 11.1 \\
\hline & 0.85 & 0.90 & 20600 & 765 & & & & 3.9 \\
\hline & 1.00 & 1.10 & 33300 & 900 & & 38 & . 10 & 14.1 \\
\hline & 1.10 & 1.15 & 21800 & 990 & 3 & 38 & . 10 & 32.9 \\
\hline & 1.15 & :. 20 & 120. & \% & \% & 29 & 0.10 & 28.2 \\
\hline & 1.30 & 1.35 & 21300 & 1170 & 4 & 39 & 0.14 & 30.8 \\
\hline & 1.50
1.55 & 1.60 & 8000 & 1350 & 5 & 22 & 0.14 & 17.2 \\
\hline Pitso & 1.55 & 1.65 & 340000 & 1770 & \({ }_{6}\) & 287 & 0.21 & 245.3 \\
\hline Mountain & 1.50 & 1.60 & 30000 & 1770 & 6 & 123 & 0.21 & 105.1 \\
\hline Domestic & 1.50 & 2.00 & 90000 & 1200 & 5 & 83 & 0.17 & 57.6 \\
\hline Acrylics & 1.50 & 2.00 & 24000 & 1200 & 5 & 334 & 0.17 & 117.8 \\
\hline Fu¢5, travelling & 1.50 & 2.00 & 45000 & 1200 & 5 & 83 & 0.17 & 57.6 \\
\hline Shawls, " & 1.50 & 1.50 & 45000
45000 & 800 & 5 & 155 & 0.17 & 81.0 \\
\hline \multirow[t]{3}{*}{Greys} & 1.50 & 2.00 & 90000 & 825 & 5 & 110 & 0.17 & 55.7 \\
\hline & & 2.00 & 9000 & too & 5 & 310 & 0.17 & 109.0 \\
\hline & & & & & & \(\underset{\substack{1681 \\ \mathrm{machine} \\ \mathrm{h} / \mathrm{year}}}{ }\) & & 985.8 nit cents/ machine \(h\) \\
\hline
\end{tabular}

Capital cost for:
\begin{tabular}{|c|c|c|c|}
\hline Machinery & \$ 20000; 10 \%ears, 14\% & 3.400 & \\
\hline Transport & \% 2000; 5 :ears, 14\% & 540 & \\
\hline Buildings & \[
220 \mathrm{~m}^{2} \times \neq 151 / \mathrm{m}^{2}
\] & 3,940 & 234 \\
\hline & \[
\neq 33880 \quad 20 \text {, }
\] & 4,171 & 248 \\
\hline Labour & \(2 \times 1800 \times 0.4\) & 1,440 & 86 \\
\hline Light & \(220 \mathrm{~m}^{2} \times 0.04 \times 3600 \times 0.02\) & 634 & \\
\hline Power & \(4 \times 1681 \times 0.12\) & 135 & \\
\hline Air conditioning & \(220 \times 0.04 \times .400 \times 0.02\) & 950 & \\
\hline Steam & & 1,000 & \\
\hline & & 2,719 & 161 \\
\hline & & & 729 \\
\hline
\end{tabular}
3.3 Warp preparation, dayime operation
\begin{tabular}{|c|c|c|}
\hline Warp beams 2800 & US \(8 /\) /year & \begin{tabular}{l}
\(\phi /\) beam of \\
1000 threads
\end{tabular} \\
\hline Beam trucks 29005 ears, 14 & & \\
\hline Preparation frames 2000 & 2,079 & \\
\hline Storage, 2 frames 3000 10, ears, 14\% & 510 & \\
\hline 10700 & 2,589 & 2.59 \\
\hline Beam leneth is \(1350 \mathrm{~m} ;=74 \mathrm{C}\) teams/year; assume 1000 beams/year & & \\
\hline Average number of threads/bean 1000. If work on day-time, \(1800 \mathrm{~h} / \mathrm{y}\) wr need: & & \\
\hline \(\begin{array}{ll}\text { Hand healding and reading in } \begin{array}{r}500 \text { ends } / \operatorname{man} h \\ \text { Hand twisting } \\ \\ \text { Warp-droppers }\end{array} & 1000 \text { ends } / \operatorname{man} h \\ \text { droppers } / \text { man } h\end{array}\) & & \\
\hline Labour cost & & \\
\hline \begin{tabular}{l}
3 persons day time for work above \\
1 transport worker
\end{tabular} & & \\
\hline \(3 \times 1800 \times 0.40 ~(w o m e n) ~\)
1 & 2,160 & \\
\hline \(1 \times 1800 \times 0.54\) (transport) & 970 & \\
\hline & 3.130 & 3.13 \\
\hline & & 5.72 \\
\hline
\end{tabular}

