TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

06167

amuntion © menslim Mazits

Cund mations
mow Feden 1Me

 Even Ni:
L. ...
lwat marminu minn armin

Mr.tinw	
,	
1	 twner*
$1+4$	
M	
,	
',	
- m	-
+14	
14	
\cdots	
41	
\#11	
風	 Warem
\%	
*	
CVII	 ITin. Iaman
XVIII	

 *atry

 1 a

Activity abernatives of peormet A

lach pirmbuct, of course, will not be connected with the same attivities in every case. but only with those activities which are applicable by economic comsiderations to the given product. In special cacos, such as trangortation and commmication. sercial activitio are comected, determined by the economic nature of the prothet.
(hre wethe muled in general contains (0)-k) activities. The whome of varions activities is infetmite.
 should (fet(erimbe the whme ifmantity) of $x_{1,1}$
 g.tel arewate ot a werer model. The pregramme is

The kermmo in whend programmes will proside all andere the the fillowing ghentoms
 in 1970

 are they hemg randotructed of disarded:
Wlit hat mel what size of new facturies sumbl! ? hemb:

What whitl ine ramoted and mperted, in whis

The amalel leal. with the plat prepared in eralt tional methous as an official progratimes The tar

 The monel preduces mote valimis ind jerovide, an
 her ui alternatives. The programme is all agpegatel. complete proxluction, investmetti, iechacal develop ment. export ingort plan of a sector it the same tille Thie r valnes, variables, of exurse cannot le determined cohntarily. The programne shon!! cont tain several real limiting tactors.
The reality of the prugramme terents in the realit, of the limition factors Such limitug facturs
are, for example: the upper limit of export, capacity limits and technological proportion within the sector. Therefore the elaloration of preliminary studies which we mentioned earlier has a decisive importance from the point of view of realistic model and programme construction, since the limiting factors of a programme should be determined hy those preliminary studies. We may draw up a simple scheme of rehitionships between limiting factors and programme (as shown in the diagram on page 125).

Basic computations on the sectoral level are prepared with limear programming that is, loth limiting facter, and function are given in the form of linear equations.

(b) Sensitiaty computations on the sectoral level

Oue part of the limuting factors at a given moment is independent of the will of the planners (capacity limits): another part can be changed during the period of calculations (investment funds).

When the optillum programnie has been compilted. computation of cumulative effects induced by any of the changes in varions factors of the model becomes easy. The object of sensitivity conputations is tio muasure the effects caused by changes of one or anc ther factor for the sector s programme as a whole. Therefore the sensitivity computations play a deciive role in the process of project evaluation as well as in the formulation of criteria for project evaluation Changing construction expenses, for example. wis are able to see the effects of this change on the whole investment activity of the sector: moreover. changes int outbit. export, import and other factors might he considered also.

Ti, construct a sectoral nudel may take from one (") iwo years of hard research work. But once the numel is ready, computation of a given programme or a anotivity analysis will not require more than a fex hinurs to accomplish on computers.

(s) Rastic compulations on the mational Ietel

The in'ject of these computations is to find the optimum allucation proportions among sectirs hy mathematical programming. This method is called in the Hungarian litreature "two-level planning" or the methot of itration. The mubstance of the method

Abstract

 +w.

 (f) the tremomennwion tratuen wh the vervev it enomery expermer and can ollor.

 corlumetrid provers

$$
w
$$

娥 ：monaver

 －

 \rightarrow

 －An（nombly

 －nathe

 ninve

 ander

 Nowe 1 nover numere

 ＂firyyy

44．

vely

我

 （4＊

－

4类も：

 whety

 land a preat

 (0x+40w

 nevivent

 0

 $x \rightarrow 0 \rightarrow 0$

 numunum

in encimipuce a

 4n Cum

 and partinem mand turn

I wracherrmom

 1ur

 : te: verty 1 (

Is of baak importance in any periject for the mederni-
 pecijects for the estabhishomemt of mew activitice in a miven induatrial envirionment, an deacribed in secinom $F T$, illustrate the application of auch proerammes, reference made, in rectron (3 , to a specific example relating to the metal-transforming inchatt in l'ruguay
last, after poonting cone. in section H , that the usetulness of proier? evaltuation and selection must tim be envi aped from wher angles, unconnected with investemem declaions in the framework of an
 wheratioms on lier much discusomed proli, mion the
 Wnil an imt pretation fifferima frim that in chlimon curreicy.

A. INHITRIAL. Pemionamind.

An induarial hevelipmem strategy consises, in raence. in the evtablishment of rurition for the guidance of puhble and pirivate inveatment policy at the level of the niagoe socturs of imflutry and of the intratructural facilites exerting the greated imilurice in inchotial primhetivity Such a strategy. more or less explikl't and cheremtiv defined, exists in miat of the I allit Imerican countries. It mav. triwever, b formulated in different ways, dripencling int the mature of the excling development prongramnine

I: ume rave, an interwectival order of preceterce it ewablighed dirertly, the prowity sectors, and aven the prodiction and investment targets for ewh. are expresulv indicated the hather formong an megral pert of min over all develepinent programme draned wo maximise netional inerime and coven. in andetion of further other chiectives of a distrituitumal char acter or relationg to the extermal aseter if the ecrmonv In twe category ape to be buod
 Mlanning prixes is artually under way. these ape mit ver in the mejority in Latm America

In thlore metameres, indectrial development piori-

 vithal monewniem poojerte hand on the pepertial

 boto the morengmomina it a preperty thened inAlusivid infractictione. the movere rap tevelopmem

indoncrind Sevelopment reate on a series of investmants and promotional setivities on the part of the pabice and private sactars, which are mot proframmed bur barely ea-ordimated through the inentives and restriction embodied in the priority criveria.

These criteria of course reflect the differencrs in exinting conditions, aptitusies and hasic resources available for induatrial development, as well as each comentry's inntitutional structure, and its ideological leanings or the tenor of its over-all econome prolicy During the last two decades. the industrial strategy prevailiong in latim America has consisted, in most caces, in an import subatitution policy hased on severe and not very selective restriction of imports beth throngh the cuatoms tariff and by means of quantitative and exchange controls. Recently there have been signs of a tendency to adajt this pelicy to the new conditions currently to be found not only in each individual country but in the internatornal sphere. At the mationsi level, all advaikeal stane of indinetialization is being reached in respect of consumer goods, some of the simpler types of capital goods, and intermediate products. On the international level, both the formulation of regional intecration achemes and the opening ui) of new proso pects for the concessim of preferential customs treatment by the developed countrifs on a basis of non-reciprocity are leading to a reshapink of industrial atrategy, with greater emphasis on strict selec tion of the induatries to be promoted and the draree of protection to be pranted them. The promotion of exports and the redistribution of internal income are emerging as new development pelicy objectives which are not alwsys easily harmonized.

A certain number of Iatin American countries. however. are following a middie course between the two times in induatrial development strategy of which montien has been made. The comutries in question. ontctanding among which are Brazil and Mexico, hove frew up mecessive sectoral development proeramures, that in to say, propraemenes comprising rroduction and investment targeta, allocation of reapmrces. definition of the apheres of juriadiction of the pablic and private sectors, and a set of incentives and other econowic policy measures whome application is comined to the sector eonacermed. with tue regard to the reciprocal competibility of the varions antors' requirements. and to their consiotersy with the country's over-all growth prospects monder a feneral programine of an indicative tupe. Sectorel procrammes on these lines have been formalaned and applied, emerally with great succesa. Ser the installation or expansion of the iron ancl sheel monor-vethirk. hewvy metel-trandorming and chip-buiving and chernical induatries, armona others. in Nreail and of the irow and weel. petrochernical. tentile and olier industries in Mexieo.'

[^0]It is worth-while to give a fairly detailed tescripthon of the kind of sectoral progranming succers. fully applied in the more highly industrialized I atin American countries, since the relation between sec. toral programmes and the evaluation of individual projects is a particularly iniportant prohiem, to which reference will be made later.

The sectoral programmes which are being drawn up in Latin America relate simultanomsis tu the installation of new capacity and to the morlerniza tion of existing industries. They the rufore incluile the formulation of investment objectives in conin xton with the expansion of capacity, and the establish. ment of targets for the improvement of prohlicility and efficiency in existing industrv. with a virw in the better utilization of investment already elfectel? while at the same time they lav down measures to promote the fulfiment of both types if allu- These pirogrammes are particularly complex 111 w far $=$ they relate to the modernization of avistimg enter phises. suce the close interdependence of the varnbits factors which influeice the level of efticiencs that onght in characterize a numern inlustial estal. lishnuent means that they can be lachel inly
 of them simultaneously ${ }^{*}$

The adoption ef at integrated alpu.wh to the formulation of measures to promote pirelactleite and efficiency in a given enterprise, so an the leal with foth factors at the ume time, is atelided hy two principal difficulties. In the hirat place matiy of the necessary steps have ta lie tisien on' .. le the sphere of action of the enterprise itselit dieneratly speaking. this is trie of the improverifent if raw materials. or, in other instances, of lise traming of mantuewer or even atvisory ansistame in artain special aspects of internal ergamiation Lecunillv. कome of the reforms required are partionlarlv diffi cult to putt into etfert, since they call for a change of attitudes, procedures and methods which are of structed be the shiggi h addiction o.' reiltine chat actetistic of manv latin American emerprisec. eque cially in the traditional treanches of urdustrv, which are precisely the ectors where the neerl for reair ganization and modernization is mo.t serongly felf "

An efficacicus way of dealing with these diffirml. lies. and of encrouraging the adopitun of an lite grated approach to the improivement of an emberfise, is to prepare respganization and mexiernization prowerammes in which all the enterprises trelonking to one and the same branch of indisury partacipate. and which take into acrount all aspects of the neressary remedial action Factors that individual enter firises by themoplues can to nothing to nuwlify, wwit as raw material charactericies, can be certreted

[^1]

The wheteme of cyacts crathen are 1 lem

 119:

lontl the ferfather aml the exaluation and

 |tal| ithl efoction

 -

 :י": :

 mas he. ahe. howewr whether promerime can in

[^2]pared. that is. before their profitabibty has been ascertained. In ther words. while it is irue that a body of melivithal investment projects constitutes: an integral part of anv industrial development programme, a problem may arise as to which is the mow appropriate order of proceedings as regards the preparation of the programme and of the froject. winh give it a spectic content.

