TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
modustrial deviropyart and consultma burtau

- PHASE II"

TF/KON/76/001, runait:
(R) Technical roport: Fanibility study on wathentic fiber

Propared for the Covernaont of Kuwait by the United Mations Industrial Dovelopment Organigetion

> Bared on the mork of Rokert D. Evene, mathetic iber and witile-tiont

*This document has been reproduced without formal editing.
1d. 78-1907

Explanatorynotes

The monetary unit in Kuwait is the Dinar (KD) dividad into 1000 :ils. The value of the Dinar used in this report is $1 K D=3.5$ US $\$$

A period (.) is used to indicate decimals and a compa (,) is used to distinguish thousanis and millions.
$m=$ meter $; n^{2}=$ square meter $; m^{3}=$ cubic meter
References to tons are metric tons;
$\mathbb{K} g=$ Kilogram ; $g=$ gram $; d=$ ienier ; co cotion nount
Mention of company names and comxercual products ives rut
Imply the endorsaent of the United Jations Indusiotsi Dovelopirent Organization.

The designations employed and the prestatation of the naterial in thit document do not imply the exprension of any ozanion what ecorer or the ner. af

 its fronilers or botncigrjes.

CONTENTS

Pre
Introduction 4
Summary 6
Findings
General Comments 8
Imports of Textile Products 12
Future Demands for Textile Products 13
Syathetic Fiber Demands 20
Tire Cord Markets 43
Attractive Markets for Polyester Staple Fibers 45
Polyeater Staple Manufacturins Cost 53
Spun Yarn Costs for Dishdash ${ }^{3}$ Fibers 63
Dishdasha Fabric Costs 67
Conclusions and Recommendations 71
Amex 1 Job Description 75
Annex 2 Imports of Fabrics \& Non Apparel
Textile Products 77
Amex 2A Imports of Clothing 84
Annex 3 Adjusted Imports of Fabrics
Non Apparel Products \& Clothins 86
Annex 4 Melt Spiming Processes 88
Annex 5 Spun Yarn Processes 97
Amex 6 Fabric Forming and Finish Processes 102
Amnex 7 Plants and Equipment Lists 109
Armex 8 References 112
Amex 9 Rieter Yarn Spimning Plant 113
Annex 10 Fabric Production Cost 149

Introduction

The Industrial Development and Consulting Bureau was established in collaboration with the Ministry of Commerce and Industry in Kuwait and UIIDO/UNDP. One of its main concerns is the promotion of investment opportunities in industry by identifying visble industrial projects through carrying out feasibility studies and evaluating others submitted by local entrepeneuers. In addition, it assints the Industrial Affairs Department in other development objectives.

The main revenue of the country is dervied from oil exports and is one of the major oil exporting countries. Its per capita income is one of the highest in the world, Diversification cf its economy is an important objective of the development policy and the substitution of locally manufactured textile products for imported fabrics and clothing throughthe use of synthetic fibers is recommended. Of particular interest is the use of synthetic fibers based on chemical intermediates which could he produced lomestically.

The Industrial Development Committee has granted
licenses for the establishment for the production of carpet and rugs.

This report covers a study of synthetic fibers and textiles and the Seasibility of theirproduction in Kurait. The study, executed by UNIDO/RNDP-Project,

TF/KJW/76/001/11 - 05/D/32.1. H started on January 8,1978 and ended on March 7 1978. The job deacription is attached as Annex 1.

Sumpary

Kuwait has no existing textile industry to consume either natural or man made fibers and must import fabrics and made up textile products to meet its needs. Emport statistics in many cases cover brocd textile categories and the astual fiber content of both imports and exports is difficult to determins. Inforcation on fiber type within a given importseexport caterce: is either incomplete or non-existent. There is a sizable export \boldsymbol{T} miket and a large but ill defined indirect export market.

After discussions rith governizent officials, importers and distributors the ner caput evsilability of fiber prociacts of all
 approximately equsl to the consumption in Westaia developed countries but includes the large but posrly defiand indtrent eaports. Based on the population projection 0 of the lil:istry of Plannirg and with a modest scowth in ze : caput acnsumption orer the next decade estimates of $\because: 3$ ber uitlization by product category for 1980,1985 and 1990 hnve been made.

Assuming that the evercual consumption pattern for synthetic fibers in Kawait will approximate that of western countries the Potential $u t i l i z a t i o n ~ o f ~ n y l o n, ~ p o l y e s t e r, ~ a c r i l l i c ~ a n d ~$ polyprcpylene fibers in these product sotegories has been made for the reriod 1990-1990. In a similar frren the drmands for continuous filament and stapleprcauc is have deen estimated for poivamides and polyesters. The langet marets for polymides require continuous filament vavns whereas the lamest markets ior polyester fibers are in staple applications. The totnl marlet ior rylon contiruous filament will be 9100 tons in 1980 rising to 21,900 tens in 1990. Dolyester stapla meriat 3 :ill be 15,900 tune ir. 1980 and 37,200 tons in 1990.
iNest of the nylon applications are in maskets deminated by style with highly fragmented marizets insuificient in size to permit construction of 3 textile denier nyion plent. Acrylic iner markets ever by 1900 are judged to be inauficicient in size to build a plant. The polyrropylene markets are largely as replacements for jute and are nct erpected to grow rapidiy. There are no known profeate for the production of polypropylene in the Gulf Area. No further considerations were given to the construction of nylon, acrivis or polyprocylene fiber plants.

Polyester staple fiber particularly in blends with cotton 65-35 can $\mathrm{c}=$ used in three aress where style does not ploy an important role in devermining rarketability. These s.ee in dichdasha far=ics. bed linens aid in woven poljester and spun rayon marifitz. These latter marisets are considered se secona generatir 4 markits. The entire Kuwait and 25\% Oif the other CuIf Areai irniets for dishdasha fabrics amount to illCC tons. A textile incustry yarn and fabric piant of $\therefore \subset 0$ tonc is proposed. Similarly, the Kurait and 25% of the Culif 1 nea zarket for bed linens is 12,500 tons and $=6,00$ ton yain and tabric plant is proposed. These two teatile incustrry plants at a 65-35 polyestor cotton blend level can support a 500C to 三jiyester staple plant.

The cost of producing polyester staple fiber at a 15% ROI using domestic zaw meterials has been show to be conpetitive with staple ifber produved in existing plants. The plant will require a fired investment of abcut 3.2 riilion $K D$ and will require 38 orerational and supervisory personnel.

The cost oi producing dishciasha iahric in $\therefore 2 C C O$ ton $2 \ln$ nit have been eztimated. These zosts include a yinn prena-ation piant and 3 fabria wearing and finishing plant

The tatal rost ex rapital charges for both yarn and fabric would be $3,717,09 \mathrm{KD}$ and with a sales volume of $6,980,300 \mathrm{KD}$ the profit would be $3,263,702 \mathrm{KD}$. Wi th a total fired investment of $10,451,003 \mathrm{KD}$ the return would be 31,20 . perating and mainterance personnel will be about 348.

FINDIIGS.

Genera? Comments

The terms MAN-MADE FIDRRS SMTHETIC PIBESS TEXTIE:
INDUSTRY 2 ND NEEDLE INDUSTRY are teris which aro cften uasad ambiguousiy and frequeently connote diefersnt :narinç to different oeople. In this revort MAT-MDITITES will be used tr, describe all types of artifiniai fithere rear by $=2 n$ to distinguish these fibers fron the naturai fibers, cotton, wool. sill: and the soit on hard vegsiciole tibers inen, fute, sisel and the like. Although the veccintie fise: devend uron zen for thetr separation and resoreny biey e:ist ns suci in the piant ini heace a:e classed as anstural sibsers. Thus, ubs term, man-mido fibor, is a ceroril ciass of fibers which will include ifbers produced by negereatifo or derivative means from natural polymers. Pibere produced irom inorgenic materials and synthetic fibers.. Fiscose razon fibers ave ex examples of regenerative filers made from celluluse whereas celluiuse acetate fibers are produced fron the acetate derivetive of cellulose. Textile gless fibers are normally regaried as ran-raje sibers and are destinguished as such from other glass fibers commonly used for insulation.
is used in this report S NHETIC_FIBRS are fibers made ircm polymers which do not exist in neture and are, therefore imily s:mthetic in the sense that both the pclymer and the fibe: made therefron are man made. Examolis of these include the polyamides, polyecryionstrile, nclyoctors n.dj $=1 \mathrm{y}$ olef: ns fioers. Cenerally the syatestin pooymors from wast synthetic fibers.are producse ra hichy aryctailiti.e un yyrors
 mede frow acerlonitrile conolymer we erceptions. ynthetic
 are primarily ciassified acccriire O the chenicil composition
of the synthetic polymer from which they are produced as indicated above. Another classification can be based on the general method by which they are produced ie melt, wet or dry spun. These processes will be discussed briefly later. The other classification is based on the type of product produced, staple or continuous filament. Staple fibers are fibers of a . definite predetermined length and in this respect resemble cotton or wool. Continuous filament fibers are fibers of almost infinite length and therefore resemble silk.

The TEXTILE INDUSTRY is that very broad, complex industry which converts all types of natural and man made fibers into products which either are useful to consumers as such or which can be used by other industries to mal:e corsumer products. For simplicity its raw materials are fibers end its finished products are wovens, knitted or ron-wovens febrics. This industry historically was developed to convert cotton, wool and other staple fibers and silk, the continuous filament fiber, into useful yarns for weaving or knitting into fabrics or useful commodity products. In addition, it includes the dyeing and finishing of these fabrics.

Although closely related to the textile industry the NEEDLE INDUSTRY takes the products of the textile industry and converte these products into those articles of clothing or other products which all of us demand. This industry would include the home as a fashion center, the tailoring shops for custom clothing and the large apparel manufacturing centers for ready made clothing.

As would be expected these artificial classifications include many grey areas for example the textile industry sncludes manufacture of sweaters, hosiery, tovels, bed linens and carpets which are really consumer products while the fiber industry with its procinetion of non-woven fabrics
by the spun bonded process is producing a product of the textile industry.

From the very broad standpoint of these definitions we have elected to concentrate on the problems connected with the possible production of synthetic f_{i} bers in Kuwait and to confine our textile industry studies to those limited areas offering the best chances for commercial success.

The various industries involved in the conversion of crude oil and natural gas into consumer textile products is depicted felow.

Kuwait with its planned clefin end aromatic complex is well established through step.B. The situation for fiber intermediate is not as clear. Projects are under consideration for caprolactam and terephthalic acid and ethylene glycol will be available from Saudi Arabia. There are no projects in Kuwait for polypropylene or acrylonitrile. The synthetic fiber industry and the textile industry, steps D and E, arenon existent in Kuwait at the moment. Since the teztile industry is non-existent there are no domestic markets for synthetic fibers. The Ministry of Commerce and Industry has licensed two small carpet and rug projects but these will use frimerily wool. The needle industry, Step F, is well \in stablished ior custom made clothing for men and employs approznately 4600 vorkers.

With the absence of a well established textile industry there are no present maricets for synthetic fibers in Kuwait and any plans for synthetic fiber production muat envision the eatablishment of an accompanying textile industry. The Gull Statee and Saudi Arabia are equally devoid of an establiahed textile industry and the neighboring states do not appply therefore any readily avilable export market. Thus, the problem becomes one of establishing the fiber equivalents of the local import markets and selecting only those markets which can serve as a basic for both synthetic fiber plants and the accompanying textile plants. For this reason the import market will be examined in detail.

Importe_of Textile Products:

The import statistics for textile products covering approximately 95% of the textile products are detailed when svallable for the years 1972-76. Data are available for 1976 by month through August and the the imports for the remainder of 1976 are projections of the previous months. In some instances data are available only for the past few years. Data omitted have been examined and not included either because they represent unusual usee not amenable to penetration by synthetic fibers or because of certain inconsistencies related to procedural problems. The data are presented in Tables 1-28 of annex 2 for fabrics or price goods and non-clothing iteme and in Table l-6 of annex 2 A for clothing and summarized in Table 1 for the period $1974-76$ in tons. Using 2974 as a base

Table 1
Imports-Exports of Textile Froducts 1974-76
Product

$$
(\text { Tons })_{I}
$$

1974
Pabrics and Nonapparel
Clothing
$26223 \quad 4074 \quad 22149$

Clothing	7872	1200	6672
Total	34095	5274	28821

Fabrice and Non apparel
1975
Clothing 1005516628393
TotsI
40812650934303
1976

Pabrics \& Non Apparel	42510	10896	31614
Clothing	12746	3541	9205
Total	55256	14437	40819

year imports in 1976 the increase in both fabric and non-apparel and clothing averaged 62% and 1976 imports averaged 35% higher than 1975. Considering only the increases over 1975 the greatest surges in fabric and non apparel uses accurred in the following aress
Product \% Increase
Woven Cotton Fabrics 52
Woven Syn. Fiber Fabrics 47
Woven Rayon 61
Blankets 34
Bed Iinen 44
Un@tted Carpets 125
Other Carpets 79
There was an actual decrease of 33% in imports of woolen fabrics.
In the clothing field the largest increase in 1976 occurred in the following areas.
Product.
Womens and Childrens Outerwear 31
Men and Boys Shirts. 50
Other Clothing 36
It is of course much too early to determine if these changing patterns will continue and if they are a result of the changing economic conditions related to the total amount of disposable income or to the start of a fundamental change in life style.

Future Demands for Textile Products:

Any attempt to project such a rapidiy escalating textile product demand as outlined in the previous section will be unreliable but in order to try to relate potential demands for synthetic fibers to textile products the gradual change in demands for textile products must be estimated.

Based on Table 1 the per caput net availability of textile products in 1976 is $38,4 \mathrm{Kg}$. Data from Textile Organon ${ }^{3}$, a quite reliable publication associated with the U.S. Man Made Fiber Producers Association, the per caput consumption of all textile fibers in the U.S. in 1976 was 25.5 Kg . This drastic difference led us to examine the data of both countries more closely.Adjusting the $U . \%$ data to corrospond to the Kuwait data by including both hard and soft vegetable fibers the U.S. per caput consumption becomes 27.8 K. Examination of Kuwait data indicated that gross import weight rather than net weight had been used. After inspecting imported carpets, fabrics, and clothing through the courtesy and cooperation of the Port Authorities, judgments were made of the net weights imported. These corrections varied with each of the classified products in annex 2 and 2 A . Furthermore it is known that in certain cases notably "Other Carpets" considerable amounts of rubber are included as fibers. B ased on the tufted carpet practice in the United States it is assummed that the rubber content was approximately 30\% of total carpet. An arbitrary judgment of the factor to convert gross imported coated fabric weight to net fiber imported weight was 52% with a high degree of uncertainity. The corrected data for 1976 are presented in Tables l.and 2 of Annex 3.

Assuming that those individual correction factors also apply to exports the corrected net availability of fiber in Kuwait on 1976 in tons follows Product Imports. Exports Net. Fibric and Non-apparel $36,850 \quad 9630 \quad 27220$ Clothing Tetals
$11,980 \quad 3130 \quad 8850$
$48,83012750 \quad 36070$

With a 1976 estimated population of $1,064,000$ the per caput availability of all fiber is $33,9 \mathrm{Kg}$.

Dr. Mahmoud Assaf, Dean of the Faculty of Commerce of Mansura University, Cairo and presently on leave with the Ministry of Commerce and Industry has pointed out very convincingly that not all of the imported products during periods of rapid business upturns can be considered consumed because of additional purchases for inventory and that normally inventories under such conditions approach 40% of imports. Application of this suggestion to the past flve years has shown that this factor would amount to 14%. On this basis the per caput consumption of all textile fibers in Kuwait could be 29.2 Kg . This base figure for 1976 will be used to project future fiber demands.

This estimated consumption is 5% higher than the U.S. consumption which is most surprising since the Kuwait data do not include many industrial items auch as tires which in the U.S. amount to about 1.5 Kg per caput.

In addition to the undoubted heavy purchases of textile products associated with the rising living standards of all segments of the population and the creation of new households at a rapid rate it is believed that indirect exparts particularly of expatriates either visiting or returning to their homelands where currency restrictions or higher prices exist may account for substantial quantities of textiles. It is also widily believed that many visitors from Saudi Arabia come to Kuwait to taise advantage of the lower prices and better selection available.

In 1976 the departures from Kuwait amounted to $1,155,000$ slightly more than the total pcpulation and of these 20% were Saudi Arabians, 16% Iraqis, 13% Jordanians and

Palistinians and 6x Egyptians. The exact amount of textile products associated with each departure is impossible to estisate accurately but the consenens of knowledgeable people who are familiar with the local acene indicates that a range of $5-10 \mathrm{Kg}$ would be reasonable. Cver the next years this situation is not expected to change so that the per caput consumption has not been reduced. Although the per caput consumption can not be accurately estimated there can be little doubt that it is much higher than the value of 2.8 Kg for 1974 estimated by Chem. Systems International ${ }^{(4)}$ for IDCAS.

The population increase until 1985 has been estimated by the Ministry of Planning based on an annual increase of Kuwaiti population of 6.4% and 2 Non-Kuwaiti increase of 5,9\% and we have assumed the same rate of increase for the population in the period 1985-90. The estimated population is shown in table 2

Table 2
Estimated Population in Kuwait 1975-1990
(Thousands)

Year	Non-Kuwaiti	Kuwa.:ii	Total
1975	526	476	1,002
1976	557	507	1,064
1977	590	539	1129
1978	625	574	1,199
1979	652	611	1,273
1980	701	650	1,351
1981	742	692	1,434
1982	786	736	1,522
1983	832	783	1,615
1984	881	833	1,714
1985	933	887	1,820
1986	988	944	1,932
1987	1046	1004	2,050
1988	1108	1068	2,176
1989	1173	1137	2,310
1990	1243	1210	2,453

Athough per caput consumption including indirect exports has increased at a very rapid rate in recent years we heve assummed a much more modest increase $3 s$ shown in table 3, Over the past 15 years in the U.S. the annual per caput increase has been 3% with a range of -14% to a high of 10\% reflecting the changing business cycles. It is believed that his growth rate is reasonable.

Table 3
Per Caput Consumption of Textile Pibers. 1976-1990

Year
1976
1977
1973
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1990

Grown Rate \% dvailability Kg. 29.2

30,4
31,6
32,8
134,2
35,2
36,2
37, 3
38,4
39,6
40,4
41,2
42, C
43,7

In addition we heve assumed that exports from Kuwait should be at a 20% level over the period 1976-1990. In 1976 exports were estimated at 26% of total imports whereas in 1975 exports were at a 16% level. With the continued growth of the Gulf Area this rate of exports trade appears reasonable Thae data are summarized in Table 4.

Fiber Demand (i)in 1976-1990
Demand

Year					
	Population	PerCaput(2)	Domestic	$\begin{aligned} & \text { Enor } \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { TEtain } \\ & 1000 \end{aligned}$
	1000's	Kg.	1000 Toris.	Tons	rions
1977	1,129	30.4	34.3	6.9	41.2
1978	1,199	32,6	37.9	7.6	45.5
1979	1,273	32,8	41,8	8.4	50.2
1980	1,351	34,2	46,2	9,2	55,4
1981	1,434	35.2	50.5	10.1	60:6
1982	1,522	36,2	55.7	11.1	66.8
1983	1,615	37.3	60.2	12.0	72,2
2984	1,714	38,4	45.8	13.2	79.0
2955	1,820	39.6	72.1	14.4	86.5
1986	1,932	40.4	78,1	15.6	93.7
1987	2,050	41.2	84.5	16.9	101.4
1988	2,176	42,0	91.4	18.3	109.7
1989	2310	42.9	99.1	19.8	118.9
1990	2453	43,7	107.2	21.4	128.6

(1) Demand includes Comestic consumpticn including indirect exports but with no allowence for indirect imports.
(2) Data from Table 3.

In order to indicate the effects of a somewhat higher per caput growth rats we have estimated the fiber demand assuming a per caput increase of 6% through $1980,4 \%$ through 1995 and 3% thereafter.

The data are sho:m in table 5. By 1980 this translates in 217% increase into Aemand.

Table 5
Effect of Increased Por Caput Growthh Rate on Piber Demand

Demand.

Tear	Population	Increase x	Rate	Domestic 1000tons	$\begin{aligned} & \text { Bxport } \\ & 1000 \\ & \text { tone } \end{aligned}$	wotal 1000 tone
1977	1,129	6	31,0	35,0	7,0	42,0
1978	1,199	6	32.8	39.3	7.9	47.2
1979	1,273	6	34,8	44.3	8.9	53.2
1980	1,351	6	36,9	49.9	10.8	59.9
1981	1,434	4	38,3	54,9	11.0	65,9
1982	1,522	4	39,9	60.7	12.2	72.8
1983	1,615	4	41.5	67.0	13.4	80.4
1984	1,714	4	43.1	73.9	14,8	88.7
1985	1,820	4	44,9	81.7	16.3	98.0
1986	1,932	3	46.2	89.3	17.9	107.2
1987	2,050	3	47.6	97.6	19.5	117.1
1988	2,176	3	49,0	106.6	21.3	127.9
1989	2,310	3	50,5	116.7	23.3	1400
1990	2,453	3	52,0	127.6	25.5	153.1

Sinthetic Fiber Demand:

The previous sections were concerned with the demands for all fibers, tiatural and man made. We now turn our attention to the demands for synthetic fibers, Since the import statistics have not been refined to the point where fiber con tent is recorded no information on the amount of individuel synthetic fiber exists. Since the present classificetion syatem, which will be altered to conform with world standards, includes some very broad categories it is impossible without a detailed knowledge of the actual products imported, to estimate the synthetic fiber content of the actual products imported. Such knowledge can only come with long experience in the local scene.

We have approached this problem by assuming that synthetic fiber properties ultimately will determine the fiber selection for a given application in af ree and economically competitive mariket. We assume further that Kuwait consumption pattern/as ilar approach the same consumption, as the more fully industrialized countries. Although each should reach eventually the same point the rate of acceptance of synthetic fibers in Kuwait will be determinad by many factors including the quality of the textile products produced, the merchandizing efforts of the fiber producers, the textile product producers and the merchants and, of course of the competitive economin factors. Ths success of the proposed merchandizing effcrts is complicated by a rapidly changing life style coupled with an increasing disposable income. At the present consumption level it is of interest to determine what would be the utilization pattern of the several synthetic fibers ansumirg that Kuwait had more nearly approached the point where fiber properties were the determining factor in determining fiber consumption pattern. Thus, it is proposed
to examine the potential use of synthetic fibers in the several categories of Tables 1-A3 and 2-A2 when fiber uses are fully developed as determined by the acceptance in other countries. With this estimation it should be possible to project the future pattern of synthetic fiber femand. Frovision will be made for fiber demand arising from the manufacture of tires in the future.

The estimated potential demand for synthetic fibers by fiber type is shown in Tables 6,7 and 8 for 1976. The demand for synthetic fibers exclusive of tires is 63% of total Piber demand whereas in the United States the consumption of man made fibers in the apparel and home furnishing market areas, areas roughly comparable, is 67%. Since melt spinning process for staple fibers will require different equipment than for continuous filament it is of interest to estimate the corresponding demands for these two products for polyamides and polyesters as shown in Tables 9,10 and 11 over the same time period.

It must be realized that these estimates are, at best, rough and are based on U.S. experience and information. The annual November issue of Textile Organcn divides fiber consumption into three broad general categories, apparel, home furnishings and industrial and further subdivides these into 40 subclasses. In former years these three classes were broken down inth some 70 odd subclasses. For each subclass they repart the consumption of cotton, wool, man made cellulosics and synthetic fibers. In the man-made ifiber classes these are further reported as filament or staple but aynthetic fibers are not further broken down by fiber type except in a fev instances such as carpet. This information has been used, where applicable, but in general heavy reliance has been placed on U.S. experience.

Although estimatea have been made for acrilic and polypropylene fibers no attempt has been made to further analyze the consumption by fiber product. Acrylic fiber are produced only as staple and the end uses envisioned for polypropylone in rope, primary carpet backing and in sacks and bags require either hearey denier monofilaments, ribkens or fibrillated yarns. Mast of these end uses can utill..e fiber produced from slit film. It may be holpful in visualizing end uses for staple and continuous filament yarns to jemember that textile products made from staple fibers have the appearance and feel of cotton or wool fabrics wheras continueus filament fabrics more nearly resemble silk.