\subsection*{3.4 Weft preparation 2 shitts, unit \(\mathrm{Nm} \times \mathrm{ke}\)}
Machines
Boxes, trucks shelves \(\not \subset\)

\section*{Buildings}
\[
150 \mathrm{~m}^{2} \times \not \$ 158 / \mathrm{m}^{2} ; \$ 23700 ; 10 \text { years, } 14 \% \quad 4,028 \quad 0.21
\]

Labour cost
\begin{tabular}{llll}
\(3 \times 2 \times 1800 \times 0.40\) & 4,320 & \\
\(1 \times 2 \times 1800 \times 0.54\) & \(\underline{1,944}\) & \\
& 6,264 & 0.32 \\
& & 1,000 & \(\underline{0.05}\) \\
Electricity etc. & & 1.05
\end{tabular}

Machine is placed in weaving urga
3.7 Weaving Department Sumary of prime cost calculation

1. Machine hours per 100 th varp for
\begin{tabular}{lll}
lilala & \(0.75-1.15 \mathrm{~m}\) width & 0.10 \\
& \(1.30-1 . j 0 \mathrm{~m}\) width & 0.14 \\
Pjuseng & & 0.21 \\
lites & & 0.21 \\
Mountain & & 0.17 \\
Mcrylics & 0.17 \\
Inues, shawls & 0.17 \\
Greys & 0.17
\end{tabular}
2. If number of ends in warp is 1770 the total cost is \(572 \times 1.770=\) 1012 cents/beam.
If the beam is 1350 m and blanket length is 1.65 we get \((1012 \times 1.65): 1350=1.24\) cent/blanket
3.
\begin{tabular}{cr}
Capital & Labour \\
0.68 & 0.32 \\
1.36 & 0.64 \\
2.72 & 1.28 \\
4.08 & 1.92
\end{tabular}
Others
0.05
0.10
0.20
0.30

Total
Nm
1
2
4
6
abour
0.32
0.64
1.28
1.92
0.05
1.05

Capital
0.68
1.36
2.72
4.08
4. If a blanket has 11.8 picics \(/ \mathrm{cm}\) and is 165 cm long the total number of picks is 1947 ricks/blanket. Total cost is for a jacquard weave \((24.49+2.0) \times 1.94=51.4\) cent/blanket
5. If there is 0.121 kg wary in a blanket we get \(0.121 \times 4.29=0.5\) cent \(/ \mathrm{k}\).

\section*{4. Finishing Department - Masis for prime cost calculation}

The details of labour, materdals, capital costs and lighting and ventilation are given in Appenlix A, Section 3.

Table B. 1 below gives the prceessing costs in finishing and Table B. 2 shows the finishine costs for selected blankets.
Table B. 1 Finishing - Processinf costs in US cents

\section*{5. Overheads}

\subsection*{5.1 Inventory. Unit kg}

Spinning
Raw material storage
\begin{tabular}{|c|c|c|}
\hline Max & 370 ton raw metiorial & US \(\nsim\) \\
\hline Wool & 93 ton @ \$ 2. 1/kg & 195,000 \\
\hline Rayon & 240 ton (1) \$ 1.a kg & 288,000 \\
\hline Acrylics & 17 ton @ \(\$ 1.51 . \mathrm{kg}\) & 25,000 \\
\hline Nylon & 20 ton \(\Theta \nmid \% 1.5 / \mathrm{kg}\) & 33,000 \\
\hline
\end{tabular}
\(\frac{\text { US Q6 }}{(0-541,000)}\)
270,000
40,000

Material corresponding to 4 ys production in the mill, corresponding to 20 tol material © \(\$ 82.00 / \mathrm{kg}\)

Probable inventory is \(\frac{1}{2} \times 549,000+40,000\) or US \(\not \subset 310,000\)
Weaving

