

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

FS456

beicip

HURREASE BEFTERDES NOTES TRAFTERS FO DE COOPERATION DE ENVETOREERANCASE DE PETROLE

PETROVIETNAM PRE-INVESTMENT STUDY

VOLUME 4

B)F FERTILIZERS C)F VIETNAM

FERTILIZERS 0885

(5)

P. 124

DEI.78060.

December 1978 Ref. 31380.A

CONTENTS

;

I

T

K

I

1.	Fertilizers - General	٩
	1.1. Effect of different fertilizers on plants	1
	1.2. The main fertilizers	12
2.	The fertilizer industry	30
FERT	ILIZERS DEMAND IN VIETNAM	
1.	Data supplied by PETROVIETNAM	50
2.	The present situation and forecasts	51
3.	Production programmes planned by PETROVIETNAM	55
4.	Suitable fertilizers for VIETNAM	56
CHOI	E OF RAW MATERIAL	
1.	Introduction	57.
2.	Comparison of processes of naphtha steam reforming and fuel partial oxidation for ammonia production	58,
3.	Utility production	61.
4.	Economic study	63.
	MIC AND TECHNICAL STUDY OF THE THREE COMPLEXES	
PLANN	ED BY PETROVIETNAM	
1.	Complex urea and nitrophosphate Alternate I	73.
2.	Complexe urea ammonium nitrate Alternate II	78.
3.	Complexe urea ammonia Alternate III	82.
4	Economic study	3.0
		03,

1. FERTILIZERS - GENERAL AND INDUSTRIES

1. Fertilizers - General

2. The fertilizer industry

1. FERTILIZERS - GENERAL

1.1. EFFECT OF DIFFERENT FENTILIZERS ON PLANTS

1. CLASSIFICATION

Fertilizers may be divided into three categories :

- Fertilizers as such, or major elements : these are nitrogen (calculated as N), phosphorus (calculated as P_2O_5) and potash (calculated as K_2O).
- <u>Ameliorators</u> : these include lime, magnesia, plaster, humus, clay and sand, and are used to improve the physical, chemical and biological properties of the soil in order to enhance the effect of the fertilizers themselves.
- <u>Micronutrients</u>, or minor elements, boron, manganese, zinc, nickel, etc... These are found in trace form only, but are nevertheless vital to plant growth, both in quantity and in quality. A lack -or an excess- of these elements is particularly

2. FARMING PRACTICES

To allow a seed to breathe and develop into a plant with good roots and radicles, the earth has to be broken up. Plant growth requires substantial amounts of water which can be retained only if the earth is able to absorb rain water.

The aim of the various farming operations practices -ploughing, harrowing, rolling, hoeing- is to break up the earth suitably, but these alone are not sufficient to achieve the optimum physical condition; the tilth has to be corrected by the addition, often in considerable quantity, of whatever constituent is lacking, e.g. humus, clay, lime or sand. This is the prime purpose The microbial life of the soil, a great stimulant to plant growth, has to be encouraged : enemies such as infusoria and protozoa can be combatted by special applications, e.g. carbon disulphide, lime hypochlorite, but most important is to promote microbial development by creating a favourable environment : this is the second purpose of ameliorators.

3. AMELIORATORS

1. Humus

Humus results from lignin decomposition. It is introduced into soil in the shape of natural or artificial manure and organic matter such as leaves which rot giving leaf mould, brushwood, rush, branches, manure crop, etc..

Humus lightens the soil and holds water. It favours bacterial growth.

The liquid manure found in farm manure contains 1 to 2 million bacteria per gram.

It plays a part in plant feeding in the form of calcium humate and also acts to solubilize and disperse P_2O_5 .

The fact that it forms humic acids which neutralise with lime points to its tendency to acidify soils.

2. Lime

Lime must be added regularly to soil to neutralise the action of humic acids.

Lime plays an important part in nutrition.

It breaks up soils that are over-solid, i.e. those with high a clay content.

For liming either quicklime, left in little heaps in the fields to burn out before being spread over the earth, or else crushed slaked lime, which can be applied at once, is used.

3. Limestone

T

Powdered limestone is used, the finer the harder (60/100/180 riddle). Its effect is to release potash by ion transfer from insoluble compounds.

4. Plaster

Plaster also has the property of causing clay to coagulate, thereby lessening the impermeability of the soil. It helps form absorbent complexes, and encourages nitrification (pH).

5. Clay, Sand

In some cases too light soils have to be corrected by the addition of fertilizers to the tilth. Conversely, over-heavy soils can be improved by having sand added.

4. ELEMENTS AND FERTILIZERS

1. Carbon

Carbon derives from carbon dioxide (air, water). The gas is broken down by leaves under the effect of sunlight, the carbon being fixed and the oxygen given off into the atmosphere - this is the chlorophyllian respiration.

Lighting has an important effect on chlorophyllian assimilation and synthesis. Lighting covers not only visible light but also infra red and ultra violet - maximum photosynthesis energy occurs at around 6550 A.

2. Oxygen

Oxygen derives from water and carbon dioxide.

3. <u>Hydrogen</u>

Hydrogen is obtained from water.

All these elements (C, H_2 , O_2) would combine in the form of carbohydrates which through polymerisation would yield glucose which in turn by giving off water and oxygen would generate cellulose.

4. <u>Nitrogen</u>

Function

Nitrogen is the essential vital element, as it goes to make up protoplasm, albumin, and above all protein and chlorophyl. It generally determines growth. It is found in the highest concentrations in young tissue.

4.

In addition nitrogen feeds the micro-organisms in the soil, promoting decomposition of organic matter.

• Sources

Nitrogen is obtained from three sources :

a) The stmosphere

Some bacteria fix atmospheric nitrogen directly whereas others change nitrogenous matter into nitric ions. Plants that fix nitrogen are generally of the leguminous type.

b) Vegetable decomposition and organic metters

Decomposing vegetables (manure, oil cake of various sorts) and organic matter (blood, horn, hair, skin, etc..) constitute sources of organic nitrogen and follow the nitrogenous matter transformation cycle.

c) <u>Fertilizers</u>

Fertilizers provide nitrogen in two forms :

Ammoniacal form : phosphate of ammonia, ammonium sulphate, not always absorbed immediately by plants as bacterial action is first required to change them into nitric nitrogen.

Note the direct application of ammonia as a fertilizer. It can be added directly to the soil in the form of either water solution or liquid anhydrous ammonia. Unlike nitric nitrogen, this type of ammonia remains in the ground and is not washed away by rain water. Nitrification speed depends on the acidity of the soil. Nitric form : sodium nitrate, lime nitrate, potassium nitrate, ammonium nitrate - these fertilizers can be assimilated immediately by plants, and their effect is very strong.

In nitrate form, nitrogen is soluble ; it encourages plant stem and leaf growth but does not increase the plant's resistance. Plants cannot get rid of surplus nitrogen, since it stimulates leaf growth. At the same time it also enhances evaporation, thus in a hot climate a surplus of nitric nitrogen is particularly dangerous.

5. Phosphorous

• Function

Phosphorous plays a major part in cell composition (phytin, lecithin) and in forming fats and fruits.

It determines crop quality, regulates growth and lessens the risk of crops being beaten down. It is vital to bone formation, and together with nitrogen governs growth.

• Sources

It is customary in agriculture to consider phosphoric units, not in the phosphorous form (P) but in the form (P_2O_5); thus when fertilizer strength is referred to in terms of phosphoric acid, e.g. a super 15 %, such as fertilizer then contains 15 % P_2O_5 , not 15 % P.

a) Ferm manure

Manure always contains a certain amount of phosphorus. In addition, the organic content has a beneficial effect on the soil, breaking it up and allowing some of the minerals in the soil to be assimilated.

b) Amelioretors and fertilizers

- . Ground phosphate : this is a low-solubility ameliorator, lasting 4 to 5 years.
- Basic slag, which always contains free lime - especially suitable for acid soils.
- . 40 % P2O5 bicalcic phosphates, which though non water-soluble can be totally assimilated.
- . Superphosphates of 14/16/18/20 % strength where phosphorus in the form of monocalcareous phosphate is mostly water-soluble.
- . Salts, such as ammonium phosphate, nitrophosphates, potassium phosphate -these are expensive fertilizers but are fully soluble and give immediate results.

Assimilable phosphoric acid salts aid plant growth, help regulate nutrition by fortifying them and are particularly beneficial to seed formation.

6. Potash

<u>Function</u>

Potash is responsible for seed and fruit quality. It promotes sugar and starch formation. It reduces plant transpiration by retaining water in the cells, thus enabling the plant better to stand up to drought and frost.

• Sources

a) <u>Orsenic refuse</u>

All organic refuse, including vegetable ash, contains potash to varying degrees.

b) Potessio_fertilizers

These include :

6.

. Sylvinite, a low strength potassium chloride containing impurities in the shape of sodium chloride and magnesium.

7.

- Potassium chloride, varying in strength from 49 to 60 % K20.
- . Potassium sulphate, resulting from potassium chloride breakdown by sulphuric acid.

Chloride and sulphate must not be used indiscriminately for all crops ; tobacco, for example, requires a potassium sulphate based application, never potassium chloride.

Potash seems to play an essential role in the assimilation of carbonic gas and nitrates. It helps carry organic acids and improves the plant's resistance to disease. Its action is therefore a multiple one, and not just the direct action of the element itself.

5. MICRO-NUTRIENTS

These act at a homeopathic level. Like vitamins, they are indispensable, but an excess is definitely harmful.

Great care must be exercised if adding them to a compound fertilizer to ensure a homogeneous result.

6. ASSIMILATION BY THE PLANT

The principle of fertilizer assimilation by plants is not fully understood, but the use of radio isotopes offers a new technique for study of this process.

Absorption of a soluble substance by osmosis is comprehensible, but it is difficult to account for the fact that some insoluble substances pass through membranes and are found in plants.

Soluble fertilizers, being dispersed through the soil, have the advantage of being more readily accessible to roots.

The plant makes its own choice of nutrition, seeking within the range of its radicles the elements it requires. Successful assimilation depends on thorough spreading and if possible watering. Plant roots secrete acids which solubilize non watersoluble substances.

Roots often penetrate deep into the soil and are able to draw up from below the elements required by the plant. Lucerne roots, for instance, have been found to reach a depth of 2.5 metres, and this is turned to advantage by farmers who rotate crops so as to get the best out of the soil.

7. SOIL pH

1. Soil pH

The extremes of soil pH recorded are 3.3 for acidity in FINLAND and 9.5 for basicity or alkalinity in EGYPT. These two levels are, however, exceptional.

In FRANCE farm land rarely has an acidity level below pH 5 or a basicity level above 8.5. Chalky soils are somewhere in the region of 8.

A slight variation in pH is enough to have a considerable effect on indigenous vegetation and on crop type.

2. <u>Causes of soil acidity</u>

Soil acidity is caused by the presence of H ions, which can be exchanged with other ions such as Ca, Na, etc..

In other words, if soil containing H ions is treated with a solution containing Ca ions, the H ions disappear, being replaced by the Ca ions. The converse is also true.

Exchange H ions in soil are mostly found in argillaceous or humic colloids.

3. <u>Causes of acidification</u>

Soil acidification is chiefly caused by the washing action of rainwater which carries lime carbonate -a neutralising agent- down to the lower layers, and also by accumulation of acid organic matter. Farming, especially ploughing which brings the deeper layers up to the surface, and root activity have the effect of delaying soil acidification.

In fact, if cultivated land is compared with nearby uncultivated land, the difference is substantial, often some 2 to 3 pH units.

Nevertheless, with intensive farming the use of fertilizer is responsible for some acidification.

All the ammonia salts, sulphur and urea are acidifiers; potassium salts, supers, lime and potassium nitrates and oilcake have no effect, while cyanamides, slag, sodium nitrate and basiphosphates are alk-lizers.

4. Plants and soil reactions

Indigenous plant growth is an indicator of soil reaction. Some plants are typical of acid soils and others of alkaline soils.

The ideal growth condition for most cultivated plants is a more or less neutral soil. A number of plants can, however, tolerate slight acidity. <u>Barley</u> for instance is sensitive to acid, <u>wheat</u> somewhat less so, while <u>oats</u> and <u>rye</u> adapt to acid soils.

<u>Sectroot</u> grows at between 7 and 7.5 pH but at 6.5 pH yields diminish. The <u>potato</u> tolerates higher levels. Leguminous plants require a neutral or slightly alkaline soil with the exception of the lupin, the least sensitive of all to acidity, which grows in soils up to 6.5pH.

Many horticultural plants, such as <u>pinks</u>, <u>chrysan</u>themums and <u>cyclamen</u> do best in acid areas; a lot of flowers and shrubs prefer an acid soil and are grown in compost or heath-mould.

Soil reaction is also very important to microbial soil life. Ammonification -transformation of organic matter into ammonia, and nitrification transformation of this ammonia into nitrate- take place when pH is between 7 and 8, i.e. in an alkaline environment. Nitrogen-fixing microbes (azotobacters) are no longer active once the pH falls below 6.

5. Consequences of soil acidity

As far as cultivated land is concerned, soil reaction has two consequences :

- it may or may not promote growth of some plants. As mentioned above, each plant has an optimum pH growth level.
- . it has an effect on soil structure. Whenever a certain amount of clay is present in the soil it is vital, in order to make satisfactory structure and ease of labour, to have a sufficient amount of limestone, so that such a soil is basic or at any rate neutral.

However, some alkaline soils can have an extremely poor structure, as for instance when calcium salts are replaced by sodium salts - sodium having the property of liquefying clay. Such soils are highly basic. This soil type occurs in EGYPT, ALGERIA and the CAMARGUE.

6. <u>Neutralisation of acid soils</u>

In practice only the application of lime or lime carbonate will make acid soils more neutral.

Liming should be moderate, even if this means increasing the frequency, and the application of organic matter, manure and manure crop should not be stinted.

7. <u>Retention by the soil</u>

The three basic fertilizers, nitrogen, phosphate and potash, react differently to rain and erosion in typical arable land.

Highly soluble nitrates are washed away by the first rainfall and thus lost to the crops. It is therefore preferable to spread them at the moment when they will be used by the plant, in small successive amounts.

Phosphoric acid is absorbed by the soil and spreads only over a small area of about 10 cm around the seed itself. It thus represents a store lasting several years which can be used by successive crops. Potash, more solubre than phosphoric acid but less so than nitrates, spreads over an area of 35 cm during the year, so that each year ploughing brings it up into the arable layer where it is accessible to roots.

These are, however, not the only factors affecting salt dispersal in soil : alternating rain and drought cause saline solutions to sink and rise to the surface.

Retention varies greatly depending on soil type, being particularly efficient in argillaceous soil and peat, but very poor in sandy soil; in the latter, fertilizer has a very fierce effect and plants should be "hand fed" in small, frequent doses.

1.2. THE MAIN FERTILIZERS

1. INTRODUCTION

Soil which supports plant life is basically composed of an organic frame (humus) and mineral salts.

Of the mineral salts the chief one is clay - 10 to 35 % depending on soil type. Clay is a sedimentary, silicate, aluminous rocks, basically composed of phyllite or fibrous minerals and formed by weathering of feldspathic rock (of a diameter greater than 2 microns). Limon is also found, with a diameter of 20 to 2 microns, and inevitably -in the form of mineral salts- various types of sand which are loose sedimentary rocks, most often quartz. Sand can be classed as gravel (diameter 200 to 20 microns) and coarse sand (2 to 200 microns).

Organic matter is basically composed of humus formed by lignin decomposition and micro-organisms.

Clay, in the shape of a colloid made up of hydrous alumina silicate, has a layered structure. Water molecules penetrate between the layers. Clay is adsorbent, and uses water to fix fertilizer solubles which are then passed on to the plant. This process is facilitated by Brownian motion.

The purpose of <u>fertilizers</u> is thus to restore to the soil menerals removed by crops and erosion. The soil type (pH) can be altered through organic or inorganic <u>ameliorators</u>.

Fertilizer may be applied either as such, in the form of <u>inorganic chemicals</u>, or in the form of <u>natural</u> <u>fertilizer</u> containing <u>organic</u> and <u>inorganic</u> components. The latter type was for many years the only kind of fertilizer used. Fertilizers can be divided into three categories :

- . organic fertilizers
- . natural inorganic fertilizers
- synthetic fertilizers.

2. ORGANIC FERTILIZERS

The main organic fertilizer is farmyard manure.

The so-called average content of farmyard manure is :

- 0.6 % total nitrogen
- 0.4 3 phosphorus
- 0.5 % potash,

though in many cases it is less rich as a result of deterioration in storage.

The organic matter found in manure has a favourable effect on soil as it breaks it up, so that part of the soil mineral content becomes assimilable.

Other organic fertilizers include :

- . dried blood
- . human excrement
- . wool waste
- . bones, used either :
 - untreated : "green bones"
 - as bone ash
- . oilseed oilcake
- compost (created by aerobic fermentation of household waste)

. guano.

Amounts of minerals put into the soil by this type of fertilizer are very small. Moreover, in the case of farmyard manure, for instance, its effect is only to put back into the soil part of what was taken out by the crops, thus keeping the soil properties constant without correcting any imbalance.