This problem, which appears to be a mere ques. lwin of chronological serpuence that conk be pragmitically resolved by means of successive approximathons, wimid seem nevertheless to entail a inndamental decision concerning the relative weight t. 1 be atticherl to considerations of profitability mecesarily of a prepmulerantly static chatracter) :ll the oute hand amd, on the other. industrial eratege considerations atore strongly influenced
 imblatial develuphent programmes

There is, oi course, wo simple or general wohtion 4. !la problem and it will have to le dealt with tembatically The usefulness of the appheation of protitability riterna with a virw 1 , determining romata! priontios is must likely to vars accorrling th the level it which the programming is inderbahen. Where development prugramming is at it; -arlitat -tages. or in the absence of any program:ming at .ll implying an industrial strategy defined olew in lermis of general criteria. the application of protitahilits riteria to individual periects might mathe a weful contribution to the frmation of sectoral targets.

The same mis be said of the ather extreme. mamelv. the ase of a vers ehaborate developerent prosemmong and of an mbentrial strategy defined in an integral part thereof. In woch canes. the eif. ments of umbertanty mentioned in letat in the paragraphs below are limited in soope, and thos the fommatiton of sectiral profnction and investment tirgets. haned mainly on piretitability critetia applied \because individual projects, acpuire, greater viabilits in Hire interme liate case, that of im industrial strategy iomsintme of sectoral programmes linked to one mblier either by a very vaguely define: general pons:mbung fromewort or by simple wer-all priMit: criteri:, lue might le made of more linuted amotitability ateria (applied to individual projects: In the Ethowing paragraphs a few arguments are whued in shifmert of the temtitise comelosion.

(1 IIF PKNATF SHGOR AND PRIURITY CKTHFRTA

Santher importan: problem is that of the power
 on the chambethig of private investment. How can libe evention of the vast henly of private sectur frobects that art wot depentent upon the approval if .114v publus mathation, ar even on long-term in Iernà thancing. !e -uhjected to a srstent of priors. itra, whatever it matme: It should le mentioned. in this commexina, that of the annual investment ciltemplated ill the development plans of some Litull Imeric:n countries, among them Bolivia. Cobuntia and Venezuela. 80 per cent, on an average. iv eirmiorked for the expansion of industrial sectoralreath existine on the colintry pincermet imlv 20
per cent corresponds to the launching of new activities, and it is probably in this field that the greatest number of laige-scale individual projects is cancentrated, requiring government backing of one kind or another ienternal credit, importation of equipment, endorsement of external loans etc.).

The application of the priority criteria imoolved in the industrial strategy to projects included in the first category, which are wot expressil gowermment backed, is therefore dependent einher umen the estiblishment of a system of registration and prior anthor ization for the expatision if existing mohtrial enterprises or the latuching of new onfes, or upon the subordination of all tired or melirat govero ment conitrols over the economy (whicl: womble have to lie efticionth aplied) to the induitial striteg deffinet.
 The freedime of initiofle allowed it sume ot the Latin American sommeres it practice-owhithor its merits or shartomme not lithels to her eath

 a far more regiel plaming sestem than the ionlicata form that is leeing intititer on an inctea-ing anter

(I! $\because 1$ PIES

The iactors disterting the prebtithelits toiv in respect of individual probect in the shothame comintre are wild known atrl will be reterted :o vers briefly here.

In the lirat place in wien of he freserime matare
 prices then alwan rettect the tat ont tu he economy of a vactio undertatiag In rifiet hiax heen made to deal wht this ifmale thangh the
 ing may lex guted from the reanet of the sumat or industral progtammong, beld at -ine l'inm
it has been sugected that is platione approximation of the 'accounting firma' contat be pir vided by a trial atul errar mettoll This womld
 on the basi, of which the protioblits : the candidate project, wonld ber colloubated ith the hasis of these calculations the frojects would tutanked a decliming order of profitatility atial. In comparing the rewurce reguirements of these projects against the resources avalable, a mavi mum set of projects would be determined corrt sponding to the limit of the available remoret, It would be, of course. a sheer and molikely w incidence if the first set of selected prices wert to lead to simultaneous exhanstion of all resources by the set of project, deternined under this pitis. coriure It is more likely that the supply of only one resource would be exhatisted, with an excesof others still treing available, which implies that
the price of the exhausted reveurce has, luen set tu: luw. Throgh surcessive adjustment of prices and iteration of the deacrilned piresedure, a ant af projects numbd be fommel that sathetion the motmum solution. since it would athort, all the aral. able resurces. ${ }^{\text {a }}$
This over-all precerlure for wherese applatitus

 - Id l, moner

Amobler tector whed fome
Erenp ot practa 11 urler winture, :

the frrtylt bitment- ithat: $:$

concernect. In this respect, the situation may be summed up as follows

In the preparation of a given project-for the establishment of new manufacturing enterprises or the expansion and reorganization of existing activi-ties-determination of the physical unit inputs entails selecting a specific level of efficiency in the combination of factors of production; this efficiency large!y depents on the enterpreneurial factor and it is often very difficult to frirecast with any degree of accuracy the entrepreneurial capacity that will be revealed in each particular case;

Ihecatuse of the close interlependence linking the new enterprises in contrics in the earlier stages of development, the umit prices if inputs, as well as, in cert:in, cises, the physical inputs themselves, are often a matter of guesswork;

The lack of data especially designed for developing conntrics frequently leads to the use of input estinattes lased on the experience of the industrialized countries, whose performance levels are clearly far above those attainable by the developing countries.

E. Chandilimio of investmpent throlgh sectoral programmes

F'art of the solution for problems such as those mentinned above might lie in the systematic application of sectoral programming with a high techurlugical content, lua ed on diagnoses of existing minhatry :mil the evaluation of the capacity to deiclop arew sectors through the system of approxiubitely eximated potential costs for sectors of industry and wot necessarily for indnstrial projects. The licummin (immussion for Iatin America 1. 1 S hav worheri comintently along those lines for \quad mine veits and it bight be useful to present some examples havel an the experience gained.

In the firut phace. lare in the question of shadow fitio. 11 It is acoptet that they have leen calcu-
 F6, wet. 1 apple them. in the sense of using
 whemen thaths put forward a differential taxation

 combly "थmetate" in the cawe of the lage investments

 fult thentigh orter if contraints within the

 mens mase are patibe whithe ratative propertions

 wlate if curar. will co:.mmis mot concole with
 1101.anm"

[^3]
F. The promiem of future efficiency levels in project elanoration

Another problem mentioned above-that of uncertainty in regard to the performance of production factors-is no less serious an obstacle to the application of the conventional project evaluation and selection criteria and could also be resolved within the framework of sectoral programming, as part of a specific industrial strategy. Latin American industry-particularly in sectors applying discontinnous processes, such as in the metal-transforming and textile industries-are characterized by efficiency levels which are both very low and represent marked variations from the mean on the part of individual enterprises. These variations are not necessarily related to perallel variations in the level of capital formation or specialization of the enterprises considererl. The basic element in the variations encountered-which exist to a greater or iesser extent, although always to a marked degree, in practically all sectors of industry-is internal organization, which reffects the unlimited variations of entrepreneurial capacity.

In this respect, some of the data relating to sectors of industry which have been studied recently by ECI.A are illuminating.

To take Uruguay's metal-transforming industries, ${ }^{7}$ for example, in a selected group of sixteen enterprises engaged in various types of metal-transforming, though fairly homogeneuus as regards thrir products and the equipment used in their manufacture, it was found that the output per worker ranged from $\$ 2,300$ to $\$ 9,400$, or a variation of between 1 and 4 , the mean being $\$ 5,500$ per worker for the industry as a whole. A similar variation reflects the wide range of conditions obtaining in that industry from the standpoint of internal organization and "perational efficiency.

In Brazil's textile industry, there is an even wider variation in manpower performance from one enterprise to another." The average output of the cottonspinung industry is 2,000 grammes per man-hour. The figures for individual enternrises, howeve: ralige from under 500 grammes to over $6,00 \mathrm{w}$ granmes per man-hour. This great difference in proluctivity tigures from mill to mill is not, however, related to parallel variations in plant size, or

[^4]in the level of modernity or obsolescence of the equipment or product; or in this case, variations in the fineness of the count. According to a multiple correlation study based on the data deriving from extensive field research undertaken by FCLA,' those factors are not chiefly responsible for the variations in manpower productivity. ${ }^{10}$ This means that the factors carrying most weight are those related to internal organization and production planning, that is, to entrepreneurial capacity (in the broadest sense of the term), as displayed in industry.

Accordingly, the following difficult question arises in connexion with industral programming, particularly the evaluation and selection of projects : what levels of factor performance should be regarded as acceptable in the preparation of projects? Those that correspond to the average for the sector? Those attained by the most efficient enterprises in the sector? Or, simply, those resulting from engineering estimates prepared in direct relation to the project concerned? Generally speaking, such estimates represent the "best knowledge availahle", and indicate levels of operational efficiency similar or slightly inferior to those prevailing in more advanced countries.

None of these procedues is free from drawlacks. The average level of efficiency is generally very low, so that programme-makers are reluctant to adopt it. If optimume efficiency in the existing industry is not much alove average, the same difficulties arise, while if the level reached is really high, its adoption creates some doubt as to whether the new enterprise will be able to attain it. Any new undertaking must have its roots in the industrial environment in which it is estahlished, and these roots imply dependence on a corresponding number of factors that affect the prevailing levels of operational efficiency, such as availahility of skilled labour, quality and cost of raw materials, spare parts or parts and services purchased or sub contracted within the country or area concerned.

The way out of this dilemna might lie in the adoption of a given level of operational efficiency and the detailed specification of performance requisites. The viahility of these postulates, however, will have to be ensured concurrently with the execution of the individual project under consideration, and this seems possihle only if a transition is made from the individual project level to the programme level for a group of relatively self-supporting enterprises or for a whole industrial sector. Such a programme. covering the relatively expeditious estahlishment of

[^5]basic conditions external to the aterprise that are compatible with the performance hypotheses adopted. thus becomes as important for the success of the project to be evaluated as its own internal characteristics, or more so.

G. Example of a sfitoral programuff for thit: METAL-TRANSFORMING indr'siky

The progranme recently prepared ly le(lat for the light precision engiueering industry in U'mgnay (E/CN.12/743) shows how these difficultios cail be by-passed. A few words will suffice to explaill the nature of this programme.