\section*{Process}

Storage \(0.6 \times 30=18\) ton wpyarn, price \(\not \subset 2.90 / \mathrm{kg} \quad 52,000\)
\[
0.5 \times 70=35 \text { ton } w f t \text { yarn, price } \not p 1.50 / \mathrm{kg} \quad 52,000
\]

Warping, warp preparation 2 on warp yarn price \(\not \subset 2.90 / \mathrm{kg} \quad 6,000\)
Weft winding
1.5 ton weft yarn price \(\not \subset 1.50 / \mathrm{kg} \quad 2,000\)

Weaving, 48 looms
2.6 t n weft yarn price \(\not \approx 1.50 / \mathrm{kg} \quad 4,000\)
0.3 bon warp yarn price \(\not \$ 2.90 / \mathrm{kg} \quad 1,000\) 4000 mits, price \(\not \$ 6.00 / \mathrm{kg} \quad \underline{24,000}\)

141,000

\section*{Finishing}

Grey oloth storage 1 weeks production 12000 units
 \(12000 \times 9\) 7.00/unit

\section*{Finished goods storage}

100,000 units maximum © \& 8.5/1unit
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Summary: Storage in US \(\phi\)} \\
\hline & Average & Maximum \\
\hline 1. Spinning including raw mitarial storage & 310,000 & 580,000 \\
\hline 2. Weaving & 141,000 & 141,000 \\
\hline 3. Finishing & 84,000 & 14,000 \\
\hline 4. Finished goods & 300,000 & 425,000 \\
\hline & 335,000 & 1,230,000 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& (14 \%) \\
& 835 \times 0.14=\{0116,900 / \text { year }
\end{aligned}
\]}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{116,900: \(800,000 \mathrm{~kg}=14.61\) rents \(/ \mathrm{kg}\)} \\
\hline \multicolumn{3}{|l|}{Add \(50 \%\) for contingencies \(=0\) cents \(/ \mathrm{kg}\)} \\
\hline \multicolumn{3}{|l|}{5.2 Storage of finished Scods. Unit - blanket} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
Unit - blanket. Daytime operition \\
About 100,000 blankets to be ::tored as a maxinum \\
Volume of one blanket average'; \(0.015 \mathrm{~m}^{3}\); \\
Storage 3.5 m highi \(60 \%\) of floorspace in shelves. \\
100 blankets per \(\mathrm{m}^{2}\) floorspar. \(\quad 1000 \mathrm{~m}^{2}\) storage area
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Capital cost for:} \\
\hline \multicolumn{3}{|l|}{Building} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(1000 \times \not \subset 130 / \mathrm{m}^{2}=\not \subset 130,000 \quad 0\) years, \(14 \%\)
\$ 15,600/year}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{600,000 blankets a year Materials}} & 3.25 cents/blankel \\
\hline & & 2.00 \\
\hline & & 5.25 cents/blanket \\
\hline
\end{tabular}

Personnel - as above
114,400
Buildings
\[
\begin{array}{lc}
200 \mathrm{~m}^{2} \times \not p 130 / \mathrm{m}^{2}=\mathrm{S} 2600,20 \text { rears, } 14 \% & 3,100 \\
\text { Auxiliaries } \\
\text { S10,000, } 5 \text { years, } 14 \% & \frac{2,700}{120,200}-15.00 \\
\hline
\end{array}
\]

Width \(155 \mathrm{~cm} \mathrm{;} \mathrm{Length} 165 \mathrm{~cm} ;\) Fringes No ; Weight 1.43 kg WARP: Ends/cm 11.4 ; Totally 1770 ; Count Nm 28/2; Material Cotton Yam length/blanket 174 cm ; Warp shrinkage \(5 \%\); Warp weight 0.22 kg Warp yam price \(\phi / \mathrm{kg} 2.92\); Cost of warp yarn c/blanket 64.2 WEF: Picks/an 18.1; per blanket 2990 ; Count Nm 4 ; width in reed 170 cm Woven weight per blanket 1.27 kg

\section*{Material:}
1. WOOI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \% & weft weight & \[
\stackrel{\mathrm{kgg}_{\mathrm{g}}}{\text { weft yarn }}
\] & Price
\[
\phi / k E
\] & \begin{tabular}{l}
cost \\
blanket c
\end{tabular} & Totaly \\
\hline 31.2 & 1.27 & 0.40 & 1.89 & 76 & \\
\hline 5.8 & 1.27 & 0.07 & 1.60 & 11 & 187 \\
\hline 63.0 & 1.27 & 0.80 & 1.25 & 100 & \\
\hline
\end{tabular}