When organic fertilizer sources - generally of local origin - became insufficient they had to be supplemented by fertilizer of purely inorganic origin, and thus the inorganic chemical fertilizer industry grew up. Inorganic chemical fertilizers provide the desired amount of fertilizer in proportions suited to each soil type and crop. They can be broken down into natural chemical fertilizers and synthetic inorganic chemical fertilizers.

3. NATURAL INORGANIC FERTILIZERS

Conversely to the above type, such fertilizers do not contain natural organic matter, yet are equally effective in enhancing soil fertility.

Natural fertilizer resources are abundant, but these are not directly usable by farmers. It is through the chemical industry that they can be developed for use.

Although potash is the most readily available of fertilizers, its recovery and purification require sizeable plant.

As regards nitrogen and phosphoric acid, substantial technical facilities are required to achieve an easily assimilated, easily handled form.

1. Potassic fertilizers

The only commercially produced agricultural fertilizers of this sort are <u>chloride</u> and <u>sulphate</u>, the effective ingredient being expressed in terms of oxide (K20).

The major sources of potassium salts, <u>chloride</u> in particular, derive from various rocks of carnallite, sylvite, kainite, leucite, polyhalite, etc.. type. Such potassium salts are generally formed by the concentration and drying up of a former sea.

Ores used particularly in the preparation of potassium chloride are <u>hartsalz</u>, <u>sylvite</u> and <u>carnallite</u>, in <u>ascending</u> order of importance.

Qre_processing

Ore is crushed, may be magnetically separated, and is then sent to dissolution. If the ore contains a high proportion of magnesium salts, the first washes are treated with limewash, the quantity being calculated to ensure the following reaction :

Mg SO₄ + Ca $(OH)_2$ + Ca SO₄ + Mg $(OH)_2$

The solution is filtered and sent to crystallization, the salts obtained being insoluble. By cooling a crystalline mass with about 56 % K CL is obtained after fining with a salt saturated solution, and after drying potassium chloride of 97 to 99 % K CL strength is obtained.

2. <u>Nitrogenous</u> fertilizers

Natural mineral nitrogen resources occur principally in the form of <u>sodium nitrate</u>, of which world supplies -concentrated virtually exclusively in CHILE- are insufficient to meet worldwide demand, and the distance from main consuming centres is a major drawback.

There are practically no <u>natural minerals</u> that contain <u>ammoniacal nitrogen</u>.

The solution was therefore to make use of the commonest source - the air, which contains 78 3 elementary nitrogen that can be transformed into assimilable form.

3. <u>Phosphoric fertilizers</u>

Phosphorus is abundant in a natural state in the form of phosphates, but up to now only <u>calcium phosphates</u> have been used for agricultural purposes.

Fluorine is practically always associated with calcium phosphate, giving either crystallized compounds of the pure apatite type (as found in the KOLA peninsula) or elve amorphous varieties when other compounds are involved, CO₃Ca, etc..

Large deposits of these phosphorites occur in NORTH AFRICA and the U.S.A. particularly.

The apatite structure, characterised by the presence of fluorine in the phosphate molecule, means that it cannot be assimilated by plants, or at any rate only extremely slowly, unless it is very finely crushed and the soil is acid.

Thus emerged the notion of phosphoric acid assimilability - it was found from experience that in order to be assimilable P_2O_5 must be in an ionizable form; this may be rendered by a number of phosphoric acid compounds, soluble either in water or in other media such as ammonium citrate solution.

Ground_phosphetes

The fertilizer value of unprocessed natural phosphates is still under discussion. Although they have the advantages of low cost price and the possibility of using low strength ore, with no chemical treatment, it must be remembered that consumption over the same area and for the same yield is markedly higher than in the case of superphosphate.

They are ground as finely as possible with the aim of being left with no more than 10 3 tailings at 100 riddle size (160 microns).

Ground phosphate, being insoluble in water, is suited to moor and heathland, where the sandy, clayey humus contains little lime, or in acid prairies.

In such cases the acid root excretions are sufficient to dissolve the calcic salt, but it could not be applied to land used for rapid growth plants such as cereals.

Note that solubilisation of natural phosphates is distinctly activated when they are mixed with dolomite (5 to 10 %) and calcium sulphate.

Rock phosphate in a finely ground form may be used on moderately to strongly acid soils and particularly for long season or perennial crops with extensive root systems on acid soils in the tropics.

4. SYNTHETIC FERTILIZERS

1. <u>Nitrogenous fertilizers</u>

Ammonia is the basic raw material used for nitrogenous fertilizers. Nitrogen is generally known as the essential constituent of manuring. It is also the most expensive ingredient, hence the desirability of cutting down fertilizer costs for the same yield through use of a concentrated, active product.

Ammonia with a molecular weight of 17 contains 14g nitrogen in the gramme-molecule, its commercial strength being :

<u>14</u> x 100 = 32 % nitrogen. 17

Its density in liquid state varies between 0.68 and 0.62 at 15°C. Boiling point at atmospheric pressure is -33°C. Ammonia can therefore be kept in liquid state only under pressure - the pressure varying according to temperature.

Temperature °C	- 32	-5	٥	+5	+15	+50
Pressure (bars)	1	3.5	4.2	5.1	7.2	20

Soil nitrogen, in order to be assimilated by plants, should be in nitric form. The ammoniacal form is, however, of some interest, in that through bacterial activity is gradually changes into an assimilable nitric form, the resulting fertilizer acting over a longer period of time.

Ammonia can be synthesized petrochemically, using hydrogen obtained from hydrocarbons and nitrogen taken from the air, and ammonia -as mentioned aboveis the key to the synthesis of all other nitrogenous fertilizers.

Ammonia synthesis processes operate at different pressures and temperatures, but all the products obtained can be situated with reference to some point on the grade established in 1892 by LE CHATELIER.

Ammonia from a synthesis plant is recovered in liquid form and used directly in fertilizers. The main ammonia-based nitrate fertilizers are listed below :

- . Used as such for <u>nitrojection</u> and <u>liquijection</u>
- Reacting with sulphuric acid, to yield <u>ammonium</u> sulphate
- . Reacting with nitric acid to yield <u>ammonium</u> <u>nitrate</u>
- . Used in the manufacture of compound <u>N.P.K.</u> fertilizers, either in nitric acid form or as such (ammonization)
- . Oxidized to produce nitric acid which in turn is used :
 - in ammonium nitrate
 - in lime nitrate
 - in compound fertilizer manufacture
- . Used with residual CO2 from ammonia synthesis to produce urea
- . Used in the manufacture of <u>liquid fertilizers</u>.

2. Effect of synthetic nitrogenous fertilizers - Brief description of their manufacture

Ammoniegel fertilizers

T

Ammoniacal fertilizers may be divided into the following types :

- <u>Ammonium sulphate</u>, obtained by direct reaction of ammonia on sulphuric acid within a sulphate solution. The resulting supersaturation leads to the formation of crystals, which are dried before being sent to the silo.
- Urea is obtained from the reaction of ammonia with carbon dioxide in synthesis autoclaves under 130 to 200 bar pressure and at a temperature of about 185°C. Manufacture comprises an intermediate stage, that of ammonium carbamate which by dehydration yields urea. After being condensed and filtered the concentrated urea solution is pulverized at the top of a prilling tower.

• Effect : the effect of ammoniacal fertilizers proper is progressive and continuous, as the nitrification process takes place over a period of time. They are retained by the soil's power of absorption and are especially effective against winter soil leaching.

D) Nitrate fertilizers

The main fertilizers of this type are lime and sodium nitrate.

Sodium nitrate

This is no longer used.

• Lime nitrate

Lime nitrate is released in the form of a solution when natural phosphates used in compound fertilizer manufacture reacted with nitric acid. The salt is crystallized by cooling and centrifugally separated.

• Effect

Nitrate fertilizers being highly soluble are at once absorbed by the soil. As no previous microbial transformation is required, they are very rapidly assimilated by plants, hence their particular value when swift action is indicated, as in the case of late spreading.

c) Ammonie nitric fertilizere

This category includes the various ammonitrates and ammonium nitrate.

Ammonitrates

- Rich ammonitrate (33.5 %) obtained by coating ammonia nitrate granules with chalk.
- . 22 % ammonitrate, which contains a greater quantity of lime carbonate.

Ammonium nitrate with 34.8 % nitrogen

The basic ammonium nitrate solution is obtained by direct reaction of gaseous ammonia with nitric acid. The solution is then concentrated, and pulverized into fine droplets at the top of a granulation tower. As they fall the droplets are solidified on meeting rising cold air.

20.

• Effect

These fertilizers are the most popular with consumers in EUROPE. The association of ammonia and nitric acid means that the agronomic properties of the two fertilizers can be combined in one substance.

Nitrate nitrogen, the first to be absorbed, acts very swiftly. The ammonia nitrate, on the other hand, is fixed by the soil's power of absorption and released gradually. Ammonitrates are thus very versatile in use.

d) <u>Gompound fertilizers</u>

The three basic elements - N.P.K. - must be put back into the soil, but most fertilizers contain only one of these elements.

Moreover, a simple fertilizer (one which is either nitrogenous, phosphatic or potassic) is efficacious only if a sufficient quantity of the other essential nutritive elements is already present in the soil.

Should this not be so, the application of a simple fertilizer represents needless expense and may even lead to a drop in yield. Manuring must therefore be complete and balanced, and this is achieved by use of compound fertilizers containing the three important elements : nitrogen, phosphorous and potassium (N.P.K.).

Each crop's fertilizer requirements are different, as regards both total quantities and speed of absorption during growth.

This would appear to restrict N.P.K. fertilizers to a small number of formulae only. However, such is far from being the case. In fact soils on account of their absorption facility are able to <u>store phosphore</u> <u>potash</u> and <u>lime</u>, in varying amounts and for <u>differing lengths</u> of time. With regard to the above elements the aim of dressings is to maintain or build up the quantity of each stored by the soil rather than to match the supposed needs of any one crop. This unfortunately does not apply to <u>inorganic nitrogen</u> which most soils <u>do not store well</u>, so that additional applications of fertilizer have to be matched to crop growth patterns.

This state of affairs warrants meeting needs by applying just the right amount of nitrogen for present requirements together with phosphate and potash in quantities designed to match the average needs of several crops, where crop rotation is practised following a planned cycle.

It has been found from experience that in most cases a <u>small number of carefully selected</u> formulae provides all that is required in the way of plant nutrition and at the same time maintains soil fertility.

The use of formulae relatively rich in P as against N offers a means in some cases of further relaxing the matching of the nitrogenous component to growth requirements, particularly when the latter are especially subject to meteorological conditions and cultivating practices.

In view of the very composition of compound fertilizer, with the obligatory association of nitrate nitrogen and phosphatic compounds, the advantages became apparent of manufacturing a fertilizer where natural phosphate P_2O_5 solubilisation is achieved through nitric acid instead of sulphuric acid.

Benefits are threefold :

T

- . Savings of sulphuric acid
- avoidance of the large calcium sulphate part, resulting in a more concentrated fertilizer
- . the fertilizers in the end-product are no longer merely roughly mixed but are <u>closely</u> <u>combined at molecular level</u>.

•) Fertilizer in solution

Such fertilizers, whether nitrogenous, binary or ternary, are concentrated solutions of classic fertilizers (urea, ammonium nitrate, sulphate, phosphoric acid, etc..). They are the most recent to become available for agricultural use, and the versatility of their formulae and grades make them the fertilizers of the future for sophisticated agriculture.

Liquid fertilizers may be classed as follows :

• Vapour pressure solution

Such products contain ammonia and must therefore be stored in sealed containers. They fall into two types :

- ammoniawater with a low nitrogen density, Obtained by dissolution of ammonia gas in water.
- composite solutions of salts and ammonia in water (Barett liquors). These usually contain urea and/or ammonium nitrate in solution. The nitrogen density can be increased by bubbling ammonia gas in the solution.

Solution without vapour pressure

Such solutions are the most widely used in FRANCE. Unlike the liquid fertilizers described above, these clear solutions may be stored and handled in the open with no hazard to personnel and no risk of nitrogen loss. This category covers many possibilities:

- . Nitrogenous solutions : these vary in nitrogen density from 20 to 40 kg of nitrogen per 100 litres. They contain urea, ammonium nitrate and/or ammonium sulphate.
- Binary N.P solutions : phosphoric acid is mainly obtained from ammonium phosphate. Depending on whether the base is phosphoric acid of <u>superphosphoric</u> acid - a blend of ortho - and polyphosphoric acids- the basic formula is more or less concentrated : 10 kg of nitrogen and 30 kg of P₂O₅ per

100 litres using phosphoric acid, and 14/48 with superphosphoric acid. From 14/48/0 and urea or ammonium nitrate a number of binary formulae can be derived, e.g. 20/10/0, 17/17/0, etc..

- Ternary N.P.K. solutions : a large Rumber of formulae may be prepared.
 Nitrogen is obtained from ammonium phos phate or urea, phosphoric acid from 12/+2/0
 and potash from potassium chloride or
 sulphate.
- Supersaturated solutions

These are suspensions, or muds, obtained by taking concentration beyond saturation limits. Various products -for instance, colloidal clay- are added to the suspension to inhibit crystallization.

Such fertilizers may also be obtained by direct reaction, yielding finely divided solid compounds which are maintained in suspension. In the latter case raw materials need not be the same as for clear solutions.

3. Synthetic phosphoric fertilizers

The whole phosphatic fertilizer industry is based on the transformation of natural phosphates (tricalcic phosphate $(PO_4)_2$ Ca₃) into compounds which can be assimilated by plants (monocalcic phosphate or phosphonic acid which is further converted to MAP or DAP.

It would seem that the phosphoric molecule is assimilable in its simple form but not in the compound (fluo-phosphoric or apatite) state i.e. natural phosphates which mostly have a <u>F</u> ratio

F205 greater than 0.0891 - equivalent to pure apatite 3 (P04) 2CA F2Ca. The fertilizer industry therefore seeks to release the anhydride from its fluorine compound by either direct attack (by a strong acid) or heat treatment.

Once the fluorine compound has been broken down, the anhydride becomes assimilable and retains this property, even after insolubilisation in the soil, provided that it is not accompanied by a return to a compound state. <u>Chalky soil</u> is improved by liming and the phosphatic fertilizer remains assimilable, whether in soluble from or not; in an <u>acid soil</u> which generally contains sesquioxides it is partly transformed into iron phosphate and aluminium.

Phosphatic fertilizers may be classed in four categories :

- crushed natural phosphates (reffered to as ground)
- . simple and triple superphosphates
- bone superphosphates
- . basic slag.

There is more call for superphosphate (super of triple) in which monocalcic phosphate and sulphate predominate, than for the "ground phosphates". Their degree of assimilation appears markedly higher.

Phosphete type	\$ P205	Assimilation	Effect on the soil
"Double"superphosphate	44	95	neutral
Ordinery superphosphate	14 - 15	90	nsutral
Basic slag	18	90	alcaline
Bone ach (4 % N ₂)	20	70	alcaline
Crushed natural phosphets	30 - 35	25	alcaline
Apetite	38 - 42	25	elcaline

• Syperphesenstes

This name refers to the result of natural phosphate and bone ash attack by sulphuric acid (53° B_2 , or 66/68 % SO_4H_2).

Sulphuric acid tends to have the effect of transforming insoluble tricalcic phosphate into monosoluble phosphate.

If instead of using a fairly small quantity of sulphuric acid on the natural phosphate (1T/1T), a triple quantity of acid is usde, <u>phosphoric</u> acid is obtained in a concentrated solution

24.

together with <u>plaster</u>, which is removed by filtration. Large amounts of sulphuric acid are used in this process, hence the accent in industry on decreasing or eliminating sulphuric acid consumption for natural phosphate solubilization.

Various processes are in use. In thermal treatment for example two methods are available :

- . Phosphoric acid can be prepared by reducing natural phosphate with coal in the presence of silica in an electric oven, the phosphorous obtained being oxidized in air.
 - The phosphoric acid obtained is pure, but a large amount of electricity is consumed in its manufacture.
- . Calco-alkaline phosphate may be prepared by substituting a alkaline metal, such as soda, potash, etc.. for part of the natural phosphate lime.

This reaction takes place in presence of silica. The required temperature is not so high as in phosphoric acid manufacture, but is still fairly high, and this process is not very widly used (<u>defluorised phosphate</u>).

There is another process in which natural phosphate is corroded by hydrochloric acid, obtained as a by-product of sodium chloride electrolysis or potassium sulphate manufacture, for example, the phosphoric acid then being precipitated by limewash. The result is bicalcic phosphate, an excellent fertilizer (precipitated phosphate).

Concentrated double or triple superphosphate

The P₂0₅ content of such fertilizers may be <u>as</u> <u>high as 50 $\frac{3}{5}$; their manufacture is similar to</u> that of "<u>super</u>", a phosphoric acid solution taking the place of the sulphuric acid in the natural phosphate treatment. Sulphuric acid with phosphoric acid added at the natural phosphate attack stage yields enriched superphosphates with 22 to 29 % P₂O₅.

• Ammonium-phosphetes

.