Uruguay's existing metal-transforming industry shows a level of development which in quantitative terms is distinctly high in relation to the size of the country, since its output satisfies abont to prer cent of apparent domestic consumption of the promb ucts of metal-transforming activities (consumer gemils and capital goods). But, for reasons which it womla be out of place to dwell on here, levels of tech. nology and operational efficiency in the existing enterprises are low, and compare unfavourahly with those found in the adjacent countries (Argentima aml Brazil). Nevertheless, in an analysis of ther pwisi. bilities of promoting export industrics, carried! wit within the framework of an over-ill evaluation of development propects and in connexion with the formulation of a ten-year economic athl son: ! d. velopment programme, the conclusion was turchell that it would be loth desirable and frasible to pro. mote the installation of a group of pirevision engine ing industries which could undertake the mannfactur. of measuring instruments (for electric energs, hums etc.) and parts or component, for machiners :ams equipment, with a view to expmerting them tw , then Latin Anierican countries. This prigramure wan formulated in the report mentioned, and rimato of the establishment of a gromp, of ten millu- |l:al enterprises. employing rather munc lan blaki
 operatives, and reguiring fixed investurent in Hise
 the inefficiency of the existing induatry and the.

 characteristios and femmes decolowh lathe whel haw leen deliburately incorperated in in

 manufactured in planit, with a huh whe. .t.e. cal integration. whe contractug herime $1+a+1,0$....

 ing metal tranviornmeng milutry

Secondly, wion of the mambia durite linge t... :e.
 financial and indostrial gromp with mernational or perimes and woming in the correpunting active: These group will hing in at one :nd the came ther the kulw how. the equiline nt and a comolerahle propertion of the technical perxollel rempioned in the earlv stages of operation
Thirdly, a special intenove propramme of an vanced trainink wil! Ie wilderaken will : vore to,

Hich ting the bert, if the prechomengering sec-

 -
H1..." t:

 ! th :

? : -

 \therefore : \because :!

 ins .maloss of protitatilit would shew the pros

profitalile than the uonilen textile indi, tries. Howiver, the development of a precisim-engineermg sector has adrantages, in terms of introlucing a dummic growth facter and of obtaining foreign 'xchange. whel greatly outweigh those to be ife. risell wer the short term from investments selected stricth, or momls, in terms of maximum protitabilits. Mormerer, in view of the element of ghesswork involved in the estimates of the costs of ans project. espectally when such estimates are mate on a dynamic hasis, it in hard to see how these fundamental inverment derisions cathe hiseil on them.

The establixhment of individual ;rujects and the ir Waluation from the profithility tanderint is never-
 -ffected in comesom with the firecivion-enginecrimg progromme fur (rugmay and ather frogrammen of
 and ratenal phaming of cob undertiking rithen thate as the main criternm in lathere decoions of a a kuide to the ranking of armion altermation under tiking - in order it merit."

ANO SELF HTOY

 tembe! to refate the becenoty ent meprome of methodical pireotares for pereet pequations.

 the -

 tinme thereth facilituting the mant meanore that hase to be tohere bulh wathon and wioheen the enter
 ther that the flemoms that are the hasis of the … be deftmbed with am degree oi certanty : m ather worls the are ebbiect to mome degree of oinh ith relation ti, future prices and coits and

[^6]short-anil !ong-term wriformance levels etc.). If the succesis of any venture in to be assured. the ele. ments that entered win the economic calculations must be kepe within the original estimates. and this cills for a specitic and letaled knowledge of what those prajections are and what hymotheses they reprement.

Lerond: ,roject evalaztion and selection can have the nore limitell lum nonetheiess aseful aim of establishing an order of merit among a group of projects in terms of profitability, whatever the criterion or criteria accorling to which profitability is defined This is the approsich used in project ceathation. fir example, in the sphere of mational tevelopment institutions, for the purpose of distributing a
 Hes, where the total hancial ecquirments acomel this sume or this apprach mat be usel merely to letcrmine the comomic vabitits of each umbetaking miler consularation, rather thath to extablish an order of merit annug them all.
 project evaluation in it negative of ne. that is, for the rejection of ill conceivel ar improper! formm. lated proposils.

1. Tita phompa of itie shortinf of projects
lintly, a few wards ate in wrter on the problem of froject preparation.

There is : 1 tendency in certain leveloping cinmtries, at least in Latin America. to explam the oh stacles in the way of a mure rapil industrial devrlopment as the ressit of the lack of projects, of the diftirulties in preparing pirijects. There is an mo deniable shortage of projert. formubiterl in the in. doserial fielit, hut the learth of projects camot be automatically explained by the lack of agencies devoted to their pireparathing, or unsatisfactory performance by these agencies. This does not appear tit be a mechanical problen of preparation. nor is it likely to arise in the absence of certain more funda mental difficulties. What semes to hapgen in many, if not most. developing comentries, is that conditions are lacking that favour the formulation of probects. such as the following

The exintence of a preperts quabifed enter preneurial class prepared tu tathe mitiations and asstme risks:

A readines on the batt if this entrepremarial class to asoume debts allul to share the owner, oip and contral of their coltarpines. than far mainly characterized by what may le termed a family typer of ownership amb manamement: for an indivifua! enterprise. 1,4 piel growth, in the seme of a groweth more rapid than i, permittel b it capacity fir welf financing arinventurnt of protit, me:ns bar ing ownerslity and control, which is n ot pasily achieved: hence there is often relictance tox expand too rapitly even among the miot dumaic enterprio. in conntries where there is a great inclustrial ilp. wirge

An adequate econounie policy imenetary fisal. and relating the infristricture):

 (thmeries to ohtann such howsledse

 neted racuse that proprot atre ! whome 1 dhatiz in

 andation it the cormelumbing profec:

 atorprises. ${ }^{1:}$

[^7]making the investment required by re-equipment, while wher did mot even have the technical and administrative capacity to fill out the morlal project furms

Murtover mot even all the mills that had prewintel proper namiatnod their interest to the point of obtannug the financing required. O the thirtythree projcete prenented by July l'MA, twemt had been apfonell amb seven were being atralysed by
 Six uther proifets had leen returned for reformulalant. entar tweathe thes contatimed serious mistakes ur loc:atwe the almimatrative stricture of the enterprin. dul mo apmeit empiped to execute the project. Su pirnget hasl trentrejected. eten when, as hapfatle ! in whoe conss, they had han to be continually reformal:atenl. wit! the awintame of SUDENL: ex-

enterprises socited to shain the mecoery fanncing from the financial agency. Foe the remaininat einiteem projects, the onfrepromewes concerned showed themcelves reluctant to embert on their enscruion, ether throunh miagivings abonk wadertatring commitments in foreign currency of, in some cames, without offering any plasible excuse.

This is a strikina ilmotration of the sifference between preparing projecta and initiating or eontinting a process of induatrial development. A concentrated, persistent and well thought out efort to promiote projecta by a regional development agency with alundant technical and finumcial remources proved incapable of overcoming obetacles to development that go deeper than any mere shortage of projects. ${ }^{11}$

17 This is nut the place for an analysis of these ohatacies. Siffice it to merntion that they seem to relate mainly to the weoknesh of the induatrial enviromment in the Nordete relion, and alu, is the lack of minimum rechnical and admbintratix. capactic, in mosi of the texlife enterprises in that regiom

by. C.ener"

A. I framaliations betwern inmutiot al pmojects anb ovin all. and sectooal. bevelopment pians

Efficient use of available resources is the nain prerequisite for the development of every econwme min, regarilless of ecomomic and wacial systerm, Io it scialist, based on public ownershap of the means of produrtion. or a market economy, based om privite ownership of those means, and more or lews inde pendently of the size and scope of the erronomic unit. be it a sinule enterprise or plant, an industrial branch, a recion or the economy of a country as a whole. (Hviously, efficient use of resources is the more important if the comentry's resources are warce and rapid development is required for secial, political of oher reamons. This is a cominom stluaton in the devehoping coumtries of Africa, Asia and Latin Anerica, where there is a marked scarcity of re sources, together with an urgent need to mocolerate ecunumic developmem.

Difilerem ecomomic methods have treen devised : advance the efficient uac of sarie remorres, the most important bems the elaluration and evalialuin of projects, permitione the velectom of the miss efficient ones and the plarining of regiomal develn, ment on a regional, sectoral or over all (conumiv) seale

As is well known. a proiect may be defined a. a systemmer set of numerical or other flata and cal culations, on the bans of which the enneefliences costs and earoinge and. more pemerally. the advan tages and diandvantares of the production of specific poods and services can be reviewed and appraisen A project uscally concentrates upon increasing the production of moons and services (although recim straction, which is aimed at curtines conts. muv alon be the eubject of a project) by pationa mew cofral oqnipment into operation. Comsequently. the rite at capital as a merce resource is emphasized, althenum other scarce resmarces. for inatance laloner and for. eign exchange. slac enter into the set of dita. Project evaluation is the meacurina of the effirin: if a project accordina in a scale formed hy prefecermined criteria Such meampiong can be curricid out on the beain of a mingle crinerion or of a complex of criterin. and from the point on view of a angle privite antedonew of from that of the wiriets
 more methodadegical erodems. with which we shall deel quine chowety im thie study

As alreaty memionet. the evalumenom of apo
 riven predrorminet erinoivo of on several erterim The lacic eciverion freas the point of view of imm

[^8]firivite emerimener whe has invested cantai is protitalitit. and tromi the puat of view af waing an a whole il is the inerease in national incomen

 per se for example. frimi the pan' it wew in the
 mav lue termed efinum lowever in imemer ath

 juint of itwe off hereromity as a whole twe alime there afe alwava mote proshlillies of ine reacome
 of other rewnarces

To acherve blugh rate if ecopumbe |riminime int
 It is necessary to achieve if at wa-t li, apirnumbli. the mest eficient lise of rewarce- 1 thent intitial

 exclusivelv on the busis of the editho.in of min

 trial erotor. all elimitule periect, are Miliated and ranked in cirter "f iremits accerting l. blie wermed criter's. and that even the smenimi of inh warce
 rency is kmown In thet cave it wruid ifeni sum ciant. in a superficime irw in welect the "pes"

 the remonrces. fir examile of (aplid i-..aireil is this set of propects. is exhanuimil
G.ith a metherf bowever wiwlit n, vield in if

 firmer are vertically comimeited with an anither the now frockuen the facke fir example eitema ecrial, mpuered hiv the cther while the later herne

 th the market is thiw that r-pilired by the in ew

 the rave of the erenwimy

 (+w .

 * * * tworm

 **

 4.