Losa in apinning \(10 \%\); Wt. weft raw mat. 1.40kg; Total cost weft c/bl. 205.7 Lost in finishing \(5 \%\); Finishod wt weft materlal/blanket 1.21 ks
\begin{tabular}{|l|r|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Cost in US cents/blanket } \\
\cline { 2 - 5 } Manufacturing cost: & Capital & Labour & Others & Total \\
\hline Spinning & 27.91 & 6.88 & 11.47 & 45.26 \\
Dyeinfledium dark) & 6.10 & 0.62 & 37.83 & 44.55 \\
Weaving (Jacquard) & 41.85 & 38.57 & 5.43 & 85.85 \\
Finishing & 11.24 & 14.61 & 30.46 & 56.31 \\
Store, inventory & & & & 36.71 \\
Mill overhead & & & & 21.45 \\
Rav material & & & & 269.90 \\
\hline Total & 87.10 & 60.68 & 85.19 & 561.03 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Breakdown of weaving cost:} & \multicolumn{2}{|l|}{Woven weight/blanket} & 1.49 kg \\
\hline & \multicolumn{4}{|c|}{Cost in US cents/blanket} \\
\hline & Capital & Labour & Others & Total \\
\hline Storage & 1.40 & 0.36 & 0.19 & 1.95 \\
\hline Warping & 1.76 & 0.31 & 0.59 & 2.66 \\
\hline Warp preparation & 0.80 & 0.95 & - & 1.76 \\
\hline Weft preparation & 3.45 & 1.62 & 0.25 & 5.32 \\
\hline Weaving & 33.82 & 35.01 & 4.40 & 73.23 \\
\hline Winding & 0.64 & 0.31 & - & 0.95 \\
\hline Total & 41.85 & 38.57 & 5.43 & 85.85 \\
\hline
\end{tabular}

Loss in spinning \(10 \%\); Wt. weft ra: mat. 0.42 kg 'iota! cost wef't c/b1. 22.4 Loss in finishing \(5 \%\); Finis'od wt weft material/olanket 0.36 kg
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Manufacturing cost:} & \multicolumn{4}{|c|}{\(\because\) Ust in US cents/blanket} \\
\hline & Capital & Labour & ()tiors & Total \\
\hline Spiming & 8.35 & 2.06 & 3.43 & 13.84 \\
\hline Dyeing (Medium dark) & 1.82 & 0.19 & 11.32 & 13.33 \\
\hline Weaviner (Jacquard) & 21.72 & 21.23 & 6.29 & 49.24 \\
\hline rinishing & 3.09 & 5.07 & 12.11 & 20.27 \\
\hline Store, inventory Mill overhead & & & & 14.05
6.00 \\
\hline liaw material & & & & 58.40 \\
\hline Total & 34.98 & 28.55 & 33.15 & 175.13 \\
\hline
\end{tabular}

Breakdown of weavinc cost:
woien weight/blanket 0.42 kg
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{3}{*}{} & \multicolumn{3}{|c|}{ Cost in US cents/Ulanket } \\
\cline { 2 - 5 } & Capital & Labour & Others & Total \\
\hline Storage & 0.39 & 0.10 & 0.05 & 0.54 \\
Warping & 0.40 & 0.07 & 0.14 & 0.61 \\
Warp preparation & 0.15 & 0.18 & - & 0.33 \\
Weft preparation & 1.03 & 0.49 & 0.08 & 1.60 \\
Weaving (Jacquard) & 19.63 & 20.33 & 6.02 & 45.96 \\
Winding & 0.12 & 0.06 & - & 0.18 \\
\hline Total & 21.72 & 21.23 & 6.29 & 49.24 \\
\hline
\end{tabular}