Phosphoric acid can also be used to manufacture mono-ammonium or diammonium-phosphate, which is a base for very high fertilizer content compound fertilizers.

RATIO			FORMULA		
Binery fertilize	ITS				
from PO4H3 and NH3 alone	<pre>{1. {1. 1. 1. 1.</pre>	-1.5 - 0 2.5 - 0 3.0 - 0 4.3 - 0	23 - 33 - 0 18 - 46 - 0 16 - 48 - 0 11 - 48 - 0		
adding NO3NH.	<pre>{1. {1. 1.</pre>	0.5 - 1 0.7 - 1 1.5 - 1	19 - 9.5 - 19 18 - 12.6 -18 18 - 24 - 16		
Ternery fertilize	118				
with CIK PO ₄ H3	1. 1. 1. 1.	0.5 - 1 0.7 - 1 1.0 - 1 1.0 - 1 1.5 - 1	19 - 9.5 - 19 $18 - 12.6 - 18$ $17 - 17 - 17$ $14 - 14 - 14$ $18 - 24 - 25$		

The following compositions may be obtained :

• Hish P2Os content phosphoric scid (superphosphoric)

Other processes used, still with the aim of increasing the P_2O_5 content, involve treating so-calles "green" phosphoric acid by vacuum evaporation or hot gas bubbling, or in some cases by plunging a flame. The result is a superphosphoric acid, containing approximately :

50	8	ortho acid	PO4H3
33	8	pyro acid	P207H4
17	3	meta acid	POaH

· Bone superphosphates

Since natural phosphate deposits began to be worked, bone-based fertilizers have been manufactures using only waste, in most cases after the ossein recovery stage.

The "bone super" and bone phosphate industries are very small scale.

· Besic slag

When phosphorated iron is processed in a basiclined furnace with ores similar to Lorraine minette, a 37/45 % (PO4)2Ca3 by-product is obtained. Such slag agrees to quite a degree with a silico-carnotite formula (PO4)2Ca3, SiO3Ca, CaO.

In the case of these fertilizers, assimilability is defined not by solubility in ammonium citrate as in the case of phosphates and supers, but by their solubility in <u>Wagner's reagent</u> (2 % citric acid).

The method used to render slag into fertilizer form usually involves two successive crushing operations.

The first crushing yields a product from which the Iron has been removed by means of a magnetic separator and which leaves 30 % tailings.

The second crushing produces commercial fertilizer 75 % siftable at riddle size 100 (170 microns).

 P_2O_5 strenght varies from 14 to 20 %. This type of fertilizer is successful in clayey and acid soils and makes a good ameliorator.

Also included in this category are certain <u>calcined phosphates</u>, produced in a rotary furnace by roasting a mixture of ore (100 parts), sodium sulphate (15 parts) and coal (15 parts). Nominal strength varies between 23 and 25 % P₂O₅ and such fertilizers in blends with others are suited to <u>acid soils</u>.

4. <u>Potassic fertilizers</u>

Potassium chloride and sulphate alone are used for agricultural purposes. These are the only two salts includes in the class of <u>natural</u> <u>inorganic fertilizers</u>, although there is an industrial process which separates the various salts associated with KCL, the most in demand.

Agriculture accounts for 90, to 92 % of all chlorides and sulphates, most of which are obtained from deposits.

Potassium sulphate may be manufactured in combination with <u>phosphate</u>. Hydrochloric acid released by sylvinite acid attack is used to decompese natiral phosphates. The resulting phosphoric acid solution is neutralized with limewash, and yields <u>bicalcic</u> phosphate.

5. Direct use of anhydrous ammonia as fertilizer [liquijection]

By virtue of its composition ammonia is the richest of the nitrogen fertilizers, with 32.3 3 nitrogen.

As such it can be used only by direct application to the soil. Depth depends on :

- soil type
- . the crop to be fertilized
- . the spreading date

and is generally somewhere between 8 and 25 cm.

As soon as ammonia is injected into the soil it changes from a liquid to a gaseous state. This enhances its dispersal, but is governed by the soil type, dispersal being greater in a light, dry soil than in a heavy, damp one. The dispersal area is assumed to extend to 10-15cm from the point of injection.

As to its assimilation there are a few points to be noted, nitrification in particular. NH₄ + ammonia ions are more swiftly nitrified. The increased pH due to injection favours microbial activity. The change in soil pH is only temporary, and is limited to the soil's neutralising power. The pH value gradually returns to normal as nitrification takes place.

The ammonia gas diffuses in a regular manner around the point of injection, over an area of 10-15 cm, and is fixed homogeneously by the soil. The attraction is so strong that even a copious water leaching will not carry away the ammonia in spite of its solubility. This would not be the case with NO₃-anions. With ammonia there is a phenomenon of <u>true absorption</u> : a soil sample taken a few minutes after injection is already free from the suffocating ammonia smell.

The ammonia is released progressively through soil humidity, and the NH4+ ion can act as a fertilizer, either directly on the plant while in the ammoniacal state or after transformation by microbial action into nitric nitrogen. This nitrification is governed by humidity, soil aeration, pH, the quantity of organic matter and most important, temperature.

2. THE FERTILIZER INDUSTRY

GROWTH

こうに たい たいち いたかわれたい たわした アイド・チ

The fertilizer industry has been growing steadlily and rapidly since the beginning of this century, as can be seen from the table which follows :

	PRODUCTION (1) Million tons NPK	CONSUMPTION (2)
1905/06	2.0	1.9
1913/14	4.1	3.9
1919/20	3.7	3.5
1938/39	3.7	9.3
1945/46	7.9	7.5
1949/50	14.1	13.8
1959/60	29.1	27.8
1969/70	55 .2	52.9
197 3 /74	87.9	83.8
1974/75 1975/76	91.8 92.2	80.9 38.7

Source : FAO production year book

- (1) The ratio of NPK to end products is about 1/2.5, i.e. the 91.8 million tons of NPK manufactures in 1974/75 represent some 250 million tons of finished fertilizer.
- (2) The gap between production and consumption is largely accounted for by products in the distribution stage, and losses.
As output increased, quality changes were also taking place. During the early years -from 1906 to 1939- most commercial fertilizer was organic, and mainly took the form of meat industry by-products e.g. dried blood, bones, scraps. From 1945 onwards, however, synthetic and inorganic matter began increasingly to represent the bulk of fertilizer so that today organic materials account for only a very small proportion of the total.

Since output in 1946 was less than 10 3 of present output, it can be concluded that most existing production capacity was built after the second world war. Table 1.2 breaks down production between developed and developing countries. The latter today produce 15 3 of world fertilizer demand (20 % nitrogen, 16 % phosphate, 3 % potash).

PAST CONSUMPTION

Fertilizer consumption statistics are given in tables1.3to1. and figure 1.1. Table 1.3 shows consumption of each nutrient in developed and developing countries, between 1950 and 1976. In 1976 for example respective shares (3) were :

	N	P205	K20	NPK
Developed countries	7:	78.5	3 3	77.3
Developing countries	29	21.4	4 4	,, ,

Details of consumption in 73 countries are presented in table 1.4.

taking 1976 as an example, the highest consumers were :

NPK	(million	tons)		N	(million	tons
U.S.A.	18.84		U.S.A.		9.38	
U.S.S.R.	16.13		U.S.S.R.		7.35	
CHINA	6.2		CHINA		4.55	
FRANCE	4.64		INDIA		2.03	
POLAND	3.65		FRANCE		1.7	

)

Table 1.5 and figure 1.2 show consumption per head in 73 different countries in 1975/76. In JAPAN consumption was fairly low -16 kg per head-while CUBA with 35 kg per head had the highest of the developing countries. CHINA with 7.3 kg per head, reached a markedly higher level than INDIA where the figure was 4.5 kg/head.

It can be seen from the table1.5 that in 27 developing countries consumption was less than 5 kg/head, which in most cases is far too low to fertilize the crops required to feed the population adequately. The only exceptions are ARGENTINA, THAILAND and BURMA where population density is low.

Table 1.6 gives consumption per hectare of cultivated land in 73 different countries, for 1975/76. In looking at these figures it must be remembered that in many countries a certain amount of fertilizer goes to permanent pasture, not to crops. This is the case in HOLLAND, BELGIUM, WEST GERMANY, FRANCE, DENMARK, the UNITED KINGDOM, AUSTRALIA and NEW ZEALAND.

It is also seen from this table that 28 of the developing countries have a per hectare consumption of less than 20 kg and 19 less than 10 kg i.e. they are virtually non-users.

The aim in compiling table 1.7 was to show the largest producers, consumers, and surpluses and deficiencies of nitrogenous, phosphate and potassic fertilizers in the World in 1973/74. The UNITED STATES was overall the largest producers, and the largest consumer of potash. The USSR was the largest producer and second largest consumer of nitrogen and phosphate, and the largest potash producer. JAPAN had the greatest surplus of nitrogen, the UNITED STATES of phosphate and CANADA of potash. CHINA had the greatest deficiency of nitrogen, FRANCE of phosphate and the UNITED STATES of potash.

Only a few developing countries appear in the list of major producers, but a great number among those with the largest deficiencies.

Figure 1.4 shows fertilizer consumption trends over the 1955-1976 period. Consumption grew steadily over this time, in both developed and developing countries.*

* The one exception was 1974/75 when for the first time since 1945 there was a drop in consumption, brought about by a sudden rise in nutrient prices. Since the fertilizer industry is relatively young, in that the rapid expansion from 1945 onwards was matched by fundamental qualitative changes, it might be somewhat misleading to view its growth as continuous through time. There are now grounds for considering that a structural break occurred in the early nineteensixties as a result of the population explosion and the consequent demand for food.

The rapid world population increase in the nineteenfisties compared to previous decades is illustrated by the following data :

Populati	Lon	growth
(milli	ions)

1920/30	200
1930/40	230
1940/50	251
1950/60	+85

This rapid growth in the nineteen-fifties led to new pressure on world food supplies and prices in the early sixties. The impact was not felt until 1960 thanks to record harvests in 1958 and 1960.

Then in 1961 cereal crops were very poor, 2.3 3 less than in 1960, the greatest percentage drop in the history of our time. This fall, which hit the UNITED STATES, CANADA, EUROPE and OCEANIA hardest, brought about a revolution in world agricultural growth, including the use of fertilizers and grain production, which first started in the developed countries in 1961/62 and spread to the developing countries in 1962/65. New processes and new technology for large scale fertilizer production came successively on to the market, thus laying the foundations for the growth of a modern chemical fertilizer industry. This new pattern of growth still continues.

It can be seen from figure 1.5 that in world consumption terms nitrogen has a much higher growth rate than $P_2 \partial_5$ and K20, the latter two keeping parallel.

UP to 1955 the nitrogen share was lower than either P_2O_5 or K20. The percentage grew steadily in the developed countries from 30 % in 1955 to 45 % in 1976.

The nitrogen percentage in developing countries has remained fairly constant, in the 53-63 range, but is now beginning to show a gentle decline.

					_				
		Develop	ing cour	tries		Dev	eloped d	cuntrie	9
	<u>N</u>	P205	K20	NPK		<u>_N</u>	^P 2 ⁰ 5	K ₂ 0	NPK
	0.36	0.37	0.04						
1051	0.33	0.2/	0.07	0.83		3./3	5.59	4.21	13.5
1957	0.43	0.34	0.02	0.79		4,25	5.93	4.94	15.1
1963	0.43	0.30		0.03		4.49	5.13	5.40	15.0
1954	0.3	0.3/	NIL	0.50		5.02	5.15	5.87	17.1
1855	0.33	0.41	0.01	1.01		5.59	5.50	5.32	18.5
1955	0.30	0.43	0.02	1.05		5.29	7.34	5.04	20.5
1957	0.33	0.54	0.04	4 34		5.84	7.71	7.14	21.8
1068	0.77	0.30		1.34		/.43	/.94	/.65	23.1
1839 4868		0.80		1.40		5.24	8.20	7.55	24.1
1838	0.33	0.77	0.10	4 33		9.00	0.00	8.17	25.9
1081	1.04	0.72	0.12	1.//		9.43	9.24	8.81	27.3
1001		0.79	0.14	1.9/		10.37	9.55	5.58	25.5
1302		0.76	0.14	2.04		11.12	9.85	9.25	. 30.2
1307	1.43	U.85	0.18	2.44		12.2	10.5	9.69	32.4
1304	1.72	1.01	0.19	2,92		13.5	11.7	10.5	36.1
1965	2.02	1.15	0.30	3.47		15.4	12.7	11.8	39.9
1955	2.24	1.30	0.39	3.93		17.7	14,2	13.4	45.3
1967	2.49	1.48	0.35	4.35		19.6	15.3	14.1	49,2
1968	2.79	1.75	0.41	4.95		22,4	16,0	14.8	53,2
1969	3.44	2.01	0.43	5.85		24.9	16.3	15,4	55.5
1970	4.07	2.32	0.59	6.98		26.1	17.0	18.1	59,2
1971	4.59	2.59	1.00	8.18		25.3	18.2	15.9	83,4
1972	5.81	3.11	1.13	9.85		29.3	19,3	15.3	65.9
1973	6.61	3.54	1.22	11.4		31.2	20.1	19,0	70.3
1974	7.24	3.97	1.10	12.3		33.3	21.2	21.1	75.6
1975	7.99	4.22	1.25	13.5		34.3	21.5	22.5	78.3
1976	8.77	3.9	0.6	13.27		35.1	21.0	22.9	79.0

TABLE1.2 - WORLD FERTILIZER PRODUCTION - HISTORICAL DATA1950-1975(MILLIONS OF TONS)

•

-

Source : FAO production Year book

TABLE 1.3- WORLD FERTILIZER CONSUMPTION -HISTORICAL DATA, 1950-75 (MILLIONS OF TONS)

F

•

]	Developi	ng count	tries		Develope	d countr	·105	
	N	P205	<u>K20</u>	NPK	<u>N</u>	P205	K_2 ⁰	NPK	
			_						
1950	0.58	0.36	0.09	1.01	3.19	5.41	4.04	12.6	
1931	0.59	0.41	0.11	1.12	3.73	5.81	4.43	14.0	
1992	0.88	0.48	0.14	1.30	4.01	5.77	4.65	14.8	
1953	0.87	0.51	0.15	1.53	4.80	8.05	5.20	15.9	
1834	0.95	0.60	0.19	1.75	5.18	6.51	5.48	17.2	
1955	0.94	0.60	0.23	1.78	5.69	7.14	8.11	18.9	
1958	1.24	0.55	0.27	2.17	5.82	7.45	6.51	19.8	•
1957	1.45	0.76	0.31	2.52	6.19	7.88	5.87	20.7	
1958	1.58	0.83	0.35	2.76	8.69	7.87	7.08	21.6	1
1959	1.81	0.86	0.35	3.04	7.47	8.38	7.56	23.4	1
1960	1.35	0.94	0.42	3.31	7.60	8.90	7.83	24.5	1
1961	2.45	1.05	0.54	4.04	8.51	9.03	7.90	25.5	
1982	2.49	1.10	0.54	4.12	9.15	9.51	8.15	28.8	
1983	2.77	1.27	0.56	4.61	10.4	10.1	8.75	29.3	
1964	3.33	1.47	0.66	5.48	11.7	11.0	9.35	32.1	
1965	3.65	1.58	0.73	5.95	12.8	12.2	10.3	35.3	
1986	4.23	1.77	0.84	8.84	14.7	13.0	11.4	39.1	
1967	5.33	2.11	1.00	8.44	16.5	13.9	12.0	42.5	
1968	5.51	2.34	1.12	8.97	18.5	14.5	12.9	45.9	
1969	8.50	2.81	1.34 1	1.0	19.7	15.2	13:4	48.3	
1970	7.70	3.25	1.47 1	2.4	21.0	15.6	14.0	50.5	
1971	8.77	3.51	1.80 1	4.1	23.0	18.3	14.9	54.2	
1972	9.45	4.09	1.93 1	5.5	23.8	17.0	15.7	58.5	
1973	10.8	4.59	2.24 1	7.4	25.2	18.0	18.6	59.A	
1974	11.4	5.34	2.61 1	9.3	27.3	18.9	18.1	64.3	
1975	11.7	5.49	2.85 2	0.0	27.2	17.4	17.1	A1.7	
1976	12.5	5.17	2.37 2	0.14	30.7	18.9	18.97	68.57	

35.