 (

 Nuncor

需 1 电

 \qquad
*

 out even in cometries where atherwist there ie mo formal plamming of the mecommoy ati already mam twomed the planned buiameen if eloetrility wo tuthimet

 nuift :if len itetaled bulation The neliviter the difiremt sectirs for examile teel if cemem tow
 -lectricty are tiken ont of the requerive bulaneed which have to be comistetil tow to tore mexe niem urined alwure

费
 prahirlit is cimontered on the preapit gaper as the fourti ucke of the damane preer However on

 lunt

 veloputent piang

 (f to monovia moneen

 Nenvi Tmer $\rightarrow+\cos$

 We aliouts at the reopoed power shavion on the

 comit creewr in a ouveliping eonmury. or it the mchunery is a complevety new ene. thei civeet mpans wher Hum havic pow moteriche and thour have m to emonotered wion

Ae fif the malimet efiecte, phomoneme winh mal.

 ramirenien the mew mer satoen mill mentify the hatome if the given type of trei, matilying. in
 mon have mineoft reperemourome the inpmes and

 pren hove evereler ofore. That womid moan. move
 whit riecriveiky and moll wew meetied in perolvere
 we: pricturtwin

 the cincumet 1 , mop hi sede mothich. (a) with the

 an momern

 Mo. to wou n now \cdot.

morloed out whith the help of the inverse matrix of the mpurt-axpent table.

The first set of coefficuents in desamed to refiect the main effects of the increa ed prodretion on the whate anomomy and/or the vtreke ineluatry, that is un efiects on the value adder', emplovment. capital and imports. Theme catowories whe characteriaed by several coneficients for example, employment of the akilled and monilled labour-force, and fixed ank revolving captial jer wan of production of a given hranch. The secend set of coedricients is depived from the first, expresaing relationalipe which are pelevant when evaluating and comparme economic branches such relationships are, for example: valwe added per ome person emplovert, proceeds of foreign cur remey per now person emploved, rajital invectment per unit of foreign curremev proceds and total eresis of proatuction per unit of finul consumption if ite prochucts of the branch in quiestion. 1 The final cinn cumption in the sum of the conoumption of the pantation. wiezirrant and export; the total costa
 in lahmer coment ; This metherel makes it ponsible to answer wome 'unemions connected with structural changes in the coowowy and with the priority io In given to owe mothstrial hrawch over another. Its odvantape is. on the owe hond. that direet and in direct effert are expremed ecmecminamily for the ecomomir as a wirle and. on the other, llat the effect are expuresued in terme which are relevam
from the ancial point of view. wich as emplovment, foreign trade and investment, and excluding amhign was indicatur; or those vibject to double comit. such as rotal output. The method has, of course, it. disodvantages. It can give only a rough approximation, herawe it tacitly assumes that the techum,
 product mix of the single branches remain comatint and that, in addition. Whe composition of whe witiut
 the input of uther liranches is alwaw, he s.tme. Ih:-
 output morkels. in by no means justitien!

However. '.. evaluate the indirect hathu in ! inh age effects of wingle firojerts. In in the that ut it coeffients that seems to be unfol, numels. anetio cients which exprens the tital value athen! inl employment, imprirt and cantal rephuted in the ecinomy a- a whole, of in some cane in ined ill 'ustry volien perchlocing one untt of outple at the
 putcen. कn the hasis if the laty mpat antput ible. of the llungarian economes, for thirt, 1 wo !man 1 ...
 prentuced as an example of selecemb inhlovelal branclies in table I lu-low"

	Idive	1 inmome			$\ldots, \operatorname{man}_{12+1}$
Ceal minum	404	$2{ }^{511}$	411	+'	\cdots
Irom mol may	411	10 A	$\therefore 14$	24	41
Vion-ferrices metalo	512	1611	14	8	17
Mra-eteritied mamhomery	7t9	*	112	171	7
Eluerrical momomery	717	71	1×7	13.	14
Prorimin innumemeta	M 19	42	218	$\times 1$?
Flectrieny	54n	≥ 14	10\%	,	!1
Propileum refinione	7\%	のn	14	4	:
Hravy chomerele	6年	110	114	170	\because
14 whimenters	*n	11	144	\cdots	1
Paper mornueion	77	44	\cdots	-	4
(acrom tumine	M 6	22	A*	14	14
	* 1	2%	13	4	\therefore
	44	1:	121	\because	-
Frow wimme	87	10	1.	$1+1$	\cdots

[^9]The macemana ef itr ciatiriones of the capind re

 manmoned by totivicel diservenan. here eallod

 Henrom. is molly efromition tiflerem in

[^10]be useful to work out different variants, based on different increases, and to compare them with one another.

The importance of indirect backward linkage effects in demonistrated in table 2 below, containing the uroportion of direct to total requirements (direct and indirect backward linkage effects) concerning imports, employment and capital.

It will be seen that the direct requirements are often only 50 per cent or even less of the total.
The utilization of coefficients presented in table 1 is self-explanatory. The direct effects of a project on employment, imports, capital and national income are determined hy the conventional methorls of project evaluation. The backward linkage effects of the major outputs can then be determined by the co-

Tarie 2. Proportion of dirfet mequirements per unit of output combaril to total. (direct and backward linkage) reqitrements (frbenetage)

Industridil sectm	Imbores:	Totel employment	Effertive fird cemitel	Iniestment requiremens
Cual mining	56	74	61	63
Iron and steel	$6 \cdot$	48	48	49
\because in-írrous metals	19	39	49	48
シinuelectrical man linery	. 19	59	49	32
Flectrical mathinery	45	59	. 34	14
l'recis it instruments	$5 \times$	76	51	$3 / 1$
Flectricity	70	48	78	*
l'etralerim trtining	13	33	24	21
lleavy cimmoras	7\%	54	57	55
Wird proltucts	92	65	3	39
lap'r promuction	7	57	54	4N
1 . Aton texties	N 2	79	7	6
', ather prextuction	$\times 5$	44	45	15
Shen maturacturing	24	66	. 11	27
1.0.el promerts	(*)	12	28	21

 fredme her lew of the lewer etetions is determimell here bumas. and only the rest of the liok

In llastan :hin metheli milized mainly io de.

 and has .n.t bern inthe lewhinel the of these Huhtrat:as is amoctod with indirect investment

 materal mons llawere as demonotrated in table 1 the watwe effec: we vers different for the

 dillerent wieticimes ate uthed. computed for

1. we menturnel in c mexion with the problem
 pexpramma is molivel tud determine the aptimum pericumer of a wew Viry fequently the prob lem, if efficm: allecatuon if imesement remoltces canmit le tev ved be alculating. comparing ambl
 ve:) ereat mimixer of closely imterconnected techtullurical and economic alternatives.
We mav lise as an example the problem of firodurtion and alkwation of primary wiurces of emergy. much as mal and petrol. and serondary sources. such
as electricity and gas. ${ }^{\text {? }}$ The object of efficiency calculations in this case may be summed up in hroad outline as follows. We have to choose trom among dilferent primary sources of energy (producible or importable) whose production involves different mput, it the level of the economy as a whole (labour ind other ce ats, investments, imports etc.). We may firther chowise from aming varions secondary sources of energy $1 e g$ getween electric energy and minicital p:wh. these secondary sources also. perhaps. lrimg produced with the aid of different primary whrce- of ellergy

There are wirle possibilities for substitution among lifferent sources of energy. In the ca co of the sources of energy ind other national resources nieeded to lirwher and 1 ranoform them (including investments "r imports!, the choice is helween certain natural ir economic limits. The problem must of course be remolved with the least possible input at the level of the eronomy as 1 whole. Thus we are dealing here with a cakulation of conditional extreme values. the wilution of which, at our present stage of knowlectare. is pwille with mathematical programming and consilering the extern of the problem, with the use of electronic computers. Given the computation technigues available. linear programming is clearly indicated. A simplified example of such a motel is briefly described below
The computations start with the demand scrving is a bosis for the halance of energy, that is, with the production and services determining energy demand: for example. the protuction of stol or cement

[^11]or the profluction of any other industry, and the national demand for energy or for coal heating. We assume that the different types of production and services may be considered as homogeneous consumers of energy, so that the sector, production or service thus defined might be unambiguously characterized by one parameter each (e.g. production of steel in tons, or the demand for fiel for domestic use. with the number of flats or rooms), and that to these parameters belong similar unambiguously defined specific costs of energy and other costs connected with the use of energy (essentially investment and operating costs). Of course, the specific costs of energy and other products may also vary according to the technology applied, mainly according to the prime source of energy used. The maximum quantity of domestic sources of primary energy availahle may also be regarded as a specific constraint.

Let us call a production or service carried out by a given technology (source of energy) an activity. denoted by $x_{1}, x_{2} \ldots x_{n}$.
x_{1} production of electric energy from coal $/ \mathrm{kWh} /$
x_{2} production of electric energy from crude oil
x_{i} production ot electric energy from natural gas
x_{4} production of cement with coal/tons/
x_{n} production of cement with crude oil
x_{0} production of cement with natural gas

$$
\begin{aligned}
& a_{11} x_{1}+a_{14} x_{1}+\ldots a_{1 n} \cdot x_{n}, \\
& a_{22} x_{2}+a_{2 n-x_{n}}+\ldots a_{2 n} r_{n \cdot 1} \\
& a_{38} x_{n}+a_{38} x_{n}+\quad a_{3 n} x_{n}
\end{aligned}
$$

Here on the ieft-hand side of the equations we find the use of energy by "activities", as well as "savings" and, on the right-hand side, the domestic and impor: sources. Fach of the equations is a balanceequation of a defined source of energy, for instance. coal, and the whole system of equations is the entire balance of energy where, however, the activities " \boldsymbol{r} ", the ? 'mports " y " and the savings " s "; are still unknown.

The above system of equations has still to be completed. The loasis for colculating the demand for energy is the wolume of production (service) of earh of the sertors, which is kneıwn, and which must be supplied with the aid of the various sources of energy itechnologies, activities). Iet us denote these " K ". Then.

$$
r_{1} x_{1}+\cdots+c_{n} r_{n}+d_{1}^{\prime} y_{1}
$$

where $d_{1} \ldots d^{\prime}$, detute the lifference letween the prices of domentic and imported source of energy.