Width 110 cm ; Lrngth \(115 \cdots\); Fringes No ; Weitht 0.84 kg WAlil: Ends/cr 9.1 ; Totally 1100 ; Count Na28/2 ; Material Polyester Yarn length/blanket 121 cm ; Warp shrinkage \(5 \%\); Warp weight 0.09 k b Warp yam price \(\% / k_{6} \quad 1.50\); lost of warp yarn c/blanket \(\underline{13.5}\)
 Woven weight per blanket 0.79 kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Material:} & & we \({ }^{\text {a }}\) & \(\mathrm{k}_{\mathcal{E}}\) & rrice & cost & \\
\hline & \% & weid ht & weft yaral & //ke & blarket c & Totally cents \\
\hline 1. Nylon & 3.5 & 0.7 & 0.028 & 1.60 & 4.5 & 99.8 \\
\hline 2. Viscose & 96.5 & " & 0.762 & 1.25 & 95.3 & \\
\hline
\end{tabular}

Loss in spinning \(10 \%\); Wt. weft ren mat. 0.87 ; tutal cost weft c/b1. 109.8 Loss infinishing \(5 \%\); Finisigd wt weft material/blanket 0.75 kg
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Manufacturing cost:} & & \multicolumn{3}{|l|}{ost in US cents/blarket} \\
\hline & Capital & Latour & nthers & Total \\
\hline Spinuinf & 17.36 & 4.28 & & 28.77 \\
\hline Dyeinc(Medium dark) & 3.79 & 0.39 & 23.53 & 27.71 \\
\hline Weaving (Jacquard) & 32.4
6.4 & 31.11
9.1 & 9.14
19.8 & 72.65
35.30 \\
\hline Store, inventory Mill overhead & & & & \[
\begin{aligned}
& 23.73 \\
& 12.60
\end{aligned}
\] \\
\hline Raw naterial & & & & 123.30 \\
\hline 'Iotal & 59.95 & 44.88 & 59.60 & 324.06 \\
\hline
\end{tabular}

Breakdown of weavine cost:
Weven weight/blanket
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{3}{*}{} & \multicolumn{4}{|c|}{ Cost in US cents/blanket } \\
\cline { 2 - 5 } & Capital & Labour & 0thers & Total \\
\hline Storage & 0.83 & 0.21 & 0.11 & 1.15 \\
Warpinc & 0.58 & 0.10 & 0.19 & 0.87 \\
Warp preparation & 0.31 & 0.38 & - & 0.69 \\
Weft preparation & 2.15 & 1.01 & 0.16 & 3.32 \\
Weaving (Jacquard) & 28.27 & 29.28 & 8.68 & 66.25 \\
Winding & 0.26 & 0.13 & - & 0.39 \\
\hline Total & 32.40 & 31.11 & 9.14 & 72.65 \\
\hline
\end{tabular}

APPIMDX \(C\)

PERSONS SEEN IN LESOTHO

APPENTIT_C

PERSONS SEEN IN IESOTHO

\begin{abstract}
The names of persons whom we siw in Lesotho in the period 11-27 September 1974 are given in the order in which we met them.
\end{abstract}

United Nations Development Protramme.
B. W. Taylor - Resident frpresentative
C. Klein

\section*{Planning Office}
N. Neholu - Assistant Secretary, Sectional Head

Mrs. Moonyane - Assistan Secretary
S. Montsi - Director

Lesotho National Development Crporation

Ph. K. H. Bechtel - Managing Director
J. Creed - General Manager
S. S. Rapeane - Assistant Project Manager

Ministry of Commerce \& Industry

Mr. L. B. Monyake - Permanent Seoretary
Mr. J. von Gyldenfeldt - Industrial Planner
Bureau of Statistios
Mr. BorothoMr. P. Marress
Frasers (Pty) Ltd.
Mr. Sampson
Mr. Brown
Collier \& Yeats
Mr. N. YeateMr. Clarke
Barclays Bank International It.t.
J. A. Bamber - Lesotho Ninager
Standard Bank
G. M. Tabor - Chief Manager for Lesotho
Sewerage and Water
Mr. Wilson
Mr. Ashford
Lesotho Electricity Corporation
Mr. Green
Department of Labour
P. R. Sekhomo - Labour Coumibsioner
C. Housham - Architect
James Lou

\section*{Livestock Board}
Dr. Phororo
Dr. Macqui
P. Radford - Animal Production Advisor
Dr. Wacher
Income Tax Office
Mr. Brake
Ministry of Finance

Mr. E. Waddington

Royal Lesotho Tapestry Weaver:

Henrik Thogersen - Managing Director

FUTURE TEXTILE POSSIBILITIES IN LESOTHO

\section*{APPEND B D}

\section*{FUTUIE ITEXTITE POSSITTITTES IN TESONIO}

\section*{1. Introduction}

If a country is to develop ne: industries then it is obvious that they should be based upon anj dvantages which that country possesses. Lesotho is fortunate in produ.ing a very fine and good type of wool and she has the advantage of liw wages. It might be worthwhile to investigate the possibility c" developing some textile industry on the basis of these two advant"res, though an important limiting factor is likely to be the rel tively small amount of wool available in relation to the requiremer \({ }^{\prime}\). of economic textile processing. Lesotho might scour its own wis and the clean wool might then be subsequently processed into tirs and yarns. We give below a very brief outline of the possibilities and irclude some basic facts on the processes involved. Befole any decision is taken much more thorough investigation would ie required and if such an investigation was to take place it is esserlial that all the aspects are considered as a whole for the individual :ossibilities are all related one to the other.

\section*{2. Wool production}

The present wool production is assumed to be around \(4.0 \mathrm{M} \mathrm{kg} /\) year which if scoured would yield 1.4 Mkg clean. The clean wool is suitable for the uses shown below:

It would be necessary to estan!ish more precisely what the actual production of wool is, what the composition of the clip is and how it is likely to change as a ruult of the recent introduction of classing in lesotho.

\section*{3. Scouring}

The quantity of wool to be scoured is 4.0 M kg . This amount could be scoured on a \(4^{\prime}(120 \mathrm{~cm})\) wine, 5 bowl conventional wool washing set which would have a production on this low yield wool of \(1500 \mathrm{~kg} / \mathrm{h}\) greasy; yielding \(525 \mathrm{~kg} / \mathrm{h}\) clean. At a working efficiency of \(75 \%\) this would require 3600 h per year to process which is equal to 2 -shift working, 5 days per week, or vreferably 3 -shift working, \(3 \frac{1}{2}\) days per week.

For maximum economy a wool wa hing plant should have sufficient work available to permit 3 -shift working on a 5-7 day basis. Further economies are gained by using : \(61(180 \mathrm{~cm})\) wide machine as the increased production (about \(50 \%\) more) fron this machine more than compensates for the extra cost (about 20\%) more. There has, of course, to be sufficient wool available for the wider machine to give 3 -shift working.

The costs involved in a wool wshing installation must include the costs of a steam raising biant, water supply with possible pretreatment such as softenin; or clarification, the effluent may require treatment before scharge to a river, drain or soakaway and laboratory and tor ting facilities would have to be provided.

The cost of the complete plani. buildings, labour and materials will be approximately:
1. Machinery costs
\begin{tabular}{lr}
1. & US \& \\
Services & 115,000 \\
Wool washing and drying & 250,000 \\
Pneumatic conveyors and storas, bins & \(\frac{12,000}{377,000}\)
\end{tabular}

\section*{2. Building costs}

Area required for machinery
\[
\begin{array}{r}
1782 m^{2} \\
500 m^{2} \\
\frac{160 m^{2}}{2442 m^{2}}
\end{array}
\]

Area required for storage
Area required for boiler
\(2442 \mathrm{~m}^{2}\) @ \(130 \% / \mathrm{m}^{2}\)
317,500
3. Labour costs per year (3600 h)

Direct and indirect, 28 workers, \(50,400 \mathrm{~h} @ 0.54 \% / \mathrm{h} \quad 27,220\)
Overheads at \(20 \%\) of labour ocste

\section*{4. Material costs, per ye tn}
\[
\begin{array}{lr}
\text { Chemicals } & 11,000 \\
\text { Water and effluent } 28,000 \mathrm{~m}^{3} 00.20 \mathrm{p} / \mathrm{m}^{3} & 5,600 \\
24.000
\end{array}
\]

Steam \(4 \mathrm{Mkg} 6 \not \equiv / 1000 \mathrm{~kg}\)
Electric power, light, ventail ion

Wool washing costs per kg cleat wool. Based on 10 years depreciation on machinery and 20 years depreciation on buildings at \(14 \%\) interest. Production 1.4 M kg clean per year
\begin{tabular}{ll}
Capital cost. & 7.30 US cents \\
Labour costs & 2.34 US cents \\
Material cost" & \(\frac{3.75}{}\) US cents \\
Total costs & \\
& \(=43.39\) US cents per kg clean \\
& \(=4\) US cents per kg greasy
\end{tabular}

The cost for scouring compare: favourably with the wool scouring charges of Cubb \& Inge Ltd. At Uitenhage, SACT. Their charges for scouring wool as shown in their Tariff No. 18, of 1 September 1974 is:

For wool yielding up to \(35 \% \quad 8.40\) if cents per kg greasy \(=11.00\) US cents per kg greasy

However, as many of the cost factors used in the above calculations are estimates it would be necessary to carry out a more accurate costing before any decision could be made to proceed on these lines.