Projections of demands for 1980 are shown in mables 12-17, for 1985 in Tables 18-23 and for 1990 in Tables 24-29. With the exception of carpet all of these projections are based on the data of Tables 6,7,9 and 10 by the usc of apprcpriate factors. In the carpet area it was projected that tufted carpet would capture increasing shares of the market and that ite mrket share from 50% in 1976 and would reach 62% in i980, 76% in 1985 and 86% in 1990. Tufted carpet now holds 99.5% of the tufted and woven carpetmarket in the United States anc we believe that there will be a distinct trend toward the much less expensive tufted carpet in Kuwait as indicated in the above growing market share.

From the viewpoint of manufacturing nylon fiber Zuwait will bave a demand in 1980 for 11,100 tons split into 2000 tons of staple and 9100 tons of continuous filament, These demands do not include tire card which will be discussed separately. The continuous filament yarns include about 6000 tons of textile denier yarns, 1930 tons high strength indistrin type yarns and 890 tons of bulked continuous ililament (BC-) yarn for carpet. The bulk of the staple applications vill be in carpets (57%) which requires one type of staple and the remainder in a much finer denier for textile fabric epplications. It should be recalled that these demands represert the total market and require that corresponding textile induster plants be built to meet the demands of a highly fragmented style conscious market. A single large maricet cen not be readily identifies and even though the total nylon mariset appears interesting and large enough to support a nylon plant, if the corresponding textile industry existed, it is concluded that it would not be practical at this time to buile a nylon pient and the corresponding textile industry to serve such a diverse market.

If the decision of the proposed tire plant is to use nylon tire cord it is suggested that a small rope and corde ge plant be constructed to use second quality tire cord arising from the nylon tire cord production. For nyton tire cord plant to be viable it is a requirement that the tire plant produce its own tire fabric. If a nylon tire cord plant is constructed the same plant could make fibers anitable for tarpsulins anc tents which would add approximately 850 tons capecity and tho corresponding textile industry plants would be ratior sirin: consisting primarily of simile twisting and weaving iacilities. We do not recommend the cunstruction of 2 fish net fictor: because of its high labor requirements.

By 1990 the total demand for nylon ex tires will be 33,125 tons with 5000 tons of staple and 27,500 tons of continuous filament, Tufted carpets would use some 6600 tons of nylon with about 3700 tons of stapie and 2900 tons of BCF nylon. These usages could be minimal requirements since it is believed that nylon will increase its share of the carpet face fiber market at the expense of wool. If small segments of the total nylon markets for textile denier continuous filment yarns are developed by the introduction of textile equipment to capture a partion of the fabric and clothing market, particularly in the knitted area, it should be possible to built a 5000 ton contnuous filament plant.

The total market for polyester fiber in 1980 will be 24,900 tons. It is estimated that 9000 tons will de in continuous filament yarns and 15,900 tons in staple. As is the case of nylon these demands de not include any provision for tire cord. Fortunately, most of the staple deniers can be made on the same equipment and at roughly the same rate. Although some 3100 tons of staple will be used in the clothing area and will be in the highly fragmented market and hence not readily available there are large areascotton fabrics, dishdasha fabrics, woven rayon fabrics and bed liners, where fabric demand could be as much as 6500 tons or more. The se areas will be discussed in the next section. Continuous filament used will be largely 150 denier yarn of either the fully drawnor pertially oriented yarn for false twist texturing. Although no category for knitted goods is shown it is felt that single and double knit fabrics represent a real potential for growth.

By 1990 total demand ex tirc cord for polyoster fiber will be 58,1000 tons with 37,100 tons staple and 21,000 tons continuous filament. This is a very large production and it is reasonable to assume that a staple plant of at least 10,000 tons and a continus filament plant of at least 5000
tons could be used.

The demand for polyester production in chip form will be enhanced by the rapid development of polyester resins for botting large family size soft drink containers. It was noted that a recent Kuwait Times article on the new R.C. Cola Company bottling plant announeed that their new plant would supply R.C. Snla in large family sized bottles. The process for polyester bottles was apparcntly developed in the United States by DU PONT who have decided to license rather than manufactiure tremselves. Currently imoco, Hoover Bail Berring Co. and others are suppling both Pepsi Cola and Coca Cola with these bottles. The polymerwill be manufactured by Goodyear. Polymer will be manufactured at one location and shipped to the bottle manufacturing site located either in some central location or at the bottling plant. The bottles are non-returnable and Goodyear has claimed that these bottles can be reprocessed to produce polymer which can be later converted to certain types of polyester fiber. A project of this type could conceivably result in a world size polymer plant which sould ship polymer to bottling plants located in much of thes Arrioic World. In addition to grestly increasing consumption of terephthalic acid and decrease its coat it could offer polymer at reduced costs not only for staple but also for continuous filament. It is recommedded that a study of this new development be undertaken in the very near future.

In 1980 the potential market for acrylic fibers was estimated at 5900 tons most of it in blankets with the remainder in swesters and woolen fabrics. By 1990 the demand is expectsd to reach 13,200 tons. The blanket marict is an attractive market in Kuwait and a license, since cancelled, had been granted for the manufacture of blankets. These blankets were to be manufactured primarily from wool. Although swesters are anothsr
product of possible interest to Kuwait the markets would be seasonal and the demand limited. Unfortunately, the production of acrylic staple is either by dry or wet spinning which requires recovery of the solvents from aqueous systems and the recovery systems are volume dependent. For this reason, since our potential volume is below the minimum size for an efficient plant, no further consideration has been given to acrylic fibers. The minimum size which could compete probably is in the $15-20,000$ tons per year range. 'ith the necessity for handing and recovering liquids the installation costs more nearly resemble similar costs for chemical plants in contrast to the rather simple installation of melt spinning equipment.

The last fiber to be considered is polypropylene. In all its fiber forms the consumption of polypropylene fiber in the U.S. now exceeds acrylic fibers. Uses are mainly in low pile height tufted carpets, needle punched carpets, upholstery fabrics and the very large volume uses in primary carpet backing and packaging applications in which it competes dircctly with fute. The latter applications are normally low profit margin products. Since there no plans for building a polyproplylene plant ir Kuwait, no additional consideration has been given to polypropylene fibers.

Table 6 Synthetic Fiber Potential demand in Plece Goods and Non Apparel 1976

Product	A11	$\begin{aligned} & \text { Syn. } \\ & \text { ers Fiber } \end{aligned}$	NyIon	Poly	ster	derylic	$\text { c } \begin{aligned} & \text { Polypro- } \\ & \text { pzlene } \end{aligned}$
Textile Iarn	410	210	60	150	-	\bullet	-
Cotton Pabrics	2440	1190	-	1190	-		-
Silk Fabrics	30	-	-	-	-		-
Woolen Fabrica	690	275	-	190	85		-
Iinen Fabrics	-	-	-	-	-		-
Woven Syn. Fabrics	9030	9030	2700	6330	-		-
Woren Rayon	2270	1475	-	1475	-	-	-
Artificial Fur	20	20	-	-	20		-
Woven Pabrics Nes.	500	250	100	150	-	-	-
Tulle Net Fabrica	-	-	-	-	-		-
Ribbon Fabrics	110	60	25	35	-	-	-
Embroedary	10	-	-	-	-		-
Coated Fabrics	270	135	100	35	-	-	-
Cord of Syn Pibers	580	580	435	145	-	-	-
Cord of Vegt.Fibers	510	400	80	20	-	-	300
Nets	180	180	140	20	-	-	20
Cotton Bags	360	360	-	-	-		360
Non Cotton Bags	3160	1580	-	-	-		1580
Tarpaulins	620	150	75	75	-		-
Tents	1030	620	500	120	-	-	-
Blankets	4940	3500	300	300	2900		-
Towels	500	50	25	25	-		-
Bed İnens	2730	1420	-	1420	-		-
Curtains	10	-	-	-	-		-
Textile made up	200	100	50	50	-		-
Carpets Rnotted	920	-	-	-	-		-
Rugs	660	300	200	100	-		-
Tufted Carpets	1945	1565	1110	190	75		190
Wover Carpets	3025	490	95	-	400		-
Sub Total 3	37150	23,940	5995	12020	3430		450

- 20 -

Table 7
Synthetic Fiber Potential Demand in Kuwait in 1976 in Clothing
(Tons)

Product	ill 	$\begin{aligned} & \text { Syn } \\ & \text { Fibers_ } \end{aligned}$	Nylon	Polyester		Acrylic	Polypro- pitlene
Mens Outerwear	4140	2520	300	1770	450		-
Women's Outerwear	2620	1500	225	1135	140		-
Shirts	1760	1030	-	1030	-	-	-
Socks	220	110	110	-	-		-
Scarfs	300	180	120	60	-	-	-
Other	2940	1200	500	700	-	-	-
Sub Total	11980	6540	1255	4695	590		-

Table 8
Total Synthetic Fiber Potential Demands
in 1976

Products	$\begin{aligned} & \text { All } \\ & \text { Fibers } \end{aligned}$	$\begin{gathered} \text { Syn } \\ \text { Fibers } \end{gathered}$	$\begin{gathered} \text { (To } \\ \mathrm{Ny} 1 \mathrm{n} \end{gathered}$	Poly	r Acr	Polyp
Non Apparel	37150	23940	5990	12020	3480	2450
Clothing	11980	6540	1255	4695	590	-
Sub Total	49190	30480	7245	16715	4070	2450

Table 9
Polyester and Polyamide Fiber Demand in Cuwait in 1976 in Piene Goods and Non Apparel

Table 10
Polyester and Polyamide Fiber Demand in 1976 in Clothing.
(Tons)

	Polyamide			Polyester		
Product		$\begin{aligned} & \text { aI Cont } \\ & \text { - Fil } \\ & \hline \end{aligned}$	Staple	Total	$\begin{aligned} & \text { Cot: } \\ & \text { Fil } \end{aligned}$	Sraple
Mens Outerwear	300	300	-	1770	1470	300
Women's Outerwear	225	225	-	1135	910	225
Shirts	-	-	-	1030	-	1030
Socks	110	110	-	-	-	-
Scarfs	120	120	-	60	60	-
Other	500	500	-	700	200	500
Total	1255	1255	-	4695	2640	2055

Table 11
Polvester and Polyamide Fotential Demand in 1076.

Product	Polyamide			Polyesto:.		
		$\begin{aligned} & \text { al Cont } \\ & -\quad \text { fil } \end{aligned}$	Sta	ToZ	$\begin{gathered} \mathrm{Coj} \\ \hline \end{gathered}$	Sta
Non Apparel	5995	4745	1250	12020	3420	8500
Clothing	1255	1255	-	4695	2640	2055
Sub Total	7250	6000	1250	16715	6060	16655

Table 12
Projected Synthetic Fiber Demand in Piece Goods and non Apparel in 1980 (Tons)

Product	$\begin{aligned} & \text { All } \\ & \text { Fibers } \end{aligned}$		Nylon		- Acrylic		Polypropylene
Textile Yarns	610	310	90	220	-	-	
Cotton Fabrics	3630	1770	-	1770	-	-	
Silk Fabrics	45	-	-	-	-	-	
Woolen Fabrics	1030	410	-	280	130	-	
Woven Syn. Fabrics	13430	13430	4015	9415	-	-	
Woven Rejon	3375	2190	-	2190	-	-	
Artificial Fur	30	30	-	-	30	-	
Woven Fabrics NES	? 45	370	150	220	-		
Ribbon Fabrics	165	90	40	50	-	-	
Embrodery	15	-	-	-	-	-	
Coated Fabrics	400	200	150	50	-	-	
Syn Fiber Cords	860	860	650	210	-	-	-
Vegt.Fiber Cords.	760	590	120	30	-	440	
Nets	270	270	210	30	-	30	
Cotton Gags	535	535	-	-	-	535	
Non Cotton Bags	4700	2350	-	-	-	2350	
Tarapaulins	920	220	110	110	-	-	-
Tents	1530	920	740	180	-	-	
Blankets	7345	5200	450	450	4300	-	-
Towels	745	70	30	40	-	-	
Bed Linens	4060	2110	-	2110	-	-	
Curtains	15	-	-	-	-	-	-
Textilea made up	300	150	70	80	-	-	
Carpets Knotted	1370	-	-	-	-		
Rugs	980	450	300	150	-	-	-
Tupfted Cappets	3570	2880	2050	355	130	345	
Woven Carpets	3410	560	110	-	450	-	-
Sub Total	548453	35965	9285	17940	5040	3700	

Table 13
Synthetic Fiber Potential Demand in Clothing in 1980

Product	2411 Syn Fibers Fibers				- Ac	
Men's Outerwear	6160	3750	450	2630	670	-
Women's Outerwear	3900	2230	330	1690	210	-
Shirts	2620	1530	-	1530	-	-
Socks	330	160	160	-	-	-
Scarfe	450	270	180	90	-	-
Other	4370	1780	740	1040	-	-
Total	17830	9720	1860	5980	880	-

Table 14
Synthetic Fiber Potential Demands in 1980

Products	$\begin{gathered} \text { All Syn } \\ \text { Fibers Fibers } \end{gathered}$			$\begin{aligned} & \text { Polyes- Acrylic } \\ & \text { ter } \end{aligned}$		
Non Apparel	54845	35965	9285	17940	5040	3700
Clothing	17830	9720	1860	6980	880	-
Sub total	72675	45685	11145	24920	5920	3700

Table 15
Polyeater and Polyamide Fiber Demand in Piece Gooda and non apparel in 1980

Product	Polyamide			Polyester		
		$\begin{array}{ll} 11 \\ 10 \text { cont. } \end{array}$	Steple	TOtel	$\begin{aligned} & \text { Cont. I2 } \\ & \text { I11. } \end{aligned}$	StapIe
Textile Yarn	90	90	-	220	110	110
Cotton Fabrics	-	-	-	1770	-	1770
Wcolen Pabrica	-	-	-	280	-	280
Woven SyI. Fabrics	4015	3715	300	9415	4460	4955
Woven Rayon	-	-	-	2190	-	2190
Woven Fabrics NES	150	150	-	220	-	220
Ribbon Fabrics	40	40	-	50	-	50
Coated Fabrics	150	150	-	50	50	-
Syn.Fiber Cords	650	650	-	210	210	-
Vegt. Fiber Cords	120	120	-	30	30	-
Nets	210	210	-	30	30	-
Tarpaulins	110	110	-	110	110	-
Tents	740	740	-	180	-	180
Blankets	450	225	225	450	75	375
Towel	30	-	30	40	-	40
Bed Linens	-	-	-	2110	-	2110
Made up Textiles	70	70	-	80	-	80
Huge	300	75	225	150	-	150
Tufted Carpets	2050	890	1160	355	-	355
Woven Carpets	110	-	110	-	-	-
Sub Total	9285	7235	2050	17940	5075	12865

Table 16
Polyamide and Polyester Fiber Potential Demand in elothing in 1980 (tons)

Product	Polyamide			Polyester		
	Totel	$\begin{aligned} & 1 \text { cont. } \\ & \text { fil. } \end{aligned}$	stapre	Total	$\begin{aligned} & \text { cont. } \\ & \text { fil. } \end{aligned}$	Steple
Men's Outerwear	450	450	-	2630	2180	450
Womens Outerwear	330	330	-	1690	1355	335
Shirts	-	-	-	1530	-	1520
Socks	160	160	-	-	-	-
Scarfs	180	180	-	90	90	-
Other	740	740	-	1040	300	740
Total	1860	1860	-	6980	3925	3055

Table 17
Polyester and Polyamide Potential Demand in 1980
(Tons)

	Polyamide			Polyester		
Product		$\begin{gathered} \text { al } \mathrm{Con} \\ \text { Fil } \end{gathered}$			$\begin{gathered} \text { Con } \\ \text { Fil } \end{gathered}$	
Non-Apparel	9285	7235	2050	17940	5075	12865
Clothing	1860	1860	-	6980	3925	3055
Sub-Total	11145	9095	2050	24920	9000	15920

Table 18
Projected Synthetic Fiber Demand in Piece Goods and non apparel in 1985 (Tons)

Product	$\begin{gathered} \text { All } \\ \text { Fibers } \end{gathered}$	Syn	NyIon	Polyester Acrylic			c Polypropylene
		P Fibers					
Textile Tarns	950	480	140	340	-		-
Cotton Fabrics	5660	2760	-	2760	-		-
Wooden Fabrics	1610	640	-	440	200		-
Woven Syn. Fabrics	209502	20950	6260	14690	-		-
Woven Rayon	5265	3420	-	3420	-		-
irtificial Fur	50	50	-	-	50		-
Wowen Fabrics NES	1160	580	235	345	-		-
Ribbon Fabrics	260	140	60	80	-		-
Embroddery	20	-	-	-	-		-
Coated Fabrics	620	310	230	80	-		-
Syn. Fiber Cords.	1340	1340	1010	330	-		-
Vegt. Fiber Cords.	1185	920	190	55	-		675
Mets	420	420	330	50	-		30
Cotton Begs	830	830	-	-	-		830
Non-Cotton Bags	7330	3670	-	-	-		3670
Tarapaulins	1435	340	170	170	-		-
Tents	2390	1435	1150	285	-		-
Blankets	11460	8110	700	700	6710		-
Towels	1160	110	50	60	-		-
Ben Linens	6330	3290	-	3290	-		-
Curtains	20	-	-	-	-		-
Textiles made up	470	230	110	120	-		-
Carpets Znotted	2140	-	-	-	-		-
Rugs	1530	700	470	230	-		-
Tufted Carpets	6830	5510	3925	680	245		660
Woven Carpets	3370	550	110	-	440		-
Silk Fabrics	70	-	-	-	-		-
Sub Total	84855	56785	15130	28125	7645	5	5885

Synthetic Fiber Potential Demand in Clothing in 1985
(Tons)
-

Product	All AynFibers Fibers		NyIon		- A	
Men's Outerwear	9610	5850	700	4100	1050	-
Womens Outwrwear	6080	3480	510	2640	330	-
Shirtes	4090	2390	-	2390	-	-
Socks	515	250	250	-	-	-
Scarfs	700	420	280	140	-	
Other	6820	2780	1160	1620	-	-
Total	27815	15170	2900	10890	1380	-

Table 20
Synthetic Fiber Potential Demands in 1985

Froducts	All Syn Fibers Fibers		$\begin{aligned} & \text { Polyes- acrylic } \\ & \text { ter } \end{aligned}$		
Non-Apparel	8485556785	15130	28125	7645	5885
Clothing	2781515170	2900	10890	1380	-
Sub Total	11267071955	18030	39015	9025	5885

Table 21
Polyester and Polyamide Fiber Potential Demand in Piecegoods and non ipparel in 1985

Product	Polyamide			Poiyester		
	Tota	$\begin{aligned} & 1 \text { Cont. } \\ & \text { Fil. } \end{aligned}$	Staple	Total	$\begin{aligned} & \text { Cont: } \\ & \text { Fil: } \end{aligned}$	Stapls
Textile yarn	140	140	-	340	170	170
Cotton Fabrics	-	-	-	2760	-	2760
Woolen Fabrics	-	-	-	440	-	440
Woven yn. Fibrics	6260	5790	470	14690	6960	7730
Woven Rayon	-	-	-	3420	-	3420
Woven Fabrics NEP	235	235	-	345	-	345
Ribbon Fabrics	60	60	-	80	80	-
Coated Fabrics	230	230	-	80	80	-
Syn. Fiber Cords	1010	1010	-	330	330	-
Vegt Fiber Cords	190	190	-	55	55	-
Nets	330	270	-	50	50	-
Tarpoulins	170	170	-	170	170	-
Tunts	1150	1150	-	285	-	285
Blankets	700	350	350	700	120	580
Towel	50	-	50	60	-	60
Bed Linens	-	-	-	3290	-	3290
Kade up Textiles	110	110	-	120	-	120
Rugs	470	120	350	230	-	230
Tufted Carpets	3925	1710	2215	680	-	680
Woven Carpets	110	-	110	-	-	-
Sub Totel	15130	11585	3545	28125	8015	$2 \mathrm{Cl10}$

Table 22
Polyamide and Polyester Piber Potential Demand in Clothing in 1985(Tons)

Product	Polyamide			Polyester		
	Totsil	$\begin{aligned} & \text { Cont. } \\ & \text { fil } \end{aligned}$	Staple	Totil	Cont.	strpre.
Mens Outerwear	700	700	-	4100	3400	700
Womens Outerwear	510	510	-	2640	2110	530
Shirts	-	-	-	2390	-	2390
focks	250	250	-	-	-	-
Scarfs	280	280	-	140	140	-
Other	1160	1760	-	1620	470	1150
Total	2900	2900	-	10890	6120	4770

Table 23
Polyamide and Polyeater Połential Demand in 1985
(Tons)

	Polyamide			Polyester		
Froduct		$\overline{2} \text { Cont. }$	Staple	Total	Cont. Fil.	Staple
Non Apparel	15130	11585	3545	28125	8015	20110
Clothing	2900	2900	-	10890	6120	4770
Sub Total	18030	14485	3545	390:5	14135	24880

Table 24
Synthetic Fiber Demand in Piece Goods and Non Paaprel in 1990 （Tons）

Product	$\begin{gathered} \text { All } \\ \text { Fibers } \end{gathered}$	$\begin{aligned} & \text { Syn } \\ & \text { Fibers } \end{aligned}$	Nylon		est-dcry	
Textile	1410	710	210	500	－	－
Cotton Fabrics	8420	4105	－	4105	－	－
Woolen Fabrics	2395	950	－	650	300	－
Noven Syn．Fabrics	31150	31150	9310	21840	－	－
Woven Rayon	7830	5085	－	5085	－	－
irtificial Fur	75	75	－	－	75	－
：Uven Fabrics NES．	． 1725	850	350	510	－	－
Ribbon Fabrics	390	210	90	120	－	－
Embroidery	30	－	－	－	－	－
Costed Fabrics	920	460	340	120	－	－
Syn Fiber Cord	1990	1990	1500	490	－	－
Vegt Fiber Cord．	1760	1370	280	80	－	1010
ごこts．	625	625	475	75	－	75
Cotton Bags	1235	1235	－	－	－	1235
STon Cotton 3ags	10900	5460	－	－	－	5460
Tarpouling	2130	505	250	255	－	－
？ente	3550	2130	1710	420	－	－
212．2kets	17040	12060	1040	1040	9980	－
Tovels	1725	160	75	©	－	－
Esa Linen	9410	4890	－	4890	－	－
Jurtains	30	－	－	－	－	－
Textiles made up	700	340	160	180	－	－
Sarpets Znotted	3180	－	－	－	－	
－ies	2275	1040	700	340	－	－
$\therefore \mathrm{Cifted}$ Corpets	11480	9260	6600	1140	410	2110
Toren Carpets	2930	480	100	－	380	－
Eilk Fabrics	105	－	－	－	－	－
Sus Tot． 31	125410	85150	23185	－1930	11145	8290

Tablc 25
Cynthetic Fiber Potentisl Demand in Clothing in 1990 (Tons)

Product	$\begin{gathered} \text { dal Syn } \\ \text { Fibers Fibers } \end{gathered}$		Dylon	Poly	tericrzilic	Polypropylene
Mens Outerwear	14290	8900	1040	6100	1560	-
- omens Out erwear	9040	5170	760	3920	490	-
Shirts	6080	3550	-	3550	-	-
Socks	765	370	370	-	-	-
Scarfs	1040	620	420	200	-	-
Other	10140	4130	1720	2410	-	-
Total	41355	22540	4310	16180	2050	-

Table 26
Synthetic Fiber Potential Demand in 1990

Products	$\begin{gathered} \text { Hill3 Syn } \\ \text { Fibcrs Fibers } \end{gathered}$	Nyl	$\begin{aligned} & \text { Polyest- derylic } \\ & \text { er } \end{aligned}$		Pol
Non-spparel	12541C 85150	23185	41925	11145	8880
Clothing	-1355 2254C	4310	16180	2050	-
a u C Total	166765107690	27495	58105	13195	8880

Table 27
Polyamide snd Polyester Fiber Potential Demand in Pi ece Goods and Non A pparel in 1990

Froduct	Polyquide				Polyester	
		$\begin{aligned} & \text { al cont. } \\ & -117 \end{aligned}$	Staple	TOEJ	$\begin{aligned} & \text { Cont } \\ & \text { eil } \\ & \hline \end{aligned}$	STFple
Textile Tarn	210	210	-	500	250	250
Cotton Fabrica	-	-	-	4105	-	4105
Woolen Fibrica	-	-	-	650	-	650
Woven Syn Pabrics	9310	8610	700	21840	10350	11490
Woven Rayon	-	-	-	5080	-	8080
Woren F brics NES	350	350	-	510	-	510
Ribbon Fabrics	90	90	-	120	120	-
Coated Fabricsd	340	340	-	120	120	-
Syn Fiber Cord	1500	1500	-	490	490	-
Vegt. Fiber Cord	280	280	-	80	80	-
Wets	475	475	-	75	75	-
Tarpoulines	250	250	-	255	255	-
Tents	1710	1710	-	420	-	420
Blankets	1040	52C	520	1040	180	860
Towel	70	-	70	90	-	90
Bed Ininen	-	-	-	4890	-	4890
Made up Textilea	160	160	-	180	-	180
Pugs	700	180	520	340	-	340
Tufted Carpets	6600	2880	3720	1140	-	1140
Woven Carpets	100	-	100	-	-	-
Sub Total	231851	17555	5630	41925	11920	30005

Table 28
Folyester and Polyar de riber Potential Demand in Clothing in 1990 (Tons)

Eroduct	Polyamide Totai Cont.		Polyester			
			36 mpIe	sotal	Cont.	Staple
		Fil			Fil	
Inna Outerwear	1040	1040	-k	6100	5055	1045
'Torens Outerwear	760	760	-	3920	3135	785
Shirtsd	-	-	-	3550	-	3550
Socks	370	370	-	-	-	-
Storefs	420	420	\cdots	200	200	-
Other	1720	1720	-	2410	700	1710
Sotal	4310	4310	-	16180	9090	7090

Table 29

Polyamide and Polyester Fiker Pot ntial Demand in 1990

	Polvamide		1polyester		
Product	Total cont.	$5 t 3013$	Tota	$\begin{aligned} & \text { Cont. } \\ & \text { fil } \\ & \hline \end{aligned}$	Stiple
Non - toparel	2318517555	5530	41925	11920	j0005
Clothing	4310 千 310	-	15180	9090	7090
Su' Total	274¢, 27405	5630	58105	21010	37095

Tire Cord Markets

The Kuwait Iire company with Saudirarabian interests will build a tire factory with a reported capacity of $1,000,000$ tires per year to supply the replacement tire meriset. The soctuel siz: oi the repiacement tire annies can only bo
estimated since it is difficult to determine the exact numbe: of tires inported since the impots include both tires and Jubes. It is verij dirficult to estimate average car life since $\begin{aligned} \text { in } & \text { number }\end{aligned}$ of passenger cars reported operating in 1975 exceeded total pessenger enr imvorts during the period 1971 through 1975 by about 57:000. This would indicate a car of life of approrinateiy 9 years. In oreer to supply the total repiacement market in Kiwait the new plant mould have to produce a vast array of sizes and types. The older cars ere undoubtedi": equipped with bias and bias belted tires and the newer cars wth radials. In all probability the plant will concentrate on bias or bias belted passenger tires. Truck tires are most important in the replacement market and 70% of the tire market ($\mathbb{K} . D . \operatorname{value}$) is said to be in truct tires.