The equations containing the balance of energy,
-
-
-
In 2 heating of flats with cual /itumber of rinoms/
x_{n}, heating of flats with oil
x_{n} heating of flats with natural gas
Assuming that " b " represults the masimum of domestic sumes of energy available, then the corres. ponding import, and savings as compared to the possible maximum matization of domestie production are is follows:

	Warimum dindicia primaty semeter of rmpids	/mprri	satings
Coal	H_{1}	r_{1}	r_{1}
(1i)	1.	1	s.
Natural gas	tis	r_{3}	S

For specific use of chergy, we have the foliow ing motations:

of	${ }^{241 / h}$	Fictert, "netyv	(rment	
1. Coal		0_{11}	d_{14}	$0_{1 n}$
2. Abl		a_{22}	0_{2}	(4.m
3. Nalural gas		${ }^{4} 3.3$	0^{3}	${ }^{\text {a/an }}$

Witls the alowe notation, the following opecial balance of curogy may be written in the form of equation:
$+\boldsymbol{s}_{\mathbf{1}}=\boldsymbol{h}_{1}+y_{1} /$ coal/
$+s_{2}-b_{2}+v_{2}$ 'mil' $^{\prime}$
$+s_{4}-b_{3} y_{3} /$ naturial gas/
Electic rnergy $\quad K_{1} \quad 1,+1.2 . x_{1}$
 Whating for the poplation $\hat{K}_{\text {a }} \quad$ in \because in in We may start, norewer, from the tiat that the fureigu exchange available for the inport, wit someres of energy is limiterl. If the miax momen quatity of foreign exchange is " $/$ ", the unit price of mownithal impurted surces of energy " \boldsymbol{d} ". and the foroign excamuge pessibly aved as agaime the maximime " z ", we oltain anoblere equation which erpp....... the
 exchange avialiable for cover

$$
d_{1} y_{1}, d_{2} y_{2}+d_{1}, \ldots, \quad l
$$

The ment ratimal. "ptimmm mileathen ot ie sources is achieved if, keepung the halance satios expressed by the abew cullatams, the cont at atl activitios, combidering import, abo at an an tows. is
 i, ".".

$$
\text { - } d_{n}^{\prime} \text { in ninmsinn }
$$

the balance of foreng exchange :atid the comer xirns anong the activities might .lo. be wuttern in the Sollowing manner:

This suten ,it equations might he written in the

$$
1.1 . b
$$

where $:$ i- He vecter of actusties. I is the matrix

 19.
 mambeation of ow- mats be writiol in the form ,., :he : actulal finctiont

- is lltalthllt

This Mf it amplathon will produce a remblt

 athl con-mbint, satinfomg the sjecial halances.

 1"aihle wit? the comentional methods of project Whlationt seh urtaral programmes hase heen
 hernher. whe ot them tahing inte acconnt and only

 ?: ate d ont aite the wetur the main intertelationhap wh the res of the econ mus are enikedied in

[^12]ioreign exclange and the volume of production or services to be sidplied by some source of encrgy. In amuther model, the volume of production, export or investine:t noight be the constraints. Fxceptionally, hackward linkage effects outside the system are takell into isccount, for example in the model Jeoling with the investment programme of the Inngarian abminnm indnatry, in which the indirect investments have been determined by the imput(utput inverse matrix.

The limited consideration ai linkage effects in sectoral programming models is obsionsly a weithness ,it the methenl. looth from the theoretical and irame the practiond point of view. The methed per1mts. the efficient allocation of resemeres, within the sutem represented ley the merele, lint the allocations it resurece, for eximple, investment and forcign currencion, or other constraints, such as production
 nu, gharantee conceming the efficioncy of the latter allocation among sectors. It is of course assumed that effiriency in consilered from the social point if view. and not from the point of view of single sector, or frivate enterprises. It is hardly possible to inelocle the whole economy in one mathematical model: the would involve great computational and wen wome theoretical difficulties. To avoid them, a mothen was propesed in Hungary by Messes. Kormai imil liptik kimwn as "programming ont two levels". It comsiats basically in the optimization ot several sectural athe "we "central" murlel, the latter lowing intended to allucate the resources and other conatraints. fur example. prodaction or exports, to the sectors. The optimum is achieved in iterative steps. the sectoral medels receiving the central allomations and teeding back the results of optimization to the central noulel, which will in turn improve the central allacation. This method is now being experimentally tested and computations ate being carriced out. ${ }^{10}$ it property applied, this method shombld make possible the selection of efficient projects and at the same time ensure consistency fur the economy as a whole.

[^13]
IV. EgSENTIAL ELLMENTS IN THE PREPARATION OF INDLSTRIAL PROJEGTS

by S. J. Langley*

INTROHTCION

The prospe of this paper is to bring into perspective the essential elenients that must be emborlied in industrial projects destined for the scriting of bot: private and pablic bodies. It delineates the variety of their points of view and indicates the nature and extent of their extensive and frequently displarate informational needs. The nature of the criteria by whinh private investors and goiermment officials evalnate the costs and benclits of industrial projects and their legitmate differences of approidh are also examined.

What iollows is not a guide to industrial project preparation or a chart of the obstructions to be avoided lis those charged with the development of influstrial preijects: nor is it a catalogne of a! the the elements that must be inchoded. The sthbects comsidered are not necessarily treated in the depth or detait commensinfate with their relative importance. since their chaice reflects the experience of the mothor rather than a consensts of informed opinion. We. molerstand. heowever, that many of the problem, and petocedures tomehed man will the the suhjerts ,if detatiled disonssion in other papers presented to the seminar.

In the following disenssion. w. assume that the responsibilits for project preparation lies with i government agency charged with encouraging and facilitating the grow th of indestry in a developing cometry, althongh this is unls the most common of mans possibitites. It i:; Eurther assmeal that the
 preparation wall have as in ingmortant objective the stimulation ,it fomestic and foredell private insentor interest andi promepatom in the propects it prepiren 'The prexalure for peroject preparation for induatial rolterpise that will be implemented. usumb ambly operated hy a liovermment is not, loweror, different in anv timelamental aspect.

I'roject preparation in the selase in whic! a mese the term is mure than a phatemg fumston: it in clates diden throngh to binal oneration ut : he praject or a decison tu abandon the effort. Tin, hmitest a concept in the project lemis responsibitity in this regard ain lead to nowed etfort. particularls it
 project are not permutted to tike fill idvantage of the priar investigation and analos, which led the Government to inclende it in it, programme. Wiate is :abe perdictable if the (iwnermiment, project temm
 Cambridue. Mani liniel vate, 11 Amertia. witl the
 H Keetly and Holiere II Waril
is content to set ont its work prowhert withoitt ematr ing that the next steps towards impleniontation at taken ly the competent pirtien.

The project itself may wall be thonght of an a comstantly growimg and changing act of concopt, In part these concepts are emberlied in dowmentdesigned to enable the manv lifferent prome con cerned to appraise the economic atsantages athl disadvantages of endorsong. promoting. contrimetme resources to and implementing the project hatonther sense. the project comsists if a collaction in the minds of living persens of mformed opmint amb detailed muderstanding of the biacts the rebatmonhy of the facts to: the interevted pirties. .mil the bitiof relationslips among all the interests to the peap-anel activity This view of an :inlastrial propect demon strates the critical value ot a high elegere of conte muty in the project teme trom the mieption in

 timits of prewnel

 tim.

equmpent must be comsidered, that new methods of

 withe sampe of probleme What theve problems arise. the firnc.an of inh intmal project preparation is charwitelod he it itw easime need for a wide range of

 Ims in-titution to a finaring scheme that encompianses public insucs of shares or tronds, participations

It problt that witw ilegree of decumentation w! bre renmeal fors evell the smallent working.

 tion l.uall, of , ifnificant size ant medium- or long-
 cols atter :at wamblatem of the application by a

 :1, ;att is whan the ectmaci :athl manageriat

 perstant tutor- irequently lead lanernments to im

 the wabitinhent of a new indater or the expansion

 15 a'w Copluents requited
 llifutem ath with the attentant cormalnes and
dicimmentation may be sought by the investor himself. Assurances may be desired regarding the as:ilability of foreign exchange for the purchase of equipment and the increased supply of materials that will be needed, and requests may be made for the imposition of tariff or quota protection, import duty or tax reduction or other concessions to encourage industrial development. Much of the infornation and dacumentation required to satisfy the financing institutions can be used for this purpose. In many cases, however, financial and government agencies will ead? make their approval dependent on approval by the uther, creating a prohlem of simultinerous rletermination. For example, the banker will wish to see evidence that necessary tariff protection or other government assistance will be forthoming before lie agrees to commit funds to the project; government may at the same time wish to see rvidence thit the funds necessiry to see the project througl :o completion are available before granting vahable concessions. In these circumstances, the process of industrial project preparation is likely to burolve a contimuous process of discussion with govermment and financing agencies, with feed-back to rach rycle from the related one just betore or aftor it.

\therefore Pistablishment of neri enterprises

Wie now hurn to the actablishment of new industrial emterprise. It is with this type of industrial project, encompanong all the problems of plant expansion in :udition those of the initiation of new enterprime withut the benefit of local experience and hiwwledge, that this payer is primarily concerned. l'miets fir the e estiblinhment of new industrial anterprises, is comerasted with the expansion of existmg ones, require, in addition to the documentation amt ontside assistance that may be necessary to secure their approval by financing and governiment agencies, detailed technical and market information irom many different sources. The absence of on-going inlustrial activits from which the new project may Se extrapolated maty complicate the process of project planiming and in practice usually fesults in a need to seek advice from individuals or ongamizations experiewed in the industrial activity under stady. lack of lecal experience alsn complicites the process of plant constructoon and equipusent installation and frequently reants in delays and ecomomic loss in antituse prowlution and hringing operations to a "rotitable lewe.

T u., methed, of reflacing these bazards of new enterprises in developing coumtries ate worthy of siecial attention. Existing industrial enterprises with well traned managerial and technicai personnel at their disposal mav ta_{x} requested to undertake to latuich the new plant: even it the industrial operation of the existing enterprise is unrelated to the propmed ne or one, its urganizational skills and ability to aftract additional well qualified personnel may great': reduce the cost and time involved in project preparation and amply justify the fee that may have to be faid Another approach to reducing hazarda is the use of a "turnkey" contract under which the contractor undertakes not only to construct the plant
to agreed specifications, but also to supervise initial operations until a predetermined level of efficiency has been attained and local staff trained. Unfortunately the latter, apparently logical, sohition to the problem has been greatly abused by salesmen for machmery manufacturers, whe hold themselves out as unbiased technical advisors and bowa fide investors but who, in fact, otfer only their own, oftell overpriced wares and accept little or no risk. ()nly careful, sound technical and economic analysis can expose such stratagems.

