

OCCASION

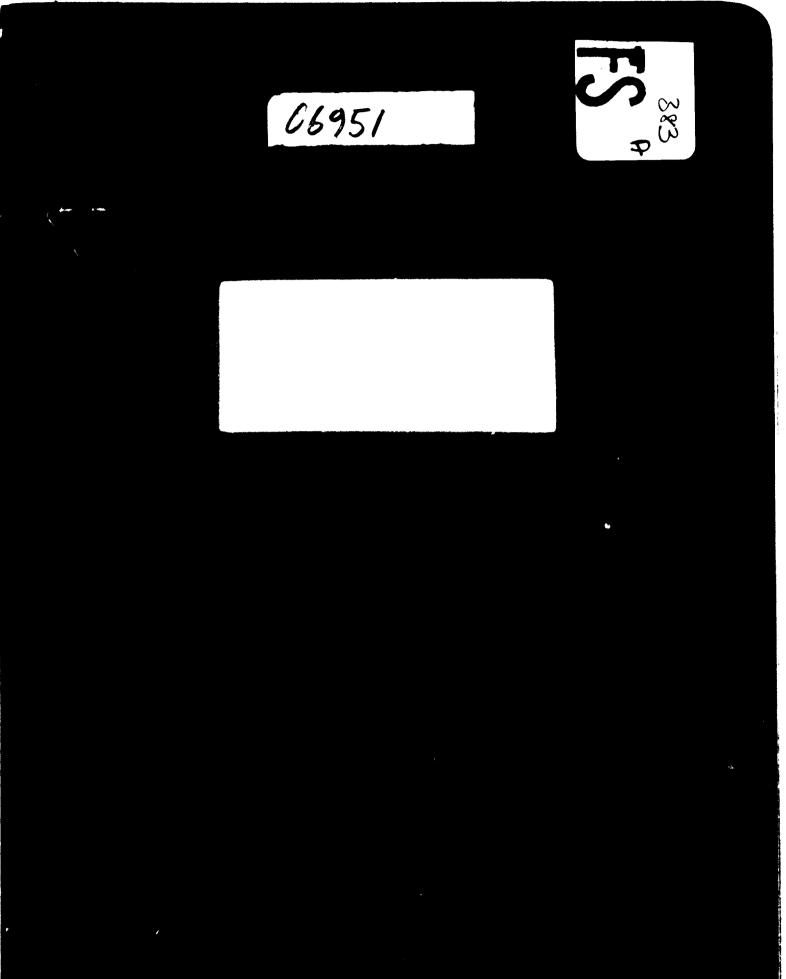
This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.


FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

Stadior Nurter BIOMERS - COMMANTS	UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION	NEPERENCE INDES SERI
July 20, 1972		R-193A 07 310
Rev. November 10, 1972		
Rev. March 29, 1973		' C
	C6951	S 383 A
		• 203 17
TI	PRELIMINARY STUDY ON HE INDUSTRIAL UTILIZATION OF BAGASSE	
	IN THE PROVINCE OF TUCUMAN ARGENTINA	
SF BA	AGASSE	
C/F HE	RASSE ZSEN THE	
•	UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION	
	VIENNA, AUSTRIA	
	ADLER HURTER LIMITE	
Engi	ineers - Designers - Consultar	nts
	1501 St. Catherine Street West	
	Montreal 107, P.Q.	
	Canada	

www.basicer

Service and the state of the first state of the second state of th

i i i i i i

.

I

ł

I

I

101-11-00 AV

I

Ï

l

ł

l

ľ

à

	98	
-	_	

I

IĘ

THE PROPERTY

iļ

Įţ

The second secon

5

NUMBER TO RETURN

1

ž s

ļ

Stadier Murter womens . consultant

R-193A/07/3101

A CKNOWLE DGMENT S

Stadler Hurter Limited wishes to express appreciation to the following groups and individuals whose participation and contributions of time, knowledge and experience facilitated performance of the work:

The Government of Argentina, Dr. Ernesto Juan Parellada,
 Miniatro de Industria y Minería de la Nación.

 Operativo Tucumán, Ingeniero Roberto J. Alvarez, Coordinador General para la Tranaformación de la Provincia de Tucumán.

The Government of the Province of Tucumán
 Ingeniero Agrónomo Juan Luis Pérez Albert, Secretario
 de Estedo de Comercio, Industria y Minería de la
 Provincia de Tucumán.

Ingeniero Agrónomo José Ploper, Secretario de Eatado de Agricultura y Ganadería de la Provincia de Tucumán. - United Nations Development Program, Buenos Aires, Dr. Higuel Albornoz, Resident Representative of UNDP for Argentina and Mr. Paul Osinski, Deputy Representative.

There were of course many other essociations, government egencies, and staff personnel, too numerous to mention, who also rendered great assistance end to these also we express our thenks. -----

Ĩ

Ĭ

1 i

Į

-

ġÊ ķ

Į

Į

ŧ 21

2

. . łį

ļĬ

<u>,</u> i ÈĒ 1 ¥ I 2

È M

li

2

Stadior Nurter INGINISERS . CONSULTANTS

R-193A/07/3101

In performance of the necessary investigations, perticularly in the acquisition end eveluation of information of essentially Argentine nature, Stedler Hurter was capebly essisted by the firm of COARA Consultores Asociedos, Buenos Aires. The knowledge and experience of this firm concerning national circumstances and procedures contributed greatly in maintaining Argentine perspective and in cerrying out the study in accordence with conditions and requirements of particular significance to Argentina. The velidity of the report and its conclusions must be sttributed in large part to the participation of this national firm and the competence of its staff members end specielist associetes.

Stadjor Mas monumes - consult		UN IT ED Develo	NATIONS I	NDUSTRIAL ANIZATION		AC FERENC# NO.	NO.	BERI NG
July 20, 1972	_				R	-193A	70	310
Rev. November					ha a.	PACE 1	28 V	í 1
	-	TABLE	G F C	ONTENT	<u>s</u> -			
						Pag	e 8	
A. IN	RODUCTION	•••••	• • • • • • • • • • •	• • • • • • • • • • • •	•••••	A/1-	8 / 8	
				d				
A.2				· · · · · · · · · · · · · · · · · · ·				
				f the Work				
· · ·	PANIOR[]	ton of study	y Kesults	• • • • • • • • • • • •	• • • • • • • • • • • •	۸/	0	
B. SUN	MARY OF CO	CLUSIONS	AND RECOMM	ENDATIONS .	•••••	B/ 1-	B/ 3	
B .1	Conclusi	lon s		• • • • • • • • • • •		3/	1	
B. 2				• • • • • • • • • • • •				
C. MAR	KET SURVEY	AND ANALYS	SIS				C <i>14</i> 4	
C. 1				•••••				
C.2 C.3				•••••				
C.4				•••••				
C. 5				• • • • • • • • • • •				
C.6				• • • • • • • • • • • • •				
	Deliniti		nouers	• • • • • • • • • • • •	•••••••	c/	42	
D. AVA	ILABILITY	OF BAGASSE	•••••	• • • • • • • • • • • •		D/1-	D/10	
D. 1	General					D/	1	
D. 2				• • • • • • • • • • • • • • •				
				•••••••••••			,	
E. OTH	ER RAW MAT	ERIALS - AV	AILABILIT	AND COSTS	••••	E/1-1	E /6	
E .1	Chemical				••••••	E/	1	
E ,2							3	
E. 3	Long Fib	re Pulp	•••••		• • • • • • • • • • • •	E/4	4	
E. 4	Waste Pa	per		•••••••••••	•••••	E/:	5	
F. SER	VICES - AV	AILABILITY	AND COSTS	•••••••	•••••••	F/1-1	/8	
F.1	Water	• • • • • • • • • • •	••••••	••••••		P/ 1	L	
F.2				•••••			L	
F.3	Transpor	tation	•••••••	••••••	••••	#/	5	

ľ

ĺ

Í

I.

l

I

l

ł

l

l

ł

ľ

ŧ

ÿ

te de la cará de services e

The second s

ŧ

· · · · · · · · · · · ·

ł

SHERINGS + C	Muste	UNIDO	NEPERENCE NO.	INDEE NO.	BERIAL NO
July 20,	1972		R-193A	07	310
ar. **			PAGE :	or vi	. (
		- TABLE OF CONTENTS - (Cont'd)			-
			Pag	e s	
G.	LABO	UR AND MANAGEMENT	G/1-	G/21	
	G. 1	Organization	G/	1	
	G. 2	Personnel Requirements and Cost		1	
	G. 3	Personnel Availability			
	G.4	Training			
	G. 5	Accommodation and Transportation			
	G. 6	Management Contract			
Н.		R MILL LOCATION ALTERNATIVES	H/1-	¥/10	
•••					
	H.1	General	н/	1	
	H. 2	Discussion			
	H. 3	Conclusions	-		
I.	SELE	CTION OF PROCESS	1/1-	1/43	
	I.1	Introduction	1/	1	
	1.2	Bagasse Depithing, Handling, Transportation and	•••• •	•	
		Storage	1/	9	
	1.3	Pulping Process	•	33	
	1.4	Preparation and Recovery of Chemicals		36	
		•	•	42	
		Pulping Yields		42	
	1.0	Chemical Requirements Recommendations	•	42	
•					
J.	PAPE	R MACHINES	•••• J/I-	·1/9	
	J.1	General	J/	'1	
	J.2	Proposed Paper Machines	J/	3	
	J.3	Proposed Paper Furnishes	J/	4	
	J.4	Pulp Requirements	J/	7	
		Papermaking Chemical Requiraments		9	
K.	BAGA	SSE REQUIREMENTS	к/1-	K/ 7	
	K .1	Introduction	K/	'1	
	K.2	Depithing Losses	•		
	K. 3	Pulping Loss			
	K.4	Summary of Losses and Bagasse Raquirements for Pu		2	
	• •	Product ion	•	'5	

1

I

A second se

I

ļ

ľ

{

And a statement

l

I

E

[

ſ.

l

Ĺ

FORM 3 Stadios Eurtos UNIDO REFERENCE NO NO NEERS . CONSILTANTS DATE July 20, 1972 R-193A 07 3101 PAGE III OF VII 20 -TABLE OF CONTENTS - (Cont'd) Į Pages COST OF BAGASSEL/1-L/8 L. Ì : L.1 General L/1 -----L.2 Discussion L/2 28 - -M. ARY TIME LPOR BELAND TO THE INTERESTS OF ST M.1 General M/1 M.2 Depithing Installations at Sugar Mills M/2M.3 Depithing Installations at Paper Mill M/5 M.4 Sequence of Operation M/8 TURE AT CAPITAL COSTSN/1-N/19 N. 10 80 N.1 General N/1 N.2 Cost Estimates TORESTER N/9 N.3 Foreign Exchange Requirements N/9 N.4 Time Schedule N/11 88 **.** . 0. STADLER. 0.1 General 0/1 0.2 Variable and Fixed Costs 0/1 0.3 Costs of Production 0/4 8 P. Ê ž: P.1 Tables P/1 P.2 Methods and Assumptions P/1 P.3 Analysis P/5 2 ġ P.4 Balance of Payments Benefits P/6 100 Q. Ĩ ALATCA I R. TABLER. CANNOT R.1 General R/1 R.2 Formation of Company 1 $\mathbf{R}/2$ Selection of Consultants R. 3 0474 FUREISHER 86 ABSIGRMENTS R/3 R.4 Preparation of a Definitive Feasibility Study R/6 Financing the Project **R**, 5 **R/**7 Method of Contracting R.6 R/15 **R**.7 Conclusions Ĩ R/24

1.

1

MBER C C C	- <u>T_A B L E S</u> - <u>DESCRIPTION</u> Historical Apparent Consumption Historical Data - GNP and Population Apparent Consumption Adjusted by Promedios Móviles Population Adjusted by Promedios Móviles	R-193A PAGE C/20 C/20 C/23 C/24		1
C C C	DESCRIPTION Historical Apparent Consumption Historical Data - GNP and Population Apparent Consumption Adjusted by Promedios Móviles	C /20 C /20 C /23		
C C C	Historical Apparent Consumption Historical Data - GNP and Population Apparent Consumption Adjusted by Promedios Móviles	C /20 C /20 C /23		
C C C	Historical Data - GNP and Population Apparent Consumption Adjusted by Promedios Móviles	C/20 C/23		
-С -С	Apparent Consumption Adjusted by Promedios Móviles	C /2 3		
-C	Móviles	C / 2 3		
	Population Adjusted by Promedios Moviles	C/24		
-C		v/ - ·		
	Annual Apparent per Capita Consumption	C/24		
-C	Coefficient of Elasticity - Corrugating Medium and Linerboard	C/26		
-C	Demand Projections	C/29		
-C	Unsatisfied Demand	C/31		
- D	Moist Bagasse Used as Fuel in Tucuman	D/6		
-D	Sugar Production in Argentina, Imports, Exports, Consumption, and Stocks	D/ 7		
-D	Sugar Production in the Province of Tucumar	n D/8		
- D	Moist Bagasse Produced in the Province of Tucuman	D/9		
-E	Other Raw Materials Availability and Cost	E/ 2		
-7	Gross Investment Return on Generated vs Pur Power	rchased F/4		
	C D D D D B F	-C Demand Projections -C Unsatisfied Demand -D Moist Bagasse Used as Fuel in Tucuman -D Sugar Production in Argentina, Imports, Exports, Consumption, and Stocks -D Sugar Production in the Province of Tucumar -D Sugar Production in the Province of Tucumar -D Moist Bagasse Produced in the Province of Tucuman -E Other Raw Materials Availability and Cost -F Gross Investment Return on Generated vs Pur	-C Demand Projections C/29 -C Unsatisfied Demand C/31 -D Moist Bagasse Used as Fuel in Tucuman D/6 -D Sugar Production in Argentina, Imports, Exports, Consumption, and Stocks D/7 -D Sugar Production in the Province of Tucuman D/8 -D Sugar Production in the Province of Tucuman D/8 -D Moist Bagasse Produced in the Province of Tucuman D/9 -E Other Rew Materials Availability and Cost E/2 -F Gross Investment Return on Generated vs Purchased	-C Demand Projections C/29 -C Unsatisfied Demand C/31 -D Moist Bagasse Used as Fuel in Tucuman D/6 -D Sugar Production in Argentina, Imports, Exports, Consumption, and Stocks D/7 -D Sugar Production in the Province of Tucuman D/8 -D Sugar Production in the Province of Tucuman D/8 -D Moist Bagasse Produced in the Province of Tucuman D/9 -E Other Raw Materials Availability and Cost E/2 -F Gross Investment Return on Generated vs Purchased

l

ſ

(

E

1 1

é

Stadior Murtor	UN I DO	NEFERENCE No.	INDER NO	SERIA NO.
July 20, 1972		R-193A	07	310
		PAGE VI	or vi	í
	- TABLES - (Cont'd)			
N UMBER	DESCRIPTION	PAGE		
1 -G	Cost of Expatriate Assistance (Model I)	G/13		
2 - G	Costs of Expatriate Assistance (Models II & I	III) G/14		
3-G	Hesd Office Expense	G/15		
4 - G	Cost of Mill Administrative Personnel	G/16		
5 - G	Cost of Operating Personnel	G/18		
6 - G	Cost of Repair and Maintenance Personnel	G/19		
7 - G	Summary of Argentine Personnel and Annual Cos	sts G/20		
1 -H	Annusl Tonnages Whole Moist (50%) Bagasse Produced	H/3		
1-I	Chemical Costa	1/5		
2 - I	Capital Costs of Complete Recovery Systems	1/40		
3-I	Chemicsl Consumptions per 0.D. Ton Pulp	1/43		
1-J	Standard Weights and Speeds for Production of Corrugating Medium and Linerboard	J/2		
2 - J	Paper Machine Major Components	J/5		
3-J	0.D. Paper Furnish Requirements per A.D. Ton Pulp	J/7		
4-J	Annual 0.D. Preparation Requirements	3/L		
5- J	Annual Papermaking Chemical Requirements	J/9		
1-K	Annual Bagasse Requirements	K/ 7		

t

l

l

ſ

Auty 20, 1972 R-1934 07 31 I A B L E S - (Cont'd) PAGE I - T A B L E S - (Cont'd) NUMBER PAGE 1-L Estimated Costs of Moist Depithed Bagasse for Various Mills L/8 1-N Model I - Summary of Direct Capital Costs N/12 2-N Model II - Summary of Direct Capital Costs N/14 3-N Model III - Summary of Direct Capital Costs N/14 3-N Model II - Summary of Direct Capital Costs N/14 3-N Model II - Summary of Indirect Capital Requirements N/18 1-0 Model I - Manufacturing Costs 0/5 2-0 Model II - Manufacturing Costs 0/7 3-0 Model II - Manufacturing Costs 0/9 1-P Model I - Income Statement Projection P/9 2-P Model I - Resume of Financial Appraisal P/10 3-P Model II - Income Statement Projection P/11 4-P Model II - Income Statement Projection P/13 5-P Model III - Income Statement Projection P/14	Stadios Mustos Biblios - Consultants	UNIDO	R#F#RENCE NO	INDEE NO	BER Ni
NUMBERDESCRIPTIONPAGEi-LEstimated Costs of Noist Depithed Bagasse for Various MillsL/8i-NModel I - Summary of Direct Capital CostsN/122-NModel III - Summary of Direct Capital CostsN/143-NModel III - Summary of Direct Capital CostsN/164-NModel I II - Summary of Direct Capital CostsN/165-PModel I - Manufacturing Costs0/52-0Model I - Manufacturing Costs0/52-0Model I - Manufacturing Costs0/53-0Model I - Manufacturing Costs0/91-PModel I - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/103-PModel I - Resume of Financial AppraisalP/123-PModel II - Resume of Financial AppraisalP/123-PModel III - Income Statement ProjectionP/13				1	31
NUMBERDESCRIPTIONPAGEi-LEstimated Costs of Moist Depithed Bagasse for Various MillsL/81-NModel I - Summary of Direct Capital CostsN/122-NModel II - Summary of Direct Capital CostsN/143-NModel III - Summary of Direct Capital CostsN/164-NModels I, II & III - Summary of Indirect Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel II - Income Statement ProjectionP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Pinancial AppraisalP/125-PModel III - Income Statement ProjectionP/13		- T A B L E S - (Cont'd)	VIII VI	1 ⁵⁷ V1	1
for Various MillsL/81-NModel I - Summary of Direct Capital CostsN/122-NModel II - Summary of Direct Capital CostsN/143-NModel III - Summary of Direct Capital CostsN/164-NModels I, II & III - Summary of Indirect Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model II - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	NUMBER		PAGE	<u>.</u>	
2-NModel II - Summary of Direct Capital CostsN/143-NHodel III - Summary of Direct Capital CostsN/164-NModels I, II & III - Summary of Indirect Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Manufacturing Costs0/91-PModel II - Income Statement ProjectionP/92-PModel II - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	ì -L		L/8		
3-NModel III - Summary of Direct Capital CostsN/164-NModels I, II & III - Summary of Indirect Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	1-N	Model I - Summary of Direct Capital Costs	N/12	<u>!</u>	
4-NModels I, II & III - Summary of Indirect Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	2 -N	Model II - Summary of Direct Capital Costs	N/14	•	
Capital RequirementsN/181-0Model I - Manufacturing Costs0/52-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	3-N	Model III - Summary of Direct Capital Costs	N/16	b	
2-0Model II - Manufacturing Costs0/73-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	4 -N	•	N/16	3	
3-0Model III - Manufacturing Costs0/91-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	1-0	Model I - Manufacturing Costs	0/5		
1-PModel I - Income Statement ProjectionP/92-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	2 -0	Model II - Manufacturing Costs	0/7		
2-PModel I - Resume of Financial AppraisalP/103-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	3-0	Model III - Manufacturing Costs	0/9		
3-PModel II - Income Statement ProjectionP/114-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	1 - P	Model I - Income Statement Projection	P /9		
4-PModel II - Resume of Financial AppraisalP/125-PModel III - Income Statement ProjectionP/13	2 - P	Model I - Resume of Financial Appraisal	P/ 10	D	
5-P Model III - Income Statement Projection P/13	3 - P	Model II - Income Statement Projection	P/ 11	l	
	4- P	Model II - Resume of Financial Appraisal	P/12	2	
6-P Model III - Flow of Funds Projection P/14	5 - P	Model III - Income Statement Projection	P/ 13	3	
	6 - P	Model III - Flow of Funds Projection	P/14	4	

. Į

ļ

ļ

****_

Į

{

Ĺ

[

I

I

l

þ

{ {

{

ł

Stadior Muster	1081 F (K.)	REFERENCE	INDER NO.	SERIAL NO
D+ TE		in an	•	•
July 20, 1972		R-193A	07	3101
Rev November 10,	1972	PAGE A	1	•
	PRETIMINARY STUDY ON THE			
	INDUSTRIAL UTILIZATION OF BAGASSE			
	IN THE PROVINCE OF TUCUMAN - ARGENTINA			

INTRODUCTION Α.

FORM 1

STADIES, MUSTEM AND IS SUSJECT TO SETURN AT ANT THE UPON BEWAND IT IS FURMISMED ONLY IN COMMECTION I Pundose disectiv os imdimentit detrimentat to the interests of etables, muntes deemonuction finge

TOR ANT

NURTER ENGINEERING OFFICES IE THE PROF De reproduced, copied, loared of used

TA PURRISHED BY BYADLEN. Assignmente and cambo

A 1 Contract and Parties Involved

Having received from the Government of Argentina a request for assistance in administration of a study, on the integral industrial utilization of bagasse in Tucumán province, the United Nations Industrial Development Organization issued an international tender call for proposals for the preparation of a study.

Subsequent evaluation of submissions received resulted in award of the study to Stadler Hurter Limited, Montreal, Canada, and a contract (UNIDO No 71/53) for performance of the necessary investigations was accordingly effected between UNIDO and Stadler Hurter Limited. By prearrangement, Stadler Hurter retained the Argentine firm of COARA, Consultores Asociados, Buenos Aires, to assist with the work.

A.2 Background Information

a) General

The province of Tucumán is located approximately due North and 1200 km. from Buenos Aires and is among the group of "Northwest Provinces" whose development potential is of current interest. The other provinces in the group are

FORM 8

HECTR ENG

.

Sandir.

THE OWNER

HIS MARTIN

TIME UPON DEMAND IT IS THE INTERNET OF STADLER.

12

DETENDED AT

WENECT TO

DIMECTLY OF

STADLER, 1

ļ

¥ 8 9¥

83

8

Į1

1

Stadles Hustes

R 193A/07/3101 Page A/2

Catamarca, Salta, Jujuy, and Santiago del Ester. A comprehensive program (NOA Program) has been and is being planned to stimulate and accelerate gowth in the region and thus improve its economic position relative to other more advanced parts of Argenting.

In the North-South direction Tocumán lies completely between parallel 26° and parallel 28° South which renders the climate suitable (though not ideal) for the cultivation of sugar cane. Based on this agricultural resource a large cane sugar industry has developed over the years to such an extent that, despite the fact that it is the smallest of all of the provinces of Argentina, Tucumán has in the past supplied up to 60%, and at present contributes over 50% of sugar produced in Argentina. Its sixteen operating sugar mills (or "Ingenios") in 1970 manufactured over 491,000 metric tons of a national total of 908,000 tons of sugar.

Due principally to the sub-tropical nature of the climate the crushing season (zafra) in Tucumán is unfortunately limited to less than four calender months. The general economy of the province is in consequence adversely affected by the problems arising from the relatively short periods of seasonal productive activity and the corresponding lack of employment which exists between crushing seasons.

R-193A/07/3101 - Page A/3

Stadler Nurter

125

No. - March

I.

ļ

Į

-

3

ž

32 23

MARKET T

1

DAMESTLY AND

١,

AT 1 ST

į,

b) Sugar Cane Bagasse

When sugar cane is crushed to extract the juices containing the sugar a fibrous residue is left which is known as sugar cane bagasse. Regarded essentially as waste, this material has traditionally been utilized as the primary fuel for generation of process heat requirements thus solving the disposal problem in a manner which yields a benefit to the overall economy of sugar production. Since, on a dry basis, the ratio of bagasse to sugar in Tucumán is approximately 1.5 : 1 it is evident that large quantities are produced and burnt in the ingenios of Tucumán.

In comparatively recent times a number of potentially more profitable ways in which eugar cane bagasse can be utilized have been developed and implemented in many sugar producing areas. Bagasse being essentially fibrous in nature these developments generally have been oriented towards manufacture or substitution of existing products which use cellulose fibre as the basic raw material although other applications have also been found.

Since the bagasse which is generated represents a convenient, reliable, economical and readily evailable fuel for the suger mill boilers, it is obvious that, if it is to be diverted for other purposee, en accepteble substitute

708M 2

Ĩ

Ĭ

1 - - A

17 E

Į

1

9

No. of the second secon

¥.

32 57

Į

¥1 = 8

Stadier Murter Members - Consultants

R-193A/07/3101 - Page A/4

fuel of at least equally desirable characteristics must be provided. The availability of such alternative fuel is the fundamental and major factor in determining the cost of the bagasse and, therefore, the practicability of utilizing it for establishment of other industries.

The existence of an adequate supply of natural gas and a conveniently located distribution system in Tucumán should eliminate any problem with regard to substitute fuel.

A.3 Aim of the Study and Scope of the Work

From the terms of reference in the Contract and pertinent information in other documents the aim of the study, in broad definition, has been interpreted to be to determine the manner in which the bagasse from the ingenios of Tucumán csu most effectively be utilized to improve the economy of Argentina in general and conditions in the province of Tucumán in particular.

The scope of the work has accordingly been related to this concept and the study has been developed to indicate, technically, financially and socially, the most advantageous course along which the industrialization of bagasse should be directed and, at the same time, the aspects which would merit exploration in finer detail through specific feasibility studies.

R-193A/07/3101 - Page A/5

Stadior Murtor monumes.consultants

Į

1

1

11

The basic assumption has been made that in order to have a significant economic effect on a national and provincial scale the projects to be considered must be of substantial magnitude and must use the largest possible quantities of the bagasse available. For this reason, attention has been concentrated on the possibilities of manufecturing pulp, paper, and board products. Other types of product can be made from a bagasse base but markete are vary limited and the consumption of the bagasse is eccordingly relatively minor. Conversely, the scale and rete of development of peper and board products manufecture are in generel limited only by the continuous and rapid growth of market demand or by the eveilability of the bagasse itself. Progress in this type of industry has, morever, accelerated rapidly in the past two decedes and bagases-based pulp, paper and board mille are presently operating profitably in many parte of the world using proven and well-known technology.

In accordance with the specification in the Contract and the above assumptions, cost models have been developed for small, medium and large pulp and peper mille, the selection of the relative capacities and the producte to be manufactured being based generally on the indications of the market etudy and, for the largest mill, the most economical availability of bagasse.

Stadies Muster

ĮĮ

1

ļ

1

1

Ę

ł

Į

jł Eł

1

Į

R-193A/07/3101 - Page A/6

These cost models (referred to in the report as Model I, Model II and Model III) ere presented in edequate deteil to permit velid comperisons to be made in reference to technical, economic, financiel and social espects.

The approximate timing of the first project has been determined and the direction which future development should follow hes also been explored. Lacking information concerning when or how much cepitel will be available we can only speculate es to which alternative might be selected for initial implementation. Consequently, the planning of the overall development program can only be presented on a contingency besis.

Besed on the results of the complete investigation, conclusione have been steted and recommendatione made.

A.4 Evaluation of Study Results

Argentina, in common with most Latin American nations, has traditionally had a rather volatil: economy although, in a relative eense, it has been more stable than most. Within the last two years, however, this condition has deteriorated seriously to the point where, during 1971, the Argentine rate of inflation was among the highest in the world and little indication of eubstantial improvement eppeare likely for 1972. As a consequence of this rapid inflationary trend euch factors

R-193A/07/3101 - Page A/7

Stadior Murtor moments.commentant:

1

Ę

81

!! !!

٤j

þ

ł

ĘĮ

11

1

Į

žI

as salary and wage ratas, product prices, costs of fuel and power, foreign exchange ratios, etc., have been in a state of constant flux during the period of the subject study, varying not only in value but also according to different rates of exchange. Unpredictable adjustments have thus been occurring at frequent and irregular intervals and in almost all of the factore relevant to financiel analysis.

Under such circumstances it has been considered impracticel to attempt enalysis incorporating currant figures as they evolve. As the only practical alternative, all such factors have therefore been referred to their values in the last quarter of 1971.

The rate of axchange to be used for convarting \$^a into US \$ and vice verea presents particular problems. Not only has "Argantine currency been subject to continuous changa in value referrad to the US \$, but the US \$ itself has recently been devalued. For these rassons, the commercial rate of 5 \$^a per US \$ which preceded introduction of the financial rate on Septamber 19, 1971, has been used throughout the report.

Since financial appreisal will apply to conditions as they were at the reference period, leter interpretation will require an analytical approach, exercise of sound judgment, and a thorough knowledge of the changes which have subsequently occurred. If all factore have inflated in proportionate ratio, the conclusiona

708W 8

*

I

ſ

{

l

ſ

l

I

I

Į

[

[].

Ĥ

I

Sendler Hu momeses . consul			R-193A/07/3101 - Page A/
	derived in the	report will remain ve	lid. If, on the other hand,
	one or more of	the important values	has varied diaproportionately,
	the results of	the financial analysi	s will have to be adjusted
	accordingly.		
		. .	teritiga ta territoria.
		-	

٠

1

•

we have an gar the construction and a second s

	Muries Onsultants		R-193A/07/3101	Page B/
В.	SUMMARY	OF CONCLUSIONS AND RECOMMENDATIONS	5	
	B.1 <u>Con</u>	clusions		
	(4)	For maximum effect on national a	and provincial econom	ı у ,
		only the largest possible projec	tts should be conside	red
	(b)	Reslistic estimate of time requi	red to implement a l	arge
		project places initistion of ope	eration early 1977 an	d
		full production 1979		
	(c)	Market analysis and projections	indicates substantia	1
		demand for printing and writing	papers, tissue, sack	, bag
		and wrapper, linerboard and corr	ugating medium.	
	(d)	Demand for linerboard and corrug	ating medium is incr	easing
		more rapidly than for other pape	rs and manufacture	
		utilizes maximum quantity of bag	asse thus these are	the
		products to be investigated.		
	(e)	Paper machines trimming 3.2 meter	rs and 5 meters will	yield
		maximum flexibility and economy	in conversion of pro-	ducts
		to containerboard.		
	(f)	Cost models to be developed:		
		(i) 166 ADTD corrugating mediu	an a	
		(11) 330 ADTD linerboard		
		(111) 496 ADTD both products		
	(g)	Bagasse produced in Tucumán is mo	ore than adequate for	two
		mills of the largest capacity.		
		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	

•

.

t

1

1

|

) [[[

1

SULTANTS	
(h)	Substitute fuel would be natural gas.
(i)	Chemicals, water, power, and transportation facilities
	are available in necessary quantities and at reasonable
	costs.
(1)	Any project would employ mainly Argentine personnel but
	some training in pulp and paper manufacture and temporary
	assistance from foreign specialists will be required.
(k)	Logical division of the province would be two zones -
	one in the North and the other in the South. Sufficient
	bagasse will be available in either zone for supply of
	the largest mill considered. Indications are that costs
	would be somewhat higher in the Southern zone.
(1)	The soda process would be the most suitable and economical
	for manufacture of begasse pulp. Handling transportation
	and storage of bagasse would be in bulk form,
(m)	Estimatad total capital requirements (Direct, Indirect
	and Working capital) would be
	Model I - US \$ 36,810,000 (\$# 184,050,000)
	Model II - US \$ 65,060,000 (\$# 325,300,000)
	Model III - US \$ 91,800,000 (\$ ⁴ 459,000,000)
(n)	Financial analysis indicates Model II and Model III to
	ba viable projects and about equally profitable.
	Model I (corrugating medium only) is not viable under
	the conditions assumed for financial analysis.

Ì

 (o) Programs for future development would be based on Nodel II or Model III. (p) There is no doubt that the bagasse from the sugar mills of Tucumán can be utilized much more profitably than at present. (q) A definitive fessibility etudy must be made to permit specific selection of the project to be carried out. 8.2 <u>Recommendations</u> (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the study the financial analysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained in Section R. 	Stadior Muster memeses . Consultants	R-193A/07/3101 - Page B/
 (p) There is no doubt that the bagasse from the sugar mills of Tucumán can be utilized much more profitably than at present. (q) A definitive feasibility etudy must be made to permit specific selection of the project to be carried out. B.2 Recommendations (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the study the financial analysis should be adjusted to present conditions to verify that the financial indications remain valid. 	(o)	Programs for future development would be based on
of Tucumán can be utilized much more profitably than at present. (q) A definitive feasibility etudy must be made to permit specific selection of the project to be carried out. B.2 Recommendations (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the repidly changing condition of the Argentine sconomy during the progress of the study the financial snalysis should be adjusted to present conditions to verify that the financial indicatione remain valid. (c) The remaining steps to be taken are outlined and explained		Nodel II or Model III.
 present. (q) A definitive fassibility etudy must be made to permit apecific selection of the project to be carried out. B.2 Recommendations (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the repidly changing condition of the Argentine sconomy during the progress of the study the financial analysis should be adjusted to present conditions to verify that the financial indicationa remain valid. (c) The remaining steps to be taken are outlined and explained 	(p)	There is no doubt that the bagasse from the sugar mills
 (q) A definitive fessibility etudy must be made to permit specific selection of the project to be carried out. B.2 <u>Recommendations</u> (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Hodel II or Model III. (b) In view of the repidly changing condition of the Argentine sconomy during the progress of the study the financial analysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 		of Tucumán can be utilized much more profitably than at
 specific selection of the project to be carried out. B.2 <u>Recommendations</u> (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the study the financial snalysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 		present.
 B.2 <u>Recommendations</u> (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the study the financial snalysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 	(p)	A definitive fassibility etudy must be made to permit
 (a) This report shows definitely positive results thus immediat action should be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the study the financial snalysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 		specific selection of the project to be carried out.
 action ehould be taken to initiate implementation of Model II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the etudy the financial snalyeis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 	B.2 Reco	Rumendations
 II or Model III. (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the etudy the financial analysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 	(@)	This report shows definitely positive results thus immediate
 (b) In view of the rapidly changing condition of the Argentine sconomy during the progress of the etudy the financial snalyeis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained 		action chould be taken to initiate implementation of Model
<pre>sconomy during the progress of the etudy the financial analysis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained</pre>		II or Model III.
<pre>snalyeis should be adjusted to present conditions to verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained</pre>	(b)	In view of the rapidly changing condition of the Argentine
verify that the financial indications remain valid. (c) The remaining steps to be taken are outlined and explained		sconomy during the progress of the study the financial
(c) The remaining steps to be taken are outlined and explained		snalyeis should be adjusted to present conditions to
		verify that the financial indications remain valid.
in Section R.	(c)	The remaining steps to be taken are outlined and explained
		in Section R.

- 9**6** (1.

いていませんの読をう

Sector Sector

Support to considerate

1

٠

l

ł

Ł

f

Stadior Muster

15

Į

8

iļ

Į

5

AND THE UNIT AND THE PARTY OF

Ĭ

Ĭ

ji El

I

= 8 ¥ 8

5

۶ı

j

1

1

R-193A/07/3101 - Page C/1

C. MARKET SURVEY AND ANALYSIS

C.1 General

(a) Discussion of Products that can be produced from Bagasse

A wida range of pulp and paper products can be made entirely or largely from bagasse and many are being produced commercially today. It must, howevar, always be ramembered that pulp produced from bagasse is a short fibre pulp rather similar in cheracteristics to hardwood kraft. Consequently it has certain limitations in its applications because of its lowar strangth properties. Short fibra pulps ere well suited for the production of papers and boards where high strength is not a prime requisite. Where high strength is required as in the ceae of wrepping, bag and sack papers, short fibra pulps cennot be used at all or only in limited quantities if the highest grades of such pepers ere to be producad.

Countries which have axtensive resources of rew materials suitable for the production of short fibre pulp end limitad eveilability of rew materials suitable for the production of long fibre pulp tand to use substantially higher then normal proportions of short fibre pulp in their paper products. While, from the end use point of view, satisfectory paper products can be made in many cases, using a major proportion of short fibre, the sele of most of these

¥2 44 Stadior Murter

R-193A/07/3101 - Page C/2

products is limited to the national market because, on a quality basis, they could not compete abroad with equivalent papers utilizing a ligher proportion of long fibre pulp.

Therefore, in such nations, when considering the manufacture of paper products utilizing largely bagasse pulp, the papers and paperboards should be divided into two categories - those which could possibly be exported, and those which would be very difficult to sell anywhere but on the national market.

In general, papers that are exported internationally are standard grades produced in large quantities in integrated pulp and paper mills on large high speed paper machines at the lowest possible cost. Corrugating medium produced from bagasse is fully equivalent in every respect to the best produced from wood and could certainly be exported if markets can be found. Also, some of the lower grades of standard business bond papers (mimeograph) and glassine can be produced in qualities equivalent to international standards and might find a market abroad. The use of glassine in packaging is, however, declining as this paper is increasingly being replaced by plastic

• film,

1

12

1

Stadier Muster members . CONSULTANTS

R-193A /07 / 201 - Page C/3

Newsprint is another possibility. The study included in Appendix I reproduces some conclusions included in our report of the "ESTUDIO DE INVERSION DE UNA PLANTA DE PAPEL PRENSA (PAPEL PARA DIARIO)" prepared by our firm for the Argentine Government in 1970. The production of newsprint from bagasse is still in a very early stage of development. On the other hand, the national market for newsprint will be completely covered with the projects for manufacture of it with poplar and willow from the Delta, which have already started, according to the decision of the Argentine Government on the basis of the Investment Study for a Newsprint Mill.

However, if export of newsprint is to be considered, the newsprint would have to be of a quality matching international standards. To date any newsprint produced from bagasse, while quite suitable as a substitute for standard wood pulp newsprint in protected markets, has differed so obvibusly from standard newsprint in opacity, ink absorbency, printability and brightness that it could not be run mixed with newsprint from other sources without being very noticeable. Advertisers object rather strongly

ŧ

•

ξų

12 2 2 Stadlor Hustos Members - Consultants

R-193A/07/3101 - Page C/4

others in a newspaper issue. This difficulty could of course be overcome if publishers or markets could be found that would use only bagasse newsprint, but usually publishers like to be free to purchase at the best price from several sources so that, in the end, the best way to assure the possibility of export is to produce a product matching standard newsprint in appearance, printability and runability.

All these reasons make it impossible for us to recommend its selection for the bagasse plant.

In some instances where paper of internationally acceptable quality can be made using a high proportion of short fibre pulp, other factors may limit the sale to local or national markets. Sanitary tissue paper, for example, is bulky and chis places limitation on the distances over which it can be shipped economically. Bond, book and writing papers are produced in a very large variety of grades, weights, and finishes (it is not unusual for a paper mill to produce 400 to 600 different grades) and are ordered by the cuatomer in small lots to precise

-

Bindles Musica

R-193A/07/3101 - Page C/5

specifications, which makes sales difficult beyond a certain range. With minor exceptions such papers are produced and sold in regional markets.

Papers such as linerboard, sack, bag and wrapping paper, when made largely from bagasse are saleable only on the national market. For these products high strength is required, and if these products are produced largely from bagasse pulp the strength of papers and boards produced is not great enough to make them acceptable on the international market in competition with the same products made from long fibre softwood pulps.

Bagasse pulp is not sold on the market in appreciable quantities. At present almost all bagasse pulp produced is used in integrated mills manufacturing paper as the end product. However, as a market has developed for hardwood pulps in recent years, it should be possible to market bagasse pulp since its properties are similar to those of hardwood kraft.

Only bleached bagasse market pulp can be considered. The market for unbleached pulp of any kind is very small. The mills using unbleached pulp in large quantities are those producing linerboard, sack and wrapping paper, for

Ì 1 Į, ŧ, ¥٤ 2

FORM 8

10

AND THAT LAND, MANAGER IT IN

MANAGE TO RETURN AT

DIMECTLY OF 1

i El

= # #

8

11

Į

Ì

Stadior Murtor Moments - Consultants

R-193A/07/3101 - Page C/6

which bagasse pulp is not well suited, and in any case such mills almost invariably produce their own pulp in an integrated operation. Corrugating medium can, of course, be produced from unbleached bagasse pulp, but it is always produced in an integrated operation and consequently cannot be considered as a markst for unbleached pulp.

Bleached short fibred pulps are used extensively in mills producing fine papers such as bond, writing and white printing papers, specialty papers, tissue paper and specialty boards.

Bleached bagasse pulps are very similar in characteristics to bleached hardwood kraft pulps for which (in spite of the generally depressed condition of the paper products industry), there is an appreciable and increasing demand on an international basis. The marketing of hardwood pulps is, however, well established and production facilities are in general being expanded with the increasing demand so that bleached bagasse pulps would be placed in the position of breaking into an existing and highly competitive situation. There appeare to be little doubt that such cagasse pulps could eventually capture a portion of the bleached short fibre pulp demand but eince the product is relatively new to export markets the development of substantial eales potential would be difficult.

R-193A/07/3101 - Pege C/7

Stadler Murter

Dissolving pulp, despite the inroads made by plastics and othar synthatic fibres and filme, is in continuing demand for the production of rayon, tire cord, cellulose acatate, cellophana, CMC (Carboxy Methyl Cellulose) and nitrocellulose. Tha market is, however, currently depressed and the rate of growth is small. Unlike paper pulp, firre langth is of littla or no importance in the case of dissolving pulp (in most epplications the pulp is actually chemicelly dissolved), and it is the chemical and molecular properties that are of importance, hence dissolving pulp may be producad from short or long fibred cellulosic raw materials.

The term "dissolving pulp" is a generic name. There are many varieties; each with properties to suit a particular end product. Dissolving pulp for the production of cellulose acetate, for example, is quite different from that used for the production of callophane. And although dissolving pulps of some types can be made economically from a perticular raw materiel, it does not follow that all types of dissolving pulp can be made from the same raw materiel. Depending on end use, dissolving pulps vary in alpha cellulose content from 85% to 98.8% and in pentosan content from 1 to a maximum of 5%. There are also wide differences in molecular chain length end chain length uniformity, viscosity, and tolerance of impurities.

FORM &

¥ \$ 5

NICE N

> MICTIC TIMES

81

L GRAMME

1 1 1

12

1

Ĩ

έŧ

¥1 2}

31

Į

Ĩ

-

1

Ē

Į

ł

li.

12

Į

,i El

I

¥8 2]

Stadior Muster

R-193A/07/3101 - Page C/8

No dissolving pulp is currently produced from bagasse. There is, however, considerable published literature on laboratory studies and tests on the production of dissolving pulp from begasse by the kraft or soda process with acid, steam, or water prehydrolysis. The research data available is largely of an axploratory nature and not all of the pulp propertias that are critical were evaluated. From the data available it can be seen that although it is readily possible to obtain a pulp with an alpha contant well above tha minimum requirements for the lower grades, the pentosan content is close to the maximum ellowable for the lowest grade of dissolving pulp. The pentosan content no doubt could be decreased by more rigorous prehydrolysis at the expense of yield; or by cold coustic axtraction in the bleach plant, agein at the expense of yield, (plus a vary high capital cost). A lower pentosan content, however, in itself does not necessarily mean a satisfactory dissolving pulp. Reactivity end chain length uniformity are critical factors for many applications and, as bagasse is a rather heterogenous raw material, there are no doubt some limitations. Moreover, impurities in bagasee are high and whether these can be reduced to the tolerances required remains to be proven.

FORM &

15

₹ž

1

12

ŧ

, | E |

21 21

Stadior Hurtor Monstes - CONSULTANTS

R-193A/07/3101 - Page C/9

Based on the evaluation of the published data available, we believe it may be possible to produce the lower grades of dissolving pulp suitable for the production of staple fibre viscose and perhaps cellophane. We believe it would be impossible to produce acetate, polynosic, super tire cord, and tire cord grade dissolving pulp from bagasse, and we greatly doubt that nitrating, CMC or continuous filament super viscose grades can be made from bagasse Even in the case of dissolving pulp for staple fibre viscose, considerably further research work is required to definitely prove the technical feasibility of the production of dissolving pulp from bagasse. We do not think that the production of dissolving pulp from bagasse should be considered because of the high technical risk and the currently depressed market.

Particle board (aglomerado) and fibre-board can be produced from bagasse. Plants which have been built are, in general, of relatively small capacity averaging about 50 tons/ day or 15,000 tons/year. For all intents and purposes, except possibly in the wood-poor countries, the commercialization of such board has not yet made appreciable inroads into the potential particle and fibreboard applicationa. In the construction industry, for instance, which represents a

R-193A/07/3101 - Page C/10

Stadios Mustos

-

łţ

Ĭ

A DIMECTIC

i

ļ

:

Constant and and and

ALL LANGE

:1

Į

¥ 8 = 1

Ī۲

j

1

ĺ

major source of demand for this type of material, wood based composition boards and plywoods dominate the market. The products made from wood have superior strength, better dimensional stability, generally more rugged characteristics and, in most cases, lower overall cost.

Several Argentina construction firms stated that they hed made trials using bagasse particle board for formwork but had found it to be less economical than traditional wood-based materiels.

Bagasse particle boerds and hardboarde have in some cases bean successfully used as filler material for venaer ovarley in the manufacture of furniture, doors, decorstive paneling, atc. This market, however, obviously has very limited scope.

In their present form it is felt that construction boarde from bagasse would be limited to national and even regional markets because of cost and quality considerations and that before larger markets can be captured they must break into the established trade in wood-based composition boards and plywoods on the basis of superior quality end/or lower prices.

Continuous research and experimentation is in progress towards the development of more economical and better bonding

R-193A/07/3101 - Page C/ 11

Stadios Mustos monters - consultante

> materials, more efficient manufacturing processes and general overall improvement in quality and cost. It is foreseen that bagasse construction board may eventually be competitive at least with wood particle boards and hardboards, and even with plywood, in national markets.

An intersating note is that during the period of this study negotiation was in progress towards the pussibility of manufacturing some 10,000 tons/year of bagaase particle board at Inganio Nufforco in the province of Tucumán. The principal fasture of the proposed product would be the uss of a soys bean glue binder which has been developed through government sponsored research and which shows promise of improved quality at raduced cost. The market for this board is, however, expected to be confined to furniture manufacture.

Asids from paper and board, other potential uses for bagasse have been, and are being, investigated. Among these the principal ones are furfural, activated carbon, yeast and animal fodder.

Recent studies by Stadlar Hurtar raveal the following general information concerning these products:

Furfural as, a chemical intermediate, is used principally for tatrahydrofuran which, to a large extent, is being replaced

-

18

N N N

Ĭŧ

Ŧ

ļį

Į,

12

I,

Į

.

51

FORM 8

Ìŝ

žĬ

Į

Ì

Į

ţ

Ę

te se

1

¥1 ×1

Stadior Warter

R-193A/07/3101 - Page C/12

by acetylene and formaldehyde. It is also used to produce resins to be used as moulding powders, and in the production of asphaltic battery cases, laminating varnishes and furfuryl alcohol. Until recently, it was used as raw material for manufacture of adiponitrile (for nylon 66). This application has, however, almost disappeared with the introduction of less costly ciclohexane and butadeine.

The world demand is estimated at about 150,000 tons/year, and production capacity at 180,000 tons/year. Approximately 50% of the total demand is supplied by the Quaker Oats Co. Markets are principally in the U.S.A. and Europe and difficult to enter.

Although no furfural is being produced from bagasse at present it should be possible to make furfural from bagasse. The process would consume approximately 15 tons of 0, D. bagasse per ton of furfural produced. The studies made on the economice of producing furfural from bagasse have shown that it is at best a marginal operation.

Production of furfural from bagaese pith, as a by-product of paper manufacture, is questionable from a technical point of view and also not very economical.

Activated carbon, or activated charcoal, is an amorphoua form of carbon which is treated to present a very large surface area. It is porous in etructure and it is this

7088 B

ĨĘ

Ĭ

.

2 E

ļ

•

ļ

έŧ

1

¥1 ≠₿

۶ı

j

Stadier Murter Memeras.consultants

R-193A/07/3101 - Page C/13

characteristic which provides its ability to absorb gases or vapours from gases or dispersed substances from liquids.

The major demand is for use in sugar refining. Estimated quantity consumed by the Argentine sugar industry is 2,000 tons/year maximum. It is quite lik-.y that this consumption will decrease if recent technological developments for reactivation are applied.

Our studies have shown that it is unlikely that production of activated carbon from pith would be economical considering collection end transportation problems, the calorific value of the pith, and the need for development of suitable technology. It is possible that production from whole bagasse could be profitable provided that sufficient unsatisfied demand exists.

Begasse contains, together with other carbohydrates which ere reducible, 18-20% of pentosens, mainly xylose and di- and tri-sacharides, which are resdily fermentable to yeast. It would appear more prectical, however, to utilize molasses or molasses residues as a culture for yeast production if the need for such manufacture is indicated. Animal fodder has been, end is being, produced from sugar manufacture by-products, i.e. molesses and pith.

R-193A/07/3101 - Page C/14

The molasses has excellent nutritive value for cattle but must be mixed with pith to permit the animals to digest it properly. The pith exposes a large surface area and can absorb up to thirty times its weight. A common mixture is 30% wet saparated pith and 70% of 80° Brix molasses, which is pellatized for marketing.

The markat for such foddar is usually of relatively small size and such an enterprise would appear to be better adapted to exploitation by an individual inganio rather than on a provincial basis.

The mentioned products and some mors minor ones such as gardening muloh, chickan litter, atc. all present limited markets, limitad bagassa utilization, and doubtful if not negative economy.

b) Products and Markets Studied

For reasons given in the discussion C.1.(a) market pulp, dissolving pulp, furfural, activated carbon, yeast, animal fodder are not considered worth further study, and the study has been limited to nine categories of paper, pulp and/or board products have been studied in detail in the market survey. These are as follows:

- Printing and Writing (See also Appendix AX, 5 a)
- Tiasue and Sulfito (See also Appendix AR.5 b)
- Pulp (See also Appendix AX.5 b)

1

Ĭ

ļ

ŀ.

ţ

Į

12

Ĭ

ļ

ji Eł

Į

8

Í1

(ð

Stadjes Zurtes

MILLES . CONSULTANTS

Stadier Murter Monistes - CONSULTANTS	R-193A/07/3101 - Page C/15
	- Saik, bag and wrapper (See also Appendix AX. Ed)
	- Linerboard (See also Appendix AX, 5 e)
	- Corrugating medium (See also Appendix AX, 5 e)
	- Particle board (See also Appendix AX, 5 f)
	- Hardboard (Fiberboard) (See also Appendix AX,5 g)
	- Newsprint (Sea also Appendix AX, 5h)
	All ning of the products have been carefully investigated
	to datermine historical apparent consumption and futura growth
	potentiel both on a national basis and for the LAFTA Pact and
	other nations bordaring on or near Argentina. The results of
	preliminary analysis indicate thet, in general, the LAFTA
	netiona either hava or will hava sufficiant productive
	cepecity to satisfy expending market demand for most of the
	products considered, or sltarnetively, that for products that
	must be imported by these nations, Argentine would not be
	able to antar the markets on a competitive level with
	asteblished suppliars. Considerations of export markets
	heve thus been eliminated.
	The present internal situation is that, except for
	newsprint end long-fibre pulps, demand is essentially

setisfied by existing productive cepacity. Preliminary

projections indicate thet increase in demand for particle

board and fiberboard will be raletively slow, end that, even

in 1979, unsatisfied demand will not be appreciable and will

ł

ł

l

l

ĺ

Ľ

Mere To The

.

į

ANT TIME UNITS STANDING TO THE TANK

PREPARTY OF STADLER, MARTER AND IS SABART TO RETAIN AT UNDER PREV ANY PURPORE DIRECTLY OF INDURECTLY DETRIMUNTAL.

A STATE IN THE STATE

ĺ

{

11

1

I

۱

Stadler Muster Montes - Consultants

1

R-193A/07/3101 - Page C/16

probably be supplied from existing sources. Consumption of newsprint, of course, shows a continuoualy increasing trend at a substantial growth rate. However, the technical inconvenients for its production using bagasse as raw material, and the fact that the Argentine Government is at present taking positive action to start up newsprint plants using willow and poplar from the Delta, to cover the total needs of the country, make us reject this type of paper as a final product for the bagasse plant.

Of the products which have been investigated there remain only printing and writing papers, tissue, sack and bag papers, and linerboard and corrugating medium. The indicated increase in demand for these papers is progressing at a more or less rapid rate, particularly for the so-called "industrial papers", i.e. sack, bag, wrapper, linerboard and corrugating medium.

The information collected concerning markets, and demand for all nine products, and pertiment economic and social statistics is presented in the Appendix for reference. The remainder of this chapter, for the sake of brevity and clarity, will analyze only those products which are of primary interest which are, as mentioned above:

- Printing and Writing papers

Tissue

FORM &

16

ĮĮ

iļ

ļ

].

Ę

12 27

Ĩ

) ||

I

21 21

1 1

ļ

Į

ij

1

١,

Studior Nurtos

INDINEERS . CONSULTANTS

R-193A/07/3101 - Pege C/17

- Sack, Bag, and Wrapper

- Linerboard and Corrugating Medium (*)

(*) These are considered together because, being the components of corrugated containerboards, they are complementary to each other.

C.2 <u>Historical Data</u>

(e) <u>General</u>

The consumption of paper products throughout the world has maintained e continuously increasing trend throughout many decades and, it appears, will continue to increase in the foreeeeeble future. The average overell increase in globel demend for ell papers has been estimated at 5% per year during the 1970's. Being an averege, this figure veries over e wide rengs according to spacific products and different nations. Total demand for Latin America it is expected will be higher than the average at 7.3% with Argentins estimated at 7%. General indications are that world demand for paper products of all kinds will have doubled within the next 20 years.

In Argentine paper manufecture detes beck to 1873, making it one of the oldeat esteblished industries in the nation. Development, however, has been generally limited to setisfaction of internel demand and no appreciable export trade in paper has developed. Mills ere therefore of relatively small capacity and specialized in the manufacture of the most sesential types of paper. The industry as a whole has a

PROFECTER FIND

8

PRESS BULL

8

5

Ē

The second secon

ÈĒ

Stadios Mustos Momentes Consultants

R-193A/07/3101 - Page C/18

certain lack of flexibility to absorb major market fluctuations. Variations either upward or downward can have serious effect on the industry as it presently exists.

The existing fibrous resources of the country, although lacking the vast volumes of long fibre woods found in North America and the Scandinavian countries, have however been exploited to only a minor extent up to the present.