With an undefined technology source and with ar uncertain yroduct mix the utilization of fabric in this piant is dieficult to pradict. It is not even cercisir that the plant will purchese fiber and make its own fabric. For some time it may elect to purchase fabric from one of the plants cwned by its suppiier of technology.

Ir the U.S. nylon 6 can only be uced in truc's tires because the curing tenoeratures for passenge: tires is too high for the lower melting nylon 6 fiber. It should be noted that the consumption of polyester in tires is lerger than the combined usace of nylon 6 and 66. Normally the larger tire comparie3 furchase nylon tire cord from fiber producers and treat the ribois in th their own proorietary processes for example the Goodyear 3 I process (time, temperature andtension) and add their om adissire sysiten to the fabric to promote adhesion. The adhesire systen
is partimlarly important in the case of polyoster cords.

The amount of fiber in a tire is dependent upon its size and use. Passenger tines vary from ? to ir piies whereas truok tires may have many more plies. In the absence of any firm product $m i x$ we have assumed that the fibric content may average $\mathbf{2 2 \%}$. Over the past five years the urerage weight of the tire imported into kuwait was 20,2 Kg and finus the anouni of Eiber which would be consumed by the plant would hef, 400 tons of either nyion cr polyester.

Since the Company plans on selling 500,000 tires to Kuwait and 750,000 tires to Gaudi Arabia within three yeare of start ip, obviously expansion is planned. The entire Guls area is reported to have a total replac ment demand of $1.5-2,000,000$ Tires which would indicate that Kuwalt tire can produce a major portion of the replacement market. Additional capacity could only be obtained by capturing a portion of the originnl equipment market.

With all of the uncertainizy surrounding this maricet it is recommendec that the proress of this project be followed ver:̈ cicsely but that no facilities for tire cord production be plorned until the markets arz clearly jeifned.

Attractive Markets for Polyester Staple Fiber:

Although the previous section outlined the possible demands for synthetic fibers the realities of constructing at the same time a textile industry to produce the products of interest in a sufficient volume to make the entire proiect riable imposes strict limitations on the possible candidates. The ideal candidates would consume polyester staploin sufficient quantities to permit the construction of an efficient small polyester staple plant and the textile products would in themselves be relatively simple products which are reletively indepeident of style changes. The tiree marrets tc be eramined are marjets for dishdasha fabrics, bed linens and woven cotion end rayon fabrics.

The most pppular fabric for summer dishdashes in Kuwait is a polyester cotton $65-35 \%$ blend fabric which contains about 35 threads per cm . in each direction and weighs about 97 g pe= running meter. The width of the fabric is about 91 centiretars. The fabric is mercerized, pre-shrunk and resin treated. It sells at retail for about 740 fils per running meter. The fabric examined was made by NISSHIN SPIMNING CO. of Japan using TEIJIN polyester staple. Facilities available did not permit analysis of the turns per inch in the yarn nor the staple length. It is assumed that the later is $3,8 \mathrm{~cm}$ long.

There are no statistics on the imports of dishdasha Pabric into Kuwait. Dishdashes made from this type fabric are wom by all Kuwaiti male age grnmpe but not by most expatriates. The total amount of Iabrjc consumed will be determined by the male Kuwaiti popula $\ddagger i o n$ within an age groug.the amount of fabric required to make a cishdasha for aach afe group ar. the aterage number purchased per year for each age group.

Tale 30
Fabric Consumption in the Dishdash Market

Age Group Yrs.	Popul. 1975		To. undt	Per po.	Total Meters $1000^{\prime} 3$	iotal height Tons
? 7 ¢	36956	1.1	6	243.9		23.7
5-9	35,715	2.2		628.6		61.0
10-14	35,715	2.6	10	928.6		90.1
15-19	23,513	3.1	9	656.0		63.6
20	95,016	3.6	9	3078.5		298.6
Totals	226,915			5,536		537

Consumption in Kuwait 1930-1990 is given in Table 31. The totel population is firm the Ministry of Planning using 995:000 for 1975 as the base Table 31

	1980	1985	1990
Population Millions	1.35	1.82	2.4 .5
lo00 Meters	7.520	70.120	13.620
Weight tons	729	982	1322
Polyester Content	47%	0.19	859

In order to estinate tho consunption 0: Eabiric in dishdasis in Saudi Arabia and the \%"Other" Gulf States we are simplifyine the problem by assuming that the life syle is similar and and that the populetion spread and consumption pattern will be the same as in Kuwait. E; the "Other" Gulf States we are including Eahrain, Oatar, the United Arab Emirates, Omen and the two Yemens.

The population forecast for the "Other" Gulf States and Saudi Arabia is taken from an IDCAS study on synthetso iloser prpared by Chem. Systems.

Table 32

Total Population in the Guif Area
 (Millions)
 198019851990

Saudi Arabia	10.7	12,5	14,0
"Others"	9,85	11.2	12,1
Sub Total	20,55	23,7	27,1
Kuwait	1,35	1,82	2,45
Total	21,9	25,52	29,55

The total market for dishdash fabrics in shown in Table
Table 33
Fabric consumed in dishdash markets

	(Tons)		
	1980	1985	1990
Kuwait	729	982	1,322
Saudi Arabia	5,778	6,745	7,554
Others	5,319	6,043	7,069
Total	11,826	13,770	15,945

Although the above data gives the total consumption of fabrics in the several dishdasha markets not all of the markets would necessarly be available to a Kuwait based company. We are assuming that a textile fabric plant in Kuwait could cbtain all of the Kuweit market and 25% of the Saudi arabia and "Other" Gulf States marikets, the so called Gulf Area mriket. These fabric markets together withthe polyester fiber contents are ahown in Table 34.

Fabric Markets Table 34

	To fabric Plant_in Kuwait (Tons)		
	1980	1985	1990
Euwait	729	982	1322
Gulf Area	2774	3197	3,655
Total	3,503	4,179	4977
Polyester Content	2276	2,716	3235

The above totals do not include the considerable amount of a similar fabric dyed black which is used by the femele Kuwait population. The initial fabric plant for this plant is projected es 2000 tons.

In other tables it has been shown that the bed linen market in Kuwait is quite large. In the market place both musiln and percale sheets are available. Many of the muslin sheets are white while others are printed or solid colors. Percale sheets which sell for a higher price are frequently printed or carry some minimal decoration on the top side such as an embroidery. As the market becomes more sophjsticated printed designs in varions patterns will be more wideiy used. In the U.S. cotton and cotton blend sheets are widely used with synthetic fibers representing 45% of the market and cotton 53\%. One of the preferred blends is 50-50 polyester blends but 65-35 blends also available and in Kuwait this blend should be acceptable.

A 50-50 blend of polyester sheet was purchased at retail for $2.475 \mathrm{~K} . \mathrm{D}$. It was a white percale sheet decorated at only the top with small simple design and was made by the U.S. Cannon Co. dnalysis of the fabric design showed that it contained 31 threads per cm. in the pick direction and 40 threads per cm in the warp direction. The sheet ras designed for a twin bed, 168 cm . wide and 264 cm long and weighed 600 g . It had a 20 cm hem at the top and 2.5 cm hem on the bottom. Although itwas not possible to determine actual jarn constructions it. was estimated that the warp was possibly a 40 CC yarn and the fill 124 CC yarn. Maslin sheets were not as c refully analyzed and the estimates were 30 threads per cm in both wary ard fill direction. The equipment/yarn preparation ard weaving $c f$ dishdasha fabrics could be redily adjusted to produce bed sheets.

The markets for bed sheets in Zuwait, Saudi Arabin and the other Gulf States/ shown in Table 35 over the period 19801990 using the same tecinnique as in Table 33.

Table 35
Fabric Consumed in Bed Iinen Markets.
(Tons)

	1980	2935	1990
Kuwaiti	2,600	4,050	6,020
Saudi Arabia	20,600	27,800	34,400
Others	19,000	24,900	32,200
Total	42,200	36,800	72,600

As before assuming that a Kuwait piant could capture all of the Kuwait market and 25% of the Gulf Area market the market potential is shown in Table 36

Table 36
Potential Market for Kuwait Bed Iinen
(Tose)

	1980	1985	1990
Kuwalt	2,900	4,050	6,020
Gulf Area	9,900	13,200	16,700
Total	12,500	17,300	22,00
Polyester Content	8,100	11,200	$1+, 800$

Other large fabric markets for woven polyester cotton fabrics are those classified under cotton fabrics and rayon fabrics. Nuch less is known about these eabrics and time did not permit an accurate analysis of the fabrice in these categories. Nevertheless, most of the spun yarn fabrics could be produced using the yarn preparation and weaving equipent used icr dishdash and the bed linen markets. Undoubtediy the fabrics used in these markets may require more style. For this reason these fabrics are regarded as the second generation type products but more thorough investigation of these broad marikets may indicate that specifi: market aress may be no more complacated than the deshdasha or bed
linen markets and may be productd on the aame finishing equipment.

Talbe 38
Potential Woven Cotton and Rayor Markets for
A Kuwait Fabric Plant (Tons)

	1980	1985	1990
Kuwait	4,900	7,600	12,300
Gulf Area	18,700	24,800	31,300
Total	23,600	32,400	42,600
Polyester Content	15,300	21,100	$27,700 \mathrm{~m}$

Summarizing, the data for woven polyester cotton blend fabrics which could be produced using the same type of yarn preparation and weaving equipment are shown in Tible 39. Much of this tonnage is in white or solid colors but as the mrkets develop more printing and dyeing equipment will be required. In this table it should be emphasized that the narket potential represents only the Kuwait market plus 25\% of the Gulf Area nomels. They do not include men and boys white shirts, mea and boys underwear, womem and children undereloties, b-ouses, dresses and shirts for women and girls, summer weight skirts ard the like. The yarn preparation and weaving equipment for all of these products would be similar kut substarticily more dyeing, printing and finishing equipment rouid be required. Since present markets exist for abrics
eummarized in Table 39 the creation of a new segment of the needle induetry would not be required, the existance of yarn preparation equipment could in addition, provide the inpetus for the creation of a knitting industry.

Obviously, one of the weaknesses in this approach is the basic assnmption that market potential in all the Gule Areas is equal to the Kuwait maricet consumption pattern. This obviously is not true and should be thoroughly explored. Market analysis of existing markets is limited and would require more investigation. This is particularly true 0 : the cotton and rayon marketa.

Table 39
Pabric Markets for a Kuwait Located Polyester-Cotton Blend Fabric Plant. (Tons)

As indicated in the previcus section the manufncture of staple fiber in Kuwait requires the instiallntion of e textila industry to consume the staple product produced in the fiver plant. Examining only the dishdasha and bed Iinen markets it is apparent that the markets should be abie to support a 2000 ton dishdasia fabric plar't and a 4000 ton bed linen piant. As originally sized these piants should consume roughiy 4000 tons of polyester staple based on a normal textile plant utilization of a 15 shifts veek. Sudden surges in demand can thus be accommoaited. By placing the plant on a 24 hour seven day a week basis the plants vorid require at 65% blend level about 5500 tons of polyester staple and the fiver llant ins sized for 5000 tons.

In establisiang the design concept for the plant it was decided that the pient shcuid be designed in euch a manner that the building should be designed to accommodets a larger plent (spinning area primarly) but that the plant shoula contain only the indicatea equipment for a 5000 icn plant and that costs for the plent would $b \in$ siloceited to that area thich would be utilized. In addiiion, the plant should be designed so that even greater capacity coula be added in the future. This planning is similar to the block plon used for designing a large shmical complex. The plant will receife rav materials from either domestic or neariy sources to minimizestorage costs. The plant will produce both polymer and staple and the staple piant wili be sized to consume the entire cutput of the polymer plant. In turn tie staple plant will be sized to meet the requirements of tine tertile indusiry plants. It is assumed that the polves rnd staple plants. $\because i l l$ be under one mannganent and that the corrsponding texilie irdustry plants even, if :ot undze the same management, will be clogaly coordinater vith the fiber plant. Since the tertiie procinces are sc ciosely related it is assumed that the fiver plant vill produce only one
product and that this proudct will be aemi-dull 1.5 denier ataple for use in cotton blendirg. By concentrating production on only one product the costly production of many products for the normal merchant market will be eliminated.

Polymer for the plant will be produced from ethylene glycol and terephthalic acid, TPA, but will not use direct spinning. These possible surprising choices are based on the fact that experience should be gained on continuous polymerization for the production of staple by continuous polymerization direct spinning at some point in the near term future. At that point the chip produced in the polymer plant can be utilized to produce continuous filament yarns, either high strangth yarns for the tire factory or textile denier continucus filament yarns for weaving, knitting or texturing. Terephthalic acid was chosen rather than dimethyl terephthalic, DMT, because private studies not here reported have shown that TPA hes 3 lower production cost than DMT on an oquivelent basis and because there are some inherent cost advantages to polymer production fron TPA.

The production scheme contimplates using basic raw materials produced domestically or from nearby sources. It is realized that sources will not be operational in 1980. We have elected to use 1980 as the first operational year in consideration of plant construction times. For estimation purposes the polymer plant will produce 98% first quality polymer chip and the fiber plant will convert polymer chip tofirst grade staple in 96% yields. This requires that the polymer plant produce 5200 tons of firat grade polymer and the polymer plant will require reactants to produce 5310 tons of polymer. The molar ration of ethylene glycol to TPA was 1.5 to 1.

Polyesters can be produced from TPA and excess ethylene glycol , EG, by the indicated following reaction

N.W. 192

In this reaction BHET (bis- hydronyethyi tereph thalate) can be prepared by reacting two or more moles of DG with a moie of TPA. Since TPA is highly intrectable the reaction betreer TPA and EG is unually carried out inthe presence of BES: as a solvent so that the intermediate formec is in reality a mixture of products. After remoral oi any finee EG and the water formed in the reaction the polymer is formed by tho climinatici of EG between two BHET molecules and oligomers usuelly under incran.s.. ingly high vacuum and in the presence of certain cataiysts to give the final polymer, polyethylene terepinthalate or pran. Polyethylene terephthalate is a very hard, white orygtaline polyuic which when relatively/ have a melting range of $260-2650$. The literature on polyester formation is very eatensife and there aree ming review (5) articles.

Rather than attempt to size and estimate the construction and erection cost of each piece of equirment in the prooess we have elected to use a known construction cost in the jextile area of the United States in certs per annual pourd in i975 of 22 including a 25% uncertainitaincmance fon 2 simien sizce piant and escalate these costs 10 1979, the $2 n+1 c^{\prime} \%$ ted rers of major expenditure for a piant eperatioral in losc. It is
 hedge the cost of proxidine res miseric.. ard Einal product
storage has been reduced by using local suppliers of raw materials and by control of both polymer and staple manufacturing centers. In order to translate U.S. textile area costa to Kuwait costs a factor of 130% was used. This may be lower than many current estimates for chemical intermediate plants but, our estimate was based on the fact that equipment suppliern in these areas are faced with a depressed mariset and that much of the equipment will be shop rather than field erected. The plant does not anticipate purification of byproduct ethylene glycol and therefore no equipment is provided.

Raw material prices for the Gulf area are difficult to estimate but wo have assumed that these costs should be vorisd prices minus some average transportation charge. The contract price for TPA in 1977 to fiber customers was about l39KD per ton. With the general slump in polyester business and only modest recovery for continuous filament yarn there is little increase in demand to force up prices.Supply is more than adequate and prices are not expected to increase much beyond 145 KD per ton by 1980. If demind arising from the development of polyester bottles should incroase as enticipated prices in 1980 could possibly be somewhathighre. It has been estimated thet a now plant for TPA built in 1976 and operational in 1977 would have a cost plus a 15% DCF returr of 152.4 KD per ton. As an average transportation charge we have used 12.9KD per ton, and hare assumed that the price of tereplitnalic 3cid would be 132KD per ton.

In the United States the price of high purity ethylene glycol to fiber producers has been lower than for an inferior. product for industrial uses.Contract prices for 1977 as estimated by a glycol producer was l29KD per ton. is is the case for TPA the price for ethylene gljeol in 1980 shoul. k be approximately $135.4 K$ per ton and with : transportation charge of $12,8 \mathrm{KD}$ per tor the estimated price used in the report is 123 KD per ton. For comparison the estimated price for ethylene
gly col for 1977 was 120.3 With a 15% DC F return.

Labor costs are estimated for 1980 besed on information aupplied by the Industrial Drvelopment and Consulting Bureau, and escalated 8% per year until 1980. No provision ins been made for direct supervision since the polymer plant is to be operated in corfunction with the staple ilber plant and supervision can come from that plant.

Working capital represents four weeks production by utilizing local sources of raw materials and maintaining only two weeks supply of polymer. These are minimum duantities but should be sufficient for a plant producing only one product.

Since the recovered glycol only amounts to about 800 tons the product will be returned to the glycol supplier for pueffication in his plant. This practice is common in the United Stated where the freight distances are substantiolly higher.

The costs of producing polymer are shown in Table 40 These costs do not include any capital charges and in that, sensw ars not true costs. Since all of the polymer produced will be consumed by the fiber plant these polymer costs will be combined with similar fiber costs and capital charges will be applied to both processes.

In a similar manner the costs of converting nolymer intc staple are shown in Table 41 . Since information on melt spinning is not readily available 2 very brief review of tais subject $x y$ be found in arnex 4.

Data are combined in Table 43 for the combined processes and carital charges at several levels are included vith sonversion costs in Table 42 for the 1980 prodiction of 5000 tons of stapls fiber
currently polyester staple sells in the United States for about 371 fils per Kg and assuming 34% import duty and transportation and insurance charges of 20 1ils per K_{B} the competitive price for U.S. staple in Kuwait would be 406 fils . Although the manufacture of polyester staple is attractive at these costs detailed engeneering studies would be required to verify these costs.

