

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche

08709

Distr. LIMITED ID/WG.293/44 26 March 1979 ENGLISH

United Nations Industrial Development Organization

Workshop on Fermentation Alcohol for Use as Fuel and Chemical Feedstock in Developing Countries

Vienna, Austria, 20 - 30 March 1979

POSSIBILITIES OF DEVELOPING A MATION

WILE PROGRAME FOR POWER ALCOHOL

IN PERU*

BY

P.A. Hernandes**

* The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing. ** Superintendent of Industrial Diversification CECOMAP, Lima. Peru

id.79-2635

1. INTRODUCTION

It is a well known fact thet world energy crisis has caused a dramatic impact in the economy of industrializ ed countries, but it has undoubtedly had its severest effects in underdeveloped countries. Because of their inability to revert them in terms of significant exports, capital investment absortion, and monetary manouvering capacity.

Consequently it is only legical for these countries to re-state its energy policies and to explore the potential of new sources and raw materials.

On the other hand, Sugar Industry is able to provide, through fermentation alcohol production, a clean fuel that would have a two fold benefitial effect, particular ly in the underdeveloped world:

It would generate a streamlined production of a renewable fuel and at the same time would help sugar Industry to overcome its present crisis in the export market.

This hypothesis has criginated extensive work and research, up-dating and re-approaching an old idea to solve a new problem. There is an abundant bibliography on the subject and numerous examples of practical applications at a significant scale in several countries.

Most remarkable and advanced amongst them is the Brazilian experience in its Proalcool Program.

2. PURPOSE AND SCOPE OF THE STUDY

This paper intends to explore and evaluate at a prelimin ary level, the possibilities of a mation wide program in PerG, for the mixing of sugar cane alcohol and gasoline for automotive use.

3. PERUVIAN OIL PRODUCTION AND IMPORTS

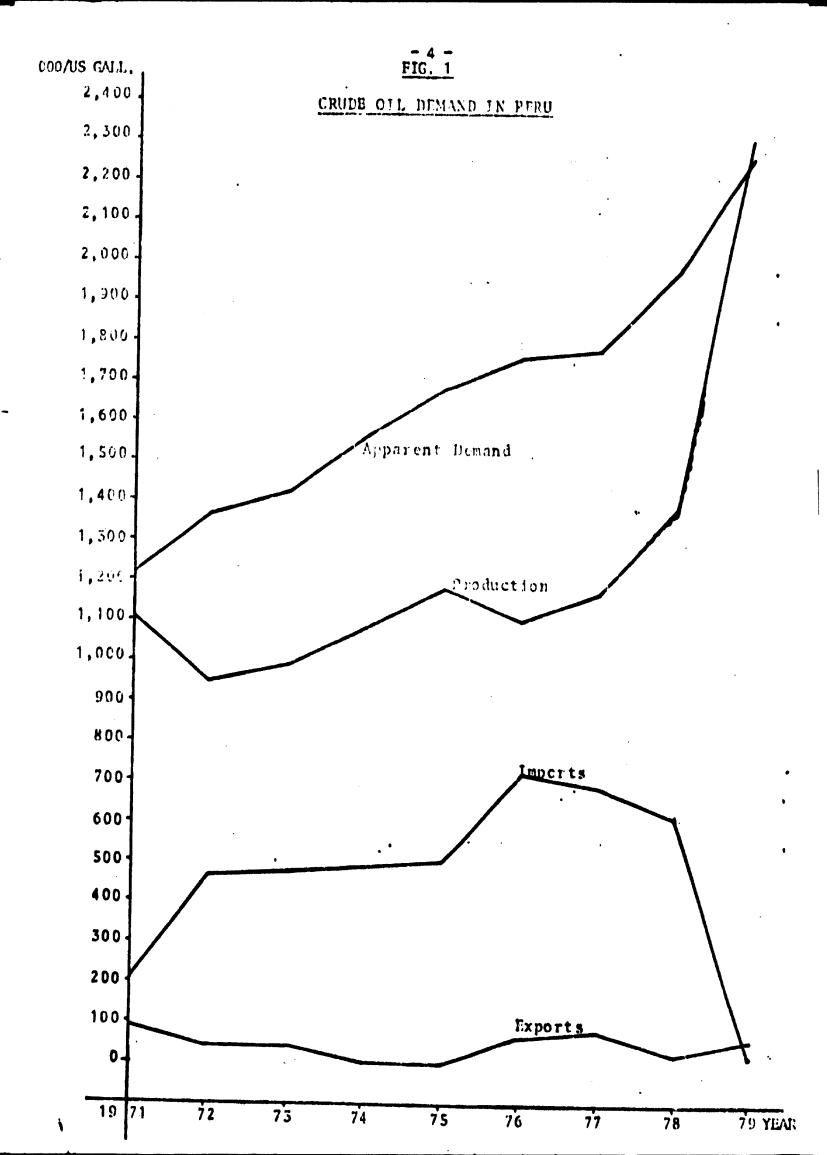
A brief review of statistics shown in Table 1 reveals an annual increase of apparent consumption of 8%. Another meaningful fact is the decrease of imports in the last three years, compatible with the expansion of demestic oil production. Succesful drillings in the Eastern region of the Amazons drove the trend towards a self sufficiency that will be reached this year according to announcements of officials of the state own oil company.