(b) Apparent Consumption

In reference to statistics concerning historical consumption of paper products in Argentina the interpretation of recorded data and segregation according to individual products has been rendered most difficult due to differences in the format used in classifying various types of paper products and a tendency to include some products under irrelavant headings or simply under "Other Papers". Each official, and presumably reliable, statistical source appears to have its own unique system of categorizing paper products and quite often under similar headings data from different sources show grossly dissimilar figures. For instance, Ministry of Trade and Commerce tables include "sulfitos" under Kraft although sulfito, as the name implies has little or nothing in common with kraft papers. In

2 E

WILL BE PROFEC

Ì

1

11

독렬

L.

8 \$

¥8

=

51

į.

j

Stadior Muster

R-193A/07/3101 - Page C/19

recent years INDEC has been showing these two papers separately but no indication is given as to how they were classified previously. Similarly the Ministry records include Liner and Corrugating under Kraft papers - a generally correct classification, but not very useful when attempting to separate out data about these specific papers.

As a consequence of this confusion in statistics from different sources it has been necessary to correlate the figures from relevant governmental agencies and industrial associations and to use judgement and reasoning in arriving at realistic estimates of consumption according to specific products. In some cases the figures which have been educed might, therefore, show appreciable differences when compared with those of other agencies or associations. Such differences are in most attributable to lack of precise definition for the papers to be included in a given category with consequent inclusion of irrelevant papers, and/or omission of types which properly fit into the category.

The values for historical consumption shown in Table 1-C (below) are considered to be reasonably accurate and realistic.

BURLET TO BETWEEK AT ANY FIRE WEEK TERMAND IT IS REPORTED BETRINGHTAL TO THE REPORTS OF STADLER

NUMBER AND IS

¥.

I

Į

W

ĺ

ĺ

1

I

Stadios Murtos

ς.

R-193A/07/3101 - Page C/20

1

INGINEERS . CONSULTANTS

		TABLE 1	· v	
н	LSTORICAL APPAREN	T CONSUMPT	10N (THOUS	ANDS OF TONS)
Year	Printing and Writing	Tissue		Linerboard and Corrugating Mediu
1960	66.61	8.77	53,11	-
1961	95.03	14.44	78.86	-
1962	86.36	18.21	67.57	-
1963	78.13	13.78	65.62	-
1964	93.07	17.33	79.23	71.41
1965	110.90	23.07	106.04	55.52
1966	125.39	18.80	115.68	84.44
1967	98.96	22.19	100.67	107.48
1968	105.39	24.55	116,55	129.21
1969	104.24	31.32	130.63	141.60
1970	123.81	33.09	140.44	134.34

(c) Population and Gross National Product

	TABLE 2-C	
	HISTORICAL DATA - GNP AND POP	ULATION
Year	Population (Thous, of Inhab.)	GNP Pesos Ley 1960 (000,000's)
1960	20,669	10,063,4
1961	20,923	10,777,9
1962	21,180	10,596,8
1963	21,441	10,345,2
1964	21,705	11,422,0
1965	21,972	12,46 8,6
1966	22,242	12,559,2
1967	22,516	12,871,1
1968	22,793	13,464,9
1969	23,073	14,531,6
1970	23,364	15,229,0

FORM &

Ĩ

Ĩ

į

iļ

-

12 23

8

, i

ž1

Stadios Mustos momentas - consultants

R-193A/07/3101 - Page C/21

The tab lated Figures for population, which are obviously estimates, show a uniform increase of approx 1.23% per year. The accepted value for use in statistical calculations has been taken as 1.5%, however, as used in recent studies made by United Nations and Studies for International Collaboration Bureau (Officina de Estudios para la Colaboracion Economica Internacional), and CEPAL.

Analysis of GNP figures for the period 1960/70 shows an average increase in total GNP of 3.9% or 2.7% per capita, referred to the value of the peso in 1960.

C.3 Market Projection

(a) <u>General</u>

Many factors such as rate of increase in literacy, rate of increase in industrial development, rate of increase in diaposable income, rate of increase in GNP, and rate of increase in population can be entered into calculation of future demand or consumption. Of these, the two most significant indicators are rate of increase in GNP and rate of increase in population and these are the values which have been applied in projecting demand for the four categories of paper being studied here.

Argentina has a high degree of literacy (92%) so any increase in this respect would be insignificant. Rates of

F084 2

1

ĮĬ

Ę

I

1

łį

11

ĮI

1

Stadier Murter Memers . Consultants

R-193A/07/3101 - Page C/22

increase in industrial development and also in disposable income ara reflected in GNP, thus attempts to apply these other factors would needlessly complicate projection calculations.

Population increase, for all practical purposes, is considered to be 1.5%/yr. and is not expected to change significantly during the period under study.

The historical average rate of increase in GNP over the peat ten years has been 2.7% per capita (Appendix Page AX/5). The future average rate of increase in GNP has been astimated by CONADE (National Development Council) at essentially 5.5% total or 4.0% per capita (CONADE Development Plen 1970/74). The arithmetical average of the historical GNP per capita increase of 2.7% and the Government agency estimate of 4.0% in future has thus been used as a reasonable value for projection of future consumption, i.e. 3.35% GNP increase/yr.

The way in which this figure is applied will be discussed subsequently in this chapter.

It should be noted that 1971 rate of increase in GNP was 2.4% but since last year was characterized by a very rapid inflationary trend this figure probably would have little significance over the long term.

Further information regarding market information may be found in Appendix Section AX.1, AX.2, AX.3 and AX.4

15

ALCON T

8.

ļĮ

11

STATUS STATUS

ž I

3 1

Stadjor Murter moments - consultants

R-193A/07/3101 - Page C/23

(b) Promedios Moviles

In order to reduce the effect of the normally large fluctuations which invariably are found in annual figures the statistical device of "promedios moviles" (literally "moving sverages") has been applied to historical data Successive five-year periods have been averaged for historical apparent consumption and also, for the purpose of maintaining uniformity, to population data. Since in the case of apparent consumption many of the fluctuations are caused by inventory, incomplete statistics or poor estimates, the figures derived ars eesentially realistic and, because the averaging produces a more uniform progression of consumption values, they are easier to work with for projection purposes.

Tables 3-C, and 4-C show historical consumption and population data adjusted by this method.

TABLE 3-C

APPARENT CONSUMPTION ADJUSTED BY PROMEDIOS MOVILES

(Thousands of Tons)

Yeare	Printing and Writing	Tissue	Sack and Wrapper	Linerboard and Corrugating Mediu
1960 /64	83.84	14.51	68,88	
1961/65	92.70	17. 36	79.46	
1962 /66	98.77	18,24	86.83	
1963 /67	101.29	19.03	93.44	
1,964/68	106.74	21.19	103.42	89.61
1965/69	108.98	23.98	113.69	103.65
1966/70	111.55	25.99	120.57	119.41

Ìξ

₹Ĭ

2}

2

þ

Ę

že se R-193A/07/3101 - Page C/24

Stadior Hurtor montests, consultants

TABLE 4-C

POPULATION ADJUSTED BY PROMEDIOS MOVILES

	(Thousands of	Inhab(tants)
1 96 0/	64	21.183,6
1961/	65	21.444,2
1962/	66	21.708,0
1963/	67	21.975,2
1964/	68	22.245,6
1965/	69	22.519,2
1966/	70	22.743,6

(c) Per Capita Consumption

Since GNP has been considered in (a) on a per capita basis, Table 5-C (using promedios moviles of historical consumption and population) shows average per capital consumption for the four paper categories.

	ANNUA), APPAI	RENT PER	CAPITA CONS	UMPT ION
	Printing and		Sack and	Linerboard and
Years	Writing	Tissue	Wrapper	Corrugating Medium
1 96 0/64	3.95	0.68	3.25	
1961/65	4.32	0.80	3.71	
1962/66	4.55	0.84	3.99	
1963/67	4.61	0.87	4.26	
1964/68	4.80	0.95	4.64	4.03
1965/69	4.86	1.06	5.06	4.60
1966/70	4.90	1.14	5.30	5.25

Stadio: Eurtor R-193A/07/3101 - Page C/25 INCORS . CONSULTANTS (d) Elasticity of Demand Referred to GNP The elesticity of damand referred to GNP is the rate of increase in damend for e givan product per 1% increase in GNP. Thus, dividing the evarege percent increase in per cepita consumption derivad from figures in Teble 5-C by the historical avarage increases in GNP per capite (2.7%) the following electicity coefficients may be celculated: 1.37 Printing end Writing 3.33 Tieeue 3.16 Sack & Wrapper 5.22 Liner and Corrugeting

> The electicity coefficient of 5.22 for corrugeting medium end linerboard, when derivad in this manner, eppers exceesively high. The % damand increase per year using this electicity would be almost 19% which yields very large and elmost incredible future demand quantities especially in the last few years of projection. This distortion is probably caused pertially by the shortar series of historical data and pertially by the rapid edoption of a relatively naw product at a rate which is not likely to continue.

If, as shown below, the coefficiant of elacticity in this case is celculated using the historical figuras from Tablas 1-C and 2-C a more retional value is derived:

-

ŧ

XOL

ļļ

-

٤j

1

Ę

i,

Į

ŧł

125

BULY IN COMMECTIC

General Constant and

12

TO METANI

NUMBER T

= 8

DOMICTLY OF

TABLES .

i i E E

ļ

±₽ ¥₹

.

13

1

R-193A/07/3101 - Page C/26

Stadior Mustor moments - consultants

TABLE 6) -C
---------	------

	App. Cons. (000's of tons)	Population (000's)	Cons/Cap (Kg)	Change (%)
1964	71.41	21,705	3, 28	
1965	55.52	21,972	2.52	(23.2)
1966	84.44	22,242	3.80	50.5
1967	107.48	22,516	4.78	25.8
1968	129.21	22,793	5.66	18.4
1969	141.60	23,073	6,15	8,65
1970	134.34	23,364	5,76	(6.35
			Total	73.80
			Average	12.30

<u>Note</u>: It is estimated that the average increase in GNP per capita for the period 1964-1970 would be in the order of 3.46% rather than the 2.7% used for the period 1960-70.

Check calculations of elasticity for the other three papers, made in the same manner as those in Table 6-C and covering only the period from 1964-70, give the following results:

Printing and Writing	1.31
Tissue	3.30
Sack and Wrapper	2.83
These values correspond well	to those shown on page

C/25 thus indicating that the elasticity of 3.46 for liner

Stadio: Murter memores.consultants	R-193A/07/3101 - Page C/27							
	and corrugating would be more accurate than that derived							
	by the promedio movil method (viz. 5.22)							
	It is considered, however, that for printing and							
	writing papers, tics	ue, and	sack and	wrapper	, where th	e		
	historical series co	overs a	longer pe	riod the	original			
	method of computatio	on would	i be somew	hat more	accurate.			
	The elasticity values to be used for projection would							
	thus be as follows:							
	Printing and Wr	iting		1.37)			
	Tissue 3.3				3) See Page C/23			
	Sack and Wrapper 3.10				6)			
	Liner and Corrugating 3.46							
	As additional indication concerning the relative							
	validity of the projections shown in Table 7-C (below),							
	the projected figures for Argentina in 1970 and 1979 relate							
	to recorded Canadia	n consu	mption for	the yea	ir 1970 as			
	follows:							
			g/Capita			970 Cdn.		
	(Canada 1970	Arge: 1970	ntin a 1979		mption Arg. 1979		
	Printing & Writing	30	4.9	7.8	16	26		
	Tissue	11	1.14	2.8	10	25		
	Wrapper & Packaging	75	5.30	11.3	7	15		
	Liner & Corrugating	36	5.25	15.8	15	45		

ł

Stadler	Muster
MONTELS . C	ONSULTANTS

18

Ì

į

8

iļ

ļ

Ŀ

Ļ

\$£ 53

Í

ļ

j

Ĩ,

2

Í

Ì

R-193A/07/3101 - Page C/28

It is the Consultant's opinion that the above comparison with Canada lends credenca to the projected demand values which have been calculated for Argentine. It appears ressonable to predict that over a period of nine years the consumption in Argentina for the papers considered will increase in the proportions indicated under the heading

(e) Projected Rate of Demand Increase

Using the pertinent factors thus far derived the projected rate of future demand increase in percent per year can be computed according to the formule:

> Estimated future rate of demand increase. GNPX elasticity and annuel % increase in population

Studior Muster		14 LIK	1	REFEM NO	NCE INDER	SE RIA NO
				•	+	•
July 20, 1972				R-1 9		310
Rev, November (0, 1	972	TABLE 7	- C	₽4	•• C/29	
	I	DEMAND PRO	ECTIONS			
_	(T†	iousands of	Ion s) (*)			
Year	Printing and Writing	Tissue	Sack and Wrapper	Liner and Corrugating		
1975	166.39	47.14	213,24	265.41		
1977	187.27	59 ,82	267.87	349,39		
1979	210.77	75 , 91	3 36.5 0	449.74		
1980	223.61	85,51	377.15	50 6, 32		
198 5	300.51	155,13	667.03	894,29		
Basis o	f					
Projec-						
tion	123,81	25 .99	120.57	119.41		
Elast,						
coeff.	1.37	3, 33	3,16	varies		
Per cap	ita					
GNP	3.35	3.35	3,35	3, 35		
% incre	4 96					
in pop.	1,5	1,5	1.5	1,5		
GNP × E	last,					
coeff.	+					
annua 1						
increas						
pop.	6.09	12.65	12.08	18,99		
(*) App	lying slasticit	y coeffici	ent to the la	est historical		
consump	tion for printi	ng and wri	ting and to i	the last promed	lio	
	f consumption f			•		
	e of GNP result historical GNP			-	per	
		-	-			

ŧ

Ì

l

R-193A/07/3101 - Page C/30

Medier Murter

ļĮ

5

(f) Unsatisfied Demand

The tonnages shown in Table 7-C indicate estimated total future demand for each of the paper products. In order to arrive at figures indicative of mill capacities which would be installed it is necessary to deduct the portion of this future requirement which can be supplied by operating mills the idle manufacturing capacity which could be reactivated, and also any expansions of existing facilities or new mills which are planned for manufacture of any of the products we are considering.

Present manufacturing capacities are a matter of record and may be determined quite accurately. Estimation of the proportion of idle capacity which it might be possible to reactivate is a somewhat more complicated matter since it is difficult to know without complete details just how much of such capacity could be economically put into operation and, of that which could be started up sgain, the proportion which might be applied to each product. Similarly, plans for expansion or for new facilities can only be evaluated approximately from the point of view of which are most likely to go ahead, which are doubtful, and which might never be realized or may only be implemented subsequent to the period under consideration.

The manner in which future manufacturing capacity was estimated is discussed in the Appendix and estimates are considered to be realistic. (Sub-Sec. AX.17)

					TA	TABLE 8-C						
				UNSATI SI		1,000) QIN	UNSATISTED DEMAND (000's OF TONS)	~				
Year	Printi	Printing and Writing	riting		Tissue		Sack	and Wrapper	ž	L1 N	Liner and Corr.	rr.
	Proj. Demend	Rat. Prod.	Uneat. Demand	Proj. Demend	Est. Prod.	Unsat. Demand	Proj. Demand	Est. Prod.	Unsat. Demand	Proj. Demand	Est. Prod.	Unsat. Demand
1975	166,39	128.00	38.39	47.14	40.58	6.56	213.24	198.34	14.90	265.41	234,33	31.08
172 :	187.27	163,00	24.27	59.82	40.58	19, 24	267,87	198.34	69. 53	349.39	234.33	115.06
679	210.77	163.00	47.77	75.91	4 0.58	35, 33	336. 50	198.34	138.16	449.74	234.33	215.41
1980	223.61	163.00	60, 61	85, 51	40.58	44.94	377.15	198. 34	178.81	506. 32	234.33	271.99
1965	399.51	163.00	137.51	155.13	40.58	114.55	667.03	198.34	468.69	894.29	234,33	659.96

ļ 8

F.

Stadier Hurter memeras - consustants

ĮĘ

Ĭ

١ţ

Į

1

łį

y i

Į

1

R-193A/07/3101 - Page C/32

Table 8-C (page C/31) shows estimated unastisfied demand which may be expected to exist at various times in the future. The estimated 1979 tonnages of unsatisfied demand for each product are those which have been used in determining the mill capacities which could be installed for each of the four products - assuming of course that no new facilities of which we have no knowledge at this point would be brought into production.

C.4 Miscellsneous

(S) Peper Product Prices

In view of the generelly public nature of market prices for paper products in countries which have highly developed paper industries it has been somewhat surprising to find that, in Argentina, such information is not reedily and freely eveilable. This situation, we believe, is temporary and has been caused by the repid infletionery trend of the pest few years, but it has, nevertheless, introduced difficulty and complications into the eveluation of projects proposed in this report.

The costs of manufecturing in any country or for any product ere usually difficult to escertein for legitimete business reasons but they can usually be epproximated by indirect methods. In this case such indirect methods hed to be spplied to determine market prices.

FORM &

MPRC/PRC

Ęţ

1

Į

CIANNE -

AND AND AND

11

23

2

1

58

١,

ž B Ž B

H

Stadies Huster

R-193A/07/3101 - Page C/33

The procedure used was to determine the ratio of mark-up considered reasonable by paper suppliers and brokers and to work backward from this to calculate the prices charged by the manufacturers. The firms and individuals approached proved most reluctant to reveal even "order of magnitude" figures (presumably because such information might later be detrimental to their own interests) and, it is suspected that in some cases information obtained was misleading.

It is felt however that analysis of information from a number of sources combined with judgement as to the reliability of each source has permitted reasonably accurate estimates to be made. These are shown in Sub-Section AX.5 of the Appendix and have been used in evaluating the financial viability of proposed projects.

(b) Official Sources of Information and Statistical Data

Many agencies and associations have been quoted and referred to in various parts of the report and the Appendix. These are liated below with abbreviations which have been used.

Abbreviations

 A.F.P.: Asociacion de Fabricantes de Papel
 ALALC : Asociacion Lation-Americana de Libre Comercio
 BIRA - BND : Banco Industrial de la Republica Argentina -Banco Nacional de Desarrollo
 B.C.R.A.: Banco Central de la Republica Argentina
 C.I.D.I.E.: Centro Internacional de Inveatigaciones Economicas

-

Stadior Martor moments - consultants	R-193A/07/3101 - Page C/34
	C.I.F.: Cost, Insurance and Freight C.F.I.: Consejo Federal de Inversiones CONADE: Consejo Nacional de Desarrollo DENEI: Direccion Nacional de Estadistica Industrial FOB: Free on Board INDEC - INEC: Instituto Nacional de Estadisticas y Censos N.U.: Naciones Unidas N.A.B.: Nomenclador Aduanero NABALALC: Nomenclador Aduanero de la Alalc O.E.C.E.I.: Ofincina Estudios para la Colaboracion Economics Internacional P.B.I.: Producto Bruto Interno S.N.F.: Servicio Nacional Forestal
	Sources of Information
	Secretaris de Transportes, Ferrocarriles Argentinoa Asociacion de Fabricantes de Papel
	Asociacion Latino-Americana de Libre Comercio
	Banco Nacional de Desarrolla-Banco Industrisl de la Rep.
	Argentina
	Banco Central de la Republica Argentina
	Centro Internscional de Investigaciones Economicaa
	Consejo Federsl de Inversiones
	Direccion Nacional de Estadisticas Induatrisles
	Inatituto Nacional de Estadisticaa y Censos
	Ministerio de Comercio
	Ministerio de Hacienda
	Direccion Nacional de Aduanas
	Centro Azucarero Argentino
	Oficina de Estudios para la Colaboración Economica Internacio-
	na1

5

(

÷.

1

Ì

Į

l

l

[

{

Į,

Į

ALL BUTA PARAMENTS OF STAALAL MUTTER BARMAN Martines Associations and Canada at Maramanan

I

l

C

ŧ

ł

Stadjer Marter weinens.commannts	R-193A/07/3101 - Page C/35
	Servicio Nacional Forestal
	Ministerio de Agrículturs y Ganaderis de la Nacion
	Gobierno de Tucuman
	Centro Argentino Agucerero
	Centro Argentino del Cemento Portland
	Federscion de Obreros y Empleado⊿ de la Industria del Papel,
	Carton, Químicos y Afines
	Instituto Argentino de Racionalizacion de Materiales
	Agua y Energia Electrics, Empresa del Estado
	Gas del Estado
	Centro de Estudio del Transporte
	Asociacion Mutual y Gremial de Transportadores de Cargo de
	Tucumen
	Federacion Argentina de Entidadea Empresarias del Autotranspor-
	te de Cargas
C.5 Disc	ussion and Conclusions
(@)	<u>General</u>
	Befors additional discussion of the products which have
	been detailed above some consideration must first be given
	to the time at which a project or projects based on this
	study could be put into operation. This is necessary in
	order to be able to judge the magnitude of unsatisfied demand
	which will exist at that time, and thus to know mill capacity
	limitations.

t

Stadier Muster	R-193A/07/3101 - Page C/36
	Subsequent to acceptance of the study report the principal
	additional steps to final implementation would be
	 study of report data and formulation of decisions
	and policy concerning the specific project on which
	to concentrate future attention
	- request for tenders for a definitive feasibility
	study for the selected project, assessment of
	submission and award of the contract for the
	fessibility study
	- performance of the detailed study, evaluation of the
	conclusions, decisions to proceed and determination
	of qualifying or limiting factors
	- formation of a company
	- arrangement of financing
	- engineering, construction and start-up of the mill
	The period of time required to perform all of these
	essential functions can be very indefinite - dependent to a
	great extent on the degree of urgency and priority accorded
	by the promoters. Assuming prompt attention and, to save time,
	some overlapping or "telescoping" of the various stages, it
	is estimated that the earliest realistic date for commencement
	of operation for any project would be the beginning of 1977.
	Dilatory action, indecision, or general inattention could,

l

Stadios Xuster R-193A/07/3101 - Pege C/37 result in delays measured in years or even complete loss of interest. However, on the assumption that all possible would be done to initiate the new industry as quickly as possible, 1977 has been assumed as the first year of operation and, estimating two years to eliminate problems and schieve full anticipated efficiency, 1979 would be the first year at full rated production. Unsatisfied demand and all other pertinent factors such as, for instance, bagasse availability, have therefore been projected to 1979 for the initial project. It is evident from above Table 8-C that profitable industries could possibly be implemented based on the manufacture of any of the products abown. In each case unsatisfied demand (1979) will be of appreciable magnitude and calculated rates of demand increase indicate fair-to-good future potential. Thus, in order to select the product or products which - will render optimum benefits economically and socially, they are discussed individually in the following paragraphs. (b) Printing and Writing Papers The estimated unsatisfied demand of 48,000 tons/yr is well within the range for a potentially profitable enterprise.

ĮĘ

Ĭ

Ę

I

2 g

1

12

T-Second

ļ

Į

11

ž١

Stadler Murter Memers - Consultants

708M 8

R-193A/07/3101 - Page C/38

The firm of Ledesma S.A.A.I., for instance, has operated for some 7 years at a production rate of approx. 30,000 tons/yr, and proposes to more than double this production rate in the next few years.

The technology of manufacture for printing and writing papers is, however, quite complex and the consumption of bagasse (compared to the volumes available) would be relatively small.

(c) <u>Tiasue</u>

The estimated unsatisfied a. of 35,000 tons/yr. represents a large mill for manufacture of paper of this type and, quite probably production of tismue on this scale could be a feasible and profitable tusiness. It must be pointed out however that, even at a consumption of 2.5 kg/capita, such a mill would supply the needs of over 1/2 of the population of Argentina. As mentioned previsouly, because of its bulky nature the shipment of tissue is unecomonical beyond a relatively short range thus it is usual to confine such manufacture to relatively small plants conveniently located near aress of population concentration. Tucuman unfortunately is some 1200 km from the largest population center (Buenoa Aires) and asvings made possible by large acale production could conceivably be offset by marketing costs.

Ę Ĭ Ēį Įţ 2 8 ٤Ì 2 É 1 ł Į 11 11 2 I, ł Į i 2 ł

-

ĨĘ

MITH MALCHE

į

8 5

iļ

12

21

Stadior Hurtor Moments . CONSULTANTS

R-193A/07/3101 - Page C/39

(d) Printing, Writing and Tissue - Combined

Combining production of these papers into one mill is another possibility which might appear frasible, i.e. production of 83,000 T/yr. While they are quite similar in the pulp production process and in the fact that they are bleached papera, the actual conversion into papers of such diverse characteriatics requires quite different technology and equipmant. Printing and writing paper machines are limited in apead to about 400 meters/min, but tissue is produced at spesds spproaching 1000 m/min. In practice it is normal to use two different types of paper machine for optimum economy of production. For printing and writing a machine with a multipls cylinder dryer section is required but for tissue a "Yankas" dryar is conventional. Thau for printing and writing st lesst one quite large machine would be required and for tissue one (and possibly two) separate machine a would be necessary for the projected tonnages.

The limitations mentioned in (b) and (c) would also still apply.

(s) Sack, Bag and Wrapper

Sack, bag and wrapping papers together with corrugating medium and linerboard fall into the category usually known as "industrial papers".

R-193A/07/3101 - Page C/40

Stadios Mustos

ŧ

ĘĮ

i

The second secon

12

TO BE LEVEL

Į

1

έł

-

5

۶ı

WITADWIGHIJIOL - Lage CI

In an area where some 50-70,000 tons of paper sacks are used for packsging sugar the manufscture of such paper would appear to be a natural and logical selection. Projected unsatisfied demand at 138,000 tons/yr. is, moreover, 3 to 4 times that for fine papers.

Sack paper from bagasse unfortunately, however, cannot be produced without using a large proportion (up to 50%) of long-fibre pulp to achieve satisfactory strength properties. Thus utilization of bagaase is greatly decreased and manufacturing cost is proportionately increased by the requirement for expensive long fibre pulp. Although the manufacture of these types of paper might be profitable, the lower consumption of bagasse and the increased requirement for long fibre pulp (which must be imported) combine to make these products less attractive than the other industrial papers which are discussed below.

(f) Linerboard and Corrugating Medium

These papers (or paperboards) see the compenents which when processed and assembled form the most common type of containerboard. The normal ration of linerboard to corrugsting in containerboard is 2:1 approximately; thus, although they have been tabulated under one heading in Table 8-C, the projected demand of 215,400 T/yr. in 1979 may be considered as 143,600 tons of liner and 71,800 of corrugating.

ĮĮ

Ì

÷Ş

i

T I STATE AND AND AND AND

١Į

1

,1

ŧŧ

¥1

Į.

Į

Ì

Stadjer Murter memores.consultants

R-193A/07/3101 - Page C/41

At this point in the Argentine economy the growth of demand appears very rapid which is probably due in most part to the fact that it has only relatively recently come into general use (records date back only to 1964). The figures for unsatisfied demand (Table 8-C) indicate that for the year 1979 linerboard and corrugating medium potential market will be 4.7 times that for printing and writing and tissue and 1.6 times that for sack and wrapper.

Corrugating medium requires no long-fibre pulp and linerboard only about 30% (25% in some cases), so that the raquirement for costly imported kraft pulp is reduced to raasonable proport, ons. Although the bagassa used in such manufacture is pulped at higher yield than pulps for the other papers discussed, the consumption of bagasse is maximum because of decreased content of other pulp and the size of mill which can be built to meat the unsatisfied demand.

The tachnology of manufacture of corrugating medium is uncomplicated and that for linerboard is only slightly more alaborate, and production tonnages per unit width of paper machine are high. The optical qualities of both products, particularly corrugating, are relatively unimportant which means the water quality requirements are not stringant and chemical requirements are relatively low.

R-193A/07/3101 - Pege C/42

Stadior Mustor monetas - consultants

ĮĮ

1

All these aspects are important and particularly advantageous in the province of Tucuman where bagasse is plentiful, papermaking skills are rare, water must be used several times over, and chemicals must be brought from other parts of the nation.

(g) <u>Conclusions</u>

Considering then the fundamental concept which has been adopted, i.e. the largest possible industry using to the maximum the quantities of bagasse available and also considering all other pertinent aspects and conditions, the decision has been made to concentrate investigation on the manufacture of linerboard and/or corrugating medium.

The remainder of this report therefore will discuss utilization of the bagasse from the ingenios of Tucuman only for production of one or the other, or both of these products.

C.6 Definition of Cost Hodels

The contract for this study (UNIDO 71/53) requests development of cost models for small, medium and large mills, leaving to the Consultant the decision as to which capacities might apply to each classification. The decision having bean made to concentrate on linerboard and/or corrugating medium, the definition of the three mill capacities emerged rather simply through the application of practical considerations and the more or less coincidental ----

ĮĮ

Ĩ

iļ

ļ

•

21

Stadior Muster

R-193A/07/3101 - Page C/43

relationship between the production characteristics and conditions of the two papers.

Conversion facilities for manufacture of containerboard and fabrication into boxes are already in existence in Argentina and it has been assumed that these plants would expand as the market for their products increases. Since it is normally more economical to increase the capacity of existing plants than it is to plan and build new ones, it has been concluded that any paper mill proposed would produce only the materials to enable the existing converters to keep up with growing demand. Thus any new paper mill would manufacture and ship paper in rolls leaving converting to others.

In order to reduce converting waste to a minimum it is necessary to make roll widths as much as possible in multiples of the sizes of the fluting machines which are used to transform the flat corrugating medium into corrugated paper. The linerboard also must conform to these sizes. A survey of fluters in existing converting plants revealed the most common widths to be 1.40, 1.70 and 2.20 meters for paper 1.30, 1.60 and 2.10 meters wide. Computations using these latter figures revealed that sheet widths of 3.2 meters and 5.0 meters would suit the largest number of width combinations and produce the smallest loss, thus paper machines of these widths were selected.

Calculation of practical production rates for these paper machines using average aheat weights and, from experience, average

R-193A/07/3101 - Page C/44

Stadior Muster memory, consultants

j.

Ì

ļį

-

P.

Į,

11

Ì

È₽

¥1

٤ı

1

operating speeds, showed that on linerboard trimming 5.0 meters sversge production would be 330 tons/day, and on corrugating medium at 3.2 meter trim average production would be 166 tons/day. i.e. almost precisely in the ratio of 2:1 required for containerboard.

Additional calculations verified that production of both products in the same mill (496 T/D) would utilize the major portion of bagasse economically svailable from the ingenios located in either the Northern or the Southern region of the Tucuman sugar belt,

The most practical Cost Models to be investigated thus were determined to be:

Cost	Mode 1	I	-	166	T/D	corrugating medium
Cost	Mode 1	11	•	3 3 0	T/D	linerboard
Cost	Mode 1	III		496	T/D	both products

The capacities are realistic taking into account markat damand, bagasse availability, and practical mill sizes, and have also the advantage that a good comparison of relative financial aspects should be possible.

Refarances to Modal I, Model II and Model III in subsequent parts of the report pertain to mills as specified above.

R-193A/07/3101 - Page D/1

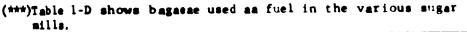
D. AVAILABILITY OF BAGASSE

Stadler Hustes

MONISES . CONSULTANTS

D.1 General (See also Appendix Section BX,1)

(a) Bagasse and Sugar Production


Ons ton of whole moist (50%) bagasse obtained from each 3.4 ton of cane processed. This represents approximately 29% of the cana. In some sugar mills the amount of bagasse obtained is somewhat higher than this provincial average.

(b) Bagasse used as Fuel

Bagesse is a wasta product used as fuel to generate steam, in order to fulfill steam and power in sugar mills (See Table 1-D). Steam plant installations in Tucuman sugar mills are generally old-fashionad. The ingenios produce refined eugar (*) and some have sloohol distilleries (**). Consequently, they have no surplue bagasse, and they usuelly have to use additional fuels, to generate sufficient eteam and power (***). Supplementary fuels commonly used are natural gas, fuel-oil and wood.

In case bagaase is diverted for other uses, the need of alternativa fuels must be taken into account, on tha basis of calorific values and boiler afficiencies.

- (*) Less than 10% of Tucuman sugar production is commercialized as cruda.
- (**) Sugar mills having distillation planta are: Aguilares, Bella Viata, Concepcion, La Corona, La Florida, La Trinidad, Leslee, San Juan and San Pablo.

-

1 g

Ĭ

ļ

Į,

\$2 53

ł

İł

1

-

IĘ

17

1

ŧł

ž i

]]

Stadior Nurter montes.consutants

R-193A/07/3101 - Page D/2

During the visit to several sugar mills in Tucuman, their representatives expressed their concern about the problem of fuel. The sugar mills should have as urance that they will have the alternative fuel in the required quantities and a somewhat higher price than the replacement fuel value should be paid in order to make it interesting to sell bagasse instead of using it as fuel.

Other uses of bagasse are presently not significant in Tucuman, and they do not amount to 2% of the total production of bagasse.

Bagasse is mainly used for paper production in Leales and Celulosa Argentina plants. Leales use 20-25% of their bagasse for a 25 T/day corrugating medium plant. Celuloss Argentina produce about 16 ton/day of corrugating and wrapper, with small quantities of bagasse obtained from the Concepcion sugar mill.

Number of sugar mill is studying a project for manufacture of particle board using bagasse as raw material. Production would reach 30 T/D, and the project was well received by national and provincial authorities.

(c) <u>Sugar Industry in Argentine</u>

Argenting sugar production amounts to less than one million tons in 1970, i.e., more than 1% of the world

FORM S

Ę

8

12 2 1

Ē

Stadior Murtor moments - consultants

R-193A/07/3101 - Page D/3

production. All sugar produced is obtained from the sugar cane. The area of production, 200 thousand Ha., is located between 22° and 28° Southern latitude (See map Fig. I-D). Cane yields are somewhat low at about 47 tons per hectare. Installed production capacity of Argentine sugar mills is 2 million tons.

Since 1967 production has been regulated according to export requirements and consumption estimates, avoiding accumulation of excessive stocks, according to a system established by Law # 17163. Export requirements correspond to Sugar Act (USA) and the International Sugar Agreement, and presently these amount to more than 70 and 50 thousand tons respectively (See Table 2-D).

National production is divided into three zones:

- Tucuman province

- Northern region (Salta and Jujuy provinces)

 Littoral region (Misiones, Chaco and Sante Fe provinces) Tucuman has 16 sugar mills in operation, which in
 1970 produced 54% of total sugar production of the country.
 Cultivated area in 1970 is 140.6 thousand hectares (69.2% of the netional total).

The situation of Argentine sugar production was completely modified in 1967 by Law # 17163. This law regulated production by a system of shares to cane producers, after having determined

• •

l

No. of Concession, Name

Į

l

I

ł

ĺ

l

Stadjor Murtor monutes - consultants	R-193A/07/3101 - Page D/4
	zonal and national totals. Quotas assigned in 1969, 1970
	and 1971 were, Tucuman 52%, Northern zone 42% and 6% to
	the Littors1.
(d)	Tucuman
	(i) <u>General Information</u>
	Situation: 22°6' / 28° Southern Latitude 64°30'/ 66° 11' longitude
	Arsa: 22,524 km ²
	Population (1970): 765,962 inhabitants
	Population density: 34 inhab./km ²
	Climate: Warm and humid. Rains per year very from 500 mm in the Southeaat to 1600 mm in the Southwest. Average annual rainfall for San Miguel de Tucuman is 933 mm.
	Unsmployment general rate: 10% (April and October)
	(11) <u>Sugar Industry in Tucuman</u>
	Opsrating season for Tucuman sugar mills lasts
	bstween 120 and 150 days, and it usually bagins during
	the first week of June and ends on the second week of
	October. Furthermore, Art. 20 of National Sugar Law
	states that November 15th is the last date to finish
	operations. About 55% of the cane is hand harveated,
	42% is harvested semi-mechanically and only 3% entirely
	mechanically.

ţ

708H 8

ŧ

1

i

Į

-

Į

Ę

11

"1

A THE PARTY OF THE

51

ļ

ļ

Į

Stadior Hurio

:

R-193A/07/3101 - Page D/5

Table 3-D shows sugar production by sugar mill and the average for the last 10 and 3 years, this last average has been calculated in order to give en idea of the situation after the closing of some sugar mills due to 1965/66 crisis.

D.2 Basasse

(a) Barasse Production in Tucuman

The quantities of bagasse obtained are related by relatively fixed coefficients to the quantities of cane processed and, of course, to sugar production. This means that variations in bagasse supply are parallel to variations in sugar production. See Table 4-D.

BIERS . CONVELTANTS				211				9 *	• •
aute July 20, 1972 Rev. November 10, 1972			L L	TABLE 1-D			2.5) •	+/C	
		MOLET BA	BAGASSE (507) USE (THOUSANDS	(50%) USED AS FUEL HOUSANDS OF TONS)	JEL IN TUCUMAN	N			
SUGAR MILLS	1965	1966	1967	1968	1969	1970	AVER 10 VEARS (1961/79)	AVERAGES ARS 3 YEARS 70) (1958/70)	
CONCEPCION	271.6	350.0	260.0	200.0	192 5	271.9	247 7	1 1 6 6 6	
CRUZ ALTA	63.2	50.3	47.2	44.2		53.1	53	50.8	
LA FLORIDA	78.8	15.0	48.9	24.0	74 6	41.2		56.6	
NAUL NAS	70.7	70,8	64.1	74.5	10 9	53.7	5 01	55.4	
LA CORONA	184.1	147.2	99.7	101.4	132.8	154.8	118.3	129 7	
LA TRINIDAD	101.9	26,2	76.1	57.9	111.4	72.2		80.5	
BELLA VISTA	141.3	51.0	100.1	104.6	103.6	91.8	102 4	00 C	
LA PRONTERITA	148.0	111.4	135.5	120.0	113.7	161.5	116.9		
SAN PABLO	140°1	119.6	128,4	163.1	129.9	121.6	129.9	138.2	
LEALES	75.1	73 8	41.6	38, 3	54-3	52.2	57 1	48.3	•
LA PROVIDENCIA	123, 1	114.1	91.5	128.3	104 4	125.3	1051	119 3	
NUNORCO	102.4	63 6	51.8	67 2	14 0	74.7	11 0	72.0	
SANTA ROSA	84.1	68.8	43.0	36.8	66.9	82.0	61.99	62 9	
AGUILARES	66.1	10.0	43.1	33.0	639	74.9	56.4	57.3	
MARAPA	74.1	48.2	18.7	26.0	56 7	38 0	1 11	40 2	
TOTAL OPERATING	114.6	<u>- 93,5</u>	65 5	78.9	- 81 3		77.3	82 7	
INCENIOS	1,839.2	1,473.5	1,315.2	1,328-2	1.489.1	1.5617	5 <u>5</u> 1	1.459 7	

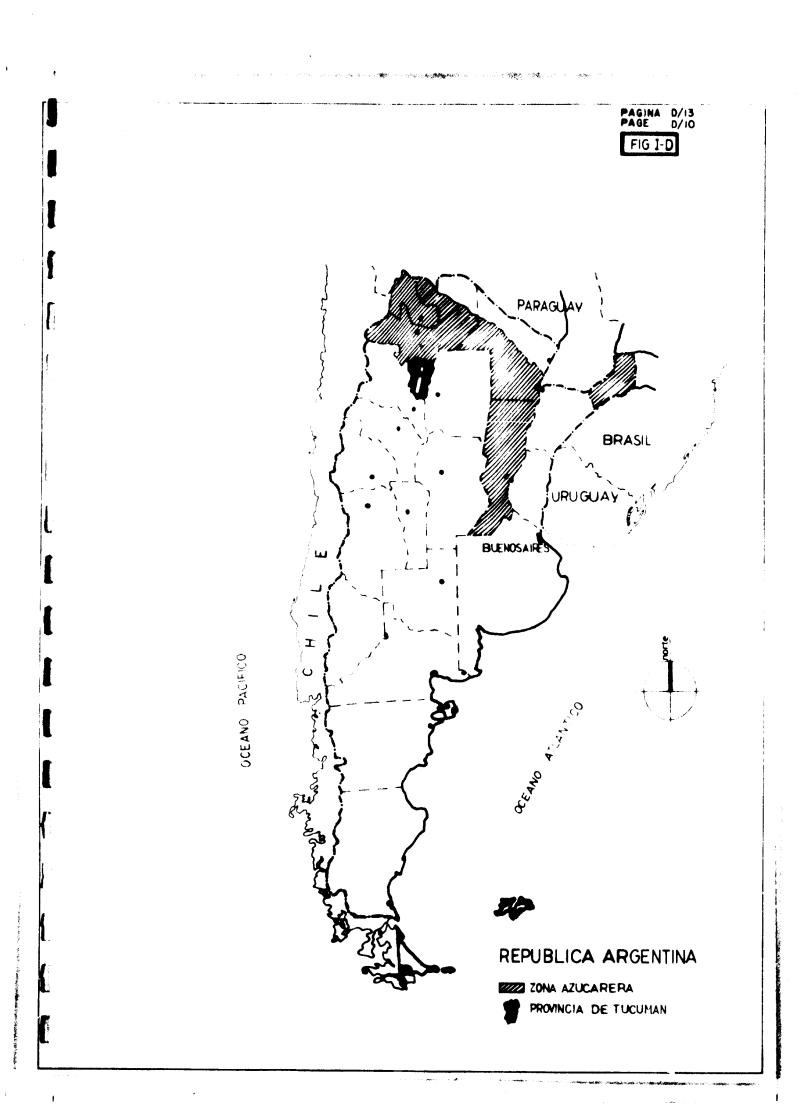
Į 3 1

Į

a series and and a series and a series of the series of th

Ĩ

						ONIDO					2 6 7 6 8 6 8 C 8 8 4		
July 20, 1972 Rev. November 10, 1972	2 T 10,	1972			••	TABLE 2-D					A591-8	07 3 D/	3.01
		SUC	SUGAR PRODUCTION IN PERIO	<u>م</u> `	RCENTINA, 1/VI -	IMPORTS, 31/V - 19	ARCENTINA, INPORTS, EXPORTS, CONSUMPTION & STOCKS : 1/VI - 31/V - 1960/61 TO 1970/71	CONSUNDET 1970/71	ION & STO	icks			
	STINU	UNITS 1960/61	1961/62	1962/63	1963 /6 4	1964/65	1965/66	1965/66 1966/67	1967/68	1966 / ₀ 9	1969/70	1970/71	:
PRODUCT ION	Ton	Ton 782,374	644,908	735,656	990, 391	921,883	1211,480 963,222	963,222	731,975	871,867	1	908, 306	ł
INPORT S	Ton	ı	5,900	I	ł	·	ł	,	۰	٠	,	,	
NOT LAWOS NOD	Ton	630,429	794,217	710,663	716,267	829,609	80 9 , 191	809,191 787,480	811,091	808,959	820,156	906, 366	
EXPORT S	Ton	185, 135	87,091	62,699	313,359	32,748	60,283	53,125	94,136	95,400	106,135	80,155	
DISTILLATION	Ton	۰	ı	ı	,	٠	ł	,	33,914	3,974	9,043		
ST OCKS AT 31/V	Ton	324,728	92,534	52,216	10,632	66,642	405,275	524,402	303,719	256,920	217,463	125,523	
CONSUMPTION / CAP.	kg.	31.50	39.10	34.47	34.23	39.06	37.53	35.98	36.52	35.88	35.84	39.02	
		SC	SOURCE: On	On the basi	s of data	from the	is of data from the CENTRO AZUCARERO ARCENTINO	ZUCARERO	ARCENT INC				


••

Į

								-		
Redier Ruter mens.commann				OCIN				9 2 4 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
мт 11- 20 1072				TABLE 3-D				k - 193A	20	101
								197.	0/8	
		SUGA	SUGAR PRODUCTION (THO	USANDS C	PROVINCE OF T WF TONS)	OF TUCUMAN			•	
							IO YEARS	ues 3 YEARS	MAXIMIM(*)	(*)W
SUGAR MILLS	1965	1966	1961	1968	1969	1970	(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(<u>с</u>	PRODUCT I CN	LICN
CONCEPCION	73.2	96.6	69.6	62.2	65.5	79.5	65.4	69.1	96.6	(66)
CRUZ ALTA	19.5	17.4	15.3	15.5		17.2	17.3		~	(28)
LA FLORIDA	24.5	4.4	15.1	16.6	23.8	13.3	16.0		-	(28)
SAN JUAN	21.6	21.1	18.6	25.2	22.1	14.8	20.5	20.7	2	(58)
DPT. CRUZ ALTA	138.8	139.5	118.6	119.5	130.6	124.8	119.2	125.0		
LA CORONA	56.2	44.0	28.1	36.7	46.6	51.7	35.6	45.0	56.2	(65)
LA TRINIDAD	27.6	7.2	17.1	16.4	30.7	19.9			i v	(88)
DPT. CHICLICASTA	83.8	51.2	45.2	53.1	77.3	71.6	54.9		1	
BELLA VISTA	36.9	14.4	23.3	30.6	29.6	23.8	25.9	28.0	5 87	(8)
LA FRONTERITA	44.8	38.0	39.1	41.6	40.8	54.1	35.9	45.5	<u>-</u> ۱	
SAN PABLO	50.3	42.3	32.0	58.8	5°9†	37.8	40.6	47.8	æ	(28)
DPT. PANAILLA	132.0	94.7	131.0	117.3	115.7	115.7	102.4	121.3		
LEALES	23.2	20.0	11.4	16.3	22.4	19.0	17.6	19.2	23.3	(58)
LA PROVIDENCIA	39.2	38.1	28.0	45.8	38.6	39.5	1 2	413	45.8	(68)
NUNORCO	31.6	21.0	13.7	23.3	25.2	25.0	22 1	3.10		
SAITA ROSA	24.4	20.7	11.9	13.9	22.9	26.9	19.3	21.2		(65)
DET. MONTEROS	95.2	79.8	53.6	83.0	86.7	91.4	74.1	87.0		
AGUILARES	20.6	21.8	10.2	11.0	21.7	23.7	16.4	18.8	23.7	(02)
HARAPA	22.2	13.2	5.3	12.6	17.0	12.4	12.5	•	~	(65)
STA. BABARA	34.5	28.7	18.5	31.7	30.8	32.6	24.5	31.7	34.5 ((65)
DET. RIO CHICO	77.3	63.7	34.0	55.3	69.5	68.7	53.4	64.5		•
TOTAL PRODUCED BY Above Siear Mits	5 () 3	0 877	C 736		603					
TUCUMAN TOTAL	749.6	1 1 1 2	378.2	6 C C V	7.002	2.164	C.C.P.	1.101		

Nutler Butter			n	OCIN					:
July 20, 1972			TABLE	1.5 4-D			- 74	- 14 32	.7 310
Rev.November 10, 1972	SION	HOIST BAGASSE	(50%) PRODUCED		IN THE PROVINCE OF TUCUMAN	TUCUMAN		9/0 mm	
			SUNSUNDS (THOUSANDS					AVERAGES	
SUCAR MILLS	1965	1966	1961	1968	1969	1970	(1961/70)	3 YEAKS (1968/70)	
MULUG BURUU	271.6	350.0	260.0	200.0	192.5	276.9	248.3	223.1	
	63.2	50.3	47.2	44.2	55.3	53.1	53.4	50.9	
	78.8	15.0	48.9	0.32	74.6	41.2	56.5	56.6	
NAIT NAS	70.7	70 8	64.1	74.5	70.9	53.7	70.5	66.4	
DFT. CRUZ ALTA	484.3	486.1	420.2	372.7	393.3	424.9	428.8	397.0	
	186.3	149.0	101.0	102.8	134.5	156.8	119.5	131.4	
I A TETUTAD	102.9	26.5	77.0	57.9	111.4	72.2	76.1	80.5	
DET. CHICLICASTA	289.2	175.5	178.0	160.7	245.9	229.0	195.6	211.9	
	5 171	0 i 5	1.001	104.6	103.6	91.8	102.4	100.0	
A TELY A LEVEL	148.0	111.4	135.5	120.0	113.7	161.5	117.0	131.7	
SAN PARLO	140.1	119.6	128.4	163.1	129.9	121.6	129.9	138.2	
DFT. FAMAILLA	429.4	282.0	364.0	387.7	347.2	374.9	349.3	369.9	
LEALES	85.8	80.5	41.6	49.0	73.0	67.2	68.7	63.1	
	1221	1 711	91.5	128.3	104.4	125.3	105.1	119.3	
	102 4	63.6	52.4	67.2	74.0	74.7	71.1	72.0	
SANTA BOSA	89.1	69.3	43.3	37.1	70.4	82.6	65.8	63.4	
DPT. HONTEROS	314.6	247.0	187.2	232.6	248.8	282.6	242.0	254.7	
	66.1	70.0	43.1	33.1	63.9	6.11	56.4	57.3	
HARAPA	74.1	48.2	18.7	26.0	56.7	38.1	44.1	40.3	
STA L BARA	114.5	93.5	65.5	78.9	81.3	87.7	77.3	82.6	
DEFT. RIO CHICO	254.7	211.7	127.3	138.0	201.9	200.7	177.8	180.2	
OPERATING MILLS	1,858.0	1,482.8	1,318.3	1,340.7	1,510.1	1,579.3	1,462.0	1,476.7	

•

Stadje:	Hari	R-193A/07/3101 - Page E/1
Ε.	OTHER	NAW MATERIALS - AVAILABLITY AND COSTS
	E 1 <u>C</u>	lemical p
	() <u>General</u>
		Of the chemicals which are important for the bagasse
		conversion industry, the following have been investigated:
		- Lime (Calcium Oxide)
		- Limestone
		- Sodium carbonate
		- Caustic eoda
		- Aluminum sulphate
		- Chlorine
		- Sulphuric acid
		- Starch
		- Resin size
		and the availability and cost have been investigated.
		Most chemicals are available in Argantina, some have
		to be imported.
		Limited quantities of sulphuric acid (H ₂ SO ₄) will ba
		raquired for feadwater treatment and stock neutralization.
		Small amounts of starch, resin, alum which are slao
		needed in the process would be purchased from local auppliers
		to the pulp and paper industry.
		Table 1-E shows the various chemicals with their avail-
		ability and cost.
		An electrolytic plant is not needed since the mills
		considerad in the models produce unbleached pulp.

ŧ

•

I

I

ŗ

1

1.

(

]

I

ł

l

[{ {

, {

ľ

ł

.

Interfact		lar Burlar R. commisme					:		• • • •	0
Total 1.4 Total 1.4 Listen total term total switch it. A feature total Listen term Colspan="6">Control term Listen term Listen term Listen term Listen term Listen term Listen term Colspan="6">Control term Listen term Listen term Control term Listen term Listen term Main by read Control term Listen term Control term Listen term Main term Main term Main term Listen term Listen term Main term Main term Main term Listen term Listen term Control term Displa Colspan="6">Control term Listen term Listen term Colspan="6">Control term Listen term Main term Main term Main term Listen term Main term Main term Main term Listen term Colspan="6">Colspa= 600 term Listen term								74.61-1		: <u>s</u>
All mattered and anti-barrier and anti-barrie					TAKE 1-4			and the second	ar an	
Image:					TITLE AVAILABLE					·
Col Cod) Cod) March		Ē	Lies a		Ĭ,	Allelen Sulptor (Alue)	Chlorim	Bulghuric Acid	St er ch	808.1A 5180
Local frae Local frae <td></td> <td>g</td> <td>83</td> <td>lie_CO_1</td> <td></td> <td>A12(306)51A</td> <td>c12</td> <td>#250,</td> <td></td> <td></td>		g	83	lie_CO_1		A12(306)51A	c12	#250 ,		
Id, MB, MB Id, MB, MB N, 700 91, jad 0.3, 300 195, 300 Milk by read for period Milk in cash 91, jad 0.1, berties Milk or hall Milk by read Corlead less Milk in cash 20 kg has Tabas is 10.1, berties Milk or hall er Tail From period Truck or Tail Tabas is 10.1, berties Milk or hall er Tail From period Too kg 0.0, kg has Tabas is 0.1, berties Milk or has er Tail From period Tabas is 10.1, berties Milk or has 10.1, berties Milk or has 133.75 M 133.75 M 135.75 M 10.0 M 120.00 M 142.0, 5	2 Burre S	Local free Cardena	Local free Cordeba		Local from Cordense	Lacel	Local from Cordeta	iocal from Cerduba	Local In Tucuman	laport ed
Dulk by read Dulk by read Carlend les Dulk in cash Do kg hase Ion in Ion is or rail or rail freed or rail or light 000 kg or bulk read Dulk or base or rail or rail freed or rail or light 000 kg or bulk read Dulk or base beause Aires reads or rail or light 000 kg or rail or rail beause Aires reads or is cash cylin or rail or rail beause Aires reads or is cash cylin or rail or rail beause Aires reads or is conk or rail or rail or rail beause Aires reads or is conk to the or or rail or rail beause Aires reads or is conk 150 kg 1510 kg or rail c 1184.00 kg 133.75 kg 1335.00 kg 140.00 kg 1.82 1.84 kg c 1184.00 kg 140.01 kg 140.01 kg 1.82 1.84 kg	rrent educt 100 as/yr 1a 70	1,800,000	14, 000, 000		8 *	041,16	8 3, 300	195, 500		
c \$184.00 ME \$33.75 ME \$385.00 ME \$900/Γ 100% \$575/ME as \$740/ME \$240.00 ME \$.42 \$.46 Ng. + \$61/Γ 100% 16/17% freight Δ120 ₃		with by read	Mik by reed or roll	Carland let a from part of buone Aires	Buik in tank truck or roll took cor		Tubes b BOO kg cylla Mrs	10 1 berthee or built read or rail		Ì
		\$1.44. 00 M	33 , 75 16	1.77. 00 M	\$900/F 100% + \$41/F 100% freight	I	avor.t	\$260.00 M	9.62 9.66 kg.	1 1 1

!] 2

IĮ

1

:

ķ

!;

ł: zł

1;

1

) : : {

!

Stadjor Muster

R-193A/07/3101 - Page E/3

E 2 Fuel

Bagasae, as a solid fuel, is a sub-product used in generating ateam, in order to fulfill steam and electric power needs for the different processes in the sugar mills. As mentioned in Section D.1, any type of combustible may be used to replace the bagasse, when availability and technical characteristics make substitution possible.

As the result of preliminary atudy of documentation available, and field investigations in the province of Tucuman, wood has been discarded. Due to the lack of adequate legislation on the aubject, wood sources near the sugar mills have disappeared, and transportation from places where it is available has become very costly. Same situation appears as regards coal.

From remaining fuels, i.e., fuel-oil and natural gas, the latter has to be considered for the sugar mills, due to its lower cost per calorific unit, and reliability of supply.

Furthermore, due to the agreement between Bolivia and Argentina governments on gas supply, Tucuman is crossed by a number of natural gas mains, and some sugar mills have already begun to use this fuel. (See Map Fig. I-E).

GAS DEL ESTADO furniahea the natural gas at specified pressures, which are nover leas than 45 kg/cm² on the main pipeline, and not less than 10 kg/cm² on secondary branches.