Table 40
Polyester Polymer Manufacturing Coets

Plant	
Construction	1979
Operational	1980
Capactiy	5000 Tons
Production	5200 Tons

Capital Costs

Battery Limits	$1,570,000 \mathrm{KD}$
Off Sites	$510,000 \mathrm{KD}$
Total Fixed	$2,080,000 \mathrm{KD}$
Working Capital	$80,000 \mathrm{KD}$

Ray material	Quant	Unit	Unit Prics	Annual Cost	Unit Cost
Terephthalic Acid	4580	ton	132 KD	$605,000 \mathrm{KD}$	Fils/Kg
Ethylene Glycol	2570	ton	123	316,000	
Titanium Dioxide	26.5	tons	279	7,000	
Catalysts				9,000	
		Sub Total	937,000	187	

Ttilutifer

Power	$3,135,000$	Kwhr	0,002	6000
Cooling Water	$2,750,000$	$\mathrm{~m}^{3}$	0,009	25,000
Process Water	41,000	$\mathrm{~m}^{3}$	0,083	3,000
Steam	21,000 ton	0.43	9,000	

Operating Cost

Tabor 11 Fear 2770	30,000	
Supervision Included in Fiber Area	-	
Maintenance ($3 \% \mathrm{BL}$)	47,000	
Sub Total	77,000	15
Overhead Sxpenses		
Direct Orerhead (30% Labor)	9,000	
General Plant Overhead (60% Operat Cost)	46,000	
Insurance ($0,75 \%$ Fixed)	16.000	
Depreciation		
Battery Limits 10\%	157.0ne	
Offsites 5\%	25,000	
Interest 8\% Working Capitai	6,000	
Sub Total	260,000	52

By product Credit

| Ethylene Glycol | 790 ton $91 \quad(72,000)$ | (14) |
| :---: | :---: | :---: | :---: | :---: |
| | Total Coste Er Capital 1245,000 | 249 |

Table 4l
Polyester Staple Manufncturing Costs 1980

Plant	
Construction	1979
Operational	1980
Capacity	5000 tons
Production	5000 tons

Capital Cost
 Battery Limits 830,000 KD
 Offsites 270,000MD
 Total Fixed 1,100,000 KD
 Working Capitil 110,000 KD

Raw_Materials Quant Unit Unit Cost $\frac{\text { Annual Cost }}{K D} \quad \frac{\text { Unit }}{\text { Fils } \frac{\text { Cost }}{/ K g}}$

Polymer Chip	5200	tons		
Finish	26	tons	375	$10,0 \overline{0}$
Bale Wrap	20000	-	0.5	10,000

Sub Total 20,000
Utilities

Fower	$5,100,000$	Kwh	0.002	10,000
Cooling Water	$1,370,000 \mathrm{~m}^{3}$	0,009	12,000	
Steam	11,000	ton	0.43	5,000
Process Water	31,000	$\mathrm{~m}^{3}$	0.083	3,000

Sub Total 30,000
6
Operating Cost

Labor	22	Year.	2770	61,000	
Supervision	4	Year	3860	15,000	
Maintenance 3\% Bl	1	Year	7000	7,000	
				25,000	
	cub Total		108,000		

Overhead
Direct Overhead (30\% Labor \& Super V.) 25, 000
Goneral Plant Overhead (60% Operating Cost) 65,000 Insurance ($0,75 \%$ Fixed) $\quad 8,000$ Depreciation

Battery Limits 10\% 85,000
Offsites 14,000
$\begin{array}{cr}\text { Interests } 8 \% \text { Working Capital } & 9,000 \\ \text { Sub Total } & 204,000 \\ \text { Tot-I Lost Ex Capital } & 362,000 \\ \text { Charges. } & \end{array}$

Table 42
Polyester Staple Fiber Manufacturing Costs Monomer to Fiber 1980

Plant

Construction Uperational Capacity
Production
Baw Materials
Terephthalicacid Ethylene Glycol Titanium Dioxide Finish Bale Wrap Catalysts

1979
1980
5000 tons 5000 tons

Capital Charges
Battery Limits 2,400,000 KD
Offsites
$780,000 \mathrm{KD}$ Total Fixed 3,180,000 KD Working Capital 190,000 KD

Quant	Unit	Unit Price Annual Cost	Unit Cost	
		$\frac{\text { Un }}{K D}$		Fils/Kg
4580	tons	132	605,000	
2570	ton	123	316,000	
26.5	ton	279	7,000	
26	ton	375	10,000	
20000	-	0,5	10,000	
-	-	-	9,000	
Sub Total			957,0000	191

Utilitities

Power	$8,235,000$	Kwh	0,002	16,000
Cooling Water	$4,120,000$	N3	0,009	37,000
Frocess Water	72,000	H3	0,083	14,080
Steam	32,000	ton	0,43	14,808

$\begin{array}{lll}\text { Sub Total } \quad 73,000 & 15\end{array}$

Operating cost
Labor
Superviaion

Viaintenance $3 \% \mathrm{BL}$

33 Year 2770 91,000
4 Year $3860 \quad 15,000$
1 Year $7000 \quad 7,000$
72,000
Sub - Total 185,000

Overhead Expenses

irect Jverhead (30\% labor \& Supervision) $\quad 34,000$
Genersl Plant Overhead (30\% Operating Ccst) 111,000
Insurance)(0.75 Fixed Costs) $\quad 24,000$ עepreciation

Battery Limits 10\%
Offisites 5\%
Interest 8% Working Capital
Jub-Total
By product Credit
Ethylene Glycol

$$
790 \text { Ton } 91 \quad(72,000)
$$

$$
\begin{aligned}
& -62- \\
& \text { Table } 43
\end{aligned}
$$

Polyenter Staple Piber Costs Including Capital Chargee
Monomer to Polymer

Fixed Capital $1000 \mathrm{BD}$	$\begin{gathered} \text { ROI } \\ \text { \% } \end{gathered}$	Capital Charges $1000 \mathrm{kD}$	Conve ison Costs 1000KD	Annual Cost 1000KD	t Unit Costs Fils/Kin
3180	5	159	1606	1,765	353
3180	10	318	1606	1,924	385
3180	15	477	1606	2083	417
3180	20	636	1606	2242	448
3180	25	795	1606	2401	470

Spun Yarn Costs For Dishdasha Fabric

In this section we are examininig spun yarn costs. All of the data are based on the work of Rieter A.G. of Winterthur, Switzerland, who havea computer program for this analysis. It should be emphasized that there aremany good ring spinning systems which can be purchased either in the form of turn key plants or designed around standsrd pieces of equipment. Current prices of all Swiss made equipment are extremely high because oi the very high value of the Swiss Franc in terms of other currencies. Ring systems for spinning yarn rather than the less labor intensive open end spinning systems have been selected because of the high quality of the yarn which will be required. Although the plant was designed specifically for 4OCC yarns the same plant with adjustments can be used to prepare blended yarns for bed linens. Althoughthe principles of converting staple into spun yarn are the same it is not possible ecomoni cally to prepare heavy spun yarns, which would be used for heavy fabrics such as tarpoulins or carpets on the same equipment as is used for shirts, bed linens. biouses, dresses and dishdashas. The existence of a plant which can produce these fine yarns would give the basic bacigground and capability of producing other textile products at some point in the future.

The process of converting all staple fibers, natural and man-made, into jarns regardless of staple length or fiber type have been developed using the same principles. The essential features include some method of taking a completely random arrargement of short fibers and combing groups of these fibers untila fairly heavy uniform array of parallel fibers is produced. These arrays are combined and drawn down into smaller units seterzl times to form a smaller more uniform parallel arrangemert of fibers. These fiber arragrements have very little sttength and the final yarn step, the so cailed spirning step (henco the name spun yarr) draws the arrangement of fibers into the desired weight and twists it into a high strength yarr
using a ring and apindle system. It should be emphasized that the strength of a apun yarn arises solely from the greatly increase fiber frictional forces imparted by the twist. Details of the process will be found in Annex 5.

The cost for producing apun yarns of the size demanded by the dishdasha fabrics is given in Table 44 . The entire yarn produced in this plant will be used in the corresponding fabric plant.

$$
-65=
$$

2ab20 44

Cont of Producias 65-35 Polyentor Cottoa Yasm (4000)			
Platat		Capital Costs in 10	
Conotraotion	1979	Equipment	2,554,000
operatioasl	1980	Dudlaing	463,000
cegeotty	2000 tone	Total Fixed	3,017,000
		Working Capital	157,000

Am Heterdele

Endust	Orant	Undt	Unit Prien KD	Total Cont PD	Unit Cont Fila/re
Cottoz	1010	toz	428	432,200	216
Polyester	1389	tor	417	579,000	290

pithitien
Pever $10,710,000 \mathrm{kml} \quad 0.002 \quad 21,000 \quad 10$
Eunchies 42,000 21
leher

Oporetiag	87	year	1380	120,000
Malatomance	9	joer	2590	23,000
Supervieion				
Foremen		yoas	3600	29,000
Supartisor	2	year	7020	14,000
cenoral lifo.	1	yeas	12000	12,000
				198,000

Direot Overbead (30\% Labor)	59,000	
General Plant Overhead (60% Operating)	144,000	
Ineurance (0.75\% Fized)	23,050	
Depreciation玉quipant 10% Duilding	$\begin{array}{r} 255,000 \\ 23,000 \end{array}$	
Interent 8, Working Capital	13,000	
Sub Tatel	517,000	259
Br product Credits		
Cotton l'astes 310 ton 179	$(55,000)$	(27)
rotal Coste	1,734,000	867
Capital Charcea (19% R ROI)	453,000	226
Total Conte	2.987,000	1094

Dishdashe Fabric Costs

Before the yarn produced in the dishdasia yaun joit ann be used for producing fabric it rast be rowound from the rein bobbins onto either tubes for weaving or cones for warping and beaming. Since both yarn and fabric piants witi be unde: the same management this separation is purely artificial on for convenience these have been combined vith the fabric t? n^{+}, To give some concept of the problems involved in handing rarns in this vclume the plant will use 126 million kilometers ois yarn and this handing must be repeated screral tices without devejcipirg srarls in the yern.

Briefly the steps involved in preparing dishrlashs
fabrics are

1. Winding onto tubes or cones.
2. Prepartion of warps .
3. Sizing of warps.
4. Wearing of fabric and inspection.
5. Desizing and washing.
6. Resin treating and oring.
7. Final inspection and packaging.
8. Warehousing.

These steps are described in more detail in Annex 5 .

The coste of producing faoric are shown in Table 45 Ir arriving at thesecoets we have used a plant operatirg seven days $=$ reek but with the worisers woring a 0 de. $\therefore 8$ hour week vith two weeks annual leare. Tho sะuinzont cozts Ere high primarily because of the decreasing ralue ci the doilor ond its infuence on the Kuwait Dinar in relation to the suisi franc.
 franes.

In estimating woricing capital we have assumed 4 morthe inventory because of the seasonsl nature of the business. Thr s is a requirement for about 4 monthe of the yenr but ovbicialy inventories will be drawn down during the busy late pring and summer seasons.

Labor costs have been adjusted to 1980 using an 8% onnual increase. Basic data are from the Industrial Development and Consulting Bureau. Loom load per weaver has been established at 10 and as experienced is gained 2 gradual decrease in 100 m labor can be anticipated.

Plant sizing has been besed on the actual nuriber of pieces of equipment required and its sllocated workins space requirement. An additional allowance of 50% has been provided for in process Las apace and for traffic patterns.

Table 45
Ponaible Dishdeoh Fabric Production Costs

Plest

Conetruction 1979
Oparational 1980
Capacity 2000 tons

Capital Costs in KD

Tquipment	$6,266,000$
Suilding	$1,168,000$
Total Fixed	$7,434,000$
Working Capital	$1,121,000$ for 4 mos．
	700,000 for 8 mes．

First Quality	18.4×10^{6} linear meters
gecond Cuality	0.5×10^{6} linear meters
goren	0.5×10^{6} linear meters

Raw Eterial

Produnt	Quant	Unit	Cnit Prion	Fotel Cont in	Cinit Cost Pila
40 ce Tara	2005	toz	1094	2，182，cus	10．34

Utilities

Power	$22.2 \times 10^{6} \mathrm{knh}$	0.002	44,000	
Process liater	30,000	$\mathrm{~m}^{3}$	0.0083	3,500
Steas	27,000	ton	0.43	12,000
			Sub 50 tal	59,000

Suyplies

Ind．Tacicages	$1.84=10^{6}$	unit	0.03	55，CuO
Carteas	9.2×10^{5}	untt	0.15	14，000
Chenicals	100， 200	Cis	0.40	40，000
Reain	100，000	kg	0.6	60，000
fiaintemance				50，000
			Sub Total	213，000

Opergtin：Cost

Cperatiza L300r	164	year	130	236， 59
liaintesanes	30	Jear	2520	76，000
Scilled letor	30	jear	2100	63，060
Unstillsd Lisoor	28	7075	1020	29，000
Elussrisi：n				
$\therefore \mathrm{Ca}=: 1.2$	3	$\because 2$	ט＊	29，i：j
Guparissor	3	yoar	7.30	21，
convral ．．anager	1	yesp	1．5こつ	12，心0
			Cub Sotal	456．0：0

Overchad

Diract Dverhead 30f Labor and Superviaion	137,000	
Oenersi ?lant Overhead 60, Operating	304,000	
Insurance 0.75:. Pixed Cepital	56,000	
Depreciation Equiprent 10% Juilding 5.j	$\begin{array}{r} 627,000 \\ 59,000 \end{array}$	
Interest on Korking Capital 85,	67,000	
Sub Total	1,249,000	625
Total Cost Ex Capital	4,171,000	2086
Capital Charges 15,\% ROI	1,115,000	558
Total Costs	5,206,000	2643

The retail sales price for one grade of disnciasha fajric is 0.743 KD per meter. If we assune that mill price is 50% of retail price for first quality
 lin. woter the total sales voluse will be 6,980, 00 :D. Under these oirciantances the project appears to be quite attractive witi a returz on invostinent ci about $30 \sim$. It mast be pointed out that these returng are oused on the case of a fabric constructicn which is besed on a 40 co varn in $00{ }^{\mathrm{t}} \mathrm{h}$ warp and pick direction and thet the construction and finishing conditions are those described. at this point ve do not know the acceptebility of this fabrio in the intended end use. As disoussed in Annox 9 it is known that the highest qualitiv of dishdesha fabrics uses a 120 ce yarn two plied in both warp and fill. There appear to be no difficulties in wearing zuch fabrios, but the actual epinning of such fine jarms maj be difficult and certainly will be costly. For that reason the tochnique of spinning auch jarns and the finishinj of the fabrics will be important. It is apparent that much more work remains to be done before the aotual costs of producing these fabrios can be acourately pinpointed. Yowever, the assumptions on which these estinates are made have been clearly defined.

Conclusions and Recommendations.

Conclusinns

There is no existing market for synthetic fibers in Kuwait nor is there an established textile industry. Markets for s synthetic fibers must await the establishmat of a textile industry.

Textile products imported into Kuwait consume large quantitiss of natural and synthetic fibers with consumption approzimately equal to well developed Western countries. Indirect exports play an important role in this large consumption of textile products. The potential demand for synthetic fibers in Kuwait is high and by 1980 the demand for synthetic fibers of ail types will be 46,000 tons rising to 108,000 tons in 1990. In 1980 the synthetic fiber potential demand will be nylon 11,000 tons, polyester 25,000 tons, acrylic 6,000 tons and polypropylene 4,000 tons. The potential demand for acrylic fibers is too small for an acryiic fiber paplant fand polypropylene fiber万đemnds are in Iaw end textile products as replacements forjute. Nylon fiber demands 1980 will be continuous filament 9,000 tons and staple 2000 while polyester demands in 1980 will be continuous filement 9,000 tons and staple 16,000 tons. These demands met the minimum size for construction $0 f$ fiber plants.

The applications for nylon continuous filament fibers are in style dominated highly fragmented markets not suitable forthe establishment of a textile industry in sufficient voulme to justify building a nylon plant. Staple demands are too low to contribute significantly to the establishment of a nylon plant.

Polyester continuous 1 ilament demands are slso in strle dominated fragmeted markets and are not suitable for the establisimert of a textile ind ustry. Pilyester staple demands include ajole dominated markets as vell as several large volume markets in vinch style is of lesser importance. These markets include dishiasis.
fabrics, bed linens and woven cotton and rayon fabrics with the last two areas judged second generation fabrics.

The Kuwait and 25% of the Gulf Area markets for dishdasha fabrice will be il, 1,000 tons in 1980 which is sufficient to build a 2000 ton yarn and fabric plant. Similarly the Kuwait and

to build a 6,000 to n yarn and fabric plant. The combined polyester staple fijer demand for these two plants is 5200 tons permitting construction of a 5,000 ton per year polyester staple plant.

The production of polyester staple in a 5,000 ton per year plant usins locally produced terephthalic acid and ethylene glucol c.t transfer prices equal to world prices minus average transportation charges is commercially viable. The plant is capital intenaive mather than labor intensive and will employ 40 people, labor and supervision, in the operational area. Continuous polymer production is well suited for future expansion either in voiume or in other end uses. For future staple demand continuous polymerization combined with the selected staple process to form direct spinning units will be equivalent to world standard plants.

The zrociaction of dishdasha fabrics using the domestic polycsutr staple and imported cotton fiber is a viable commercial cperation. The plant will produce both yarn and weave and finish the fabric. The plants are labor intensive but will uitilize largely scmi-skilled labor including a large number of expatriate $\because \because \mathrm{an}$ les. Yarn production for bed linen fabrics is commercially rable. The rarn and fabric plants for both fabrics will use similar aquipment and the ynrn plants can be used to make similar wetgit j irns for a wide variety of textile products. The yra Ol.rts are $v \in l l$ suited to be the spring board into other textile praincte sind processem.

Recommendatinns

It is recommended that the polymer and staple plant be based on domestic or nearby locally produced chemical intermediates. To make domestic production of terephthalic acid and ethylene glycol more attractive it is recommended that two broad studies be initiated for the feasibility of producing world size polyester staple

1 lants for the export market and (2) world size plants for the production of polyester polymer for (A) conversion into continuous filament and (B) conversion into soft drink bottles for the explosive growth of the faolly size container packaging field. The basic thoughts underlying these recommendations can be developed.

It is recommended that studies be initiated to determine the methods and the costs of distribution of fabrics. originating at the Asian dishdashe fabric finishing plant to the ultimate consumer. These studies would give some indication of the ultimate compe.titive/for dishdasha fabrics which the creation of a Kuwait fabric plant might encounter both in Kuwait and in the Gulf Area. The studies should include the advantages of creating a limited number of factory outlet stores rather than conventional distribution channels as well as the possible advantages from a marketing as well as a fabric manufacturing viewpoint of creating a quality factory to supply ready to wear dishdashas.

Finally it is recommended that studies be undertaren of the oost of producing bed linens in the sizes and types (muslin and Eor parcale) to meet the Kuwait and Gulf Area markets. These studies should include the cost of dyeing, printing and sewing the bed linens.

$$
0
$$

annex 1.
JOB DESTRIPTITM
TF/KOW/76/001/11-C5/D/32.1.H

Poat Title:

Duration

Date Reauired

Dury Station

Purpose of Project

Duties:

Conoultent in Synthetis Fibers and rextiles.

Two monthas

January 1979

Kıwa1=

To prowide sufficient information and guidelines to onable local investars to take a disciaion with regard to establiahing a aynthetic fibers and textile iduatry.

The consultant will be ettachec to the Industrial Development aind Coneulting Buresu, ana as a mecber of a team of internationaj experts under the leadersiop of the Project Macager, will apesificaily be expected to:

1. Vialat local importers and eramine inports.
2. Assess present requirements for domestic and export maricets as well as future potentials.
3. Prepare a fesaibility study for setting up a factory for the production oi synthetic fibers and teatinies. The feasibility study should irclude:
a) marketing of the producta for local ance export maricets;
b) adrice on fachno-comarcial problems of establishing the piant: including location, appropriate cspacity, onginesring, r3:i matorials, pacting, ccergy, etc., and manporres requiremszts and orgenigaticn;
a) descravotion of zanưarturing trosess;
d) descripica $0:$ zaching ry and ecuipach;
e) tabuiation of emtirited reodict ejsts, estimaiion of working capitai and suggested capita. stmuc una;
f) estimoticn of unit costs of production and
 sarkets and calcuie.tien ot brealr-even maiysia;
 for :"utur nssisterce.

Q\#ALIFICATION

LaHgutage
3ACKGROUND
IVFORMATION

The expert will also be expected to peepare a final report, setting out the fincings of his mission and his recommendations to the Government on furtrer action which might be taken.

University degree in chemical engineering or chemistry with extensive experjence in synthetic fibeis sind textile industries, and with experience fil the preparation of feasibility studies.

English
The country is one of the major oil producting countries, revenues from oil constituting the cajortity of the total revenues of the country. Diversification of its economy is an important cbjective of the country develcpment policies. The substitution of nationally manufactured goode ior imported products and the establishment of viable industries in this onnnexion are recommended.

A project for an aromatic--petrochemical complex in the country hes been agraed upon. which skouid be able to supply a substantial part of the raw materials.

The Industrin. Development and Consulting Bureau, which was esteolished ir 1973 in collatoration with the Ministry $0-$ Commerse anc Induagry and UNIIO/UNDP, is primainily concornid with procoting investment opportunities in industry oy identifying viable projects through carrying out feasibility studies and evaluatiing those submitted ty locel investors, as well as issisting the Ministry in other development objectives. Synthetic fibers and textile manufacture is a project among those identified by the Rureau for investigation.

Annex II

IXPORTS OF FABRICS AND NON APPAREI TEXMILE PRODUCMS

Table 5 - A2
Limen Pabrics
Importilaseification 653.300

$\begin{aligned} & \text { Years } \\ & 1972 \end{aligned}$						
1973	15	15	-	-	15	15
1974	5	6	-	-	5	6
1975	2	8	0.7	0.8	1	7
1976	-	-	-	-	-	-

	Table 6-A2 Woven Synthetic							Fiber Fabrics

Table 7 -A2
Woven Rayon Fabrics

$1972{ }^{7}$	Imports		classification 653.600			Net
	476	6768	767	$\underline{698}$	T898	1
1973	2674	3761	745	911	1929	2850
1974	1652	2757	195	351	1457	2406
1975	1615	2602	190	370	142	2232
1976es	2606	3864	527	767	2079	3097

Artificial Fur. Fabrics Classification 653.901

	Imports.			Exports.		
Year	Tons	1000KD	Tons	Net.		
1972	8	14	-	-	8	14
1973	17	26	1	1	16	25
1974	18	30	2	3	16	27
1975	26	37	4	9	22	28
1976 est	21	36	3	4	18	32

Table 9-A2
Woven Fabrics N.E.S. Clasatification 653.900
Imports. Exports. Net

Iear	Tons	1000KD	Tons	1000 KD	Tons	1000
1978	991	296	83	19	908	277
1973	125	38	63	11	62	27
1974	116	172	6	2	110	170
1975	282	102	52	16	230	86
$1976 e s t$.	570	162	228	61	342	101

Table 10 - A2
Tulle and Other Net Fabric: clasalification 654.001
Imports. Exports. Net.
Tear Tons 1000KD tons. 1000K工 tons. 1000KD 197282 - 82 - 26 82

$1973 \quad 13$ - 35 - 13 | | 35 |
| :--- | :--- | :--- | :--- | :--- |

197435 - 13 - 13 35

1975 6. $25 \quad 1.6 \quad 5.8 \quad 4 \quad 19$

1976	-	Ribbon clas	$\begin{aligned} & \text { Table } \\ & \text { and } 0 t] \\ & \text { ificat } \end{aligned}$	$\begin{aligned} & -\mathrm{A} 2^{-} \\ & =11 \mathrm{lar} 2 \\ & 6654 \end{aligned}$	rrow Fabri 4.002	ce
Fear	tome.	Importion	$\begin{gathered} \text { IE } \\ \text { tons. } \end{gathered}$		DOKD. tons.	Net. 1000K0
1972	179	296	26	20	153	276
1973	69	141	1	2	68	139
1974	206	84	7	9	199	75
1975	103	269	5	8	98	261
1976est	127	318	19	25	108	293

Table 12-A2
Bmbroidery Clasaification 654.005

	Importa.		Exports.		Net.	
Iear	Tons	1000KD	tone.	1000KD		
1973	15	36	-	-	15	36
1974	8	44	-	-	8	44
1975	11	70	-	-	11	70

Table 13-A2
Coated Textiles
Clasaification 655,400

$\begin{aligned} & \text { Year } \\ & 1972 \end{aligned}$						
	$\begin{aligned} & \text { Tons } \\ & 625 \end{aligned}$	$\begin{aligned} & 1000 \mathrm{KDa} \\ & 199 \end{aligned}$	Tons. 85	$\begin{aligned} & 1000 \mathrm{KD} \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Tons. } \\ & 540 \end{aligned}$	$\begin{aligned} & \text { i000KD } \\ & 180 \end{aligned}$
1973	241	102	41	13	200	89
1974	201	416	15	7	186	409
1975	618	288	23	12	595	276
1976est	520	283	95	67	425	216

Table 14 - Al
Synthetic Fiber Rope
claqaification 655.601
Imports. Exports. Net.

Year	Tons	1000KD	Tons	1000KD. tons. 1000KD		
1972	817	152	-	-	817	152
1973	437	128	144	40	293	88
1974	263	165	111	46	152	119
1975	523	237	109	44	414	193
1976 est	615	184	260	95	355	89

Table 15 -A2
Vegetable Fiber Cordage.