TABLE 1.4 - FERTILIZER CONSUMPTION 1973/74

Includee ell countries with population of over 5 million in 1975 Listing is in order of NPK consumption

COUNTRIES	<u>N</u>	P205	K20	NPK
	(Tho u	sands of to	ons of nutr:	lents)
1. United States	3 384	∔ 731	4 775	19 810
2. USSR	7 357	3 833	4 397	16 187
3. Chine	4 550	1 253	401	8 209
3. Franca	1 707	1 518	1 314	4 640
5. Polend	1 223	942	1 491	3 656
G. Germany (Fad. Rep)	1 228	780	1 098	3 106
/. Indie	2 031	453	270	2 754
C. Drezii	410	915	588	1 912
J. United Kingdom	1 045	391	399	1 835
10. Germany (Dem. Rep)	678	400	706	1 784
11. Jepen 12. Composito di t	836	524	517	1 779
12. UZECHOSLOVAKIA 13. Husson	511	476	66 <i>7</i>	1 854
14 Choice	536	429	553	1 518
15 T+a1.	753	422	257	1 443
18 Capada 18 Capada	724	490	276	1 490
17 Pomonio	582	526	215	1 303
18 Meyton	788	338	71	1 197
19. Korsa (Pen of)	633	220	48	1 101
20. Turtey	468	236	151	365
21. South Africa	453	373	15	842
17. Australia	205	343	127	755
23. Yugoslavta	105	490	73	728
24. Bulgarta	360	197	163	720
25. Denmerk	300	250	50	679
26. Natherlands	355	129	171	639
27. Pakistan	447	104	101	631
28. Swedan	257	101	4.78	54 5
29. Egypt	415		120	523
30. Indonesia	342	117	3	501
31. Belgium	182	144	43 14 8	403
32. Greece	275	160	28	4/4
33. Koree (DPR)	284	125	29 46	403
34. Iran	194	142	43	434
35. Vietnem	204	100	36	340
36. Cube	156	62	36	340
37. Austrie	121	74	115	310
38. Portugal	141	74	30	245
39. Philippines	133	40	49	222
4U. Colombia	131	47	39	216
41. Bangledesh	151	51	13	215
42. Meleysie	72	30	94	195
4j. Theilend	79	62	39	180
44. Morocco	63	65	35	163
45. Aigeria	53	77	23	162
40. MROCASIA	75	45	37	157
			•	· • •

TABLE 1.4 (CONTINUED)

COUNTRIES	<u>N</u>	P205	K20	NPK
47. Venezuele 48. Switzerland 49. Peru 50. Sudan 51. Chila 52. Syria 53. Sri Lanka 54. Argentina 55. Nigeria 56. Guatemala 57. Tunisia 58. Guatemala 57. Tunisia 58. Guatemala 57. Tunisia 58. Kenya 59. Burma 60. Ecuador 51. Afghenisten 62. Iraq 63. Ethiopia 64. Tenzania 65. Ghana 65. Ghana 65. Cameroon 67. Nepel 68. Saudi Arabia 69. Yemen (AR) 70. Madagescer 71. Mozambique 72. Uganda 73. Zaire 74. Angola 75. Bolivia 75. Mali 77. Kampuchee 75. Upper Volta	65 42 92 95 39 42 30 31 15 14 5 3.3 4 1.6 1.6 1.2 3.4 1.2 3.4 1.6 1.2	41 38 12 - 47 21 11 22 18.1 15 25 21 6.5 13 8 7 20 11 8.9 3 2.5 2.3 1.3 1.5 1.6 3.3 0.6 1.3 1.5 0.4 0.5 0.4	34 38 2 - 8 2 16 5 6 4 5 3 0.8 6 - 1 - 4 5.1 2 0.8 1.3 - 0.5 1.9 0.7 0.1 -	140 138 96 95 94 85 52 49 49 44 43 39 36 33 30 28 12 12 9.3 6 5.7 5.2 12 9.3 6 5.7 5.2 12 9.3 6 5.7 5.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1
Developped countries	30 693	18 888	18 990	58 572
Developing countries	12 505	5 157	2 357	20 108
world totel	43 298	24 045	21 337	38 680

Source : FAO Production yearbook 1975

TABLE 1.5 : FERTILIZER CONSUMPTION PER CAPITA 1975

al dia /

Includes all countries w ith population of over 5 million in 1975 (kg of NPK/cepita)

1.	Hungery	144.1	41. Svrie	9.0
2.	Denmark	126.1	42. Tunisia	3.U A G
3.	Czechoslovakie	111.8	43. Colombia	8.3
4.	Poland	108.0	44. Guatemala	3.5
5.	Germany (Dem. Rep)	104.2	45. Vietnem	J.I 7 a
5.	United States	88.1	46. Peristan	/ • 5
7.	France	87.7		7.7
8.	Bulgerie	77.7		/.3
9.	Sweden	63.6	49 Foundam	5.3
10.	USSR	63.5	50 Suden	5.5
11.	Canada	57	51 Bhildesteen	5.2
12.	Romania	58.5	57 Sed Leeks	5.0
13.	Austrelia	53 8	53 Torda	4.5
14.	Greece	53.0 61 A	54 Thedler	4.5
15.	Garmany (Fed. Rep.)	50 4	55 Texterio	4.3
16.	Belgium	46 6	SS. INCONCELA	3.6
17.	Netherlands	46.3	57 Test	3.4
18.	Austria	40.5	J/. LFAK	3.0
19.	Spain	40 9	so. dengladesh	2.9
20.		70.3	23. Un ena	2.8
21.	Yugoslavta	33.0	ou. Argentine	2.2
22.	United Kingdom	33.0	ol. Argnenisten	. 1.9
23.	South Africa	30 6	pz. Lemercon	1.9
24.	Portugal	30.0	oj. lanzania	1.9
25.	Korea (CPP)	27.3	54. Mozampiqua	1.8
26.	Ttaly		b5. Burme	1.4
27.	Rhogeste		ob. Ethopie	1.2
28.	Kares (Ren of)	23.0	D/. Nedal	1.0
29.	Switzerland		DD. Saudi Arabia	1.0
30.	Turkey		JU. Yaman (AR)	0.3
31.	Mexico		70. Nigeria	0.8
32.	Brazil		71. Magagascar	0.7
33.	Japan		72. Argola 72. m-1	3.6
34.	Melaveta	10.0	73. CO11V18	J.6
35	Favot	13.	74. Uganda	0.5
36.	Venezuele		/b. Mali	0.4
37.	Tran	11.4	/b. Kempuchee	0.2
38.	Aleeria		//. Upper Volta	0.2
19		9.7	/5. Zaira	J.1
40.	Chile	9.3		
		3.2		
		Developed countria		
		Developing countria	le avarata e e	
		World average		
			6 6 e J	

Includes ell countries with population of over 5 million in 1976 (kg of NPK/he)

1.	Netherlends	750	41. Philippines	28.1
2.	Belgium	540.4	42. Pakistan	28
3.	Germeny (Fed. Re	D.) 385.5	43. Venezuela	25.2
4.	Germeny (Dem. Re	D.) 361.5	44. Indonesia	26.3
5.	Switzerland	358.3	45. Kenva	25.2
6.	Karee (Rep of)	357.9	46. Algerie	23.0
7.	Jacan	319.3	47. Bengladesh	22.6
Α.	Czechoslovekie	314.7	48. Meracca	21.4
9.	Hunserv	276.3	49. Tran	20.7
10.	United Kingdom	262.9	50. India	15.5
11.	France	246.7	51. Chile	15.2
12	Polend	242.0	57. Austrelia	15.9
13	Bermark	239.4	53. Sudan	12.7
14	Koree (NPP)	201 A		11.9
15		197.8	55 Soudi Apabia	44 6
16	Sweden	173 6	Să Tupicie	44 7
17	Bulgaria	168 6	E7 Thedland	40.0
18	Faunt	131.2	58 Chene	10.3
46	Tesly	4.74		0.1
20	Geneca	119 0		3.1
20.	Bonasia	114 0		5.3
27	Cuba	107 1	87 Tanzada	Q • 1 4 - 3
22	Holted States		62 Sementation	4.3
6J. 74	Vuccelevie	30.0 AC 6	34 fume	7.3
27.	ICCD	23.0		44 a l
23.	Saata		SS Ancolo	3.0
20.	Sper:			4.4
28	Pos conte		ST NIGERSON	4 • 4 7 4
20.	Vietem	63.5 81 0		4 6
30	Malayeta	61.0 63.0		1.3
30.	Apart 1		71 Appention	1 2
37	South Adeles	34.J 57 4		1.0
11	China			4 0
34	Colombia	70.1		1.0
36	Mauton	72.1		
32.	Set Lanka	33,3 17 S	76 Mali	0.8
37	Canada	J2.J 70 0		0.2
3/.	Tuekay	23.0	//. Upper vorce	0.1
30.	Bern	23.9		
40	Guatamala	23./ 28.5		
40 •		20.3		
		Developed countries (everage 100.4	
		Developing countries (everege 23.0	
		World everege	5.89	
		-		

Source : FAD yearbook 1975

TABLE 1474- FERTILIZER - COUNTRY AMALYSES, 1973/74 - LARGEST PRODUCERS, CONSUMERS,

SURPLUSES AND DEFICITS

A - MITROGEN FERTILIZER (THOUSANDS OF TONS OF N)

	FRODU	2022	×	CONSUMERS		SURPLUS	. SI	2	
-	United States	9 152	•						
· •			-	united States	6,277	1. Japan	1.341		
•			2.		6,256	2. USSR	S		
		2.731	Э.	China	3 415			010u1 . 2	785
+	Japan	2.162	•	India				3. Egypt	329
ъ.	France	1.694					816	4. Turkey	295
4					1.633	5. Belgium	487	5. Demark	282
;	IN I AND			Germany (FR)	1.101	6. Italy	064		707
	Poland	1.366	.	Poland	1 060			fizeJa .	260
0	Nether land	1.213						7. Indonesia	259
6	Italv		.		-/0	6. Germany (FR)	372	6. Germany (DR)	255
101	India		n (821	9. Norway	359	9. Mexico	455
			10.	spain	716	10. Poland	206	40 E	
	Noman1.a	054	11.	Italv	673		101	In. L'ance	139
12.	Canada	749	ţ		7 /0		152	11. United Kingdo	119
- 1	Casta			CALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	999	12. Kumalt	2693	12. Cuha	440
?		C //	13.	Nexico	531	13. Bulearta	101	13 Mater (C-	
	United Kingdom	755	14.	Canada				Inoc) WPU1atr	011 (1
15.	Belgium	652	15				22	14. Philippines	66
16.	Bulgarta	549				bebinity .cr	3	15. Sweden	9 2
17	Koros (Der of)				848	16. Spain	57	16. Sudan	02
	Notes (Mep.ur)			Turkey		17. Saudi Arahia	57		
	Norway	445	10.	Brazil	125	10 Chila			69
19.	CSSR	424	19.	Romania	100	40 Komon (0	2	To. Colombia	68
8.	Hungary	424	R			13. Narwa (Hap. CT)	3	19. Malaysia	67
21.	Germany (DR)	411				ZU. Finland	ę	20. Thatland	62
22.		37.5	•			21. Greece	24	21. El Salvador	53
				Egypt		22. Portugal	22	22. Peru	
		2	23.	Yugoslavia	368	23. Australia			ה ה ה ה
	Pakistan	8	24.	Cenark	366	7 South And			ŝ
25.	Kuwal t	209	X	Technologie -		the source arritica	2	24. Sri Lanka	51
					2	Zo. Untar	4	25. Pakistan	42
					<u>.</u>				
					-				

TABLE 1.7(CONTINUED)

B. PHOSPHATE FERTILIZER (THOUSANDS OF TONS OF P205)

••

J

PRODUCER	<u>52</u> 1	SHEMPSHOD		SUBPLUSES		DEFICITS	
. 1. Inited States	E 101 3						
2 1850		1. United States	4.600	1. United States	1,413	1. France	454
			2,699	2. USSR	(65	2. Brazil	378
J. L'ANCE	1,693	3. France	2.147	3. Beletum	F 37		
4. China	1.314	4. China	1.390	Mathan and			
5. Australia	1.169	5. Avetralia				4. Iurkey	183
6. Germany (FD)	680			o. Lanada	240	5. Hungary	127
		o certainy (FK)	118	6. Junisia	165	6. Bulgaria	124
		/. Poland	847	7. Luxembourg	132	7. Indonesta	25
		8. Japan	687	0. Norocco	125		20
	02/	9. Braz11	725	9. Morriau	36		
10. Belgium	629	10. India	634				
11. Spain	536	11 Snato				neder .ur	57
12. Italy	54			11. Nexico		11. CSSR	57
12 Mar 7an) and	Ŗ	12. Lanada		12. Romania	61	12. Pakistan	54
	Ŗ	13. United Kingdom	478	13. Soain	55		
14. United Kingdom	417	14. Italy	476	14 Cornson (ED)	PC PC		76
15. Germany (DR)	403	15 Mar 70al and			•		48
16. Romanta				noned?) . CT	11	15. Thalland	45
17 Mathan and		(MI) Aural of	431	16. Austria	6 E	16. Baneladesh	44
		N. CSSR	3 93	17. Greece	21	17 Iran	
10. Brazil	1	10. South Africa	327	10. South Africa	2		
13. SOUCH AFFICA	346	19. Hungary	322	19. Sweden	1	19 Korea (Doo	
20. 150	336	20. Romania	320	20. Seneral	1		
21. India	325	21. Jurkey	200		2	DUPTALT 'N7	
22. Yugoslavia	NSK.	27 Bulanda	3 3		71	Z1. Vietnam (So	uth) 34
23. Nexton	2	DT IDITION 177	PC -	22. Egypt	9	22. Poland	R
		23. FIntend	197	23. Finland	•	23. Germany (DB	
	202	24. Korea (Rep.of)	196	24. Tanzania	e	24 FI Salvado	
Viegnum . c2	195	25. Yugoslavia	193	Z5. Israel			
					•		2

TABLE 1. X CONTINUED)