3. Principles of project preparation

Turning next to considerations of staltgy, efficient industrial plants shoutd the established in developing countries only if they are directed thwath the attaimment of clearly defimed atid widely minderstond abjectives: further, it precess of contimons evaluiation must be employed to control and co-ardinate. the orilerly commimeitr of resomries throughonst the project preparation process. Alequate control includes the power to modify, pust pone or abmadon the praject: and although these options become increasingly nore difficult to take as proiect plaming procceds, they remain until the fimal objecture is achieved.

Whether the project results in the addition of : few pieces of new equipment to a smatl manntactur ing enterprise or the estahlishment of a major in distrial venture. it must be thonghtimlly and ef ficiently directed. Clear reapemathility muct be given
 this task. The quality of intelligence, judgement. initative and executive aliblity regmired for the sto cessful development of an imbustrial project is hash, and, in complex cases, men of outstamling aboiht will be required. They shonld have imblorit! th mathe all the finaricial and other recisions necessary to attain their objectives. These objectives shamh be precisely and clearly delincated. Howeier, drabiommaking authority in motters iffecting tion direction, form, content, duration, cost, termination ant olher substantive aspects of the project shomble Imonever. be reserved to others less involved in the dav-1..- bay activities of the project and with a lower degree of emotional commitment than can lie retomabiy expected of the project staff.

When an indestrial project is prepared and implemented by private lonsinessmen in an anterprise economic system, the ohjective sought is either perofit or a rationalization for it. In a developing crinitery. the objectives to whin an industrial project is di rected nuay le quite different Niational eronuomic policy may dictate that preference in the alication of resources should be given to industrial projects providing employment and labour training, conserving foreign exchange by currency eirring or saving, or by contributing ti the goal of structural change of the economy, even tlough the attainment of these objectives may not always contribute to all im. mediate increase in per capua income-a comumonly accepted desideratum of national economic policy.

Thove responsible for the preparation of industrial projects in either the private or public sector and the oficials, bankers and others who may be called
mpon to evaluate their recommentatmon mast be fully aware not only of the liroall יmblan - the kal 1 the details of national ecomomic puitic Whather priority is to le given to ecomombe bund? the

 slated in their mstructions. Unily 111 l!a- n.1 6
 compared in a rational manter i lamen bin in

 anl the national merest.

 that petrental h the pluc... alow west that the matert.

 is tre whet probet falam: quahtier of emtunanom an: la: :

 fattrmh attombed

 expernive effort tut the ance............. 11

Total proect costs can be held to a minimum. and the danger of serious lons consequent upon miajor , bift. in project direction or project cancellatoon at an irlvinced stage may loe reduced by careful plimming Prober: preparation thenld the approached he a methed oi snccensive approximation that incurs cont, the litarket miormation, surveys, plant and con-rucfle, enst extimates and, at a later stage, for antriah eithipment, raads and supplies only tu the extont atercasiry to permit the next sequential deciston t ine mide for exaniple, compreliensive rebolute atr:d luchit and lablit tramel personnel should not be
 heme condifteri int the basts of exsoting regerte and mbinmitw, wid the miormers julgement, ot ap-
 ahtanes it a comarelamole survel proves to be

 mbimathion thon will be nereded when the reatis.

 A. 1 :

 are of firiat: metest ter the wemer an! in

 III, , we stat" luert, eximit, the rie of the

1. Elements of primary interest to imeostors
 (a) Present and potontial merkets

The ability of an enterprise to earn revenues that exceed its costs depends upon the existence of a market for its products at prices that will cover the costs of production less any subsidies that may be receivable and plus any unit or sales taxes thet may lse pavable by the enterprise. Methods of stinduing market demand for industrial output are described al length elsewhere and will not be discussed in detal liere. For our purposes it is sufficient to nete that extensive market surveys outlining in great detal the market prospects for a projected industrial plant: output are usually not reguired in the carly sages of propect preparation. Fotential investors will wish to see evidence that there is a reasonable prospert of markering the project's output. Init this can freguentlv loe provided at modest cosi. Greater detail mas lie sotght by investors and their bankers at a later late, probalily immedtately prior in, or possibly even iollowing, decision to implenient the project

I langer to be avoided in market assecamem, even greater than that of over estimating market demand. is folure t" allow for its natural growith during brosict perabaration and canatuction ir well as tor the bants of , ageresive market de eropmemt afte, the priject conis into operation Many industrial phats in ieveliping countries have been ilesigned
 market that therr exineme hiss atmolated If it is particularly important to moninize catital inventment, carctit comateration shomid la kien to the ad

 later late or that at leat sentie of the coat alsatage, il biger vere finductan mat be wateil

 rewit in all mimptant net wexal trenefit. the Imeren

 eth t. Mane lime woth hatile: are ilte: ind - ..ange in, vending hathe In relowl liequenti

 Wat n e lue entirely congen nial :" then.

I'rodriems of market wopitunce are lena likev arive in the case of inter mediate ;erembits awh as
 'i internediale promucte will seek acomames theo

[^14]com, quality and reimbilits it suppls will compure favourably whi imports, and if these are forthooming thev may welocome the project incleed, subvantial buyefs of ineermediate piroducts are veit good prompects who should never be overlowned as poontile investors in a new induatrial project Im perters whose buaness 1, ur call lre. affected by foreggexchange inensing prexedieresate in 1 vimiar
 persuasion
b) Iechntical foosibuity
\! p parties comermeit wit ats mithatrint peיpect muat loe satistied that it x in a loresed wellw tech mosally feastible, bin the invewtir, as the irmound risk taker has the permary iniered 1 ., combime him. It will he necessac th, asswible culdeme that
 be oltamed at reisolloble cont aind with teisimitile

 poued tor rmply is well tried and min in arriolls danger of eatis dowleacence than ybir pant, and
 for mant vers and that numeringe ahere tedme it

 baliey at the stage of its preparation whels we are

 perience in the inditery imker exambint:on $\mid w_{1}$

 asmere itwelf that the jermone or orgamivatums midhing

 covertly Aswar vich whe the mamilactore it in tunerial flam and erpilmient thumid coretulty

 plav atier the tecisecm has treen made is es im pricipe of priweed with the inifiemelitition in the

 poum?

 Mrmbe - lagat

 - गोन

 ont epme lanwe.

墑
H
andmer utay
 2072

 varne
 (1)

"㐌

 TM.

$$
1 \text { the } 1 \text { the mis motit }
$$

 4.

[^15]

 lifervery

 4

 454

4 Prame a a moter

1 Nemionemo ad aximetion

 nd hut appereal

 ned numervel mower

1 Antum

At in the inuorication and evelmation mages, tive trios thased of the proged shrunietratiom stage
 mernation, finbur semen and moperonem

Invina logat moplomemimean, the legel tepert nownt of the seveterina brawe and completes
 4om which the fromot with to mocte ovaitalle an min as any ceandiowno to he met hoth prom and
 mpromant abo crowe up and enernees. where cathed

 with the whove dorinuent: and other pertionciot lexal cromionct

The actual diaburmmont if hooth may he carried
 cirme $($ or perhupa a moelel fivisem, reporisithe
 menter For extumple, the pont suartion and end use invoum of the Pintation Indumerial 1 redin and In
 comem congotivive quoturows ter muchimery and
 (thenory mopthers emmares then muchowery whech w u-imed has PKM' aprocivil ntrams mpent
 'to semur hants those are prepered hy the hoak

 checkeng lom andireen theon avel to the client wher them remerives the machinery

Reponvome overhappan with follin ip cillsit.
 mierest wh the project

- Ancmer

 m ancer thewe wwh twe undrerationtiong betwee.f the

 ande

twen with intess that ram be worked ollt wheome mand te ready to develep projerts themistios
Thie problem of elevating ideas to project vatus hea boow altuedred at the international level hy specia: noninutioned arrangemewt: such as the I nitel

 manatrial developanem centers in twenty eight cin" irws reflects amether approach the efforis if tive Rechefelier Krothers Fiund in Wiest Dirial in ils velopman pervere sector project applisations wi, still awother experment in the direction*
The meed for sperial motitutroual arrangenient: *e ennure adequate evaluatuin and fillon if, is 1^{\prime} beme as ereat it in trequently mereswin in atribe altermatives tow the mecininlated bumbe it dat., inil
 terve theme whi make decominn on the allexation if
 of hamens and credi retelifice *rvicis ale ino
 'II Many iteveloping comberien liwe dwoth is re
 alowe the allowatio of haimes
 "berodina mower lil inexpetieneed whall hallie. fereple withow -
 :
Imarifinturn

 ene'ger to they it ion tavk.

 l/w ie whill: al.l
im tow exer whin

I ${ }^{\text {a }}$,						
-						

Thin waratist femlenes mas blur the basic issue The dexthment finame insitition should lave. within berad tirns of reterance set by governmelte. the that sin on acceptuge or refusing a project.

 tho.

 lockeel in the vemerce if fitance I vaptions should

 "inlepente int anculuent amb sulferinom capabilits
 "1 IT le wemb! mampurer allews a service inatitution

 luents

1athlan 1 a inls une part in the life of a propect. mextoblly mitrwinen woll the , thers The reasonis
 With all lhase weth strong Silke project election in the thidinemal regomibility if the tevelopment thane. inchlitw it apmeat, sensible under most
 pricet iferfinmient, evaluation op eupervision

 leverake "ith whach ti, chtion the neelect co opers. thi" If t" the luirfun"t horine the evaluation , hase

 inter: in the jecolet, liealth that vimuld notivate L'un! t.ins il lie lical agreements frequently

litry reasons for placing the full range of functions in the hamds of the develepment finarice institution's professional staff Admittefly, it is difficult to tell where self-interest arising from the financing function staps and a separiblie. wlentifioble rlevelopment function begins.

For this reawn among many others, the notion that primary respemsibility should be lodged in the thathomgelitity is not miversally held.
bevelepment lamkers themselves voice many of the whection. The costs of mantaining the extra researeh and teclinical persmmel netessary for project development and follow-ul, are not consulered justifiable expenses to private investors 1 whernnient sulisidies to cover the costs are not dearefl in many muxel or pirisitely rwherl institut dens leccalse of frars that they will he accompionied by ulveased genvernment inflience. (ither bankers may feel a traditional reluctance to prolee as far into a borrower', affairs as is implicit in the kinuls of relatu"-hus umber censideration here."