Table 17-A2
Cotton Bags and Sacks
Clanalification 656.101

$\begin{aligned} & \text { Yoar } \\ & 1973 \end{aligned}$			Tons port\$000K0 tonet.			
			Tone	2	torl	$\begin{gathered} 1000150 \\ 559 \end{gathered}$
1974	503	248	-	-	503	248
1975	278	132	37	2	241	130
1976	-	-	-	-	-	

Table 18 - A2
Non Cotton Sacks and Bags
Claselification 656.109

Tears	Ton Importiodmm		Exports.m		Ne	
			Tons	1000KD	Tons	100015
	4500	1269	934	91	3566	1178
1974	4711	1719	571	33	4140	1686
1975	3350	947	446	63	2904	884
1976	$t 3302$	699	367	70	2935	629

Table 19-A2
Tarpaulins
Claseffication_656.201
Imports. Exports. Net.
Year Tons 1000KD tons. 1000kD Tone 1000KD

1977	289	75	1	0.3	288	75

1973	206	80	10	4	196	76

1974	361	131	19	11	342	120

1975	321	155	55	28	266	127

1976est $650 \quad 347 \quad 225 \quad 97 \quad 425 \quad 250$

Table 20-A2
Tents
Classtification 656. 202

	Imports.			Bxports.			Net.	
Iear	Tons	1000KD	Tons	1000KD Tons	1000KD			
1972	255	89	45	18	210	71		
1973	270	119	32	11	238	108		
1974	524	381	59	34	465	347		
1975	947	674	60	50	887	624		
$1976 e s t 1087$	761	559	434	528	327			

	- $82-$					
	Table 21-A2					
	Blankets and Coverlets					
Year	Tons	1000K	tons.	1000	Tons.	1000 KD
1972	2553	1391	1407	517	1146	874
1973	2489	1571	1014	571	1476	1000
1974	2778	2317	959	673	1819	1644
1975	3964	3693	1315	1183	2649	2510
1976es	t5307	5333	1992	1783	3315	3550
				22-A2		
				18		
			asifi	O 85		

$\begin{aligned} & \text { Year } \\ & 1972 \end{aligned}$	Imports. Tons. 1000 KD		Exports.		Net ${ }^{\text {jo00xD }}$	
	$\mathbf{3 2 3}^{\text {Tons. }}$	254	$\begin{aligned} & \text { Tons. } \\ & 29 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	294	251
1973	376	334	84	64	292	270
1974	391	314	35	39	356	275
1975	575	671	64	81°	511	590
1976est	536	663	90 Tabl	$\begin{aligned} & 90 \\ & 23-\mathrm{A} 2 \end{aligned}$	446	573
			Linen -8sific	and Tab $\text { 1on } 656$	$\begin{aligned} & \text { le Clo } \\ & .912 \end{aligned}$	

Table 25 - A2
Other Made - up Textile Articles N.E. 8. Clasatification 656.929

- 84 -

Annex II A
IMPORTS OF CLOTHENO
'lable l. A¿A Mens and Boys Outergarments Classification 841.00:

	Imports		Exports		Net	
Years	Tons	1000KD	Tons	1000 KD	Tons	1000 LD .
1974	2809	7830	578	1110	2231	6720
1975	3841	10680	786	1478	3055	9002
1976est	4401	13000	1212	2486	3189	10514

Table 2 - A2A
Women, Girls and Infants Outergarments Classification 841.00 :

Table 4-A2A
Socks and Stockings
Classification 84i.004

	Imports		Peports		Net	
Years			Tors	IOnom	Tons	100MKD
1973	226	506	27	37	199	469
1974	167	461	15	21	152	440
1975	257	644	12	20	245	62.4
1976est	237	539	14	$2 ?$	223	512

	Table 5 - A2A					
	Scarfa and Yanhmaga					
	Claseification 841.007					
		100060		Exports 1000KD	Tons	Net
Year	Tons	10001	Tone		10as	
1973	290	739	108	177	182	562
1974	213	555	21	48	192	507
1975	277	617	54	148	223	469
1976	323	815	78	219	245	596

Table 6. - A2A

Other Clothing

Claseification 841. 009

Imports. Nxports. Net.

	Inports.		Exporte.			000
Tear	Tons	1000xD	Tons.	1000K	tons	
1974	1721	4471	357	614	1364	3857
1975	2308	5700)	476	758	1832	4942
1976	3130	7638	1281	2144	1849	5494

Annex III
ADJUSTED IMPORTS OF FABRICS AND NON APPARES TEXTILE PRODUCTS AND CLOTHING Table 1-A3

Clasaification	Product	Imports tonsFactor \% Weight Tons		
651.000	Textile Yarn	470	87	$4 \pm$
652,000	Cotton Fabrics	2810	87	2440
653.100	Silk Fabrics	35	87	30
653.200	Woolen Fabrics	791	87	690
653.300	Linen Fabrics	3	87	-
553,500	Woven Nylon	10376	87	9030
553.600	Woven Rayon	2606	87	2270
553.001	Artificial Fur Fabrics	21	87	20
653,900	Woven Fabrics NES	570	87	500
554.001	Tulle and liet Fabrics	2	87	-
654,002	Ribbons \& Narros Fabrics	127	87	110
-54.002	Embroidery	15	87	10
655,400	Coated Textiles \& Products	520	52\%	270
655,611	Cordage of y y Fibers	615	95	580
655,615	Cordage of Veget Fibers	542	95	510
655,620	Nets of Cordage	193	95	180
656.101	Cotton 3 ags	375	95	360
656.109	Non Cotton Bags	3302	95	3160
656.201	Tarpoulins	650	95	620
656.202	Tents	1087	95	1030
656.600	Blankets Coverlets	5307	93	4940
656.911	Towels	536	93	500
656.912	Bed Linens	2938	93	2730
656.919	Curtains	11	87	10
656.929	Textile Made up textiles	215	94	200
557.500	Carpets zo notted	988	93	920
657.501	Rues	705	93	660
657.609	Other Carpets			
	Tufted			1780
	Woven			2890
	Totals			36850

- 87 -

Table 2.A3

Imports of G7othine in 1976

MELT SPINNING PROCESSES

Melt spinning, the process of converting molten polymers into synthetic fibers, was developed by the team working under the brilliant chemist, Wallace H . Carothers, at the duPont Company in Wilmington, Delaware, in the mid to late 1930's. In the short time since the first introduction to the trade in the post war period melt spun fibers have dominated the fiber world and in the United States, for example, the production of melt spun fibers in 1977 was $2,470,000$ tons or slightly more than twice the consumption of cotton. There are two types of melt spun synthetic fibers, staple and continuous filament, and each type requires its own special type of equipment. However, staple equipmet t. within certain limitations can produca either polyester, polyamide or polypropylene staple and similarly continuous filament equipment can produce either nylon, polyester or polyproplyene fibers. Although the principles and the general type of equipment are the same these changes can not quickly be made so that in the true sense of the interchangeability of fiber type the plants are relatively fixed. This is particularly true where special plants have been built for a given specific fiber to meet the competitive prices now existing in many parts of the world.

To give some concept of the problems involved the relative sizes of the products should be outlined. The oider but still widely used term to describe the size of a fiber is denier. This is the weight in grams of a single fiber or filament 9000 meters long. Normally staple blended with cotton will be 1.5 denier with wool 6 denier and for most carpet staple about 15-20 denier. For cotton blends the yarn strength for yarns produced on equipment capable of converting cotton into yarns is dependent upon the length of the cotton type used and could be 38 mm long. Thus, one Kg of a single fiber suitable for blending with cotton prior to cutting would be $6,000 \mathrm{kilometers}$ long and one Kg of staple fiber after cutting would contain 1.58×10^{8} fibers and each fiber would be 38 mm long. In contrast, continuous filament fibers or yarns are,
in reality, bundles of single filaments and the denier of the yarn is the total weight in grams of 9000 meters of all of the single. filaments in a bundle. A common nylon yarn used for many apparel fabrics is designated 70/34. This means that 9000 meters of the yarn would weigh 70 grams and that there are 34 filaments in each bundle of yarn and each single filament would have a denier of 70/34 or about 2.

It should be recalled that each single filament either in staple or in continuous filament yarns must be produced from an individual hole in a metal plate called the spinnerette. The method of final packaging of staple and continuous filament yarns differ because of the textile industry equipment developed to handle the two products. The final package for staple is a bale which may contain 225 Kg or more of these fine, short fibers with a random arrangement of the fiber. The final package for a continuous filament yam is a bobbin, tube or pirn of yarn in which one continuous filament yarn is wound in a controlled precise manner on the yarn holder. The method of placing the yarn on the package is analogous to that used in a casting reel for fishing except that the packaging speeds can be as high as 4000 meters per minute.

In the STAPLE process molten polymer either directly from a continuous polymerization unit or an extruder is fed through a pipe distribution system, known as a spin block, in which the polymer temperature is precisely controlled by a Dowtherm heating system, to a number of high temperature gear pumps. Each pump is driven by a synchronous motor so that each pump is driven at exactly the same controlled speed and each pump delivers exactly the same volume of polymer. Inserted into the spin block are the so-called spin packs which contain some method of filtering the polymer, usually some arrangement of various sized sands or wire screens or various sintered metal disks, a breaker plate to distribute the polymer at a constant pressure to the spinnerette and a spinnerette. The latter is a thick metal plate containing thousands of counter bored holes arranged in a precise pattern. The size of the holes is fortunately
much larger than the final cross section dimensions of the fibers. In most cases the fiber cross section is round but in some cases delta or multilobal cross sections are required and the manufacture of these spinnerettes has required very high skills. Similar precision techniques are required to manifacture the interchangeable parts for the precise gear pumps. Since the viscosity of these molten polymers is quite high and since viscosity usually doubles with each $10^{\circ} \mathrm{C}$ drop in temperature the precise control of temperature is important to insure fiber uniformity. Furthermore, the spinning temperatures of most polymers is within a few degrets of the polymer decomposition point so that the design of the spin block has been developed to minimize polymer residence time in the molten condition.

On emerging from the spinnerette hole into atmospheric pressure the polymer will relax and form a melt pool on the spinnerette surface similar in shape to a carrot. The polymer is drawn off from the pool by two precisely driven metal rolls known as godets located at least one and frequently two stories below the spinnerette surface. The fiber passes around the lower roll and up to the second roll located about a half meter above the bottom roll. Both rolls are driven at the same speed by synchronous motors but the upper godet usually has a circumference approximately 3% greater than the lower to insure adequate contact between the roll and the yarn. Since the gear pump is metering a constant volume of polymer to the spinnerette and since the godets are withdrawing the fiber at a constant speed from the spinnerette face, the volume of polymer extruded and the speed with which it is withdrawn will determine its denier. Since fiber spinning requires multiple units iiber uniformity demands that the speeds of the pumps and the godets remain the same. In order to ensure this sophisticated and costly drive systems are required.

As indicated the fibers are molten as extruded and to preserve their identity they must be cooled below their sticking point before they are allowed to touch. Since spinning speeds
-91-
are high, in order to reduce costs and range from 600 to 1000 meters per minute, the fibers are normally cooled by a carsfully controlled and uniform stream of air blowing normal to the fiber stream in a chamber known as the quench chamber. Usually these chambers are about 150 to 180 cm high and are located immediately below the spinnerette. After leaving the quench chamber the fibers enter a large pipe or "stack" leading to the godet rolls previously described. On leaving the "stack" the fibers are sufficiently cool so that they can be allowed to touch without sticking. Before reaching the godets the fibers are collected by a guide into a flat band or ribbon and pass over a ceramic kiss roll which applies the fiber "finish". The "finish" for most melt spun fibers consists of an emulsion of a high grade mineral oil containing a quaternary ammonium compound as an antistatic agent. The temperature and humidity of the quench air is usually controlled. Generally for nylon steam is introduced in the "stack".

On leaving the upper godet the fibers normally pass under an idler roll located about 75 centimeters below the upper roll and on to the next spinning position. where it joins a similar group of fibers coming from that spinning position. The distance between the spinning positions is, of course, governed by the design of the spin block. In many cases in staple spinning this distance will be 60 to 75 cm . The number of spinning units will in turn be governed again by the design of the spin block but usually these will be limited to no more than sixteen and frequently as low as eight in one spinning unit.

The "as spun" yarn from the several spinning positions is pulled under the idler rollers by a set of pinch rolls as part of the can plaiter. The can plaiter is automatic and lays the fiber bundle in a large metal can at spinning speeds of up to 1000 meters $/ \mathrm{min}$ in a manner so that the bundle can later be removed from the can without entangling. When the can is full the plaiter automatically transfers the fiber bundle to an empty can. The cans are quite large and may hold as much as 250 Kg or more.

The polymer is fed to the spin block either by large extruders supplied with polymer chip or by forwarding augers receiving molten polymer from the continuous polymerizers. From that point until the plaiter cans must be removed the process is continuous. When the spinnerettes or spin packs become partially blocked by dirt or polymer gel particles they must be changed. For polyester pack life without changing can be as long as two weeks.

As mentioned earlier the as spun fiber has inferior properties and must be stretched in order to obtain the desired physical properties. Stretching large bands of fibers can be accomplished by means of two sets of seven roll godet stands operating at different speeds. The individual rolls in the seven roll stands are placed in two horizontal rows of four and three and the band of fibers laced over the surface of these rolls. The rolls are staggered in such a manner that the band is in contact with as much of the surface of the roll as possible. Experience has shown that the friction developed between the yarn bundle and the surface of these large rolls is sufficient to prevent fiber slippage. The fiber passes through a slot oven to another seven roll stand operating at a speed fixed between 3 and 5 times as fast as the first set. Under these conditions the fiber is stretched or drawn and the so-called draw ratio is determined by the ratio of these two speeds. Usually this ratio is around 4 but may vary somewhat depending upon the actual spinning conditions used in preparing the as-spun fiber.

In practice, the cans from the fiber spinning machine are placed in a prearranged pattern in front of the first seven roll stand and the fiber from each can placed in its individual opening in an eye board to form a fiber ribbon. The fiber is pulled from the cans by a set of pinch rolls to a three roll stand which is a pretensioning device to ensure that the fiber band is in good contact with the rolls on the first seven roll stand. Frequently, the drawing may be done in two stages and a third set of draw rolls and a second oven used. Finally, in some cases a three or five
roll stand with another oven and operating at a somewhat lower speed than the previous set is used. This permits the fiber band to shrink or anneal. In the drawing operation the fiber should be at a temperature above its second order transition point and is usually about $90-120^{\circ} \mathrm{C}$. Annealing temperatures are substantially higher.

After leaving the annealing section the fiber, although it has most of its desired physical properties, is straight and would not process on either cotton or wool processing equipment and must be crimped. The zig-zag shape is imparted by a stuffing box crimper in which fiber is forced by rollers into a confined space at a rate greater than it is released and is forced to assume the desired zig-zag shape. Depending upon the amount of finish imparted during spinning additional finish may be added at this point. After crimping the crimped fiber is plaited onto the moving belt of a drier where the crimp is heat set and the fiber dried. After air cooling the fiber is cut into the desired staple length and blown to an automatic baler for baling. The bales are wrapped in polypropylene woven fabric and weigh usually about 225 Kg .

The process can be continuous from the plaiter cans through to the baler. In the larger installations TPA and EG are fed into a continuous polymerizer which in turn feeds molten polymer into the spin blocks and no labor is required until the as-spun fiber reaches the plaiter cans. Thus, the process is interrupted only once. Under these conditions labor demand is very low and this process is particularly suitable for high labor cost countries and for large high volume markets.

The textile industry processes for using CONTINUOUS FILANENT yarns depend upon the ability to unwind a continuous filament yarn from a yarn package with minimum change in unwinding tension. This means that one yarn must be carefully and precisely wound on one package. Although the same general principles of melt spinning apply the equipment differs substantially from staple equipment. These differences are largely differences in size and in packaging.

As in staple each filament must be extruded from an individual hole in such a manner that it will not touch another fiber before it is cool and, in addit m , the holes must be grouped in such a manner that the exact number of filaments required for the yarn can be readily separated from another group. This means that there is a physical limit to the number of individual fiber bundles which can be separated from any given spinnerette. Furthermore, each end must be wound separately which further complicates the picture. Gear pumps have been built which can meter 4 streams simultaneously which would mean that each metered gear pump stream could theoretically supply a spinnerette with two different yarn bundles and theoretically each spinning position could produce 8 continuous filament yarns. For finer denier yarns this has been accomplished but the associated problems are substantial and a maximum of 4 ends per spinning'position for textile denier yarns is more practical. Thus, in our example of 70 denier yarns each spinning position would produce a maximum of 560 denier and more probably 280 denier yarns whereas a staple spinning position could produce 3000 to 6000 denier or even more depending upon staple denier. It is true that continuous filament spinning speeds could be higher than staple but they would have to reach 10 to 12 times as fast to give the same production rate.

In the normal processes for producing continuous filament textile denier yarns the as-spun yarn is wound on an individual package. When the package is full each individual yarn must be transferred to an empty package. Package weight depends upon the number of ends per position but could be from 4 to 10 or 12 pounds.

The individual package of as-spun yarns must then be drawn on a draw twister or drawinder and each individual end again packarcd. Draw twisters or draw winders are devices carefully designed to minimize space requirements in which one or two stage drawing followed by an annealing section can be used. Each yarn would thus require two or three godets with an idler roll for at least two of the godets.

The difference between draw twisters and draw winders reside in the fact that draw twisters impart a slight twist to the yarn using a ring-traveler-spindle arrangement for packaging whereas draw winders package an untwisted or flat yarn. Draw winders typically. use some type of an entangling device to prevent the individual filament from spieading or becoming "wild".

Just as in the staple process the yarn spinning process for continuous filament yarn is interrupted at the as-spun fiber stage. Since the draw ratio is usually around four the winding speed would have to be four times as fast as the spinning speeds which would mean a winding speed of up to 4000 meters. For a draw twisting or draw winding process the number of draw twisting or winding positions must be at least four times the number of spinning positions at equal spinning and drawing speeds. Since drawing speeds are usually somewhat slower the number of dtawing positions may more likely approach 5 or more times the number of spinning positions. This imposes a very high capital and labor cost on interrupted continous filament processes.

The most recent process for producing continuous filament yarns involves the so-called spin draw process. For many years the upper speed limit to package continuous filament yarns was about 1000 meters/minute. For these reasons the interrupted process was used. In the newer spin draw process the yarns are extruded as before and are stretched and/or annealed using a series of high speed godets and finally packaged at up to 4000 meters/minute without interruption. As might be expected equipment capable of winding at such high speeds, 240 kilometers per hour, is expensive. However, in high labor cost areas this capital intensive equipment must be considered. For Kuwait such equipment is essential for textile denier yarns.

As discussed in the TEXT polyester yarns are used in the single and double knit industry using so-called texturized yarns.
$C-721$

79.01 .15

$$
0
$$

08131

These are yarns which have been given a high degree of twist and then heat set in this highly twisted or coiled form. On twist release the yarns will remember their heat set shape and will tend to return to that shape. The texturizing proces on fully drawn yarn is very sensitive to yarn properties and the indistry now favors the use of partially drawn yarns which are drawn in the texturizing process. These so-called POY, partially oriented yarns, can be readily produced in spin draw processes.

Industrial yarns, particularly tire cord yarn, require high strength. This demands higher molecular weight polymers as well as a high degree of orientation in the yarn. Such high strengths require maximum orientation under controlled conditions. Fortunately, however, the yarns are usually 840 denier or higher which leads to more efficient and productive use of equipment than textile denier yarns.

In a similar manner BCF yarns (Bulked Continuous Filament) for carpets and upholstery demand a carefully controlled texturizing process. Again yarn deniers are high so that yarn costs can be reasonable. Yarn deniers for carpets are normally in tha range of 1200 to 3600 denier with individual filaments usually around 15. For polyestars continuous filament yarns, with the exception of tire cord, most continuous filament yarns are about 150 denier and are used in false twist texturing.

ANNEX 5

SPUN YARN PROCESSES

The estimation of spun yarn costs has been made by Ricter, AG of Winterthur, Switzerland. Unfortunately, for reasons beyond either their or our control, the computer analysis has been delayed by the late arrival of the necessary information and this section has been written prior to the receipt of their detailed estimation. For that reason this section will describe general methods of preparing cotton polyester blend yarns. Cotton fibers have many desirable features and with the development of the cotton gin have been the fibers of choice for most textile applications. However, they do have several serious weaknesses including low wet abrasion strength and poor wrinkling characteristics. It is not generally recognized but most cotton shirts fail because of abrasion during laundering and nearly any housewife will attest to the problem associated with ironing all cotton fabrics. Polyester staple has excellent wet abrasion properties and the use of polyester cotton blend fabrics, coupled with resin treatment, has minimized the wrinkling problem. The "wash and wear" concept is a most a reality but for many applications it may be more accurately described as "Machine wash, tumble dry, touch up and wear".

For most applications the preferred blend levels are 65-50\% polyester and 35-50\% cotton. Higher polyester blends of 80% have been used and with the aid of some promotional advertising funds from the National Cotton Council in the U.S., one large U.S. shirt firm has been promoting a $35-65 \%$ polyester cotton shirt but without marked success. Cotton has a real function in the blend since the resin used to minimize the "messy" appearance of the fabric is ineffective on polyester. Hence this section will be devoted to the more comonly used blends ranging from $50-65 \%$ polyester.

The spun yarn system has long been developed for the long staple fibers such as flax or linen and wool and the familiar picture of the woman busily engaged in spinning yarns with a spinning wheel is well known. The process for handing short staple length
fibers such as cotton is fairly new and dates from the early 1800^{\prime} s. In some manner the random arrangement of staple fibers found in the bale must be converted into a controlled weight, more or less parallel array of fibers and finally twisted under controlled conditions (spun) to give the desired yarns.

As received in the bale the cotton fibers mixed with more or less vegetable trash, immature fibers and short fibers are randomly arranged. Many of the fibers hava not been completely separated and may exist as clumps or tangles. As expected from a natural fiber produced under many conditions and with many varieties of cotton fiber, uniformity is relatively poor. An elaborate cotton grading system has been developed and the price of cotton will vary with the grade and type. After opening the bales of cotton the Rieter Company and others have developed an elaborate system of removing a controlled portion of cotton from each bale to give a more uniform cotton supply. Brochures to be received from Rieter will show pictures of this equipment. Staple length of cotton is frequently about 4.75 cm . If the cotton is of particularly lower quality it is "opened", a process of taking clumps of compressed fiber from the bale and essentially pulling at these clumps with metal fingers and air conveying it to the next step, the "picker". In this step the fiber, which has been partially separated and from which some trash has been removed, is fed to the picker. This device, which fluffs the fiber and air conveys the fiber to the next position within the picker, permits the heavier trash to fall out and thus be separated from the desired cotton fibers. The end product from the picker is the so-called picker lap. This is a fluffly mat or batt of cotton fibers from which the trash has been removed. The fibers in this fluffy batt are randomly arranged.

The next step in the process is to convert the randomly arranged fibers in the batt into parallel array of fibers. The equipment which does this is called a card and the process is called carding. Essentially it is a combing operation. The card consists of a large metal cylinder about 120 cm or more in diameter
which has been covered with a fine metal cloth containing thousands of wires. At the top of the card is a series of movable boards or flats which are covered again with wire cloth. These flats move slowly in a direction counter to the direction of the high speed rotating cylinders. A controlled weight of fibers is fed continuously to the card and removed continuously. The net result of this operation is that the average fiber in moving through the card is subject to thousands of combing actions so that it eventually is parallelized. Tangled masses of fibers which can not be parallelized.cling to the slowly, moving flats and are eventually removed and the staple fiber coming from the card are relatively clean.

The fibers are removed from the card by a doffing comb or stripper roll and are in the form of a very fine uniform web whose width is the same as the width of the card clothing. The web is gathered together by the "trumpet" located about a meter in front of the carci and perhaps 30 to 40 cm below the middle of the doffing comb. The wide end or bell of the trumpet faces the card. During its unsupported passage from the doffer to the trumpet the fibers are held together by frictional force derived from the crimp in the fiber and the amount and type of finish. Synthetic fibers are processed in a similar manner and it is for this reason that control of these factors, crimp and finish levels, in the fiber making step is so important. Since the fibers are subjected to so many combing actions in the card static charges would be developed and the highly charged unsupported web would be attracted to other metal parts of the card. Polyester finishes, therefore, contain an anti static agent and the card room is normally controlled at high humidity levels to dissipate any charges which are developed in the carding operation. The condensed fiber web is drawn away from the trumpet by a pair of rollers and is led to a large rotating fiberboard can into which the fibers are coiled by the coiler. At this point it is known as card sliver and is a rather thick rather fluffy cylindrical bundle of fibers in which the fibers are parallel to the long axis of the cylinder.

For the finer yarns the card sliver may be combed to further remove any tangled masses of fibers which may have passed through the card as well as any short immature fibers which are present.

If the web coming from the card was perfectly uniform the sliver would be of uniform weight. Any differences in sliver weight would immediately show up as non uniform final yarn. From long experience it is known that it is impossible to absolutely make certain that the web is perfectly uniform. For this reason four or more card slivers are fed to equipment in which the weight per unit length is drawn down. By combining four or more slivers with a distribution of weights and drawing down to some smaller weight, on a statistical basis the thick and thin spots should eventually even out. If this doubling or quadrupling is carried out several times the uniformity of the final product should be greatly increased. The number of such doubling actions is, of course, dependent upon the uniformity of the card web produced and the yarn count. The products at various stages of this averaging process may be given several names but the products at the final step prior to spinning and which have a low twist are called rovings.