T

C. POTASH FERTILIZER (THOUSANDS OF TONS OF K_20)

l

•

1. United State 3.010 2. Constant 3.011 2. Poland 1. United State 2. Constant 5.010 2. State 5.010 2. State 5.010 2. Poland 1.111 3. Germany (FR) 2.503 3. Frances 1.011 2. Poland 1.111 5. Frances 5.010 2. State 1.011 3. Germany (FR) 2.7313 2. Poland 1.111 5. Frances 2. State 2. State 1.113 3. Germany (FR) 1.2356 3. Germany (FR) 2. Poland 1.111 5. Frances 2. State 2. State 2. State 2. State 2. Poland 1.111 6. State 2. State	PROPER							
1. Uses 5.010 1. United States 4.014 1. United States 4.014 1. United States 2.730 2. Uses 2. States 2.111 2. States 2.111 2. Uses 2. States 2.111 2. States					STOL AND		DEFICITS	_
7. Constant 5. Constant	1. USSR	5, 818	1. United States	4,614	1. Canada			
3. Generary (R) 2.556 3. Freed 1.01 2.556 3. Freed 1.01 3. Journal 5. Generary (R) 3. Journal 5. Journal 3. Jourla 3. Journal 3. Journal	2. Canada	5.0/3	2. USSR	3,605	2. USSR	516.2		007'7 713
•. Germany (FR) 2.538 •. Poland 1.413 5. Germany (FR) 1.414 <th>3. Germany (DR)</th> <th>2, 556</th> <th>3. France</th> <th>1.033</th> <th>(a) (arrant (B)</th> <th></th> <th></th> <th></th>	3. Germany (DR)	2, 556	3. France	1.033	(a) (arrant (B)			
5. Function States 2.3% 5. Genery (FR) 1,163 5. Jacuation 233 7. Transic 2.1002 6. Jacuation 5. Jacuation 233 433 7. Transic 2.1002 6. Jacuation 5. Jacuation 15.	4. Germany (FR)	2, 539	4. Polend	1.413	4. Germany (FR)	1.376		
6. France 2.002 6. Japan 66 6. Canco 233 40 7. Japan 715 7. Example 66 6. Canco 233 40 8. China 715 7. Example 66 6. Canco 233 40 9. China 715 7. Example 66 6. Canco 233 40 9. China 700 10. Canco 230 9. China 276 7. Instant 275 11. Haily 11. Instant 723 9. China 276 9. China 276 9. China 276 12. Chila 73 9. Chila 73 9. China 276 9. China 276 13. United Kingda 19 11. Instant 73 9. China 276 9. China 276 13. United Kingda 19 11. Instant 73 9. China 7. Instant 193 13. United Kingda 19 11. Instant 7. Instant 193 11 193 13. United Kingda 5 11. Instant 7. Instant 7. Instant 193 13. United K	5. United States	2,346	5. Germany (FR)	1,163	5. Israel	515	S. Brazil	
7. Iteredi 515 7. Generary (R) 656 7. France 200 9. Chilas 200 9. Chilas 273 9. Chilas 273 10. Congo 9. Chilas 575 9. Chilas 273 314 11. United Kingery 300 10. Congo 9. Chilas 273 314 11. United Kingery 300 13. United Kingery 300 11. United Kingery 314 13. United Kingery 300 14. United Kingery 300 11. United Kingery 314 13. United Kingery 5 13. United Kingery 300 11. United Kingery 314 13. United Kingery 5 14. Ugo Ianua 314 14. Ugo Ianua 151 13. United Kingery 5 14. Ugo Ianua 314 14. Ugo Ianua 151 13. United Kingery 314 216 14. Ugo Ianua 151 161 161 13. United Kingery 5 14. Ugo Ianua 216 16. Chilas 174 13. United Kingery 216 15. Chilas 216 17. Ugo Ianua 175 14. Ugo Ianua <	6. France	2,082	6. Japan	685	6. Conco	259		202
0. Spain 0.1	7. Israel	515	7. Germany (DR)	658	7. France	2		
9. Ohina 30. Ohina 9. Ohina 528 9. Ohina 228 11. Italy 11. Italy 523 9. Ohina 228 13. United Kingdas 5 13. India 523 9. Ohina 228 13. United Kingdas 5 13. India 523 9. Ohina 228 13. United Kingdas 5 13. India 314 19. Ohina 228 13. United Kingdas 5 13. India 314 19. Ohina 228 13. United Kingdas 5 13. India 314 19. Ohina 219 13. United Kingdas 30 314 19. Ohina 210. Damaark 216 13. India 314 314 19. Ohina 210. Operation 191 13. India 314 21. Nugoalawia 191 191 191 14. Ohina 256 19. Ohina 200 19. Ohina 191 17. Canada 265 19. Ohina 191 191 191 17. Canada 191 191 191 191 191 18. Enaland 191	6. Spein	674	B. CSSR	576	0. Spein	2		
10. Compo 300 10. Brazil 523 11. Initialy 137 11. United Kingdos 530 13. United Kingdos 5 13. Initialy 13. Initialy 13. United Kingdos 5 13. Initialy 13. Initialy 13. United Kingdos 5 13. Initialy 13. Initialy 13. United Kingdos 5 14. Italy 216 13. United Kingdos 5 14. Italy 265 15. Spain 265 15. Austria 19. Italand 16. Densark 216 19. Italand 19. Italand 17. Canada 216 19. Italand 19. Italand 17. Canada 19. Italand 19. Italand 19. Italand 17. Uponiania 19. Italand 19. Italand 19. Italand 18. Italand 19. Italand 19. Italand 19. Italand 20. Num Yasiand 19. Italand 19. Italand 19. Italand 21. Vugoalawia 19. Italand 19. Italand 19. Italand 22. Finland 19. Italand 19. Italand 19. Italand 23. Kustrala 150 23. Mustrala 19. Italand 23. Sandon 140 23. Mustrala 19. Italand 23. Sandon 140 19. Ita	9. China	8	9. China	528	9. Chile	ŝ	9. Chine	NCC NCC
11. Litaly 13. Litaly 13. Litaly 13. Litaly 13. Litaly 13. Litaly 14. Litaly 14. Litaly 14. Litaly 14. Litaly 15. Litaly <th>10. Congo</th> <th></th> <th>10. Draz11</th> <th>523</th> <th></th> <th>1</th> <th></th> <th>246</th>	10. Congo		10. Draz11	523		1		246
13. United Kingers 30 13. United Kingers 5 13. United Kingers 5 13. United Kingers 5 13. United Kingers 5 14. Italy 265 15. Spain 78 16. Denant 276 17. Canada 19 17. Canada 19 17. Canada 276 17. Canada 276 17. Canada 191 18. Italy 200 19. Italy 201 20. New Zealand 191 21. Vagoalavia 191 22. Movelavia 191 23. Movelavia 191 23. Movelavia 191 24. Korea (Rep.of) 150 25. Sandan 150	11. Italy	137	11. United Kingdom	964				604
13. United Kingdom 5 13. India 314 13. India 314 13. United Kingdom 5 14. Italy 265 15. Spain 16. Italy 265 15. Spain 265 15. Austria 17. Vugoslawia 176 15. Spain 265 15. Austria 176 17. Canadi 216 17. Koraa (Rep. of) 150 17. Canadi 193 101 16. Finland 141 17. Canadi 193 101 101 150 141 17. Canadi 193 101 101 150 126 111 18. Irelation 101 101 101 101 126 114 114 19. Irelation 101 150 20. South Africa 126 21. Nutria 126 21. Vugoslawia 173 22. Austria 159 22. Austria 112 22. South Africa 150 23. Austria 112 23. Australia 114 23. South 150 23. Australia 126 23. Australia 112 23. South 150	12. Chile	19	12. Hungary	307			12. Ireland	181
14. Italy 260 15. Spain 265 16. Demark 216 17. Constant 216 18. Sector 101 19. Iraland 101 19. Iraland 101 20. Bouth Africa 101 21. Vugoslavia 101 22. Finland 103 23. Austria 133 23. Austria 133 23. Austria 133 23. Austria 133 23. Austria 134 23. Secton 144 23. Secton 23. Austria 23. Secton 24. Coba 23. Secton 24. Coba 24. Korea (fap.of) 25. Morea 25. Morea 97	13. United Kingdom	S	13. India	314			13. Nov Zealand	
15. Spain 265 15. Austria 159 17. Canada 216 10. Canada 159 17. Canada 205 10. Canada 150 17. Canada 205 10. Canada 150 18. Belgius 193 10. Consol 150 19. Ireland 101 101 16. Swoden 161 20. New Zaaland 101 101 19. Italy 130 20. New Zaaland 100 20. South Africa 126 21. Vugoalavia 173 20. South Africa 126 22. Finland 159 21. Metherlands 114 23. Austria 150 23. Austria 112 23. Swoden 140 23. Austria 112 25. Swoden 140 23. Australia 112 25. Swoden 140 23. Australia 112 26. Cuba 150 23. Australia 112 27. Metralia 150 24. Cuba 97 26. Korea 140 140 100 112 27. Mustralia 140 140 112<			14. Italy	268			14. Vienslavia	27
16. Dermark 216 17. Canada 205 17. Canada 205 18. Iraland 191 19. Iraland 191 19. Iraland 191 20. New Zealand 191 21. Vugoalavia 173 22. Finland 159 23. Austria 150 23. Austria 150 24. Koraa (Rep.of) 150 25. Sanden 144			15. Spaln	265			15. Austria	159
17. Canada 205 18. Belgiue 193 19. Ireland 181 20. New Zealand 180 20. New Zealand 180 20. New Zealand 180 21. Yugoslavia 173 22. Finland 173 23. Austria 172 23. Austria 150 23. South Africa 173 23. Austria 173 23. Sunden 144 25. Sunden 144			16. Dermark	216			16. Finland	159
10. Belgius 193 19. Ireland 101 19. Ireland 101 20. New Zealand 101 21. Yugoslavia 101 22. Finland 173 23. Austria 159 23. Austria 159 23. South Africa 112 23. Austria 159 23. Senden 101 23. Austria 113 23. Austria 114 23. Austria 114 23. Austria 114 24. Korea (Rep.of) 150 25. Senden 114			17. Canada	Ś			17. Korea (Rep.of)	151
19. Ireland10119. Ireland10120. New Zealand10021. Vugoalavia17322. Finland15923. Austria15924. Korea (Rep. of)15025. Seaden11425. Seaden114			18. Belgium	193			18. Sweden	144
20. Now Zealand 100 21. Vugoalavia 173 21. Vugoalavia 173 22. Finland 159 23. Austria 159 24. Korea (Rep.of) 150 25. Swaden 144 25. Swaden 144			19. Ireland	101			19. Italy	130
21. Vugoalavia 173 21. Metherianda 114 22. Finland 159 22. Malaysia 112 23. Austria 159 23. Australia 104 24. Korea (Rep.of) 150 24. Cuba 97 25. Swaden 144 25. Norway 20 20			ZU. New Lealand	9			20. South Africa	126
22. Finland 159 22. Malaysia 112 23. Austria 159 23. Australia 104 24. Korea (Rep.of) 150 24. Cuba 97 25. Swoden 144 25. Norwey 70			21. Yugoslavia	173			21. Netherlands	114
23. Austria 159 24. Korea (Rep. of) 150 25. Swaden 144			22. Finland	159			22. Malaysia	112
24. Korea (Nep.of) 150 24. Cuba 97 25. Swaden 144 25. Norway 70			23. Austria	159			23. Australia	P0
25. Sweden 144 25. Norway 70			24. Korea (Rep.of)	150			24. Cuba	6
			25. Sweden	144			25. Norway	20

44.

46.

E all in the -----_== = _i -----5 **2 2**..... 9-35-1 5 -1100 2: 22 60 5 C. 5 12.6------70 *≂_i* ≤e **2 3 4 14**,-2 ≠ : 1 Ë. WYTT 1 _ • • <u>_</u> • 1. 18 a 100 Ser. ----1 . ad set i -90 4.47 F 2, 55 -=1: .. - I. 30 28 174. Z 194 **- -**10 :∵;t∰ d alto -P se de la Pripe, 1986 1960 1986 1178 1975

2. FERTILIZERS DEMAND IN VIETNAM

いきいいい したいなななないのないないない たいとえい

- 1. Data supplied by PETROVIETNAM
- 2. The present situation and forecasts
- 3. Production programmes planned by PETROVIETNAM
- 4. Suitable fertilizers for VIETNAM

1. DATA SUPPLIED BY PETROVIETNAM

There is a heavy demand for fertilizers, such that the output of the complex will be able to meet only part of the total domestic demand.

Land area presently cultivated :

. Rice	5,800,000	hectares
. Others	1,500,000	hectares

Total cereals 7,300,000 hectares.

Plan objectives for 1990 :

Forest area	1,200,000	hectares
Area to be cleared	1,000,000	hectares
Market gardening	530,000	hectares
Other crops	100,000	hectares
Industrial crops	1,400,000	hectares
Other cereals	2,500,000	hectares
Rice	6,600,000	hectares
	Rice Other cereals Industrial crops Other crops Market gardening Area to be cleared	Rice 6,600,000 Other cereals 2,500,000 Industrial crops 1,400,000 Other crops 100,000 Market gardening 530,000 Area to be cleared 1,000,000

Fertilizer (urea) consumption averages 150 kg per hectare in the case of rice.

Demand can be expected to reach 2,000,000 tons by 1980, excluding fertilizer for forestry development.

2. THE PRESENT SITUATION AND FORECASTS

No data was supplied on past consumption figures, soil types, farming habits, production units, storage and blending centres or distribution systems. In view of this the market survey cannot be based on recent trends.

Some data is, however, available on South VIETNAM up to 1972/1973. In addition, the FAC have some details of nitrogen fertilizer consumption in VIETNAM. These are shown in the tables which follow.

Table 2.1 gives nitrogen consumption figures for VIETNAM as a whole. Some variations appear between the figures in the previous table and the second table, and these may be partly explained by end-of-year stocks, which may vary considerably from one year to another.

Another important factor to be taken into account in forecasting fertilizer consumption is the area of cultivated land (table 2.3.).

The most important crop is thus rice, but consumption per hectare varies according to the type of rice, harvests and the region itself.

Taking the consumption figure given by FETROVIETNAM, i.e. 150 kg of urea on average per hectare of rice, present rice crops must require 370,000 tons of urea; by 1930 - at the same rate - consumption should reach 1,000,000 tons. To these figures must be added the phosphoric, potassic and nitrogen fertilizers required for other crops.

On the basis of 1980 cultivated land and consumption Plan objectives, consumption per hectare would be 180 kg of fertilizer as finished product, equivalent to about 72 kg of NPK.

The 1974 "FAO production year book" shows average consumption in VIETNAM as being 42 kg NPK. Without being totally unrealistic it seems difficult to meet the 1980 objective, especially in view of the foreign currency expenditure necessary.

	TABLE 2.1					
NUTRIENT	CONSUMPTION	IN	SOUTH	VIETNAM		

•

IMPORTS - 1,000 TONS

	NITROGEN	P205	K 2 0	-OTAL
1963	59	37	11	107
1984	33	41	5	92
1985	25	57	11	94
1966	66	35	13	114
1967	60	21	25	106
1968	25	4	1	30
1969	140	52	25	217
1970	137	52	25	224
1971	59	15	5	8C
1972	96	31	1.8	145
1973	132	40	24	196
				1

1

TABLE 2.2.

NITROGEN FERTILIZER CONSUMPTION IN VIETNAM

	1/61	2761	19/3	4791	5761	1976
T D T AL MITROGEN	128	120	•••	135	190	241
of which NORTH		13	24	46	100	
SOUTH	85	107	¢ Ģ	88	06	

*

T	A	8	L	E	2		3	
					_	•	-	

CULTIVATED LAND (HECTARES)

	SCUTH	NORTH	PRESENT	PLAN Objective 1930
RICE	2700	2200	5500	6600
SWEET POTATO	38	198		
CASSAVA	32	110		
MAIZE	35	200		
GROUND NUTS	35	50		
RUBBER	83			
BEANS		ô0		
OTHER	225	113		

These figures were obtained from UN statistics.

3. PRODUCTION PROGRAMMES PLANNED BY PETROVIETNAM

PETROVIETNAM have put forward three possible alternatives :

Alternative 1

٠	Ammonia	1,000	t/day
•	Urea	200,000	t/yr
•	Nitrophosphates 20/30	300,000	t/yr
•	Ammonium nitrate	300,000	t/yr
•	Nitric acid	10,000	t/yr

• Alternative 2

٠	Ammonia	1,000	t/day
•	Urea	500,000	t/yr
٠	Ammonium nitrate	150,300	t/yr
•	Nitric acid	10,000	t/yr

• Alternative 3

٠	Ammonia	1,000	t/yr
•	Urea	575,000	t/yr

4. SUITABLE FERTILIZER FOR VIETNAM

It is difficult to make a detailed study of the types of fertilizer best suited to VIETNAM on account of the lack of data on crop and soil types. However, as the principal crop is clearly rice, various points can be considered :

For rice growing nitrogen in ammoniacal form gives better all-round results than nitrogen in nitrate form.

The nitrate ions, being mobile, are more rapidly leached and are also subject to denitrification, i.e. N_2O or N reduction, facilitated by the absence of air as is the case with irrigate crops.

Nitrate nitrogen is therefore not recommended for basic manuring.

In addition, nitrites formed during nitrate reduction may be harmful to the plant.

These drawbacks may be minimised, however, by applying the fertilizer in several successive doses, particularly during the final growth stage to promote ripening of the grain.

Phosphourous in P_2O_5 form should be applied at the start of growth in order to promote development of a good root system.

The form in which phosphorous should be applied depends upon soil type. In non-acid soil phosphorous should be used in soluble form whereas in acid soil dicalcium phosphate will give the same if not better results.

Taking the different fertilizers proposed in the three alternatives, it can be seen that urea, with 100 % ammoniacal nitrogen, is entirely suited to rice crops, while ammonium nitrate with 50 % ammoniacal and 50 % nitrate nitrogen can be used only in fairly small quantities and is thus less suitable for rice; finally, 20-30 nitrophosphate with 65-70 % ammoniacal nitrogen is a relatively satisfactory type of fertilizer for rice as in addition to nitrogen it gives phosphorous, necessary for growth. The percentage of ammoniacal nitrogen varies according to the nitrophosphate formula, i.e. a 20-20 fertilizer has a less favourable ammoniacal nitrogen ratio - around 55 %.

3. CHOICE OF RAW MATERIAL

1. Introduction

 $\mathcal{T}_{\mathbf{r}} = \{ \mathbf{u}_{i}^{T} \mid \mathcal{T}_{i}^{T} \}$

- 2. Comparison of processes of naphtha steam reforming and fuel partial oxidation for ammonia production
- 3. Utility production
- 4. Economic study

1. INTRODUCTION

Inudstrially ammonia is produced by reacting hydrogen with nitrogen. Nitrogen is removed from the air and hydrogen is produced by various processes.

Modern plants consuming hydrogen in large quantities use hydrocarbons as raw materials, sources being natural gas, naphtha and fuel oil.

The two main processes presently used are steam reforming and partial oxidation.

Partial oxidation can normally use as feedstock all the hydrocarbons from natural gas to heavy fuel.

Steam reforming can use feedstocks ranging from natural gas to naphtha.

In the case of VIETNAM, we will only compare the production costs of ammonia, from a steam reforming of naphtha and a partial oxidation of fuel. We will suppose that in a first stage, natural gas is not available.

2. COMPARISON OF PROCESSES OF NAPHTHA STEAM REFORMING AND FUEL PARTIAL OXIDATION FOR AMMONIA PRODUCTION

2.1. AMMONIA PRODUCTION BY STEAM REFORMING OF NAPHTHA

The production unit includes the following sections :

Hydrodesulphurization of the feedstock

Sulphur is eliminated by a catalytic hydrodesulphurization (Mo/CO) in vapour phase, followed by an absorption of the last traces of H_2S on a zinc oxide bed.

• Steam reforming

The tubes of the primary reforming furnace are filled up with nickel catalyst. The operating pressure is 35 bars and temperature is 900°C. On account of high temperatures of tubes in the furnace, naphtha is used for the firing. The metals contained in an average heavy fuel would lead to the formation of fusible alloys on the tube walls and their deterioration. Refinery fuel gas or low sulphur content fuel will replace naphtha economically if they are available.

In a secondary reformer, catalytic combustion (Ni catalyst) of residual methane is operated with air which allows the introduction of nitrogen required for ammonia synthesis.

Shift conversion of carbon monoxide

The steam shift conversion of carbon monoxide is realized in two reactors in series.

Carbon dioxide elimination

It is operated in two stages :

- a roughing by a potassium carbonate solution
- finishing epuration with monoethanolamine part of the CO₂ recovered is used for urea production.
- Carbon monoxide elimination by methanation

Catalytic hydrogenation allows residual content of about 10ppm to be obtained.

• Compression

Centrifugal compressor with two stages allows synthetis gas to be compressed and recycled.