Uer Murter Ins.computants	R - 193.	A/07/3101 - Page E/4
Pressure reduc:	ing plants, as well as fac	ilities from them,
must be paid by the	consumer. Rates (Dec. 19	71) as below:
FROM	TO	
cu.mt/mo.	cu.mt/mo.	\$/cu.mt.
-	6,000	0,1740
6,001	15,000	0,1071
15,001	30,000	0,0901
30,001	150,000	0,0841
150,001	900,000	0,0800
900,001	3,000,000	0,0761
3,000,001	6,000,000	0,0742
	Or mora	0 ,0721

Taxas on these rates are 0.003 \$/cu.mt. on the first 6,000 cu. mt. and 0.001 \$/cu.mt. for monthly consumption exceeding this figure. Calorific value of natural gas is 9,300 kg-cal/cu.mt., end boilars operate at 85-90% efficiency.

E.3 Long Fibre Pulp

rdior

11

11

Ì

i;

١, ŧŧ

[]

Į١

Į

Íſ 1

Long fibra pulp is almost totally imported, and that from countries outside the LAFTA agreement is subject to duty ranging from 5 to 20%.

Price

Crude kraft long fibre pulp, CIF Buenos Aires:

(a) Extra-LAFTA sone

Prices obtained were everaged, and the average of taxes wes added to this figure, thus resulting 171.00 US\$/ADT.

(b) LAFTA zone

Prices obtained were evereged, thus resulting 170.00 US\$/ADT. Freight: By rail, carload lots, Buenos Airas-Tucuman:

Stadior Murter

IĮ

Į

ļ

21

ł

Į,

AN A SHARE A LINE

.

,†

ļ

:

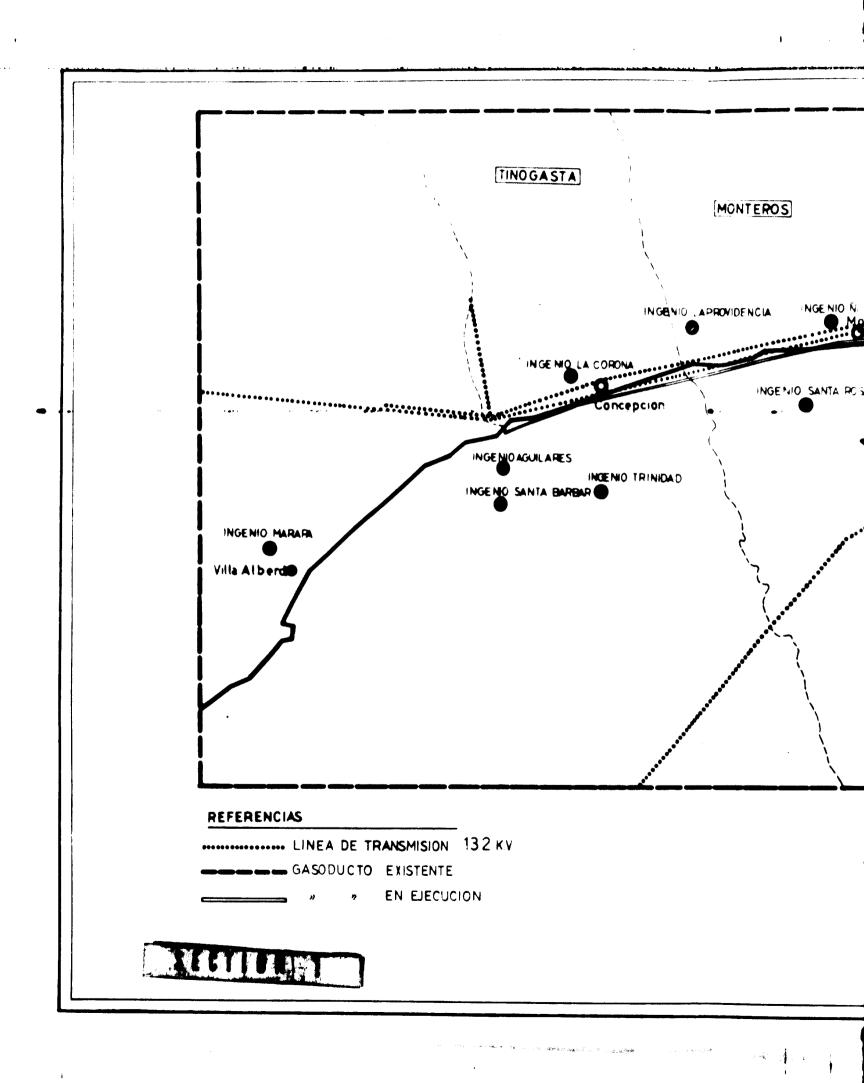
Į

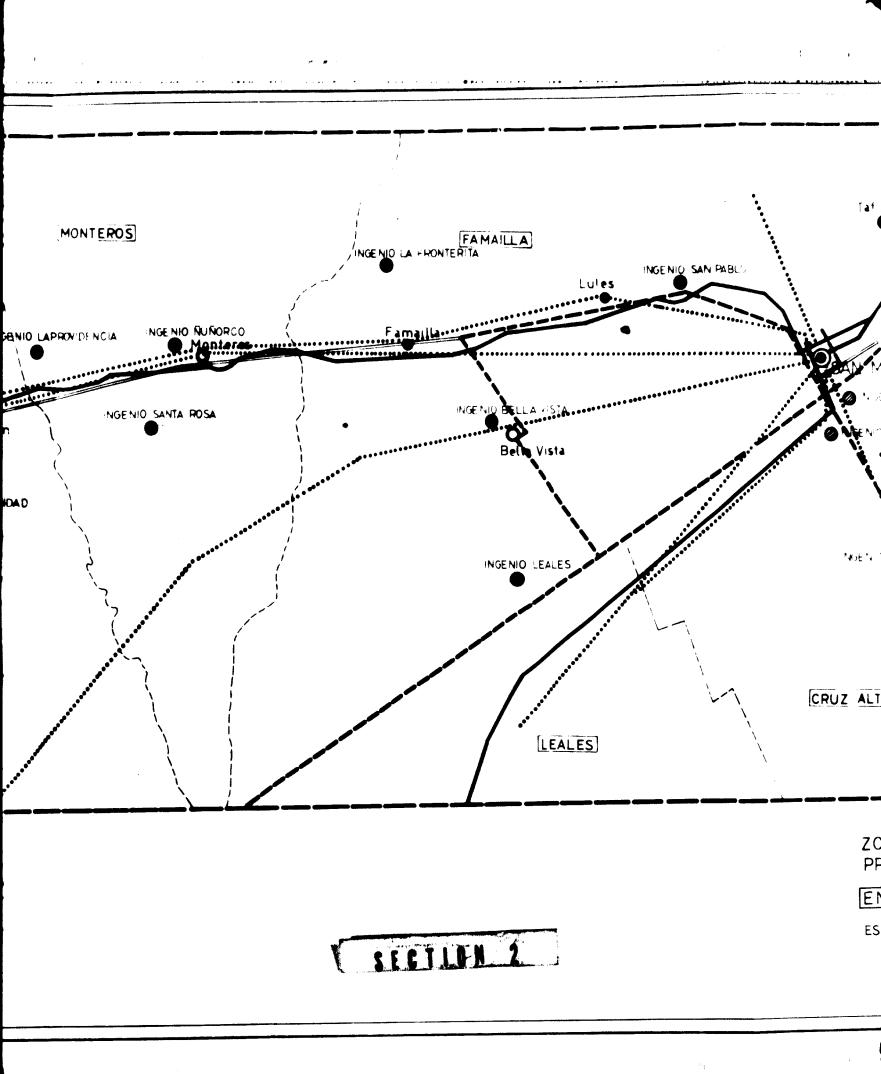
ļ

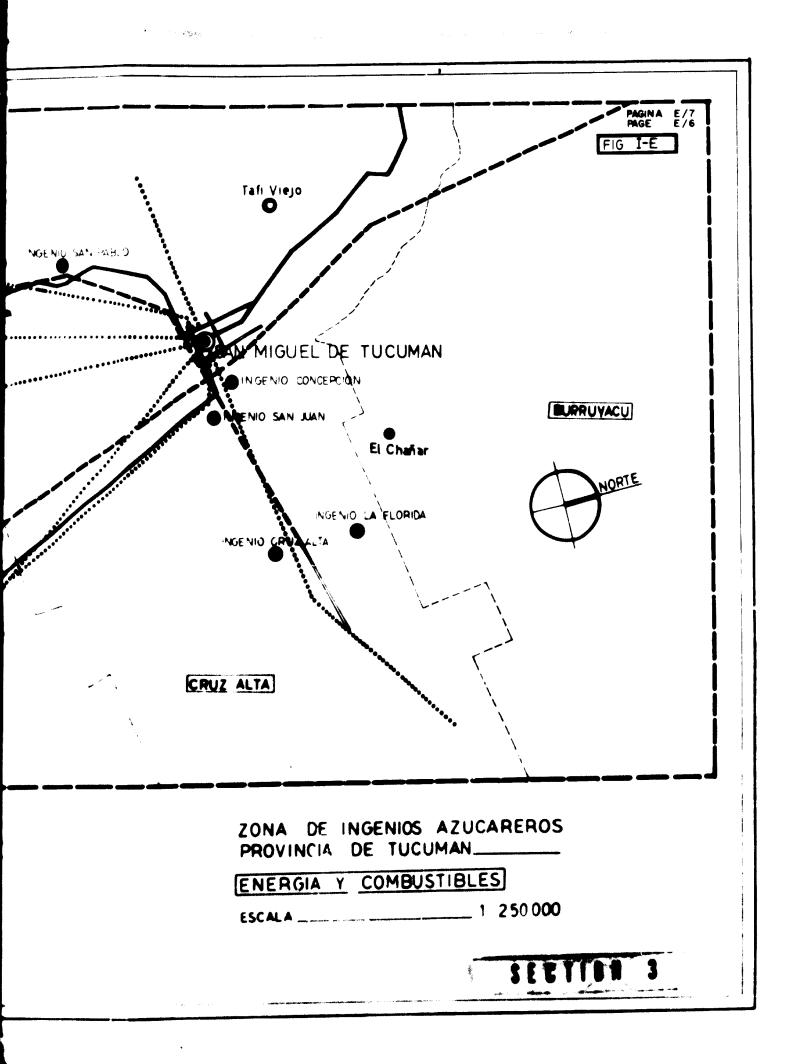
l

R-193A/07/3101 - Pege E/5

batween 40 and 50 \$*/T (8-10 U\$S).


Figures used for cost celculations were U\$S 170.00 plus U\$S 8.00 freight.


E.4 Meste Paper


Waste paper in sufficient quantitias is raadily available in Argentina, mostly from the populated areas because of the higher concentration of use.

Prices for second class newsprint including any freight landed in Tucuman is taken at \$* 310 per A.D. metric ton

Stadios Musios

I

H

Į

24

p

¥2 27

11

Į.

Į

F SERVICES AVAILABILITY AND COSTS

F.1 Water

The availability of water has been incorporated into Subsection H.2 (b) in the discussion of alternative mill locations, and little supplementary information need be added here.

Specific information has been difficult (in fact impossible) to obtain but in interviews with Government officials and ingenio managements we have been assured that water in the quantities required for any of the three mill alternatives, i.e. up to 60,000 cubic meters/day for the largest mill, can be supplied on a year-round basis.

The cost of any special arrangements which might have to be made to supply water to the paper mill would not be excessive particularly if it is located adjacent to one of the larger ingenios.

F.2 Power

(a) <u>General</u>

I

Tion Con

Ϊį

t i

Į

12

1

12

B

Stadios Mustos momentes consultants

R-193A/07/3101 - Page F/2

Power characteristics are 50 cycle, three phase. Because of the interconnections with other systems, interruptions in supply would be expected to be relatively infrequent. Except for emergency lighting provisions, therefore, the paper mill would not require to have standby generating capacity.

Power transmission is for the most part at 132 KV on the main lines thus, since voltages in the mill would be 3300 maximum ranging through the various standard voltages, depending on application, down to 220 V, two transformation stages might be required. Alternatively, it might be possible to connect to an existing 33 KV substation, in which case new transformers would be required only at the paper mill. In either case the cost would be chargeable to the project and the transmission line would be provided by Agua y Energie. The cost of a primary substation, should it be necessary, would be included in mill capital costs. Since, however, particularly in the North it is considered quite probable that 33 KV power would be available, funds have been allowed for the secondary substation only.

The costs of power have been based on the rates applicable to the last quarter of 1971, as follows:

Stadior Mustor Monsers . Consultants

-

PROFILE END

1

ļ

ŧ

MANUT IN MITAN

11 11

11

1

Per	Kw contracted	\$a	16.46	per	month
Per	Kwh consumed	\$ a	0.029		

Certain minor taxes may in some circumstances apply to these rates, but these have been ignored.

(b) Cost of generated power

In the calculation of manufacturing costs, it has been assumed that the power necessary for each of the paper mill alternatives would be purchased at the rates specified for the Tucuman srea in "Regimen Tarifario No. 708/70".

At their respective consumption rates, power cost for all three mills has thus been computed to be $\4 0.0545 per KWH or, at 5 $\$^4/US$ \$, 10.9 mils.

For comparison the following calculations show the estimated costs of power which would result if generating equipment were to be installed in the different mills.

Factors common to all cases are:

Kilowatt hour860.4 Kg. Cal.Calorific Value - Natural Gas9300 Kg. Cal./m³Generating Efficiency85%

The gross return on investment for generating power in each of the three models is shown in Table 1-F.

3101 -----Ĩ 0 P/4 NEFENENCE NO. 4.93 Years 4.94 3.37 R-193A Amortization of capital cost at a conservative 15% interest to be repaid in 10 years plus straight line depreciation over 20 years plus cost of natural gas required to generate Gross Return on Investment 20.3 20.2 29.7 ч CLOSS INVESTMENT RETURN ON GENERATED VS. PURCHASED POWER Rates established from Regiment Tarifario No. 708/70 for Tucuman area. Purchased Power Generated Power \$ U.S. ** 288,800 455,300 675,400 Annual Cost TABLE 1-F \$ U.S. * Odinu 593,000 1,063,800 1,656,800 Consumption 54,400,000 97,600,000 152,000,000 KURNYT. required power. NODEL II NODEL III Rev. November 10, 1972 NOBEL ţ July 20, 1972 223

l

I

l

l

l

|

1

ł

Stadios Muster

H

ŧ,

8

łų

12

8

, i 1

¥1 1 1

31

Į

1 1 The figures developed above thus indicate that savings of at least 50% in power cost would be possible by providing for in-plant power generation. It should be noted also that loan interest at 15% and repayment in 10 years have been used intentionally to show a conservative estimate of the savings. If money is available at lower interest and for a longer term, the savings would be proportionately greater.

These are attractive figures and it is recommended that in a complete feasibility study for any of the three projects the inclusion of in-plant power generation should be fully investigated.

F.3 Transportation

Within the province of Tucuman transportation facilities are excellent. Two paved national highways (#9 and #38) pass through the area, there are many paved secondary roads to the larger municipalities, and these are fed by a complex network of consolidated and dirt roads. All roads remain in good condition even during the periods of heaviest precipitation. In the area of the augar belt the terrain is almost uniformly level with a very slight slope generally to the East and somewhat towards the South, Conditions for road transport therefore leave little to be desired.

Several relatively large trucking companies have headquarters at San Miguel de Tucuman so that competitive bids on trucking contracts should be possible. This is particularly interesting

Stadios Mustos moments . consultants

7088 A

from the point of view of bagasse transportation.

All ingenios, of course, are accessible by means of quite satiafactory roads since the major part of the cane is delivered by tractor-trailer trains.

Similarly rail facilities are more than adequate. Two railway systems operate in the province, Ferrocarril General Mitre (at andard gauge) and Ferrocarril General Belgrano (narrow gauge). The combination of the two different gauges might cause minor problems in respect to some locations but service to and from most areas can usually be aupplied without difficulty. Both rail aystems connect with moat of thelarger centers auch as Buenos Aires, Rosario and Cordoba so that shipment of supplies to the mill and finished products to the consumera ahould be relatively simple to organize and arrange.

The map, Fig. II-F, gives a good general picture of road and rail distribution, although on such small acale it is not possible to indicate the many minor sideroads and spurs which could be of interest.

Costs of transportation are indicated for chemicala, kraft pulp etc. in the relevant sections of the report and in the Appendix.

The largest tonnages to be shipped out of the province would, of course, be the finished paper. Coats for such shipment

1 ۲, Ì ŧł [] ž I Ì

Stadjer Muster

in box cars-carload lots of not less than 50% of rated car

loading would be:

	COR	DOBA	ROS	ARIO	BUENOS	AIRES
	Distance	Cost/Ton	Distance	Cost/Ton	Distance	Cost /T on
		Ş -		÷-		2 -
F.C.G.M.	643 km	31,44	842 km	42.43	1143	48,87
F.C.G.M.	563 km	34.24	926 km	40.09	1221	51.21

Transfer from one gauge to the other would have a surcharge of $\frac{1}{2.90}$ ton.

Standard gauge load limit50 tonsNarrow gauge load limit35 tons

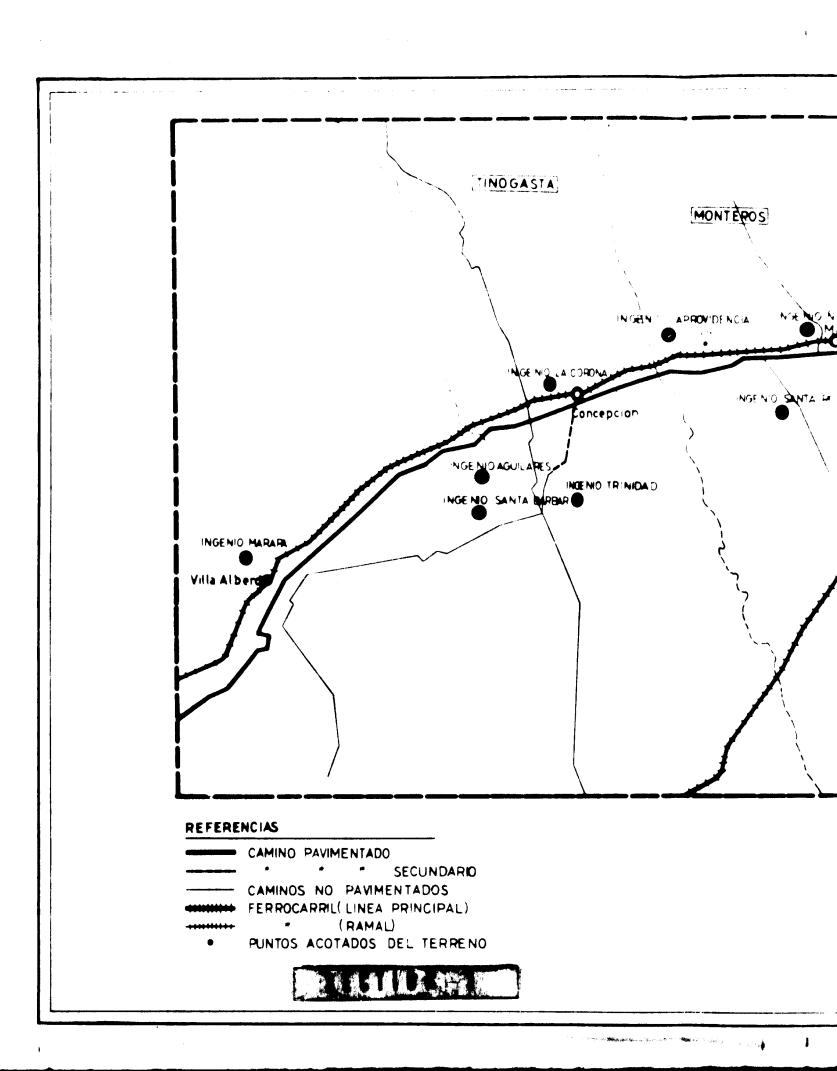
Rates for road transportation are more difficult to specify since truckers are inclined to adjust their charges according to circumstances prevailing at any given time. Also, because of rapid inflation, they are reluctant to quote on a contingency basis. The rates which have been obtained, however, are more or less competitive with the rail shipment costs shown above.

It is felt that the major part of product shipment would probably be by rail but in some cases road transport might have advantages.

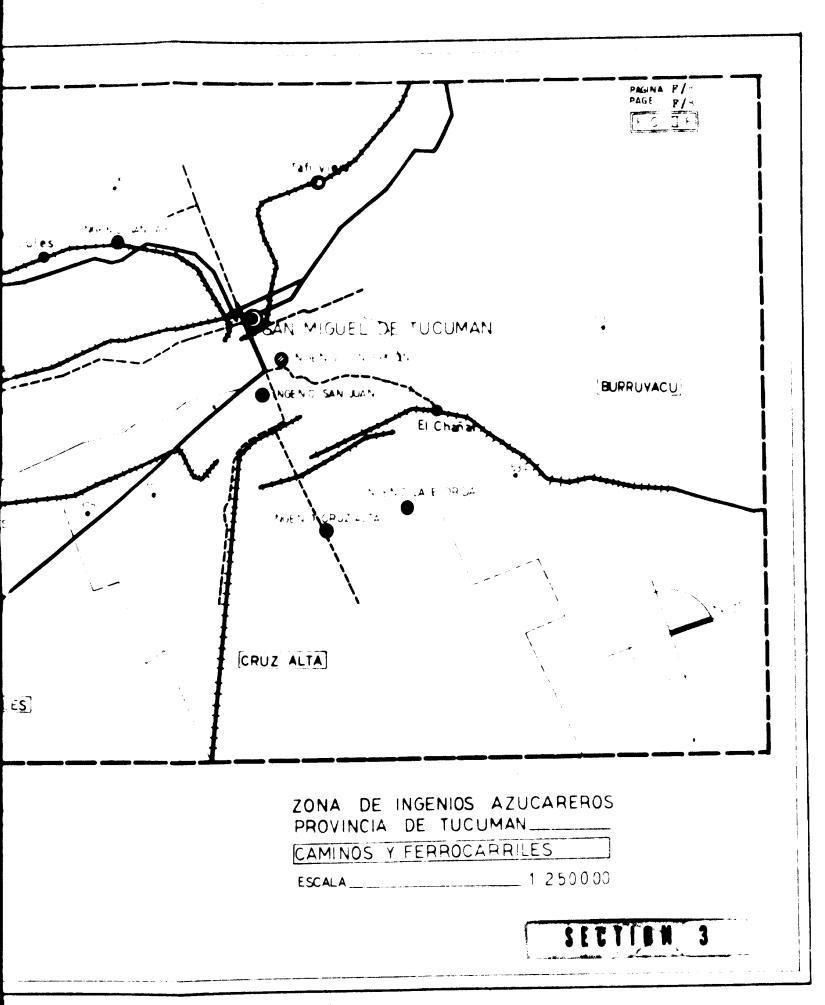
It is also considered quite likely that for the tonnages involved discounted rates could be negotiated. A realistic rate would possibly be about \$4 40 per ton.

-

PRECIPIC ENE


1

, i E i


ļ

¥8 #8

١

-	-		
	Stadior 2 provins - com		R-193A/07/3101 - Page G/1
	G. <u>L</u>	BOUR AND MANAGEMENT	
	G.	1 Organization	
		The Orgenization Chart -	Fig. 1-G illustrates a typical
		arrangement end essignment of	functions which would be suitable
		for each of the three sizes o	f mill under consideration.
		Administrative and supervisor	y positions down to the level of
		the verious mill superintende	nts ere shown and, helow thet level,
		the responsibilities of each	superintendent are indicated in
		broad scope.	
		It may be seen that tota	il personnel subdivides into four
		essentially distinct groups.	
		- Head Office	
		- Mill Administration	
		- Mill Operations	
		- Mill Repair and Maintenand	:e
		The functions of these i	Individual groups are different in
		perspective and performance t	out all must cooperate and correlate
		well to achieve a smooth runr	ning, efficient and, ebove ell, e
		profitable operation.	
	G	.2 Personnel Requirements and Co	pet
		(a) <u>Foreisn</u>	
		It is considered ve	ery improbable that any of the
		proposed mills could be	completely staffed right from the
		outset by Argentines po	ssessing all of the skills and

I

I

ļ

A DESTRUCTION OF A DEST

IN PARAS, NAME DAMAGNA OTAL & TA TAUTU & PARAS.

I

I

l

l

[

experience necessary for efficient start-up and operation. For certain mill management positions in particular, willingness to work and learn, and potential ability and enthusiasm cannot substitute for experience in the complex equipment, techniques, systems and procedures involved in paper manufacture. For the purpose of achieving a well organized and profitable operation as quickly as possible it has thus been deemed adviaable to provide for the temporary employment of foreign experienced personnel to administer some of the key functions until Argentine Nationals can be fully trained to assume the responsibilities of these most important management posts.

Table 1-G has therefore been prepared to show the extent and cost of foreign assistance considered necessary for the smallest mill, and Table 2-G shows similar information for the medium and largest capacity mills.

In the estimation of costs, it has been assumed that salary levels would conform to North American Standards and that usual concessions such as exemption from income tax, and free housing, medical care and local transportation would be granted. The first of these advantages would involve no extra cost to the project(s), but the remainder have been allowed for in the column headed "Annual Allowance". Return transportation expense for the men themselves, their families and a reasonable amount of household effects, has also been included.

Stadier Muster

OMORES . CONSULTANTS

11

Ĭ

1

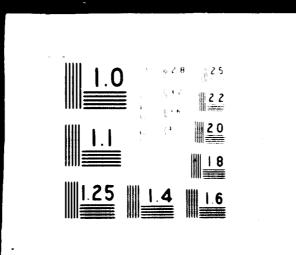
ļļ

² j

٤Ì

łį

11


!

.

IĮ

¥ F

76. 05. 19<

In reference to the item "Recruiting Expense and Fee" it has been sssumed that the recruiting of expatriates would be arranged through Consultants qualified to evaluate the skills of the applicants. This is a conventional method of finding and selecting the most suitable candidates for the various positions and carries with it the advantage that provision may be, and usually is, included for handling all administrative matters in reference to expatriate personnel. Under such an arrangement the Consultant would continue to observe carefully the performance of the selected men in the positions to which they have been assigned and, should it prove necessary, would arrange to replace any who show themselves to be below the required standard. In addition, since expatriates are normally retained under two-year contracts, the Consultant would renegotiate the contracts of those men scheduled to stay three years, or would arrange for replacement of personnel who do not wish to remain after the original contract period. The sum allowed for this item has been estimated on the basis that the Consultants responsibilities in this respect would encompass the full scope which has been outlined.

The possibility cannot be ignored that some of the positions suggested for expatriates could be filled by Argentine, or at least Latin American, personnel at salaries

Ì 1

. Şi

IĘ ĮĮ 1 ١. Įį ĽÍ t] Ŀ 11 Į 1 ŧŧ Į Į. ļ, į,

Ē

l

Stadjor Nurtes

HORS . CONSULTANTS

708N

ĮĮ

Ĭ

Ēź

1

1

=

1

Į

12 21

1

ļ

Y B Y B

Stadjer Muster

R-193A/07/3101 - Page G/4

and allowances substantially lower than those estimated in Tables 1-G and 2-G. A very significant advantage in the elimination of language difficulties would, no doubt, result from employment of such people if they can be found. However, since expatriate assistance is normally considered to be an indirect capital expense to be written off over a fairly lengthy period any variation from the totals shown would have relatively insignificant effect on the overall cost of production.

(b) Argentine

For estimating purposes it has been assumed that: As indicated above certain mill executive, operating, and maintenance management functions would be performed initially by expatriates possessing knowledge, skills and experience particular to the paper industry.

- Each position held by an expatriate would be understudied by an Argentine of adequate skills and ability to permit him eventually to take over the full duties and responsibilities of the function for which he is being trained.
- A suitable prestart-up training program would be implemented to ensure that other men in various key positions will possees adequate skills to permit them to work efficiently and to impart their knowledge to others being trained on the job.

Stadios Mustos

7084 B

IĘ

ž j

1

1

ž

12 53

¥١

i H

1

L

INGINIERS . CONSULTANTS

R-193A/07/3101 - Page G/5

- All Head Office personnel and, with the exception of the positions to be held initially by expatriates, all mill personnel would be Argentine. Accordingly average wage rates have been estimated with reference to the provisions of national labour agreements, and salary levels in accordance with current standards in Argentina

Based on these assumptions Tables 3-G, 4-G, 5-G and 6-G have been developed to show the approximate number of people and annual costs for each Cost Model and each of the principal sub-divisions of personnel. For convenient reference Table 7-G summarizes the four preceding tables in terms of the number and costs of personnel required for the three alternative mills.

It will be noted that, although the productive capacities of the three "Models" are in the general ratio of 1:2:3, the additional personnel and costs do not even approach these proportions thus illustrating one aspect of the advantage of scale.

G.3 Personnel Availability

(a) <u>Foreign</u>

In most of the positions suggested for expatriates experience in the manufacture of bsgasse-based paper, though dewirable, would not be a prerequisite. The principal requiremente would be sound basic knowledge of the duties and

Stadior Murtor

± ₫

12

Į

 MONINELS . CONSULTANTS

R-193A/07/3101 - Page G/6

responsibilities of the positions which they have been selected to administer combined with willingness and ability to impart their knowledge to the Argentine trainees. The Paper Mill, Pulp Mill, and Control Superintendents, and to some extent the General Superintendent, however, should also have a record of proven competence in the processing of bagasse into paper.

There is no doubt that adequate incentive in addition to the challenge of contributing to the success of a new enterprise would interest well qualified men from most of the industrially advanced nations of the world. It is thus considered that the principal difficulty in this respect would occur in selecting the most suitable candidates.

(b) Argentine

As indicated in sub-section G.2, for any of the proposed projects, the intention is to staff the Head Office and the complete mill from the available manpower resources of Argentina. Even in the cases where foreign personnel hava been recommended to assist during the early years provision has been made for the employment of Argentinas who would eventually take over the various positiona.

In common with many other large industries the preferred location for the Head Offica would probably be Buenos Airas but, if desirable, it could also be in Tucuman province. At

.

١į

łį

17 5 1

I

ł

ر 1

Ħ

1 1

R-193A/07/3101 - page G/7

either location there should be no problem in attracting competent people to perform the various necessary administrative functions.

The Northern ingenios are more closely groupid thus, economically, this area would be a convenient site for the initial mill. At least five sugar mills and also the city of San Miguel de Tucuman would be within easy access. With such resources to draw upon, little difficulty should be encountered in finding suitable people to fill all administrative, operating and maintenance jobs not requiring specialized paper-making skills and knowledge. Similarly, professionals such as engineers, chemists and accountants, mature men with trades foreman qualities, machinists, electricisns, pipefitters and other tradesmen, secretaries, typiats and clerks, and all necessary common labour should also bs available from the appreciable labour pool in the ersa, or certainly from within the province.

Recruiting of the supervisory and operating personnel who would be actively involved in the pulp and paper production processes is expected to present somewhat of a problem in finding the required number of suitably experienced men. Every effort, therefore, must be made to ensure that the maximum number of operating jobs will be handled by people with some background in paper manufacture and preferably,

some working knowledge of the functions they will be expected to perform. Assuming that an appreciable nucleus of trained operetors will exist it is considered quite practical, for the remainder, to employ men who indicate potential to learn quickly.

Trainees to understudy expetriate counterparts constitute a select group and would have to be chosen from the best of the experienced Argentine applicants in accordance with most exacting stendards end exercising the best possible judgment. It must be kept in mind that the expatriates only serve to assist in getting the project under way in minimum time end with optimum efficiency. The future and continued success of the totel venture will eventually depend totelly on the abilities of the trainee candidates to put into practice what they have learned and collectively, to form a strong management group.

G.4 Training

It is important for a smooth start-up and continued operation that, right from the beginning, the key positions on the operating staff should be managed by men who are familiar with their respective jobs and who, ideally, have spent some time performing similar functions under similar conditions. Since it is improbable that an adequate supply of such fully experienced men would be available for staffing the proposed mills, a well orgenized training

Pet

1

Ì

ļ

\$1 13

ŧł

Į

١ı

Stadior Murter

NURS . CONSULTANTS

PORM 3

IĘ

Ĭ

Ì

ļ

ļ

ł

1

Į

ji El

[]

1

Stadior Muster Memores - CONSULTANTS

R-193A/07/3101 - Page G/9

progrem would form an essential part of the project planning.

At this point in time the total scope of the training which would be required is somewhat indeterminate because this is to a great extent dependent on the number of skilled, partially skilled, and unskilled men which can be found and employed. Generally, however, it is visualized that two different phases should be implemented:

- Periods of training in operating mills manufacturing products similar to those proposed,

- Pre-operational on-the-job training.

The first of these would apply principally to the key men on the operating staff such as the management trainees and the men who have been nominated as foremen in the various process departments. If a disproportionately large number of totally inexperienced men must be employed some of these also may have to be included.

To ensure experience in modern methods and technology such training should, if possible, take place in only the most advanced bagasse-based paper manufacturing plants available. To avoid language problems preference would be given to mills located in Latin American countries but it is recommended also that the more important personnel should spend a period of time in the best of North American mills engaged in this type of manufacture. It is estimated that an average period of two months would be the PUR

¥ 8 * 8

Stadjes Hustes

minimum for best results.

The finding of suitable mills which will accept trainees, specification of the type and amount of training required, and travel and accommodation arrangements for the men involved will require an appreciable amount of lead-time. Formulation of plans and selection and assignment of personnel for the various operating functions should therefore be done as early as possible during the construction phase.

The second aspect of training, as implied, would take place in the new mill itself and would include those who have spent periods in other mills together with all other members of the operating crews. These personnel would be assembled at the mill for varying periods of time before the initiation of production is attempted so that they can familiarize themselves with the system and equipment and can participate in training sessions, including dry runs, in all of the process departments. For the general run of operating personnel an average period of two months should be adequate for this phase of the training. The management trainees, however, should be engaged at the same time as their expatriate counterparts so that over and above the time spent in other mills and in the mill pre-operational training they would have additional time to become familiar with all aspects of the functions which they are understudying.

11

1

i i

.

ļ

11

ĥ

11

1

ji El

I

1 1

١ı

1

The second

Stadior Murter

R-193A/07/3101 - Page G/11

basid in the above training concept reasonable losts have been estimated for each of the proposed mills and included in Development Expense.

G.5 Accommodation and Transportation

As presently proposed, the location of the initial project will be almost adjacent to San Miguel de Teluman thus it is not considered ne essary to provide on-site housing or community facilities. Suitable accommodation for expatriate and local management personnel should be readily available in the city. The remainder of the working force, being in major part recruited from the immediate area, world likewise not require any special accommodation provision.

Similarly transportation to and from work would not be expected to present any particular problem since, if it doew not already exist, it should be a simple matter for existing public transport facilities to arrange to provide adequate service at appropriate times.

No allowance, therefore, either capital or operational, has been made for either of these items.

G.6 Management Contract

Since implementation of any of the proposed projects would constitute the introduction of a relatively large inductial venture into a country where a comprehensive background in pulp

Stadior Murter monitors . CONSULTANTS

Į

ĮĮ

1

1

1 1

ł

¥1 +} and paper manufacture does not exist at present, it is recommended that a management contract should be negotiated to cover, in particular, recruiting of competent supervisorv presonnel (including expatriates) and actual management of the mill in its early years. These services can be supplied either by a firm operating similar mills or by a consulting engineering firm with experience in managing pulp and paper mills based on bagasse as the prime taw material.

The contract should be for a minimum period of about four years - approximately one year pre-operational, and three years after start-p. It should permit the management team to recruit suitable operating personnel and to institute all operating procedures and process techniques deemed necessary for the ultimate achievement of an efficient and economic operation. To avoid complications and promote coordination of effort, the best arrangement is normally to combine the management and engineering contracts.

hadlar Burter seems . countrim			OUIN	8				12 7 6 8 5 C 1 8 0,	:	
July 20, 1972			TABLE	1-G				R-193A	10	3101
Mev. November 10, 1972		COSTS OF 1	EXPATRIATE ASSISTANCE (MODEL I)	SSI STANCE	(HODEL I)					
Position	Annual Salary	Annue l Allouance	Return Air Fares	Pre-St 9 mo.	Pre-Startup mo. 6 mo.	lst Year Production	2nd Year Production	3rd Year Production	니	
Resident Mgr.	33, 500	4,500	1,200	28,500		38,000	38,000	38,000		
General Smpt.	26,000	4,000	006	22,500		30,000	30,000	30, 000		
Paper Mill Supt.	24,500	3, 500	006		14,000	28,000	28,000	28,000		
Control Supt.	19, 500	2,500	006		11,000	22,000	22,000	22,000		
Pulping Supt.	21,000	3,000	90	18,000		24,000	24,000			
Plant Engine er	21,000	3,000	006	18,000		24,000	24,000			
Maintenance Supt.	19, 500	2,500	006		11,000	22,000				
Instrument Eng.	13, 500	2,500	900		8,000	16,000				
			7,500	87,000	44,000	204 ,000	166,000	118,000		
		Total f	for prestartup and production periods	up and pro	oduction p		619,000			
		Household & Recruiting		family moving ex expense and fee	tpense	~ •	60, 500 60, 000			
	·	Air fares Total cos	L,	92 93) (10) (1)	iistance	US \$74	7,500 \$747,000			
				at 5\$ª	per USS	5 3°1.	5 3, 735, 000			

ĺ

I

l

I

I

1

ľ

multiply 20, 1972 TABLE 2-G Mev. Woreaber 10, 1972 COSTS OF EXTATEINTE ASSISTANCE (MODELS 11 6 111) Image: Control of Contro of Control of Control of Control of Control of Control o	L. 1			ODINU	100				3) = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3		
COSTS OF EXPATRIATE ASSISTANCE (#ODELS II & III) Amual Amual Meturn Pre-Startup lat Year 2nd Year Amual Amual Meturn Pre-Startup lat Year 2nd Year Salary Allowance Air Fares 9 mo. 6 mo. Production Production Er 35,000 5,000 1,200 30,000 24,000 32,000 32,000 Er 28,000 4,000 11,000 24,000 32,000 28,000 Er 19,500 3,500 900 19,500 26,000 26,000 Er 13,500 2,500 900 19,000 26,000 26,000 Er 13,500 2,500 900 19,000 26,000 20,000 Er 13,500 2,500 900 19,000 26,000 20,000 Er 13,500 2,500 900 18,000 26,000 20,000 Er 13,500 2,500 2,500 2,500				TABLE	2-G						3101
Annual Annual Return Pre-Startup Ist Year 2nd Year Salary Allowance Air Fares 9 mo. 6 mo. Production Production Salary Allowance Air Fares 9 mo. 6 mo. Production Production Salary Allowance Air Fares 9 mo. 6 mo. 20,000 20,000 20,000 22,000 32,000 28,000 <th></th> <th>20</th> <th></th> <th>TRIATE ASSIS</th> <th></th> <th>-8</th> <th>(111)</th> <th></th> <th></th> <th></th> <th></th>		20		TRIATE ASSIS		-8	(111)				
Salary Allowance Air Fares 9 mo. 6 mo. Production Production 35,000 5,000 1,200 30,000 40,000 40,000 28,000 4,000 32,000 24,000 28,000 28,000 24,500 3,500 900 19,500 28,000 28,000 28,000 24,500 3,500 900 19,500 28,000 28,000 28,000 24,500 3,500 900 19,500 28,000 28,000 28,000 24,500 3,500 900 19,500 28,000 26,000 26,000 25,500 3,500 900 15,000 26,000 20,000 16,000 13,500 2,500 900 13,000 26,000 210,000 210,000 13,500 2,500 900 11,000 210,000 210,000 210,000 15,500 2,500 900 12,000 26,000 210,000 210,000 15,500 2,500		Annual	Annua ì	Return	Pre-St	artup	lst Year	2nd Year	3rd Year		
35,000 5,000 1,200 30,000 40,000 22,000 20,000 20,000 20,000 20,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 26,000	Position	Salary	Allowance	Air Fares	9 mo.	6 то.	Production	Production	Productio	u	
28,000 4,000 900 24,000 32,000 32,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 22,000 22,000 22,000 22,000 26,000 26,000 26,000 26,000 19,500 20,000 26,000 26,000 11,000 26,000 26,000 11,000 11,000 26,000 10,000 11,000 20,000 20,000 11,000 11,000 20,000 20,000 20,000 11,000 20,000 20,000 20,000 20,000 21,000 20,000 21,000 21,000 20,000 21,000 20,000 21,000 20,000 210,000 11,000 20,000 20,000 210,000 11,000 20,000 20,000 210,000 11,000 20,000 20,000 20,000 20,000 210,000 11,000 20	Resident Mar.	35.000	5.000	1.200	30,000		40.000	40,000	40,000		
24,500 3,500 900 21,000 28,000 28,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 26,000 22,000 26,000 20,000 15,000 20,000 20,000 16,000 15,000 15,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 16,000 15,500 2,500 900 900 9,000 18,000 16,000 16,000 15,500 2,500 900 13,000 20,000 20,000 16,000 15,500 2,500 900 13,000 20,000 20,000 20,000 16,000 10,000 16,000 10,000 16,000 10,000 16,000 10,000 16,000 11,100 10,000 10,000 16,000 11,1	General Supt.	28,000	4,000	906	24,000		32,000	32,000	32,000		
19,500 2,500 900 11,000 22,000 26,000 26,000 22,500 3,500 900 19,500 26,000 26,000 26,000 22,500 3,500 900 19,500 26,000 26,000 26,000 17,500 2,500 900 15,000 20,000 20,000 26,000 13,500 2,500 900 9,000 15,000 20,000 20,000 13,500 2,500 900 9,000 18,000 16,000 15,500 2,500 900 13,000 26,000 210,000 15,500 2,500 900 13,000 26,000 210,000 15,500 2,500 900 13,000 26,000 210,000 15,500 3,500 900 13,000 29,000 210,000 15,500 3,500 900 12,000 29,000 210,000 22,500 3,500 900 13,000 20,000 210,000 22,500 3,500 900 12,000 20,000 210,000	Paper Mill Supt.	24,500	3, 500	906	21,000		28,000	28,000	28,000		
22,500 3,503 900 19,500 26,000 26,000 22,000 22,500 900 15,000 26,000 26,000 17,500 2,500 900 15,000 20,000 26,000 15,500 2,500 900 9,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 15,500 2,500 900 13,000 2,6,000 2,500 2,500 2,500 2,500 2,000 2,000 2,0,0	Control Supt.	19,500	2,500	006		11,000	22,000	22,000	22,000		
22,500 3,500 900 19,500 26,000 26,000 15,000 13,500 20,000 20,000 20,000 20,000 15,500 20,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 22,500 90,000 15,000 22,500 90,000 22,500 29,000 29,000 210,000 11,100 129,000 29,000 290,000 210,000 Household & family moving expense and fee 11,100 129,000 90,000 Hecruiting expense and fee 11,100 129,000 10,500 11,100 1	Pulping Supt.	22,500	3, 500	8	19,500		26,000	26,000			
17,500 2,500 900 15,000 20,000 20,000 20,000 13,500 2,500 900 9,000 16,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 16,000 15,500 2,500 900 9,000 18,000 26,000 210,000 15,500 3,500 900 13,000 26,000 210,000 210,000 22,500 3,500 900 13,000 26,000 210,000 210,000 22,500 3,500 900 129,000 59,000 290,000 210,000 22,500 3,500 900 129,000 29,000 210,000 210,000 70,411 11,100 129,000 29,000 290,000 70,500 70,500 Air Pares 70 11,1100 129,000 125,900 90,000 11,100 Air Safe per US 3 Air Safe per US 3 5 ⁴ ,408,000 3 ⁴ ,4,908,000 3 ⁴ ,4,908,00	Plant Engineer	22,500	3, 500	90 6	19, 500		26,000	26,000			
13,500 2,500 900 8,000 16,000 16,000 15,500 2,500 900 9,000 18,000 16,000 15,500 2,500 900 9,000 18,000 210,000 15,500 2,500 900 13,000 26,000 210,000 22,500 3,500 900 13,000 26,000 210,000 22,500 3,500 900 13,000 26,000 210,000 22,500 3,500 900 13,000 290,000 210,000 22,500 3,500 900 129,000 59,000 290,000 210,000 21,100 129,000 59,000 290,000 290,000 210,000 Mousehold & family moving expense 90,000 70,500 70,500 Mousehold & family moving expense 10,100 11,100 11,100 Air Fares 10,500 10,500 70,500 Air Fares 05,000 10,500 11,100 Ait 53 ^a 05 expense 10,500 11,100 Ait 53 ^a 05 expente 05,	Mechanical Supt.	17,500	2,500	8	15,000		20,000	20,000			
I5,500 2,500 900 900 16,000 I5,500 2,500 900 18,000 I5,500 2,500 900 13,000 26,000 22,500 3,500 900 13,000 26,000 21,1,100 129,000 59,000 290,000 Total for prestartup & production periods 810,000 Household & family moving expense Household & family moving expense Norreling expense and fee 11,100 Air Fares Total cost of expatriate assistance US 5981,600 at 53 ^a per US 5 5 ^a 4,908,000	Instrument Eng.	13, 500	2,500	8		8,000	16,000	16,000			
15,500 2,500 900 9,000 16,000 15,500 2,500 900 9,000 16,000 22,500 3,500 900 13,000 26,000 21,1,100 129,000 59,000 290,000 210,000 11,100 129,000 59,000 290,000 210,000 Total for prestartup & production periods 810,000 810,000 90,000 Household & family moving expense 90,000 11,100 10,500 Morr Fares 10,500 11,100 11,100 Air Fares 10,500 11,100 11,100 Air Fares 10,500 10,500 11,100 Air S ² Per US S 10,500 10,500 Air S ² Per US S 10,500 10,500 Air S ² S ² ,900,900 S ² ,900,900 10,500		15,500	2,500	06		9,000	18,000				
15,500 2,500 900 9,000 18,000 22,500 3,500 900 13,000 26,000 21,1100 129,000 59,000 290,000 210,000 Total for prestartup & production periods 810,000 810,000 10,000 Household & family moving expense 90,000 70,500 11,100 More ting expense and fee 70,500 11,100 Air Fares 11,100 11,100 Air Fares 813,600 11,100 at 53 ^a per US 5 5 ^a 4,908,000 5 ^a 4,908,000	Steam Supt.	15,500	2,500	806		9,000	18,000				
22,500 3,500 900 13,000 26,000 11,100 129,000 59,000 290,000 210,000 Total for prestartup & production periods 810,000 210,000 210,000 Household & family moving expense 90,000 11,100 11,100 Meruiting expense and fee 70,500 11,100 Air Fares 70,500 11,100 Air Fares 0581,600 11,100 at 59 ^a per US 5 5 ^a 4,908,000 5 ^a 4,908,000	Traffic Supt.	15,500	2,500	8		9,000	18,000				
11,100129,00059,000290,000210,000Total for prestartup & production periods810,000Household & family moving expense90,000Meruiting expense and fee70,500Air Fares11,100Air FaresUS \$981,600at 53 ^a per US \$\$ ^{a4} ,908,000	Purchasing Agent	22,500	3, 500	000		13,000	26,000				
oduction periods 8 expense sistance US \$9 ssistance US \$9				11,100	129,000	59,000	290,000	210,000	122,000		
expense : :ssistance US \$9 \$ ^a 4,9		Tota	l for prest	artup & prod	luction per	iode	810,000				
g expense and fee t of expatriate assistance US \$9 per US \$		Nous	ehold & fem	ily moving e	states		90,00				
t of expatriate assistance per US \$		Recr	uiting expe	nse and fee			70, 500				
cost of expatriate assistance 5\$ ⁴ per US \$		Air	Pares				11,100				
5\$ ⁸ per US \$		Tota	cost of e	xpatriate as	ssistance						
		4	53 ⁸ per				\$ ² 4, 908, 000				

נות האותה היותה או ההו האותיה היות האותי האותה את ההוקוריו היות האותיה או אות האותי היותר אינה אישוא היותר האותה והאותה הו הוה את איני אותר האות האותי או ההוקוריו היותר היותר או אותר האותר היותר אינה אישוא אישוא

realize (Annual Annual Annu

1 ł

[

1

ļ

{

mt July 20, 1972 TABLE 3-G Lev. Movember 10, 1972 HAAD OFFICE EXPENSE Total Manber 20, 1972 HAAD OFFICE EXPENSE Total Total Manber 20, 000 90,000 Saler 10, 137 Saler 10, 120,000 90,000 Annual Saler 10, 000 90,000 Asst. to Chief Executive Officer 1 20,000 90,000 Asst. to Chief Exec, Officer 1 90,000 90,000 Asst. to Chief Exec, Officer 1 90,000 90,000 Sales Manger 2 24,000 43,00 Accountante 2 30,000 43,00 Accountante 3 14,400 43,00 Typiate and Clerka 6 9,600 538,800 Annual Salary Coef 560,800 94,000 548,800	
HEAD OFFICE EXPENSE HEAD OFFICE EXPENSE Total Number Annual Salarie 1 120,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 14,400 43,200 2 30,000 6,9,000 536,800 3 14,400 43,200 41,400 54,600 586,800 81, cont 9,600 588,800 81, cont 9,600 588,800 81, cont 9,600 588,800 81, cont 9,600 588,800 81, cont 9,600 533,000 81, cont 9,600 541,800 81, cont 9,600 9,41,800	<u><u><u>k</u>-19.2</u> 0. 3101</u>
Total Total Number Annual Salaries 1 120,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 90,000 90,000 90,000 1 1 90,000 90,000 2 24,000 48,000 3 14,400 43,200 5 9,600 536,800 ary Cost 54,000 588,800 Benefits 9,600 53,600 Benefits 9,600 54,1,800	
1 120,000 1 90,000 1 90,000 1 90,000 2 24,000 3 14,400 6 9,600 ary Cont	Total Annual Salaries US S
1 90,000 1 90,000 2 24,000 2 24,000 3 14,400 6 9,600 ary Coat Benefite	24 000
1 90,000 er 1 80,000 sentatives 2 24,000 sentatives 2 30,000 sentatives 2 30,000 clerks 6 9,600 Annual Salary Cost 6 9,600	18 000
er 1 80,000 eentatives 2 24,000 2 30,000 3 14,400 Clerks 6 9,600 Annual Salary Cost 602 Social Benefits	18,000
entatives 2 24,000 2 30,000 3 3 14,400 3 Clerks 6 9,600 Annual Salary Cost 6 9,600 60% social Benefits 1	16,000
2 30,000 3 14,400 Clerks 6 9,600 Annual Salary Cost 60% Social Benefits	6 600
3 14,400 6 9,600 Annual Salary Cost 60% Social Benefits	12,000
6 9,600	8,640
Ι	11,520 1.7,760
ł	117 ,760
	<u>70,600</u> 188,360
Auditing Service 60,000 Leal Advice 30,000	12,000 6,000
ffice 1,0	206,360

Autors - County Autos			'n	ONTINO				•	1
July 20, 1972			TABLE	5 - C				1	K-143A 1 07 3101
Mev. November 10, 1972		COSI	COST OF MILL ADMINISTRATIVE PERSONNEL	ISTRAT	IVE PERSONI	TJA			675 1
· · · · · · · · · · · · · · · · · · ·		X	NODEL I		ľ	HODEL 11		MOLEL	EL 111
Posítion	No.	\$ª /Year	Total Annual Salaries-S ^a	No.	Ş ^ª ∕Year	Total Annual Salaries-S ^a	No.	Ş ^a /⊻ear	Total Annual Salaries-S ^a
	-	45,600	45.600	-	48,000	4 8 _000	-	48,000	48,000
to Gen	•	38,400	38,400		40,800	40,800	-	±0,800	-0,800
to P.M.	l	36,000	36,000	l	38,400	38,400	1	38, -00	38,400
to Cont.	-	26,400	26,400	l	28,800	28,800	1	28,800	28,800
. to Fulp S	I	31,200	31,200	ſ	33, 600	33, 600	Ĩ		33, 500
Asst. to Pl. Eng.	1	36,000	36,000	-4	38,400	38,400	I	38,400	38,400
Asst. to Instr. Eng.	1	19,200	19,200	1	21,600	21,600	1	21,600	21,600
Asst. to 'Mech. Supe	1	26,400	26,400	٦	28,300	28, 80Ú	1	28,800	28,800
*Asst. to Elec. Supt.	-1	32,400	32,400	-	21,600	21,600	-1	21 600	21,600
	-1	32,400	32,400	I	21,600	21,600	1	21,600	21,600
*Asst. to Traff. Supt.	-1	32,400	32,400	1	21,600	21, 600	I	21,600	21,600
*Asst. to Purch, Agent	l	36,000	36,000	ľ	33,600	33,600	٦	33,600	33, 600
Chemi st	1	30,000	30,000	1	30,000	30,000	1	30,000	3C,000
Chemists	•	·	•	I	24,000	24,000	1	24,000	24,000
Techy.cians	2	18,000	36,000	Ē	18,000	54,000	4	18,000	72,000
Lng í neers	2	36,000	72,000	e	36,000	108,000	e	36,000	108,000
Drafteer	(1	18,000	36,000	e	18,000	54,000	4	18,000	72,000
Storekee per	T	21,600	21,600	7	24,000	24,000	1	24,000	24,000
buyers	7	18,000	36,000	'n	18,000	54,000	m	18,000	54,000
Ch. Accountant	1	46,000	46,000	1	48,000	48,000	1	20°000	50 ,000
Accountants	2	18,000	36,000	£	18,000	54,000	e	18,000	54,000
Ind. Mel. Mgr.	1	40,000	40,000	1	42,000	42,000	٦	44,000	44,000
Imployment Superv.	,	ı	•	1	24,000	24,000	1	30 , 000	30, 000
Time Keepers	2	18,000	36,000	٣	18,000	54,000	4	18,000	72,000
Ductor (Part-time)	1	36,000	36,000	1	36,000	36,000	1	36,000	30,000
be Burse	1	16.200	16,200		16,200	16,200	1	16,200	16,200

ł

ł

ŧ

の単大の

•••

a faterio a tearres.

.