The product is now ready for the final conversion into spun yarn. Depending upon the size of the yarn desired two ends of uniform parallel arrays of fibers from the previous section may be drawn down by removing the product at a faster rate than fed and the drawn down parallel array of fibers with essentially no strength is converted into a twisted spun yarn by means of a ring-spindle system. This system uses a supported ring in which the ring can slowly move up or down in a controlled manner. The ring is fitted with a metal "traveler" which is free to move around the circumference of the ring. The ring is moved in a controlled manner up and down around a spindle rotating at a high speed and located at the center of the ring. The parallel array of fibers coming from the drawing system is fed to the spindle but under the traveler. Under these conditions the twist in the yarn is controlled by the speed
-101-
with which the fiber array is fed and the rotational speed of the spindle. The spindle is fitted with a yarn holder or bobbin and. the traverse movement of the ring up or down determines the lay of the twisted yarn on the spin bobbin.

Production of the ring system of spiming is low. Rotational speeds are now approaching the ultimate. Newer systems of spinning speeds have been developed using rotors and known as open end spiming. However, these open end yarns have certain quality. deficiencies which make them less desirable for the finer yarns. In general open end yarns are more "hairy" than similar ring spun yarns.

The writer made a special trip to visit the Rieter Company in Winterthur, Switzerland after completing his stay in Kuwait and prior to his debriefing in Vienna. Their analysis as well as certain descriptive matter is found in Annex 9 and will detail the exact process used in preparing the spun yarn.

FABRIC FORMING AND FINISHING PROCESSES

One of the more popular dishdasha fabrics sold in Kuwait is a fabric labeled T-120 made by Nisshin Spinning Company of Japan using a 65-35 blended polyester-cotton yarn. The yain uses Teijin polyester staple. The fabric is sold in individual packaged 10 -yard (9.15 m) bolts. The fabric is sold as a 36 inch (91.4 cm) wide fabric. The actual finished width of the fabric purchased was 36.25 inches. The fabric has a 0.5 cm selvage on each side and the fabric had been pin tentered. The printed package stated that the fabric had been pre-shrunk and resin cured. The fabric was purchased at retail in the souks and sold for 6.75 KD or 738 fils per meter.

Since no textile laboratory equipment was available the assumption was made that the polyester staple was 1.5 denier $X 1.5$ inch $(3.8 \mathrm{~cm})$ long. Twist count was unknown. The weight of the fabric per running or linear meter was 103 g . It was assumed that resin add on was 5%. Under these conditions 2000 tons of fabric would theoretically require 1210 tons of polyester and 650 tons of cotton.

The actual number of yarns in a cross section of the fabric was counted using very crude equipment and the construction roughly estimated at 35. X 35. end per centimeter in each direction. From visual observation the warp and fill yarns appeared to be equal in size and the assumption was made that the same yarn was used in both directions. From these conditions the yarn size was calculated as a 40 cc yarn and the Rieter Company was asked to estimate yarn costs based on this yarn count. It must be emphasized that the cost data for both yarn preparation and fabric preparation and finishing are for a hypothetical dishdasha fabric prepared under the conditions specified. Before placing great reliance on these figures a detailed analysis of the various dishdasha fabrics sold in Kuwait and the Gulf area should be made. These fabrics should be carefully analyzed and the actual cost of preparation of the various fabrics estimated. The conclusions of this report are based on the yarn size and the methods of fabric preparation outlined and probably do not
represent all of the qualities available in the Kuwait market. The estimates can be used qualitatively as indicative of potential costs.

The problems of estimating plant costs become quite complicated since it means essentially designing the entire plant and its operation. For the plant to produce dishdasha fabrics the very minimum processes involved include the following steps in sequence winding, creeling and section beaming, sizing and loom beaming, weaving, fabric inspection, desizing and washing, resin padding and tentering, final inspection and packaging and warehousing. For each of these steps it requires an estimation of the practical speed with which these processes can be run, the total number of production units required, the working space required for each unit and process, the number of workers required to operate each process, the cost of each major piece of equipment and the supplies and spare parts required for each process. These calculations and estimations are far too complex and detailed to be reported here. It is planned, however, in this section to describe in some detail the general types of equipment involved in the various processes. For rather obvious reasons time did not permit similar analysis of fabrics other than dishdasha fabrics but this is part of the recomendations for future studies which will be required at a later date.

The yarn as produced as described in the previous yarn preparation section is on bobbins, the yarn packaging unit in ring spinning. In this packaging form, which is the preferred efficient packaging form for the high cost ring spiming system, the yarn is not suitable for use in other subsequent textile processing steps and must be rewound into suitable packages. For the next processing step for warp yarns this requires the use of yarn on a cone while pick or weft yarn can use a tube package. For efficient creeling and beaming each package should contain some multiple length of the loom beam. For example, if the loom beam contains 5000 meters of yarn (ie each beam could produce 5000 linear meters of fahric) and if we establish this preferred multiple as 20 each warp yarn package should contain 100,000 meters of yarn. For the dishdasha yarn each
warp yarn package should contain about 1.5 kg of yarn. For pick yarns a metered yarn package is not required. In addition to changing package form each rewound package will concain yarn from several spin bobbins so that the operators must tie ends together.

The rewinding machines are efficiently designed machines with 60 or more multiple units. Each unit is designed to produce a package which is identical to that produced by another unit. In order to conserve required floor space the units are arranged very compactly. These are precise but yet surprisingly rugged machines when it is considered that rewinding speeds of 400 meters per minute with an upper limit of about 1200 meters per minute are possible.

In weaving the yarns running the length of the fabric or the machine direction are known as warp yarns while the yarns running across the fabric are the pick, fill or weft yarns. These yarns complete the full fabric when interlaced. The supply package of warp yarns for the loom is a large metal spool on which the many ends are precisely wound. This metal spool is called a beam and the process of preparing these beams of warp yarns is known as warping or beaming.

In the loom beam for weaving as envisions each loom beam will contain sufficient warp yarns for three fabrics and each fabric will be about 91.5 cm wide and contain 3240 ends. This is the hypothetical dishdasha fabric. In order to prepare this loom it is envisioned that a smaller beam known as a section beam will be first produced. This section beam may contain up to 3240 ends but will probably be much smaller. The machine which prepares the sectional beams is known as a beamer and is analogous to a large fishing reel. However, instead of winding one fishing line the beamer will be winding many yerns simultaneously. The traverse motion of the beamer only spreads each individual yarn over a small section of the beam. The entire beam is full, however, because of the high number of ends which are being wound.

The device holding all of the yarn cones is known as a creel
and the process of putting the packages on the package holders is known as creeling. For the proposed dishdashe fabric 3240 warp yarns per fabric will be required and the creel must contain the same number of holders as the number of ends on the section beam. Usually the creel design is such that each post in the creel has as many holders per post as can be conveniently loaded. Since operators must be able to place a yarn package on each holder the arrangement of the creel must be carefully planned to minimize floor space.

In addition each end must be carefully wound on the beam with controlled tension. If the tension is lower on some ends thas on others the woven fabric will have a puckered appearance. For these reasons each package has a yarn tensioning control device and the beamer is located some distance from the creel front to minimize the angle the yarn must travel from the outermost posts of creel to the beamer. In addition, each yarn passes through a drop wire arrangement which, if one end breaks or runs out, will automatically stop the high speed beamer before the broken end is wound on the beam and lost. Such a broken end would cause a serious weaving defect in the resulting fabric and would cause serious tangling problems as well.

In weaving the fly shuttle holding the pick yarn or the grippers halding the yarn in shuttless weaving pass over alternate warp ends of yarn in simple fabric paiterns such as the dishdasha fabrics. This movement, as well as that of the reed tends to scuff spua yarns and forms small clumps or balls of fibers. In severe cases of scuffing these clumps can be woven into the fabrics causing fabric defects. The technique which has been developed for spun yarns is to coat each warp yarn with a starch or other temporary adhesive solution which on drying stiffens the yarn and ties down the loose fiber ends in the warp yarns. The process of adding some protective agent to the warp yarns is known as sizing and the process of drying the sized yarns prior to weaving is known as slashing. Normally slashing is accomplished by passing the warp yarns over rotating steam heated large rolls or "slasher" cans. Sectional beams can be combined at this point to form a loom beam.
-106-

As envisioned weaving for dishdasha fabrics will use 130 inch (330 cm) Sulzer shuttless looms. Three fabrics will be woven at the same time. Normally pick insertions in these looms are at rate of 240 picks per minute. At these rates each loom can produce about 4.1 linear meters of fabric per hour. Weaving is essentially a slow process from the standpoint of linear meters of fabric produced per hour and for this reason weaving of multiple fabrics is important. From the rate at which yarn is being introduced into the fabric the speeds are relatively high. Calculations show that this is at the rate of about 40 kilometers per hour for dishdasha fabrics.

In the weaving process yarns coming from the loom beam are continuously unwound under controlled tension. Each end passes through the eye of a heddle controlled by a so-called harness. At each pick alternate heddles move upward and the pick insertiry device inserts the pick between the two layers of warp yarns. At the next pick insertion the relative positions of the alternate heddles are reversed and consequently the alternate up and down pattern of simple woven fabrics is produced. In addition, each pick is pushed tightly against the preceeding pick between pick insertions. In these fine fabric constructions the high number of pick insertions increases weaving costs.

The cost of looms is the largest single capital item in the weaving plant. The number of looms required on an 80% operating efficiency level is 237 and at an estimated price of 18000 KD ex works this is a major expense item. The cost of Swiss looms has risen dramatically. As recently as late 1976 the cost for a 388 cm loom was as low as $12,300 \mathrm{KD}$ and it has been estimated that a 330 cm looms chould have cost no more than about $10,500 \mathrm{KD}$. It is impossible to predict plant costs using Swi.ss made equipment until the dollar has stabilized. The dramatic change in exchange rates has caused an increase in equipment costs of 20% in four months.

After weaving the sizing material must be removed and this is normally done by enzymatic action and is followed by washing.

$$
-107
$$

The presence of sizing materials in textile plant effluent adds considerably to the BOD load. Fortunately new high efficiency washing machines have been developed in recent years in which only about 0.6 Kg of wash water are required per Kg of fabric washed. These types of machines are particularly recommended for Kuwait.

Normally "as woven" fabrics are inspected. If defects which can be readily repaired are nuted these repairs are made at this point and the damaged fabric upgraded to some secondary use.

After bleaching and washing specially designed textle resins are padded onto the fabric and the resin treated fabric cured in a pin tenter. In this device the fabric selvages are pinned to a moving chain. The width between the chains can be adjusted so that the fabric is dried and the resin cured under tension. Ovens through which the tenter chains pass are either steam heated or direct gas fired.

After inspection and calendering the fabrics will be individually wrapped in bolts of predetermined length and then sold directly to customers or warehoused.

The bed linen market is somewhat more complex. Two general types of products are used in Kuwait. The more expensive product is a percale sheet which contains about 180 threads per square inch while the muslin product contains about 130 threads per square inch. In addition, the products are available for twin, double, queen and king sized beds. Many of the percale sheets are solid colored, printed or have embroidery on the hem of the top sheet. In addition, fitted bottom sheets are available. It was estimated that the percale sheets were made from 40 cc yarn in the warp direction and 24 cc yarn in the fill direction.

Time did not permit an estimation of the cost of producing these several products and it is one of the recomendations of this report that such a study be undertaken. It should be noted that bed linens will require a sewing operation in order to hem the sheets
or to make the bottom fitted sheet. This is a very large market and the fabrics can be woven on Sulzer looms. Since sheets are $s 0$ wide it is oaly possible to weave multiple selected fabrics on extra wide looms and generally the narrower looms are preferred.

Anner 7.

Partial List of planta and Equipments for Synthetic
Pibers and Textiles.

The list of suppliers to the synthetic fiber and textile industries is enormous and can not be even partially covered in this report. The submmitted list by no means indicates that all of the required equipment can be supplied by these vendors. However, theee companies are representative of some major suppliers. The writer does not have a complete list of addresses with him and for that reason the reader is referred to otber sources for correct addresses.

Synthetic Piber Plants.

1. IURGI APPARATE - TECENIIK GYBH

FRANKFURT - AM -MAIN
FEDERAL Rrfublic of germany
2. ZIMMER AG.

BORSI ALUEE
FRANKIKURTAM-MAIN
FTEDERAL REPUBLIC OF GERMANY
3. TARU FISCHER AG.

WETST BERLIN
4. CHEM TEX

NEW YORK. NY.
U.S.A.
FOUIPYENK SUPPLIRRS FQR SYNTHETIC FIBEFRS

1. BARMIER MASCHIENEN FABRIK
RBMGCHEID. (NEAR COLOEGE)
FEDERAL REPUBLIC OF GERMANY
2. NEUMAG
(NEAR HAMBURG)
FEDEERAL REPUBLIC OF GERIMNY
3. RIETER AG
WINTERTHUR
SWITZERIAND.
4. IBESONA MANUPACTURING CO
WARWICK R.I.
U.S.A.
ROUTPYENT SUPPLIERS YARNS PREPRARATION
5. RIETER AG.
WINTERTHUR.
SWIT ZBRLAND.
6. PLATT. GROUP
MANCHESTER.
UNITED KINGDOM
7. SACO-PLATT GROUP
GREENE VILLE S.C.
B.S.A.
8. WHITIN MANOFACTURING CO.
CHiRIOTTE N.C. AND
WHITINSVIILE MASS.
U.S.A.

1. SULZERR. BROS WINTHRTHOR. SWIT TERRLAND.
2. DRAPER. MPG. DIV. N.AMERICAN ROCENELI CORP. HOPEDALE MASS
U.S.A.
3. CROMPTON -ENOWTES CORD CHARIOTTE N.C. U.S.A.
a. WEST POINT FOUNDRY MACHINE CORP. WEST POINT GA U.S.A. -
4. PROCTOR. AND SCEWARTZ CO PRIILADELPELA, PA
U.S.A.

TYATITR PTANT FNGINYBERS AND BUTTDERS

1. LOCK WOOD GREEN CO. spartanburg s.c. U.S.A.
2. SIRRINE CO. GRERENEVILTE S.C. U.S.A.
3. DANIEIS DONSTRUCTION CO. spartanburg s.c.
U.S.A.

Anpex 8.

References.

1. Statistical Abstracts, 1977 Edition, Prepared by Central Statistical Office, Ministry of Planning Kuwait P. 93.
2. Yearly Bulleting of Foreign Trade Statistics prepared by Central Statistical Office Ministry of Planning Kuwait.
3. Textile Organon March1977.P.36.
4. A Study for the Development of the Synthetic Fiber Industry in the Arab States Prepared for IDCAS by Chem Systems Internationsl 1975.
5. Chapter on Polyesters in the Encyciopedia of Polymers.
6. Petrodynamics An Economic Analyais of Fiber Raw Mateials by Robert D. Evans.

RIETER PROPOSED YARN SPINNING PLANT

The proposed yarn plant for dishdasha fabrics will produce 40 ca blended 65-35 polyester cotton yarn. This means that one pound of yarn will contain 840×40 yards of yarn or 67,700 meters per Rg. It was impossible to send Rieter a sample of the fabric in time for them to analyze the fabric and complete their cost analysis in time for completion of this mission. On our visit to Winte thur a sample was submitted and using their laboratory the T-120 fabric woven by Nisshin Spinning Company of Japan, found that the fabric was quite unusual. The yarn, both warp and fill, was a two ply yarn made from 120 cc yarn so that the plied yarn is a nominal 60 cc yarn. We had roughly calculated the yarn as a 40 cc yarn and the methods of producing a 60 cc single yarn would be substantially the same as used for a 40 cc yarn. However, producing a 120 cc yarn may require a finer denier polyester staple, possibly in the range of $1-1.25$ denier and certainly this change may alter textile processing. A very good grade of cotton is also indicated. This fabric analysis emphasizes the point made in Annex 6 that complete analysis of the various dishdasha fabrics will be required before yarn and fabric coats can be determined.

The Rieter proposal for a plant to produce 2000 tons of 40 cc yarn for weaving dishdasha fabrics is attached. From time to time reference will be made to certain pieces of Rieter equipment which are described in Rieter bulletins now in the Industrial Development and Consulting Bureau or are presently in the mail to the Bureau. Their designation of a Ne 40 yarn is equivalent to a 40 cc yarn and refers to Number English. Our instructions to Rieter were to size the plant for a 6000 hour year so that operations on a 8400 hour year could increase capacity to 2800 tons. The plant is designed to produce $337 \mathrm{Kg} / \mathrm{h}$. In this Amex reference to Page A-l will be to page 1 of Plant A proposal and to B-1 to the Page 1 of the Plant B proposal.

On page $A-1$ note that the requirements for cotton are

44\% higher than the theoretical whereas polyester staple requirements only represent about 7% more than theory. The difference represents the cotton losses resulting from trash, immature fibers and the like.

Page A-2 describes the general type of equipment required to take polyester or cotton from the bale and to prepare it for the cards. Blending of fibers will occur after carding. In other words, there will be essentially two processing areas through carding, one for polyester and another for cotton. Since polyester is a synthetic material of uniform and controlled staple length, the processing is fairly simple. Bales of polyester will be received from the nearby synthetic fiber plant. The fiber is fed to a Rutopic opener which serves to open the fiber tufts before feeding to the Aeromix blending system. It will be recalled from the melt spinning system discussion that many different as-spun cans of polyester yarn are combined prior to drawing and, thereafter, are processed into a single bale. In the Aeromix unit additional blending occurs so that the feed to the cards is very uniform. The cards are fed with an Aerofeed automatic card feeder. All of the required polyester cards can be automatically fed from these units. Thus, once the polyester is fed to the opener the other processes are automatically controlled and the amount of labor is greatly reduced.

In the case of cotton the process required to remove trash and other contaminants is more complicated. In the first place, for the type of yarn needed for the dishdasha fabrics, high quality cotton will be required. Even though the production weight required for the 35% cotton in the blend is much lower than for polyester, much greater effort will be required to clean the cotton and to open the fiber. Therefore, two Rotopic blending openers will be required. The output of these openers is fed to a monocylinder cleaner and then to an Aeromix unit for additional blending. From the blenders the cotton is fed to two ERM cleaners. The feed to these units is controlled automatically and these units working in sequence provide an excellent means of removing foreign material from the cotton. The cleaned cotton next goes to the flock
feeders for the cards.

The cards for both cotton and polyester are identical. Carding serves two very useful purposes. The primary function of a card is to parallelize the fibers and to remove fibers which are clumped together. The Rieter cards are fed automatically by the flock shute feeders. In addition waste fibers can be automatically removed and recovered. For polyester staple the number of cards required is 8 while for cotton the number of cards required is 6 . For cotton carding using American type cotton production will be about 28 Kg per hour per card while the production rate for polyester will be 30 Kg per hour. Efficiency of carding both fibers is high, averaging about 97\%. This means that on a 8400 hour year the cards will actually be producing sliver 8150 hours. This assumes good management but these are the rates which can be achieved and are practiced in Western European plants.

For the fine yarns required the cotton uust be combed. The function of the combing process is (1) to remove all of the fine impurities and tangles of fibers called neps which passed through the carding process and were not removed at that point. (2) to remove short fibers which can not provide the strength required in the finer yarns, (3) to improve the parallelism of the fibers and (4) to improve the uniformity of the combed sliver. The card sliver as produced is not suitable for combing with modern machines. In order to form the laps which feed the comber the Rieter processes uses a card sliver lap machine feeding a ribbon lap machine. In the sliver lap machine depending upon the yarn to be produced some 20 to 36 card slivers are combined. The ribbon lap machine takes six of the combined sliver laps, draws these laps six times to give the product suitable for combing. Output from the ribbon lap machine can be automatically controlled and doffed. As a result little labor is required.

In the actual production schedule proposed 20 sliver laps would be combined in the sliver lap machine with a theoretical output of 230 Kg per hour and six of these laps would be used in the
ribbon lap machine with a theoretical output of 230 Kg per hour. Efficiencies of these two units are respectively 80 and 75% so that the actual production is substantially below these rates.

The Rieter combers have 8 productive heads and use a nipping device which holds the fibers while they are being combed and which can operate up to 240 cycles per minute. The production per machine per hour is 26 Kg at an average efficiency of 92%. To give some idea of the waste fibers which are produced in the combing operation it was estimated, based on the grade of cotton normally used (American), that the waste fibers from the combing operation would amount to about 19%.

It is possible to recover waste from the blowroom where the cotton is opened, from the card room and finally from the combing area. All of these wastes can be recovered separately and handled automatically and if both textile plants for dishdasha fabrics and bed linens are located at the same site such equipment is recomendec

The synthetic system is much simpler. Six of the card slivers are combined and drawn on the predraw machine. Each of these machines can produce 61 Kg per hour at 85% efficiency and a total of 4 machines will be required.

The blending of the fibers occurs at drawing frames. In this process the combed cotton is combined with the synthetic fiber in the high speed drawing frames. The proper amounts of the two fibers are combined by three passages through these units. In each passage the number of doublings is about $6-8$ so that by the time the fibers leave the draw frames they have been doubled 22 times. These units will produce around 60 Kg per hour at an efficiency averaging 87\%. The number of machines required will be 18 .

The blended fiber coming from the high speed drawing units are not suitable for spinning into yarn using a ring spinning system and must be reduced in size by a drawing system. In order to hold the much lighter assembly of fibers together a slight twist, about

40 turns per meter, is impartad. The machine which takes fiber from two cans and draws it approximately 9 times and imparts the twist, is called a roving frame. Each unit can produce about $650 \mathrm{~g} / \mathrm{hr}$ at 82% efficiency so that the number of units required will be about 526. The standard roving frame produced by Rieter contains 108 units so that 5 machines will be required.

The last process in comverting staple fibers into spun yarns is the ring spinming system. In this process the lightly twisted roving is drawn down and twisted by the ring-traveler-spindle system to give the spun yarn. Although the production rate in actual grams of yarn produced by each spindle per hour is only $11.7 \mathrm{~g} .$, at a twist level of 922 turns per meter, the traveler will be going at 13,000 revolutions per minute. To produce the 2000 tons of yarn needed per year will require 28,800 spindles at a high operating efficiency of 98%. The Rieter spinning frames contain 612 spindles per machine so that 48 machines will be required.

In order to use the attached Rieter data found on page 3 and 4, note that in order to work the problem the final product to be produced is at the top : of page 3 and is a blend yarn. The equipment for producing synthetic sliver is listed next. On page 4 the equipment for producing combed cotton silver is listed. Note the equipment for blow room cotton is greatly under utilized and could be available for other products at no increase in equipment costs.

Pages 5 and 6 list the equipment costs for that equipment produced by Rieter. These costs are subject to negotiation and are the so-called list prices and possibly could be as much as 20% above actual selling prices. However, since the currency exchange markets are chaotic at best, these equipment prices can be considered as possibly indicative of prices for 1980. Most of the major pieces of equipment are included and that equipment which is not included is detailed in the attached letter from Rieter. The complete Rieter catalog has been sent to the Industrial Development and Consulting Bureau and limited brochures were received February 28. By referring
to pages 5 and 6 the exact Rieter equipment model number is shown and details of the equipment can be determined by reference to the appropriate brochure in the catalog.

Pages 7, 8 and 9 and 10 give the computer costs of producing 40 cc yarn ex raw materials. The details of costs which are included are given in the attachment entitled Explanations of the Investment Study. Rieter was given labor costs in terms of U.S. dollars of current Kuwait costs including 10% social charges with a projection to 1980 of 8% annual increases. In this estimate the standard rate of exchange was $1 \mathrm{KD}=3.5 \mathrm{U} . \mathrm{S}$. dollars. For conversion into Swiss francs Rieter used an exchange rate of 1 U.S. $\$=1.97$ Swiss franc. Since their computer standards are based on European achievable labor standards they used a factor of 75% for the efficiency of mid Eastern personnel.

In the details of costs the first column pages 7 and 8 represents the total operating and maintenance people required per shift. Thus, for plant operating 8400 hours per year this total should be 3.65×32 or 117 people. This is surprisingly low in view of the many processing steps which are required and is a reflection of the developments in labor saving equipment which Rieter has made.

Building space does not include the space which will be required to store the three months supply of imported cotton. The area included is that area shown in the layout attachment which is enclosed within the heavy lines. Since the yarn plant will be an integrated plant with the fabric plant the work shops, laboratories, etc. can be combined and space has been provided for these functions in the fabric plant.

The equipment costs, pages 5 and 6, include erection or installation charges but do not include freight and insurance charges. However, capital charges, column 13 or pages 7 and 8, do include these charges. The installation of textile equipment
is much lower than installation of chemical equipment and generally is about 1 - 2% of equipuent costs and is included in the equipment price.