• Ammonia synthesis

Synthesis is carried out by a "low pressure" process (40-50 bars), with a iron oxide catalyst.

The ammonia unit is self sufficient in steam.

2.2. AMMONIA PRODUCTION BY FUEL PARTIAL OXIDATION

The production unit has the following sections :

• Air fractionation

Fractionation is obtained by distillation of the liquid air at low remperature. The unit produces nitrogen required for ammonia synthesis.

• Partial oxidation of fuel

The oxidation of fuel is realised by oxygen without catalyst, with a pressure of 35 bars (high pressure process). The temperature is close to 1400°C. Effluent leaving the furnace is subjected to a rapid water quench in order to stop the oxidation.

· Recovery of the soot

Quench waters containing soot are filtrated ; soot is recovered and used in boiler burners.

Shift conversion of carbon monoxide

The steam shift conversion is carried out in a reactor containing a sulphur resisting catalyst.

• Elimination of carbon dioxide and of H_2S

This elimination is carried out by washing with triethanol amine. Part of the recovered CO_2 is used for unea production.

Carbon monoxide elimination

Washing with liquid nitrogen from the air fractionation removes the last traces of CO.

Ammonia synthesis

Synthesis is carried out on an iron oxide catalyst. The recycled gas is compressed by a centrifugal compressor The ammonia unit is self sufficient in steam and electricity.

3. UTILITY PRODUCTION

STEAM AND ELECTRICITY

1. For the steam reforming of naphtha, an auxiliary boiler is planned in the plant in order to produce the quantities of steam required for the start up and normal operation of the plant.

The steam produced in the recovery boilers is superheated in the convection zone of the reforming furnace, then mixed with the superheated steam produced in the auxiliary boiler in order to drive the steam turbines of centrifugal compressors (synthesis gas, air, ammonia) and certain boiler water pumps.

A turbogenerator is integrated into the ammonia plant. It is driven by a steam turbine fed by an auxiliary boiler.

2. For the partial oxidation, a central boiler produces hp steam which is used to drive four centrifugal compressors of the unit, air, nitrogen, synthesis gas and ammonia.

A turboalternator is planned inside the ammonia plant ; it is driven by steam furnished by the central boiler.

CONSUMPTION PER TON OF AMMONIA

	Steem reforming	Pertiel oxidation
Nephthe process 10 ⁶ kcal L	HV 5.46	
Fuel Low sulphur content (fuel) 10 ⁶ kcel L	HV 3.83	
fuel cil (Process + fuel) 10 ⁶ kcel L	HV	9.12
Cooling weter $\Delta T = 10^{\circ}C$ m ³	400	425
Deminerelized water m ³	1.3	1.3

4. ECONOMIC STUDY

4.1. INTRODUCTION

The bases of the economic calculation are generally the same as those used for refining (see volume III).

The overall installed cost budget ratio between WESTERN EUROPE and VIETNAM for an ammonia plant is presented in the following table 3.1.

For the working capital, we will take only one month of final products.

The utilities costs are as follows :

. industrial water 5¢/m³

. fuel 8.7 US\$/10⁶kcal

The local prices of naphtha, low sulphur content fuel, fuel with 3.5 % sulphur weight have been defined in the refinery study.

- . Naphtha 156 US\$/ton
- Fuel LSC 30 US\$/ton
- Fuel 3.5 % S 87 US\$/ton

At this stage of the project, a simple economic evaluation of the two alternatives will be carried out.

We will calculate successively on a yearly basis :

- I Investment cost
 D Depreciation
 O Operating cost
 S Sales revenue
 P Dur Depreciation
- R Raw materials cost

Production cost P = 0 + RGross cash flow GCF = S = P Tax base GCF = D Tax T = (GCF=D) x 0.4 After tax cash flow ATCF = CGF = T Reimbursement period before taxes (in years) $\frac{I}{GCF}$ Reimbursement period after taxes (in years) $\frac{ATCF}{ATCF}$

AMMONIA PRICE

)

The ammonia price taken in the study is 213 US\$/ton, 20 % to 30 % higher than average prices in EUROPE.
TABLE 3.1.

-

-

OVERALL INSTALLED COST BUDGET RATIO

	WESTERN EUROPE	RATIO	VIETNAM
CALCULATED COST			
 Meterial Transport to site 	100 5	1.1	110 1 5
SUB TOTAL 1	105		125
 Home office services SUB TOTAL 2 	20 20	1.1	22 22
. Construction works			
- field engineering supervision	12	2	24
- Civil works - Erection works	28 40	1.2 1.7	33 88
SUB TOTAL 3	80		125
. Start-up supervision	5	3	15
TOTAL TECHNICAL COST	210	1.37	287
Installed cost budget factors on the calculated cost			
, Provision for contingency	1.15		1.25
INSTALLED COST BUDGET	241	1.49	358

85.

-

4.2. INVESTMENTS

The costs are given in mid 1978 US\$. (see table 3.2.).

•

TABLE 3.2.

n an an airte an Annaichean an Annaichean an Annaichean an Annaichean an Annaichean an Annaichean an Annaichean

.

INVESTMENTS

IN 103US\$

	PARTIA	L OXYDATION	STEAM OF N	REFORMING APHTHA
PROCESS UNITS	92	900	RG	000
OFFSITES - UTILITIES	46	000	34	500
ERECTED COST IN EUROPE	138	000	103	500
TOTAL COST IN EUROPE	158	700	119	025
TOTAL COST IN VIETNAM	235	460	177	350
SPARE PARTS	8	240	5	180
CATALYSTS AND CHEMICALS		450	-	900
ROYALTIES	2	500	2	500
PRE OPERATING EXPENSES and START-UP EXPENSES	16	550	12	420
TOTAL INVESTMENT EXCLUDING FINANCIAL CHARGES	264	200	199	350
WORKING CAPITAL	3	700	6	700

TABLE 3.3.

CONSUMPTION OF RAW MATERIALS

Ę

ſ

I

;

	PARTIAL	OXYC	DATION	STEAM I	REFORM.	ING		
	per tan of NH ₃		per year in tons	per ton of NH ₃	pe: in	r ye tan:	87 8	
	0.524		172 920					
FUEL in TONS	0.392		129 500					
FUEL OIL (Process + fuel) in TONS				0.935		308	550	
INDUSTRIAL WATER	22	7	260 000	23.5	7	755	000	

*

and the states of

•

OPERATING COST

IN 103USS

			OXIDATION	STEAM OF N	REFORMING APHTHA
V	ARIABLE CHARGES				
•	Nephthe			28	975
•	Fuel low eulphur content			11	855
•	Fuel	26	844	••	•••
٠	Industriel water	_	388		383
•	Catalyst and chemical		420	1	200
	TOTAL	27	552	40	193
FI	XED CHARGES				
•	Menpower		195		194
•	Technical essistance		39		39
•	Meintenence	4	120	٦	190
•	Insurance	1	585	1	196
٠	General overheeds		70		
٠	Land rent		30		
•	Interest on working cepits	81	570		570
	Sub total	5	709	5	290
TO	TAL OPERATING COST	34	361	45	483

69.

-

ECONOMIC COMPARISON

7

And the second second

IN 103USS

	PARTIAL OXYDATION	STEAM REFORMING OF NAPHTHA
SALES	72 100	72 100
OPERATING COST	34 360	45 483
GROSS CASH FLOW	37 740	25 .617
TOTAL INVESTMENT	264 200	199 350
PAY OUT TIME	7	7.49
DEPRECIATION	17 613	13 290
TAX BASE	20 126	13 327
TAX	8 050	5 330
AFTER TAX CASH FLOW	29 690	21 286
PAY OUT TIME	8.89	9.36

4.3. CONCLUSION

Profitability is thus slightly higher with fuel partial oxydation than with naphtha steam reforming, though the difference is not very great. In fact if naphtha were 10 % cheaper, payout periods would be the same.

Further, if the two methods gave the same profitability, the price ratio of fuel to naphtha would be 3.6.

Taking international prices for these two feedstocks, i.e. 70 US\$/ton for fuel and 140 US\$/ton for naphtha, payout times for the two methods are improved, viz. 0.73 instead of 7.3 years for steam reforming and 0.13 instead of 7 years in the case of partial oxydation.

Variations in payout times according to feedstock prices are shown in the figure which follows.

In choosing between these two methods other criteria may also be considered, e.g. availability of raw materials, or flexibility.

From the refining study it can be seen that in the simplest refining scheme large quantities of fuel oil are available whereas if naphtha is to be obtained the refining scheme has to be much more complex and investment higher. Fuel thus seems to be more readily available than naphtha.

It can also be said that future trends in availability on the international market and in prices appear more favourable for fuel than for naphtha, i.e. surpluses of the former will be available at low prices whereas naphtha if available will be expensive.

Note also that partial oxidation can operate on a wide range of feedstocks from gas to vacuum residue, but steam reforming can operate only on gas and naphtha.

It should also be pointed out that over 3,000,000 tons of ammonia are produced in the world using partial oxidation.

For these various reasons we would be inclined at this stage in the study to opt for the fuel partial oxydation method, while not actually reaching a final decision on this yet.

In the discussion that follows the three fertilizer complexes to be compared will be based on partial oxydation for ammonia manufacture.

1

We must emphasize, however, that the only choice made is between fuel partial oxidation and naphtha steam reforming, because should natural gas be found and become available, the choice would be different with gas steam reforming probably being recommended. (see appendix 2)

4. ECONOMIC AND TECHNICAL STUDY OF THE THREE COMPLEXES PLANNED BY PETROVIETNAM

- 1. Complex usea and nitrophosphate Alternate I
- 2. Complex urea-ammonium nitrate Alternate II
- 3. Complex urea-ammonia Alternate III
- 4. Economic study
- 5. Results
- 6. Fertilizers shipping

1. COMPLEX : UREA AND NITROPHOSPHATE ALTERNATE I

1.1. INTRODUCTION

Alternate I includes the following units :

- Ammonia 1,000 t/day
- . Urea 200,000 t/year
- . Nitrophosphates 300,000 t/year
- . Ammonium nitrate 333,000 t/year
- . Nitric acid 364,000 t/year, of which 10,000 tons nitric acid at 98 %

Ammonia will be produced by the partial oxidation route. All the data in this chapter, raw materials consumptions, utilities consumptions, are average data which can slightly varied according to the processes.

1.2. DESCRIPTION OF PROCESSES

Descriptions are given in the annex.

1.3. MATERIAL BALANCE OF THE COMPLEX

NITROPHOSPHATE UNIT

At this level of the study, we will take yields of a phosphate type KOLA, the composition of which is similar to the composition of a Vietnamese phosphate.

÷

Raw material consumption	Per ton of 19.5:20:0 nitrophosphate	Per year tons
Phosphate rock tons	0.75	225 300
Nitric acid (as 100%) tons	1.18	354 000
Ammonia tons	0.39	117 000
Carbon dioxide tons	0.27	31 000
Kielselguhr (kg)	(5-10)	1500-3000
By products		
. Ammonium nitrate tons	1.11	333 000
. Calcium carbonate tons	0.57	171 000

NITRIC ACID UNIT

The total yearly capacity is : 354 000 tons for nitrophosphate <u>10 000 tons</u> 364 000 tons.

This capacity is an order of magnitude because the quantity of nitric acid required for Vietnamese phosphate rock could change slightly.

Raw.material consumption	Per ton	Per year tons
Ammonia	0.292	103 000

UREA UNIT

_

The total yearly capacity is 200 000 tons.

R	w materials consumptions	Per ton	Per year
•	Ammonia	0.58	115 000
•	Carbon dioxide	0.77	154 000

AMMONIA UNIT

The total yearly capacity is 336 000 tons.

The total material balance of the complex can be summed up in the following table. (table 4.1.)

1.4. UTILITIES BALANCE

The utilities balance of the complex is summarized in the following table (table 4.2.).

TABLE 4.1.

da una re

Ţ

TOTAL MATERIAL BALANCE - ALTERNATE I

PRODUCT	C APACI TY tons/year	Ĩ	MIRIC ACIO	PHOSTANTE ROCK	AFGNIUN NI INATE	(10) ¹	8
NI TROMOSPINTE	300 000	117 000	354 000	225 000	000 888	171 000	01 000
NITRIC ACID	364 000	103 000					
UREA	500 000	116 000					154 000
T 0 T A L		336 000	354 000	225 000	393 100	171 000	235 000

76.

Ĵ the second s

l

TABLE 1.2.

ALTERNATE I UTILITIES BALANCE

I

Electricity

CUPACITY

PRODUCT

PPODUCT	CAPACITY	Electricity		Steam		Cobling water	Process mater	Fuel
	tans/year		£	Ê	4		1/F	10 ⁶ kcal/h
N I TROPACSPIATE	300 000	6 150		43.75		1 100		
NITRIC ACID	364 000	604	-7.6	4.75		6 825	10.2	
LINEA	200 000	1 250		28.5	-8.5	1 750		
6 13	336 000					17 700	54.0	383
TOTAL		7 BOB	-7.6	82	- 0 - 5	27 455	72.8	383
GFS11ES		6 170				1 045	20.2	55
1 0 1 V F		14 22N	-7.6	23	- 0 -5	28 500	93.0	B E †

77.

2. COMPLEX : UREA-AMMONIUM NITRATE - ALTERNATE II

2.1. INTRODUCTION

Alternate II includes the following units :

•	Ammonia	1	000	tons/day
•	Urea	450	000	tons/year
•	Ammonium nitrate	150	000	tons/year
•	Nitric acid	130	000	tons/year

Ammonia will be produced by the partial oxidation route. All the data in this chapter raw materials consumption, utilities consumption, are average data which can be slightly varied according to the processes.

2.2. DESCRIPTION OF PROCESSES

Description are given in the annex

2.3. MATERIAL BALANCE OF THE COMPLEX

AMMONIUM NITRATE

The total yearly capacity is 150 000 tons/year.

Ra	w materials consumption	Per ton	Per year tons
•	Ammonia	0.217	32 55 0
•	Nitric acid	0.800	120 000

NITRIC ACID

The total yearly capacity is 130 000 tons/year.

Raw	materials consumption	Per ton	Per year tons
•	Ammonia	0.282	36 600

UREA

The ammonia unit capacity being 330 000 tons/year the quantity of ammonia available for unea will be 260 798 tons, hence 450 000 tons of unea.

The total material balance of the complex can be summarized in the following table (table 4.3.).

2.4. UTILITIES BALANCE

The utility balance of the complex is summarized in the following table (table 4.4.).

1

1

•

TOTAL MATERIAL BALANCE

ALTERNATE II

PRODUCT	CAPAI tons.	CITY ⁄year	NH	73	NITRI(C ACID	CO;	2
AMMONIUM NITRATE	150 (C O O	32	550	120	000		
NITRIC ACID	130 (000	36	380				
UREA	450 (000	251	000			346	500
TOTAL			330	210	120	000	346	500

a0.

TABLE 4.9.

.

ł

l

ľ

and a strategy of the

TOTAL UTILITIES BALANCE

ALTERNATE 11

PRODUCT	CAPACI I Y Lons/year	ELECTIRICTY NMVh	STEAN HP NP LP	COOLING INTER ³ /h	PROCESS MATER 113/h	FLEL 10 ⁶ kcal/h
APPRILIE NI PRATE	150 000	260	2.5 1.7	260		
NITRIC ACID	130 000	145	-2.7 1.7	2 440	6.5	
UNEA	450 000	555	12.7 -3.9	760		
ATCHIA	331 000			17 200	i d . h ct	363
1 0 1 V T		026	-2.7 17 -2.1	21 560	61.1	383
GFSITES		5 005		1 040	19.9	=
10171		6 045	-2.7 17 -2.1	22 GUN	01.0	T R

31.

-

3. COMPLEX UREA-AMMONIA - ALTERNATE III

3.1. INTRODUCTION

Alternate III includes the following units.

- . Ammonia 1 000 tons/day
- . Urea 570 000 tons/year.

Ammonia will be produced by the partial oxidation route. All the data in this chapter, raw materials consumption, utilities consumption, are average data which can be slightly varied according to the processes.

J.2. DESCRIPTION OF PROCESSES

Descriptions are given in the annex.

3.3. MATERIAL BALANCE

The material balance of the urea unit is the following :Raw material consumptionPer tonPer year. Ammonia0.58. CO20.77439 000

3.4. UTILITIES BALANCE

F

The utility balance is summarized in the following table (table 4.5.).

Ĵ 12561

ľ

TABLE 4.5.

TOTAL UTILITIES BALANCE ALTERNATE III

PRODUCT	CAPACI 1V tons/year	ELECTRICITY NMVh	RD SIEW	5	CORLING WATER m ³ /h	PROCESS WATER m ³ /h	FUEL 10 ⁶ kcal/h
UNEA	570 000	EOX	16.1		906		
VINIM	331 000				17 700		383
TOTAL		703	16.1	9.4-	10 760	9.4	903 9
OFFS1TES		196 +			732	10.4	
1 0 1 V T		5 090	16.1	8.4-	19 500	67	185

84.

-

4. ECONOMIC STUDY

4.1. INTRODUCTION

1

The bases of the economic calculation are generally the same as those used for refining (see volume III).