			OGINN	8				-	24787676 - 2009 - 008 - 1-
July 20, 1972			ĥ				i	.	R-193A 07 3101
		TIN JO LSOO	VINITA	ad ani	esonnel (co	nt 'd)			
		ž	HODEL I		X	MODEL 11		io n	MODEL 111
Posttion	Ko.	\$ª /Year	Total Annual Salaries-S ^a	No.	Ş [≜] /Year	Total Annual Salaries-\$ ^a	No.	\$ [≜] /Year	Total Annual Salaries-\$ ^a
Safety Superv.	î	I	ď	I	36,000	36,000	1	36,000	36 , 0 00
Security Officer	1	36,000	36,000	1	36,000	36,000	1	36,000	36,000
Guards	່∞	18,000	144,000	80	18,000	144,000	80	18,000	144,000
Secretaries	4	12,000	48,000	S	12,000	60,000	Q	12,000	72,000
lerks	18	9,600	172,800	25	9,600	240,000	32	9,600	307,000
n , e .	61			78			68		
Total Direct Selaries			1.235.000			1,515,000			1,658,200
Social Benefits (60%)			740,000			000,606			995,000
Tot. Admin. Selary Expense		_ * *	\$ ¶1,975,000		*	\$ª2 ,424,000		Ĩŋ	\$ ^{\$} 2,653,200
at 55 ⁴ per US \$		\$SU	\$ 395,000		\$ \$ 0	\$ 434, 800		\$SU	\$ 530,640
		NOTES:	a a b	ints to expatr i resp Model	All personnel Argentine Nationals "Assistants to" are training to o held by expatriates. Salaries to when full responsibility is assum * - For Model I Argentines will f	All personnel Argentine Mationals "Assistants to" are training to occupy positions held by expetriates. Salaries to increase 50% when full responsibility is assumed. * - For Model I Argentines will fill these	positio	8 pr	
	:		posi	tions	vith full :	positions with full salary and title.			

J

ŧ

-

1

ļ

E 5-G R-1951 ATINC FRISOMMEL MODEL II DEL I MODEL II Unskilled Skilled Unskilled Skilled J3 140 177 73 140 11,150 20,72 73 140 101 177 73 140 101 177 73 140 11,150 20,72 73 140 11,150 22,000 419,100 904,800 579,800 1,144,000 6,00,500 1,447,700 927,700 1,830,400 6,300 1,447,700 927,700 1,830,400 6,300 670,500 1,447,700 927,700 1,830,400 6,300 6,0,500 1,447,700 927,700 1,830,400 6,300 6,0,500 1,447,700 927,700 1,830,400 6,300 6,0,500 1,447,700 927,700 1,830,400 6,00 0,500 6,41,00 0,500 0,534,900 6,000 0,500 6,41,000 0,541,900 0,541,900	COST					•	
COST OF OFERATING PERSONNEL I NODEL I NODEL I NODEL II NODEL II NODEL II Poressen Skilled Unskilled Unskilled II 22.80 20.72 18.40 20.72 18.40 20.72 28 108 73 140 101 177 28 108 73 140 101 177 3,830 13,420 8,060 17,400 11,150 22,000 199,200 698,200 419,100 904,800 347,900 144,000 119,500 418,100 570,500 1,447,700 927,700 1,830,400 119,500 41117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 119,500 411,17,100 670,500 1,447,700 927,700 1,830,400 119,700 1,117,100 670,500 1,447,700 927,700 1,830,400 <th>COST O</th> <th>TABLE</th> <th>۲. ۲</th> <th>- - - -</th> <th></th> <th>81 - 84 </th> <th>101 0 1 3101</th>	COST O	TABLE	۲. ۲	- - - -		81 - 84 	101 0 1 3101
MODEL I MODEL II MODEL III MODEL III MODEL III III IIII IIII IIIII IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			ING PERSONNI	ť			
Poremen Skilled Unakilled Skilled Unakilled Skilled 22.50 20.72 19.40 20.72 18.40 20.72 28 108 73 140 101 177 3.630 13,420 8,060 17,400 11,150 22,000 199,200 698,200 419,100 904,800 579,800 1,144,000 119,500 418,900 251,400 547,900 30,400 30,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 119,500 4111 2,664,100 54 1,000 1,421,300 MODEL I 2,106,300 674,100 538,800 1,830,400 1,830,400 MODEL II 2,106,300 674,100 538,900 1,930,400 1,930,400 MODEL II <th></th> <th>1300H</th> <th>1 ,</th> <th>NOM</th> <th>1 11</th> <th>HODE</th> <th>111</th>		1300H	1 ,	NOM	1 11	HODE	111
22.80 20.72 18.40 20.72 18.40 20.72 28 108 73 140 101 177 3.630 13,420 8,060 17,400 11,150 22,000 3.630 13,420 8,060 17,400 11,150 22,000 199,200 698,200 419,100 904,800 579,800 1,144,000 119,500 418,900 251,400 942,900 347,900 686,400 119,500 418,900 251,400 947,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 119,700 1,117,100 670,500 1,447,700 927,700 1,830,400 00111 2,106,300 674,100 538,800 1,61,61 1,61,61 1011 2,106,300 674,100 538,800 1,61,61 1,61,61 1011 2,106,300 674,100 538,800 674,100 1,61,61 1,61,61		cilled	Unskilled	Skilled	Unskilled	Skilled	Unskilled
28 108 73 140 101 177 3,630 13,420 8,060 17,400 11,150 22,000 199,200 698,200 419,100 904,800 579,800 1,144,000 119,500 418,900 251,400 542,900 347,900 686,400 119,500 418,900 251,400 542,900 347,900 686,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 0318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 1011 2,106,300 421,300 674,100 538,800 0001L 11 2,106,300 624,100 538,800 0001L 11 3,370,500 674,100 538,800 0001L 111 3,370,500 674,100 544,100 0001L 111 3,370,500 674,100 544,100 0001L 111 3,370,500 674,100 544,100 01 Premen requirement and cost same for each mill.	la te	20.72	18.40	20.72	18.40	20.72	18.40
3,630 13,420 8,060 17,400 11,150 22,000 199,200 698,200 419,100 904,800 579,800 1,144,000 119,500 418,900 251,400 542,900 347,900 686,400 119,500 418,900 251,400 542,900 347,900 686,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 119,500 1,117,100 670,500 1,447,700 927,700 1,830,400 10,111 2,106,300 421,300 057,700 1,830,400 064,400 11 2,106,300 538,800 054,4100 064,4100 064,4100 074,4100 00011 11 3,370,500 674,100 574,4100 074,4100 074,4100 00111 3,370,500 674,100 57,44,100 074,4100 074,4100 074,4100 0 Monter: <		108	73	140	101	177	133
199,200 698,200 419,100 904,800 579,800 1,144,000 119,500 418,900 251,400 542,900 347,900 686,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 70.1 10,117,100 670,500 1,447,700 927,700 1,830,400 71.1 20.10 670,500 1,447,700 927,700 1,830,400 70.1 1,117,100 670,500 1,447,700 927,700 1,830,400 70.1 1,117,100 670,500 1,447,700 927,700 1,830,400 70.1 1,117,100 6,04,100 538,800 00 0,044,100 0,044,100 8.00 111 2,106,300 674,100 5,44,100 0,74,100 0,14,100 9.000 111 3,370,500 674,100 5,44,100 0,42,100 0,44,100 10.000 10.000	3,830	13,420	8,060	17,400	11,150	22,000	14,680
Demefite 119,500 418,900 251,400 542,900 347,900 686,400 ga 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 form Total Costs of Operating Labour us \$ us \$ us \$ model. 11 2,106,300 4,21,300 674,100 674,100 model. 11 3,370,500 674,100 674,100 538,800 model. 11 3,370,500 674,100 674,100 674,100 model. 11 3,370,500 674,100 674,100 674,100 model. 11 3,370,500 674,100 674,100 674,100 b Poreman requirement and cost s	199,200	698,200	419,100	906, 800	579,800	1,144,000	763,400
\$* 318,700 1,117,100 670,500 1,447,700 927,700 1,830,400 Total Costs of Operating Labour \$* US \$ 0 1,447,700 927,700 1,830,400 Total Costs of Operating Labour \$* US \$ 0 421,300 0 421,300 NODEL II 2,106,300 4,21,300 074,100 539,800 0 0 NODEL II 3,370,500 674,100 574,100 0 0 0 0 NODEL III 3,370,500 674,100 0	119, 500	418,900	251,400	542,900	347,900	686,400	458,000
Total Costs of Operating Labour\$US \$\$US \$\$US \$\$US \$\$US \$\$2,106,300\$421,300\$3,370,500\$574,100\$574,100\$574,100\$500\$500\$500\$500\$500\$<	\$ ⁴ 318,700	117,100	670, 500	1,447,700	927,700	1,830,400	1,221,400
S ^a US \$ II 2,106,300 421,300 III 2,694,100 538,800 III 3,370,500 674,100 III 3,370,500 674,100 III 3,370,500 674,100 III 3,00,500 674,100 III 3,00,500 674,100 III 5 For US \$ III 5 For US \$ III 6 Gay week - 8 hours per day. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required	Total Co	osts of Q	perating La	DUL			
I 2,106,300 421,300 II 2,694,100 538,800 III 3,370,500 674,100 a) Exchange Mate: \$^65 per US \$ b) Foreman requirement and cost same for each mill. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required		9 \$		\$ \$ 0			
 II 2,694,100 538,800 III 3,370,500 674,100 a) Exchange Late: \$^a5 per US \$ b) Foreman requirement and cost same for each mill. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required 	I TUQON	2,106,	300	421, 300			
 III 3,370,500 674,100 a) Exchange Late: \$^a5 per US \$ b) Foreman requirement and cost same for each mill. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required 		2,694,	100	538,800			
 a) Exchange Mate: \$⁴5 per US \$ b) Foreman requirement and cost same for each mill. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required 		3, 370,	500	674,100			
 b) Foreman requirement and cost same for each mill. c) 6-day week - 8 hours per day. d) Number of men inflated to compensate for required 	•	change ha	\$ 8 5	r US \$			
6-day week - 8 hours per day. Number of men inflated to compensate for required	(9	reman req	uirement an	d cost same i	for each mil	1.	
Number of men inflated to compensate for required		day week	- 8 hours p	er day.			
		mber of m	en inflated	to compensat	te for requi	red	
		ertime Sa	turday and	Sunday, shifi	t differentials,	als, etc.	

Particular i

1

ŧ

		145	UN LDO			•	
July 20, 1972		TABLE	و م			A -153 A	1016 07 1010
	COST OF N	M UNV NIVE	LEPAIR AND MAINTENANCE PERSONNEL	ISONKEL			;
	NODEL I, II, III Foremen	MODEL Skilled	rt I Unskilled	NOD Skilled	M DDEL II d Unskille d	HODEL Skilled	III Unskiiled
Average Daily Late S ^a	22.80	20.72	18.40	20.72	18.40	20.12	18.40
Number of Nen	4	32	23	37	28	51	07
Total Direct Wages/Week	171	3, 980	2,540	4,600	3, 090	6, 340	4,410
Total Direct Mages/Year	28,400	206,700	132,000	239,200	160,700	329,700	229,600
Overtime Allowance (15%)	4,250	31,000	19,800	35 , 900	24,100	49,400	34,400
60% Social Demefits	19, 59U	142,600	91,100	165,100	110,900	227, 500	158,400
Annual Cost 3ª	52,240	380, 300	242,900	440,200	295,700	606, 600	422,400
	ų	tal Costs	fotal Costs of NAM Labour				
			e\$	us \$			
	I TROOM	•	675,440	135,090			
			788,140	157,630			
	III TINGU	١,	1,081,240	216,250			
	NOTES:	a) Exchange	Exchange Rate: 55ª per US S	er US S			
		b) Foreman	Foreman requirement and cost same for each mill.	and cost sat	e for each m	111.	
	0	c) 6-day week		8 hours per day.			

ALL BATA PARNOND BY PITALA, MATTA BANNOND OPTOR IS THE PARNONT OF STALLA MATTA AN IN BANKI TO RETAIN AN THE UND READO IT IS PARNOND OFTON AT VITA VECTOR FUNCTION AND ADDRESS OF STALLS, MATTA BANNOND, OPTON AT VITA VECTOR AT AN INC. THE AND READO IT IS PARNOND OFTON AT AN INVESTOR AT AN INC. THE AND READO IT IS PARNOND OFTON AT AN INVESTOR AT AN INC. THE AND READO IT IS PARNOND OFTON AT AN INC. THE AND READOND OFTON ATTACHT AT AN INC. THE AND READOND AT AND READOND AT AN INC. THE AND READOND AT A AND READOND AT AN INC. THE AND READOND AT A D READOND AT A AN

1

ł

ĺ

- Annes - Lance of States

1

07 3101 . . . Ann. Exp. 5ª 1,031,800 2,653,200 8,136,740 3, 370, 500 1,081,240 1,627,350 G/20 NODEL III A1:01-8 . 17 68 5 50 <u>.</u> Ann. Drp. 5ª 1,031,800 2,424,000 2, 694, 100 788,140 6,938,040 1, 387, 610 SCHMMARY OF ANCENTINE PERSONNEL AND ANNUAL COSTS * - Figures scaled down from Table 5-G II THOM to show actual number of men. 1072 78 69 17 \$ TANLE 7-G 8115 Ann. Drp. 5⁴ 5,788,540 1,031,800 1,975,000 2,106,300 675,440 1,157,710 NODEL I Ë 180. 5 317 ż 11 5 at St^d per US \$ Mill Maint. & Mepair Mav. November 10, 1972 Will Administration Sub-Driteion THE . COMMUNITY -July 20, 1972 Mill Operation Head Office Totale BATE 1

AL DES PRIMES DE PRIMES, MATRIE GAMMENIA GATUER IN THE REPORT OF FRAME, MATTER AND IN MARKET TO GATUER AND MARKET
I

l

I

ĺ

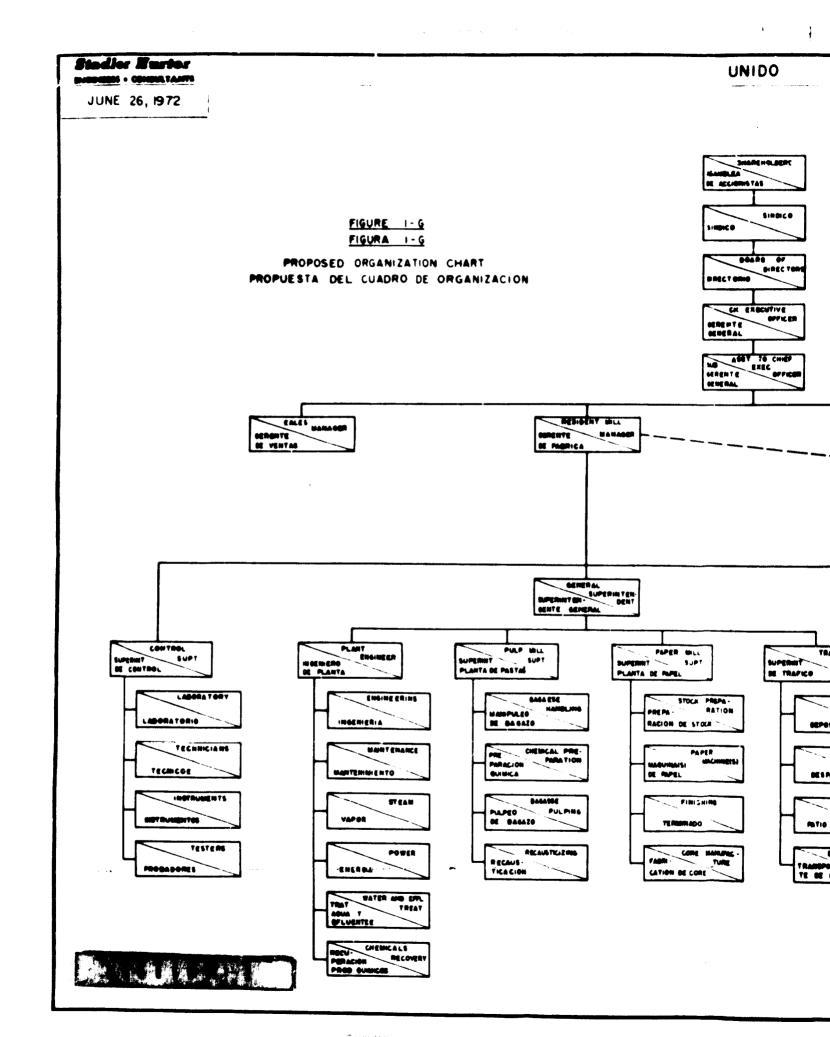
1

(

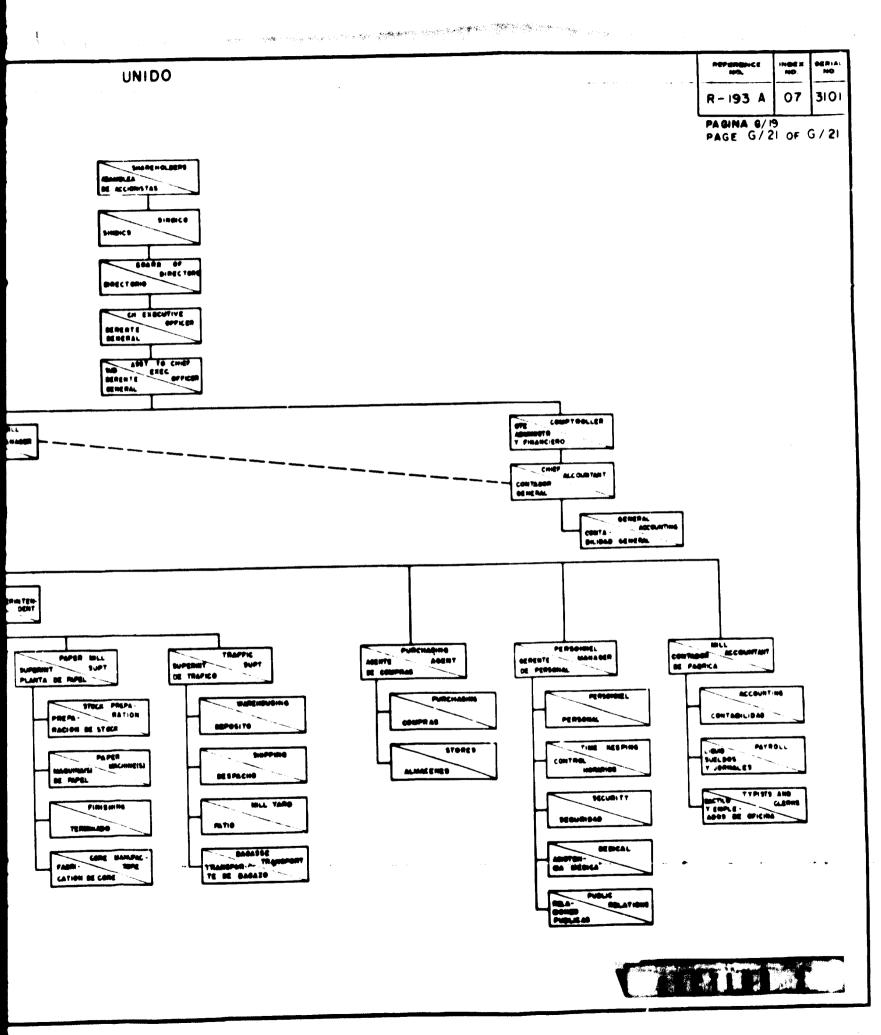
.

Į

I


Į

Ľ


{

ĺ

l

ŧ

ŧ

Ł

Ϊį

Ì

۲ i

•

11

Stadior Surter

R-193A/07/3101 - Page H/1

H. PAPER MILL LOCATION ALTERNALIVES

H 1 General

It is not the intention, not is it within the scope of this report to pin-point the spacific piece of land on which a paper mill would be built. Accordingly, this chapter will indicate only the general areas which comply best with the various aspects which must be considered in aits selection for an industry of this type.

In the province of Tucuman most of these factors are approximataly the same for many locations. Climatic conditions are relatively uniform over the area of the sugar balt, fuel and power are readily available, a good network of road and rail facilities serves all of the ingenios, and it is considered that from the point of view of the labour pool, any given ares will differ only alightly from any other. Similarly, aince the province is small in area, proximity to markets and availability and cost of construction materials would have little significance in the choice of tentative areas for a mill.

The determining factors, therefore, are reduced to bagaase availability and water availability for initial and future mill requirements and the economics of the supply of these essential elements.

ĮĮ

H

!! '1

te ri

ł

Į

ŧł

ļ

1

51

Stadior Murter

R-193A/07/3101 - Page H/2

It is recognized that political considerations may play some part in determining the degree of priority desirable for development of regional alternatives, but decisions of this nature must be left to the proper authorities. The Consultant can only evaluate factors affecting technological and economic suitability.

H.2 Discussion

(a) Basasse

Examination of maps (Fig. I-H & II-H) ehows that about 90% of the operating sugar mills of Tucuman can be enclosed in e rectangle roughly 80 km long x 15 km wide and that ell can be included in 100 km x 25 km. It may also be seen that e concentration of ingenios exists in the North and another in the South. Three mills (Le Fronterita, Bella Viste and Leeles) are somewhat isolated from these groupings, but since distances ere not great, these can be considered for inclusion in either group as required. The province, therefore, may be logicelly divided into two general zones, one at the North of the sugar belt end a second at the South. For purposes of discussion, it is assumed that Belle Vista would be in the Northern zone and Le Fronterite in the Southern zone. Ingenio Leeles, which is presently operating a small mill manufacturing corrugating medium, will be ignored for the present, elthough this, of course, does not

-

ļĮ

1 1

21

tį

Stadior	Eurier

R-193A/07/3101 - Page H/3

preclude the possibility of inclusion in any proposed development program, should such prove desirable or necesseary.

On the basis of average production 1961-1970, present annual metric tonnages of whole moiet (50%) bagasse produced in the two zones are estimated to be:

TABLE 1-H

ANNUAL T	ONNAGES WHOLE	MOIST (50%) BAGASSE PRO	DUCED
Northern Zone		Southern Zone	
Conception	248, 300	La Fronterita	117,000
Cruz Alta	53,400	Nunorco	71,100
L a Florida	56,500	Santa Rosa	65,800
San Juan	70,500	La Providencia	105,100
San Pablo	129,900	La Corona	119,500
Bella Vista	102,400	La Trinidad	76,100
		Aguilares	5 6, 400
		Santa Barbara	77,300
		Marapa	44,100
	661,000		732,400
	661,000		

The estimated quantity required for manufacture of 168,640 metric tons per year of linerboard and corrugating medium (the largest mill proposed) amounts to 689,240 tons/ year of whole moist bagasse. ••

PORH 1

ł

Ę

1

Į

12

Stadjer Murter

R-193A/07/3101 - Page H/4

It should be noted, however, that the above begasse availability estimates apply to the year 1970, whereas the estimated bagasse requirements are for 1979. The predicted rate of increase in sugar production is 3% per year (30% total over a nine year period). Thus, theoretically, it would be expected that 30% additional bagasse will be available in 1979 which mean that the northern zone would be producing 860,000 tons of moist whole bagasse per year and the southern zone approximately 950,000 tons of whole moist bagasse. It would thus be possible to locate even the largest mill in either zona. For planning of bagasse procurement it will be assumed that expansion will take place in a uniformly distributed manner and at the predicted rate. The number of ingenios which must be involved will thus be reduced with consequent economies in capital and operating costs. If, on the other hand, actual expansion is at a reduced rate, or even if for some reason there is minimal expansion, the maximum size of mill proposed can be supplied simply by inclusion of other ingenioa - at somewhat increased cost.

The remaining major factor to be considered relative to paper mill location and bagasse supply is the method of transportation which must be employed. For bulk handling, broadly speaking, this may be continuous by means of a conveyor system or in batches by road or rail.

1

1

12

≥₽

1

Stadler Murter

R-193A/07/3101 Page H/5

The continuous system has a substantial cost advantage when compared to the batch method, so that for maximum economy, the largest possible quantity of the bagasse should be delivered through a conveyor system. Since conveyors by their nature are limited in range, it is therefore most advantageous to situate a paper mill adjacent to the largest ingenio in a given area, consistent with more or less central location relative to other ingenios from which bagasse will be supplied.

(b) Water

Water is not plentiful in the province of Tucuman hence careful management is necessary to ensure that it is used as efficiently and effectively as possible. The use of water is, therefore, subject to government control and approval.

By law, water for drinking purposes is given highest priority, secondary priority is given to industrial use and irrigation assumes the lowest priority. Actually, in the case of the sugar mills industrial and irrigation utilization are inter-related. During the crushing season (June to October) the ingenios use the water for manufacture of sugar and before and after the safra the available water is diverted to irrigation. The major requirement for irrigation occurs during the period from November to March which fortunately

Der.

Penu

11

Íź

Stadior Murtor

R-193A/07/3101 - Page H/6

coincides with the rainy season. In April and May water availability is at its lowest point.

The drinking water supply is for the most part independent of the water used for industrial and irrigation purposes and need not be of concern for this report.

Discussions with officials of a number of ingenios indicates that water supply to the paper mill should not be a problem either as to quantity or as to cost. The water requirement of any of the larger ingenios exceeds the quantity estimated for even the largest paper mill alternative thus during the crushing season more than enough water would be available to a paper mill built adjacent to a large mill (as recommended for economy of bagasse transportation). Similarly during the irrigation period, and even in the dry months of April and May, by appropriate diversion of water to the mill intake and arrangement to remove undesirable materials from the mill effluent, an adequate supply of water is assured.

It should be noted at this point that, generally speaking, a paper mill does not consume water but merely utilizes it as a means of diluting chemicals and suspanding fibre as required in different parts of the process. The principal losses which do occur are in evaporation from the paper machines and moisture in the finished product. Since the bagssee received

R-193A/07/3101 - Page H.7

Stadior Surfer

Ę

i

Ē

12

1

"

is at average 50% molsture such "losses" would not appea. as water consimption. In other words, the amount of water discharged by the paper mill would be essentially identicat to the quantity entering the system.

Understandably the ingenio management personnel expressed the opinion that a paper mill should be located downstieum of the sugar mill so that any impurities in the paper mill effluent could not affect either their operation or their product. Since, with the possible exception of sulphuric acid, the materials introduced into the water in the sigaprocess can be readily removed or can be tolerated for the types of paper under consideration, such an arrangement would not be inconvenient. It is felt, however, that with provision of suitable effluent treatment the location of a paper mill upetream of a sugar mill would not be out of the question. Decision concerning this particular point would form part of a detailed and comprehensive feasibility study.

Generally, water is more plentiful and more economically available in the Northern area thus there could be some advantage to locating the paper mill in that region. In the South surface water is and has been in short supply but subterranean water sources exist in almost all parts of the area. Wells are not costly and water quality is, of courses superior to that of surface water. Possibly the expense of

PODH 8

IĮ

Į

1

İ

łı

1

•

ŀ,

ļ

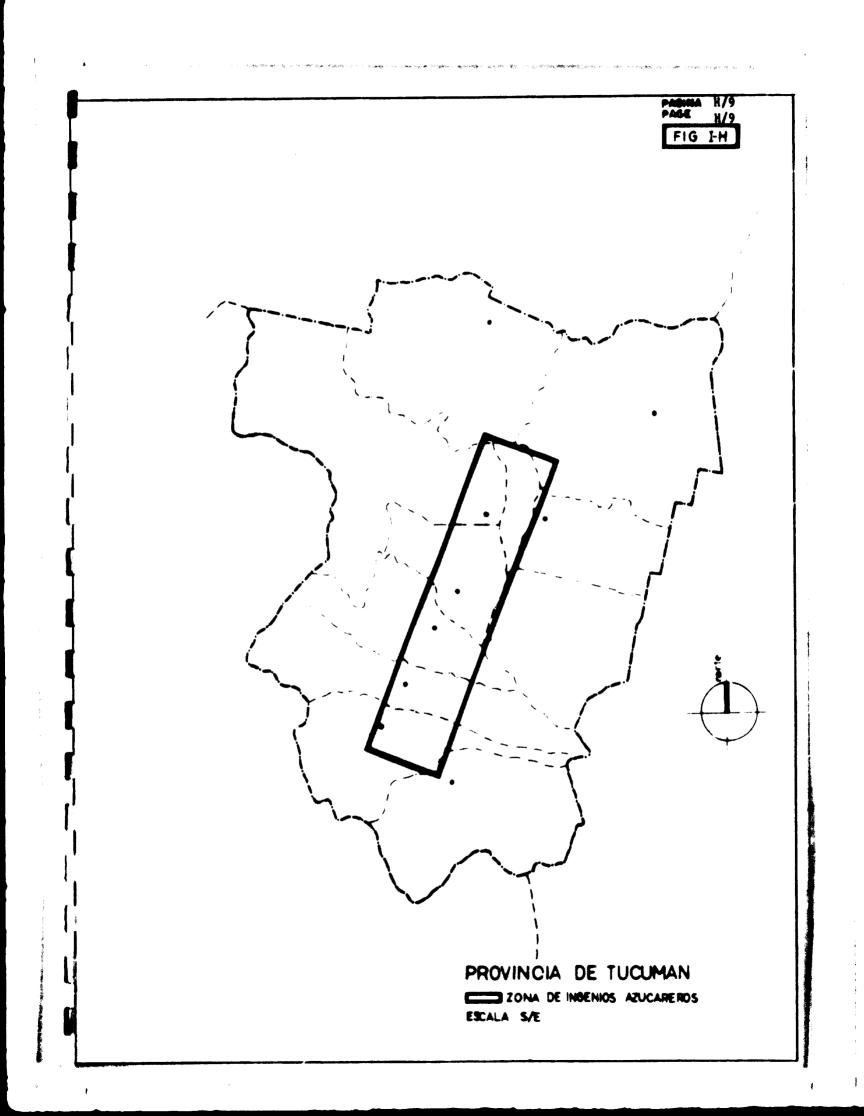
li

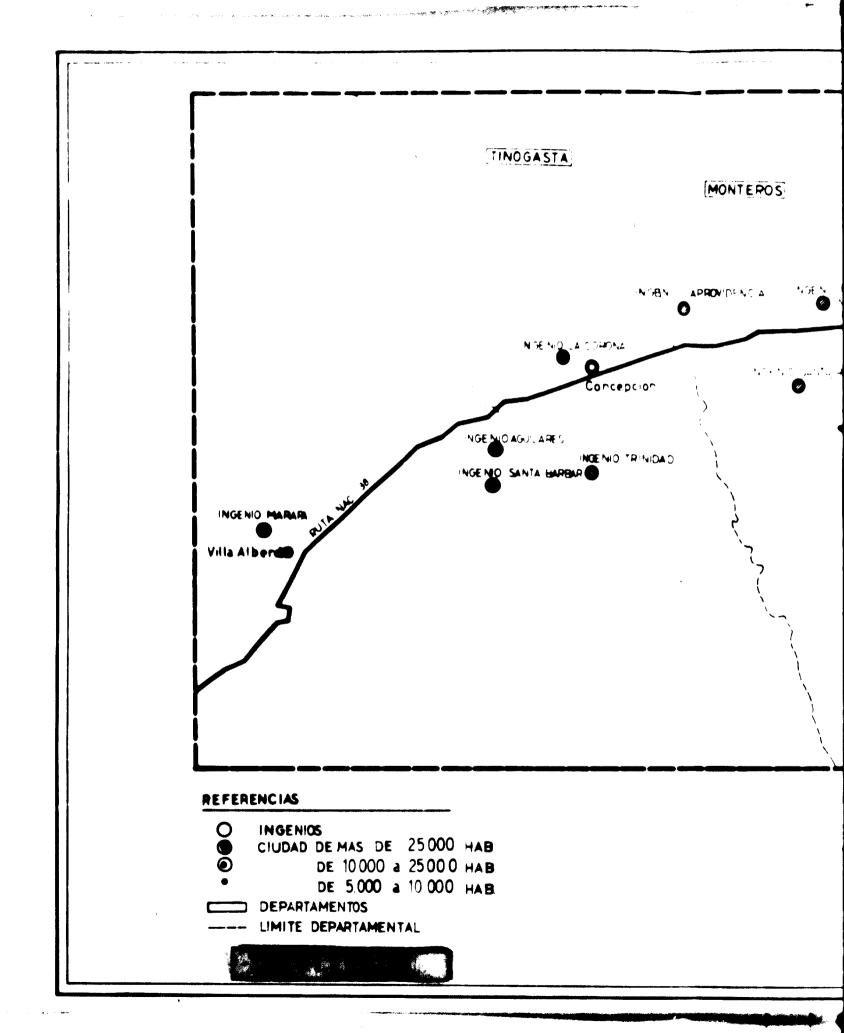
Ì

{**|**

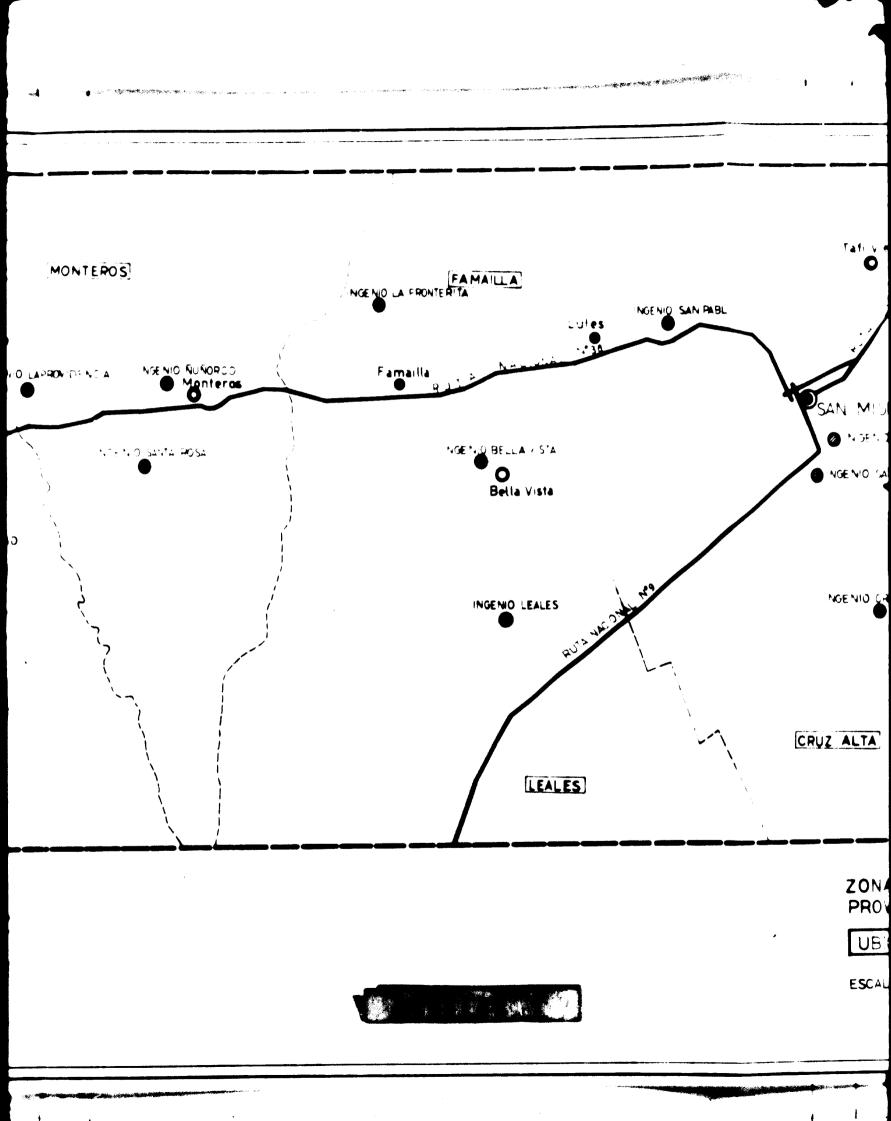
1

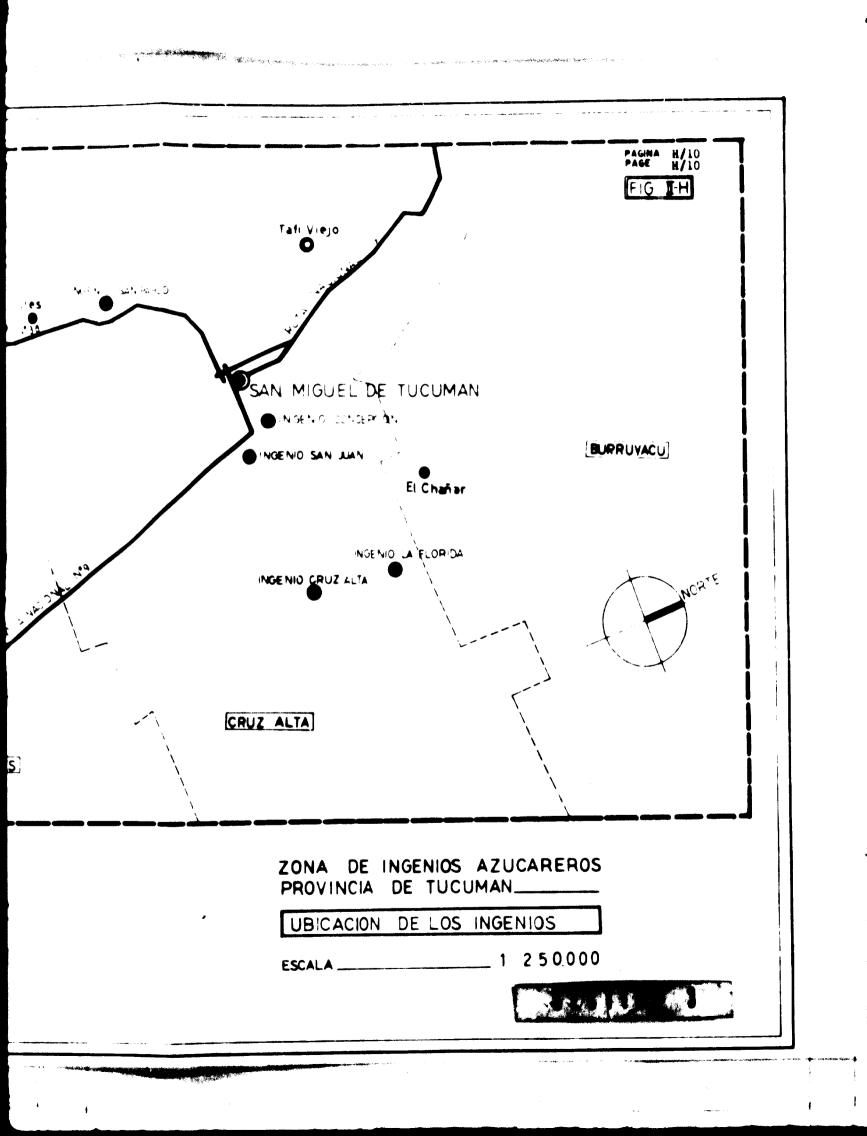
Stadler Eurler


R-193A/07/3101 - Page H/8


providing for the necessary quantities of mill process water would be somewhat higher than in the North but, from preliminary evaluation, would not be excessive

H.3 Conclusions


Bagasie and water are available in sufficient quantity to supply the largest mill contemplated whether it be located in the Northern zone or in the Southern zone. The cost of bagasse in the Northern zone would however be lower and it is probable that provision of the necessary water would also be more economical. It is therefore recommended that the initial implementation of any of the three alternative mills should be planned in accordance with all pertinent factors and conditions in the Northern zone.



ŧ

Nodies	Burber Commetants		R-193A/07/3101 - Page	1
τ.	SELECTION OF FROCESS			
	11 Introduction			
	The processes t	hat sre or have be	en used commercially for	
	the production of ba	gasse pulp are:		
	- the scid sulphite	prov ess		
	- the mechano-chemic	al process		
	- the Pomilio proces	• •		
	- the Cusi process (Simon-Cusi)		
	- the Ayotla process	I		
	- the PEADCO process	I		
	- the conventional s	lksline procass		
	Some of these p	proc esses do not pr	oduce pulp of satisfactor	r y
	quality for the type	es of papers to be	produced, some are limit	e d
	to small production	levels, some are s	uited primarily to bleac	he
	or semi-blaachad pul	lp production, and	some are not well suited	t
	the recovery of cook	cing chemicals.		
	In addition to	thase processes wh	lich have been used	
	commercially, there	sre a number that	have baen tried on a	
	laboratory and pilot	t plant scale. The	ose processes that have b	ef
	tried on a laborator	ry or pilot plant a	scale that are different	
	from those tried on	s commercial scale	e, are the bisulphite and	t
	neutral sulphite pro	DCASSES.		

l

Į

ļ

l

l

and the State

Stadior Nurte

2

1

12 13

38

R-193A/07/3101 - Page I/2

Since the pulp and paper mills proposed in this study are to have a capacity of 166 to 496 ton per day, are for unbleached products, and since the cooking chemicals must be recovered in at least two cases to make the projects viable, several processes mey be aliminated almost immediately.

The acid sulphits process is not well suited to the production of pulp from begasse and does not yield pulp of good quelity. The bisulphits process (which has never been in commercial operation) is essentially the same as the acid sulphits process excont that the pH of the cooking liquor is higher. The results are no better than with the acid sulphite process. The pulp is not of good quelity and the chemical consumptions are high.

At still higher pH velues, the neutrel sulphite process produces pulps of good yield end brightness (brightness is of no importence for the products under consideration) but of low strength, and et the expense of high chemical consumptions. For this reason, the neutrel sulphite process has never been used commercially and is unlikely to be used (except for special cases - newsprint) unless sulphur et very low prices is readily eveilable.

In the mechano-chemicel procees begasse is cooked at etmospheric preseure in e hydrepulper (e machine normally used for disintegreting pulp sheets and paper in weter by intense hydraulic sheer developed by an impeller et the bottom of the vat).

R-193A/07/3101 - Page I/3

Stadier Eurier

1

:

١

łĮ

ti V

1

ł

; ;

The vielers agitation increases the rate of pulping the uniformity of pulping, and decreases the chemical consemption Pulp quality is good, but steam and power consumptions are high Recovery of chemicals is not feasible. Process equipment and economic considerations limit the mechano-chemical process to productions in the order of 50 tons per day.

The Pomilio process consists of a very mild cook in a tower at atmospheric pressure, followed by high density chlorination using massive quantities of chlorine to complete the dalignification The process was designed primarily for the production of bleached pulps based on the complete utilization of caustic and chlorina in the proportions obtained from an electrolytic plant.

Pulp quality is good, but recovery of chemicals is not feasible. Production costs are very high and the process is limited to production capacities of less than 150 tons per day. Though popular at one time, virtually all Pomilio plants have shut down because of uneconomically high production costs.

The balance of the processes are all alkaline pulping processes (soda or kraft) in which the cooking chemical is caustic soda (soda process) or caustic soda plus sodium sulphide (kraft process). In the case of the production of pulp from wood there is a very substantial difference in the strength of pulp produced by the kraft process as compared to the soda process.

R-193A/07/3101 - Page I/4

Although the active pulping agent in both cases is caustic sode, the sodium sulphide in the kraft cooking liquor protects the cellulose fibre from attack with the result that such pulp produced by the kraft process is very much stronger than pulp produced by the soda process. However, in the case of bagsse because the rate of pulping is so repid, there is virtually no difference in the strength properties of pulps produced by the kraft or soda process.

Chemical recovery is fessible for all of these processes where recovery of chemicals is economically justified. The equipment for the recovery of chemicals by either the kraft or sode process is almost identical. Because in the case of bagasse there is virtually no difference in the properties of pulp produced by the kraft or eods process, the choice of process depends only on the cost of the make-up chemicals. For the soda process the make-up chemicels ere caustic eode or sods ash or a combination of both. For the kraft process the make-up chemical is salt cake, though a combination of caustic soda and elementel sulphur can also be used. Analysis of chemical costs in Tucuman has shown that the lower cost solution is the use of the soda process. (See Teble 1-I).

Only the soda process, therefore, will be analyzed further in the following subsections.

Ę

i

Ŀ

12 13

1

]

ľ

1

i

, (

	5/1		IGAFT PROCESS	Value per g or Ton Pulp hemical Dollars	H + S 16.20	04 3.10 H + S 4.00	
8	1-1	L COSTS		Value per Ton Pulp Cooking or Dollars make-up chemical	15.50 MaOH + 16.80	3.30 Na2504	
OGINI	I-1 THVI	CHENICAL COSTS	SOLM PROCESS	Cocking or make-up chemical	NaCH or Na ₂ CO ₃ + CaO	NaCH or Ma ₂ CO ₃ + CaCO ₃	
July 20, 1972	Rev. November 10, 1972				No Recovery	With recovery	

ł

Í

ļ

Stadjer Hurten memore - constant

Ę

ŀ

te te

ij

R-193A/07/3101 - Page I/6

Regardless of which pulping process is used, "depithing" is an essential first step since for papermaking only the fibrous fraction of bagaase is of interest. The non-fibrous fraction of bagasae (which consists of dirt, water soluble material, epidermal material and pith) has no papermaking properties and the presence of pith cells is distinctly detrimental to pulping and papermaking operations.

The pith cells, being fine, thin-walled, and having a large surface, are highly reactive and consume a very large portion of any pulping chemicals used. Moreover, the presence of pith cells slows the pulp drainage rate and lowers the opacity of any pulp produced from bagasse. When pulp containing a large quantity of pith is made into paper, the paper is stiff, has poor opacity and poor strength properties, especially tear.

In order to produce pulp from bagasse economically at good yield with good properties and with minimum chemical consumption, and minimum wear on pulping squipment, the removal of pith is essential, as well as the removal of fines and sand, mud, solubles and other extransous materials.

The lack of appreciation of the need for "depithing" and suitable depithing equipment retarded the development of bagasse pulping for many years. Because of the importance of bagasse depithing the matter is reviewed in some detail in the following aubsection.

-

Stadjer Murter

IĮ

Ĭ

1

Ì

þ

Ļ

12

> 1 1

R-19:A/):/3101 - Page 1/7

The waste liquous from the pulping operation contain the organic material dissolved during the pulping operation and the chemicals used for pulping. It is possible to recover 80 to 90% of the chemicals used for pulping, and this is normally done in mills producing pulp from wood. However, in the case of bagasse, because the quantity of chemicals required for pulping is relatively small and the pulp yield is high (especially in the case of pulps for corrugating medium and linerboard) the amount of organic material and chemicals in the waste liquor is relatively low. Also, the amount of wash water required for good washing is higher than in the case of woodpulp. Consequently, both the solids content of the spent liquor and the heat value are low. Because of the size of the proposed corrugating medium mill (Model I) and the relatively low chemical charge and low heat value of the waste liquor, a chemical recovery system would not be economical. In fact, there are no bagasse pulp and paper mills presently manufacturing corrugating which have a chemical recovery system. In general, a chemical recovery system for a bagasse pulp and paper mill producing the types of paper proposed is economical only for capacities in excess of 200 to 250 tons of pulp per day. Consequently, a chemical recovery system is considered only for the two larger mills.

IĮ

Ę

2 6

łį

Ì.

11 1

R-193A/07/3101 - Page I/8

Because there will be no chemical recovery system for the 166 tons per day corrugating medium mill, the effluent from the pulp mill will have a high pollution load and adequate provision must be made for effluent disposal.

1.2 Bagasse Depithing Handling, Transportation and Storage

(a) <u>General</u>

As mentioned previously, in order to produce pulp from bagasse economically at good yield with good properties and with minimum chemical consumption, and wear on equipment, "depithing" is essential. All of the mills producing pulp and paper from bagasse use some form of "pith" removal as the first scep in the process. The so-called "pith" removed is actually a mixture of true pith, fibre fines, dirt, soil and foreign material. Any bagasse treated for removal of pith still contains appreciable quantities of true pith sinca complete separation is almost impossible. In addicion, unless the bagasse has been subjected to wet depithing or a bagassa washing operation it will contain water solubles as well, (b-10% on an oven dry bagasse basis).

The dapithing methods used in commercial practice, ignoring mechanical differences, may be classified as follows:

-

I

ij

1

Ę

10

5

ļ

1

ł

;i

11

Madier Murter

R-193A/07/3101 - Page I/9

(i) dry depithing

(ii) moist depithing

(iii) wet depithing

(iv) moist or dry depithing followed by wet depithing

(v) biological depithing

All of these systems, except to some extent biological depithing, use some form of mechanical or hydraulic beating or rubbing to loosen pith from the fibres, followed by a seperate or integral screening operation.

The amount of pith removed in commerciel practice by these depithing methods may vary from 10% to 45%, of the original weight of bagasse fed to the system and in addition, if wet depithing or begasse washing is used, part of the water solubles will be removed as well.

The method of depithing eelected for a particuler mill and the degree of pith removal depends on local conditione and the end product to be manufactured. Very complete depithing is not as essential for the production of corrugating medium as it is for pepers requiring e high tear resistance. Noist or dry depithing may be preferable for some regions because of the cost of fuel and the problem of pith disposal. Depithing is also closely interrelated with etorage, handling and transportation systems, and consideration of the system as a whole, that is, depithing, storage, handling and trans-

R-193A/07/3101 - Pege I/10

StadJer Surter

portetion mey determine the method of depithing to be used to obtain the most effective overall system for locel conditions.

Consequently, considering the products to be manufactured and locel conditions in the province of Tucuman, the important factors which must be kept in mind with regard to depithing, hendling, transportetion and storege sre:

- The ingenios crush cane for 3 to 4 months of the year.
 This is a rather short crushing period as compared to most sugar mill operations.
- Mechanicel hervesting may be utilized.
- The totel amount of begasse eveilable exceeds the pulp end paper mill requirements.
- Of the grades of peper and board to be produced, corrugating madium does not require a high tear characteristic and consequently does not necessarily require a high degree of pith removal; but linerboard must have a better tear characteristic, hance affective pith removal is essential.
- The site selected for the pulp and peper mill is 1/4 24 kilometers from the sugar mills which will supply the
 bagasse.
- There ere good roads between the sugar mills and the selected pulp and paper mill site.

ij 1 11 1 ţ 3 il H 11 j İ1

R-193A/07/3101 - Page I/11

(b) Bagasse Depithing Systems

ndler Murter

NO. TANK

(i) Dry Depithing

Dry depithing is carried out at a bagasse moieture content of less than 35% and generally at a bagaese moisture content of approximately 25%. It is applied where, because of a short crushing season or long transportation distances the bagasse must be baled and allowed to dry in storage. This system therefore, cannot be considered for present purposes but some discussion might be of interest.

The usuel dry depithing systems consist of bale breakers, primary screening, hammer milling in one or more stages, followed by screening for pith removal. Because the bagasse is dry and the sticky sugare have been removed by fermentation, dry bagsses screening operations are relatively free of the "blinding" that can occur if moist bagasse still containing sugare is ecreened. Therefore, dry bagasse ecreaning for pith removal is quite effective and simple from an operating point of view. Nowever, because of the large volume to weight retio of bagasse, many screens and hammer mills are required and many conveyors. This mans high capital and maintenance costs and large building volumes.

1 . Į 1 2 Þ ł Ľ 11 3 1 ₽ Í Stadjer Murte

I

ŧ

p

ł

11

ł

l

È.

R-193A/07/3101 - Page I/12

This has led to the development of high capacity hammer mills of spacial design for bagasse with rotors and flails or hammers of spacial profile to reduce fibre breakage.

These ere fitted with integral screens to reduce or eliminete screening after hommer milling.

The more recent bagaese hammer mills such as the Hovarotor, Horkel, and Ayotla machinas do not use any subsequant screening system, which means a considerable saving in space and cepitel and maintenance costs. Some of the newer bagesse hammer mills such as the Gruendler and the Rietz-Rivenco still use after-screening but much reduced in size.

Many of these dry depithing systems that use pnoumatic transport of bagasse elso have some form of sand and stone seperation of varying degrees of effectivenese.

Serious disadvantages of the dry depithing systems ere: high mechanical damage to the fibras and high health hasard caused by the airborne pith particles causing e lung disease called begessosie.

ĮĮ

4

:

ŀ

1

11

I,

1

įĮ

H

11 11

1 2

Madier Hurter

R-193A/07/3101 - Page 1/13

(ii) Moist Depithing

Moist depithing is carried out at a moisture content of between 40 to 55 percent, in other words, in the range of moisture usual for bagasse taken directly from the crushing train. The former is the lowest limit at which the bagsess fibres are still pliable enough to svoid the breakags that occurs in dry depithing. Because of the lesser breakage and damage to the bagsess fibres, moist depithing is preferable to dry depithing.

Moist depithing is normally carried out at the suger mills during the crushing assess and the pith is returned directly to the bagasses burning boilers. Only in unusuel circumstances, where the bagasse is supplied in small proportions from many suger mills, is moist depithing cerried out at the pulp mill, where provision must then be made for burning the pith.

The milling squipment used for moist depithing is essentially the same as that used for dry depithing. This usually comprises eingle or double rotor hammer mills of conventional or special design with or without integral acreans and attrition mills. However, because the moist bagasse fibres are pliable and tough, the damage and breakage caused even by conventional hammer

Þ

ł

Nodior Surfe

R-193A/01/4101 - Page 1/14

mills are very much less and when mills or special design for bagasse are used born the losses of first with the "pith" removed due to fibre b makage and fibre damage are relatively small.

NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A

In the case of moist depithing, mills which have an integral screening system that does not require subsequent screening for pith removal have even a greater advantage since moist begasse still contains sticky sugars and separate screens for moist depithing tand to "blind". Most moist depithing systems that use pneumatic transport of begasse have some form of sand and stone separation of varying degree of effectivenass.

The crime advantages of moist depithing at the sugar mill are:

- The "pith" that is removed can be returned directly to the sugar mill bagasse boilers and burned: pith disposal is therefore no problem.
- The "bagasse" purchased by the pulp and paper mill
 has a much higher proportion of fibre suitable for
 papermaking than the whole or prescreaned bagasse
 used in the case of dry or wet depithing systems.
 This is due to the fact that most of the pith and
 fines have been removed at the sugar mill, consequently

Stadjer Surter menesti . conv.t.Ants	R 193A/07/3101 - Page 3/1
	the naw material cost in lower.
	Since moist bagasse fibres are pliable the fibre
	damage due to depithing is much less than in the
	case of dry depithing.
	- Little or no water is required.
	The prime disadvantages of motor depitcing are:
	- Where external acceening is used for pith removal
	operating difficulties may be expected.
	- Pith removal is not quite as effective as with dry
	or wet depithing.
	The better known moist depithing systems in
	commercial operation are:
	- PEADCO (W.R. Grace)
	- Gruendler (Gruendler Mfg. Co.)
	- Horkel (Parsons & Whittemore)
	- Ayotla (Beloit-Jones)
	- Novarotor or 3PM (Swiss Puerto Rican Metallurgical Corp.)
	- Rietz-Rivenco
	In addition, both Sprout Waldron and Bauer Bros.
	have experimented with depithing systems based on
	single disc refiners (attrition mills). To date, ao
	such systems have been installed in a commercial
	application.

a support

ſ

Stadler Hurter

11

1

٤Ì

Ŀ

l,

ti 11

ŧŧ

Į,

R-193A/07/3101 Page 1/10

Any one of the moist depithers of depithing systems mentioned will give comparatively satisfactory performance and will remove about two thirds of the "pith" (defined as true pith, dirt, epidermal material and bagasse fines), but none of the moist depithers will remove very much more than half of the true pith and, of nourse, do not remove any of the water solubles. Also, elthough all of the systems that use pneumatic transport will remove some of the dirt and sand, those that do not, are not very effective for the removal of stones end larger foreign material that may occur in the bagasse if it is mechanically harvested.