However, the uncertainty of success in future exploring operations, is a reason valid enough to elaborate on the hypothesis of an increasing demand ag inst a static domestic production. In this event, Peruvian oil self sufficiency would only last for a brief period and Perfi would find it-self again returning back to imports, Under such assumption, never mind how pessimistic it is justifi able, to examine the possibilities of the alcohol/gasoline mixture.

TABLA 1

CRUDE OIL DEMAND IN PERU

(GALLONS)


<u>Y1</u>	EAP	PRODUCTION	1 MPORTS	EXPORTS	APPARENT DIMAND
	9 70	1,103'311	208 851	921498	1,219'664
1. 1.	71	9481691	465100	46 * 674	1,367'117
19	972	993' 066	4781296	451104	1,426'258
19	73	1,082'195	489'602	5' 164	1,566'633
19	74	1,181'957	501 845	-	1,683'802
19	75	1,104*334	719'782	62 1 2 2 3	1,761'893
1 9	76	1,174*537	6901969	83'646	1,781'860
19	77	1,397'378	6151659	24 ' 6 19	1,988'418
19	78	2,312'512	17'696	51 462	2,278'746

4. BASIC ASSUMPTIONS

On the basis of wide experiences in several countries and a specific report of the Petro-Peru Technical Division, the present study assumes the Technical feasibility of mixing le-hydrated alcohol and gasoline for automotive use, provided that proper adjustments will be done in motor and carburating system.

According to the above mentioned study the proportion to be utilized would be 80-20%, in order to obtain an octane number of 84.5.

- 3 -

5. GASOLINE CONSUMPTION

Table 2 shows actual consumption of gasoline during the last eight years as well as evolution of production, -imports and exports. The sign of the spectacular increase in prices of both gasoline and vehicles, is clearly shown in terms of a very small annual increase of 1%, average in the above mentioned period.

TABLE 2

APPARENT DEMAND OF GASOLINE IN PERU [000/gallons]

YEAR	PRODUCTION	IMPORT	EXPORTS	APPARENT CONSUMPTION
1970	3981534	-	-	396 * 534
1971	4371124	•	-	437 1 24
19.2	4 57 1 671	4 720	•	462'391
1973	4931313	41683	-	497 ' 996
1974	4961111	5'311	-	501 ' 4 2 2
1 97 5	5451826	11'928	• .	557 ' 7 54
1976	518'126	191465	51132	532 1 4 5 9
1 97 7 [`]	451'777	2'037	6'844	446 ' 970
1978	4531551	3'278	401199	416 ' 630

6. ALC HOL PROJECTED REQUI MENTS

Based upon projected gasoline demand, table 3 shows alcohol requirements for 1979/89 as well as sugar product ion necessary for fulfilling this goal, asuming a 201 substitution.