Please observe that no labour for sorting is included in costs mentioned above.
4. Top making
 manufacture of tops which mifil; be exported. We give below a rough idea of the costs etc. involved:

Top making. \(400,000 \mathrm{~kg}\) wool or top making

Production \(140 \mathrm{~kg} / \mathrm{h}\). Whi h is the smallest industrial unit we ecommend
1 shift - \(250,000 \mathrm{~kg}\)
2 shifts - 500,000 kg
3 shifts - \(750,000 \mathrm{~kg}\)

Total cost of machinery and a' iliaries
\(\nRightarrow 530,000+20 \% \quad \not \approx 640,00\)
Cost of machinery and auxilis "es - Top makinc riant (from scoured won)

Total floor area
\[
2,400 m^{2}
\]

Cost of building inol. aircorditioning etc. \(\$ 370,000\)
Number of workers (incl. 1 menager)
\[
15-25 \text { (15 is European } \begin{gathered}
\text { Etandard) } \\
\text { stan }
\end{gathered}
\]

\section*{Power}

Light
Air conditioning
about 60 kW
about 90 kW
about 90 kW
\[
\overline{\sum 240 \mathrm{~kW}}
\]

\section*{5. Fine woollen yarns}

About 0.6 Mkg of the clean \(w o l\) is suitable for the manufacture of fine woollen yarns in \(\mathrm{Nm} 1,-20\) and it might be worthwhile investigating the feasibilit: of producing such yarns. It is possible that there is a marint for these eitner within the SACU or outside it. Semi-worster spinning is likely to be more economic than traditional woil len methods for the production of such fine counts. A comparison between the two systems is given below:

Comparison of woollen and semi-worsted system of spinning
0.6 Mkg /year wool for fine willen yarn Nm 16, \(\quad 5400 \mathrm{~h}\) (3 shifts), \(\quad 110 \mathrm{~kg} / \mathrm{h}\)
\(0.4 \mathrm{Mkg} /\) year wool
Nm 6, \(\quad 5400 \mathrm{~h}\) (3 shifts), \(\quad i 4 \mathrm{~kg} / \mathrm{h}\)
\begin{tabular}{|c|c|c|}
\hline Capital expenditure & Woo! !en system 100 US \(\neq\) & Semi-worsted 1000 US \$ \\
\hline Blending & . 125 & . 103 \\
\hline Carding & 1.125 & . 250 \\
\hline Gilline & - & . 234 \\
\hline \multirow[t]{3}{*}{\(\begin{array}{ll}\text { Spinning } & \mathrm{Nm} 16 \\ & \mathrm{Nm} 6\end{array}\)} & . 855 & . 855 \\
\hline & . 135 & . 135 \\
\hline & 0.240 & 1.577 \\
\hline Building & \(300 n^{2}\) & \(3400 \mathrm{~m}^{2}\) \\
\hline Power & 675 kW & 610 kW \\
\hline People employed & 24 & 25 \\
\hline
\end{tabular}

\section*{6. Coarser woollen yarns}

The remainder of the clean wis about 0.4 M kg , is suitable for the coarser woollen yarns uss in ladies dresses, coatings, etc. Possibly this wool could be win into yam in Lesotho or alternatively it could be exported as is ne the case.

\section*{|-10|}

*
80.02.15```

[^0]: 1
 See 'Notes on Trade Figures, 1972' contained Annual Statistical Bulletin, 1972 and also International Monetary Fund, Surveys of African Economies, Vol. 5, pp. 149-150, I.M.F., Washington, 1971.

[^1]: 2 Information supplied by Bureau of Statistics.

[^2]: ${ }^{2}$ By Dr. Phororo of the Livestock Marketing Board.