(iii) <u>Wer Depithins</u>

In wet depithing, intense agitetion or hydreulic shear is used to separate the pith from the fibre. Any mechanical impact on the bagasse is reduced greatly and, consequently, fibre damage is held to an absolute minimum.

Wet depithing may be used with moist or dry bagaree; when used to depith moist bagasse, wet depithing removes not only the pith and fines, but elso the residuel sugare and other solubles as well as mud and dirt, and in some systems stones as well, thus yielding a very clean depithed bagasse. With dry bagesse, the fibre damage

I

Ĭ

ŧ,

Ì

ŧį

Ŀ

1

1×

Í

23

21

Stadier Surtes

R-193A/07/3101 - Page 1/17

that occurs with dry depithing is avoided. Solubles and fine dirt are also removed together with the pith, and the fibre is conditioned for subsequent pulping, which compensates for some of the damage due to fermentation and drying. If wet depithing is performed prior to storage, the storage losses are substantially reduced because removal of sugars and other solubles reduces the sxtent of chemical reactions and makes conditions in piles less suitable for the growth of bacteria.

Wet depithing is usually carried out at the pulp mills where the waste effluent from the mill can be used as the water supply and where provision for effluent disposal must be made in any case. At the sugar mill, it is better to use moiet depithing since the pith can be burned as fuel. This reduces the pith disposal problem with a gain in the economy of the operation. Although other systems exist, wet depithing can bs accomplished moet effectively by:

- Two hydrapulpers in series to loosen the pith followed by rotary cylindrical acresns in which the pith is washed out of the bagasse.

Stadler Murter

I

H

1

Į

1

ły

11 11

.

R-193A/07/3101 - Page I/18

 Single hydrapulper followed by a sand settling flume and removal of the pith and fine dirt in specially designed hammer mills with or without integral ecreens.

(Note: Method 2 is usually preceded by moist depithing or dry depithing).

The first method is a modification of the wet cleaning system for rice strew developed by Youssef Found, Kraues Maffei and Stadler Hurter at the RAKTA mill in Alexandria. The eystem consists of two stages of hydrapulpers in series followed by rotery cylindrical screens of Stadler Hurter design. Bulk moist or dry bagasse is fed into the first pulper together with water to bring the consistency to about 2-1/2 %. If the first pulper ie provided with sufficient power, entire bales can be fed to the pulper. From the first pulper, the bagasse slurry flows into the second pulper. Stones and coarse foreign materiele are removed by the junk trap of the pulper. Some pith is extracted through strainer plates in the pulpers, the balance of the pith and the sand is removed by large axial flow rotary screens fitted with internal chowere into which the bagesse slurry from the second pulper is discharged. In these screens, pith, water and dirt, drain from the bagasse and the bagaese

R-193A/07/3101 - Page I/19

Stadior Murter

١í

8

ti Vi

ĮI

is also washed free of pith by the showers.

The system is simple, effective and maintenance costs are very low. The system can be used to depith whole begasse without prior moist depithing and the equipment is particularly effective in removing stones, mud and sand which can cause considerable wear on pulp mill squipment. Fibre breakage and damage are minimal, but the initial costs and power requirements are rather high.

In the second method a single stage hydrapulper is used to break up and/or to thoroughly wet and condition the begesss, end to remove stones and large forsign material, as in the case of the first method. From the pulper, the begasse slurry then flows to a sand settling flume and then passes on to the flooded hammer mill wet depithing machines. (These machines are similer in design to the moist depithing mechines).

In many cases e pulper and settling flume for bagasse washing to remove stones and sand is not used and bagasse is fed directly into the flooded hammer mill wet depithers. This can be done if the bagesse is relatively free of stones, sand end large foreign material; if otherwise, wear on pulp mill equipment will be excessive, as the flooded hammer mill wet depithers

708M 8

1

1 s 2 s

1

Bladjer Hurter

R-193A/07/3101 - Page I/20

will remove but little of the sand and none of the stones and coarse foreign material.

Since the bagasse fibres have been moistened and conditioned and since the action of these machines when operated wet is not as drastic, fibre damage is much less than for moist or dry operation and pith and dirt removal is more complete.

Wet depithing is more effective and produces a cleaner bagasse with a lower pith content than moist or dry depithing. There are, however, a number of problems associated with wet depithing. These are:

- the large amount of water required

- dieposal of the wet pith

- the higher moisture content of accepted bagasse

In almost all cases where wet depithing is used, it becomes necessary to recirculate at least part of the water used. This means the installation of a pith filter to separate the pith from the water in circulation.

The pith can be pumped to disposal fields or dewatered and trucked to disposal beds or it can be used as a soil conditioner on the cane fields if they are not too far away. Pith disposal is the principal problem.

Stadler Hurter

1

1

\$2 5 d

11

R-19 A/07/ 11. - Page 1/21

The bagasse from wet deputhing systems (80-86% moisture, may be so wet that it will introdule substantial quantities of water into the pulp mill liquor by Le, which means added costs for liquor evaporation. Presses can be used to remove much of the excess water, bit these add to the capital, maintenance, and operating costs.

(iv) Moist or Dry Depithing Followed by Wet Depithing

Moist or dry depithing followed by wet depithing involves the use of the depithing systems described previously in a two-stage operation to produce the cleanest and most pith-free bagasse possible using present day technology in the most economical manner.

In the previous section (iii) it was mentioned that the prime problem of wet depithing is the disposal of the wet pith. If a portion of the pith is first removed by moist or dry depithing and borned as fuel, the wet pith disposal problem is reduced. Such a twostage depithing is most effective in the case of moist depithing at the sugar mill followed by wet depithing at the pulp and paper mill. Stock the moist bagasse fibres are pliable, two-thirds or more of the pith may be removed and burned at the sugar mill without serious damage to the bagasse fibres, thus leaving only a third -----

1

12

Stadior Hurtor

R-193A/07/3101 Page 1/22

or less of the pith to be removed by wet depithing. Two-stage depithing is less attractive in the case of dry depithing followed by wet depithing as the dry depithing operation cannot be carried too far before fibre damage and fibre losses become prohibitive.

For the project under study moist depithing at the sugar mills followed by wet depithing at the pulp mill would give the best naw material for the linerboard. For corrugating grade pulp moist depithing would be sufficient, but we believe a bagasse washing stage at the pulp mill would be justified by savings in maintenance costs on the pulp mill equipment. The capital cost is high, but it is our opinion that the reduction of wear rates of the continuous digester feeders and refiner plates will more than compensate the higher cost of the two-stage depithing system for linerboard and the bagasse washing stage for corrugating medium.

(v) Biological Depithing

In some storage systems, notably the Ritter process, biological action is reported to aid in loosening the pith from the fibre making it easier to remove. Since, however, a two stage depithing arrangement suite the requirements of this study, there appears to be little

Stadior Marter

1

11

Į i

R-193A/07/3101 - Page 1/23

to be gained by introducing depithing considerations into the storage system to be selected.

Biological depithing, therefore, will not be discussed in detail.

(c) Bagaase Handling and Transportation

There are quite a number of variations in methods by which bagasse can be handled and transported from the sugar mills to the pulp mill.

These differ principally in the form in which the bagasse is transported (in bulk or in bales) and the means of transportation (continuous by conveyors, pneumatic systems, flumes or pipelines, or in batches, by road or rail.

The selection of the most economical system to be used for handling and transporting the bagasse depends on the following factors:

- the length of the cans crush season
- the distance between the sugar mills and the pulp mill
- the configuration of the terrain between the sugar mills and the pulp mill
- the availability and condition of roads and/or reilways between the sugar mills and the pulp mill
- fuel and power costs
- the availability of suitable water

- the quantities of bagaese to be transported

700H 8

١J

1

t: 11

1

ŧł

;; ;;

11

Hadler Hurter

R-193A/07/3101 - Page 1/24

In general, for distances over 2 km between the sugar mills and the pulp mill a continuous transportation system using conveyors or pneumatic systems is not economical, and for distances over 90 km transportation of bagasse in bulk is uneconomical. Continuous systems may only be considered in reference to bulk transportation.

The following comments apply to the different types mentioned.

Studies and lerge scele triels have demonstrated that pipeline transport of fibrous solids in fluid suspension over considerable distances is efficient and economical, but it has not yet been proven in commercial operation, at least not for bagesse and the distances involved. Also, large quantities of water are required, and the water becomes contaminated by fines and soluble material which makes pipeline transport impracticel in this particular case.

Flumes have been used for transportation of bagasse mainly in conjunction with the Ritter storage systems. They ers relatively inexpensive in themselves but the auxiliary equipment such as pumps, screens and water recycling systems are costly which makes such instellation uneconomical for most applications. Furthermore, water requirements are very high even in the "closed" systems because substantial quantities must be severed to prevent build-up of excessive

Penn s

!!

ŧ

Ę

11 14

Í

1

Stadjer Surter

R-193A/07/3101 - Page 1/25

sugar concentration. Hence, for Tucuman, flome transportation is also considered impractical.

Pneumetic conveyors can be used to transport begasse up to 1 km, but power requirements are very high. Such conveyors are usually edvantageous in applications where several changes in direction are necessary and where distances exceed 150-200 meters.

Of the many types of mechanical conveyors which are available, the ones normally used for begasse transport are the scraper and the belt.

Scraper-type conveyors have been in operation in sugar and pulp mills for many years. They are best applied for relatively short conveying, for feeders, and multiple point distribution. The major disadvantage of these conveyors is the relatively high maintenance cost.

Belt conveyors have eleo been utilized extensively and may be used with advantage for both short and medium distance conveying. They have high capacity, low power and maintenance requirements, and, if properly designed and maintained, can have a very long operating life.

Each of the mechanical alternatives has advantages in epecific applicatione but, overall, the belt type has proven to be more economical for general use over short to medium distances. Over longer distances (up to 1 km), or for

Stadior Hurton

ì

þ

Ę

i,

ļ

,↓ ↓↓

1

11

R-193A/07/3101 - Page 1/26

directional flexibility, the pressmatic system may be necessary in some cases. Assuming that any of the paper mills proposed could be located within practical range, it has been assumed for estimating purposes that belt conveyors would be used

For distances beyond the range of conveyors a batch transportation system of one type or snother must be considered, and a choice must be made between baled or bulk form.

Transportation in baled form has some distinct advantage where distances exceed 90 km as reduced volume means lower shipping costs, and savings very directly in proportion to distance. In Turuman, however, distances are very short so that the additional expenses of baled transport such as the costs of baling, bale handling to and from carriers, very large storage sreas, and breaking the bales for supply to process would be more than offset any savings in shipping coets. Thus, following the trend of most modern installations, the bagasse from even the most distant ingenios can be more advantageously transported in bulk.

Although there is a good rail network in the sugar belt this form of transport is too inflexible to adapt well to the operating conditions of either the ingenio or the

1

Stadler Surte menness.comman

tį

11

ļ

R-193A/07/3101 Page 1/27

paper mill and, for this reason would be both difficult to regulate and uneconomical. Since the province also has a good road system, by process of elimination, the most suitable type of vehicle is considered to be the truck or the trailer. Self dumping semi-trailer rigs of about 80 m³ capacity are presently operating successfully in such nations as Peru, Colombia and the U.S.A. The topography of the sugar-producing area of Tucuman is almost uniformly flat so that capacities up to 100 m³ would probably be feasible.

In contrast to continuous handling by conveyor, bulk traneportetion in batches inherently involves higher coste. The flow of bagasse from the sugar mill "trapiches" is continuous thus additional equipment and labour are required in order to accumulate the loads to avoid delaying tha trailers and parmit optimum cycling. Similerly, labour and special equipment must be used for rapid unloading at tha paper mill.

Also, since bagaasa is very bulky, any batch transportation system will raquire e relativaly large number of units to transport e givan tonnage and, therefore, the cost of such transport is correspondingly high relativa to that of conveyore. The greater the distance between the sugar mills and the pulp mill, the longer is the time

R-193A/07/3101 - Page 1/28

Stadjor Hurter

•

11

]

cycle per unit, the more units are required, and the higher the cost. However, the increase in costs is not in direct proportion to the increase in the distances, because the major part of batch transportation cost is incurred in losding and unloading, which will remain practically the same per unit weight regardless of the transportation distance.

Substantial savings in transportation costs can be achieved by locating the pulp mill next to a large sugar mill nearest to the weighted ton-distance canter of the sugar mills salacted to supply the bagasss, thus permitting meximum use of conveyors. Transportation cost of bulk bagesse by trucks from suger mills 10 to 25 km distant, will be higher by US \$ 1.00 to 2.50 per oven dry ton than that of bagasse delivered by belt conveyors (about 200 m long) from the adjacent sugar mill.

This report assumes that any of the mills proposed could be located within 200 meters of one of the larger ingenioe hence transportation coats are based on maximum use of belt conveyors.

(d) Basasse Storage Systems

In the province of Tucuman, the crushing season for sugar cane is usually three to four months. Since the operation of s pulp and paper mill cannot be considered

PORM A

I:

1

E j

þ

ł

ij

te 11

1

51

11

StadJer Hurter

R-193A/07/3101 - Page I/29

economical on a seasonal besis and it must operate continuouely the whole yeer round, bagasse must be stored for the entire pariod when the sugar mills are not cruehing cane end producing bagasse.

During the storegs period bagaese is attacked by micro-organisms such as yeaste, bacteria, moulds and fungi. Two types of biochemical attack may be involved, aerobic and anaerobic. In the case of aerobic biochemical attack the principel reaction is the fermentation of the residual sugar into slochol by yeasts and the subsequent oxidation of the alcohol to acetic acid. The reactions involved are, however, complex and other organic acids such as lactic acid are also formed, as well as many enzymes which will etteck the cellular walls of the pith and fibre. However, the most damaging attack on bagasse "fibre" is usually by moulde and fungi which are aerobic.

For baled storage, the extent of the reaction or attack is a function of time, temperature and moisture content. Fermentation of the residual sugars generates considerable heat and, if the bagasse is stored in a dry place with good air circulation allowing good release of moisture, the heat generated will drive off the moisture in the bagasse quite rapidly and will reduce the moisture content from 45 to 50 percent to 20 to 25 percent, at which

R-193A/07/3101 - Page 1/30

Bladjer Burter

1

Į

r l

1;

li 11

i,

]

point veasts, bacteria and fungi cannot nultiply and attack ceases almost completely. Bagasse at a moisture content of 20 to 25 percent can be stored for several yeers.

If air circulation is hindered preventing the baled begasse from drying rapidly, or if the bagasse is stored under very humid conditions, the biochemical and fingus attacks can be severe and it cannot be stored for long periods befors fibre losses become aerious. Losses through aerobic biochemical and fungus attacks may range from 8 percent of the weight of the insoluble portion of the whole begasse to as much as 30 percent or more, depending on the rate at which moisture is diasipetad, the final moisture content of the begasse, and the length of the storege period.

As a comparable elternative to the storage of beled bagasse with good eir circulation, it is possible to store moist begasse in large bulk piles which have only a limited surface exposed to the air. The begasse can be densely piled and thoroughly saturated with water to prevent air from coming in contact with the bagasse except at the surface of the pils. Black liquor can elso be used to saturate the pile in cases where chemicel recovery is not used by the pulp mill.

1

1

Ł

Þ

li,

11

51

1

١

Stadjer Burtes

R-193A/07/3101 Page 1/31

Under these is dirions and fermentation of the signer and of a biochemical reactions are forced to propertioner anaerobic conditions and the rate of attack is non-slower Since it is aerobic forgitwhich cause the most damage, this attack is this limited. Aerobic attack by yeasts, barteria and moulds does trokeed on the surface very rapiday to a depth of a few in rest and fibre is set in these or face layers can among the an model as 50 percent in eight to ten months. However, this thin outer layer constitutes only a very small fraction of the total pile, the interior of which is almost chaffected.

"Fibre" losses for moist bagasse in bulk piles or bagasse in saturated wet piles are reported to be relatively very low - in the order of 5% or less.

Bulk storage of bagasse can be highly mechanized. Space requirements are far smalle: and handling losses are lower than for bale storage. Also, losses through biochemical attack are lower if the pile is large.

Since pith and fines are more readily attacked that the denser, larger fibre bundles, the losses through storage are greater for the whole bagasse than for depithed bagasse. Therefore, since the paper mill must pay for the bagasse on a replacement fuel basis, it is evidently preferable to store depithed bagasse.

Į

1

ų

1 e 3 d

1

ļ

, i 1

I

1

١ı

1

1

(

Stadler Muster

R-193A/07/3101 - Page 1/32

In one of the most commonly used wet storage techniques known as the Ritter system, bagasse is supported as a struct in water and flumed or piped to a concrete slab, fitted with drainage channels, where the thoroughly saturated bagasse is a cumulated in a pile. Excess water is collected in the drainage channels and reused for eldicing more bagasse onto the pile Bagasse is reclaimed from the pile hydraulically in slurry form through the same system of channels either manually or mechanically. A lactic acid solution is added to the water used for sluicing the bagasse onto the piles in storage. The fermentation of the residual sugars is primarily by lactic acid bacteria which lowers the pH and the damaging aerobic attack on the "fibre" by fungi is auppreased. Changes in bagesse quality and losses of fibre in storage, even over a very extensive period, are reported to be smell.

The Ritter storege system has the advantages that, space requirements are relatively small (even less than for bulk storege of moist bagasse) and that, although capital costs are eppreciable, the overall expenses for storage and handling are less than one helf the costs of storage in bales. Also, the material can be stored over lengthy periods, reportedly with minimel deterioretion. It is well suited to applications where the sugar mill is close enough to the pulp

1

ł

-

Ę

1

1

11

!

1

1

Ľ

Stadjer Murter

R-193A/07/3101 - Page I/33

mill to permit continuous delivery and lends itself well to combination with secondary wet depithing or washing.

In the province of Tucuman the crushing season is only 3-4 months so that a large storage capacity (245 days supply approximately) would be essential at the paper mill. Also, as mentioned in I.2 (<), conditions favour bulk transportation and, by extension, indicate bulk storage. For reasons of overall economy and suitability, bulk storage of wet bagasse, either by Ritter or other wet system, is therefore the obvious recommendation. To further minimize storage losses and also to ensure reasonable uniformity in the characteristics of bagasse from storage to process, the system should be organized on the "first-in-first-out" principle.

I.3 Pulping Process

Conventional alkaline processes as well as patented systems auch as Cusi, Ayotla and PEADCO, which are also alkaline, can be used with either soda or kraft pulping. As mentioned previously, in the case under study the soda pulping is more economical. All of these alkaline processes are basically similar, all will produce satisfactory pulp and all are suitable for the size of pulp and paper mills under consideration.

The Guei process differs from the others in that cooking takes place in two stages with fractional screening after the first stage to remove material that has already received

R-193A/07/3101 - Page I/34

Stadler Murter

1

Ĩ

1

P

łı

11

11

۱I

sufficient treatment. In the sarly stages of bagasse pulping technology, when depithing was not the best and cooking conditions tended to be more severe, there was perhaps considerable merit in fractional screening, as this not only removed pulp elreedy sufficiently cooked but removed considerable pith as well.

The result was two pulps: one, a top grade bagasse pulp, the other a slow-draining low grade pulp suitable only for the production of low grade cerdboards. Todey, with improvements in depithing and less severe cooking conditions, it has become possible to recombine the two pulp fractions to obtain a good grade of bagasse pulp. However, on the basis of results obtained with modern depithing and single stage cooking techniques, (as in ell other processes), the Cusi process has no perticuler edvantege for the production of begasse pulp of the types under consideration in this study. The two-stage cook and fractional intermediate screening add costs and complications and result in e dilute black liquor which means higher costs for chemical recovery.

The Ayotla and Peadco processes are virtuelly identical and differ but little from the conventional elkaline pulping process.

Stadior Hurter

H

R j

Ļ

11

Ì

1

R-193A/07/3101 - Page I/35

The main feature of both processes is the patented depithing machine, and it is only in the mechanical features of the depithing machines that there is a distinguishable difference between the Ayotla end Pesdeo processes (and, of course, it is quite possible to use Ayotla or Peadco depithing equipment with any bagasse pulping process).

A feature of both the Ayotle and the Peedco process is the locetion of a fiberizing refiner in the blowline of the continuous digester between the digester and the blow tenk. Most conventionel elkeline process mills have the fiberizing refiner after the blow tenk. The use of blowline fiberizers is, however, by no meens unique or specific to the Ayotle and Peedco processes. Blowline fiberizers ere used in a number of wood pulping proceeses.

We can see no basic reason to fevour one "process" over the other. Since the conventional elkeline process does not involve proprietory or patent considerations, this study is besed on using the conventional elkaline process with a sode cook or, in other words, the conventional soda process.

Although, es mantioned previously, chemical recovery systems can be readily epplied to the Ayotle or the Peadco process (and to the Cusi process es well but at greater cost), to date no mill using any of these processes had been equipped with e chemical recovery system.

R-193A/07/3101 - Page I/36

Sindler Muster

-

İ١

łt

However, a number of conventional alkaline pulp mills have been built with full chemical recovery systems and Stadler Hurter have been consultants on several.

I.4 Preparation and Recovery of Chemicals

For the soda process without recovery the make-up chemicals may be caustic soda or soda ash causticized by means of burnt lime. As can be seen from Table 1-I, if no chemical recovery is involved, caustic sode (NaOH) is the more economical solution. Moreover, caustic sode has the advantage that a stronger cooking liquor may be prepared which will offset to some extent the water introduced in the digester because of the high moisture contant of begasse after begasse washing or wet depithing.

The waste liquors from the pulping operation contain the organic materials dissolved during the cook and the chemicals used for pulping. It is possible to recover $80 \pm 90\%$ of the sode used for pulping through the use of e chemical recovery system. There are several recovery systems that could be applied. All of them involve evaporation of the waste liquor to bring it to a concentration at which it can be burned, followed by burning of the liquor in a furnace or reactor of some type. In the course of combustion heat is generated from the organic material in the waste liquors and this heat can be used for the production of steam. As a result of combustion of the waste liquor at both to combust on the waste liquors, the sodium salts are converted to sodium carbonata,

Stadior Marter Montels - Consultants

FORM 8

Į

ŞĮ

4

ų

i

ļţ

1

Ŀ

l

te te

3

1

R-193A/07/3101 - Page I/37

which can then be causticized by burnt lime to form fresh cooking liquor.

Since, depending on the efficiency of recovery, it may be expected that from 10 to 20% of the chemicals will not be recovered some make-up must be supplied to maintain the chemical belance. This can be in the form of sodium carbonate added before recausticizing or sodium hydroxide after recausticizing. The former would be used in this case for reasons of economy.

For the primery recovery cycle, several systeme ere eveileble:

the conventional recovery boiler system in which the black
liquor must be concentrated to more than 45% solids in a
multiple effect evaporator and still further concentrated by
means of flue gases before being burnt in the furnace.
The molten smalt of sodium cerbonate formed is then dissolved
in water and recausticized.

- the fluid bed reactor aystem, in which the black liquor must be concentrated in a multiple effect evaporator to over 30% solids before being added to the fluid bed reactor where the liquor is burnt resulting in the formation of sodium carbonate pellets. These pellets are subsequently dissolved and causticized.
- the Torras-Xucla process, in which the black liquor must be concentrated to 40% solids in a multiple effect evaporator followed by carbonation with the furnace flue gases to

Sendler Murter

I

:

1

ĥ

11 51

1

Į١

R-193A/07/3101 - Page I/38

precipitate the lignin which is filtered out of the liquor. The recovered lignin is then burnt in a special gasifier retort furnace and the filtrate is further concentrated by flue gases from the gesifier furnace and burned in e boiler. The smalt of sculum carbonate formed is then dissolved and recausticized.

Of the three systems the first has the highest thermal efficiency and is the system moet commonly used. It is also, however, the most expensive system, as can be seen from Table 2-I. The second system is less efficient thermally and usually can provide only sufficient steam for the required concentration of the spent liquor. It, however, has the advantage of being much lower in capital cost.

The Torrss-Xucla process is the least used and least known. It is primerily suited to small mills (60 to 80 tons per dey). The capital cost is low for small mills, but increases rapidly with incressed capacity and even for medium-sized mills exceeds the cost of conventional squipment. An advantage of the process is that by a minor modification of the system, it is possible to eliminate much of the silica from the waste liquor, which is of considerable interest in the case of the recovery of spent liquore from the pulping of agricultural residues which often contain appreciable quantities of silica.

98w 8

IĮ

Ĭ

1

Ì

Į

-

þ

Ę

i;

ļ

, i 11

I

1

١

į

1

R-193A/67/3101 - Page I/39

語い、理論に記る

Madier Murter

Although 50 to 30% of chemicals can be recovered, the cost of a conventional chemical recovery system is high and disproportionately so in the case of small mills. Because of high chemical consumption and high eolids content in the spent liquor it can usually be justified in wood pulping.

In the pulping of bagaese, however, particularly at higher yields, the amount of chemicals used is greatly reduced. Also the organic content of the waste liquor is much lower with consequent decreased fuel value. Thus, chemical recovery for emailer bagasse mills is usually uneconomical.

In general, a chemical recovery system for a bagasse pulp and paper mill producing the types of pulps proposed is economical only for production capacities in excess of 200 to 250 tons per day. Consequently, in this study chemical recovery is considered only for the two larger models.

Because of the low solids and heat value of the spent liquor, any gain through high thermal efficiency is marginal and consequently, the fluid bed reactor type of recovery system has been selected for primary chemical recovery in this study, as it is much lower in capital cost, as can be seen from Table 2-I. An analysis of the coste is shown in Table 1-I, and shows that reburning of lime would be economical, and again a fluid bed reactor has been chosen for thie purpose because of its lower capital cost.

788M	9

I

Ē

I

l

ĺ

ſ

l

I

ŧ

· · · · · · · · · · · · ·

1.3 1.41 (4.174)

-94 - -

Rev. November 1	v, 1776				PAGE	1/40
						7
			TABLE 2-1			
	CAP	ITAL COSTS O	COMPLETE	RECOVERY SY	ST EMS	
		•	Cos	t (Millions	U.S. Dollars)	
	Model No.	Pulp Hill Size BDMTD	Conven- tional	Fluidised Bed	Torrss- Xucls	
	I	136	•	-	2.9	
	II	200	4.0	3.0	-	
	III	336	6.3	4.8	•	
L						1

۰.

.

••

And the second second

İ

i

T	A		L	Ľ	2	•	1
---	---	--	---	---	---	---	---

		•	•		
			Cost	(Millions	U.S. Dollars)
		Pulp Mill			
	Model	Size	Conven-	Fluidised	Torrss-
	No.	B DNC D	tional	Bed	Xucls
Γ	I	136	•	•	2.9
	11	200	4.0	3.0	-
	111	336	6.3	4.8	-
I					

Stadler Marter

11

P

18

Ŀ

R-193A/07/3101 - Pege I/41

The Torras-Xucla process was not selected despite the advantages of silica removal because the system, even for the smellest mill studied, would cost more than the reactor type of recovery system and is more complicated to operate.

Reference has been made in several instances to the "primary" recovery cycle. This is beneuss, if suitable economy is indicated e secondary cycle may also be used for the recovery of the lime consumed in recenticizing the spant liquor.

Usually in this type of system the sludge (lime mud) resulting from the recensticization process is dewatered end oxidized by burning in a rotary kiln to form quick-lime which can then be used again. The mud may elso be burnt in a fluid bed reactor.

Compensation for losses (make-up) may be limestone added before burning or burnt lime eddsd efterwards. In this case limestone would be used.

A point to be noted with rsgard to chemicel recovery is that silica in the bagesse introduced through mud end sand will be dissolved in the cooking process and appear in the cooking liquor, where it will cause problems in the chemical recovery system. It is, therefore, essential to remove sand and mud before the bagasse enters the digestere, not only to protect the pulp mill equipment, but aleo to eliminate recovery cycle problems. This is another reason for providing bagasse washing and wet depithing.

!!

Ę

2 g

•

4

j

5

ľ

Į

,∔ jt

1

11 1

٤í

i :

1

Redler Murter

R-193A/07/3101 - Page 1/42

Because, regardless of precautions taken, some silica will enter the system, it will be necessary, when chemical recovery is used, to use more lime than normally required for causticizing and the white liquor clarifier will have to be larger because of lower settling rate. All of the lime mud should not be reburnt, a bleed-off will be required to control silica levels in the recovery system.

I.5 Pulping Yields

Using the eoda process the yield of pulp when cooking pulp for corrugating medium will be approximately 67% and 58.5% in the case of linerboard on the weight of depithed bagasee. Bagasse requirements are given in more detail in Section K.

I.6 <u>Chemical Requirements</u>

The consumption of caustic eoda may be taken as 8% on the oven dry weight of depithed bagaese in the case of corrugating medium and 10% in the case of linerboard. On this basis and using the yields given in Section I.5, the caustic soda consumptions per ton bagasse pulp are 120 kg. for corrugating medium and 170 kg. for linerboard.

In the case of Model I there would be no chemical recovery. In the case of Model II and III, there would be chemical recovery (80%) and sodium carbonate would be the basic make-up chemical together with limestone or lime.

h

ļ

łł

[]

11

1

1

Madjer Kurter

R-193A/07/3101 - Page I/43

The chemical consumptions per ton of pulp can thus be

calculated to be as per Table 3-I.

	TABLE 3-I
CHEMICAL C	ONSUMPTIONS PER OD TON PULP
Type of Pulp	Chemical Consumption per Ton Pulp
Model I	
Corrugat ing	120 Kg NaOH
Model II	
Linarboard	45 Kg Na ₂ CO ₃ + 90 Kg limestone
Model III	
Corrugating	30 Kg Na ₂ CO ₃ + 60 Kg limestone
Linerboard	45 Kg Na ₂ CO ₃ + 90 Kg limestone

I.7 Recommendations

Bassd on the forsgoing, the procasses selected for the

production of pulp in this study ara:

- 1) Moist depithing at the sugar mills
- 2) Bulk transport of bagaaaa to tha pulp mill
- 3) Bulk storage of the bagasss
- 4) Two-staga (moist-wat) depithing for linerboard grade pulp and moist depithing and bagassa washing for corrugating medium grade pulp
- 5) Bagassa pulping by the aoda procass
- 6) Cooking liquor praparation from caustic soda for the smallest mill with no chamical recovery
- 7) Chemical recovary for the larger mills using fluid bed reactors and sode ash and limeatone make-up.

Ì

R-193A/07/3101 - Page J/1

J. PAPER MACHINES

Bindler Hurter

BER . CONSULTANTS

IĮ

Þ

12

11

Ī١

J.1 General

In Section C it has been determined that the most logical papers to be investigated for utilization of the bagasse from the ingenies of Tucuman would be linerboard and corrugating and and corrugating medium, i.s., the component elements of containerboard. Taking into account the widths of fluting machines presently installed in various converting plants it was further determined that the optimum paper machine widths to be considered would trim 3.2 meters and 5 meters. The rated productive capacities of such machines, on average standard weights and average practical speeds, would be 166 ADTD of corrugating medium from the 3.2 meter, and 330 ADTD of linerboard from the 5 meter unit.

The possibility exists that paper machines of these widths could be manufactured, at least in part, in Argentina by an existing licensee of Escher Wyss GmbH. It has been stated that the Argentine plant can manufacture to a maximum wire width of 5 meters but this could probably be increased slightly if necessary. It is, however, reported that costs and delivery time for Argentine equipment might be comewhat greater than for machines of foreign manufacture. Foreign exchange consideration would have to be evaluated in final selection of a supplier.

Stadior Hurter

I

Į

Į

2

Ē

l

1

11

1

....

R-193A/07/3101 - Page J/2

The actual weights and speads which were averaged to derive

these rated capacities were as shown in Table 1-J.

TABLE 1-J	
-----------	--

STANDARD WEIGHTS AND SPEEDS FOR PRODUCTION OF CORRUGATING MEDIUM AND LINERBOARD

• • • • • • • •	• Basis Gm/m ²	-		e Spaed
Product	Gm/m	Lbs.	N/Min.	I Pr
Corrugeting Medium	125	26	360	1180
	150	31	300	980
	170	35	265	870
Linerboard	125	26	410	1350
	175	36	300	980
	225	46	2 30	760
	300	61	175	570

It will be noted that within each product category the speeds are in inverse ratio to the weights. This relationship is quite accurate in practice so that for any product-weight mix the estimated production rates may be expected to remain constant.

The estimated epesds and elso the paper machine efficiencies used in the celculation of reted capacities have intentionally been maintained towards the conservative eide because the behaviour of bagases-besed furnishes varies over a considerable range from one application to enother. The possibility, therafore, exists that actual productions could, to some extent, exceed those estimated.

R-193A/07/3101 - Page J/3

J.2 Proposed Paper Machinee

Stadjer Hurter

1

12

ł

¥ 8

HERE . CONSULTANTS

In racent times numerous variations of "formers" for paper machine wet ends have been developed and some of them have been proven in production applications of bagaese furnish. It has also been reported that the inclusion of a eize-press has some advantage in the manufacture of linerboard. Whether these and other technological modifications could advantageously be applied would, however, form part of a detailed feasibility study for the specific project selected for implementation.

For purposes of this report, it has been assumed that the paper machines to be installed would have the headbox-fourdrinier type wet end configuration which has successfully served the paper industry for many years and also that, in other respects, the machines would conform generally to the arrangement which has come to be regarded as standard. The capital cost astimates derived on this basis are considered to be reasonably accurate, particularly since any departure from at andard would have to be justified, at least in part, by capital savings.

The suggested paper machines are therefore quite similar as to the principal componente, although the linerboard machina is somewhat more elaborate. It should be noted at this point that, if desirable, corrugating medium, or even bag, sack and wrapping papers, can be produced on a machine designed for linerboard. A

FORM 8

11

Ì

ŀ,

Ļ

ii H

i.

ļł

Į

,i ⊧F

별

11

Stadjer Hurter

R-193A/07/3101 - Page J/4

machine designed for production of corrigating medium is, however, estricted to manufacture of only that type of paper

المتحدين ويراجد المراجع المراجع

For comparison the proposed principal features of each machine are obtlined in Table 2-J.

In addition to the items listed in the table, both paper machines would have closed dryer bords and appropriate ventilating equipment, suitable vacuum systems, lubrication systems, all controls required for efficient operation and all other miscellaneous essential auxiliaries.

Paper machine wires are made in Argentina up to 5.5 m width and press and dover felts are readily available from at least two different national manufacturers. There should, therefore, be no difficulty in clothing machines of the proposed widths.

J.3 Proposed Paper Furnishes

Based on experience developed in Peru while corrugating medium can be produced from 100% bagasse pulp, the corrugating medium will run better on the corrugator if it contains 10% waste paper.

Also based on Peruvian experience, a satisfactory linerboard can be made using 70% bagasse pulp and 30% long fibred kraft pulp. In both cases the furniah will also contain small quantities of alum and size and in the case of linerboard, starch as well.

9 2 3

THE COLOR

[

ŧ

Rudler Ruder annual constraint	OCINN	
July 20, 1972	TABLE 2J	10. E 10 NEVI-X
Rev. November 10, 1972	PAPER MACHINE MAJOR CONFONENTS	
Be ction	Machine to Trim 3,2 Meters for Corrugating Medium	Machine to Trim 5 Meters for Linerboard
lie adbox	Primary only - pressure type	One primary and one secondary - pressure type
Pourdrinier	Level wire 3.4 M wide x 39.5 M long	Level wire 5.5 M wide x 44.2 M long
Couch	Gear driven, double suction bos - bronze shell	Gear driven - double suction box - bronze shell
Press Part	Straight-through suction 1st press, Straight-through grooved 2nd press	Straight-through suction lst press, Straight-through grooved 2nd press
Dryer Part	46 cast iron dryers 1524 mm dia pressure rating 8.8 kg/cm ² - 4 drive sections	58 cast iron dryers 1524 mm dia pressure rating 8.8 kg/cm ² - 5 drive sections
Breaker Stack	Not required	Two roll stack
Calender Stack	One two-roll, open side stack	One six-roll, open side stack
Reel	Constant tension type - 8 reel bars	Constant tension type - 8 reel bars
Vinder	Shaftless type with lowering table	Shaftless type with lowering table
Drive Speed Range	250 - 400 m/min.	150 - 450 m/min.
		•

1 I t

ł

.

	P-19% C7 310:		Muchine to Irim 5 Meters for Linerboard	500 m/min.	122 meters	2500 metric tons	••••
OQINU		TABLE 2-J (Continued) PAPER MACHINE MAJOR COMPONENTS	Machine to Trim 3.2 Meters for Corrugating Medium	500 m/main.	102 meters	1820 metric tons	
Rudiu Butu menu.commann	July 20, 1972 Rev. November 10, 1972		Section	Balanced for	Length - Overall	Approximate Weight	

i

- 36

798 1	

I

•

12

1

[| !!

er, ander derrette i die

R-193A/07/3101 - Page J/7

...

1

Stadler Muster

Assuming average consumption figures for alum resin, starch and a 0.5 white water losses and a paper moisture of 6%, the composition of the furnish to the paper machines would be (on

an O.D. basis) as follows:

TABLE 3-J

0.D. PAPER FURNISH REQUIREMENTS PER A.D. TON PAPER (67 MOISTURE)

Corrugating Medium

Slush bagasse pulp	8 30	Kg.
Waate paper	90	Kg.
Alum	15	Kg.
Size	10	Kg.
Linerboard		
Slush bagasse pulp	620	Kg.
Imported long fibre pulp	265	Kg.
Alum	35	Kg.
Size	20	Kg.
Starch	5	Kg.

J.4 Pulp Requirements

Based on the furnishes given in Table 3-J the annual pulp

requirements are as shown in Table 4-J.

		TANLE 4-J		
	ANNUAL O.D.	ANNUAL O.D. PULP REQUIREMENTS		
Product	Annual Froduction A.D. Tons	Waste Paper 0. D. Tons	Imported Pulp 0.D. Tons	Slush Bagasse Pulp 0.D. Tons
Model I Corrugating Medium	56,440	5,000	ı	46,850
Mouel II Linerboard	112,200		29,730	69 , 560
Model III Linerboard and Corrugating Medium	168,640	5,000	29,730	116,410

8

i,1

1

ļļ

1

ļ

,1

1

1

R-193A/07/3101 - Page J/9

Stadier Murter

J.5 Papermaking Chemical Requirements

Based on the quantities developed in Table 3-J the annual

papermaking chemical requirements will be as follows:

TABLE 5-J

ANNUAL PAPERMAKING CHEMICAL REQUIREMENTS - METRIC TONS

	Annual Board Production	Chemical Requirement (Metric Tons)					
Product	A.D. Tons	Al:im	Size	Starch			
Model I				·			
Corrugating Medium	56,440	8 5 0	56 0	-			
Model II							
Linerboard	112,200	3,930	2,250	560			
Model III							
Linerboard and							
Corrugating Medium	168,640	4,780	2,810	560			

Badjer monors .	Xartor Comput Ants	R-193A/07/3101 - Paga K/
К.	BAGASSE REQUIREMENTS	
	K.1 Introduction	
	In order to determine the quantit	ies of bagasse which
	must be purchassd from the sugar mills	it is necessary to
	consider the various lossss which will	occur from the time the
	bagassa isaves the crushing train unti	l it is manufactured into
	pulp. For simplicity such calculation	is are made on an oven
	dry basis.	
	The losses to be taken into accou	int srs:
	- moist depithing loss,	
	- wet depithing and washing loss,	
	- handling and storage losses,	
	- pulping loss	
	A typical analysis of whols bagas	sse on an oven dry basis
	would ba:	
	Water solubles	8.0%
	Dirt (mud, sand, stones, lsavas)	5.0%
	Fibre fines	4.5%
	Pith and spidsrmal calls	28.0%
	Fibre (suitable for pulp)	_34.5%
		100.0%
	K.2 Depithing Longes	
	If it is assumed that on moist de	pithing, one half the dirt,
	all of the fines and slightly more the	an one half of the pith and

l

ĮĮ

ij

1

2 g t i

Ę

ł Ę 11 1

•1 Ŀ

1

ŧł Į 11 •

Stadjer Nurter

R-193A/07/3101 - Page K/2

epidermal cells are removed, as well as a small fraction of the clean fibre, and that the water solubles are distributed more or less equelly between the pith and fibre frections, then for 100 kg. whole bagasse entering e moiet depither, the discharge would be in the following epproximate proportions:

Meterial	Whole Bagasse kg.	Accepted <u>ss "Fibre"</u> kg,	Rejected <u>as "Pith"</u> kg.
Water solubles	8.0	5.5	2.5
Dirt	5.0	2.5	2,5
Fibre fines	4.5	.0	4.5
Pith end epidermal cells	28.0	13.5	14.5
Cleen fibre	<u>. 34. 3</u>	48.5	<u>6.0</u>
	1 00. 0	70.0	30.0

i.e. the loss in moist depithing is 30% of the whole begasee and the analysis of the accepted fibre fraction is:

Weter solubles	7 .8%
Dirt	3.6%
Pith	19, 37
Fibre	<u>69. Ji</u>
	100.0%

Two different types of treatment are proposed for the secondary stage in the processing of the bagasse:

dier Hurter	R-19 3A/07/3 101	-	Page K/3
NURS . CONVLTANTS			

- washing and wet depithing for bagasse to be used for manufacture of linsrboard grade pulp,
- washing without wet depithing for bagasse to be used for making pulp for corrugating medium

In combined washing and wet depithing half of the water solubles, about 95% of dirt, and about 50% of the pith, as well as a small fraction of the clean fibrs are removed, thus for 100 kg, moist depithed bagasse entering the wet washing and depithing etage, material of the following composition would emerge:

<u>Material</u>	Moist Depithed Basesse kg.	Accepted <u>as "Fibre"</u> kg.	Rejected <u>as "Pith"</u> kg.
Water solubles	7.8	3.9	3.9
Dirt	3,6	0.2	3.4
Pith	19.3	9.6	9.7
Fibre	49.3	<u> 18.3</u>	فيد
	100.0		18.0

i.e. loss in the washing and wet depithing stage is 18% of the weight of the moist depithed bagasse and the approximate composition of the material entering the digester is:

1	Pith,	dirt	and	solubles	16.7%
(Clean	fibre	•		83.3%

Stadler

1

Ĭ

Ę

1

ł

ły

12 81

> " 8

> > ٤n

1

R-193A/07/3101 - Page K/4

Stadior Murter

IĮ

Ĭ

Ĩį.

11

1

ļ

t i

i i

1

3 1

In the second case where only bagasse washing is required efter moiet depithing, about helf of the water solubles and 90% of the dirt are removed with only minor losses of pith and fibre, thus for 100 kg. of moist depithed bagasse entering, the composition of the discharge would be:

<u>Material</u>	Moist Depithed Barasse kg.	Accepted <u>as "Fibre"</u> kg.	Rejected <u>as "Pith"</u> kg.
Water solubles	7.8	3.9	3.9
Dirt	3.6	0.5	3.1
Pith	19.3	17.3	2.0
Fibre	69.3	68.3	1.0
	100.0	90.0	10.0

Hence loss in the bagasse washing stage is 10% of weight of moist depithed begasse end the proportion of the materiel entering the digesters is:

Pith,	dirt and solubles	19.27
Fibre	suitable for pulp	80.8%

The totel loss of material during storege has been assumed to be about 7-1/2% (Since, during the crushing season the begasse would be stored for only short periods, if et all, this figure represents approximately 10% loss in the portion of the begasse which must be stored for a longer time).

-	-	

Stadjor Hurtor

R-193A/07/3101 - Page K/5

K.3 Pulping Loss

The final loss of material takes place in the process of cooking, washing, screening, etc., which is used to manufacture the bagasse pulp. In order to develop higher strength properties in the resulting pulp a more thorough processing is given to pulp for linerboard than to pulp for corrugating medium. From previous experience therefore, the yield of pulp based on the bagasse fibre entering the digester has been assumed at 58.5% for linexboard grade pulp, and 67% for corrugating medium pulp, i.e., additional losses of 41.5% and 33% respectively.

K.4 Summary of Losses and Bagasse Requirements for Pulp Production

Incorporation of all of these losses thus shows the amounts of bagasse required at the different stages of the process as followe (Figures in 0.D. tons):

	Linerbo	ard	Corrugating	g Medium
	Quantity	Loss	Quantity	Loss
O.D. fully processed pulp	1.0		1.0	
Pulping loss (41,5 & 33	1)	0.71		0.49
To digester	1.71		1,49	
Washing & Wet Depithing Loss (18%)		0.38		
Washing Loss (10%)				0.17
From Storage	2.09		1,66	
Handling & Storage Loss (7.5%)		0.17		0,13
From Ingenios	2.26		1.79	
Primary Depithing Loss	(30%)	0,97		0.77
Whole Bagasse required	3,23		2,56	

R-193A/07/3101 - Page K/6

Stadior Murter

FOOM A

ĮĮ

şĮ

1

Į

2 g

-

ł

lį.

1× ×1

.

, † 5 †

Į | Į | | |

1

ł

Hence the amounts of bagasse which the ingenios must produce to make one ton of either type of pulp would be 3.23 and 2.56 tons respectively (Since bagasse from the crushing trains averages 50% moisture these amounts represent 6.46 and 5.12 tons of whole bagasse, wet basis).

Since primary depithing would be done at the sugar mills the quantities for which compensation would be required would be 2.26 OD tons/ton pulp and 1.79 OD tons/ton pulp. The remaining portion would be pith returned to the ingenio boilers and would amount to 0.97 OD tons/ton pulp and 0.77 OD tons/ton pulp for each case.

From Section J.3 830 Kg. bagasse pulp are required for the production of one AD ton corrugating medium and 620 kg. bagasse pulp for one AD ton of linerboard. Consequently, the annual bagasse requirement for the three models are as shown in Table 1-K.

		• • • • • • • • • • • • • • • • • • •	Whole Mois: Bagasse Tons	239,880	449, 360	689,240	
X .61-8			Whole Bagasse Required 0.D. Tons	119,940	224,680	344,620	
			Moist Depithed Bagasse Required to be Furchased 0.D. Toms	83,960	157,280	241,240	
	TABLE 1-K	AMUAL BACASSE REQUIREMENTS	Bagasse Pulp Required 0.D. Tons	46,850	69, 560	116,410	
		AMILIAL BA	Annual Board Production A.D. Tons	26,440	112,200	168, 640	
						Me d 1 um	
July 20, 1972 Kev. November 10, 1972			Product ion	Model I Corrugating Medium	Model II Linerboard	Model III Linerboard and Corrugati	

Stadje monues	r Marter . consultants	R-193A/07/3101 - Page L/
L.	COST OF BAGASSE	
	L.1 <u>General</u>	
	Cost of begasse is some	times understood to mean only the
	fuel velue replacement costs	but in the pulp and paper industry
	this term usually means total	l cost of begasse moist depithed at
	the suger mills and delivered	d to the pulp mill. At times the
	term "cost of bagasse" may a	lso be applied to bagasse fibre
	fed to the digesters. For the	his study the term is applied to the
	cost of moist depithed bagas	se delivered to the paper mill.
	There are many factors	which influence the cost of bagasse
	delivered to the mill of which	ch the most important are:
	- cost of replacement fuel,	
	- length of cane crushing so	eason,
	- size of the sugar mill,	
	- power costs,	
	- labour costs,	
	- transportetion distance -	sugar mill to pulp mill,
	- stete of bagasse handled	- bulk or baled,
	- means and type of transpo	rt selected - transportation costs,
	- primary depithing system	selected - operating costs,
	- amount of incentive payme	nts demanded by sugar mills (if any)

2 t

I

ĬĮ

Į

]

:

ĥ

); 24

i,

j] E₹

1

ſ

Į

Stadjor Nurter

R-193A/07/3101 - Page L/2

Where cost of bagasse refers to bagasse fed into the digesters the above costs would be increased by the capital charges applicable to equipment for begasse receiving, moist and wet depithing, handling and transportation to and from storage, pavement of the storage area, and handling and transportation to the digesters. Also included would be the fibre losses in wet depithing and storage, end bagasse preparation equipment up to the digester, and labour, power and maintenance costs for all machinery utilized.

L.2 Discussion

Fuel replacement value is normally the largest single item effecting the cost of bagasse. In most ereas where bagesse has been diverted for other purposes fuel oil has been substituted. This has been done to such an extent that a generally accepted standard for equivelent fuel value has been developed in the ratio of 1 ton of oil = 3 tons OD bagaese and this relationship is considered quite accurate for estimating purposes.

Any type of combustible, of course, may be used to replace the bagaese end at times even coel or wood have been utilized. These fuels, however, are only economical under very special circumstances and consideration of their use is complicated by the fact that necessary boiler conversion is usually difficult and exceedingly costly.

R-193A/07/3101 - Page L/3

Stadios Nustes

.

IĮ

1

1

1

ŀ,

ļ

ļ

11

Į

> ¥1 • |

1

Very competitive with oil and, in the province of Tucuman, much more economical, is natural gas. This fuel is rerely available in cane growing areas but Tucuman is most fortunate in the fact that the natural gas main from the Northern provinces and Bolivia crosses the province very near to the sugar producing region. Branch-mains, in fact, have been or are being constructed to pass conveniently near to all operating ingenios.

In the past the supply of gas has been severely limited but recent connection to the new main from Bolivia makes it feasible to consider this type of fuel. Assurances have been received that even for the large quantities required the gas will be svailable by the time it is required.

At the time of writing the price of oil in Tucuman is depressed and dealers are willing to sell for the best price they can get. This, however, is considered to be a temporary condition which cannot persist in the face of rising international prices. Considering all aspects therefore, there is little doubt that the most logical and economical fuel on which to base bagasse costs in this srea is natural gee.

The duration of the cane crushing seeson has also an appreciable effect on the cost of begasse, particularly in Tucuman. The crushing season is relatively short thus large quantities of bagasse must be depithed and transported over a short period necessitating more and larger equipment than would

R-193A/07/3101 - Page L/4

Stadior Muster memors.consultants

1£

Į

Į

26

22

1

]

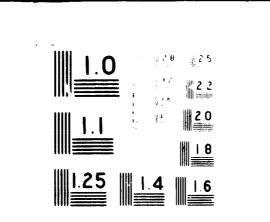
11 1

1

normally be required and inflated power, operating, and maintenance costs. The length of the cane crushing season also determines the size of bagasse storage at the pulp mill and, indirectly, also the extent of fibre loss in storage. Fibre losses in storage range from 5% to 15% and even more, depending on the type and length of storage, but in general the longer the storage the greater are the losses. The additional capital expense attributable to the short sesson are charged against the paper mill and do not appear in the cost of bagasse.

Power costs influence cost of bagasse mainly because the depithing machines consume, as s rule, substantial quantities of power, cost of which is then added to the cost of bagasse.

Labour costs usually do not constitute a very large portion of the bagasse costs in a bulk bagasse system but in the bale handling systems labour costs are usually very high.


Transportation distance plays a vary important role in the cost of bagasse. If the distance is very small, up to about 800 m., balt or pneumatic conveyors can be used. These conveyors have much longer useful life (15 years or longer) than trucks, require little maintenance and supervision and can be designed for very high capacities. Increase in the transportation distance by only a few hundred meters makes conveyors impractical so that trucks must be used with substantial increase in costs par ton handled.

76. 05. 19

3 OF L

0695

Stadior Murter Montes - Consultants

ĮĒ

ž i i

Ę

Ì

ļį

Ļ

12

R-193A/07/3101 - Page L/5

Bagasse can be handled, transported and stored in bulk or in bales. Baled bagsse is considerably less bulky but the costs involved in baling, storage, and bale handling equipment are substantial and unless transport over long distances is involved, the resulting total costs of bagasse may become prohibitively high for its use in pulp and paper.

Bagasse is discharged from the crushing trains in bulk and has to be fed ultimately into the digesters, also in bulk form. Therefore, if bagasse is handled, transported and stored in bulk all the unnecessary work involved in baling and bale breaking may be eliminated with corresponding reduction in costs. Since distances are short in Tucuman, baling would have no advantage and costs are based on bulk handling.

Means of transport selected such as conveyors, trucks, barges, *E*lumes, influence the cost of bagasse by their own operating costs per ton of bagasse handled for the given distance. Conveyor and truck transportation have been assumed for cost purposes.

Operating costs of primary depithing systems per ton of bagasse processed vary greatly with the systems selected. Unfortunately, a direct selection strictly on the basis of costs is not always possible because the quality of pith removal and efficiencies of clean fibre recovery also vary greatly.

1

R-193A/07/3101 - Page L/6

Stadler Murter moments . Consultants

26

=

ž

12

ž I

Į

Sugar mills that have experienced consistent bagasse surpluses will usually sell bagasse without incentive payments because otherwise they must spend money to dispose of these surpluses. In Tucuman however almost all sugar produced is fully refined so that all of the fuel value of the bagasse produced is required and, in addition, auxiliary fuel is used. Because of this, the sugar mills may request so-called "incentive" payments, that is, payments in excess of the fuel value plus costs, before they agree to sell their bagasse on long term contracts.

Such payments, if they are made, must be reasonably low otherwise the cost of bagasse might become too high for pulp and paper making. Since conversion to natural gas fuel will indirectly cause some benefits and savings to the ingenios involved, e.g. over-compensation for fuel value of the bagasse and more efficient and responsive boiler operation, allowance for incentive payment has not been made, although it is convenient not to forget that it could be necessary to consider incentive payments when the operation is confirmed.

Table 1-L shows the estimate costs of bagasse from various sugar mills delivered to a paper mill located adjacent to Ingenio Concepcion. In this table, capital costs and the installations at the sugar mill (moist depithing, truck loading and conveyor to the paper mill as well as boiler conversion) are not included

Stad.	ler Murter Rs. computants	P-193A/07/3101 - Page L/
	in the costs beca	ause they are already included in the paper
	mill costs. Tree	nsportation by trucks is assumed to be done
	by contractors th	hus contractors' costs and profit have been
	allowed for.	
	Further det	ails may be found in Appendix Sections as follows:
	BX. 3	Power Consumed and Power Contract
	BX. 4	Bagasse Requirements and Costs
	BX. 5	Fuel Cost

.

のであると

.

. . . .