The overall installed cost budget ratio between WESTERN EUROPE and VIETNAM for a fertilizer complex was presented in chapter 3.

For the working capital, we will take one month of final products.

4.2. OPERATING COSTS AND OTHER COSTS

Utilities costs are as follows :

- . Industrial water 5¢/m³
- . Electricity 3\$/kWh
- . Fuel 3.7 US\$/10⁶kcal

The other items, such as manpower costs, supervision, maintenance, insurance, general overheads are calculated in the same way as for refining.

4.3. RAW MATERIAL COSTS

The local prices of naphtha, fuel LSC, fuel 3.5 % wt S have been defined in the refining study :

- Naphtha 156\$/ton
- . Fuel LSC 90\$/ton
- . Fuel 3.5% wtS 87\$/ton

The phosphate rock price depends on the tricalcic phosphate content; an average price of 35\$/ton will be used.

4.4. PRODUCT PRICES

Product prices are generally 30 % higher than the average prices in developed countries.

- . Urea 185 US\$/ton
- . Ammonium nitrate 140 US\$/ton
- . Nitrophosphate 20-30 135 US\$/ton

4.5. ECONOMIC STUDY

At the level of the project, a simple economic evaluation of the three alternatives will be made. We will calculate successively on a yearly basis T Investment cost D Depreciation 0 Operating cost S Sales revenue Ŕ. Raw material costs Production cost P = 0 + R Gross cash flow GCF = S - PTax base GCF - U

Taxes $T = (GCF-D) \times 0.4$ After tax cash flow ATCF = GCF - T Reimbursement period before taxes $\frac{1}{GCF}$ Reimbursement period after taxes $\frac{1}{ATCF}$

4.6. INVESTMENTS

The costs are given in mid 1978 US\$ in table 4.6.

B = 09

80.02.25

208885

 1.0
 1.1
 1.28
 1.25

 1.1
 1.1
 1.25
 1.4
 1.6

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF JANPARCO DO A 24 × C

TABLE 4.6. INVESTMENTS

1

)

and a start protocol france of

たるという、「「「いい」」である

ġ

IN 103US\$

	ALTERN	ATIVE I	ALTERNA	TIVE II	ALTERNA	TIVE	III
PROCESS UNITS							
 Ammonia Nitric acid Nitric acid 	92 20	000 000	92 10	000	92	000	
 Ammonium nitrata 	40	000	10	000			
. Urse	17	000	29	600	32	000	
TOTAL BATTERY LIMITS	189	000	141	600	124	000	
OFFSITES	125	000	103	400	90	000	
ERECTED COST IN EUROPE	294	000	245	000	214	000	
TOTAL COST IN EUROPE	338	100	281	750	246	100	
TOTAL COST IN VIETNAM	503	770	419	807	366	689	
Spare parts	17	553	10	848	12	775	
Royalties	1	650 500	A	900		450	
Prs-operating expenses and start up expenses	35	265	4 29	386	4 25	500 668	
TOTAL INVESTMENT excludion							
financial charges	583	000	465	000	410	000	
WORKING CAPITAL	12	400	Э	900	9	900	

'n,

OPERATING COSTS

IN 103U6\$

		ALTERN	TIVE I	ALTERN	ATIVE II	ALTERN	ATIVE III
V	ARIABLE CHARGES						
•	Rew materials Fuel	34	940	27	420	27	210
٠	Industrial water		607		484		
٠	Electricity	3	413	4	404		397
•	Catalysts and chemicals	1	100	2	430 010	1	221 300
	Sub total	40	060	31	364	30	128
FI	XED CHARGES						
•	Menpower Technical essistance	1	100	1	000		880
		-	Z20		200		175
•		8	780	5	425	6	390
		3	340	2	790	2	460
	Land rent		400		360		320
	Interest on working contact		30		30		30
•	Interest on working cepital	1	240		990		990
	Sub total	15	150	10	845	11	247
T	OTAL	55	210	42	160	41	375

J

1

89.

K

ECONOMIC COMPARATSON

	ALTERNATIVE I	ALTERNATIVE II	ALTERNATIVE III
SALES	131 620	105 750	108 AR0
OPERATING COST	55 210	42 160	44 378
GROSS CASH FLOW	75 410	63 590	41 J/3
TOTAL INVESTMENT	553 000	465 000	
PAYOUT TIME	7.37	7.31	4 10 000 E 40
DEPRECIATION	37 530	31 000	27 330
TAX BASE	36 880	32 590	27 JJU 38 748
"AX	15 550	13 040	14 700
AFTER TAX CASH FLOW	60 860	50 550	49 375
PAYOUT TIME	9.25	9.20	40 3/9 8.30

)

5. RESULTS

1. TECHNICAL

- The first alternative produces both nitrogenous and phosphatic fertilizers from phosphate rock available in VIETNAM. It meets the rice crop needs rather well particularly because of the high nitrogen ammonia content of urea and nitrophosphates. Ammonium nitrate production which is more convenient for dry crops due to its high nitrogen nitrate content - is to be carefully looked at with a view to hinterland crops requirements.
- Alternatives II and III deal only with ammonia derivatives such as usea and ammonium nitrate. Alternate II which produces large amount of ammonium nitrate seems less suitable for rice than the other two. Alternate III produces only usea. While appropriate for rice crops this alternative does not supply all the fertilizer needs of such crops - no phosphatic fertilizers.

It appears that a better appraisal for the selection of one of these alternatives, whatever the economics are should result from an in-depth analysis of Vietnamese requirements, particularly rice crops.

91.

2. ECONOMIC

Economic results of the three alternatives proposed by PETROVIETNAM can be compared from two main view points :

ъ.

92.

Investment required in VIETNAM is fairly high :

- . Alternative I 563 million US dollars
- . Alternative II 465 million US dollars
- . Alternative III 410 million US dollars

or taking investment for Alternative III to be equivalent to 100

- . Alternative I 137
- . Alternative II 113
- . Alternative III 100

financial charges such as insurance expenses, bank fees, interim interests are not included.

Profitabilities expressed as pay out time are not significantly different but profitability is higher in Alternative III.

Considering these both aspects only, alternative III, producing only urea, appears as the most interesting one for VIETNAM.

6. FERTILIZERS SHIPPING

'n,

Total fertilizer demand in VIETNAM is such that the complex will not fully cover requirements. Allowance will thus be made for the North being supplied in priority.

Whatever the manufacturing programme, means of shipping will be as follows :

•	to	THANH HOA and VINH	road/	rail		
•	to	HAIPHONG and DANANG	3000	ton	max.	ships
•	to	HANOI and NAM DINH	500	ton	max.	barges

ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 HANOI 260 000 200 000 180 000 NAM DINH 100 000 70 000 70 000 HAI PHONG 160 000 100 000 100 000 DA NANG 100 000 70 000 70 000 THANH HOA/VINH 210 000 160 000 150 000 TOTAL 830 000 500 000 570 000 Means of shipping will be Barges (500 t) . 10 9 8 Ship (3000 t) 1 1 1 Barge loading berths 2 2 2 Ship loading berth 1 1 1

Quantities vary according to the manufacturing programme :

PHOSPHATE ORE DELIVERY

Loading berth occupancy times are sufficiently short in the case of 3,000 t vessels as to allow 3,000 t phosphate ore carriers to use the same berth for unloading, if nitrophosphates are to be manufactured. The number of vessels used will depend on the distance to be covered.

٩.

FERTILIZER TRANSPORT FROM PLANT TO HARBOUK

As most of the output is to be shipped be sea, means of transport up to the loading quay require to be studied.

Two solutions are possible ; the final choice cannot be made until a later stage when layout and the manufacturing programme are established.

1. A conveyor belt taking the finished product in bulk form to the harbour where the bagging plant is situated, close to the loading berths. Bags will then be held in storage until dispatch.

This solution involves only one storage unit (at the charbour), but the railway line will have to be extended as far as the quay for rail shipment. The railway can, however, be assumed to serve the harbour in any case.

2. The product is bagged at the plant and subsequently taken by lorry to the harbour where it is stored while awaiting dispatch, or possibly loaded directly if barges are being used. This solution involves additional storage capacity at the bagging plant.

A preliminary economic comparison shows that the choice between these two alternatives is governed chiefly by transport distances between plant and harbour.

Solution 2 requires low investment initially, but the frequent replacement of tractors and the high cost of maintenance point to solution 1 being preferable if the distance is under 2 km.

Table 4.8 gives a preliminary estimate of operating costs -with two alternative layouts (base n°1 and 2)- of the two means of transport, assuming urea alone to be produced.

94.

95.

TABLE 4.8

)

1

		L	AYOU	T 1		LAYOUT 2				
	С	onve bel	yor t	La	rry	С	onve bel	yor t	LO	rry
Dietence PLANT-HARBOUR		4.2			5		1.5			2
Rotation period				3	2				1.	4
Deily lorry transport capacity				30	0				68	5
Number of tractors				4+	1				2+	1
Number of trailers				8+	2				8+:	2
Investment	10	150	000	400	000	4	000	000	250	000
Operating costs		185	000	275	000		110	000	30	000
Amortization		508	000	170	000		200	000	105	000
TOTAL		673	000	445	000		310	300	336	000

PHOSPHATE TRANSPORT FROM HARBOUR TO FERTILIZER PLANT

If nitrophosphates are to be produced, bulk phosphate can be economically transported to the fertilizer plant by conveyor belt, especially if the plant is near the harbour.

\$

Cost estimates and economic comparisons made in the previous paragraph can as an initial approximation be applied to phosphate delivery also.
ANNEXE 1

DESCRIPTION OF PROCESSES

A. Partial oxidation of fuel for ammonia production

*

- 8. Urea production
- C. Nitric acid production
- D. Ammonium nitrate production
- E. Nitrophosphate production

A. AMMONIA PRODUCTION BY FUEL PARTIAL OXIDATION

1. INTRODUCTION

The production process of synthesis gas, developped up to now, use either waste heat boiler or water quench after synthesis gas generator.

A certain quantity of soot is produced, it can be extracted either in quench stage or after the stage of heat recovery.

Process which will be rapidly described is a partial oxidation using water quench mode (Texaco process).

2. DESCRIPTION

Raw material can be any fuel oil pumpable at temperatures below around 200°C, and with a sulfur content below or equal to 6 % wt.

Fuel oil is at first pumped at high pressure, about 95 bars, then mixed with an appropriate quantity of superheated steam and the mixture comes in the synthesis gas generator. Oxygen produced in an air separator unit (included in the ammoria plant) is sent directly under pressure through this unit then preheated by steam before going to the generator where its disappears totally by reacting with fuel oil. Then gas is cooled by water quench in order to saturate it and to take out all the particles of soot made in this reaction.

The water-soot stream is extracted continuously and purrified in a two stages system, using an extraction by naphta at first, then by fuel oil. The soot-free water is recycled to the syn-gas scrubber and the fuel oil, with the soot, is totally recycled to the generator.

The clean gas without the soot passes through 2 reactors in serie, the two working with a medium temperature conversion (330°C). The catalyst can operate with a high sulfur content in the gas and can reduce the CO content of the

shifted gas at a value below or equal to 1.5 % vol.

Heat of shifted gas is used to preheat the boiler water, process condensates and demineralized water. After final cooling, gas is sent to the rectisol unit in order to extract CO_2 and H_2S .

In the rectisol unit, gas is washed up to an almost sulfur free content and up to a CO_2 content of about 20ppm. And gases are selectively washed up and delivered separately :

- . a stream of rich gaz in H_2S (about 15 to 20%) and containing all COS of synthesis gas, stream which will be sent to sulfur unit included in ammonia plant.
- . CO2 is sent either to the atmosphere, mixed with a certain quantity of stripping nitrogen, the mixture having a sulfur content below 5-10 ppm, or to the Urea unit.

The Rectisol process operates at a temperature of about - 10 - 20°C for the wasning of H₂S and at about - 30°Cfor the washing of CO₂. The washed synthesis gas passes through a molecular sieve in order to eliminate the traces of methanol and CO₂, then is washed out with nitrogen where all the last traces of impurities (CO₂, CO, CH₄) are totally eliminated.

Then synthesis gas is sent to the centrifugal compressor which compress it.

Synthesis occurs in modern installations around 500°C at pressures ranging from 150 to 300 bars, depending on the process and the capacity of the installation. The synthesis reaction is written as follows

 $N_2 + 3H_2 + 2NH_3$

The equilibrium concentration of the ammonia is raised by increasing the pressure or lowering the temperature.

The iron catalyst is activated by oxides such as potassium, calcium, magnesium oxides, and aluminium oxide.

Processes vary according to the selection of operating parameters such as pressure, temperature, space velocity, and also depending on the type of temperature regulation selected. Large units are designed with regulation by injection of colder synthesis gas (reaction quenching) at

different points of the catalyst bed (ICI) or between separate catalyst beds (M.W. Kellogg, M. Topse). This is generally combined with heat exchange between reactants and effluents, generally by means of an exchanger located in the reactor. The F. Uhde process design calls for heat exchangers between consecutive catalyst beds.

The heat available at high temperature is recovered by the effluent of the reactor, and used to preheat the feedwater or to produce steam.

Differences between the operating parameter levels in the different processes are reflected by different recycling rates. The ammonia content of the reactor effluent varies from 12 to 20 %, but the curve of production cost as a function of ammonia content is relatively flat and is not a good profitability criteria.

The recycled gas is mixed with the fresh charge at the exit of the main compressor, and the combined charge is compressed in the final stages of the compressor.

The reactor effluent is cooled by heat exchange in a feedwater preheater or waste-heat boiler, and by a series of heat exchangers followed by coolers. The ammonia is condensed and separates in a high pressure separator, from which the recycled gas is taken. The ammonia is cooled to -34° C by successive expansions to atmospheric pressure, and then sent to storage.

B. UREA PRODUCTION

1. INTRODUCTION

Ammonia and carbon dioxide are the feedstocks in all present day commercial processes for the production of urea. They are reacted together at temperatures and pressures ranging from 170-210°C, 120-280 Kg/cm² respectively. The effluent from the synthesis reactor contains urea, water, excess ammoniac and subtantial quantities of ammonium carbamate, a reaction intermediate. The principal reactions are :

 $CO_2 + 2NH_3 + NH_2 COO NH_4$

 $NH_4 CC_2 NH_3 NH_2 CO-NH_2 + H_2O$

The first reaction is exothermic and goes rapidly to completion. The second is endothermic and is a relatively slow reaction.

Side reactions as biuret formation occur.

In all urea processes carbamate must be removed from the urea solution produced in the reactor. The difference in the various processes available are in the way the carbamate is decomposed and removed from the product and in the way in which the off-gases produced in the decomposition are treated.

Available commercial processes may be divided into four main groups.

- . one through processes
- partial recycle processes
- . total recycle processes
- . stripping processes.

The description given hereafter, which is the description of the stamicarbon process, is only presented as an exemple and in no way presupposes the final choice of process.

2. DESCRIPTION OF THE PROCESS

The process by stripping, with total recycle and evaporation for the urea synthesis, includes the following stages :

- . compression of NH; and CO;
- synthesis
- . recycling
- evaporation
- prilling

The reactor is a stainless steel vessel containing a series of trays to assist mixing of the reactants. As oxygen inhibits the corrosive action of the reaction medium traces of air are added to the carbon dioxide feed prior to compression.

Ammonium carbamate is stripped from the urea solution leaving the reactor by the fresh carbon dioxide feed. Stripping takes place at reaction pressure in a vertical steam heated tubular heat exchanger. Maximum steam pressure is 25 ats.g but pressures down to 18 ats.g are used.

Most of the unconverted carbamate dissociates into gaseous ammonia and carbon dioxide which pass to a condenser. There they recombine to form ammonium carbamate and most of the sensible heat of reaction is used to raise low pressure steam in the shell of the condenser.

In the reactor, optimum ammonia carbon dioxide moleratio is set up at 2.3 by adding to the gas coming from the condenser of which optimum ratio $\rm NH_3/CO_2$ is 2.4, the required quantity of ammonia.

Reactor outlet temperature is in the range of $180-190^{\circ}C$ and the pressure is approximatively 130 Kg/cm^2 .

The reactor is sized to give a residence time of 45-60 minutes giving an approach to equilibrium of 90-95 per cent and ensuring stability of operation at varying feed rates.

On leaving the stripper, the urea solution is let down in pressure to 2-5 bars, clear out of residual ammonia and carbon dioxide and some water in a rectification column. These products are cooled and sent back to the high pressure condenser.

The solution coming from the rectification column is let down and sent to the flash drum.

During the let down of the solution, a big quantity of ammonia vapor and water leaves the solution causing thus a decrease of temperature. The urea content of the solution is about 75%. The solution is sent to the storage tank of urea solution.

The solution usea pump transfers the solution to the heater of the first stage of evaporation. In this one pass exchanger, the usea concentration is increased to 95%. The vapor phase, separated from the liquid in a separator, is condensed in the condenser of the first stage of evaporation.

The vapors of the flash drum are condensed and sent back to the BP scrubber with some ammoniacal condensates coming from the other condensers.