Colum 9, pages 7 and 8, gives the net cost of the waste which is incurred after all average credits for waste generated have been taken. Thus, to produce 1 Kg of blended yarn the actual costs of the fibers in the blended yarn would have to be added to this figure. Since net costs implies some knowledge of the original costs of the raw materials and the net worth of the waste, they have used European prices for these products.

Colum 11 gives the electric power for manufacturing yarn using current Kuwait costs.

Colum 12 gives the auxiliary costs per Kg of yarn which includes essentially the required maintenance supplies.

Column 13 needs some detailed explanations. Included in these charges are interest on all installed equipment but not working capital charges. Depreciation on equipment is included on an 8 year straight line basis with a 20 year depreciation schedule. Accessory materials are depreciated on a 5 year basis.

On the above basis the manufacturing costs for 40 cc blended yarn ex materials is 0.353 KD per Kg ($1 \mathrm{KD}=6.9 \mathrm{SF}$)

From Table 43 at 15% ROI the cost of staple fiber is 0.417 KD per Rg. Assuming cotton can be delivered in Ruwait at 0.43 KD per Rg , the raw material costs would be 0.422 KD per Kg. Thus, the Rieter cost estimate with the exceptions noted would be 0.775 KD per Kf . In November 1977 the sales yarn price for 38 ac 50-50 polyester blend yarn in the United States was 1.03 KD per Kg.

In exactly a similar manner the costs of producing a 65-35 polyester cotton blend yarn (30 cc) for use in bed linens was estimated and is attached. Since we have not analyzed the costs of bed linen fabrics these yarn costs are for future use.

Ministry of Commerce and Industry Kuwait STATE OF KUYAIT

Krg/met/500000 24th February, 1978.

```
Re: Investment Studies for a spinning plant Our Computer Estime.tes Nos. 2709 and 2708 both dated 15th February 1978
```


Dear Sirs,

We refer to the recent telex exehange and have pleasure in submitting to you enclosed our Investment Studies (Computer Estimates) for the plants A and B as requested by you.

Computer Estimate No. 2709
This Investment Study covers plant A, i.e. a complete spinning plant to produce $337 \mathrm{~kg} / \mathrm{h}$ blended yarns of 658 Polyester and 358 combed cotton, average count Ne 40.

Computer Estimate No. 2708
This Investment Study covers plant B, i.e. a complete spinning plant to produce $672 \mathrm{yg} / \mathrm{h}$ blendad yarns of 65% Polyester and 35 combed cotton, average count Ne 30 .

The explanations on which basis thes Investment Study has been carried out are indicated in detail in the Estimates. The expenditure and cost figures are calculated on the marginal conditions as indicated by you. The offered machines cover all necessary production machinery for a spinning plant with the exception of the following items which we are not manufacturing:

- air conditioning plant
- rotary filters for cleaning of blowroom exhaust air
- compressor unit
- round piping for material conveyance and exhaust air conveyance
- source of electrical supply
- overhead travelling cleaners, and
- material carriers such as tubes, bobbins and cans.

Spare parts are also not included; you should reckon with building up an initial stock of apare parts amounting to approx. 2 - 2.5\% of the machine value to ensure a troublefree running for 2 years on a 3-shift basis.

The space requirements for the plant are also indicated in the Istimate. As soon as the project enters a more definite stage, we would be pleased to submit a suitable layout proposal.

We informed you in our telexes of 22nd and 23rd February that a possibility would exist that Mr. Krug, our delegate for the Midde East, visits you between 12th and 14th March 1976 at Kuwait. He would be in a position to discuss this project further with you and give adequate advice on the enclosed Investment Studies.

Ey separate mail we have also sent to your address a collection of pamphlets describing the offered machinery in detail.

We hope to have been of service to you.
Yours faithfully, RIETER MACHINE WORRS LIMITED

Encloruses:

Computer Estimates Nos 2709 and 2708

By separate riail:
1 collection of
pamohlets

Explanations to the investment study of computer projects

The investment study yields information concerning expenditure and manufacturing costs within the production area (framed with thick line in sketch below). The machinerv. offered and the particular cost conditions for the individual countries serve as a basis.

Expenditures

Operating personnel

The number of operatives required are determined by work study methods. The individual times are according to our standaris, which are based on an average of time studies made in various West European mills. For countries in which a deviation fiom these standards has been experienced, a correction factor is applied.
Overlookers and supervisors, as well as staff for labcratories, workshops, despatch etc. are not considered.

Overhauling and maintenance personnel

The requirements of skilled and unskilled workers for machine maintenance are determined according to our instructions for cverhauling and maintenanse of our machines.
The values indicated give the requirements per shift, similar to our indications for operatives.

Installed power for machines
The indicated figures comprise the installed electric power of all motors built into the machines.

Installed power for illumination
The installed power for illumination is based on today's standard values for illumination intensity in spinning mills.

Installed powar for air conditioning
The installed power for air conditioning is in direct relation to the heat, generated by the machines (motors) and the illumination, as well as space requirements, the relative humidity etc. Basically a centrai air conditioning plant with return air system is considered.

Necessary floor space including gangways and reserve

The necessary average floor space for machines, gangways and reserve (can space etc.) inas been evaluated from a great number of spinning mill layouts. Certain alterations may arise, all according to machinery layout.

Costs for auxiliary material

These costs refer to the average vearly expenditure for spare parts (parts subject to normal wea:), lubricants and cleaning materials.

Costs for accessories

The costs for accessories comerise the purchase costs of spinning tubes, $O E$ and reving spools, spinning cans, transport containers, auxililary appliances of all kind such as roller pickers, cleaning aids etc.

Waste costs

The total waste per machine group is mentioned in the spinning schedule. The monetary regain on waste (waste from slivers, filters, flats and grid droppings etc.) are considered when calculating the waste costs.

Wage costs
The wage costs are calculated from the wages paid for operatives and skilled and unskilled labour for maintenance work. All social charges are included. For reserve personnel a percentage figure is added.

Electric power costs

The electric power costs include the costs based on the actual power consumption of the machines, the illumination and the air conditioning plant. Concerning illumination, it is assumed that the mill is lit the entire time of nroduction.

Costs for auxiliary material

The costs for spare parts, lubricants, cleaning materials and maintenance work of the building represent the costs for auxiliary material.

Capital costs

The capital costs include capital interest and depreciation of machines, accessories and building. For the determination of the machinery costs for delivery free spinning mill, erection included, a surplus charge for customs duty, taxes, transport and erection is added to the sales prices indicated. The building costs only refer to the production area and include the costs for the air conditioning ducts for supply and return air, the lighting system, the installations for high and low voltage current, the fire protection etc.

Manufacturing costs
The aum of the five cost groups give the total manufacturing costs. The self incurred costs are obtained by adding the price of raw material, the costs foi: auxiliary plants, such as laboratory, packing, storage, workshop etc. as well as overheads.
21.1 .1976

TW yarn pricing service

Watch the acrylics go－that＇s the movement that has spinners who produce polyester－acrylic blends and 100° acrylics smiling．Activity is strong and prices excellent as retalleis gear up for the cold winter months and a booming sweater and cold－weather－ wear market

Meantime．other markets are doing well，even in the face of cotion prices which appear temporarily stabilized．There＇s sume erosion in coarse－count cotton and blend yarns，but no：hing serious．In fact． polyester－cotion blend yarns in finer counts are moving extreme＇y well，especially to singleknitters．
Blend switching from $50-50$ polyester－cotton to 65 － 35．initiated by Springs in its sheeting division，has not grown tremendously．Bui the polyester－coiton pricing situation is presently confused and may result in further reduction in oolyester staple prices if cotton hangs in the mid 50 s
There＇s another interesting noie．At least iwo medium－sized texturing plants that closed during the doubleknit fallout a souple of years ago have reopened．This could signal improved doubleknit operations．Prices here are holding well．

Textured sel yarn

（Fa＇se twist：all putip on cones）

F＇te）	Denie	A ot Oct 20	
Polyesier	70	\＄1．8892	51．83－92
Polyester	159	88.90	．85－92

Fllament yarn

Nyion			
Nylon	15	$52.28-32$	$52.28-32$
Nylon	20	$2.20-34$	$2.20-34$
Nyion	80	$1.60-58$	$1.60-68$
Polyester	40	$112-18$	$1.12-18$
Polyester	70	$1.78-86$	$1.78-86$
Polyester	150	$115-29$	$1.15-24$
		$.65-72$	$.68-76$

Haw colton．strici low midding，1－1；16 in．，USOA
Fice per couns）

Spun yarns（all putup on cones）
100^{n}, carded cotton

Count	Singles price 10 ol Oct 20	Mante ajo	$\begin{aligned} & \text { Ples price } \\ & \text { of of Oet } 20 \end{aligned}$	Ms••r 132
85	\＄1．14－16	51．14－16	\＄1．23．28	5：23－25
10 s	1．17－20	1．17－20	1．23－32	： 2 s －32
208	1．24－28	1．24－28	1．35－42	1.36 －42
26s	$138-42$	1．38－42	1 46－52	1－6－52
30s	1．46－50	1．46－50	1．54－58	1．5̇－53

100% combed cotton

Count	Singloe price ee ol Oct 20	
10 s	\＄1．30－36	51．35－40
20 s	1．45－50	1.48 .50
303	1．55－50	1．55－62
363	1．78－82	1 EJ－25
405	1．90－92	1.9 .95

Manmade fiber－manmade fiber blenss

fiser	Eount	singles price en of Oet $=0$	
50－50 colyester－acrylic	185	\＄1．35－38	512：－45
50－50 polyesier－acrlyic	243	1．42－49	$1.30-34$

Manmade fiber－combed co：ton blends

$50-50$ pciyester－cotion	10 s	$51.29-32$	51.29 .35
	20 s	$1.37-38$	$1.37-.0$
	30 s	$1.44-52$	$1.44-52$
	38 s	$1.58-04$	$1.59-64$

100\％：manmade

Rayon	$6 s$	504－1．00	5 94－1．c？
	12 s	1．04－10	1．0ヶ－1．9
	205	$112 \cdot 16$	1．12－13
	2 ds	1．15－62	1 13－22
	30 s	1 26－32	1．20－3？
Polyester	10s	109.14	$1 \mathrm{C3}$－14
	18s	115.20	：15－こ2
	228	1．22－28	1 22－20
	30 s	$130-34$	$13 う-34$
Acrulic	85	123－30	：24－23
	185	15：－i2	－ $5: 3$
	223	1－4－43	！－－

RIETER MACHINE WORKS LTD. WINTEATHUR BWITZERLANE

run hurnere

cun mersemor
 en-esee naviminum
 Hin/E1-500000-1 25th February 1978

Computer-ESTIMATE
 No. 2709
 (Investment study, Plant A)

Ministry of Commerce and Industry
Kuwait
State of Kuwait

Complete pinning plant to produce $337 \mathrm{~kg} / \mathrm{h}$ blended yarns of everage count Ne 40

Orien picest direet of through representellves are nal velld untl algned order conflrmatien hat been iguted by un.
Maschinenfabrik NO. 2709 Elath Rister A. C. Ministry of Commerce and Industry Blan Whiterthur/Echwolz Kuwait

The technical basis of this estimate

1. Raw material to be processed:

2. Range of counts:

To be clarified
3. Planned yarn production:

Blends of 65 Polyester/35i combed cotton, average count Ne 40 with an hourly production of 337 kg .
4. Raw material requirements:

Cotton: approx. $170 \mathrm{~kg} / \mathrm{h}$
Polyester: approx. $234 \mathrm{~kg} / \mathrm{h}$
5. Layout proposal:

To be established after receipt of detailed building plans.

Composition of Blowroom :lachines
(schematic working diagram)

 Di:ATFVARE 310D PAS'AGE DRAV:FITAI:T IST PASEAGE SYNTHETIC

PRE-DHAWFI:ARES

HIGH ProDUICTIOR GARD
CARO FEISIHG EYSTEM AEROFEED CARDIIG TOIAL
INCL. FAN
RC\& IFR ULEIIDIIG OFEIER
riEMPATIC COIVEYAFICE
EUHAHOL OF BLUWROCM MACHIMERY
iLOETPOOH TOTAL

Berechnungsgrundlagen zum Spinnereiprojekt Basis of calculation to spinning mill project Données de base pour projet de filature Bases de calculo del proyecto de hilanderia

Randbedingungen Marginal conditions Conditions marginales Datos basicos

	sendentohn fir getrintus Rrrasel	seundenitina ly ungsiemens Prisesal	Levisumpetiter	Rosempmeneal	Stumbuic
		Hourly wapo tor unskilled minemmal	Preduetin tacter	Presermel in mame	Cant ataticemen
	Covin hemare mean persemal apectisis	Ceit monire mome omennal agelisire		Prswasol mesme	Pris to courmin minernm
	Saire met dat arrasal cmolifecen	Selens mora ter mornaed men cutificato		Arovond te roxam	
sh 4.05	iff.	trs. 2.75	75	10	งh.ntive $.014$

CELIVEAY F,O.R. EUPCREAN PORT CF GUR CICICE, IITHOUT IASGA:CE,
 ALI OHANCE FOR CIIR ERECTORS TO YOUR ACCOUNT.

Conditions of Sala

1. Prices:

Our prices are quoted net, without any deductions, for dellivery
f.o.b. European port of our choice, without insurance.

The prices are based on current production coats. In cese of e substential increese of the latter up to the time of dellvery, especielly in cese of war or major currency changes, we reserve the right to cherge for additlonel costa.

2. Payment:

100\% of the order value, covered by an irrevocable Letter of Credit established in our favour with a first class Swiss bank and confirmed by the latter with the order. The Letter of Credit must permit the following payments:

201 as down-payment against presentation of simple receipt
808 balance, against presentation of forwarding agent's receipt or Swiss warehouse receipt.

Intereat on dsleyed peyments will be charged et the rate of 8 per cent p.a. from due date. All banking fees in connection with Letters of Credit, bank guarentees, documentery collections, negotiatlona of documents as well as possible stamp feea, atc., In your Country es weil es In Switzeriand are elways ior your account.
3. The of Dalivery:

Ex works, as far as can be foreseen at present
commencing approximately 8 months after receipt of correct Letter of Credit and clarification of all technical details.
4. Packing: for sea transport included
5. Erection: Erection hours included, return Elight tickets and daily allowance for our erectors to your account

For the rest our "General Conditions of Sale and Delivery" apply, representing an integral part of this Estimate inguncerninnex if no other arrangement is explicitly stated above.

RIETER MACHINE WORKS LTD. WINTERTHUR SWITZERLAND

Oun meverance	он. 0 00 matuman
Hin/E1-500000-1	15th February 1978

Computer-ESTIMATE

No. 2708
(Investment study, Plant B)

Ministry of Commerce and Industry
Kuwait
State of Kuwait

Complete spinning plant to produce $672 \mathrm{~kg} / \mathrm{h}$ blended yarns of average count Ne 30

1. Raw material to be orocessed:

Various cotton: Staple length 24-30mm

2. Range of countsi

To be clarified
3. Plannad yayn production:

Blends of 65 Polyester/35s combed cotton, average count lie 30 with an hourly production of $672 \mathrm{~kg} / \mathrm{h}$.
4. Raw material requirements:

Cotton: approximately 338 kg
Polyester: approximately 466 kg
5. Layout proposal:

To be established after receipt of detailed building plans.

Composition of Plowroor: Machires

(schematic working ciagrar.)

Code
a
b
c
d
e
f
ร
h
1
k

Machines
5 Rollèr blending openers "Rotopic" $\mathrm{E} 2 / 3$

- Permanent nagncts

1 llono cylinder cleaner B4/1
1 Dust extractor unit
2 "Aeromix" B7/2
2 [P:l-cleancrs [5/5
2 Fwo-wa-cistributozs
4 Flock:feeders $17 / 2$

- By pass
- Fans

	Projekt	für Prot	joct for	Projet po	pour Pror	Provecto pa		MINISTRY kuwait STATE OF	$\begin{aligned} & \text { of coim } \\ & \text { KUWAIt } \end{aligned}$	IERCE ANO			${ }_{\text {H1122 }}^{114} 1$	270日 15.298		
	Aulwand Expenditure			Besoins Nec		esidades			Kosten Costs Coutt Costes							
				-	$=\mathrm{m}$	-	-	mem			-	5-20				
-	-		-			-	$=$	$=$	\%	5	mim	-	-5-	con	\%	-
-- - -				-m		-	-min		-	-	-	2403-	20m	-		
cot1011							SFR	SFR	SFR	SFR	SFR	-mu	${ }_{\text {SFR }}$	SFP.		
	1.3	. 29	46.0	2.3	7.2	220	32359	19000	. 1075	. 0104	. 01013	.0.84	. 0645	. 1916		
frimuon lap maciume	. 6	.05	5.8.8	$\stackrel{7}{7}$	1.2	64	2502	-55:20		. 0042	.0001	.0007	. 0103	. 0153		
slivel" lap maclitme		. 03	5.8	1.7	2.1	160	1134	11400		-0.322	. 0001	-0.196	. 0102	. 0131		
cunema, 1 achinelir total	2.2	. 37	57.6	4.7	10.5	$44 \cdot$	35995	35920	- 1075	.0168	. 0010	. 0097	. 0950	-2203		
HIGH PFINIJCTION CARD CARO FELLIISG SYSTEM AEROFECD	. 8	. 26	94.8	3.3	11.7	312	24820	${ }^{6480}$. 0408	-0069	:0017	.0068	$\begin{array}{r} 0703 \\ .0753 \end{array}$			
cakoliti total	. 0	:26	94.8	3.3	i1.7	312	24820	6480	.04008	.0069	. 0017	.0068	. 0756	. 1310		
flock ir dier imcl. fan			22.2		2.7			:			.0004	. 0003				
			22,	-1	: 7	14 14 14	125 125	\therefore		\therefore	-00071		-0019			
amumys			11:9		1,3	45	167				$\bigcirc 0002$	0.0001	:0954			
Licni cilitoer cleater			12.2 8.9 8.9		1.3 1,3	$\begin{array}{r}14 \\ 100 \\ \hline 1\end{array}$	42 250	\because					-0031			
			17.8	i. 04		200	500	\%5400			:0003	.0005	-0.384			
-								!:					$\begin{array}{r} 0,108 \\ \hdashline 0037 \end{array}$			
f:LOKikU:M total	i. 2	. 05	77.4	3.4	9.7	457	2093	:3400	$\bigcirc 0695$	-0003	:0013	.0012	. 0340	. 1143		
lcato								!								
ExFCImiture grano total	51.3	4.55	6. 3	123.8	806.8	enió	381052	$5 ¢ 6706$								
mamacturing costs crio total								,		,						
raili colitit					.				:2663	. 3672	. 0411	.iioo	1.1050	1.9496		
				-			1.			\cdots			\because			
								\because								
			\because													

Berechnungsgrundlagen zum Spinnereiprojekt Basis of calculation to spinning mill project Données de base pour projat de filature Bases de calcuio del proyecto de hilanderia

Randbedingungen Marginal conditions Conditions marginalas Datos basicos

Steptontata fip Eataranapanconal	Stendrulehin fir plaratsi Promad		Leintiomptatiot	Raserwingenal	Frownit
Morsty wigat he Euehion tormer	Hawly wape tray shiliad gremel	Howity mego for ymaluthe thrasayd		Prratera to nume	cont of arove noum
Coth trean mo Bryenal minn		Cact morvirs neap		Pravend risave	Pris mater therivo
Snturig Iss dod prosta ex sueting	I Staris leve of I sermas conaforto		Prate in modurivica	Praciol throne	
de.orior	dif.	uth.		*	diname

Cabicdaturat .	Selmanemetin mo dave				\| Kiption
Suiticterat -			Ofmelat mas mi yer	of exchere mif	Cursion
frus in tiersat		Nomine flumine me inim	Wemare frowes in tovil	$\begin{aligned} & \text { Fras de tavant one an \% } \\ & \text { Ca era ter amaluas } \end{aligned}$	\| Inturn An mitay
cme el athite			Heres if traye me aim	 	\| freve tur mand
Ne/er					

DELIVERY F.O.B. EUROPEAN PUKT OF OUR CHOICE, MITHOUT INSIRA:

Concitions of́ Sale

Re: Estimate/Onterconarrostian No. 2708
dated 15 th February 1978

1. Prices:

Our prices are quoted net, without any dsductions, for delivery

f.o.b. European port of our choice, without insurance.

The prices are based on current production costs. In case of a substantial increase of the latter up to the time of dellvery, especially in case of war or major currency changes, we reserve the right to charge for additional costs.

2. Payment:

1008 of the order value, covered by an irrevocable Letter of Credit established in our favour with a first class Swiss bank and confirmed by the latter with the order. The Letter of Credit must permit the following payments: 208 as down-payment against presentation of simple receipt 80 balance, against presentation of forwarding agent's receipt or Swiss warehouse receipt.

Interest on delayed payments will be charged at the rate of 8 per cent p.a. from due date. All banking fees in connection with Letters of Credit, bank guarantees. documentary collections, negotiations of documents as well as possible stamp fees, etc., in your Country as well as in Switzerland are elways for your account.

3. Time of Dellvery:

Ex works, as far as can be foreseen at present
commencing approximately 8 months after receipt of correct Letter of credit and clarification of all technical details.
4. Packing: for sea transport included
S. Erection: Erection hours included, return flight tickets and daily allowance for our erectors to your account

For the rest our "General Conditions of Sale and Delivery" apply, representing an integral part of this Estimate / Conentincrakoni it no other arrangement is explicitly stated above.

PRODUCTION COSTS FOR CERTAIN FABRICS IN SAUDI ARABIA AND NIGERIA
Sulzer Brothers of Winterthur, Switzerland, have made two studies of production costs for certain fabric types in developing countries. Sulzer is a very large producer of shuttleless looms and offer limited consulting service on fabric formation as part of their marketing service. The first attached report, No. 6504, entitled Feasibility Study for Thobe-cloth/Kuwait, is a copy of the study which they made for Saudi Arabia in November, 1977. Since the study was obtained March 3. in Winterthur, Switzerland, a detailed analysis is not possible but the information is of value because it represents a study of the cost of producing a polyester cotton fabric in the Gulf area.

The Saudi Arabian project was designed to produce Thobe cloth, which is some type of Saudi Arabian dress cloth in both white and dyed forms. The cloth is reasonably similar to the possible fabric estimatad in the body of the present dishdasha study. The details of the two fabrics are shown below:

DISHDASHA
 Dishdesha-Ruwait

Yarn
cc (Ne) 40
Weight
$113 \mathrm{~m}^{2}$

Thobe-Saudi Arabia
cc (Ne) 45
110 \& m^{2}
Fabric Construction
Warp
$35 / \mathrm{cm}$
$35 / \mathrm{cm}$
65-35 Polyester-Cotton
91.4 cm

67-33 Polyester-Cotton 90 cm
Fabric Width
Finishing
Mercerization
Resin Treated

No
Yes

Yes
Yes

Actually the Kuwait fabric was based on a preliminary examination of one dishdasha fabric and a careful analysis of the fabric by a ccrpetent lajozatory has shown that the dishdasha fabric
was a 2 ply yarn which would make the yarn as woven a nominal 60 cc (Ne) yarn. A quick analysis has shown that a Thobe fabric' of the indicated construction would weigh 140 g per m^{2}. Therefore, assuming the fabric weight is correct, either the yarn count should be higher or the fabric construction is incorrect. The greatest difference between the two fabrics is in warp density. From a fabric manufacturing standpoint increased warp density does not increase fabric manufacturing cost except for the increased cost of the yarn. The greatest cost in actual fabric manufacturing is the cost of the weft insertion.

The Saudi Arabian plant was designed to produce 3,231,000 linear meters of fabric using imported yarn. Weaving was three widths per loom and similar to our projections. Looms were identical and Sulzer estimated that 36 looms would be required based on an 89% efficiency. We were somewhat more conservative and used a loom efficiency of 80%. Thus, our plant in this respect is more conservative than the Sulzer estimate.

Since the Thobe plant was based on imported spun yarn the only yarn winding requirement was for rewinding yarn from the creeling operation. They also indicated that it might be necessary to rewind the weft or fill yarn. This may or may not be necessary depending upon the ability to purchase the proper yarn.