-----6.24 Begasse Cost /OD Ton 5ª US\$ ł 8-1934/07/3101 - Page 1/8 31,199 10, 000 35, 397 104,24 85,28 872,74 858,858 858,850 30, 721 0.721 ----8 ł Total Annual 1, 344, 216 2, 076, 545 1, 156, 003 749, 855 3,471,345 731.04 2.619.687 3,471,365 Coet Sª Transport Incl. 299, 390 273, 860 249, 390 830, 310 317, 480 275, 865 Cost of Lacl. Incl. BETIMETO CORTS OF NUIST MEPTINGS INCASSE FOR VARIOUS MILLS 8.2 **..** Transport System **b**.lt - 256 **• b**.et - 12 **b**. pm 35, 397 + mpt 1 33.00 - 11 . Melt - 250 D1 at aace Ì AAMCHIE TO INCIDE CONCEPCION Heighted Average Cost of Begasse Maighted Awrage Cost of Jagasee J-1 ENEL Available Nedel III of Totel Totol Percent <u>8</u>888 <u>8</u> 8 8 8 8 8 1 Caly capital costs included are for truck transportation Bagasse Bepithed Bagasse by Pulp Available 1979 Available 1979 & Paper Mill Quant ity Required by Pulp **63, 96**0 157,280 241.240 Assuming 30% increases over figuree given in Table 1-2 Assuming 30% 'eeees in weist depiching OB Tome Molet ** 113,000 32,100 24,300 113,000 hate of lachange 30" per 854 OD Tens Male* 101.100 \$5,800 \$5,800 161,400 Ingenio Concepcion Ingenio San Juan Ingenio Cruz Alte Ingenio Sen Juan Ingenio Sen Peblo Ingenio Cruz Alta Ingenio La Florida Ingento Concepcion Ingenio Concepcion Source of Bagasse 8.8 inter: 32 . 8 H Ī

ういた ふたいない いてきたい 主要

() [

CONTRACTOR AND A CONTRACTOR A

Ľ

I

ĺ

ļ

ľ

ĺ

I

l

l

l

ł

l

Stadjer Murter

R-193A/07/3101 - Psge M/1

M. DESCRIPTION OF PROPOSED MILLS

M.1 General

Drawings No. 19L6-301, 302 and 303 show typical layouts for the three sizes of papermill proposed. It would be possible to construct and supply any of these mills in either the Northern or the Southern part of Tucuman province, but for purposes of discussion, it has been assumed that:

- the location for any of the three alternative paper mills
 would be adjacent to the largest mill in the northern zone
- the total bagasse from this mill would be utilized before drawing upon other ingenios
- where bagasse required exceeds that produced by the adjacent mill, the additional quantities would be drawn from other ingenios according to their size and proximity to the paper mill site
- transportation of bagasse to the paper mill would be by belt conveyor from the adjacent ingenio and from other sugar mills by semi-trailer
- by 1979, the amount of bagasse available from any given ingenio will have increased 30% over 1961-70 average.
- primary depithing installations would be at the sugar mills,
 an installation being required for each ingenio involved in the
 supply of bagasse

Stadjer Muster

5 1

Ľ

R-193A/07/1301 - Page M/2

H.2 Depithing Installations at Sugar Mills

a) Model I

The bagasse produced by the principal ingenio will be more than adequate to supply the needs of the 166 TPD corrugating mill and, consequently, no truck transportation will be necessary. For depithing at the sugar mill, the bagasse would be taken from the existing boiler feed conveyor ahead of the first boiler and transferred to a distributing conveyor, it would be metered at the required rate into individual depithera by means of twin drum feeders. The material in excess of the depithing capacity would by-pass the depithers to overflow and pith return conveyors and be returned to the existing boiler feed conveyor downstream of the depither take-off point. The pith and fines rejected by the depithing machines would be collected and returned to boilere by means of the same overflow and pith return conveyor arrangement.

The cleaned accepted bagasse would be collected by a belt conveyor, weighed by a belt scale, elevated and transferred onto the main conveyor to the paper mill. It is satimated that only one operator and a part-time helper would be required on each shift for this operation. Arrangement would be made to have the sugar mill supervise Stadier Murter

Ęŗ Į,

Ŧ I

R-193A/07/3101 - Page M/3

and edminister the moist depithing operation.

b) Model II

Bagasse requirements for s 330 TPD linerboard mill exceed the total quantity which will be produced by the sdjacent ingenio, thus some edditional bagasse (about 56,400 tons O.D.) will have to be transported by road from two other sugar mills. The depithing installation at the main ingenio would be similar to that described for the corrugating mill, but bagasse overflow and pith return would be by separate conveyors so that only the pith would go to the boilers. The overflow begasse would either be re-cycled immediately or, if necessery, would be stored until an interruption in cane crushing would permit it to be fed beck into the depithing system. Such an arrangement will ensure maximum utilization of the leest expensive and most readily aveilable bagasse.

The depithing equipment at the other ingenios would differ not only in size, but also in the incorporation of truck loading bins. The much smaller quantities of bagasse to be handled would elso make it practical to utilize pneumatic conveyors for transportation of the whole bagesse to moist depithing and from depithing to the loading bins. Pneumatic conveyors because of superior flexibility, would permit location of the truck loading bins immediately adjacent to the

. S h	adle	7 X.	

RS . COMBULTANT

R-193A/07/3101 - Page M/4

depithing machine so that only the minimum of operating labour would be necessary.

The accumulation of depithed bagasse in loading hoppers will reduce loading of trailers to a matter of minutes, and permit optimum cycling of the transportation equipment. In addition, settling of the bagasse, even in very temporary storage in the hoppers, combined with the further compaction caused by the method of loading the trailers will reduce volume to some extent so that somewhat larger tonnages can be loaded per unit volume of the transport vehicles.

c) <u>Model III</u>

Bagasse requirement of this large mill can be satisfied only by taking all the bagasse available from Ingenios: Concepcion, San Juan, Cruz Alta, and San Pablo, augmented by the remaining quantity from Ing. La Florida.

The handling and depithing installed at Ing. Conception, San Juan and Cruz Alta would be as described for the linerboard mill (Model II). The moiat depithing installation at Ingenio San Pablo would be similar to that at Conception with the exception that facilities for truck loading would be provided. Because the total bagasse available will have to be taken from these sugar mills, all bagasse would be taken off the existing boiler feed conveyor and fed into the depithers. Overflow

Stadior Murtor monores.consultants

R-193A/07/3101 - Page M/5

conveyors would be provided to take bagasse in excess of the depithing capacity to temporary storage in a surge pile for future depithing. After depithing, as for linerboard mill, the accepted bagasse would be accumulated in loading bins for rapid truck loading. Two bins, each of capacity equal to that of one bagasse trailer, would be provided to ensure optimum flexibility.

Equipment at Ingenio La Florida would be similar to that inatalled at Cruz Alta, but the overflow return for excess bagasae would not be necessary because only about 50% of the available bagasse would require depithing.

M.3 Depithing Installations at Paper Mill

a) Model I

The bagasse delivered by belt conveyor from Ingenio Conception would be fed directly into the bagaase washing system consisting of a hydrapulper, a washing chest, sand and "junk" removal conveyors and a water re-cycling system. From the washing aystem bagasse will be sluiced onto a drainer type elevating conveyor with three discharge points. The first two discharge openings would be equipped with metering feeders, while the last one would be permanently open in order to permit transfer of excess bagasse to a surge pile. The first feeder would deposit bagasse onto the digester feed conveyor for

Stadior Murter

R-193A/07/3101 - Page M/6

immediate processing and the second feeder would meter the bagasse into a preservative mixer discharging into truck loading conveyor system for subsequent transportation to the main storage, where it would be piled up to 15 m high by means of front-end loaders. The bagasse-preservant mixer would operate only on fresh bagasse from the sugar mill. When no fresh bagasse is being delivered, the feeder to the mixer would be stopped so that the bagasse on the drainer-elevating conveyor in excess of that required at the digester would be transferred to the surge pile.

From the main storage pile, bagasse would be reclaimed by a mobile crane equipped with an "orange peel" type grab and high reach front end loader, loaded onto dump trucks, transported to a well drained surge pile or intermediate storage area, dumped there and fed onto a reclaim conveyor as and when required. Front-end loaders would be used to transfer bagasse from the surge or intermediate storage pile directly onto the reclaim conveyor from which it would be transferred to the drainer-elevating conveyor described above.

Sugar mills usually shut down one to two days every 7 to 14 days during the crushing season for evaporator clean-out causing intermittent interruptions in production of bagasse.

12

21

2

1

PORM 8

2

Madier Muster

R-193A/07/3101 - Page M/7

The paper mill, however, must operate continuously. During the sugar mill shut-downs, bagasse would be recisimed either from the surge or intermediate storage pile or from the main storage piles.

In order to reduce re-handling of bagaaae during the augar mill ahut-downs aufficient washed bagasse would be accumulated in the surge pile to provide uninterrupted supply to the paper mill without having to reclaim from the main atorage piles.

b) Model II

The wet depithing, atorsge and handling installation would be similar to that described for Model I, but wet depithers and wet pith handling system would be added and the capacities of the washing, handling and storage systems would be increased because of the larger production. Operation of this installation will be very similar to that described for Model I with the exception that during the crushing season about 36% of bagasse will be delivered by trucks, dumped alongside the bagasse receiving conveyor and fed into the bagasse washing system and wet depithers simultaneously with bagasse delivered by the belt conveyor from Ingenio Concepcion.

c) <u>Model III</u>

The wet depithing, storage and handling system for this

Stedjer	Murter

-

1

1i

R-193A/07/3101 - Pega M/8

496 TPD mill would be identical in design to that described for the 330 TPD linarboard mill with the exception that the capacities would be increased and about 53% of bagasse would be delivered by trucks.

Two digestars would be required thus provision of two recaiving convayors and metering faeders would be necessary.

N.4 Sequence of Operation

Basically the processes for the proposad plants are as shown on flow sheet 39P6-201/1 for Hodel I, on 39P6-202/1 for Hodel II and on 39P6-203/1 for Hodel III. The operation of the plant is described hereunder.

e) <u>Model I</u>

Moiat depithed end washed begasse is fed to e wilting screw conveyor where black liquor is added. The begasse then drops from the wilting scraw to the presteamer and then into the rotary feeder of a continuous digeater. The type of continuous digester preferred is the double tube horizontal digester because retention times may be varied over a considerable renge.

Cooking liquor is delivered to the mill as sodium hydroxide at a 50% concentration, then diluted at the mill to the required strength and edded to the continuous digester immediately after the rotery feeder. The digester is operated at pressures of 7 to 7.5 atmospheres by direct

Madier Muster

R-193A/07/3101 - Page M/9

stesming. Retention times are in the order of 15 to 20 minutes to reduce the fibrous material to a suitable pulp. After passing through the continuous digester, the pulp is discharged under pressure through a pressurized fiberizing refiner to a blow tank from which it is pumped to a washer in which the cooking liquor is separated from the fiber. A portion of the waste liquor is reused for the preparation of cooking liquor and in the wilting operation as well as for wet depithing. The balance of the waste liquor is sewered. From the pulp washers the pulp is discharged at high consistency and pumped to storage in a high density tower. From here the bagssse pulp is diluted and pumped to the bagasse pulp chest from which it is fed at regulated consistency to a battery of disk refiners, where the pulp is subjected to additional fiberization. From the refiners the pulp goes to the refined bagssse pulp chest where it is stored under controlled consistency and agitated to prevent flocculation and to ensure uniformity of the fibre and water mixture.

The waste paper, which is the other fibrous component of the corrugating medium, is pulped in a conventional betch pulper after which it is screened, thickened, refined and atored in a low density refined storege chest.

道理によ

Stadjer Hurter

R-193A/07/3101 - Page M/10

Broke from the wet end of the paper machine (wet broke) is collected in the couch pit, diluted, then passed over a seve-sll to bring it to the required consistency after which it is stored in the refined waste and broke stock chest. Wet broke under normal operating conditions is produced at a uniform rate, but may present problems in starting up if passing of the sheet to the dryer section takes excessive time. Broke from the dry end of the paper machine (dry broke) is transported to the waste paper batch pulper where it passes through the same system as waste paper. Dry broke will be produced at a variable rate during threading operations and dry enu breaks. The winder trim, together with cut-up unacceptable rolls of paper, are collected into the dry broks pulper and then pass to the waste paper system.

From the rafined stock chesta, the waste paper pulp, which would normally also contain small proportions of paper mill broks, and bagasse pulp are pumped to a proportionar where the desired ratios of bagasse and waste paper pulp are metered, mixed, and controlled. Resin size and alum are added at this point to give fibre set, water impermeability, and for pH control. The pulp mixture (furnish) is pumped through a battery of conical brushing refiners and, after further dilution passes through the machine acreens to the headbox of the papar machine. Stadier Huster memores - consultants

•

ly L

11

R-193A/07/3101 - Page M/11

The paper machine is a standard fourdrinier machine as deacribed in detail in Table 2-J. The board is formed on the wet and of the paper machine, dried in the dryer section and wound into rolls on the reel. The reels of paper (or board) are alit and trimmed to desired widths on the machine alitter-winder and after being atrapped and weighed the rolls from the winder are transferred to roll storage to await shipment. Ideally acheduling of production should avoid storage but this is not always possible.

After the winder the rolls of paper are inspected and may either be rewound or cut up for recycling depending on whether it is the quality of the winding or the quality of the paper which is at fault. Rewound rolls are eventually included with other paper ready for shipment.

The operation of stock preparation and the paper machine is controlled by centralized instrumentation systems located strategically, permitting observation and control of the operating variables from panel group indicators, recorders and controllers, including remote push-button stations for all motors.

Satisfactory working conditions for the personnel are ansured by proper ventilation of the paper machine room through adequate machine hood exhaust and room fresh air supply systems.

Stadior Murtor monutes . consultants R-193A/07/3101 - Page M/12

In addition to the main production facilities deecribed above, the mill would have complete steam generating facilities, elactricel power distribution system, water supply and wate; traatment eystem, fire protection fecilities, shops and stores for maintenance and repaire, firet eid station, cafeteria, and mill offices for management, accounting, engineering, purchasing and eales.

Insamuch as the corrugating medium mill is not planned to have a chemical recovery eyetem, the effluent from the mill would have a higher pollution load than the other two alternative mills. Effluent treatment would coneiet, principally of primary clarification to reduce the pollution load of diecharged water to acceptable levels.

Watar from the affluent plant would be re-cycled as much as possible theraby reducing the amount of freeh weter used. For reduction of B.O.D. (Biological Oxygen Demand) the clear, axcess effluent would be aecated by means of a series ct channele and wairs before it entere the axiating watar-table or watar way system. Solid water from the clarifiers would be dumped on waste land sway from habitetion.

b) <u>Model II</u>

The process for the proposed plant is as shown on flowsheet 39F6-202/1. The operation of the plant would be as described hereunder.

Ì

1

12

5 1

Stadior Murior

R-193A/07/3101 - Page M/13

Washed and wet depithed bagasse is fed to a wilting screw conveyor, where black liquor is added. The bagasse then drops from the wilting screw to the presteamer and then into the rotary feeder of a continuous digester. A continuous horizontal digester of the tube and acrew type is preferred because retention time may be varied over a considerable range.

Cooking liquor, prepared by causticizing aodium carbonate with burnt lime, is added to the continuous digester immediately after the rotary feeder. The digester is operated et pressures of 7 to 7.5 etmospheres by direct steaming. Metention times required are in the order of 15 to 20 minutes, to process the fibrous material into pulp of suitable characteristics after passing through a pressurized fiberizing refiner to e blow tank.

From the blow tank the pulp is pumped to Jonsson screens, end then flows to the washers in which it is washed free from cooking liquor. A portion of the liquor is re-used for the proparation of cooking liquormand-in-the wilting operation. The balance of the liquor is sent to the recovery plant.

From the pulp weshers, the pulp is discharged at high consistency and pumped to a high density storege, the principal purpose of which is to compensate for surges or

Stadjer Hurter

.

ĮĮ

1

12

2 2

R-193A/07/3101 - Page M/14

fluctuations between the pulp mill production and paper machine demand. Pulp from the high density storage tower is diluted and pumped to the bagasse pulp chest.

Imported unbleached kraft, the second fibrous component of linerboard, is pulped in a conventional batch pulper and then pumped to a storage chest.

The paper machine will produce wet broke from the wire trim and from the press section at a more or less constant rste during normal operation and at a variable rste during threading procedures and wet end breaks. This material will be collected in the couch pit.

Dry broke will be produced at a variable rate during threading operations and dry end breaks. The winder trim together with dry broke will be collected in s dry broke pulper.

Wet and dry broke are returned to the paper machine circuit through the broke handling and proportioning system and are pumped to the broke storage chest.

"When producTing linerboard, "baganse pulp; imported pulp, and broke are refined separately in a battery of pressurized disk refiners and go to their respective refined stock chests where the consistency is constantly controlled and the stock is adequately sgitated to prevent flocculation and to ensure

Stadjer Muries

R-103A/07/3101 - Page M/15

uniformity. From the refined stock chests, the three types of pulp are pumped to a proportioner where the relative ratios of bagasse pulp, imported kraft pulp, and broke pulp are metered and controlled. The pulp mixture flows into the primary machine chest. From the primary machine chest the pulp is pumped through conical refiners and screens through a basis weight valve and into the primary headbox fan pump circuit.

Fortions of the bagasse pulp, and the imported kraft pulp (without broke) are pumped to a secondary proportioner and thence to a secondary machine chest. This furnish forms the supply for the top liner. From the secondary machine chest, where rosin size and alum have been added, the pulp is pumped through conical refiners and screens to the paper machine secondary headbox.

Here again, the paper machine is a standard fourdrinier machine which is discussed in detail in Table 2-J. The board is formed on the wet end of the paper machine, dried in the dryer aection and wound into rolls on the reel. The reels of paper or board are slit and trimmed to the desired width on the machine slitter winder and then weighed on a platform scale and transferred to roll storage for shipment as required.

Defective rolls are either temporarily stored and later rewound, or cut up and returned to the dry broke system. The rolls from the rewinder are then weighed, strapped, and sent Stodier Murter

12

R-193A/07/3101 - Page M/16

to storage for shipment.

The operation of stock preparation and the paper machine is controlled by centralized instrumentation systems is ated strategically, permitting observation and control of the operating variables from panel grouped indicators, recorders and controllers, including remote push-button stations for all motors.

Satiafactory working conditions for the personnel are ensured by proper ventilation of the paper machine room through adequate machine hood exhaust and room fresh air supply systems.

The chemical recovery system is relatively simple. The weak black liquor from the washers flows into filtrate tanks from which it is then pumped to a black liquor filter where any sntrained fibres are removed. The filtered black liquor then goes to the weak black liquor storage tank. From this storage it is pumped to multiple effect evaporators where it is concentrated to approximately 30%. The evaporated black liquor is stored in a thick black liquor storage tank, from which is is fed to a fluidized bed reactor for burning.

During oxidation, the volatile organic matter, which consists of complex compounds of soda and organic noncellulose portions of the bagasse, is converted to harmless gases and water vapour which pass through a cyclone and scrubber system and emerge as innocuous gases, devoid of the original

Bondler Hurter

i h

11

ŦI

R-193A/07/3101 - Page M/17

pollutive character of the waste effluent of which it was a part.

The residual inorganic chemicals, previously existing in various stages of complexity in combination with inorganic and organic process wastes, are oxidized and converted to a stable state and deposited in the fluidized bed as pelleted or agglomerated granules. These pellets or granules of residual inorganic chemical form the matter of the oxidized bed and, as the chemicals accumulate, a portion is continually discharged as a solid, granular product. These chemicals are recovered as sodium carbonate which is dissolved in a tank using weak liquor from the recausticizing system to form green liquor. Make-up sodium carbonate is added to the dissolving tank.

The green liquor is pumped to a conventional recauaticizing system where, by treatment with lime, the sodium carbonate in the green liquor is converted to sodium hydroxide. The white liquor thus formed is then ready to be used for cooking.

The lime mud formed in the recausticizing process is washed, filtered and then burned in a lime kiln to produce fresh lime. Make-up limestone would be added as required and burned together with the lime mud.

In addition to the main production facilities described above, the mill would have complete steam generating facilities,

Stadjer Murter

K-193A/07/3101 - Page M/18

electrical power distribution system, water supply and water treatment system, fire protection facilities, shops and scores for maintenance and repairs, laboratories for testing and control, locker rooms, wash rooms, first aid station, cafeteria, and mill offices for management, accounting, engineering, purchasing and sales.

The effluent from the mill would not be very difficult to treat since the fluid bed reactor and recausticizing area will remove most of the contaminants. The effluent will, however, contain some biological oxygen demand (B.O.D.) and some suspended solids which will consist of fine solids removed from the pulp and some chemical which is washed out of the paper during manufacture.

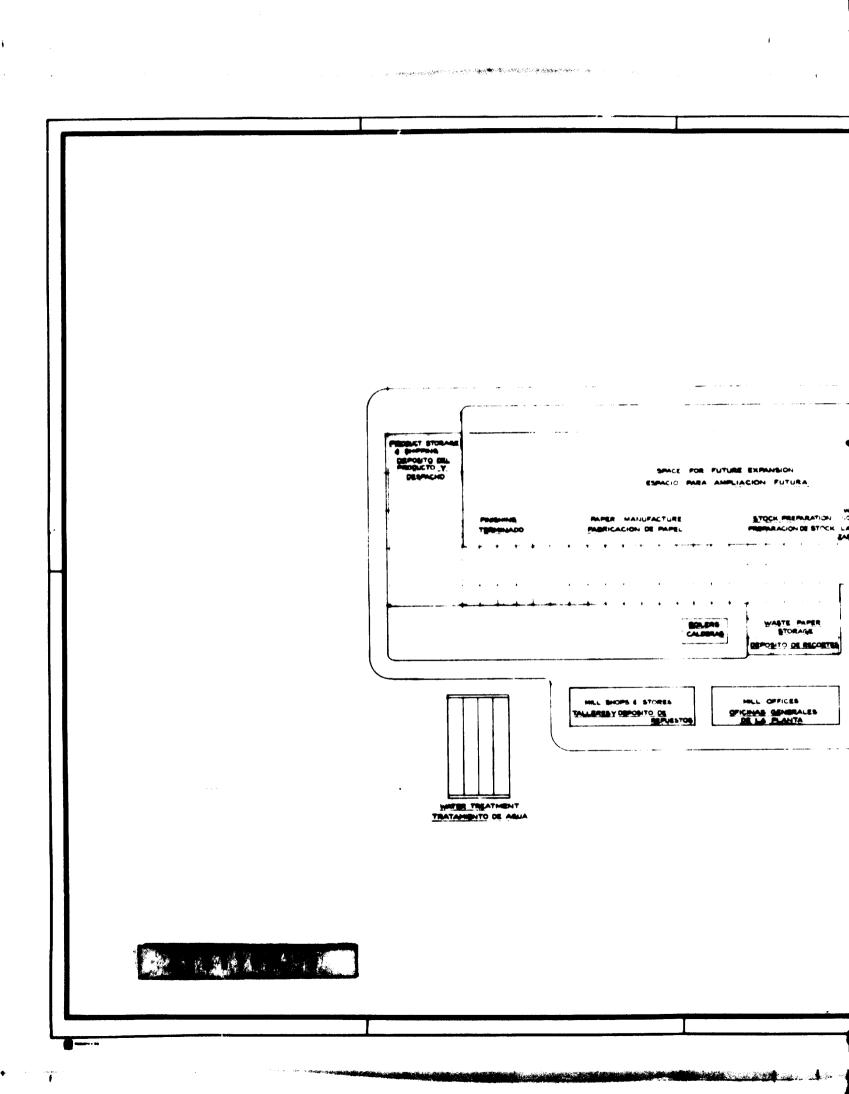
The best treatment for effluent under these conditions would be by means of primary clarifiers from which the sludge would be gathered and disposed of on waste land away from habitation. As much water as possible from the effluent plant would be re-cycled thereby reducing the amount of fresh water used. For further B.O.D. reduction, the clear, excess effluent water would be aerated in a series of channels and weira before it is returned to the existing water-table or water-way system.

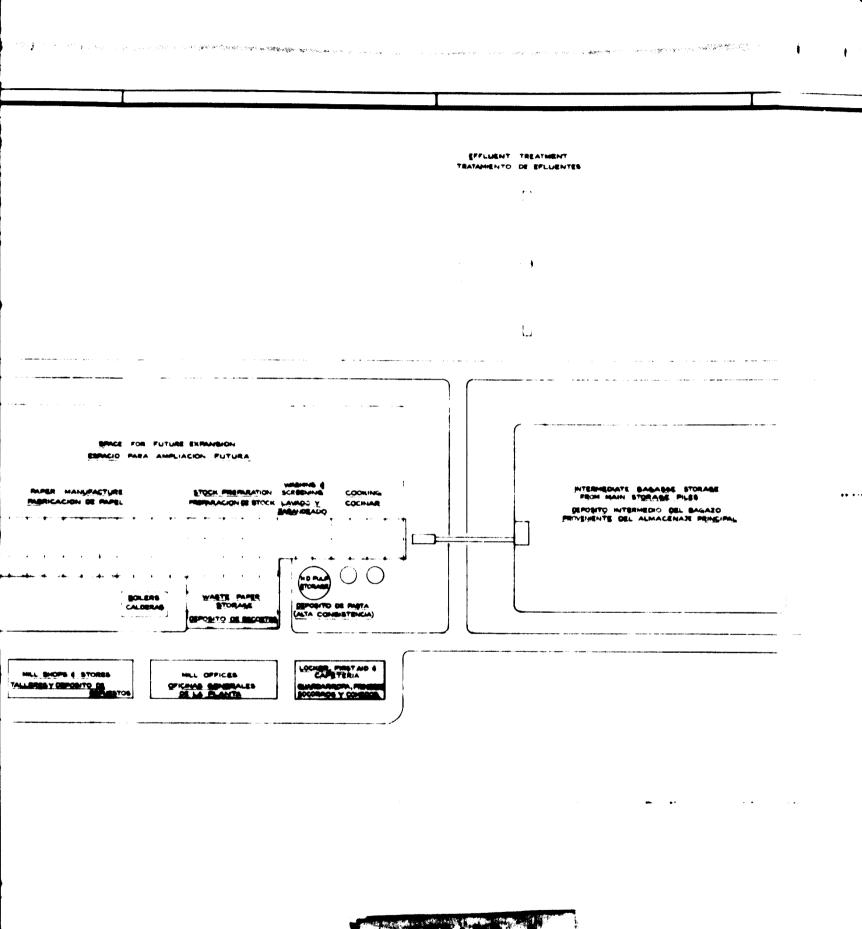
c) Model III

The process for the proposed plant is as shown on

-

Stadier Murter


R-193A/07/3101 - Page M/19


flowsheet 39P6-203/1. The proposed plant would have two pulping lines, one for production of 330 T/D linerboard, as described previously under M.4 (b) - Model II, and one for production of 166 T/D corrugating medium, as described under M.4 (a) with the exception that through minor additions to the recovery system the chemicals used in production of corrugating grade pulp may also be economically recovered.

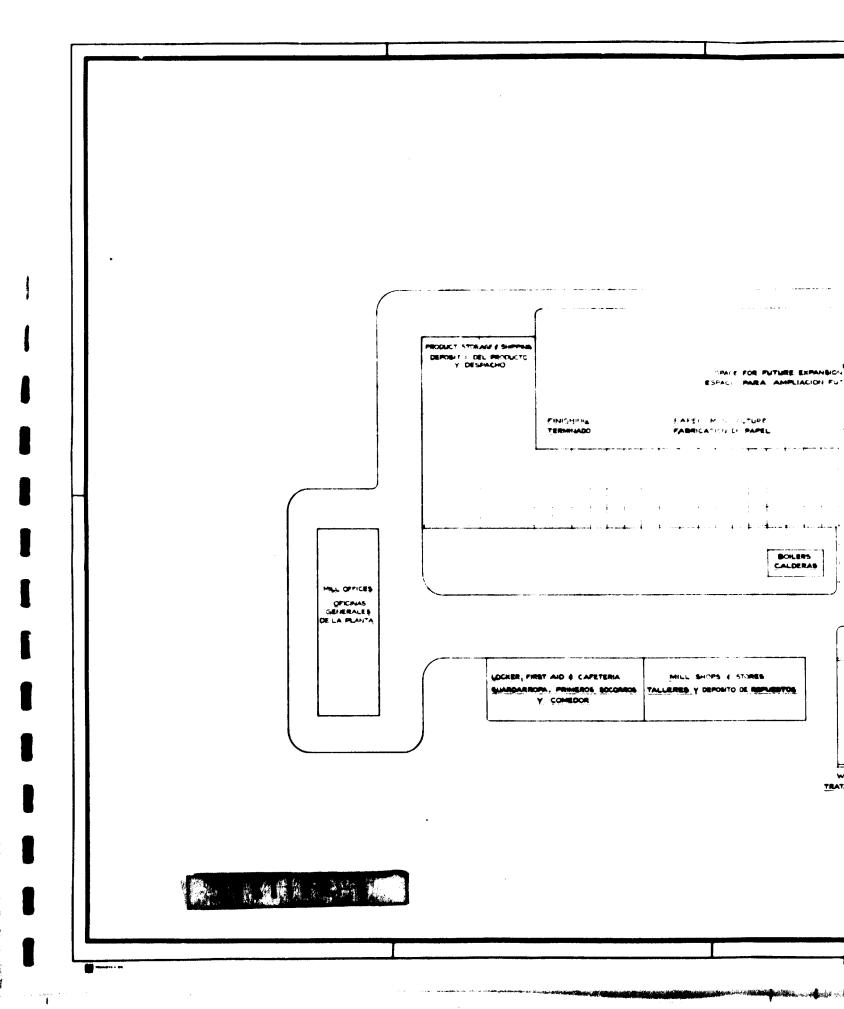
In addition to the main production facilities described abova, the mill would have complete steam generating facilities, electrical power distribution system, water supply and water treatment, fire protection facilities, shops and stores for maintanance and repairs, laboratories for testing and control, locker rooms, wash rooms, first aid station, cafeteria, and mill offices for management, accounting, engineering, purchasing and sales.

The effluent treatment system would be a larger model of the already described in section M.4 (b) - Model II.

ş

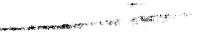
ł

İ

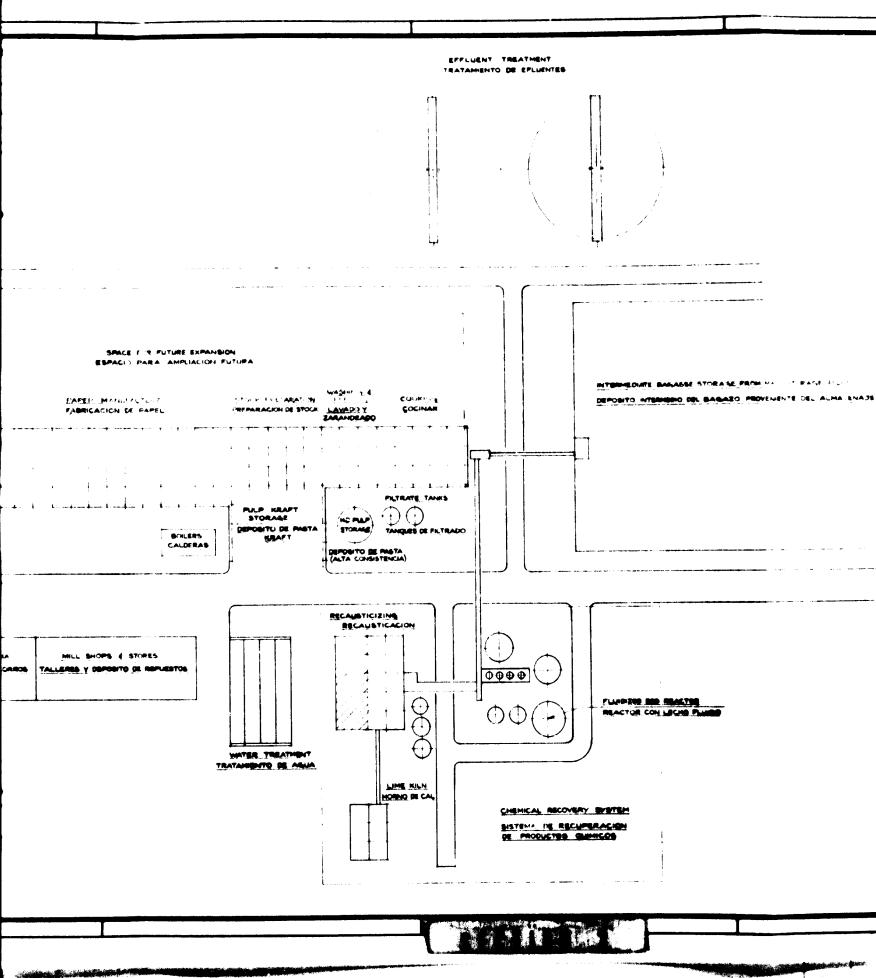

NTE BAGASUE STORAGE IN STORAGE PILES VTERMEDIT DEL BAJAZO						
NTE BAGASUE STORAGE IN STORAGE PILES VTERMEDIT DEL BAJAZO						
TE BAGASSE STORAGE N STORAGE PILES TREMELY DEL BAJAZO						
TE BAGASSE STORAGE STORAGE PILES . TERMEDT DEL BALAZO						
TE BAGASHE STORAGE 5 TORAGE PILES TERMEUN DEL BAHAZO)					
TERMEDIC DEL BAGAZO						
					PROVECTO NOBLO I TUCUMAN	PROJECT MODEL I TUCUMAN
					PLANTA DE PAPEL CONFLUGADO-INS T/D PLANO DE MASA TIPICO	MILL-166 1/D
	•⁄ •	· · · · · · · · · · · · · · · · · · ·	. •	···· •		BLAGIOS BUSICS INTRASIS - CONDUCTANTS INTRASIS INTRASIS INTRASIS INTRASIS INTRASIS
				3		
			T		UNDO CONTRACT 71/83	193-A 1916-301

t

1

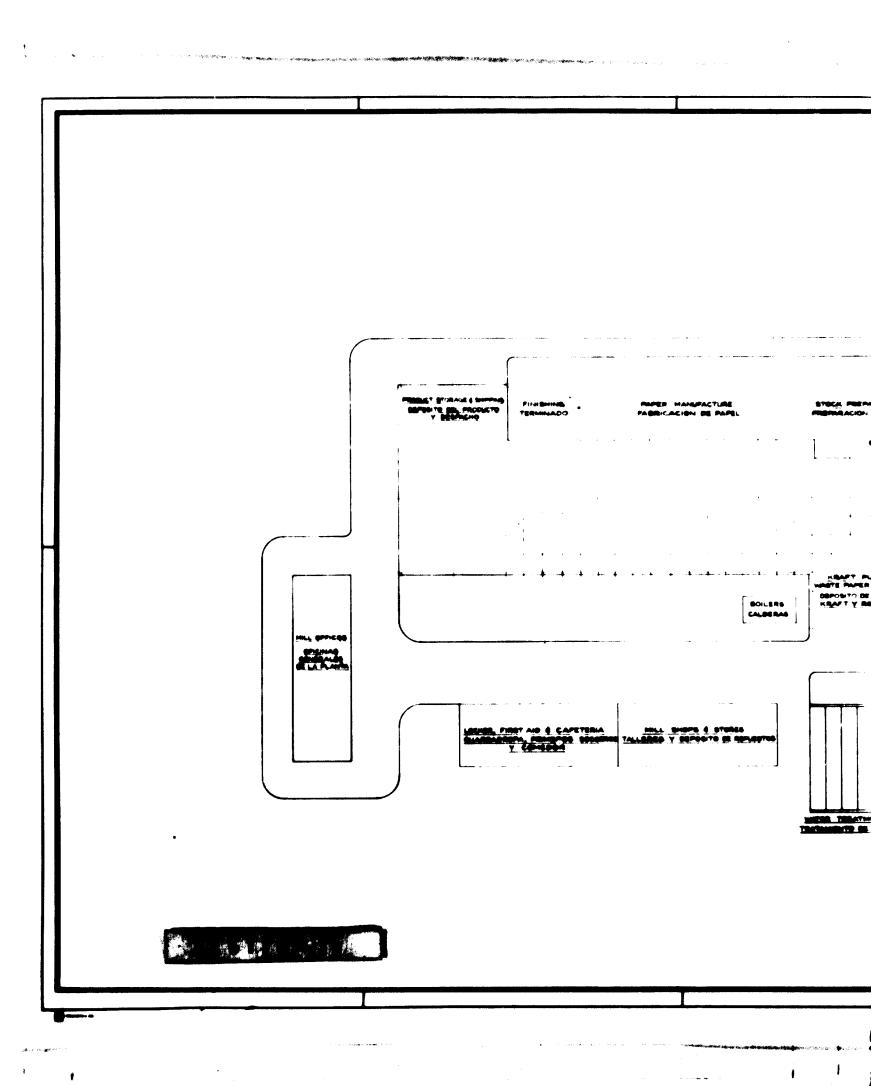

- Aller

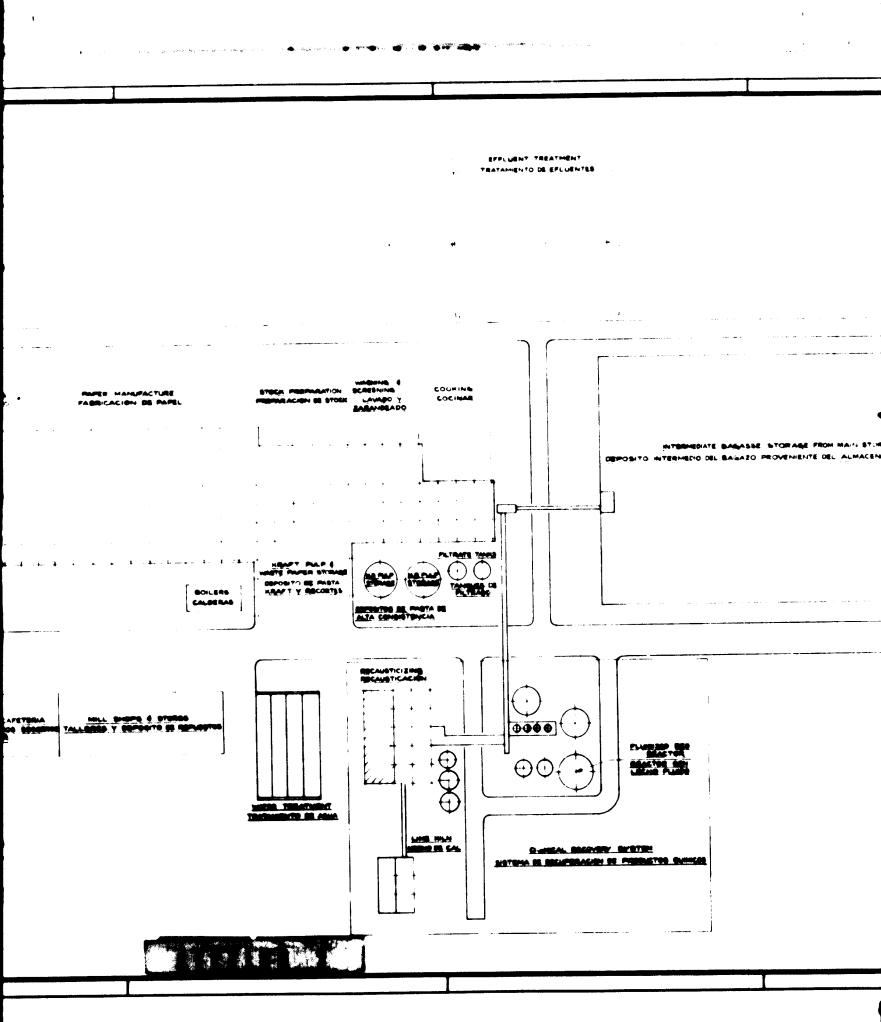
1



ŧ

1.40


Ì

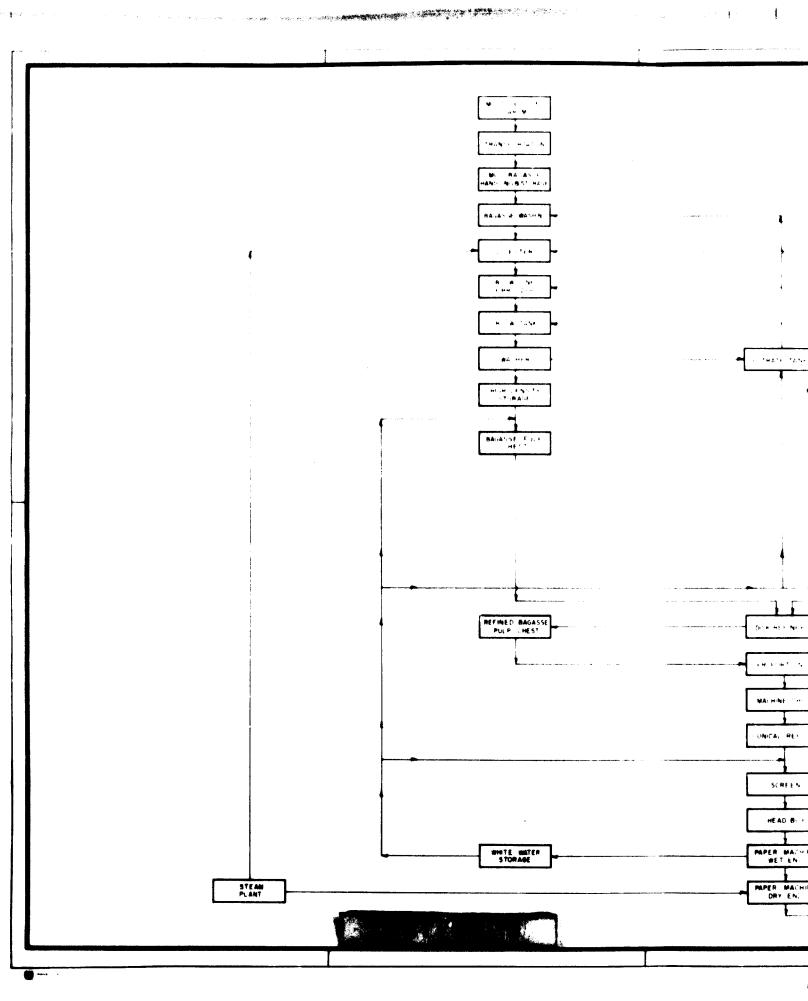


		· · · · · · · · · · · · · · · · · · ·
HITEMEDIATE BAGAGSE ST RAGE PROVINIENTE DEL ALMACENAJE PRINCHEM		
FLUERING RED REACTOR	PROVECTO SUBLA Z TUCURAN PLANTA DE LINER ROARD-330 TO PLAND DE MAGA TIPICO	
	HING OUTTALCT	

ant wet the state

-?******

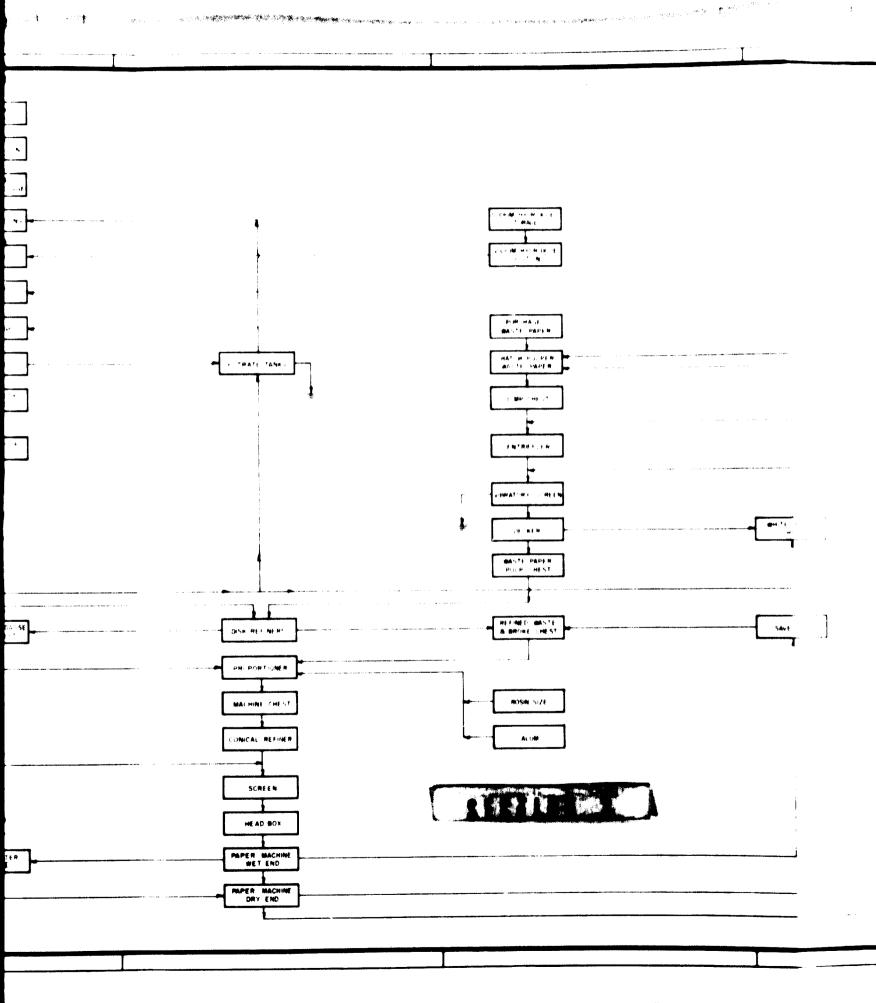
ł

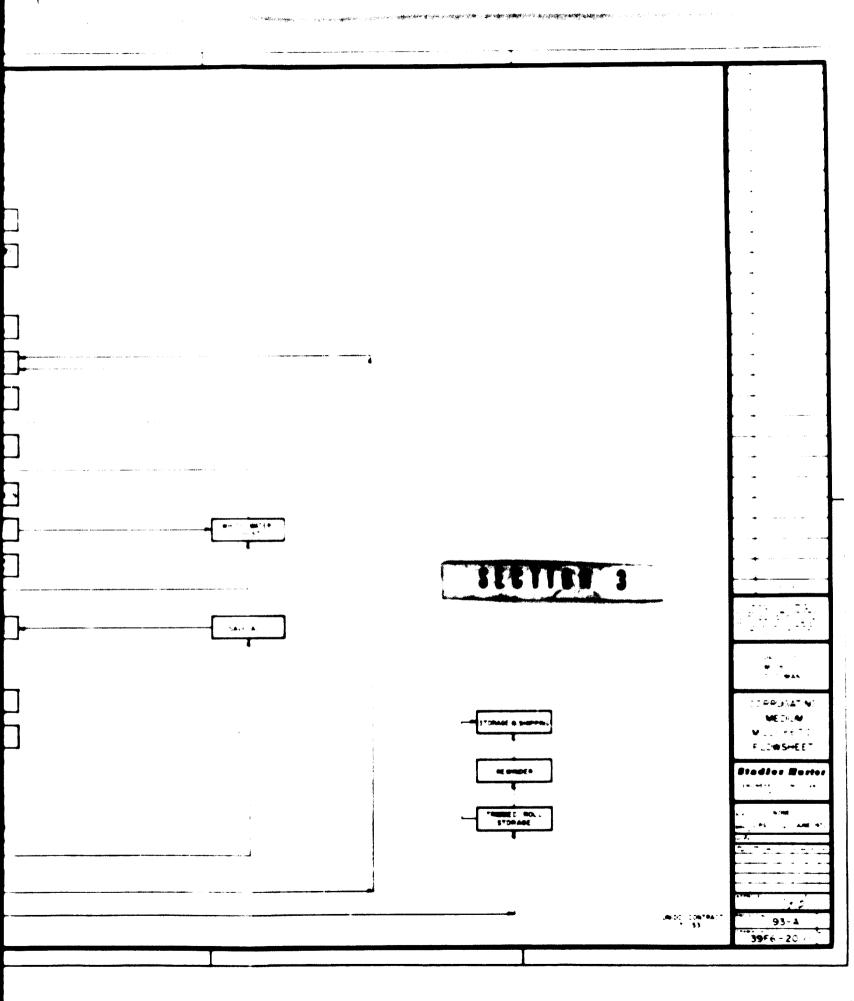

The strangent is the contraction of the second

• I	
INTERMEDIATE BAGASSE STORAGE PROMINAIN STORAGE PLES DEPOSITO INTERMEDIO DEL BAGAZO PROVENIENTE DEL ALMACENAJE PRINCIPAL	
	MILO III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	REDARD Y AND CORRUGATING IED-406 T/D MEDIUM MIL-406 T/D E MARA TURCO TYPICAL LAYOUT Beadlos Restore ontmissi - comut turts merel -1000

ł

I

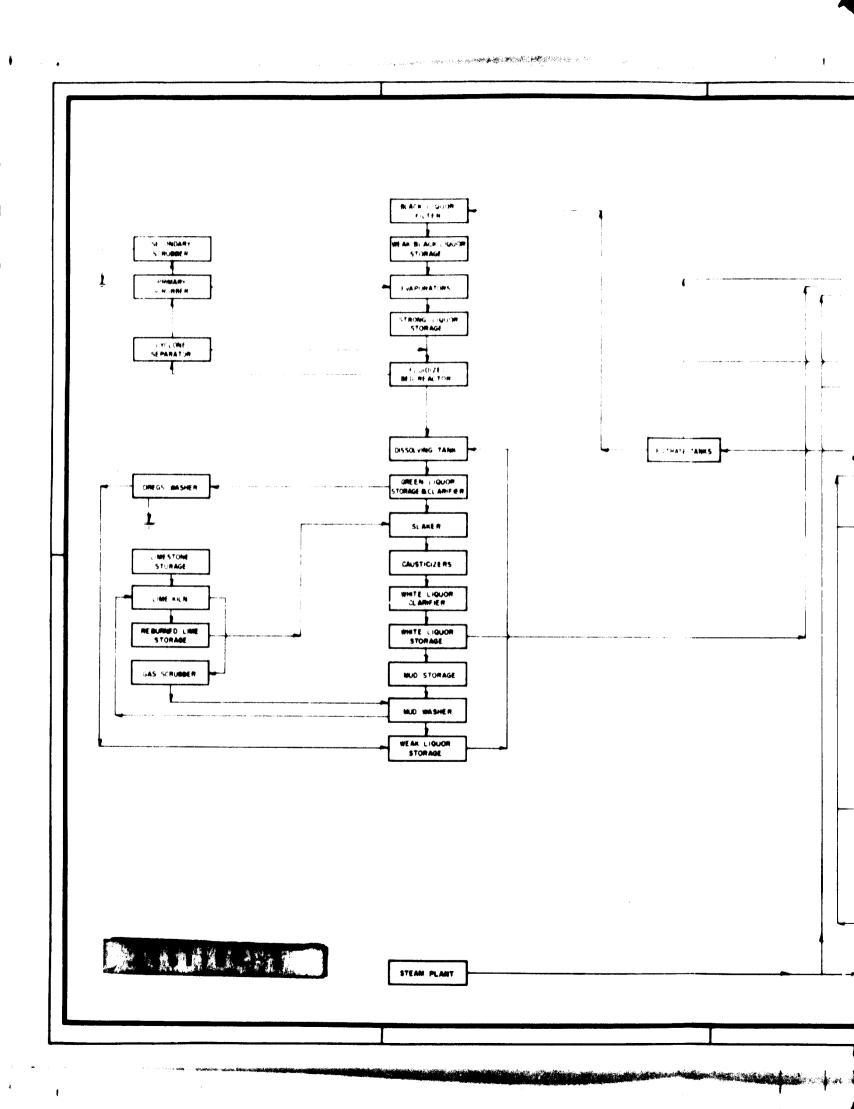

ŧ



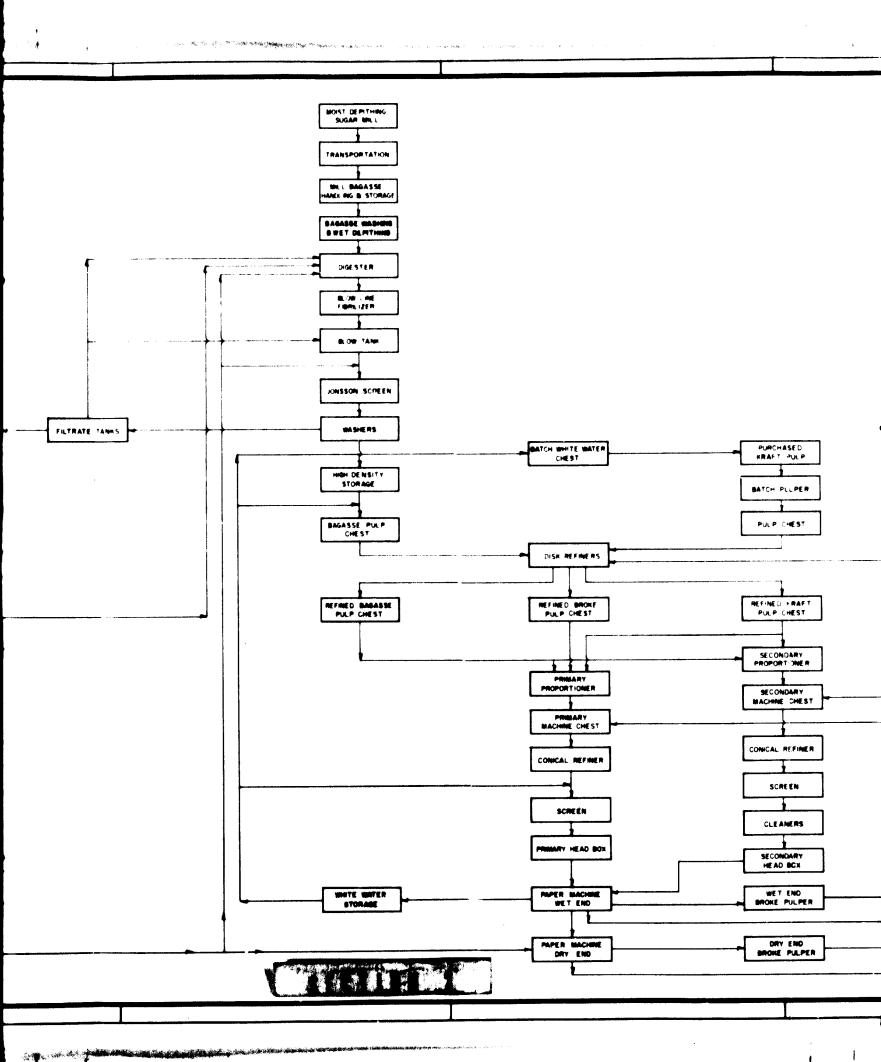
and the second

f

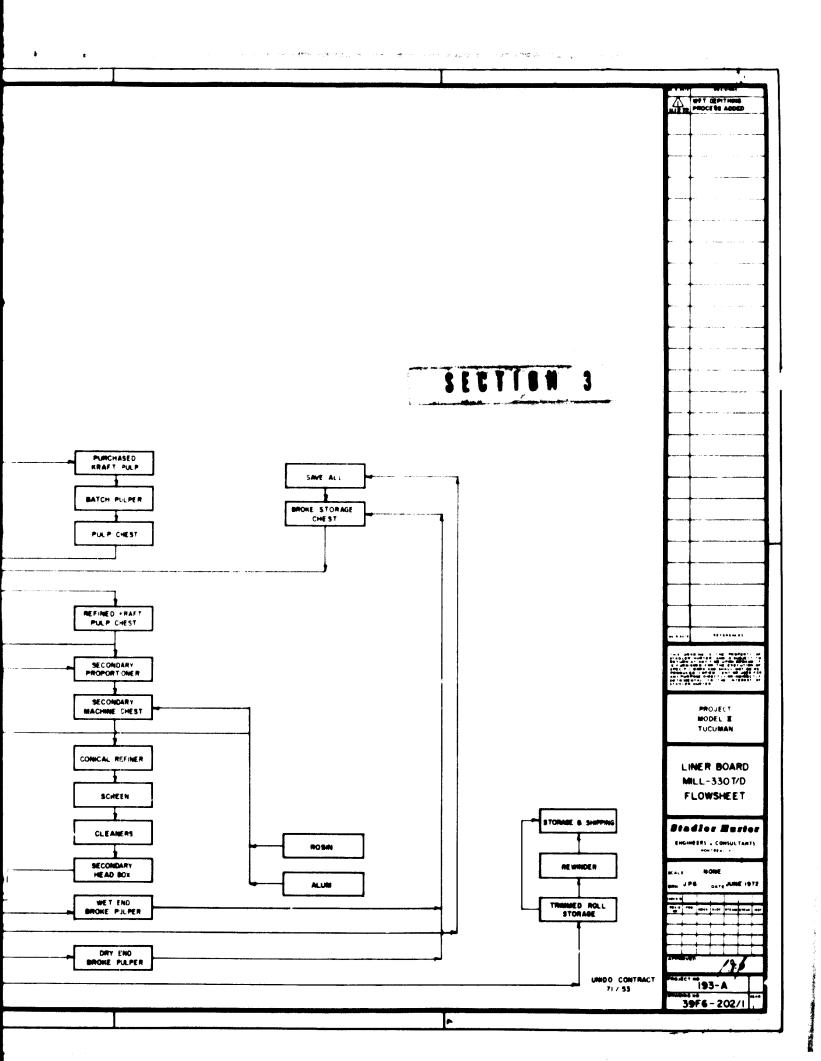
and the second second second second second second second second second second second second second second second