TABLE 3

SUGAR AND ALCOHOL REQUIREMENTS FOR EXPECTED VOLUME OF MIX

(1) <u>Year</u>	(2) Gasoline Demand (Gal)	(3) <u>A1coho1</u> <u>20% of (2)</u> (Ga1)	(4) <u>Supar</u> Required (TM)	Molasses Required (1M)
1979	4201796	84 1 1 59	522,000	1'044,000
1980	4251004	851001	528,000	1'055,000
1981	4291254	851851	532,000	1'065,000
1982	433'547	861709	538,000	1'076,000
1983	177 8 6 2	871576	543,000	11086.000
1984	442'261	881452	548,000	1'097,000
1985	:461084	89 1 3 37	554,000	1'108,000
198 6	4511151	901230	560 ,0 00	1'119,000
1987	4551662	91,132	566,000	1131,000
1988	460,219	92'044	571,000	1'142,000
1980	464'821	92 1964	576,000	1'153,000

7. PERUVIAN SUGAR HRODUCT TON

١

Since no future expansions are envisioned in the next five years, because of governmented policies and market perspectives, the Peruvian Sugar Production is assumed to maintain itself in a level of 920,000 MPPY.

Table 4 shows historic figures in this respect; the heavy decrease in the last years due to a most severe water shortage plus the impact of the crisis can also be observed in this table.

TABLE 4

PERUVIAN SUGAR PRODUCTION

YEAR	DOMESTIC MARKET	HXPORT MARKET	TOTAL PRODUCTION
₩, ±	TON	TON	TON
1971	434, 538	447,957	882,495
1972	454,695	444,007	898,702
1973	484,445	412,877	897,322
1974	525,893	466, 571	992,464
1975	550,786	412,871	963,657
1976	595,991	333,659	929,650
1977	522,428	377,922	900,350
1978	561,674	294,998	856,472

8. RAW MATERIAL AVAILABILITY

Statistics as exposed in previous secctions of this report very clearly show that either sugar nor molasses would suffice to provide the raw material required for the proposed substitution. A requirment of 550,000 to 580,000 tons. of sugar, would imply to derive 100% of the export segment of the market and 50% of the domestic one. The excesses of molasses production for export (presently 50,000 Mt.tons) is negligible as compared to requirments estimated in Table 3.

The obvious conclusion of this preliminary analisis is that the sugar cane cultivated area presently available should be nearly duplicated in order to cope with the demand that a 20% substitution would imply. It should also be considered the fact that the estimates and project ions are based on an abnormally depresed market, situation that should improve in the future, adding more pressing demands to the conservatively derived figures of this report.

9. REQUIRED PRODUCTION COST OF ALCOHOL

According to Petro-Perú cost calculating substitute alcohol should arrive at the oil refinery premises at a cost not exceeding 0.35 US \$/gal in order not to profit nor to loose.

As a reference, the present cost of industrial alcohol (95%) tax exempt amounts to 1.09 US\$/gall; that is, more than, 300% the price that could be afforded to pay.

10. OTHER CONSIDERATIONS

Additionally to the cost and raw material availability limitations, it must be borne in mind that Peruvian Oil Industry has an idle portion of installed capacity in refinery due to reduction of demand below the levels of consumption in 1971. This explains an excess production of gasoline that forces its exports at marginal prices. In order to obtain other cuts and basic fuels and lubricants the refinery inevitably produce gasoline. This fact makes the substitution even less logical presently and in the near future.

11. FUTURE PERSPECTIVES

The author wishes to emphasize that the negative results, of this preliminary work, should not be taken as equally applicable beyond 1980. Prices and costs of both alcohol and Oil, will have to vary significantly, market conditions and economic and finant al situation of the country is psitively improving and there is an important potential of agricultural land in the jungle, region of Perú, with soils of class I and II, apt for sugar cane growing (more than 600,000 Has. in all in Huallaga, Pucallpa and Madre de Dios).

It is true that situation in Peru energy wise is quite different than in Brazil. Demographic expansion requires the recleiming of new lands for food oriented cultures. The country has in general good prospectes for new oil reserves; the hidro-eletric potential is burely utilized in more than 15% and other sources of energy such as coal and extensive sunny areas do offer posibilities for solar utilization. Very recently, uranium deposits have been

discovered and are being evaluated. There are alternatives and to have to be studied.

As far as alcohol, for automotive use is concerned it should always be very closely monitored and a detailed feasibility study with an emphasis in the evaluation of his future perspectives ought to be made in the next few years.

Sugar cane might not be the "green oil" solution for Perú but still is, and will become more attractive in its remarkable possibilities for alcohol production as an industrial raw material for industrial applications and other uses. In this areas the author wishes to express its confidence in the important contributions that will be obtained from this workshop, on the fascinating field of fermentation alcohol. Ł