The policies of the mustatiomit! and bilateral extertal and agencies have in some replefts served to whatate responsibilty (most parioularly in the development ; Nase) from the sources of finance
 iernational Finince Corperation. has gantioned Iatin American develipment laakers about the dangers of excessile pronmotiomal responsibility citing expenar out eif proportion t." minediate return, necessity for grester assirance if success. likelihood if a higher degree of involvenient in management. particularly when no private manage ment cith lie fulund, he cromeludes that it "funancing instititiun cannot be entirely passive, nor can it be preckminately promutional, it must set its sights solliew here in leeturen ${ }^{-7}$ The induatrial development
"Ihs. reluctance has alwo evidencel inself in the I inited
 late as 1षs, the Hoaril of fovernurs if the Feder.;

 yure al cibiectiom on the parl uf member tands io invading The inivet if their thirriwers:" See II. I, 'Prese, Ifamage-

II Iliam I hiamond of the Internetimal Finamice Curporainm 'IF', recently pointed owt the dificulty in entabliahime
 fir vitue tupes. furntwimal activity Ser, The role of

EThis stake.nem wha made in an addites before the firs

 the iname invituln n itw! and ite leveliment of cirem inil aled porieita

 im isle the t maracion Bulivien te fivmento. Coppuracion

 ment ontrarzilion if Iniwa and the Pahmean Indueterai

centres supported by the United States Agency for International Development can be directly subsidized by government without interference in the running if the development finance institutions. Projects thus helped develop normally and then go to development finance institutions for support."

Finally, it may be argued that hy separating these reifensibilities. one "service" institution mas werve a large number of f_{3} ancial institutions.

The above arguments may thit le as real is they first appear. Costs of developing. evaluating and sulpervising projects may be returned in the firm of a better repasment record and repeat diplications from old customers for now fimancing. Thue pissibilit: of charging clients for callation and ather services is being tried in some development bionks. Most private atil mivel desclepment finamee insti
 ernment, alld it is at havt pleserionable that new arrangements acceptable to all comble not be foum! The attitude, of horrowers in the more inthatrialized conneries lewarlvalsice from their bamker suggents that good adsice will eventlailly be accepted ly busincsosmen in the develuping combitien alas:" Where the finascial institutional structure is suffi ciently developed to support a proliferation of small private development finance illstitutions, as may be the case in the Philippines or Mexico, or a smaller number of mectinm-sized finance institutions. as may be the case of the corfuraciones fimancicras in Colomi bia, there may well be reasun for centralizing project services to serve the larger number of existing insti. tutions. However. the question would arise as to whether one service institution comld cope if the institutions were geographically widely divtributed or lad different sectoral specialitios such as agriculture or small business.

To sum up, the strongest arguments for separating responsibility for the identificition and evaluation staye and the follow-11p stage from that for the selection stage exist where it is necessary to bypass a weak institution. Where there is hope of building a stromg one. the need for using the institution's: existing or latent self-interest and the desire to conserve scarce cadre manpower argue for humiding the capability of the financial institution lefore sprealing men into others to assume the vame responsibilities.

[^16]The initiation of projects has several mipheathons for the frecerture athl arganization it the grotere sional cadre. Shoult the sime staff wort obl both the imitiation of projects and their evanation There
 initiated frojects. The rewhopment disumat of the Cganda levelument Corperation i llo, fin

 the lodnatral and Smines le:celoperent lamb of
 developmert sems a beter altermation lowatar y

 then have the revenmibilits of lormaige is u! for comsideration lay thathe comma'tere is at premi

 ". evalatation ly othere ${ }^{1 / 1}$

 extent reflect the economic and [when, ..thus is

 its resmurers to inithation ${ }^{11}$

 for pergect imbition. rather than !eatom: if wo t

 unt vide projects. The rreation of a seforo wermiza

 will probably lie times when her matin" moname neent wrinld like to hift cadere resource : 'ome client projects on intiation The ilepartmental strmeture slviula not be ach as to hinder onche: whift

$$
\begin{aligned}
& 3 \text { Ralamed hetarin ...it ancuinuen : and divel op } \\
& \text { ment detirminutium }
\end{aligned}
$$

 endenct either to lie line romuction of eost iand

[^17]We held and developed as a part of the finance instithtionis dewelrpmemtil iesponsibilities. ${ }^{12}$
 betwern thes iwn pulat positions. Iending policies - - inclurling uth chainerition as collateral, interest rate. degree at rik imoluel perhaps provide the groatch arra if thice 10 clesermining this balance. Thew uminthmatels ire lecsoml the sompe of the peatit pap:
 diminatwo of frojnt aplications molikely to survive

 Iuchatl Nomp, "ume f the shatill factors making for
 Whach withothe wer. wit poceolerl with or did
 phare in a cratial tement in maintaining cost con-

 whether a sh imengetman lamald follow: I maxi-

 H1, bere a tond il luthern thits aml forts five man

 a B:allo it matams

In I'fll' I'akian Industrall Credit and Invest-

 tions rejected in thr comomic and general depart. ment, with a short tumment as $t=$ whe the negative

[^18]If the application is recommended for further study, it is sent ift initial examination by the appraisal committee, which considers questions of policy. These include appropriateness of the corporation's entry into the particular industrial field and the effect of financing the project on PICIC's relationships with other financial iristitutions, the government and clients. If at this point the appraisal committee decides in favour of a full investigation, the first step is a preliminary analysis of the product's motential marhet. If no satisfactory market exists. further investigation is halted.

In Turkey's Industrial Development Bank (IIDB/T), after the receiving office has deterınined that all data required in the application form are present, the finaticial department makes a rough appraisal of the financial abpects of the proposal to determine that estimates of cost and retirn are, on thei face, within semsible lemulds. The second component of He initial appraisal is a hackground check on the applicant, made through banking and bnsiness circles. The review, sinnilar to ane conducted in the Fakistan institution, iscertains the nithere of the applicant's financial prosition and reputation.

In II)C S I Industrial Uevelopment Corporation of somels tificat, an application is brought to the next mutting of the propositions comnittee, which combenes twice a werk Staff experts representing engiluering, marketing and finance gromps are assigued to complete a "lonsic assessment" of the proposal from the miterials provited hy the ipplicant The three stiff members work simultimeously making separate. brief reports. Assessments are completed within two or three davs, with a report hack at the levt propositions committer meeting, which then lecides whether a full investigation should be pur-- 1 end The timatiat marketing or engineering depirtment in angumed primary responsibility th ser that the basic assessment is completed on achedule and to move the project forward if it receives : full invertigation. Which rlejartment is assigned dep ends upin whether the priject appars to involve mainly miarketing. hanalial or engineering problenis.

Sometinies it may be desirable t., have a senior ufficer make the initia' screening. On the basis of his single 'finum, applications nay be either sent back for further development or jermitted to go (in) fir filler investigation. The loans departiment if the National lnvestment Bank of Gihana (NIH. was at its outset headed by a former commercial harriket if consulerable experience who received the mithal ingury and at the same time decided whether all invontigation would be recommended. Thus pre Inamary lpyasal was merged into the reception phase In cither development finance institutions, the rener.al nanager or other top ufficiais do the screening to weel cout applications that for political or it!ier policy reawns are unacceptable All these methinds orre to save the time of the professional cadres and therefore cut costs.

[^19]A final area presenting opportunities for reducing costs is the elimination of full evaluation on all applications. Some banks are plagued with a large number of applications for small balancing loans or loans to very small entreprenewrs. Although beyond the scope of this paper, it shculd be noted that consideration should be given to developing special routines for such small loans. One development corporation has recently ceased making full team appraisals on smaller loans, and has turned tiem over to one man who makes an initial appraisal and then lias the authority to co-opt another man frum anywhere in the institution for the full investigation of the project.

The ideal imitial appraisal, then is a two step process, combining some of each of the abow pattorns First, a check is neecled to ensure that the refuisite material is present and that on its farethe project falls within fairly clearly stated brumel aries defining the institution's cperations. Since it normally comprises a level of investigation not ie quiring the most highly skilled persomnel, this exami nation might be conducted by staff other than the investigating and decision mating grouje, thus saring costs and reiieving then of some lmurden. In filele for example the eronomic and general department hanclles matters at this point, thereby lightening the lovid on the operations depariment. In IDB 1 dustrial Development Bank of Turkey, the apdiat tion comen to the office of one of the deputy general managers, where a staff (fffier with the rauk of chef de burian goes weet the infurabathen t.. delernune that eberything askell ior hats been eceives and that the dala is reats for proce..ing. In other des ekopment finance instutum, the secretars, office mas recelve aphoations, anemble the lat. amble introduce the apphication into the evaluation strem.
The second step invalves considerateon of pwilus aspects and 'fualiatine julgenents as to whether a tull investgatem in juitified At this print. the wisest course would appear to be a brief evaluation. including all the major aspects of project evaluation. not nerely one or twe. 1", the extent that broad policy yuestions are at issure senior management shimld take part.

4. Teumurork by professiomad shaff memters in making, czuluations

The manner in which the skills of the economist. ergineer, accumntant and lawver are harnesced in making an evaluation can be vital to effertive appraisal.
1)evelopment finance institutions regulariv meet the problem of cumbining these various skills. Two hasic methods have evolved. The first is the separate departmental metholl in which the con mist, the financial analyst and the enginerr work separately.

One of them or a fourth indivilual collatw , the" reports at the end. In the seconcl urithent tranl ap praisal-the three specialists wort tugether ant suhmit a single report. A third moibin attermatice -appraisal by one man arting atme wo with the autherity to binild a temmas necessins is $\begin{gathered}\text { mand onn }\end{gathered}$ infrequently in the developing comptios

Team apprasal appears to le cemble man wint. effectio than separate departmental appraisal in
 more thrimghe comsileration th the w. a a ace related fath outside lio wow partiviar ... :ue. .an atfect hose within it It apparentle keto Ahe ai, 小ow
 of the eromonist, the enginerer .unt the benthe:

 herent is separate depormemal apmana!

 huretment conperatim! and linl Indatral

 (1)

 Gollow.