, so consecutive in the second s


ŧ

• •

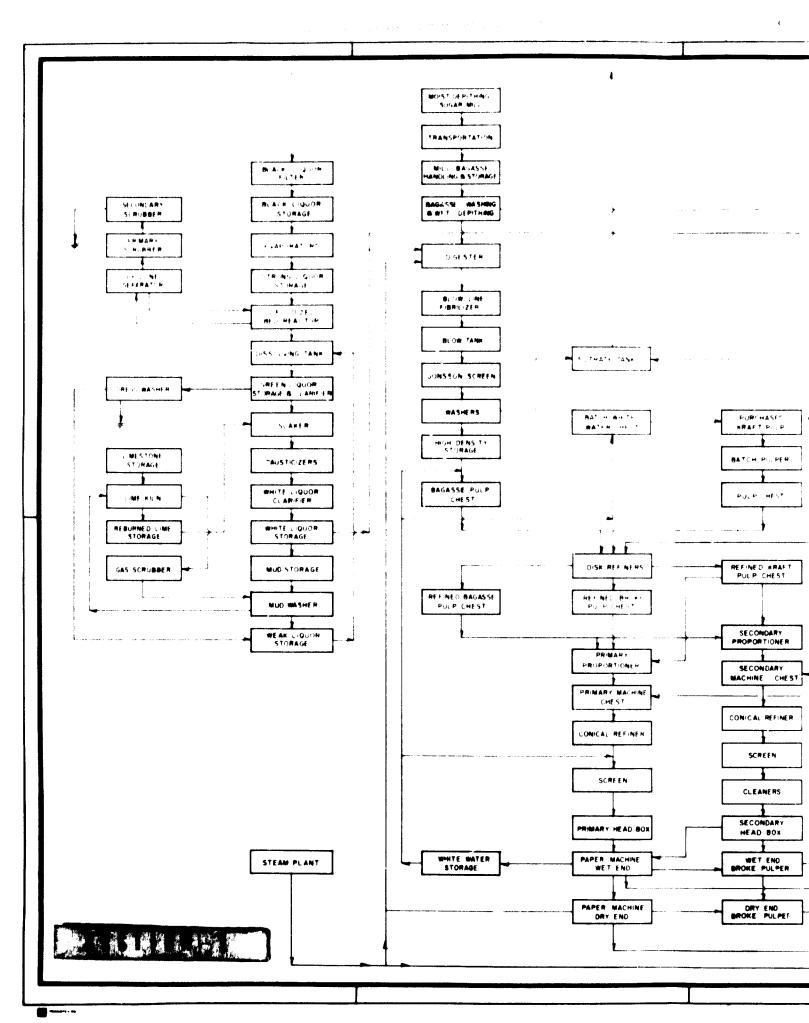

1

Ł

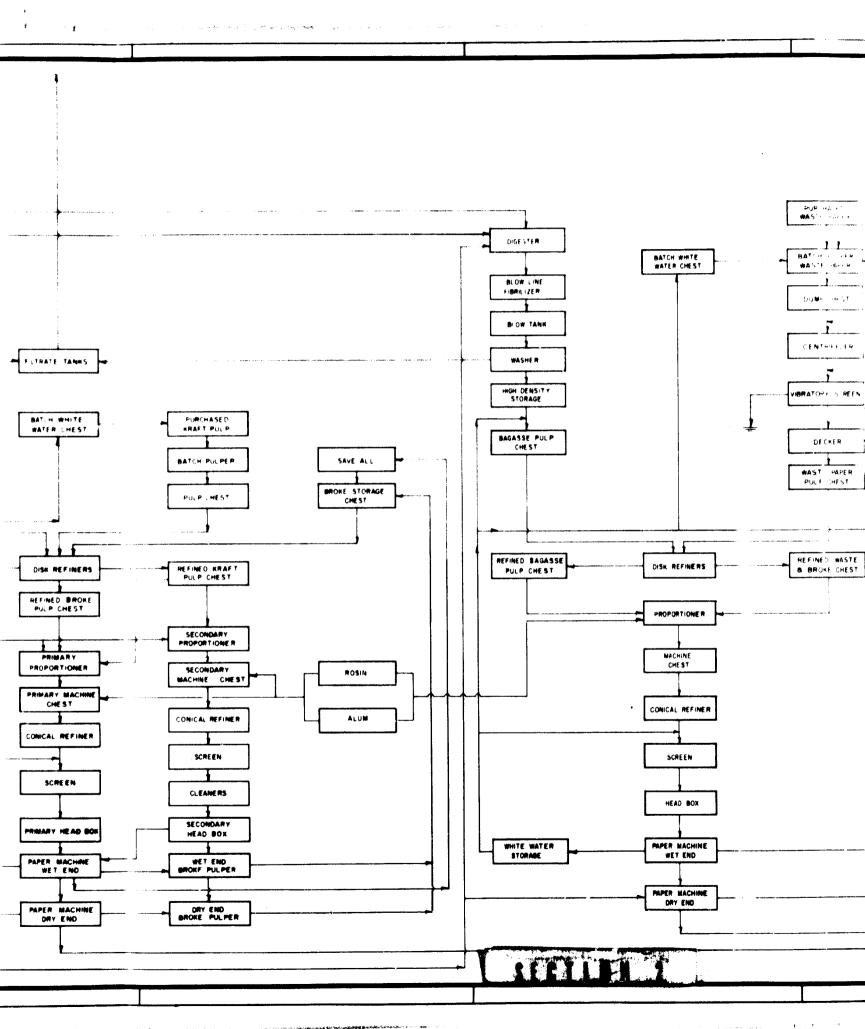
ŧ

ł

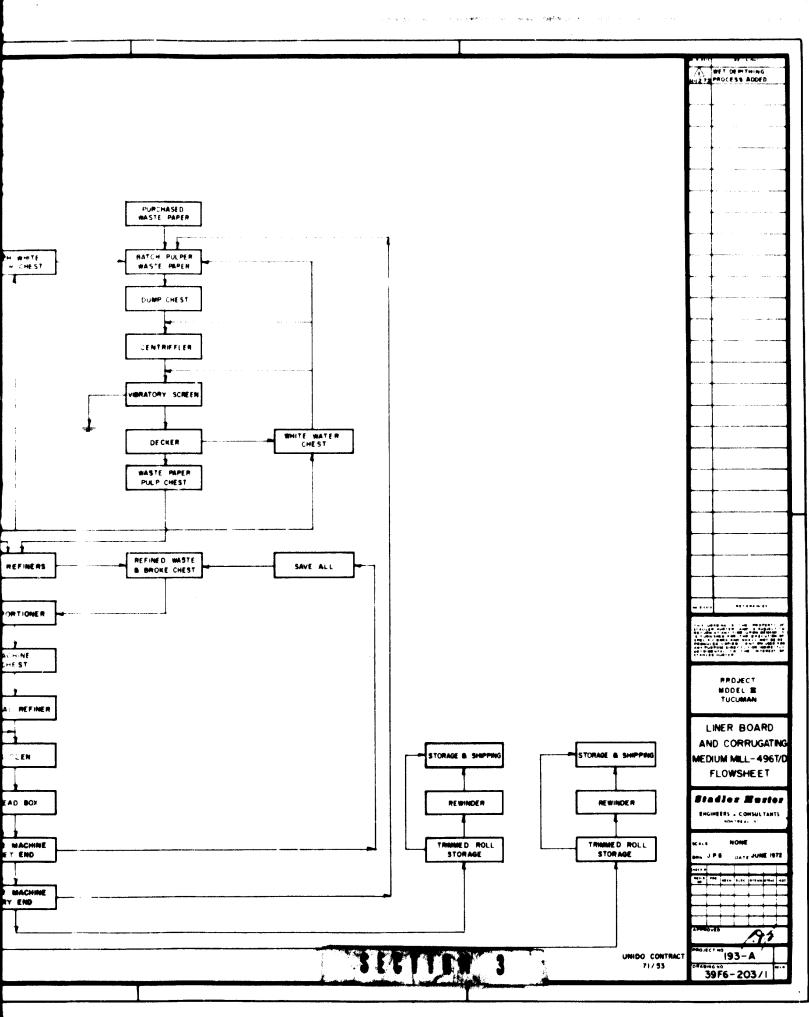
ŧ


.

ŧ


.

,


I

ŧ

. **t**

1

の時間間によ

I

-	

IĮ

Ę

I

P

12

51

Stadior Hurtor

R 93A 07/3-0. Page N/1

N. CAPITAL COSTS

N.1 Genera.

The estimated cost of construction of any pulp and paper mill may be divided into a number of components such as the Direct Plant Cost, the Indirect Plant Cost, Development Cost and the Morking Capital. These are described in detail in the following sections.

(a) Direct Plant Cost

The Direct Plant cost of mill site, equipment, buildings and civil works, completely erected and with the plant ready to run. The equipment includes all machinery and materials, other than buildings and foundations as well as freight and handling charges required to deliver the equipment to the eite.

Buildings and civil works include all buildings, construction and foundations, anchor bolts, building floor and roof drains, roads, sewers, grading and fencing.

The cost of land for each mill site is the estimated price of the area required for the plant under consideration. The assumption has been made that only the necessary area would be purchased initially but, obviously, for the smaller mills it would be wise to ensure that room for later expansion would be available.

Equipment costs are based on preliminary quotations received

Penn s

Ĭ

1

2)

P

ł

Ę

11

Ì

j,

ļ

1

1

ľ

Į

Į1

Hadler Barter

R-. 93A/07/3, 01 - Page N/2

from manufacturers for major items of equipment and on data from quotations for similar projects that have been engineered recently by Stadler Huiter. It has been assumed that all equipment will be new equipment, primarily manufactured in North America. Certain items which are known to be available in Argentina have been assumed to be purchased there

Freight and handling charges include all charges for freight to destination, insurance, and special charges for handling. The coats will vary depending on the supplier's location, but have been based on shipment from Montreal to Buenos Aires as a foreign exchange expense and delivery to sits as a local expense. It may be possible to ship from Montreal in Argenting vessels but no guarantee of availability can be made at this time.

Building costs and the cost of civil works are based on unit costs for similar construction in Argentins.

Installation labour costs are based on direct estimates of the labour involved using Canadian experience and data on similar construction. Estimatas made on this basis have proven in practice to be quite accurate.

As the mill will be far from the manufacturars of the machinery and equipment, a special allowance for the seleries and living axpenses of arectors and personnel angaged to assist in the eraction and start-up of this machinery has been provided. Period

1

ł y

11

"

Indier Zurter

R-193A/07/3101 - Page N/3

The direct plant cost does not include any inventory items.

As the estimates of Direct Cepital Cost have been prepered without extensive design work, a contingency sllowence of 10% has been provided. The additional funds thus included will cover unforeseen or unforeseeable costs which may reveal themselves during the design or construction steges of the proposed projects.

(b) Indirect Plant Costa

The Indirect Plant Costs ere the items described in the following peregraphs.

(i) Preproject Expenses

To initiate any project there are engineering, legel, financiel end administrative costs, and expenses for the preparation of feasibility atudies, loan applications and the like before the finel decision is taken whether to go ahead with the project or not. The preproject expenses depend on the size and complexity of the project. For the projects under study it is estimated that these costs could be 1% to 1-1/2% of Direct Capital Coats.

(ii) Price Escaletion

During the construction of the mill there ere slight increases in the cost of equipment end labour which heve to be added to the Direct Plant Cost. Hajor increases may

61

١

8

Ķ

Otadier Zurter

R-193A/07/3101 - Page N/4

also occur due to the lapse of time between when the estimate is made and when the project is implemented. Due to the combination of Argentine and foreign costs which is involved and the unsettled state of Argentine economy, it is difficult even to approximate what escalation might amount to. At the time of implementation all prices and costs will, no doubt, require complete review, but in order to recognize the existing inflationary trend the potential magnitude of price incresse has been estimated and included at 7%.

(iii) Purchasing and Expediting

The cost of purchasing and expediting includes the expense involved in purchasing the equipment and ensuring that it is delivered on sits o. "edule. Normally this item would vary with the size of the project and would amount to about 1% of Direct Capital Costs.

(iv) Construction Overhead

The allowance for construction overhead provides for such itema as construction management, warehousing of equipment on site, sccounting, construction equipment rental or depreciation, facilities required at the site such as temporary structures, job clasnup, miscellaneous job services and contractor's profit, plus the cost of administration, client's engineering supervision, and

700H 8

Π

1

ły

Ì

1

įĮ

ł

Į١

Ī٦

ł

ŀ

1

Stadler Eurier

R-193A/07/3101 - Page N/5

overhead during the construction period. Estimated allowance about 1.5-3% of Direct Costs.

(v) Taxes and Duties

In most instances when pulp and paper mills are built the new industry is subjact to both faderal and state or provincial sales and other taxes and duties. It is our understanding that there will be no charges applicable in this instance due to the application of the law which provides for customs exemption in the case of new industry.

(vi) Engineering

For mills constructed in North America it has been customary for manufecturing enterprises to employ consulting engineers for the specific purpose of designing the projact and supervising its construction. This practice is not usual in Europe, where the cost of angineering is often included in the cost of machinery. However, angineering has to be paid for, whether it is shown as a separate itam as in this study or whether it is hidden in the cost of machinery.

For the preparetion of this estimate it has been assumed that the process, mechanicel, and the major part of the elactricel engineering would be done by forsign specielists and that civil end structural design would be

1

1 e 1 e

ļ

Į

11 -1

٤ı

Deadler Marter

R-193A/07/3101 - Page N/6

handled by Argentine engineers. It has also been assumed that equipment installation in particular, and the overall supervision of construction would be carried out largely by foreign personnel, experienced in pulp and paper. The cost of this work would vary batween 6.5 and 7.5%, being somewhat higher for the smaller projects.

(vii) Interest During Construction and Start-up

In the detarmination of interest Juring construction, for simplicity it has been assumed that the sverage construction period for any of the mills would be 33 months and the start-up period a further 3 months, with the equipment being purchased and capital being drawn down over the period as required. On this basis, interest during construction has been calculated in accordance with standard loan terms of the Inter-American Development Bank (Banco Interamericano de Desarrollo) (BJD) and Export Development Corporation (EDC - Canada) for both of which the loan periods and interest rates are essentially the same. Interest has been assumed at 8% on capital costs as expended.

(c) Development Costs

This item, although treated separately here, is usually included among the items of Indirect Capital Cost. Development Costs are costs involved in starting up a mill

	Poin :	
	Stadior Hurter	B-193A/07/3101 - Page N/7
		which cannot properly be charged to production. These expanses
li		consist of the following items:
l		(1) <u>Training</u>
j		Thia heading include a two items:
		- The coat of axpatriate assistance required to supervise
1		the mill(s) in the initial years and to train
Ę		Argentines for eventual performance of management
		functions (See Tablea 1-G and 2-G)
		- The expenditures made to hire and train a nucleus of
Ĭ		operating staff for the mill prior to the beginning
		of the atart-up pariod.
ļ		(ii) <u>Øtart-up</u>
i		Inevitably during the atart-up of any paper mill
		there is a period of very poor operation before a
ļ		aleable product can be produced. The costs of labour,
įŁ		matariala and servicas consumed unproductivaly is
11 11		usually taken into Indirect Capital Costs. Although
j		a period of threa months has been allowed for the
l		atart-up, it may reasonably be expected that the total
Į		loss during this phase would approximate the costs of
ļ		one full month of operation at rated production including
1		all variable and fixed costs. This amount has therefore
		been shown as the coat of starting up.
ļ		(111) A management contract has been discussed and
		been shown as the coat of starting up,

Penel 8

Þ

11 11

Ì

1

Į

įł

1

11 ||

İ.

1

Stadior Murter

R-193A/07/3101 - Page N/8

recommended in sub-section G.6. The estimated cost of such e contract would vary from 1.5 to 3.5% of Direct Capital Coat being approx. inversely proportional to the mill size.

(d) Working Capital

There is sometimes a question as to whether this requirement, which cen be rather large, should be included as an Indirect Cost or should be shown as a separate item. However, since it forms an appreciable part of Capital which must be provided and therefore must be shown, it is here included with Indirect Costs. The major aspects for which working capital is required ere:

(1) Cash and Stores

Cash includes the sums required at ell times by the mill to cover peyrolla end other expenses from the start of construction and thereafter.

Storea include the etocke of bageese, chemicale and other consumable items which must be maintained at the mill to be evailable as and when required. Spare parts ere not a stores item in this sense, as they must be included with the mill equipment so that they may be deprecieted.

(11) Inventory

It is expected that in a mill of this nature an average stock of finished pulp and paper will have to be maintained equal to one month's production at the PORM (

] ; ; ;

Į

¥ 5 * [

Ĺı

l

1.

1

l

Stadjer Nurter

R-193A/07/3101 - Page N/9

applicable production rate to be able to ship customers' orders promptly and also to allow fairly long runs of each product. The value of this item is equal to one month's production cost.

(iii) Maceivables

In Argentina average terms of payments would be 90 days, thus capital equivalent to three montha production costa muat be kept in reserve to cover the period between shipment and payment.

N.2 Cost Estimates

The total of all of the above itema represents the "Plant Capital Costs". Tables 1-N, 2-N, and 3-N show estimated Direct Capital Costs, and Table 4-N shows the corresponding Indirect Capital Costs for the three sizes of mill which are being considered. Summarizing Tables 1-N, 2-N, 3-N and 4-N therefore, total capital requirements for each of the three alternative mills are

estimated as follows.

	Model I	Model II u\$a	Model III
Direct Capital Costs	24,000,000	41,500,000	60,300, 000
Indirect Capital Costs	10,450,000	17,200,000	23,100,000
Sub-total	34,450,000	58,700,000	83,400,000
Working Capital	2,360,000	6,360,000	8,400,000
Total Capital Required	36,810,000	65,060,000	91,800,000
Peacs Ley 18188	184,050,000	325,300,000	459,000,000

N.3 Foreign Exchange Requirements

The ratio of national to foreign capital required would be

POR

11

Į

ij

2

1

li 11

Į i

1

İB

۱

Į

l

I

)

Stadios Muster

R-193A/07/3101 - Page N/10

essentially identical for each of the three mills.

Taking into account that all labour and all coata estimated in terms 22 to 28 would be Argentine, and allowing realistic proportions of other material cost estimates according to manufacturing facilities existing in Argenting, it is estimated that direct capital would be evenly divided - 50% Argentine and 50% foreign.

Examination of Indirect Capital Costs shows a similar relationship thus foreign exchange in each case would amount to shout 1/2 of total capital required.

In computing the foreign exchange requirement it has been considered that paper machines would be purchased from a foreign supplier. Paper machine manufacturing facilities however do exist in Argentina - complete paper machines cannot be made but, particularly for the smaller machine, a substantial percentage of the machinery could be supplied by Argentine firms. A large and well known foreign paper machinery manufacturer has stated that approx. 60% of the smaller machine could be made in Argentine and 30% of the larger one (under license).

If it is considered that paper machines would be purchased as much as possible in Argentina the foreign exchange requirement would be reduced to somewhat less than 50% particularly for the corrugating medium mill where it could become 40-45%.

ŧ

12

11

i n

R-193A/07/3101 - Page N/11

The possibilities of purchasing the paper machines under such arrangement would require thorough investigation in a detailed feasibility study. The attraction of foreign exchange savings would have to be carefully considered in the light of delivery time end total cost compared with other machines of completely foreign manufacture. The possible problems which might arise would have to be easassed and judgement made eccordingly.

N.4 Time Schedule

In eccordance with present day delivery times for major equipment end the part experience of the consultant, it is estimated thet engineering end construction would take between 2-1/2 and 3 yeers from initiation of the work until start-up. For simplicity it has been assumed that a period of 2-3/4 years would be required for any of the three elternatives. The calculations of Working Capitel end other partiment items of Indiract Cost have been made on this besis.

A production schedule has elso been eesumed ellowing e stert-up period of 3 months at the end of which production et 50% of reted capecity would be enticipeted. Costs of stert-up have been included as Indirect Capital Expense. During the first yeer of production it is estimated that production will progress from 50% to 90% of reted end would reech full production by the end of the second yeer.

Scheduling during the construction, start-up end initial production phases is shown grephicelly in Fig. I-W.

Stadjes II anonama - cons	ILITION U	TDO		REPERENCE ING
July 20, 19	72 TABLE	1 - N	1 1 1	R-193A 07
	COST HI Summary of direct CJ		B FMFNT Q	
Item		Labour	Material	Total
1 1	lagassa Depithing	41,400	345,800	387,200
2	lagasse Handling & Storage	60,100	401,900	462,000
3 1	Digastar and Pulp Washing	88,300	738,300	826,600
4	creening and Mefining	32,700	251,700	284,400
5 4	Itock Prep. & Peper Machine	700,000	4,677,800	5,377, 8 00
6 1	linish, Store & Ship	9,100	129,500	138,600
7 1	iest & Chemical Recovery	-	-	-
8 1	luctrical (Mill)	410, 300	2,729,600	3,139,900
9 1	Matar Supply & Effluent Treat	34,400	313,200	347,600
10)	bbila Equipment	-	407,500	407,500
11 🛙	fire Protection	11,200	88, 300	99, 500
12 1	bating & Ventilation	14,700	114,000	128,700
13 1	aboratory & Test Stations	7,800	113,600	121,400
	till Shops and Stores	21,900	371,100	393,000
	Offices, First Aid, etc.	6,400	124, 300	130,900
	Chemical Hendling and Prep.	8,600	97,200	105,800
	Transport & Communication	2,400	31,800	34,200
	Steam Plant & System	193,700	1,935,200	
	tisc, 4 Spare Parts	-	1,436,300	
20 1	Freight & Handling	•	1,050,000	1,050,000

SUMMARY OF DIRECT CAPITAL REQUIREMENTS								
Ite	•	Labour	Material	Total				
1	Bagassa Depithing	41,400	345,800	387,200				
2	Bagasse Handling & Storage	60,100	401,900	462,000				
3	Digester and Pulp Weshing	88,300	7 38, 300	826,600				
4	Screening and Refining	32,700	251,700	284,400				
5	Stock Prep. & Peper Machine	700,000	4,677,800	5,377, 800				
6	Finish, Store & Ship	9,100	129,500	138,600				
7	Heat & Chemical Recovery	-	-	-				
8	Eluctrical (Mill)	410, 300	2,729,600	3,139,900				
9	Watar Supply & Effluent Treat	34,400	313,200	347,600				
10	Mobila Equipment	-	407,500	407,500				
11	Fire Protection	11,200	88, 300	99, 500				
12	Heating & Ventilation	14,700	114,000	128,700				
13	Laboratory & Test Stations	7,800	113,600	121,400				
14	Hill Shops and Stores	21,900	371,100	393,000				
15	Offices, First Aid, etc.	6,400	124, 300	130,900				
16	Chemical Hendling and Prep.	8,600	97,200	105,800				
17	Transport & Communication	2,400	31,800	34,200				
18	Stean Plant & System	193,700	1,935,200	2,128,900				
19	Misc, & Spare Parts	-	1,436,300	1,436,300				
20	Freight & Hendling	•	1,050,000	1,050,000				

ı

SUMMARY OF DIRECT CAPITAL REQUIREMENTS

٠

l

l

ľ

ľ

ſ

.

l

22 Boi 23 Mill	TABLE 1-N ctors Fees & Living Expenses	(Cont'd) Labour	Material	R-193A Page N Tota		3101
21 Bre 22 Boi 23 Mil			Material	Tot a		
22 Boi 23 Mill		-			1	
23 ML1			3 00,0 00	300,	000	
	ler Conversions	-	150,000	150,	0 00	
• • •	1 Bldgs, & Other Structures	•	2, 693, 500	2,693,	500	
24 Lan	d Purchase & Size Prep(20 Hs	ı) -	500,000	5 00,	0 0 0	
25 Roa	de & Rwy Sidinge	-	750,000	750,	000	
26 Bag	asse storage pad	-	290,00 0	290,	000	
27 Ges	supply to mill & ingenios	•	50,000	50,	0 00	
28 Pow	er supply to Mill	•	120,000	120,	000	
29 Duty	,	•	-	•		
	<u>Total</u>	1,643,000	20,210,800	21,853,8	800	
30 Cont	tingency	157,000	1,989,200	2,146,	200	
тс	DTAL DIRECT PLANT COST US\$	1,800,000	22,200,000	24,00 0 ,	000	
	\$4	9,000,000	111,000,000	120,000,	000	
Not	e: Itsms 22 to 28 would be expense thus labour fig			re local		

in the summer the

ł

ļ

ALL MAY PUMMIANG BY BYAALER, MATER EMINEMINE OFFICE IS THE PARTETY OF STALLER, MUTLE AND IS SUBJET TO RETURE AT ANY TIME UPON GEMAND. IT IS FURDIONED ONLY ND GOMEETION WITH OPECIFIC EMEN-EERING ADDIONNETE AND EANINGT DE DEONOUEED, COPIER, LAAMED DE NOOD FOR ANT FUNDEE ENERGETY OF INDIANA ADDIONNETD AND STALLED, MUTED, DEONOUETION WITH DECEFESI EERING ADDIONNETED AND EANINGT DE DEONOUEED, COPIER, LAAMED DE NOOD FOR ANT FUNDOE DIECTLY OF INDIAEATAL TA THE INTERDITO OF ANDIERD AND STALLED, MUTED, MUTED, MUTED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, MUTLED, DOOLOFICH, DE NOOD

÷

,

i

l

K

ĺ

l

Į

l L

ŧ

and the second second second second

1. S. C. S.

.

	Eustor UNI	. DO		NEFENEMCE NO	INDET NO.	BERIA NO
July 20,	, 1972 TABLE	2- N		R-193A Page	• • • •	310
	COST M			ł	N/14	
	SUMMARY OF DIRECT CA		REMENTS			
Ite		Labour	Material	Total		
1	Bagasse Depithing	65,000	541,500	606,5	500	
2	Bagasse Handling & Storage	91,600	612,100	703,7	00	
3	Digester & Pulp Washing	1 30, 100	1,003,700	1,133,6	900	
4	Screening & Refining	105,100	873 , 3 00	978,4	•00	
5	Stock Prep. & Paper Machine	820,800	6,800,800	7,621,6	500	
6	Finish, Store & Ship	18,500	263,500	282,0	000	
7	Heat & Chemical Recovery	3 00, 0 00	2,700,0 0 0	3,000,0	000	
8	Electrical (mill)	570,400	4,39 9,800	4,970,2	200	
9	Water Supply & Effluent Treat	83,700	831,300	91 5 ,0	000	
10	Mobile Equipment	-	679,200	679,2	20 0	
11	Fire Protection	18,400	147,400	165,8	00	
12	Heating & Ventilation	24,200	1 9 0 ,000	214,2	200	
13	Laboratory & Test Stations	13,000	22 2,800	235,8	800	
14	Mill Shops and Stores	37,200	61 8, 800	656,0	000	
15	Offices, First Aid, etc.	9,800	20 8,400	218,2	00	
16	Chemical Handling and Prep.	10,900	127,000	137,9	000	
17	Transport & Communication	4,300	52,700	57,0	00	
18	Steam Plant & System	311,400	3,110, 800	3,422,2	00	
19	Misc, & Spare Parts	-	2,534,000	2,534,0	00	
20	Freight & Hendling	-	1,360,000	1,360,0	00	

• •

.

İ

à.

ł

ALL BATA FURBIONES DY STADLES, MUNTES ENGINETERIKE OFFICER IT THE PROPERTY OF CTADLER, AND IS EUGLET TO BETURD AT THUE UPON DEMARD. IT IT FURBINE OFFICE AND IS FURBIALE AND AT ANT THUE UPON DEMARD. IT IT FURBINE OFFICE AND TO AT ANT THUE UPON DEMARD. IT IT FURBINE OFFICE AND TO AT AT THUE UPON DEMARD. IT IT FURBINE OFFICE AND TO AT AT THUE UPON DEMARD. IT IT FURBINE OFFICE AND TO AT AT THE UPON DEMARD. IT IT FURBINE OFFICE AND TO AT AT AT AT AT AT AT AT AT AT

l

ľ

.

•

.

•••

.

l

Ì

l

ļ

| | |

l

ľ

ĺ

{

[

l

ľ

f

1981 - 1998

- riderary

14041

- 「日本が考えたいというないない」、「これの教育の政策」ので、「大変教」の変化

UNDIO "PERSONAL PROPERTY OF	Bladies Hurtes UND
B-193A 07 31	July 20, 1972
2-N (Cont'd) N/15	TABLE 2-N
Labour Material Total	Item
enses - 547,000 547,000	21 Bractors Fees & Living Expenses
- 300,000 300,000	22 Boiler Conversions
uras - 4, 6 40,000 4,640,000	23 Hill Bldgs, & Other Structuras
(30 Hm) - 750,000 750,000	24 Land Purchase & Site Prap.(30 H
- 800,000 800,00 0	25 Roade & Dwy Sidinge
- 450,000 450,000	26 Bagasse Storage Pad
1es - 50,000 50,000	27 Gas Supply to Hill & Ingenies
- 200,00 0 200,000	28 Power Supply to Hill
	29 Duty
2,614,400 35,024,100 37,638,500	<u>Totel</u>
285,600 3,575,900 3,861,500	30 Contingency
US\$ 2,900,000 38,600,000 41,500,000	TOTAL DIRECT PLANT COST US\$ 2
\$a 14,500,000 193,600,000 207,500,000	\$a 14
uld be fully contracted and are local	Note: Items 22 to 28 would be
our figures not estimated.	axpense, thus labour fi

	UN	DIO		NEFERENCE NO	(1000 I 100	-
July 20, 1972	TABLE Cost MDI			R- 193A Page	07 N/16	3 10
	SURBARY OF DIRECT CA					
Item		Labour	Material	Tota	1	
1 Bagasse De	pithing	100,300	825,800	926,	100	
2 Bagasse Ha	ndling & Storage	135,900	907,800	1,043,	700	
3 Digesters (6 Pulp Maching	210, 500	1,753,100	1,963,0	500	
4 Screening (and Refining	175 , 600	1,347,500	1,523,	00	
5 Stock Prep.	. 6 Paper Machines	1,280,600	11,700,000	12,980,6	00	
6 Finish, Sto	ore & Ship	25,500	368,100	393,0	600	
7 Heat & Chem	nicsl Macovery	400,000	4,400,000	4 ,80 0,0	000	
8 Electrical	(ML11)	787,700	5,242,100	6,029,0	00	
9 Water Suppl	y & Effluent Trest	100,600	1,224,200	1,324,8	00	
10 Mobile Equi	.pment	-	7 93,600	793, (00	
11 Fire Protec	tion	25,800	193,500	219,3	00	
12 Heating & V	entilation	27,700	211,700	239,4	00	
	6 Test Stations	17,100	276,100	293,2	00	
14 Mill Shops		41,000	687,400	728,4	00	
15 Offices, Fi		14,400	282,700	297,1	00	
	ndling & Prep.	21,100	182,800	203,9	00	
	Communication	7,900	88,000	95,9	00	
18 Steam Plant		382,400	3,821,200	4,203,6	00	
19 Mlec, 6 Spa		-	3, 135, 300	3,135,3	00	
20 Freight & H	endling	•	2,360,000	2,360,0	00	

l

ſ

{

{

l

1

iles Xurtes -----INDER . BERIA NO UNDIO July 20, 1972 3101 8-193A 07 -TABLE 3-N (Cont'd) N/17 Item Labour Material Total 21 Erectors Fees & Living Expenses 850,000 850,000 . Boiler Conversions 22 500,000 500,000 23 Mill Bldgs, & Other Structures 6,600,000 6,600,000 24 Land Purchase & Site Prep. (50 Mm) 1,250,000 1,250,000 . 25 Roads & Bry Sidings 850,000 850,000 • 26 lagasse Storage Pad 750,000 750,000 27 Gas Supply to Mill & Ingenies 100,000 100,000 Power Supply to ML11 28 300,000 300,000 29 Duty • • • 3,754,100 51,000,900 Total 54,755,000 30 Contingency 395,000 5,150,000 5,545,000 TOTAL DIRECT PLANT COST US\$ 4,149,100 56,150,900 60,300,000 **\$a** 20,745,500 280,754,500 301,500,000 Note: Items 22 to 28 would be fully contracted are are local expense, thus labour figures not estimated.

	uns - condutants		UNID	D		NEW 141023 9. 14023	100.
Jul	y 20, 1972				i	93A 07	101
	SU	MMARY OF I	TABLE	4-N Pital Require		N/18	
	Item		CLASS	MODEL I	MODEL II	MODEL	
1)	Price Escalation		A	1,950,000	2,900,000	4,200,0	000
2)	Purchasing & Expe	diting		250,0 0 0	400,000	550,0	000
3)	Construction Over	heed	•	900,000	1,500,000	2,000,0	000
4)	Engineering & Sup of Construction		•	1,900,000	3 ,000 ,000	4,000,0	000
5)	Int, During Const	ruction	•	2,700,000	4,800,000	6,700,	000
	(Bub-Totel-A)			(7,700,000)	(12,600,000)	(17,450,	000)
6)	Pre-Project Expen		3	250,000	300,000	350,	000
7)	Development Coste	1	B	900,000	1,200,000	1 ,300 ,	000
8)	Start-up Expense		B	800,000	2 ,200,000	3 ,000,	000
9)	Management Contra	ict	B	80 0,000	900,000	1,900,	000
	(Sub-Totel-B)			(2,750,000)	(4,600,000)	(5,650,	000)
	Total A + B		US	10,450,000	17,200,000	23,100,	000
	WORKING CAPITAL		778	2,360,000	6,360,000	8,400,	000

2) Sub-Total B is expense to be written off egainst gross profite

÷. .

1

ł

3) Working Capital shown only for information

l

l

Ĩ

l

Ĩ

(

ł

1

たいのないないないの

.A. 414 3 Q YEAR - ANO "6 0 12 579 6 2 4 מאס מערובה וז דום המספוביר טל ילוטנות הטרובה אום וז הומובר זם מנוכות או סאו הישה טרשאות ז'י ל הטמוניקום טאו י ה כפאפט, המאפס טה טפס לטה אור הטמוסוב טופרורו טו אטומרניר טביווישניילים. ייסי טיקט אינופרייט טוובי מרמוטניקט איני R-193A 7 4 6 1 -----YEAR- ANO " 5 1978 N/20 MOD. I, I, I ___ PAGINA PAGE 0 YEAR - ANO # 4 1977 - CRONOGRAMA ÷ 8 1-3 4-6 7-9 0-2 ſ YEAR - ANO "3 4 1976 SCHEDULE UNIDO 4 1.1. ----1-3 4-6 7-9 10-2 1-3 4-6 7-9 00-E 1 1 Ļ YEAR - ANO 2 Contrar . 1975 TIME 121 Z 1 2 ولا مد ويولو للألال 4 111 ----------inc. ÷ N-I YEAR - ARO # 1 and ¢ 1974 FIG. 11/10 6 -------------SITE SURVEYS & PREPARATION ESTUDIO DE CAMPO Y PREP. MUTTER EMELINES TRAIMING PERSONNEL ADIESTRAMENTO DE PEDBONAL EN MARCHA DEPARTMENTAL ENGINEERING INGENERIA DEPARTAMENTAL BUILDINGS & FOUNDATIONS EDEFICIOS & CIMIENTOS CONTINGENCY - IMPREVISTOS PAPER & BOARD RATED Production - Produccion Medida de Papel y cartom ORDERS OF EQUIPMENT ORDEN'S DE COMPRAS ERECTION - MONTAJE - PUESTA ALL DATA FURMUSHED BY ETADLER I MEETHUE ASSUMMENT AND CANNET JULY, 20/72 BOBPEARS . CONSULTANTS ORGANIZATION ORGANIZACION START-UP BATE 1 1 8 < đ ü Ö İ uì ø _____ ÷ 4

1

ł

	R-193A/07/3101 Page 0/1
0. MANUFACTURING COSTS	
0.i <u>General</u>	
For calculation	of manufacturing costs the various items have
been separated into (1) Variable Costs and (2) Fixed Costs,
Variable costs,	in general, will be in proportion to the
quantities of finishe	d papers produced. The assumption must be made
that all of the items	considered will be consumed in proportion to
the amount of finishe	d product manufactured,
Fixed costs do n	ot vary with production and represent a total
expense which must be	charged sgainst whatever quantity of finished
product the mill prod	uces.
It should be not	ed that the above concepts of variable and
fixed apply to annual	costa. When expressed on a unit product basis
annual variable costs	become fixed and annual fixed costs become
variable.	
0.2 Variable and Fixed Co	<u>sts</u>
(a) <u>Variable Costs</u>	
(1) Bagass	e - Based on quantities and unit costs develope
in Sec	tion K.4 and Table 1-L.
(ii) Waste	Paper - Based on quantities and unit costs
develo	ped in Sections J.3 & E.4
(iii) Kraft	Pulp - Based on quantities and unit costs
de ve lo	ped in Section J.3 and E.3.

•

a ser a caracteria a ser

1

1

a subject a

. .

Section of the sectio

1

l

l

ĺ

{

ľ

ĺ

I

Į

ſ

{

{

ľ

ŧ

~	1 011 8	
	Stadjor Surter Manages - Consultants	R-193A/07/3101 - Page 0/2
		developed in Section J.3 and Table 1-E.
	(٧)	Papermaking Chemicals - Based on quantities and
		unit costs developed in Section J.3 and Table 1-E.
	(v i)	Miscellaneous Chemicals - In addition to the pulping
		and papermaking chemicals small quantities of a variety
		of chemicals are required for water and effluent
li		treatment, boiler feedwater treatment, slime control,
		equipment cleaning etc. A lump sum figure of
li		6 pesos per ton has been taken to cover these items
1		for corrugating medium and 9 pesos/ton for linerboard,
	(vii)	Power Consumed - Power required for pulping of
		bagasse and conversion into paper is estimated
		according to established standards for each type of
		paper. Power costs are bassd on "Regimen Tarifario
		No. 708/70" according to the extract shown in
		Subsection F.2. It is assumed that taxes would not
		be imposed thue the basic power costs only have been
		applied.
		It should be noted that power costs are partly
		fixed and partly variable. Only the variable portion
li		is shown for this item.
	(b) <u>Fixed Co</u>	<u>sts</u>
	(1)	Maintenance Materials and Consumable Items - These
		include paper machine wirss and felte, lubricants,

;

ł

Į

ſ

[

ſ

ĺ

ſ

ſ

ľ

[

E

ŧ

الم مواقعة على مالي من المسلم مسر م الم

		[
		11	Stadler Zurtes
	-	il	
- State and the second s			
	_	_!{	
	I		
		- ti	
	ſ		
	ł	1	
	•		
	1		
	•		
			1
	I		
	-		
	ſ		
	•		
	ſ		
	•	[]]	
	ſ		
	L.	1	
	ſ	j	
	٩		
	- {	i	
•	L		
1944 - A. A.	{		
	l]	
	ł		
100	٩.	Į	

consumable spare parts and materials of many kinds,
Estimated at 45 peacs per ton of rated production,
The annual coat of such materials has been
assumed as fixed because, in general, the equipment
and machinery will operate continuously even though
production efficiency may vary over a wide range,
(ii) Power Contract - The power supplier must reserve the

refiner plates, thickener wires, screen plates, other

R-193A/07/3101 - Page 0/3

necessary smount of power for the mill so that it will be available as and when required. Costs are c celculated according to "Regimem Tarifario No. 708/70", assuming that usual taxes will not apply.

- (iii) Costs of Personnel These are considered as fixed because all personnel must be paid regardless of production rats. The various tables in Section G have been used to detarmine these costs.
- (iv) Depraciation Calculated according to 30 years on buildings and civil works, and 20 years for machinery, equipment and other capital cost times. Straight line basis in both cases.
- (v) General Expense Overhead applied to Head Office and mill administration, personnel salaries and is estimated at 40% of these salaries.

(vi) Insurance - Includes insurance on buildings and their

 contents and also accident insurance for all personnel. Calculated at current Argentine rates applicable to each type. (vii) Interest on Capital - This is a book figure calculated at 8% on a decreasing balance over a period of 20 years. The method recommended in United Nations "Menual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Coets of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown in Tables O-1, O-2 and O-3. (Following pages.) 	Stadjer Surter menses - commany	R-193A/07/3101 - Page 0/4
applicable to each type. (vii) Interest on Capital - This is a book figure calculated at 8% on a decreasing balance over a period of 20 years. The method recommended in United Nations "Manual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Coats of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		contents and also accident insurance for all
 (vii) Interest on Capital - This is a book figure calculated at 8% on a decreasing balance over a period of 20 years. The method recommended in United Nations "Manual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Coats of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown 		personnel. Calculated at current Argentine rates
at 8% on a decreasing balance over a period of 20 years. The method recommended in United Nations "Manual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Coats of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		applicable to each type,
years. The method recommended in United Nations "Manual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Costs of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown	(*)	ii) Interest on Capital - This is a book figure calculated
"Manual for Economic Development Projects" has been used to determine the sum which would apply to each alternative. 0.3 <u>Coats of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		at 8% on a decreasing balance over a period of 20
used to determine the sum which would apply to each alternative. 0.3 <u>Coats of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		years. The method recommended in United Nations
alternative. 0.3 <u>Costs of Production</u> Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		"Manual for Economic Development Projects" has been
0.3 <u>Costs of Production</u> Baaed on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		used to determine the sum which would apply to each
Based on the methods and procedures outlined above total and unit costs for alternative Models I, II and III would be as shown		alternative.
unit costa for alternative Modela I, II and III would be as shown	0.3 <u>Costs of Pr</u>	oduct i on
	Based	on the methods and procedures outlined above total and
in Tables 0-1, 0-2 and 0-3. (Following pages.)	unit costa	for alternative Modela I, II and III would be as shown
	in Tables O	-1, 0-2 and 0-3. (Following pages.)

The second second second second second second second second second second second second second second second se

- Angelera

l

ł

[

{

ŧ

j

Stadior Martor monans - company		UNIDO		NEPEREnce NO.	1996 I 3691 NG NG
July 20, 1972				R-193A	07 310
Rev. November 10, 1972				PAGE	0/5
	T	ABLE 1-0			
	MODEL I - I	ANUPACTURING	COSTS		
166 A)	DT/D (67, MOI:	TURE) CORRUGA	TING MEDI	UM	
VARIABLE	Unit	Quantity Per Year	\$a Unit Coat	\$a Annua 1 Coat	Coat/Ton Product
Bagaase	O.D. tons	83,960	31,199	2,619,468	
Waate Paper	O.D. tons A.D. tons	5,0 8 0 (5, 6 40)	310	1,748,400	
Pulping Chemicals for: 46,850 O.D. Tons Bagaase Pulp					
NaOH (120 kg/OD ton Pulp)	Tons	5,620	98 1	5,513,220	
Papermaking Chemicala					
Alum	Tons	850	575	488, / 30	
Size	Tons	560	1388	777,280	
Miscellaneoua Chemicals				338,600	
Power (consumed)	KWH	55,160,000	*	1,600,000	
Fuel (natural gas)	* 3	22,112,500	**	<u>1,742,300</u> 14, 828 ,018	262 .72
* See Appendix BX, 3					
** See Appendix BX.5					

1

ŝ

ì

Į

ben of

ſ

l

(

[

[

ŧ

10.00

1000

ŧ

Stadior Murtor	UNIDO NATAN	NENCE INDEX DERI D NO NO
July 20, 1972	A-19	3A 07 310
Rev. November 10, 1972	•	0/6
T	E 1-0 (Cont'd)	
FIXED	\$e Annue Coet	l Cost/Ton Product
Maintenance Materials & Consumables	2,539,4	800
Power Contract	1,483,4	÷00
Personnel-Head Office	1,031,4	300
-Mill Admin.	1,975,0	000
-Mill Operating	2,106,3	300
-Mill Maint.	675,4	640
Depreciation	7,440,0	000
General Expense	1,202,(000
Insugance	1,000,0	000
Interest on Capital	<u>6,657</u> 26,110,3	000 740 462,63
TOTAL	40,938,3	758 725,35
TOTAL	40,938,	758 7

ł

Ì

ſ

Į

1

۱

[

1

te na anti-aria a tanàng na sama

Ţ

1

ł

Bladler Euster Bisbuilts - constants		UNIDO		NE PEREMOL	
July 20, 1972				R-193A	07 31
lev. November 10, 1972	TA	BLE 2-3		P408	0/7
,	ODEL II -	MANUFACTURING	COSTS		
330	ADT/D (6%	MOISTURE) LINE	RBOARD		
VARIABLE	Unit	Quantity Per Year		\$e Annue 1 Cost	Cost/Ton Product
Bagasse	O.D. tons	157,280	35, 39 7	5,567,240	
Imported Pulp	O.D. tons A.D. tons	•	890	29,396,700	
Pulping Chemicals for: 69,560 O.D. Tons Bagasse Pulp					
Na ₂ CO ₃ (45 kg/Ton Pulp)	Tons	3,130	585	1,831,000	
Limestone (90 kg/0.D. Ton Pulp)	Tons	6,260	33,75	211,300	
Papermaking Chemicals					
Alum	Tons	3,930	575	2,259,800	
Size Starch	Tons Tons	2,250 560	1388 860	3,123,000	
	4 V H F	500	000	481,600	
Miscellaneous Chemicals				1,009,800	
Power	KIML	99,960,000	*	2,898,800	

ł

i

* See Appendix BX, 3

** See Appendix BX.5

ALL BATA PERMONETO N'EVANCET, MARTER SEGUNETONS OFFICES IN THE POORENT OF STARLES, MARTER AND IS SUDATET TO BETUNN AT THAT DES BELAND. IT IS PERSIONED ON Second Addiments and cannot de defenentes, conto, taxato en usos for any futures materiry of taxabeta. Verse for

1

[

r

l

Stadios Mustes	UNIDO	REFERENCE NO.	E INDEX I	439 NG
DATE				
July 20, 1972 Rev. November 10, 1972		R-193/		10
	TABLE 2-0 (Cont'd)			
		\$a		
		Annue 1 Cost	Cost/Ton Product	i.
FIXED				
Maintanance Matsrials & Consumables		5,049,000		
Power Contract		2,686,300		
Personnal-Head Office		1,031,800		
-Mill Admin,		2,424,000		
-Mill Operation		2,694,100		
-Mill Mmint,		788,140		
Depreciation		12,675,000		
General Expense		1,382,000		
Insurance		1,642,000		
Interest on Capital		<u>11,361,000</u> 41,733, 34 0	371,95	
TOTAL		91,805,980	818,23	

l

1

ALL BATA FURNISHED

Stadior Mustor monants - communants	n mentana nama	UNIDO		NEFERENCE NO.	INDEX DERIA NO. NO.
July 20, 1972 Kev. November 10, 1972 Het 166 Al	10081. III - 77/d (67, 1101	ABLE 3-0 MANUFACTURING STURE) CORRUGAT 7. MOISTURE) LIN	ING MEDIU	<u>в-193А</u> мес	07 310 0/9
•- VARIABLE	Unit	Quantity Per Year	\$a Unit Cost	\$a Annual Cost	Cost/Ton Product
Bagasse	O.D. tona	241,240	38,768	9,418,000	
Waste Paper	O.D. tons A.D. tons	•	310	1,748,400	
Kraft Pulp	O.D. ton A.D. ton		890	29,396,700	
Pulping Chemicals for: 46,850 O.D. Tons Corrugating Bagasse Pulp					
Na ₂ CO ₃ (30 kg/O.D. Ton Pulp)	Tons	1,400	585	819,000	
Limestone(60 kg/0.D Ton Pulp		2,800	33,75	94,500	
69,560 O.D. Tons Linerboard Bagasse Pulp					
Na2CO3(45 kg/0.D. Ton Pulp)	Tons	3,130	585	1,831,100	
Limestone(90 kg/0.D Ton Pulp		6,260	33,75	211,300	
Papermaking Chemicals					
Alum Size	Tons Tons	4,780 2,810	575 1388	2,748,500 3,900,300	
Starch	Tons	560	860	481,600 1,348,400	
Miscellanecus Chemicals				1, 340, 400	

.

A second and a second second second

1 Sec. 1

ŧ

I

į

.

ť

ŧ

	er Hurter			UNIDO		8675180456 148.	1000.	-
the second second second second second second second second second second second second second second second se	20, 1972 ovember 10,	1972	TABLE	3-0 (Cont'd)		B-193A	07 0/10	31
			Unit	Quantity Per Year	Şe Unit Cosi	\$e Annuel Cost	Cost/T Produc	
	VARIABLE				*	• 4,498,800		-
Power				155,120,000	-			
Fuel			" 3	64,773,100	**	<u>4,873,700</u> 61,370,300	363,9	91
* See	Appendix BX	. ,3						
** Se	a Appendix 1	X. 5						
	FIXED	-						
	enance Mater	rials 6				7,588,800		
Con	sumables					-		
Power	Contract					4,169,700		
Perso	anel-Head Of	fice				1,031,800		
	-Mill Ad	imin.				2,653,200		
	- HL11 Oy	peration				3, 370, 500		
	-M111 M	aint.				1, 08 1,240		
Depre	ciation					18,220,000		
Çe ne z	al Expense					1,474,000		
Insui	ance					2,297,000		
Inter	est on Capi	tal				16, 327, 500		
42641						58,213,740	345.	20
	TOTAL					119,584,040	709.	11

•

I

,

।ू≢ ⊑ हा

ĺ

ſ

ĺ

l

ſ

ALC: LABOR

Stadjer menessi.		R-193A/07/3101 - Pege P/
P.	FINANCIAL AND ECONOMIC ANALYSIS	
	P.1 <u>Tebles</u>	
	Tables for the evaluation of fina	ncial aspects have been
	prepared and are included as follows:	(expressed in Argentine
•	pesoe)	• • •
	- Income Statement Projection	
	- Resume of Financial Appreisal	
	In reference to the different coe	it modele, numbaring of
	the above tebles is arranged (in the o	order in which they appear
	above):	
	Nodel I : 1-P, 2-P	
	Nodel II : 3-P, 4-P	
	Model III : 5-P, 6-P	
	P.2 Methods and Assumptions	
	(a) <u>General</u>	
	Tables 1-P, 3-P and 5-P (Inc	come Statament Projection),
	having been developed by standard	d methods, require no
	explanation.	
	(b) Tobles 1-P. 3-P and 5-P	
	In calculation of the Incom	e Statement Projections
	(1-P, 3-P and 5-P) the following	assumptions have been made:
	<u>Col. A</u> : Sales would begin Janu	ary 1 of the 4th year after
	the beginning of construction, a	veraging 70% of rated mill
	capacity in the lst operating ya	ar, 95% in the 2nd end 100%

Diadier Murter

R-193A/07/3101 - Page P/2

the 3rd year and thereafter.

<u>Col, B</u>: The only salas costs which have been included are provincial and municipal taxes on profitable enterprises, which we estimate at about 2%, and the national sales tax, basically 10%, but which will vary over the 1st ten years because application of Law No. 19614 and Decree No. 2558 of the National Executive Authority will grant partial exemptions to the mill.

Other calce expenses have been considered to be included in Manufacturing Costs.

<u>Gol. D</u>: Production costs have been taken from Tables 1-0, 2-0 and 3-0 taking into account that variable costs would be 70% in the let operating year and 95% in the 2nd. <u>Gol. E</u>: Indirect Capital Costs (not subject to depreciation) would be amortized over a period of five years as permitted by local regulations end atandards.

<u>Col. G</u>: Capital has been accumed to be 40% equity and 60% loane, which we consider to be realistic within the ectual possibilities of the market. Loans would be over a 13 year period at 8% interest the first payment on principal being made at the end of the first year of operation, i.e. ten equal payments starting the 4th year efter the beginning of construction.

: |

∦1 •[

Diadier Murier monsent.consultants		I	t-193A/07/3 101	- Page P/3
	For calculation d	of loan develop	oment, basic tot	ala hava
	been estimated as foll	lows: (\$ª)		
		Nodel I	Model II	Model III
	Capitel Costs	172,250,000	293, 500 ,000	417,000,000
	Less: Int. on Capital	13,500,000	24,000,000	<u>_33,500,000</u>
		158,750,000	.69, 50 0,000	383, 500, 000
	Working Capital	11,800,000	<u></u>	42,000,000
		170,550,000	301,300,00 0	425,500,000
	Equity Capital (40%)	68,220,000	120,520,000	170,200,000
	Loan Capital (60%)	102,330,000	180,780,000	255,300,000
	<u>Col. I</u> : Income tax f	for limited co	mpanies is 33% o	on net
	profits. Also the com	mpanies muat p	ay 1.5% per year	r on capital,
	reservas, and undistri	ibuted profits	•	
	A preferential sy	ystem also exi	sts for enterpr	iees which
	make investments in th	he Province of	Tucuman, By la	ew N o. 19614
	and Decrea No. 2558 of	E May 2, 1972,	the National E	Recutive
	Authority established	a systam of e	xemption from d	lfferent
	taxes, among them tha	sales tax and	taxas on reven	ue and
	capital. This reliaf	can ba up to	100% in the fire	et four
	years from start-up as	nd is prograss	ively reduced u	ntil it
	reaches 10% in the ter	nth year, the	last year of exc	emption.
	Different promotional	zones have be	en designated,	eome of
	which benefit from the	a 100% exempti	on already ment	ioned, and

.