The warping area assumes that the creel would be a 640 position creel while our estimates are based on ε. larger creel which would require more floor spacs. For the size of the Thobe plant the warping area would be run on one shift basis. As a result warping costs,because of the small plant size, will be high.

In the finishing area the chief differences are in the Thobe provision for mercerizing. Although some dishdasha fabrics are mercerized, we were not certain that this would be necessary for all fabrics and hence did not provide these facilities. We also did not provide any facilities for dyeing.

In regard to the building size, they have provided a large area for yarn storage. Since we will be using yarn from an integrated mill rather than imported yarn, the storage area for 3 months yam supply will not be necessary. They have estimated a weaving area of $970 \mathrm{~m}^{2}$ for 36 looms which would correspond to $6400 \mathrm{~m}^{2}$ for our proposed plant. We have provided fabric storage space in a separate facility. Their fisishing area is more complex in view of the greater number of functions and, therefore, it is difficult to form an accurate comparison with our plant.

The chief difference in the building area, disregarding size, is the cost. Using Bureau data on building costs, the $7,600 \mathrm{~m}^{2}$ plant should cost approximately $532,000 \mathrm{KD}$. Their estimate for the building is $22,255,000$ Swiss francs or $3,225,000 \mathrm{KD}$ based on $1 \mathrm{KD}=6.9$ Swiss francs. This would mean that the building costs would be equivalent to 424 KD per m^{2} which is substantially higher than our estimate based on Bureau recomendations.

In the personnel area, since they are using only a small plant and have more complicated processing departments, their persomel requirements are high. In the weaving area they used a weaving load of 18 looms per weaver. We assumed that we would start with about a 10 loom load and that with experience we could build to about 20 looms per weaver. Our costs are based on this latter load so that our costs are comparable.

For labor costs they have assumed costs substantially higher than similar costs recomended for Kuwait. For example, the class corresponding to maintenance workers or craftsmen suggest a yearly cost of 5070 KD whereas the estimated costs in Kuwait would be 2520 KD .

In the import yarn area for 45 cc yarn they are estimating a price of 1.16 KD for purchase in the Far East which translates to about 1.30 KD per K_{G}. Our estimated cost of production, ircluding a $15 \% \mathrm{ROI}$, is about 1.10 KD per Kg .

In sumary, the plant costs for Thobe fabric are relatively high because of the low utilization of much of the equipment. In addition, from Bureau suggested building costs, their building cost estimates appear to be excessive. In areas where direct comparisons can be made, such as weaving, our projections appear to be comparable. In the finishing area our projections are much more optimistic which are in part a result of our less complicated process but possibly also because of our lack of detailed experience in these particular areas.

The plant layout attached is also for the Thobe plant in Saudi Arabia.

The second study which they have provided is for a plant of 106 loom capacity, approximately half of our proposed dishdasha fabric plant, to produce drill, shirting and suiting. The plant estimate was for Nigeria. Although we have not yet considered these products, three of the four fabrics are polyester cotton. Since we have not estimated similar fabrics for Ruwait we have not examined their proposal in detail. It was noted that the shirting fabrics are for 45 cc (Ne) polyester cotton yarns which approximate quite closely our proposed yarn plant for 40 cc yarn. Our plant could make this yarn with only minor adjustments and the construction of our proposed yarn plant and weaving plants would give us abilities to provide similar fabrics. This study would thus be of value in the future.
by

SULZER BROTHERS LTD.
Winterthur /Switzorland
9.Textile Machinery Diviaion Planning Dopartmont

1. Introduction

The first part of this study is based on a production of 36 Sulzer Keaving Machines, which will weave local dress cloth (Thobe). The following departments are envisaged:

- Yarn Storage
- Weaving preparation
- Weaving
- Finishing
- Cloth inspection
- Storage for finished cloth

1
. The following Feasibility-Study is based on this Preli-minary-Project. It shows the estimated investments and the expected fixed and variable costs.

A further chapter gives a survey over an integrated knitting department. •

2 Article Data

Article
Material

Yarn count warp and weft
Density (finished) warp ends/cm
Density (finished) weft picks/cm Type of weave
Weaving in warp
weft

Width (cm) in reed
raw . . 97

Einished 90
Weight finished g/running meter

- warp
- weft
- total

Weight finished g/m2

Thobe
33 Cotton
67 PES
Ne 45/1
55
29
L $1 / 1$
4
3
100
97
67.67
39.20
106.87
110.18

$$
-155
$$

3 Production Data and Yarn Reguirements
3.1 Wgaking_Times

Hours/shift 7.5
shifts/day 3 (22.5 hours)
Days/year 280
Hours/year . 6300
3.2 REqduction_Dat로

The following data are according to our experience:

Type of Sulzer weaving
machine (SWM) 130 ESE 10
Number of widths 3
Width in reed $\quad 3 \times 100$
Speed RPM . 258
Efficiency

- 89

Number of picks/shm and h
13777
8NM production m / h
Number of SNM
$3 \times 4.75=14.25$
36
Production of all SWM
m/hour
513
m/day
m/year
21,542.5
3,231,900.--
3.3 Yarn_Reguizements

Based on article and production data we have calculated the following yarn requirements (including 5 waste):

Yarn in kg

per	hour	day	year	
Ne 45/1 warp	36.54	822.19	230,213	
Ne 45/1 weft	21.17	476.28	133,358	
		57.71	$1,298.47$	363,571

4. Naterial Flow Heaving Preparation and Neaving

5. Necessary Production Machinery and Equipment (weaving preparation and weaving)

Following the material flow the most important capacities will be discussed:

5.1 Yarn_Storage

Because all yarn has to be imported, the yarn storage should have a capacity for at least a three-month period.

Yarn consumption/day	$1,298.47$	kg
Quantitiy of yarn in stock	90,893	kg
Capacity/pallet	140	kg

Number of pallets . 650
Degree of utilization
80 \%
Required capacity (pallets)
812

5.2 Winding_Department

5.2.1 Winding of weft yarn

If the make-up of the bought yarn does not comply with the requirements of the weaving department, the weft yarn has to be rewound. To fulfill this operation, about 48 spindles are necessary.

5.2.2 Winding of Rests

Assuming that 6 of the yarn, used in the warping department have to be rewound, one needs therefore about 6 spindles.

All together about 54 spindles (1 machine with 60 spindles) have to be installed.
These spindles have to run 3 shifts per day.

We have supposed, that the make-up of the bought cross-wound cones complies with the requirements of the warping department.

5.3 Varping_Department

With one warping machine the whole production can be warped without any difficulty during one shift. The working width of the beaming machine should be 180 cm . We propose the installation of a V -creel with a capacity for 640 cross wound cones. For each warp beam 12 back beams have to be prepared.

5.4 Sizing_Department

Because only single yarns are used, the warps have to be sized. The working width of the sizing machine should be 180 cm (same width as the warping machine). The beaming machine has to be equipped for $130^{\prime \prime}$ half beams.
5.5 Meaying

The whole project is based on a capacity of
36 Sulzer weaving machines SNM 130 ES E 10.

On these machines three widths can be woven side by side. The production is calculated in chapter 3.2 .
5.6 Grey_Cloth_Control

With two inspection machines the whole production can be controlled during two shifts.
6. Naterial Flow Finishing
-160-

7. Necessary Production Machinery and Equipment

 in the Finishing DepartmentFollowing the material flow the most important capacities will be mentioned:
7.1 Pretreatment

1 Impregnating station,
consisting of 1 singeing machine and
1 compartment for impregnating for desizing

2 Reaction station
used after impregnating for desizing and after impregnating for scouring and after impregnating for bleaching.

1 Pad Rol Pretreatment plant
used for impregnating for scouring and for
impregnating for bleaching.
This equipment consists of 3 compartments for washing and 1 compartment for impregnating.

1 Mercerizing machine (wet - wet)
consisting of 1 compartment for washing, 1 compartment for impregnating, 1 compartment for stabilising and 1 compartment for neutralising and washing.

The working width of the equipment in the pretreatment department should be at least 160 cm . These machines could also process cloth voven 2 widths side by side on the $130^{\prime \prime}$ weaving machine.

1 Stenter frame for drying and thermosetting
Because the weight of the cloth is not heavy, drying and thermosetting can be done in one run. With the proposed 4 field stenter frame one attains the required production without difficulties.
7.22 Jets (Dyeing machines)

For dyeing and washing after dyeing with a capacity of about 280 kg cloth each.
With a process duration of five hours per load, the jets will run with an efficiency of 76 , if 100 \% of the cloth will be piece dyed.

1 Centrifuge

1 Rope opener
1.Stenter frame for drying the cloth after rope opening and for finishing and stentering the cloth at the end of the whole finishing process. This stenter frame has to be equipped with a padder. For working with high flexibility we propose to install also a padder in front of the other stenter frame, mentioned in chapter 7.1 .

1 Inspection table

for the intermediate control of the dyeing quality.

2 Inspection tables

With two inspection machines who whole production can be controlled.

8. Layout Description

The proposed layout (drawing no. 1617491 includes the capacities described in chapters 5 and 7.
The building is based on columr centerline distances of $7.62 \times 21.23 \mathrm{~m}$, as used in prefabricated standard buildings. The building has a length of 144.78 m and a width of 52.46 m .
The floor requirements for the mill are as follow:

Yarn storage
Weaving preparation
Weaving
' Grey cloth inspection and finishing
Cloth inspection and storage for finished cloth
Service tract 1,147.8 "
Total
970.6 m 2
1.294 .2 n
970.6 n

2,264.8 "
647.1^{n}
$7,595.1 \mathrm{~m} 2$
. If the capacities have to be extended in the future, the area of the yarn storage could be used as a weaving roon, a new yarn storage can be built outside, most capacities of the finishing department would be sufficient if one would work three shifts instead of two as calculated now.

Ancillary facilities, such as

- intermediate storages for chemicals and dye-stuffs
- air conditioning
- vacuum plant
- compressed air
- energy distribution
- laboratory
- workshop
- - offices
- WC's
- first aid room
have to be located in the service tract. Outside of the described building have to be erected:
- main chemical and dye-stuff storage
- main workshop
- main storage for spare parts
- water treatment
- boiler house
- oil tanks
- water tanks

9. Estimated Investment for Machinery, Equipment, Building and Installation
The indicated prices are our approximate standard prices and are in no way binding. They are not based on special offers for this project and have to be judged accorcingly.

Department Machinery Equipment	$\begin{aligned} & \text { Quan- } \\ & \text { tity } \end{aligned}$	Approx. investments excl.: transportation incl. erection incl. training	Possible Suppliers
Yarn Storage			
Shelves to pallets			Kempf/CH
Pallets			Krabs/CH
Transport equipment i			Kompf/CH, Lansing Eagnal:
Scale			Auser/CH
TOTAL 1		152.000.--	-
Preparation to Weaving			
Winding machine	1		Mattler/CH Schlef horst/ D
Warper with V-creel	1		Benninger/CH
Sizing equipment	1		2e11/0. Sucker/D
Reaching in equipment (semi automatic)	1	.	Zellweger/CH
Tying machine	2		Zellwager/CH
Warp beam storege			Steinemann/CH
Trensport equipment			
Storage equipment		.	-
Workshop			
TOTAL 2		1,812,000.--	

Department
Machinery Equipment
Quan- Approx. tity investments

Pobsible Suppliers

Weaving

Sulzer/CH

Vacuum cleaning systemTOTAL 3 6,048,000.-- -,040,000.
Sulzer/CH
Finishing
Inspection machines 3
Singeing and impregnating machine 1
Pad Roll 1
Mercerizing machine 1
Stenter frame, padder 2
Jet 2
Centrifuge 1
Rope opener 1
Laboratory 1
Chemical storage 1
Dye-stuff storage 1
Sewing machine 3
Transport means -
Workshop

Laboratory4

Osthoff/D. Benninger/CH
TOTAL 4

TOTAL 4

Meag/CH, Menschner/o

Benninger/CH
Benninger/CH
Brückner/D, Artos/D
Scholl/CH
MOLImann/D
Maier/D
Scholl/0

Dohle/D

6,732.000..-

Department		
Machinery Equipment	Quan- Approx. tity	investments

Cloth control.
Making up,
Storage finished
Cloth

Inspection machinas 2
Making up machine 1
Bele press 1
Shelves to pallets
Pallets
Trensport equipmen*

TOTAL 5 280.000..-

TOTAL 15,023,000.‥
9.2 Approximative Investments forBuilding_and_InstallationThe approximative investments for pre-fabricatedbuildings, including ventilation, and/or air conditioning,electric installation, steam, water and compressed airsupply and sanitary installations will be about
Sfr 22,255,000.--
9.3 Apgroximative_Expenses_for_TransportationThe approximative expenses for transportation willbe about
Sfr 800,000.--
9.4 Summary_of_Investments
Machinery and equipment SEr 15,023, 500..--
Buildings and installation Sfr 22,255,000..-Transportation
Sfr 800,000.--
Total
Sfr 38,078,000.--
10. Enargy Requi rements (kW installed)

Department	Machinery	$\begin{aligned} & \text { Quan- } \\ & \text { tity } \\ & \hline \end{aligned}$	kW installed	
			p. machine	total
Preparation to weaving	Winding machine	1	11	11
	Werping machine	1	11	11
	Sizing machine	1	18	16
	Warp beem storage	3	10	30
	Monorail	1	2	2
Weoving	SWM	36	2.8	93.6
Finishins	Inspaction machine	3	3	-
	Impregnating station	1	22	22
	Reaction station	1	6	8
	Pad Roll	1	34	34
	Mercarizing machine	1	27	27
	Stenter frame, padder	2	100	200
	Jet	2	17	34
	Centrifuge	1	11	11
	Pope opener	1	3	3
	Sewing machine	3	2	6
Cloth control, making-up	Inspaction machine	2	3	8
	Making-up machine	1	4	4
	Bole press	1	4	4
Ancillary fectlities	Lighting	-	-	270
	Vecuum plant	1	33	33
	Compressed air	1	18	18
	Air conditioning	-	-	250
	Cooling	-	-	260

11. Personnel Requirements

These tables are based on average European standards and should be regarded purely as a guideline.
The exact personnel requirements depends upon

- the technical knowledge of the management 1
- the adaptability and willingness of machine operators and assistants.

In this calculation we have not considered any reserve personnel, as we are not thoroughly familiar with the conditions in Saudi Arabia, e.g. absentecism, duration of holidays étc.

Shift

Shift
Job Description $\quad 1 \quad 2.3$ day \quad Totall
Eseching:In_Ogegrtment
Drawer 1
Harness preparation 1 2
and read cleaning
TOTAL Praparation to weaving
General 4 4
Yarn storage 2 2
Winding department 222 6
Warping department 2 2
Sizing department 2 2
Reeching-in depertment 2 2
Weavinp Department
Steff
Weaving manager 1.
Clerk 1
2
Weeving.Rogm
Overlooker 11.1
Weaver 222
Transport (weft carrier and cloth doffer) and cleaning 111
Ofler
11
Warp gaiter17
Grey Cloth Control
Inspaction 22
Transpori 1 -1 -1
11 Werp tying 1
8
-174-

12. Pre-Feasibility-Study

This pre-feasibility-study is based on the preliminary project as described in the chapters 2-11 of this report.
12.1 Apergx._Investmente_1n_Sfy

-177-
12.2 Sclarige.and_Weces

Groupe	$\begin{aligned} & * \\ & \text { from } \\ & \text { personnel } \end{aligned}$	Number of employes:	Wages Sfr/ year	Total Wages Sfr/ year
$\frac{1}{(h i s h l y ~ s k 11 l e d)}$	10	11	35,000	385,000
$\begin{gathered} 2 \\ \text { (akilled) } \end{gathered}$	70	73	20,000	1,460,000
3 (unskilled)	20	22	15,000	330,000
	100	208		2,175,000
Roserve	10 \% of Er	es 2 and 3		179,000
Totel				2,354,000

-) according to our experience
-178-

12.3 Expenses:fgr_Yarg

Quality 33 Cotton, 67 PESYarn-count
Ne 45/1
Quantity $363,571 \mathrm{~kg}$
Price
8.-- Sfr/kg
(estimated price for purchasein Far East)
Estimate expenses 2,908,568 Sfr/year
i. for yarn
CIF (8 8)233,000 Sfr/year
Total 3,141,568 Sfr/year
4,461,027 SR /year

12.4 Cost_of_Oparation_for_One_Yeas

Depreciation and interest (1 p.a.) $8 f$

- Buildings (20 years)

$$
1,285,226
$$

- Machinery (10 years)
- Motor vehicles, preliminary expenses (5 year:)

$$
1,842,061
$$

$$
158,620
$$

3,285,907

8alaries and wages 2,354,000
Raw material (yarn CIF)
3,141,568
800,000
$\begin{array}{ll}\text { Water } & 100,000\end{array}$
011
Chemicals, dye atuffs
100,000

Spare parta
Packing material
320,000

Postages, telegrams, telephones
Motor running expenses
85,000

Travelling
Medical expenses
80,000

Insurance (1 i)
Interest on working capital (1 s)
10,000
80,000
40,000
10,000
38,000
100,000
Total 8fr
10,544,475
Total 8R
14,973:155

$$
-180
$$

12.5 Unit_Cost_of_Production_Pex_Meter

With a yearly production as foreseen in this prefeasibility study $3,231,900$ meters (page 3) and the relative yearly cost of operation and production (page 27), namely, Swiss Francs 10'544'475 at a rate of exchange of $1 .-\mathrm{Sfr}$. $=1.42 \mathrm{SR}$, amounting to SR 14'973'155.--

$$
\text { Cost per meter }=\frac{S R 141973 ' 155 .-}{3,231,900 \text { meters }}
$$

SR. 4,63 per meter

12.6 Conclusion

It must be investigated locally whether a cost price cf SR. 4,63/m. for mercerized Thobe material is attractive, bearing in mind the profit margin which must be included and the handiing margins of dealers.

The cost of production may be reduced if:

- The capacity of the plant is increased, since a more efficient utilization of the finishing department will be possible.
- Building costs could be reduced. The estimated costs in this pre-feasibility study may be on the high side. It would be an advantage if you could investigate locally the cost of the building as described on page 11 and shown in the attached layout drawing No. 1617491.

13. Final Remarks

We trust that this study will serve as an objective basis for further discussions on tins project and our planning office will be ready for further planning work.

Encl.:
Layout Drawing No. 1617491

Winterthur, February 21st, 1978

Planning Engineer
W. Hester
W. Huber

SULZER BROTHERS LTD.
9/Textile Machinery Division Head of Planning Department $\underset{\text { B. String }}{\text { i. }}$

9/Textile Miachinery Department Office for Production Economics 9014 lla/wei

Winterthur, Noveniber 29., 1977

K UWEIT

Cost and profitahility Projections
,

Type of cloth		Drill	Shirting plain	Shirting dobby	Suiling clobby
Yarn count	warp	16	45	45	34/2
Ne	weft	12	45	45	34/2
Threads per inch (finished)	warp	64	128	128	74
	weft	40	74	74	52
Grey width	inch	61	46	46	64.2
Reed width	inch	65	49.2	49.2	68.9
Material		Cotton	PE/Cotton	PE/Cotton	PE/Viscose

SWM Machine specification

Type SWM	130' ES E10	$110^{\prime \prime}$ ES E 10	$110^{\prime \prime}$ VSD KT	153'VSD
Processing speed ppin	237	298	250	214
Number of widths	2	2	2	
Picks per yard	1412	2623	2623	1834
Theoretical production/ machine/yard/hour	20.14	13.63	11.44	14.00
Efficiency in \%	75	80	75	75
Effective production / inachine/yards/hour	14.20	10.25	8.06	9.86
Ficquired production/ hour in yards	476.63	273. 40	172.11	221.00
Necessary :weaving machines	33.40	26. 54	21.15	22.30
Proposed weaving machines	34	27	22	23
Machine hours per year	6750	6750	6750	6750
Eff. output/fabric/yards	3260000	1868000	1197000	1531000
" " " ./metres	2981000	17.08000	1034000	1400000

* Effective production yards/hour $=$ according to your instruction: 94 \% machine utilisation are included.

Raw matcrials:

	Drill		Shirting plain Shirting dobby	Suiting dobly
Weight kg/run.meter	0.265		0.123	0.279
Yarn consumption/kgs	$\begin{aligned} & \text { Warp } \\ & 421000 \end{aligned}$	$\begin{aligned} & \text { Weft } \\ & 369000 \end{aligned}$	344670	300700
Yarn wastage:	4,5\%		Shirt. Shirt. plain dobby	
Weaving + weav. preparation			3,0\% 4,0\%	6%
	Warp	Weft		
Yarn consumption/kgs	440840	386350	350750	415530
Yarn wastage:				
Spinning	15%		8,6\%	5,3\%
	Warp	Weft		
Yarn consumption/kgs	518640	454530	390320	438790
Price raw material / kg				
	1.45	1.40	1.50	1.40
Raw material costs \$	752030	636340	585330	614300

Sizing materind; Colours and chemicals

- Siring material:

Article: Drill, Shirting plain, Shirting dobly:
Production/year: 1364000 kge
8izing materials: $\quad 0,16$. kg
8. 218000

1

- Colours and chemicals:

-186-

Personnel expenses

	Number of personnel		Wages per year total $\$$	1
Spinning, doubling	116	-	137100	
Weaving preparation	61		76200	1
Weaving	58		68600	
Cloth inspection	14		10800	
Processing	68		85000	
Staff	54		239000	
Engineering	52		416000	
- !				
Total	423		1038700	
Costs of fringe bencits 30%			311600	
Other rescrves $\quad 10 \%$			104000	
TOTAL WAGES		\$	1454300	

Consumption of accessories and machine spare parts:

- Spinning 73000
- Weaving preparation 29000
- Weaving 17000
- Cloth inspection 1500
- Processing 120000
- Staff 5000
- Maintenance 3000
$!$
Packing materials
Total 248500
20000
Power charges:
Cost of current per 1 kWh : 0.04
- Spinning 100000
- Weaving preparation 23200
- Weaving 63400
- Cloth inspection 2000
- Processing 93000
- Air conditioning 180000
- Light 70000
- Others 2000
-188-
Water cliarges: $\quad(\$ 0.20 / \mathrm{m} 3) \quad \$ 104000$
Steam charges: 164000
Buildings (approx):
Spinning, weaving preparation, weaving roomcloth inspection, processing, maintenance,office:
$22600 \mathrm{~m} 2=243000$ sqft.
New building cost \$ 40 per sqft. 9120000
Depreciation over 20 years 486000
Interest 8 \% per year, average 4. 2 \% 408200
Maintenance44800
Fixed costs for buildings 939000
Investment costs (machinery, auxiliary facilities) \$
(C + F Port Harcourt)
Spinning 7658000
Weaving preparation 3231500
Weaving 12956500
Cloth inspection 450500
Processing 10170700
Auxiliary facilities 10192000
Total machinery, etc. * 44069400
.Investment costs for building Investment total $\$$
9720000
51389400
Amortisation and interests (inachinery, aux. facilities)
Depreciation 10 years 4460940
Intercst 8%, average 4.4% 1965460
Totel \$ 6432400

Production costs / ycar:

Total direct costs without capital costs/year \$ 8400400

Fixed costs of buildings, incl. maintenance/year
Capital costs of machinery and auxiliary facilitics / year

Total fixed costs per year
$\$$
7371400

- Total production costs per year
\$ 15838500

Exchange rate: 1 US $\$=2.285 \mathrm{SFr}$.

Cloth sales / year:

Drill	3031300	2.00	6062.6
Shirting plain	1747800	2.56	4474.4
Shirting dobby	1094600	2.76	3021.1
Suiting dobby	1405500	3.94	5537.7
		\ddots	

Less sales expenses 2% on cloth sales
382.0

Net sales per year:
\$
18713.8

PROFIT / year:

Profit before depreciation \& interest/year
(Net sales - direct costs maintenance of buildings)
Depreciation buildings and machinery/year
Profit before interest/year

Interest buildings and machinery/year
Profit after interest/year

Cash flow: (Depreciation + profit)
\$
10268.6
\$
\$
\$
2373.7
2942.0

7894.9