The urea solution flows from the first stage of evaporation to the second stage.

The second stage of evaporation includes in theory the same equipments than the first stage.

The mixture liquid/vapour flows from the heater towards the separator. The vapour is drawn in the ejector-condenser group where it is condensed. The condensates are sent to the tank of ammoniacal water.

The noncondensable gas coming from the condensers are exhausted to the atmosphere.

The concentrated urea solution is sent to the suction of the melted urea pump.

The melted urea is sent to the top of the prilling tower.

The prilling basket delivers the melted urea in small droplets in all the section of the tower. During their fall in the tower, the droplets are solidified. The cristallisation heat is recovered by the air drawn in the column by ports located in the lower part.

103.

Q,

The urea prills are recovered at the bottom of the tower where a scraper feeds a belt conveyor which carry then to the storage.

4

_

C. NITRIC ACID PRODUCTION

Nitric acid is produced by the oxidation of ammonia. This technique is practically the only one employed at present. The synthesis occurs in three consecutive stages corresponding to the following chemical reactions :

. phase 1 : oxidation of ammonia in a burner :

 $4NH_3 + 50_2 \neq 4NO + 6H_2O$ $\Delta H = 216.6$ Kcal (platinum catalyst)

. phase 2 : oxidation of nitrogen oxide in a cooling condenser :

2 NO + $O_2 = 2NO$ $\Delta H = 27.1$ Kcal

3NO₂ + H₂O = 2HNO₃ + NO ΔH = 32,2 Kcal

Several alternatives are available based on this scheme, as a function of the pressures adopted in each phase. The first processes employed were monopressure processes in which the same pressure was employed in the different phases. More recently, dual pressure processes, in which the absorption pressure is higher than the oxidation pressure, have been introduced.

Although the complete pressure range between 1 and 9 bars can be employed, industrial processes employ the following pressure levels in practice :

•	low pressure	(LP)		1	bai	c (bsolu	ute
•	intermediate	pressure	(IP)	4	to	6	bars	absolute
•	high pressure	(HP)		7	to	9	bars	absolute

The following combinations are the most widely used in practice.

				exidation	absorption
•	case	1	(dual pressure)	LP	IP
•	case	2	(monopressure)	IP	IP
•	case	3	(dual pressure)	IP	HP
•	case	4	(monopressure)	HP	HP

In case 3, the absorption pressure is generally raised to about 12 bars.

The choice is generally limited between a high pressure process and a dual pressure process (IP + HP).

But at this stage of the study, it is not possible to choose definitively between the two types.

The description given hereafter which is the description of dual pressure process (IP + HP) is only presented as an exemple and in no way presupposes the final choice of process.

A flowsheet of the process is given in Figure 3.

In principle, the dual pressure processes are closely similar. Differences are essentially of a technological nature, dealing mainly with the technology of the oxidation reactor, the heat exchange circuit, and the packing and design of the absorption tower.

Oxidation of ammonia to nitric oxide NO

The liquid ammonia is evaporated in a reboiler and then superheated to about 150°C. The ammonia vapors are then filtered. Moreover, the process air is compressed to about 5 bars after filtration. A filter located downstream from the compressor eliminates oil traces and other impurities liable to damage the catalyst. For the rest of the process, the equipment is constructed of stainless steel.

The gaseous ammonia and air streams are mixed and enter the oxidation reactor (s). The latter contains the platinum-rhodium catalyst (about 90-10) which promotes equilibrium kinetics. The catalyst consists of gauze of woven 4 to 6/100 mm wire weighing about 450 g/m^2 . A distributor device permits proper distribution of the gas stream over the gauze. The temperature in the reactor is about 850° C. The heat of reaction is recovered by successive passage of the gases through a steam superheater, a boiler, and a feedwater heater.

A cooling condenser eliminates condensates which are recovered and sent to the absorption unit by means of the separator.

Nitrous vapors are sent to the compressor.

(NOTE : some conversion of nitric to nitrous oxide occurs in the cooling condenser).

Absorption unit

The absorption unit also comprises acid bleaching (denitration), oxidation of nitric oxide and absorption proper. The hot air current from the compressor is cooled and sent to the bottom of the bleaching column, eliminating dissolved nitrogen oxides, and giving a perfectly clear acid, which is sent to storage.

The air leaving the top of the bleaching column is mixed with the nitrous vapors upstream from the compressor.

The compressor raises the gases to a pressure which is generally about 12 bars.

The gases leaving the compressor are cooled by heat exchange with the tail gases in a boiler feedwater heater, and finally in a water-cooled heat exchanger.

The low temperature level (about 30° C) reached and the pressure favor conversion of the monoxide into the dioxide, which occurs at the bottom of the absorption tower.

The gases are then introduced into the absorption tower, where they are absorbed by the condensates coming from the cooling condenser and by the process water. The excess air permits gas phase oxidation of the nitric oxide produced during absorption. A cooling circuit eliminates the heats of oxidation and absorption in the tower. The 55 to 60 3 nitric acid produced is sent to the column before storage.

The gases leaving the top of the absorption tower contain less than 200 ppm of nitrogen oxides in a suitably designed column. (A lower nitrogen oxide content requires a more expensive absorption tower.) These gases are expanded in a gas turbine before being discharged through the stack.

D. 33.5 3 AMMONIUM NITRATE

The production of ammonium nitrate by neutralization of nitric acid with ammonia, is the only industrial method currently employed for this purpose, with the exception of small-scale production from calcium nitrate, a by-product of certain processes involving nitric acid attack of phosphate ores.

The synthesis occurs in accordance with the following exothermic reaction :

NH₃ + HNO₃ + NH₄NO₃ H = 26 Kcal/mole (in solution)

The ammonium nitrate is produced either in solution or molten, depending on the process. It is then granulated, crystallized or prilled. The main processes differ according to the method employed for neutralization (under pressure, at atmospheric pressure or under vacuum), and by the technique employed to produce the dry nitrate).

Nevertheless, for the production of nitrogen fertilizers, "prilling" is almost universally used.

Modern ammonium nitrate production processes hence involve the following phases :

- . neutralization,
- . concentration,
- . prilling,
- . coating/adding additive.

Neutralization can be effected at atmospheric pressure or under about 4 bar pressure (vacuum neutralization is only used for the production of crystallized ammonium nitrate).

In modern processes, the ammonium nitrate solution is concentrated in two stages :

110.

. to 95 % without external make up energy,

. to 99,7 3 by final evaporation.

This two-stage concentration operation is designed to limit a minimum the residence time in high concentrations, as the second concentration is effected immediately before introduction into the prilling tower from a 95 % ammonium nitrate recovery tank. The choice of a high concentration is dictated by savings in investment and operating costs in the pearling tower.

In view of the hygroscopic nature of the nitrate, agglomeration of the prills should be prevented by spraying with an anticaking agent.

Description of the process

In their basic principle, the major processes do not exhibit any fundamental differences. They only differ on technological points associated with the use of specific equipment, or in systems used for heat exchange between the different fluids.

Figure 4 shows a typical simplified flowsheet of an ammonium nitrate plant with reutralization carried out under 4 bars pressure.

After preheating (generally by basic steam from the neutralizer). the nitric acid and ammonia are introduced into the neutralizer, which operates at about 130°C under 4 bars pressure.

The basic steam (containing a little ammonia) leaving the top of the neutralizer goes through a separator, which recycles the droplets of nitrate carried off from the neutralizer. This steam is used mainly to heat the primary evaporator. The surplus can be used for other purposes outside the nitrate plant, or condensed in the installation. The basic steam condensates are employed as process water in the nitric acid unit.

The ammonium nitrate solution leaving the bottom of the neutralizer contains about 78 % product. It is concentrated to 95 % in a falling film type evaporator operating under vacuum and heated by the basic steam.

The solution is then sent to an intermediate tank, from where it is drawn off to a secondary falling film evaporator. The latter is heated by intermediate pressure steam (about 15 bar). The use of falling film evaporators eliminates the risk of decomposition of the ammonium nitrate.

The 99,7 3 nitrate solution is then sprayed at the top of a prilling tower. It is then transformed into prills via nozzles or rotary basket.

The beads fall freely against a counter-current of air sucked up by fans located at the top of the prilling tower. Part of the air employed is obtained from the downstream coolers.

The ammonium nitrate leaving the prilling tower is screened in order to eliminate fines and lumps which are recycled.

The ammonium nitrate beads are then cooled with air in a cooler which is generally of the fluidized bed type. The air may be preheated with steam if necessary. The ammonium nitrate is then sent to a drum coating machine in which it is sprayed with an anti-caking product. It is then sent to the bagging installation by conveyor belt.

E. NITROPHOSPHATE PRODUCTION

Ъ.

1. INTRODUCTION

During the past ten years several processes have been developped in order to produce nitrophosphate fertilizers with high water solubility of the phosphorus component. All of these processes seek to separate the phosphoric acid and calcium nitrate which are the two principal components in the phosphate rocknitric acid attack solution.

Three major types of process are the following :

. calcium nitrate crystallization processes

. phospheric acid extraction processes

. calcium sulphate precipitation processes

The description given hereafter, which is the description of the Norsk hydro process, is only presented as an exemple and, in no way, presupposes the final choice of process.

2. PROCESS DESCRIPTION

This process is divided in 4 sections :

. section 1 : phosphate dissolution

- . section 2 : crystallization and neutralization of calcium nitrate
- . section 3 : neutralization of the mother liquor, evaporation, mixing and granulation
- . section 4 : conversion of calcium nitrate.

Phosphate dissolution

Reactions :

a) $3Ca_3 (PO_4)_2 CaF_2 + (20 + x)HNO_3 + 6H_3PO_4 + 10Ca(NO_3)_2 + 2HF + xHNO_3$

b) Ca CO₃ + 2HNO₃ + Ca(NO₃)₂ + CO₂ + H₂O

Fluor leaves the reactor as SIF. and HF associated with nitrogen oxides and little CO_2 . This mixture is washed in scrubbers. Phosphate is dissolved in excess 58 - 52 % nitric acid. The excess prevents the precipitation of calcium phosphate during the crystallization. If the quantity of acid is reduced, a fertilizer with a minimum ratio N/P_2O_5 of O.6/1 can be produced directly.

If the phosphate rock is poor, a sand trap is installed after the dissolution.

<u>Crystallization and filtration of calcium nitrate</u> Ca(NO₃)₂ 4H₂0

The phosphate solution coming from the reactor is a mixture of nitric and phosphoric acids, with calcium nitrate. This solution feeds crystallizers which are agitated tanks cooled by chilling coils.

The crystallization is carried out in a number of tanks in series in order to ensure a continuous production.

The final temperature depends upon the required content of the water soluble P_2O_5 and the "nutrient" concentration.

Neutralization, evaporation

The mother liquor coming from the filtration of calcium nitrate is neutralized by gaseous ammonia as indicated in the following reactions.

- a) H_3PO_4 + NH_3 + $NH_4H_2PO_4$
- b) $H_1PO_0 + 2NH_1 + (NH_0)_2 H PO_0$
- c) $HNO_3 + NH_3 + NH_4NO_3$

d) $Ca(NO_3)_2 + 2HF + 2NH_3 + 2NH_4NO_3 + CaF_2$

e) $C_{a}(NO_{3})_{2} + C_{a}HPO_{4} + 2NH_{3} + 2NH_{4}NO_{3} +$

The impurities are precipitated as complex salts. The neutralization is carried out in two stages in order to decrease the viscosity which increases because of the intermediate values of PH (each phosphate must be tested in laboratory). Moreover, the neutralization of the ratio nitrogen / P_2O_5 is adjusted by addition of the ammonium nitrate. The water content of the neutralized liquor is reduced to about 0.5 % by evaporation. Then residu is mixed either with potassium chloride or with potassium sulfate before prilling. The NP melt or NPK mixture is formed into "drops" in the top of the prill tower by means of a rotating perforated prill bucket. The solidified prills are removed from the tower with a rotating tower bottom or a rotating scraper. The off-size prills are grinded and recycled. Then the prills are coated before being storaged.

<u>Calcium nitrate conversion</u>

Calcium nitrate coming from the filtration stage is reintroduced in the tanks of agitation where it is mixed with ammonium carbonate obtained by reacting ammonia with carbon dioxide in the solution of ammonium nitrate.

Calcium carbonate produced is filtrated and the mother liquor which is nitrate solution is withdrawed.

The cake is transformed again in slurry which is filtrated again and washed strongly in order to obtain calcium carbonate which can be used.

The advantages of this conversion are due to the quality of calcium carbonate. Moreover ammonium nitrate is very pure and the crystals of calcium carbonate are easily filtrated and washed.

ANNEXE 2

1

•

*

STEAM REFORMING OF GAS

The basic scheme of synthesis gas production in steam reforming of naphta and of gas is the same, except small difference.

*

In order to switch from natural gas to naphta, equipment of naphta vaporization and naphta desulfurization must be added. Moreover the catalyst of primary reformer must be replaced by special catalysts for naphta and decarbonation capacity must be increased.

To switch from naphta to natural gas, it is necessary to increase appreciably the heating capacity of primary reformer. Cracking natural gas requires more heat and the skin temperatures of tubes must be higher but it is the only big change required in this case.

Investments of ammonia plant based on natural gas are 7 - 3 % lower than those of ammonia plant based on naphta.

Average consumptions for natural gas steam reforming are given in the table 1.

In the following tables, an economic comparison between steam reforming of naphta, steam reforming of gas and fuel partiel oxidation is presented.

Conversion and the second s

)

小川市市 おおおお 一部である

۰

AVERAGE CONSUMPTION PER TON OF AMMUNIA

TABLE 1

Neturel ges (pr ir	rocess + fuel) n 10 ⁶ Kcel	8.90
Cooling weter	in m ³	270
Process water	in m ³	5

TABLE 2

۰.

•.

)

INVESTMENTS

in 103 US \$

÷.

·	Steem refor- ming of nephte	Steem refor- ming of gee	Fuel pertiel oxidation
Procese units	89 000	64 600	92 000
Off-sites	34 500	32 300	46 000
Erected cost in Europe	103 50 0	96 900	138 000
Totel cost in Europe	119 025	111 435	158 700
Total cost in Vietnam	177 359	166 038	238 460
Spare parte	8 1 8 0	5 785	8 240
Catalysts and chemicals	900	360	450
Royelties	2 500	2 500	2 500
Pre operating expanses and start up expanses	12 420	11 620	16 550
Total investment excluding finencial	144.350		
	100 350	786 300	264 200
Working capital	§ 700	6 700	6 700

TABLE	3
-------	---

RAW MATERIALS AND UTILITIES CONSUMPTION

*

	Steem re Of na	forming	Steam re of natur	forming al gas	Fuel pa oxida	ortial otion
	Per ton of NH3	Per year	Per ton	Per year	Per ton of NH ₃	Per yeer
Nephta procese in tone	0.524	172 920				
Fuel in tone	0.392	129 500				
Neturel gee in 10 ⁶ Kcel			3.90	2 937 000		
Industrial water in m^3	22	7 260 000	15.5	8 105 000	23.5	7 755 000
Fuel ail (procees • fuel) in tone					0.935	308 5 50

1

TABLE 4

とないのではないという。

)

¢

第二 なたが をあいてい

÷

OPERATING COSTS IN 103 US\$

	Steem reforming of nephte	Steen reforming of ges	Fusl pertial oxidation
Verieble charges			
. Fuel	-		28 444
. Netural gas *	-	25 551	
. Nephte	28 975	•	-
. Fuel LSC	11 855		
. Industrial water	363	305	388
 Catalysts and chemicals 	1 200	480	420
Sub-totel	40 193	28 338	27 652
Fixed charges			
. Menpower	195	195	195
. Technicel assistance	39	39	39
. Maintenance	3 090	2 890	4 120
. Insurance	1 195	1 120	1 565
. General overhead	70	70	70
. Lend rent	30	30	30
. Interest on working cepital	870	670	370
Sub-totel	5 290	5 014	6 703
TOTAL OPERATING COST	45 383	31 350	34 361

Ges price is based on the price of celorie, i.e. 8.7 US $3/10^{9}$ Kcel.

121.

-

Results

Assuming before taxes payment times of 7 years, for each type of processes, ammonia prices has been calculated for several raw materials prices. Results are given in table 5.

\$

The following figure gives the variation of ammonia prices versus feedstocks prices for different routes of production and for the same profitability (pay out time = 7).

TABLE 5

ECONOMIC CONPARISON OF DIFFERENT NOUTES OF ANNONIA PRODUCTION

	The state	stem refi	ar la c	Ste	- reformin		Lual P	ertial exi	det jon
Investment in 10 ³ US \$		190 350			166 300	•		007 VX	
Pay out time		~			~			~	
Gross cash flau in 18 ³ US \$		37 740			W+ 12			X 61	
Raw metarial Price : US \$	ts6 Per ton	140 Per ton	175 per ton	8.7 per 10 ⁶ fical	7.0 per 10 ⁶ Kcal	10 per 10 fcal	per ton	ye Per ton	100 per ten
Amonia price US į/tan	N22	215	Ř	175	160	÷	218	202	230

123.

-

h

1

 \sim

1

C - I O 9

80.02.26