•

,

Ponu I

H

1

Į

Ŀ

Į

Ę

I

l

ŧł

H

ĮĨ

Į

1

Stadjer Murter

R-193A/07/3101 - Pege P/4

been considered that any of the mills proposed would receive the 60% exemption rete. Income subject to taxes is derived by adding the total of column H (1-P, 3-P and 5-P) to the interest on capital so that it is not, in fact, a bookkeeping deduction.

<u>Col. N. O. P. R</u>: In order to compare the economic desirebility of the three selected models the following anelyese, shown in the above tables, have been made. The internal rate of return is the rate of interest which equalizes the real value of the belance of the ennuel cash flow with the real value of ennuel investmente.

<u>Col. M</u>: The period for recovery of capitel (pey-out period) ie derived from Col. L which shows the net cash flows. <u>Col. F</u>: For celculation of the rate of return on total investment and on equity capital the average annual groce income has been taken. These represent respectively income before taxes, and includes interests.

As this index is only for the purpose of comparing the three models the "break-even" point has been calculated on the basis of profite without taking into account the amortisation of Indirsct Capital Costs or interest on loans, i.e. columns E and G of Tables 1-P, 3-P and 5-P, but estimating an allowance for taxes on capital.

FindJer montens . c		FÍOF TANTS		R-193A/07/1	3101 - Page P/5
	P. 3	Analysis			
		To facilitate evaluat	ion of each	of the model	a in reapect to
		the others the individual	economic in	dices in Table	es 2-P, 4-P and
		6-P have been summarized a	s shown bel	ow:	
			Model I	Model II	Model III
		Internal Rate of Return	Not	9.6%	9.0%
		Years for Pay-back	Viable	6	6 1/2
		Return on Investment			
		(a) Totel Capital		19.6%	17.9%
		(b) Equity Capital		48.9%	45.0%
		Break-even Point (% Prod.)	1	7 7 %	84.0%

This summary illustrates the economic advantage of the Model II and Model III alternatives which may be considered of about equal profitability within the limits of error of the present study and without the analysis in greater depth which would be made in a definitive feasibility study. It is evident that the selection of the Model to be implemented would be influenced by the availability of capital.

Looking a little more closely at the Model I and III analyses and examining especially the production costs in Tables 1-0, 2-0 and 3-0, it may be observed that the costs of corrugating medium production improve to a great extent when it is combined with linerboard.

11

.

Ì

71

ł

11

1 1

-

ļ

-

3

11

adier Nurter

NEINEES . CONSULTANTS

	Model I	Model II	Model 1	III
	Corr.	Liner	Corr	Linsr
Sales Price per Ton	\$ ^{\$} 900.00	\$#1500.00	\$ ^{\$} 900.00	\$ * 1 >00 ,00
Production Cost	<u>723.33</u>	822.01	<u>554,18</u>	804,69
Gross Profit	176.67	677. 99	345.82	795, 31

This clearly shows the desirability of implementing Model III if sufficient capital is available. If the availability of capital is restricted Modal II could be considered because, even if a dividend policy in the order of 10% is assumed, it would be possible to expand to Model III within four to five years with considerable increase in financial advantage through reinvestment of the profits gamerated.

To consider starting with Model II, or production of linerboard only, the definitive feasibility study would have to be very thorough in respect to the possible markete and potential sources of corrugating medium during the period required to accumulate the funds necessary for expansion to production of both products. The risk would always exist that other enterprises might start up in the interim manufacturing both components of containerboard which could make it difficult to market linerboard only.

P.4 Balance of Payment Benefits

In 1970 Stadler Hurter (with COARA) carried out for the Argentine government an investment study for a newsprint mill which had as its fundamental purpose the achievement of the savings

••••

Padd

þ

11

٤ł

۲ ۱

Iı

Madjer Marter

R-193A/07/3101 - Page P/7

which such an industry would imply. In 1968 imports of newsprint represented an annual expenditure of some U\$S 40,000,000. Imports of this magnitude still exist and will continue to be necessary until national production can be initiated, hence the Government has recently iesued a call for tenders for this industry. The demand for newsprint is increasing and could reach U\$S 100,000,000 worth of imports by 1985.

In the above study it was concluded that, in order to achieve the production levels indicated by the demand projections, the required long fibre pulp would have to be imported. In view of the existing surplue of wood on the Delte of the Paname River it would not be necessary, however, to import the mechanical (or short fibre) portion of the furnish. By means of some substantial increases in planting of wood on the Delte, which were recommended in the report, the essentially short fibre portion of even the lergest production visualized could be satisfied using wood from this source.

The study which is here presented shows a large demand for containerboard which will occur during essentially the same period for which the newsprint projections were made end which could require very eppreciable imports of finished products of this type.

In the event thet industries to produce this latter product are instelled in the country, these elso will require very large quantities of short fibre pulp which, if not produced from sugar cane bagesse and the production of newsprint is implemented, must inevitebly be obtained through importation of short fibre pulps. Based on the short fibre

	dier Murter Met . Committee	R-1934/07/3101 - Page P/8
	coneumption rates of the a	lternative mills considered the value of
4	such imports could reach U	\$\$ 12,000,000 per year.
	Although these latter	supplies from abroad could eventually be
	replaced by means of new p	lantations this would require quite e number
	of years. At least 7 to 8	years would be required before harvesting
	of wood planted in the fir	st year would be possible.
,		

1

MODEL I - IN

1

Ì.

•

•

	A	B	C	D • • • • • • • • • • • • • • •	E Amortilation	F ••••••••••••••••••••••••••••••••••••
9 ministra - 14 ministra - 14		Sales Tax	- '	Manufacturing	of Indirect	Net Operating
Year	Sales	and Costs	Net Receipts A-B	Costs	C apital Cost	Income C-D-E
1						
2						
3	35.557.200	1.682.344	33.674.856	36.490.340	2.750.000	(5.565 .484)
5	48.256.200	2.554.624	45.701.576	40.197.340	2.750.000	2.754.236
6	50.796.000	2.689.020	48.106.980	40.938.758	2,750,000	4.418.222
7	50.796.000	3.191.020	47.604.980	40.938.758	2.750.000	3.916.222
8	50.796.000	3.692.920	47.103.080	10.938.758	2.750.000	3.414.322
9	50.796.000	4.194.920	46,601,080	40.938.758	• • • • • • •	5.662.322
10	50.796.000	4.696.820	46,099,180	40.938.758		5.160.422
11	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
12	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
13	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
14	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
15	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
16	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
17	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
18	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
19	50.796.00 0	5.198.720	45.597.280	40.938.758		4.658.522
20	50.796. 000	5.198.720	45.597.280	40.938.758		4.658.522
21	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
22	50.796.00 0	5.198.720	45.597.280	40.938.758		4.658.522
23	50.796.000	5.198.720	45.597.280	40.938.758		4.658.522
	9 98.141. 400	90.485.028	907.656.372	813.585.324	13.750.000	80.321.048

Ano Venta	Impuestos y Gastos de Venta	Ingresce Netos	Costo de Produccion	de Costos Indirectos	Neto Operativo	Cre
Ano Vente	• •			de Costos	Neto	

•

•

.....

محمد فالمستحد التراجي

•

arterat

ţ

f

TABLE 1-F

MODEL I - INCOME STATEMENT PROJECTION (\$a)

E	F	•	• • • H	I	• J	K Outlay	e. L Net
ortization of Indirect opital Cost	Net Operating Income C-D-E	Interest on Debt	Net Income F-G	Income and Capital Tax	Net Income After Taxes F-I	for Assets	Cash Flows J-K
.750.000 .750.000 .750.000 .750.000 .750.000	(5.565.484) 2.754.236 4.418.222 3.916.222 3.414.322 5.662.322 5.160.422 4.658.522 5	2.800.000 5.600.000 8.186.400 7.367.760 6.549.120 5.730.480 4.911.840 4.093.200 3.274.560 2.455.920 1.637.280 818.640	(2.800.000) (5.600.000) (13.733.884) (4.613.524) (2.130.893) (1.814.258) (1.497.513) 1.569.122 1.885.662 2.202.602 3.021.242 3.021.242 3.39.882 4.658.522 5.522 $5.5225.522$ 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.522 5.52 5.522 5.52 5.522 5.52 5.522 5.52 5.522 5.52 5.522 5.5	316.700 327.300 352.800 380.000 500.000 2.096.000 2.623.700 3.082.700 3.082.700 3.736.900 4.438.900 4.806.000 4.000 4.806.000 4.806.000 4.806.000 4.806.000 4.806.000 4.806.000 4.806.000 4.806.000 5.000 5.0000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.0000000 5.0000000000	(5.882.184) 2.426.936) 4.065.422 3.536.222 2.914.322 3.566.322 2.536.722 1.575.322 921.622 219.622 (231.478) (147	58.000.000 58.000.000 54.550.000	(53.000.000) (53.000.000) (54.550.000) (5.332.134) 2.426.936 4.065.422 3.536.222 2.914.322 3.566.322 2.536.722 1.575.822 921.622 (231.478) (147.47
13 .750.00 0	80.321.048	53.425.200	26.913.648	65.999.000	14 .322. 048	170.550.000	
Amortizacion de Costos Indirectos	Resultado Neto Operativo	Intereses Sobre Creditos	Beneficio Neto	Impuesto a Los Reditos y Capital	Beneficio Neto de Impuestos	Gastos de Bienes de Uso	Flujo de Fondos Neto

1

No West Preserve

and a second

R-193A/07/3101 - Page P/9

us. Marchine

which and state and state of the

and the second

K Cutl ay for Assets	Net Cash Flows J-K	M Cumulated Cash Flows	Present Value Fuctor 5%	0 Present Value of Cash Flows M x N
58.000.000 53.000.000 54.550.000	(58.000.000) (58.000.000) (54.550.000) (5.382.134) 2.426.936 4.065.422 3.536.222 2.914.322 3.566.322 2.536.722 1.575.822 921.622 (231.478) (147.478)	(58.000.000) (116.000.000) (170.550.000) (176.432.184) (174.05.248) (169.939.826) (166.403.604) (153.489.282) (159.922.960) (157.386.238) (158.962.060) (158.642.060) (158.199.772) (158.347.250) (158.347.250) (158.642.206) (158.789.684) (158.937.162) (159.084.640) (159.379.596)	0.9524 9070 3633 8227 7835 7462 7107 6768 6446 6139 5847 5568 5303 5051 4810 4581 4363 4155 3957 3769 3589 3419 3256	(55.239.000) (52.606.000) (47.120.000) (4.839.000) 1.902.000 3.034.000 2.513.000 1.972.000 2.299.000 1.557.000 921.000 513.000 (117.000) (71.000) (68.000) (64.000) (61.000) (58.000) (56.000) (50.000) (48.000) (117.000) (58.000) (50.000) (50.000) (48.000) (50.000) (50.000) (48.000) (50.000
170.550.000				(145.623)

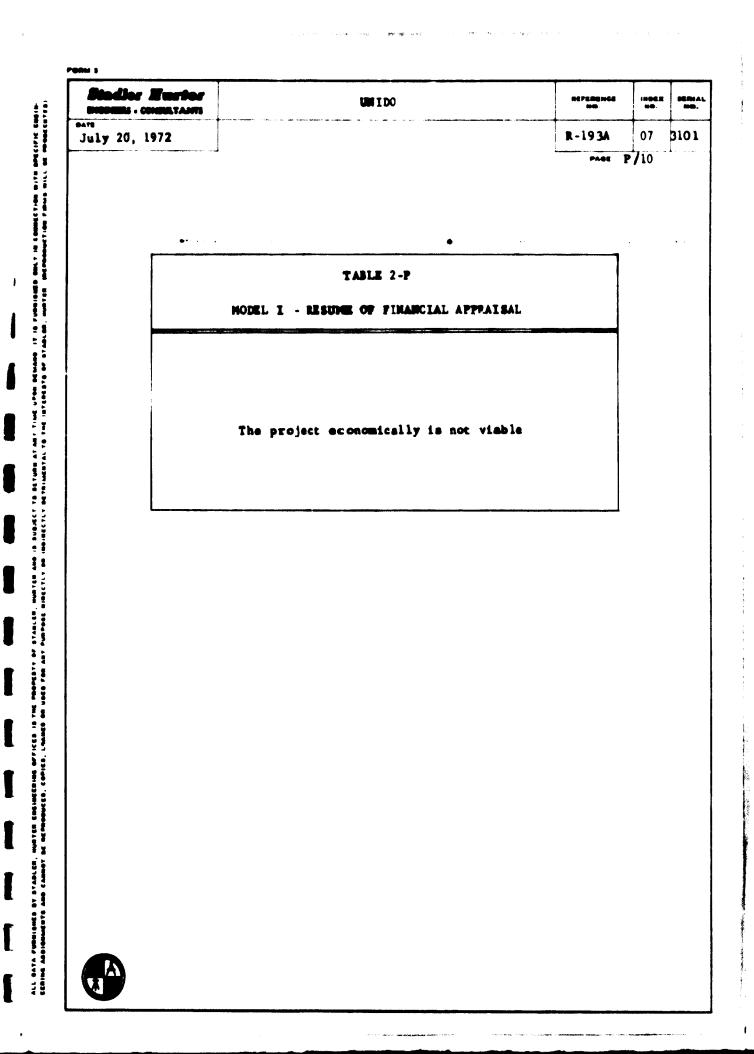
170.550.000

1

280**9**00

18 12

to	Gastos de Bienes de Uso	Flujo de Fandos Neto	Asumulado Flujo de Fondos	Factor de Valor Presente	Valor Presente de Flujo de Fondoe
		•	•		



- And the second second second second second second second second second second second second second second se

でいたのでも

1

ţ

• • • •

ų,

MODEL II

I

ł

ł

Ma China an

	•	В	C	D	E Amortization	F	G
Year	Sales	Sales Tax and Costs	Net Receipts A-B	Manufacturing Costs		Net Operating Income C-D-E	Inter on D
1							1 100
2							4.300 9.600
3 4	117.810.000	6.006.40	111.303.600	76.784.140	4.50.000	30.419.460	14.462
4 5	159.385.000	8.151.600	151.733.400	89.302.340	4.600.000	57.31.060	13.010
6	168.300.000	8.580.600	159.719.400	91.805.980	4.60.000	63.313.420	11.569
7	168.300.000	10.145.000	158.155.000	91.805.980	4.600.000	61.749.020	10.123
8	168.300.000	11.709.400	156.590.600	91.805.980	4.600.000	60 .134.620	8.677
9	168.300.000	13.273.800	155.026.200	91.805. 930		63.220.220	7.231
10	168.300.000	14.838.200	153.461.800	91 .805.98 0		61.655.820	5.784
11	168.300.000	16.402.600	151.897.400	91.805.980		60.091.420	4.338
12	1 68.300.00 0	16.402.600	151.897.400	91.805.980		60.091.420	2.392
13	168.300.000	16.402.600	151.897.400	91.305.980		60.091.420	1.440
14	168.300.000	16.402.600	151.897.400	91.805.980		60.0 91.42 0	
15	168.300.000	16.402.600	151.897.400	91.305.930		60.091.420	
16	168.300.000	16.402.600	151.897.400	91.805.960		50.091.420	
17	168.300.000	16.402.600	151.897.400	91.805.980		50.091.420 50.091.420	
18	168.300.000	16.402,600	151.897.400	91.805.980 91.805.980		50.091.420	
19	168.300.000	16.402.600	151.897.400 151.897.400	91.805.980		50.091.420	
20	168.300.000	16.402.600	151.897.400	91 .805. 980		50.091.420	
21 22	168.300.000 168.300.000	16.462.600	151.897.400	91.805.980		5C.91.420	
23	168.300.000	16.462.600	151.897.400	91.805.980		01. 71.426	
		10.402.000					

 $\{0,1\}_{i\in I}$

					Amortizacion	Re.ultado	Inter
		Impuestos y	Ingresos	Costo de	de Costos	eto	Sob
Ano	Ventas	Gastos de Venta	Netos	Produceion	Indirectos	perativo	Credi

ŧ

TABLE 3-F

MODEL II - INCOME STATEMENT PROJECTION (3a)

; 	F	G	H	I	J	K Outlay	L Net	Cum
lirect	Net Op era ting Income C-D-E	Interest on Debt	Net Luseme F-G	Income and Capital Tax	Net Incluse After Taxes F-I	for Acsets	Cash Flows	C.
	3C.419.460 57.831.060 63.313.420 61.749.020 60.184.620 63.220.220 61.655.820 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420 60.091.420	4.300.000 9.60.000 14.402.400 13.016.160 11.569.920 10.123.630 8.677.440 7.231.200 5.784.960 4.338.720 2.892.480 1.446.240	(4.80.6) (-9.60.60.6) 15.957.60 44.314.930 51.743.520 51.625.340 51.507.130 55.939.020 55.939.020 55.939.020 55.752.700 57.198.940 58.645.130 60.091.420	2.314.600 8.423.500 9.702.200 9.363.500 12.399.300 15.389.100 13.667.900 21.467.000 24.719.600 28.060.600 30.294.900 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000 31.523.000	(4, 5, 6, 200) (-9, 600, 000) 28, 104, 860 47, 457, 550 53, 711, 220 51, 830, 420 47, 735, 320 47, 331, 120 42, 987, 920 38, 624, 420 35, 371, 820 29, 796, 520 28, 568, 420 28, 568, 420 28, 568, 420 28, 568, 420 23, 568, 420 34, 568, 420 34, 568, 420 35, 568,	90.000.000 90.000.000 1.21.30.000	(90.000.000) (94.300.000) (130.900.000) 28.104.360 49.407.560 53.711.220 51.330.420 47.735.320 47.331.120 42.987.920 33.624.420 35.371.820 32.030.820 29.796.520 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420 28.568.420	(90. (134. (315. (237. (233. (134. (132. (34. (371. 5.
	Regultado	Intereses		Impuesto			Flujo de	Ac

lizacion Costos	Resultado Neto	Intereses Sobre Creditos	Beneficio Neto	Impuesto a los Reditos y Capital	Beneficio Neto de Impuestos	Gastos de Bienes de Uso	Flujo de Fondos Neto	
rectos	O per ativo	Greditos	Maco	y capitan				

, 26. K. B.

W-26.

ŧ

R-193/07/3101 - Page P/11

L Net Cash	<u>k</u> Cumulated Cash	N Present	0 Value Factor	P Present Value	R of Cash Flow
Flows	Flows	85	10#	∂¶L L×N	105 L x N
(90.000.000) (94.300.000) (130.900.000) 28.104.360 49.407.560 53.711.220 51.330.420 47.735.320 47.735.320 47.331.120 42.987.920 33.624.420 35.371.820 32.030.820 29.796.520 28.568.420	(90.000.000) (134.800.000) (315.700.000) (287.595.140) (233.190.530) (134.479.360) (132.598.940) (34.313.620) (37.432.500) 5.505.420	0.9259 8573 7938 7350 6866 6302 5835 5403 5602 4632 4289 3971 3677 3465 3152 2919 2703 2502 2317 2145 1987 1893 1703	0.9091 8264 7513 6830 6209 5645 5132 4665 4241 3855 3505 3186 2897 2633 2394 2176 1978 1799 1635 1486 1351 1228 1117	(33.31.000) (31.272.000) (103.908.000) 20.657.000 33.627.000 33.849.000 25.818.000 23.675.000 19.912.000 16.566.000 11.778.000 10.146.000 9.005.000 8.339.000 7.722.000 7.148.000 6.619.000 6.128.000 5.676.000 5.254.000	(81.819.000) (78.343.600) (98.345.000) 19.196.000 30.677.000 30.320.000 26.625.000 22.292.000 20.073.000 16.572.000 13.538.000 11.270.000 9.279.000 7.846.000 5.651.000 5.139.000 4.671.000 4.245.000 3.860.000 3.508.000 3.191.000
				32.591.000	(7.499.000)

Flujo de Fondos So Neto

ŧ

Acumulado Flujo de Fondos

Factor ds Valor Presente Valor Presente de Flujo de Fondos

Pagine P/11

ł

	ler Murter 16 - Constants	UNIDO	86/585005 110.	INDEX NO.	-
July 20, 1972			R-193A	07 /12	31
[
		TABLE 4-P Nodel II - Resume of Financial Appraisal			
	1. Interna	1 Rata of Raturn: 9.6%			
	2. Payback	Pariod			
	-	ty Capital			
	•	are from start of construction are from start of operation			
		on Investment Total Capital			
		Assets			
	<u></u> 30	<u>8.978.100</u> = 19.6% 1,300,000			
	b. Om	Equity Capital			
		<u>8.978.109</u> = 48.9% 0,520,000			
	4. Break-B	von Paint			
	Approxi	mately 77% of production			

ì

I

ĺ

l

ſ

,

n aga an sha 🛛 🛶 🗫

Å	В	C	./	E Amortization	F
Sales	Sales Tax and Costs	Net Feceipts A-B	lanufactaring Costs	of Indirect Capital Jost	Net (persting
153.367.200	7.922.444	145.444.756	101.172.950	5.050.000	38.621.806
203 .141.200	10.751.924	197.339.270	116.515.525	5.050.000	75.223.750
219.096.000	11.317.820	26 7.773.1 30	119.554.040	5.050.000	82.544.140
219.096.000	13.398.620	205 .697.3 80	119.534.040	5. 050.000	30.463.346
219 .096.00 0	15.479.420	20 3.616.5 8%	119.534.040	5.050.000	78.382.540
219 .096.0 00	17.560.120	201.535.880	119.534.040		81.951. 340
219 .096.0 00	19.640.920	199.455.080	119.584.040		79.871.040
219 .096.00 0	21.721.720	197.374.280	119.584.040		77.790.240
219 .096. 000	21.721.720	197.374.280	119.584.040		77.790.240
219.096.000	21.721.720	197.374. 280	119.584.040		77.796.246
219.096.000	21.721.720	197.374. 280	119.584.04C		77.790.240
219.096.000	21.721.720	197.347.280	119.584.040		77.790.240
219.096.000	21.721.720	197.347.280	119.584.040		77.790.240
219.0 96.0 00	21.721.720	197.347.280	119.584.040		77.790.240
219.0 96. 000	21.721.720	197.347.280	119.584.640		77.790.240
219.096.000	21.721.720	197.347.280	119.584.040		77.790.240
219.096.000	21.721.720	197.347.280	119.584.040		77.790.240
219.096.000	21.721.720	197.347.230	119.584.040		77.790.240
219.096.000	21.721.720	197.347.280	119.534.040		77.790.240
219.096.000	21.7 2 1.7 20	197.347.280	117.534.040		77.790.240
4.305.236.400	378.453.628	3.926.732.772	2.370.201.195	23.250.000	1.528.331.570

An o	Ventas	Impuestos y Gastos de Venta	Ingresos Netos	Costo de Produccion	Amortizacion de Costos Indirectos	Resultado Neto O perative

Year

1

I

I

LCDEL

TAPLE 5-1

LODEL III - INCLE STATEAU PRESENT A STATE

1 1311 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

E Amortization	F	G	Н	Ţ	J	K Outl ay	L Net
Amortization of Indirect Capital Cost	Net Operating	Interest on Deot	Net Income F-G	Treame and Dapital Tax	Net Income After Taxes F-I	for Assets	Cash Flows
5.050.000 5.650.000 5.650.000 5.050.000 5.050.000	38.521.806 75.223.750 32.544.140 30.463.346 78.382.540 81.951.840 79.871.040 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240 77.790.240	6.800.000 13.600.000 20.424.000 13.381.600 16.339.200 14.296.800 12.254.400 10.212.000 8.169.600 6.127.200 4.084.800 2.042.400	(6,3,5,0,0) (13,600,000) 13,197,306 56,342,151 66,204,940 56,150,540 56,123,140 71,737,340 71,701,440 71,663,040 73,705,440 75,747,340 77,790,240	2.969.200 11.002.500 1.519.500 12.937.100 16.339.300 20.75.760 24.549.200 28.256.200 32.573.400 37.015.400 39.979.700 41.508.000 500 500 500 500 500 500 500	35.652.600 54.221.150 67.475.240 67.475.240 62.043.240 61.075.140 55.321.840 49.534.040 45.216.840 40.774.840 37.810.540 36.822.240	130.000.000 100.000 165.500.000	(130.000. (130.000. (155.500. 35.652. 64.221. 69.924. 67.470. 62.043. 61.070. 55.321. 49.534. 45.216. 40.774. 37.410. 36.822. 36.825. 36.85. 36.
28.250.000	1.523.331.570	132.732.000	1.395.599.577	012.739.400	920.452.170	425.500.000	
Amortizacion de Costos	n Resultado Neto	Intereses Sobre	Beneficio	Impuesto a Los Reditos	Beneficio Neto	Gastos de	Fluj Fon

R-1934/07/3101 - Page P/13

K it lay Sor	L Net Cash	M Cumulated Cash	N Present	O Value Factor	P Present Value	R of Cash Flows
3ets	Flows	Flows	85	10	8%	10%
000 .000	(130.000.000)	(130.000.000)	0.9259	0 .9091	(120.367.000)	(118.183.000)
•000•000	(130.000.000)	(260,000,000)	8573		(111.449.000)	(107.432.000)
• •500•000	(165 .500.00 0)	(425.500.000)	7938	7513	(131.374.000)	(124.340.000)
	35.652.600	(38 9 . 847.400)	7350	6830	26.205.000	24.351.000
	64.221.150	(325.626.25 0)	6806	6209	43.709.000	39.875.000
	69.924.540	(255.701.710)	6302	5645	44.067.000	39.473.000
	67.476.240	(188.225.470)	5835	5132	39.372.000	34.629.000
	62.043.240	(126.822.230)	5403	4665	33,522.000	28,943,000
	61.076.140	(65.106.090)	5002	4241	30,550,000	25.902.000
	55.321.840	(9.784.250)	4632	3855	25.625.000	21.327.000
	49.534.040	39•749•790	4289	3505	21.245.000	17.362.000
	45.216.840		3971	3186	17.956.000	14.406.000
	40.774.840		3677	2397	14.993.000	11,813,000
	37.010.540		3405	2633	12.875.000	9.956.000
	36.822.240		3152	2394	11.606.000	8.815.000
	36.822.240		291 9	2176	10.784.000	8.012.000
	36.822.240		2703	1978	9.953.000	7.283.000
	36.822.240		2502	1799	9.213.000	6.624.000
	36.822.240		2317	1635	8.532.000	6.020.000
	36.822.240		2145	1486	7.898.000	5.472.000
	36.822.240		1987	1351	7.317.000	4.975.000
	36.822.240		1839	1228	6.772.000	4.521.000
	36.822.24C		1703	1117	6,271,000	4.113.000
500 . 00					24.975.000	(26.043. 000)

Jastos de Lenes de Ugo	Flujo de Fondos Neto	Acumulado Flujo de Fondos	Factor de Valor Presente	Valor Presente de Flujo de Fondos	•
		•			

٠

Pagine 7/13

		UNIDG	NOPORONES NO.	10083 100.	9681 199
July 20,	1972		R-193A	07	310
		TABLE 6-P			
		MODEL III - RESUME OF FINANCIAL APPRAISAL			
1.	Intern	al Rate of Return: 9.0%			
2.	•	k Period			
	9	ity Capital 1/2 years from start of construction 1/2 years from start of operation			
3.		on Investment			
	a. 0	n Total Capital			
	A	Assets			
		<u>76.417.000</u> = 17.9% 425,500,000			
	b. 0	n Equity Capital			
		<u>76.417.000</u> = 45.0% 170,200,000			
4.		Even Peint			
	Approx	instely 84% of production			

î

ŧ

I

| |

. Antoles

R-193A/07/3101 - Page Q/1

Q. DEVELOPMENT PROCRAMS

dier Xurter

CARDINE T ANTITI

. .

1

The Contract requests two suggested development programs - one to 1975, and a second to 1985.

Between the present and 1975 little can be done from the point of view of increasing production of papers from begasse in Tucuman - at least not within the scope of this etudy. The two existing paper manufacturing plants operated by Ingenio Leales end Celulosa Argentins are of very small capacity and the possibilities of expanding either of them to the production ranges being considered are remote. It is true that usually it is less costly to expand an existing facility than to build a new one but this applies within a limited range. It is considered that contemplation of increasing capacity of the existing mills into a range of 5-8 times present production (Model I) would be impractical.

It has already been established that the most optimietic date for a completely new project would be 1977 and that even this timing can be achieved only by prompt and decisive action. Thus the most constructive immediate program would be to initiate at once the verious proce uses necessary for implementation of a new project (See Section R).

Financial analysis indicates that the Model II and Model III elternatives are ebout equally attractive and that, from this point of view, Model I appears unattractive. If Model II has once been

POIN

Stadjer Muster

R-193A/07/3101 - Page Q/2

constructed the sxpansion to include production of corrugating medium (Model I), however, presents a much improved financial prospect.

If the availability of capital may be ignored the logical selection would be to proceed as rapidly as possible with implementation of Model III which, it is estimated, could be in full production by 1979. Since even this large mill would consume less than one helf of the begasse svailable and the market analysis shows that by 1982 (conservatively) demand will exist for a similar quantity of the same papers, a duplicate project could conceivably be planned for implementation before 1985.

It would seem unlikely that such large smounts of capital could be made sveileble within such a short period.

An alternative program would be to proceed with Model II as the initial atep and then, using the profits generated, to add the production of corrugating medium at a later time. The indications are that the addition could be totally financed in this way before 1984, thus making the expansion very remunerative.

A definits feasibility study for sither or both of these possible alternatives would indicate definitely which one would yield optimum benefits both nationally and provincially.

PORK

Hadier Musier Henning - Consultants

R-193A/07/3101 - Page R/1

R. IMPLEMENTATION OF PROJECTS

R.1 General

Inasmuch as prefeasibility studies are often considered as interesting economic exercises and are frequently shelved or long postponed, even if very viable projects are indicated, beceuse of a lack of understanding as to how projects can be or should be implemented, and also because such projects as do proceed on the basis of prefeasibility studies often take years to implement or develop poorly, this section on the implementation of projects has been prepared as a general guide.

Once a decision is reached on the basis of this prefeasibility study to proceed with one or more of the projects proposed, several further steps are required. In generally chronological order thess are:

- Formation of a company or government agency that will carry out and operate the project.
- Selection of consulting engineers.
- Preparation of a definitive feasibility study suitable for financing the project.
- Financing arrangements.
- Selection of the method of contracting for the supply of the plant.
- Construction of the plant.

¥ \$

 -
 -

Sec. 1

Stadior Hurtor

- Arrangement for the training of operating and management personnel,
- Arrangement for start-up and management contracts.

Dependent on the method and organization selected for implementation some of these various steps may be combined, some may be eliminated, and the sequence may vary, but, in general, all must receive consideration for effective and efficient planning. Training and management contracts have been treated under Section G but the other steps also merit discussion in some detail.

R.2 Formation of Company

Unless administration of the project can be assumed by an existing private company or government agency, the first step is the formation of an organization that will carry out the project and be the eventual owner and operator of the proposed plant. Initially, such a company or agency would require a very small staff, but personnel involved should have full power of decision concerning all aspects of the project and should be provided with sufficient funds to proceed with further steps. Later on, upon completion of the definitive feasibility study, the staff would be increased and, at that stage, should consist of at least a President or Managing Director, a General Manager, an Enginger with technical experience of the process involved, an Office Manager, an Accountant, as well as the necessary

Pêña

32

18

Stadjer Muster

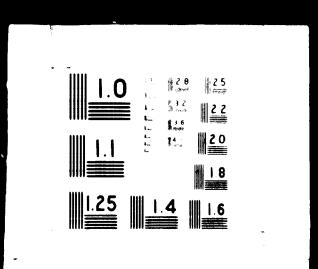
R-193A/07/3101 - Page R/3

clerical help. This staff should be augmented as work proceeds until, at the time of mill start-up, the entire management staff is available.

If the project is taken up by an existing company or agency, it is possible to proceed through the phases of selection of consultant and the definitive feasibility study using company or agency personnel, but at least one or two senior people should be assigned specifically to the project. Once the definitive feasibility study is completed, a subsidiary company or division within the organization should be set up with a staff having full power of decision concerning all aspects of the project and provided with sufficient funds to proceed with further steps. The initial staff of this subsidiary company or division would be similar to that mentioned above and would be augmented in the same manner as the work proceeds.

Unless a definite entity with funds and powers of decision is set up it is very difficult for the necessary work to proceed efficiently thus this step assumes primary importance.

R.3 Selection of Consultants


If the project is taken up by an existing firm or agency which has a staff of experienced technical personnel capable of conducting feasibility studies, the selection of consultants may be unnecessary. In most cases, however, to obtain an accurate and definitive feasibility study suitable for financing regotiations,

76. 05. 19

0695

· · ·

2

Į٤

Stadior Muster

R-193A/07/3101 - Page R/4

the engagement of an independent and experienced consulting firm will be essential. If the administrative organization which has been set up has experienced supervisory personnal the formation of a subsidiary or division specifically for execution of the project may sometimes be omitted but, even under these circumstances it is preferable to first form a subsidiary or division to administer the project to ensure that highest priority and full attention will be given continuously to the planned implementation.

The consultants may be engaged for the feasibility study alone, or for the partial or total implementation of the project as well. The consultants must be experienced in the design of the type of plant proposed and, if for technological reasons the consulting firm must be a foreign firm, the foreign consultants should be obliged to associate themselves with a local engineering firm. This will not only permit savings in foreign exchange, but will also result in a plant that is better adapted to local conditions.

The preparation of feasibility studies by squipment suppliers is not recommended, even though such services may be offered "free of charge". The suppliers' prime interest is the sale of equipment and any such "free" study will naturally favour the equipment and processes marketed by the supplier, sometimes with disregard for suitability and/or economy. Since the equipment -

18

: 1

I

1

Mindler Murter

R-193A/07/3101 - Page R/5

supplier usually is not responsible for civil and structural work, miscellaneous local costs, and product manufacturing costs, these may be estimated on the low side to make the project appear more viable, thereby increasing the possibility of the sale of equipment. Such anginearing is not, and cannot be, at no cost, it is eventually included in equipment pricing. Although it may be argued that nothing is lost by obtaining such a "free" study (since there is usually no obligation to purchase the suppliers' equipment), the information obtained is of little or no value as a basis for financing, aspecially as regards civil and local costs. In fact, most financial institutions will not provide financing on the basis of an equipment supplier's study. About the only axception is financing by supplier's credits, which would apply only to the equipment furnished by the supplier.

Although nothing is lost through obtaining a "free" feasibility study from aquipment suppliers, these studies are of limited value and generally result in a loss of time until a study acceptable to financial institutions is prepared.

The best assurance of obtaining a feasibility study that is reliable and acceptable to financial institutions is for the study to be prepared independently either by the company's own staff (if they have experienced technical people available) or by an independent consulting engineering firm.

R	-1	9	34,	/0	7	13	1	0	1	- P	•		R	/6
---	----	---	-----	----	---	----	---	---	---	-----	---	--	---	----

Bodjer Murter

R.4 Preparation of a Definitive Feesibility Study

A definitive feasibility study is prepared with sufficient accuracy to allow negotiation of financing for a specific project. Some of the work of the prefeasibility study will be repeated, but with a much higher degree of accuracy in order to arrive at market figures, raw meterial evailability and coet, capital costs and manufacturing costs which cen be thoroughly substantiated. The work for such a study would include:

- thorough merket survey including, if possible, advance commitments by potential customers,
- thorough raw materiel europy covering availability, quantities and qualities and delivered cost at mill site with, if possible, advance commitments from potential suppliers.
- thorough analysis of the plant site, including preliminary ground surveys and soil tests to allow accurate estimates of civil and structural engineering costs, and thorough hydrographic surveys to establish the quantities and qualities and temperatures of water available.
- laboratory analyses of raw materials and pulping tests,
- an analysis establishing the type and size of project,
- complete description of the proposed project,
- preparation of detailed floweheets with material balances,
- complete preliminary plant layouts showing equipment locations and building dimensions.

1

Ĭ

1

.

٤į

1

11

1

1

-

ij

Nonional - Consultants

 rapital rost estimates of a high degree of accuracy to allow financial budgets to be finalized. (This would involve calling preliminary quotations on all major equipment and obtaining unit costs for civil and structural work),

preparation of very accurate manufacturing cost estimates,

 very complete economic analysis, including discounted mash flow, rate of return, break-even analysis, sensitivity analysis, etc.

Although changes will inevitably occur as any project proceeds, a definitive feasibility study is required as the sound basis on which to proceed. Such a study would cost in the order of \$200,000.00. However, many portions of such a feasibility study, such as the site survey, soil tests, water analyses, flowsheers, plant layout, equipment lists and sizing etc., can be used in subsequent stages of the development of the project since they actually constitute a portion of the preliminary engineering. Subsequent engineering costs would accordingly be reduced to some extent.

R.5 Financing the Project

(a) <u>General</u>

Once the feasibility study has been completed, the next step is to arrange for the financing of the project. In most cases, there are two types of capital required to finance a project - equity capital and loan capital. **P00**8 8

21

11 1

İ۲

Stadjer Murter

R-193A/07/3101 - Page R/8

Equity capital is the portion of finds pledged by the participante of the company desiring to build the project Equity capital is also known as share capital since shares are usually issued to raise the money required from the participants or owners. Loan capital is borrowed on the basis of project visbility and arrangement must be made to cover interest charges and repayment of the principal.

In a few cases, projects are implemented with equity capital alone, but because of the large amount of capital required for pulp and paper projects, it is more common to use loan capital in addition to equity capital. Usually most lending agencies require that equity capital should amount to at least 30% and preferably 40% of the total capital required. The range of debt/equity ratio may be increased or decreased according to indications of the economic analysis of the project in question and, in particular, the degree of risk (economical, political, market) involved.

Loan capital may be obtained in the following forms: untied or direct loans.

- debentures,
- buyer's credits,
- seller's credits

11

Ĭ

Sindles Muster menuns.consutants

R-193A/07/3101 - Page R/9

The loans must be repaid over a period of years and interest must be paid on the borrowed capital. Terms and interest rates vary greatly and depend on the methods of contracting and financing, and the risk factors related to the project.

Interest payments begin from the time the money is borrowed. As the construction period may take several years this means that additional capital has to be provided to pay for interest during construction. (In the case of package deals and turnkey contracts, the interest payments due during the construction period are sometimes included in the contract price). Repayment of the principal usually begins only after completion of the project or after commissioning of the plant.

Many projects are financed by using two or more cetegoriss of credits mixed in the manner that best suits the particular circumstances. For instance, assuming a project where 50% of the total capital cost will be spent locally and 50% will be imported, and with 25% in the form of equity, the following breakdown might be considered:

Totel capital cost	100%
Equity	2 5%
Seller'e credit	45%
Seller's credit local coets	7%
Direct loan	28%

pinu s

ł

Indior Murtor

R-193A/07/3101 - Page R/10

Note: Tetal _apital is 105% as 5% represents interest on three loans during the construction period. Since the form of financisg chosen may affect contracting, the advantages and limitations of the different financing methods are discussed in the following paragraphs.

(b) Untied or Direct Loans

Untiad or direct loans are available from banks, or international lending agancies such as I.F.C. or the I.A.D.B. Such loans are "untied" bacause they are not subject to the supply of aquipment, materials, or services from any epecific country or for any particular application. Interest rates are the prevailing commercial rates. The period for repayment of the loan is also usually that normally obtainable, though in some cases longer terms may be available.

Under certain circumstances untiad loans are available as well through various national aid programs at very low interest rates and vary long period for repayment. Such untied aid loans are usually administered by an international commission or an international landing agency such as I.F.C. or the I.A.D.B. In most cases certain specific criteria must be met to qualify for such aid loans.

Untied loans have the advantage of allowing the borrowed money to be used for any portions of the project including

PORM

D

ĮĮ

1

Nondier Muster

R-193A/07/3101 - Page R/11

purchase of equipment, materials, and services, contracting for buildings and civil works, or payment of local rosts. Also such funds permit the free choice of suppliers so that equipment, materials, and services may be purchased from any source in the world on an internationally competitive basis.

A thorough feasibility study by a reputable independent consulting engineering firm is essential for obtaining such loans unless the funds are requested by a company experienced in the particular field and the feasibility study has been prepared by company personnel.

(c) Debentures

Debenturss ars in effect a mortgage on the company bsing formed. They may be taken up by banks, trusts, insurance companies or private subscription but they confer no ownership rights upon the subscribers. Debenturss are a common method of obtaining loan capital in developed western nstions. Loans obtained in this way are almost identical to untied or direct loans in application but they usually have long repayment terms.

(d) <u>Buyer's Credits</u>

Cartain countries will offer a "line of credit" to other countries on a government-to-government basis. These funds are usually administered by the local central bank or

-001

Ĭ

i e z d

¢ }

H

25 21

Stadjer Euster

R-193A/07/3101 - Page R/12

national development bank, and interest rates are eubject
to a small additional charge making them higher than in
(b) or (c). Normally the borrower also has to meet certain
specific criteria to qualify for such loans.

Funds obtained in this manner are, in effect, a form of buyer's credits and can be used for any acceptable projacts but expenditures are restricted to the purchase of a major portion of the equipment, material, and services from the donor country.

Many countries also have "export" credits available which constitute in affect, a lina of credit for a specific project and are usually administered by a government agency of the country from which the credit is available. The Export Development Corporation of Canada is a typical example. Interast rates usually conform to commercial rates but, because such credits are to promota exports from the countries making them available, the tarms of repayment may be somewhat better than untiad loans (except aid loans) and the time for repayment longar.

Buyar's credits are generally limited to the purchase of aquipment, matarials, and services from the country providing the credit although limited amounts may be made available for local costs (usually a minor percentage of the goods and services supplied). The number of suppliers is

PORM 8

H

Ĭ

1

Stadior Murtor

R-193A/07/3101 - Page R/13

not restricted but the agency providing the credit normally wishes to deal with only one "exporter".

The employment of a consulting engineering firm to perform the functions of the exporter has distinct advantages in that the consultants would be in a position to purchase in accordance with standards of optimum suitability and best price and delivery based on competitive bids from any qualified supplier (piecemeal).

Since with buyer's credits, the suppliers are paid directly by the lending agency in accordance with normal progress payment schedules and other commercial terms, refinancing charges are avoided and consequently costs are kept to minimum, particularly for piecemeal purchasing based on competitive bidding. As with untied loans and seller's credits, project purchasing may also be done on a "package deal" or "turnkey" basis if desired but properly supervised piecemeal buying can achieve substantial savings.

The chief disadvantages are that buyer's credits are for the most part restricted to purchases within the donor nation and little or no funds can be used to cover local costs. The first of these is not usually a serious drawback in any industrialized country granting buyer's credits. The second is quite often covered by loan guarantees to

Penu

1

ĮÎ

Į

ĩ

¥ 8

i 1

Stadior Muster

R-193A/07/3101 - Page R/14

banks of the donor nation which provide funds for local work.

(e) <u>Seller's Credits</u>

Seller's (or supplier's) credits ere provided by suppliers of equipment and materiels and may be provided by a single manufacturer or a consortium. Because of the financing complications that would occur with piecemeal purchasing (due to the large number of suppliers and contractors that would be involved), seller's credits are almost elways used only for purchesing on s packege deal or turnkey basis.

Seller's credits are applicable only to the equipment, materials, and services supplied by the package deal or turnkey contractor, and are thus much more restrictive then any of the types of loan previously discussed. Many of the advantages of piecemeal purchasing ere lost. Seller's credits like buyer's credits are limited to the supply of squipment, materials, and services from the country from which the capital is obtained, and further restricted in most cases to products of specific suppliers. A portion of local costs can usually be covered, but if all costs must be covered as in the case of a turnkey project, the contractor must make special arrangements.

POR

Stadjor Muster

R-193A/07/3101 - Page R/15

Seller's credits often appear to have low interest rates but, this is usually merely optical. In order to be able to provide credit, the contractor for a package or turnkey project must first obtain insurance coverage from his national export insurance agancy, such insurance covers default in payments to the contractor to the extent of 80 to 85%. With this insurance covarage plus the contractor's guarantee for the 15 to 20% balance, the contracting suppliar can obtain loans from commercial banks to provide the capital required.

The financial charges for sellar's cradits era appraciably higher than for direct loans or buyer's cradits. If they appear low, it is because a portion of the inharent additional expanses has been discounted forward and added into the price of the package deal. Sellar's cradits are the most expensive form of financing a project but, on the other hand, are usually easily end quickly arranged.

R.6 Method of Contracting

(a) <u>General</u>

In previous sections mention has been made of "piecemeal purchasing", the "package deal" and "turnkay contracts" which are standard methods of procuring necessary equipment, materials, and services for execution of a project. As these

; [

R-193A/07/3101 - Page R/16

Madier Murter

Į

11

11

¥ 1

are to a large extent related to the type of financing which can be obtained and can have substantial effect on the efficiency and cost of imp?ementation they are discussed at some length in the following paragraphs.

(b) <u>Piecemeal Purchasing</u>

Unrestricted piecemeal purchasing is possible only with financing through untied or direct loans, or funds raised from the sale of debentures. Buyer's credits will also permit a degree of piecemeal purchasing but purchases are generally limited to the nation extending the credit unless the particular item or service is unobtainable in that nation.

In the case of piacemeal purchasing the equipment and materials are purchased individually from a number of suppliers on a compatitive basis and contracts for foundation work, construction of buildings, mechanical and electrical installation, and erection work are let on the same basis. In order to purchase in this manner a government agency or a company usually must engage the services of a consulting enginearing firm to carry out the process design and the layout of the plant, to select and size the type of aquipment to be used, to prepare specifications so that the various itema of equipment can be purchased item by item from different suppliers, and to carry out the

Peau

li

1

1 2

ł

"

ł۲

Hadjer Hurter

R-193A/07/3101 - Page R/17

complete detailed design of the plan' so that contracts can be let for its construction. In addition, the consulting engineer would supervise the construction and carry out the project management, purchasing, expediting, scheduling and cost control, if the client cannot or does not wish to perform these functions.

Piecemeal purchasing has the primary advantage that the best and most suitable equipment can be purchased at the lowest possible price. Since the consulting engineer can work directly in the interest of his client and can be completely impartial in the selection of process, equipment, and design alternatives, this flexibility also ensures the most efficient and economic design of the mill with consequent savings in both capital and operating costs.

Another advantage is that a project can be completed more rapidly using piecemeal purchasing with detailed design and coordination by an engineering firm (as opposed to a package deal or a turnkey contract). Time sevings in excess of one year may be achieved. For example, process design work and equipment purchasing can proceed almost simultaneously, and construction can begin before completion of all structural design details.

Stadler Murter

łį

Į

Ę

٤į

1

ł

łĮ

ł

Į

|| ||

۱I

Į

1

R-193A/07/3101 - Page R/18

The chief disadvantage of this system is that there is no precise fixed price for the complete plant and financing must be arranged on the basis of accurate estimates by the consulting engineer.

In industrially advanced nations, piecemeal purchasing with detailed design by a consulting engineer is the method most commonly used for pulp and paper projects because it assures the lowast coat and the best and most suitable equipment for the project.

The cost of engineering in the datail necessary to permit piecameal purchasing depends on the scope of the work and the size and complexity of the project. For the average pulp and paper project process design, specifications, detailed piping, mechanical, electrical and structural design, and supervision of construction would cost approximately 6 to 7-1/2% of direct capital costs.

If purchasing, expediting, cost control, and project management are also included engineering expense would be in the order of 9 to 10%.

(c) Package Deal or Turnkey Purchasing

In the case of a package deal, a contractor, an equipment supplier, or a consortium of equipment suppliars, furnishes a "package" usually consisting of all equipment, for the proposed project and all engineering services, as well as

-

Ŀj

.

) e 5 1

Ì

I,

ļ

ŧł

1

18

1

L

Bindler Martes

R-1933/07/3101 - Page R/19

specialized erection assistance for the Loscallation of the equipment. The purchaser provides the civil works, construction of the buildings, common labour for erection, and other local costs.

Turnkey is essentially the same as the package deal except that civil works, buildings, sll erection labour and all local costs (except working capital) are included in the total price. Turnkey is not as common as the package deal since local costs cannot usually be financed by buyer's or seller's credits and special arrangements must be made to cover such expense.

Both package deal and turnkey type contracts may be financed in any of the ways which have been discussed but they are most commonly associated with financing through buyer's or seller's cradits. If untied loan or debenture funde are conjusted a client will usually favour piecameal purchasing mless other factors make package or turnkay more suitable.

The chief advantage of the package deal or turnkay contract is that the client deals with only one party who escumes full responsibility for the whole project. Also costs are more precisally defined since, for the turnkay errangement the total price is fixed, and for the package deal the foreign exchange portion can be fixed. In both

.

!!

Stadior Musior

K-193A/07/3101 - Page K/20

cases payment are is fally made in three to five installments, frequently including interest during construction, so that little work is involved in processing payments.

The two principal features - assignment of teaponaibility for the entire project, and fixed price - have spowerful appeal especially to governments, state companies, and private firms with limited technical resources as only one decision has to be made, the selection of the package deal or turnkey contractor. The purchaser assumes a minimum of responsibility and requires only a small steff to administer the implementation of the project.

Offsetting these adventages are factore which can cause package or turnkey arrangements to be unattractive. The most eignificant of these are:

- Increased capital costs

- Increased time for implementation

- Uneuitable equipment or equipment layout

The cost 'of detailed engineering for accurate pricing would be prohibitive to the contractor must determine price from preliminary engineering only. For protection, therefore, contingency provision must be ample. Similarly, since complet'on time and performance penalty clauses are usually included in such contracts, protection must also be included to cover any delays in delivery, construction, or achievement

Peen

I

.

"

ţ.

Hadjer Zurter

R-193A/07/3101 - Page R/21

of guaranteed performance which might occur,

The normal arrangement of payment in a celatively small number of installments, and generally unrelated to the rate of expenditure, necessitates an additional allowance for refinancing of subcontractors and auppliers. The costs of such refinancing can be significant and, of course, must be included in pricing.

In many cases too a factor is applied to compensate for the cost of preparation of unsuccessful previous bids for other projects. Typically, the cost of such bid praparation might be in the order of \$150,000 to \$250,000 which is too much to absorb if it can be recovered.

Relative to the project in hand these are all unproductive costs but they are almost always included in pricing for package deal or turnkey projects. Depending on the axtent to which they are applied in the price estimating, overall costs can range from 20 to 35% mora than for piecemeal purchasing with independent engineering.

The time required for completion of a project is an important factor to be considered in both the financing and contracting phases. Delay in the start-up of a new enterprise inevitably results in loss of profits which might otherwise have been generated, thus, once the decision to proceed has been made, time saved is equivalant to money earned.

1

11

Ĩl

11

₫.

Nadjer Hurte

R-193A/07/3101 - Page R/22

Dusign by consulting engineers and piecemeal contrecting again show advantage in this aspect. When policy decisions have been made and financing has been arranged the consulting engineer may be engaged to begin detailed design work immediately and, under normal circumstances, construction can begin about six months after epprovel to proceed has been confirmed. From this point, depending on the size and complexity of the project, completion will take 2 to 2-1/2 yeers, i.e. a total of 2-1/2 to 3 yeers elapsed time will see the beginning of the operation.

For the package deal or turnkey errangement, on the other hand, relatively complete specifications must first be drawn up to permit fixed prices to be quoted with any degree of accuracy. This work will normally take four to five monthe and, adding three to four months for preparetion of bids and some additional time for enelysis of the bids received and contract negotiations, it is possible that e year or more can elapse between the time of decision to proceed and the beginning of detailed design. From this point the time required would be essentially the same as for piecemeal purchasing with consultents, i.e., 2 to 2-1/2 years.

PROM

17

ĮĮ

adier Marier

K-1954/07/3101 - Page R/23

Some economy in time can be schieved in package and turnkey contracta by preparation of specifications and nagotiation with potential contractors concurrently with arrangementa for financing, but usually, implementation of the project by package deal or turnkey contract will consume an additional year.

Plant layout and proceee design, being planned around equipment and processes in which the contractor has interests, may be deficient due to undercapacity, overcapacity, or even improper applicationa. This is natural aince the package deal or turnkey supplier will wish to incorporate as much as possible of his own machines and process systems, but this can easily lead to basic design defects with consequent production problems.

Efficiency in operation and maintenance, in particular can be advaraely affected by inadequate planning and unsuitable equipment selection and/or layout. The contractor has no continuing responsibility for operating and maintenance costs and consequently will devote little engineering time to optimizing these important aspects. Since a fixed price is involved the major pert of engineering effort is usually directed towards putting together a plant which will meet production and quelity specifications but with a close sye on the quoted price in order to achieve maximum profit from the contract. Pee

51

Nadjor Hurter

R-193A/07/3101 - Page R/24

Contracting through a consortium of suppliers (as opposed to a single supplier) can increase the probability of operating or maintenance problems since each consortium member will wish to incorporate es much es possible of his own machinery, equipment, end processes. This can result in non-uniformity or lack of standardization in the many minor iteme such es pumps, motors, couplings, agitators, velves, instrumentation, etc. etc. which ers common to most of the process states. The result large spare parts inventorias and complicated maintenance procedures contribute to excessive repeir and maintenance costs.

R.7 <u>Conclusions</u>

Summarizing the content of whet has been stated in this chapter, the following conclusions may be drawn:

(a) For efficient end auccassful implementation of any project there is a well-defined procedure which, if followed, will yield best results. The lieted ateps must-ell be considered -in the planning and organisation must be errenged eccordingly.
(b) A controlling agency or company must be formed to meintain coordination and administar the work. Personnel or committees must be given full powers of decision and eccess to edequate

funds.

	R -193 A /07/3101 - Pag∈
(.)	Since any company which is formed is not likely to have
	sufficient manpower and technical skills, experienced
	consulting engineers are usually engaged.
(@)	The most important basic step is the definitive feasibility
	study. Both from the point of view of validity and arrange
	ment of financing, such atudies are performed best by
	independent consultants.
(e)	Financing may be arranged through a number of generally
	standard procedures. Each method of financing has its
	advantages and disadvantages and selection must be based o
	the requirements and circumstances relevant to any specifi
	project. Untied loans or debenture funds, however, permit
	maximum flexibility with consequent savings in capital and
	time.
(f)	Design and piecemeal purchasing by experienced engineering
	consultant will yield best results. Package deal or the
- 44 - 14 - 14 - 14 - 14 - 14 - 14 - 14	key contracts should be considered only when financing
	arrangements or other circumstances leave no alternative.

1

ł

İ

ĺ

I

I

Į

1

I

١