(b) i loan application in lathbl was coardinated by its laans department Alter classificatum by a loans, committee ans t" piriority or likelihood of approval, the loans department, the economic development department and the techaical deparment cach worked un separate rymits which were then
cu-ordinated by the loans department for presentation to the loans committee. (In late 1963 , the technical department was merged with the loans department.) This pattern, which might be termed simultaneous separate department appraisal, may be represented as follows:

 that imentur th the tem. ${ }^{14}$ dthmath in fat he

starterl his investigations slightly before the others on the theory that, if no prospecti;e market were foum, the investigation should stop. The three workell as a team although they had initially prepared separate, related reports. The chief of operations then worhed with the three men, hammering out a single froject appraisal which was presented t" the project appraisal committee. The flow in this tean appraisal was as follows

$$
\begin{aligned}
& \text { 19, }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { (1mman }
\end{aligned}
$$

 - "川! ! ! " .

 unt: : Her vitt member ...astifil w the case finishes

 mater. nlate tir hathetal mabla depatment may sometmo dey the sales estmates of the economics Lepartmen: 11 tiener, the inasathlan that one de partment bught trionie .f cliennic hottleneck in the aprasal fremen and that there might le sustainel

than with team appramai becanse of the emphasis on the separate asessment of the projects by different protersion.
 stact ephate lepatmental apprait in the past twi) vars. The former now pisses thes throngh the timanoll ambuis and econmic research elegartments un their way th the first full department report by the matheerms department. This procelure makes pusoble earls ilonghation of case wficers in each depariment and allins them to legin cullecting data In Irim. the han, reparment has leen made reymunble tor apratisal of projects ipresumably on a pattern similar to PlCle's). The technical deparment has been merget with it. A joint financialteclinical teani prepare, a report covering these tuy aspects of an appraisal. The economics department whil, as required, prefare a separate report in the marketing avpects oi the firepert. Thus 1MH1! is two thirels of the way towards a full tean apprais.l approach

Tean: apmainal offers three advantages over separate departmental appraisal. First, it lets the appraser, coilectively consider the inany economic. hnancial and techmical aspects of a project as parts.
of a whole. The intricately interrelated nature of the components of a project is brought out in the following passage from the Lnited Nations Mannal on Economic Development Projects:
"It is obvious that the volume of lemand to be satisfied will have a very considerable influence... on the decision as to the capacity of the new productive unit. But the size of the market will depend, among other things, on the location of the enterprise, so that there is a definitive relationship between size, location and the market. On the other hand, selling prices will sometimes greatly influence the volume of demand. These are almost invariably dependent uporn promuction costs, which in turn are a function of the scale of production and location." 17

Secondly, there is evidence that team appraisal gets the job done more quickly. lingle in 1 OH2 reported average processing times for the four institutions discussed atrove as follows: IICIC.-. hiree months, ICICI-three to four months, IMDRI-five to six months, and ID13/T-five to six months. Although Engle's data were based on rough est mates by the managements of the instifutions and do not define "procerssing time", they do raise a strong inference that team appraisal results in faster appraisal.

Thindly, team appraisal contrihutes in manty ways to the growth of a truly professinai development banker. liach team meniber is enconraged to consider aspects of :ypraisal which are foremg t, his basic traming. This experience gradally trantorms an ecomonisis, accountath orempiner into a development finance expert. Hore immediately, team inpraisal permits a develoment bank to modercut
 praisal proceses. First, it ropures onen gromb dis. consion of the case om its metts amol. secomdly, it provides collective strength th the professional catimates and recommendations of a haik', techmical staff, As a result, political fresure is clewated 1 , the decisiom matimg kevel, where is nore properly
 minimize rivalry and misunderstanding among the
 sionalism in develryment hinking.

5. Idripuacy of mithods fir the aiguintion i! dista used by professiomal rudres

Some development finance intitution, hore ex perienced difticnit, in seckins greatly detinled ditie from potential clients at the ontiet of the three valuation phases. Intereatel !usinesomen are deterred from apdeling for finance becinse they bata at providng the data desired be the fimance insti tution They may be unwilling to divnge the information ur go to the expense of gathering it unless they fecl financial assistince is likelv tof loe forth. coming. Yet it is most often $n \cdot 4$ in the interest of the institution to give even a tentative commitnient at the early phates. They may be unable to compire the data and hersce rembire the lielp it thie pitite sional cadre. Requesting greatly detailed data nay

[^20]be regarded as a screening deviee since it dimmotic the weak hearted. lint numally its now dwomb not be justified on such grounds, ancer it mav foreclose appilications frome promismg proserts who tirn insteat to traditional sources of funds l'rutionmal cadre time icleally shruble wh to committed in pre. paring data at a premature wage Therefore id devel optient finance institution ohomble exmine it- jer cedures of data accuisition tor ellore that withem but not excessive, infarmation is gathered at the various plases.
 the needs of all develigment thatme methatom, Methorls will usually combine the use if :ll aplipa

 professionid calre itacli.

 chemt then piras ales the deserel mintumbin with

batter atrecir:

We herw really vers hitle alwht the decision-
 We mat assume fir examptr. Hat the knowledge
 len ei i protect iv reall: benghe to bear on its

 'almbs. He preater at her dombiant ligure in the
 wit inetel: i a kiven develenthent liank or

 W. hane woll hit, in mat canch afatf chregel with whlnating a project will have collected the data, abilued it and made a recommendatiom. Just as they whath gu levilut the mere centlection of data, so liey whom mike the det sion fi, comme funds.
 (1) reart ath aphlazathon

 A...e:

anwing the oldere developmem finance inatitutione, this paltern sugsests that, as a developmem funame institution matires, thas joricular committe fung thon may step down owe is more levels of manape ment In contrast, (iham's youma NIB (National Inifotment Rank, has an executive committee of the taiald, apporently performing the seme function

Hhere att metatire "xcefolitns i" thas callective "iatiare of decison making. I won of the develipurint copporation wipe institutions, the l'akistan Inctumerial I Welelopmont (orporation IPIIx a and the I canda
 mative vears very srong dvanmo leaders who reallv were the deristom making firces in iheir in stitutions. Such leadership may be charmertiotic if the naccevstil ifevelipmient biname inolitionma with strong rintrepreneurial responsibilities

In general, there art advantages for manv de velogmein filaike institutions in cominuing the col lective aspact olowerved in the eval sation sage her ward intu the election stake swh practice perobebly reduce the likelihued in viburary. perwmatly biamed of improperly influenced decivicins. The rewiling
 pring the ciapiolity of participmens. This atemeragh they undoiltedly, slow the pricess and tend to ob wher the locatem of regponsilulity. committee toclsumis apmeir tu be a wirthwhile price to pay for lueter evaliatilim As the iltolitieion ond the whose
 wiblotmated incredolige wright will probathy be

forern to amole of en

 '...the. : !thet lut the ilue ...entialls in two phose

 haw. k'ite jurt way by havme molvidual animers

 from external sapportint trvires herume avaliubt

Theep ofe streath ayme the manazeris! tove

 beld m which he wee moured

 perifer evatumevem

 wo much the evimeet wom tuan

4 at on 4 4

Wint mat and maverace andiul mamenoment

 nemend

/ he pew bent petich

皮

2 The annery retwre an introtament methoud

 the cotwloming

 vea. 'armig, wearitels 1 : wher into weromint the fact that errls arming ate werth moire thin late

 -••••・リ

The first thiee can numally ive estimated quanti titively with fair marginy that are tolerable fior decision purposes.s The last, on the ather hand, repuires a high orler of julgement let un see how these dinensions are measured.

1. Measwring inerstment

The appripprate investment base for calhalom purposes is incrementai ontlay, wheh may lu len than lutal outlay For example. the alternative li, a new bridge costing $\$ 15$ million could lie nowlernizing - ierry system, whic would cost 15 millem. The periper investment limse for the britere is not tis total cost, $\$ 15$ milion, but its imcremental cout, $\$ 1$ millim Howiver, if the ferry system were to $1 x$ modernized regardless of whether or mot the hridge was hult, the ferry sustem moxiernization project womid met be a trise altirnative to the bridge, and the encremental outlav fire the bindge winid loe $\$ 15$ millom (m the other hand. the investivent amount shomili include the entire amount of the lifetime added inulavs, mo materr bow jurtuons of $1 t$ are treated m the broks foxpensemg certain urms rather than raptalizing them may priwise tan savings that shumd be refecterd in encmating the investrment Any additiomal meestment in working capatal or inher allxiliury facilities accamoned by the project stheald the included in the investnient amoum, as shomeld any future research and promotional expenditures involved if the propmai calls for trannierrian ony existing facilities, this cow sheuld also be inclucted in the investiment ammunt
F_{1} the purpuse if calculating permenctive retiorn the items inclisileit in the invesment anmuint should foe valued at ther ecrmomus, rather than there 3 comeng vathos Fire caplalized outlins at the come of the investment derisum. these inlices art ideneical fue existing faculities. however, there can lue apro nominced dimpariev tuetween them. What is perement

 ficult the ianok whe if the vilue of live foregone

 |uand valut then himer dispowal valise ehmild lie used

 therbire lie refirc:al in the liscomented canth how

I' a uremu addid permimi,
lit ferchin'inti, it the aqual tied un in an m. "otion prole.t is deternined by the morease on

 menetits. When these have io in manted frem the

 in.in

3. Estimating fonomic life

The economic life of a project is that perient turing which eromomic benefits comitinue to result from it It may be brought to an elli by physica! teterioration, ofsolexcence, or the drying in, if the source of earnings. I conomic life aften the wost difficult dimension of project value to grantify, lint the prob). leill cannot le avoided. While some estimate is leterer than nome, the ifeprectable life furecast fir lwokkeeping or tax purposes is not aluas the le-1 atalatile forecath of ecommuc life.

4. Appraising risks, whicerainties and unfondiralle hew'fits

Apprasing the risks, innertaintiey and impernter ahle trenefits issomiated with a promert rectures a higlo order of judgement. These appratsals stumili result from the collective wisdom of those hest infalified 0 , make them. I'sually, only the diferences in amonnt of rigk ammeng projects need lue comsinfered since the company's coot of capital reflects noer atl risks of invesment Only when an investneent alters the gen eral character of the company's operations significantly will the risk reflected in the complatiy's cust of capital te revalued in the market

In the process of neasuring the prodmble return on each project, the company may le successfil in adjusting the probable range and timing of earnings If so, only the dispersion of prossbie cultcomes cum stitues differential risk fur evample it laturur savina device would probal Il have a fower dispersion of ontcomes than a new prodict, and the chance, if tre gains of keses would lue smaller than fur a new profinct Thengh deternuning the disprasion of pritu. ainie results is diffeult wime heatwav is avimil! can the male' a meceosarily arluteary riak raukinig of tandidate piropecio or ategories of propects

Misat projects have wome miled lumefit, war anl alwive these that are newasurable llowever. tat" mint tre taken not to give excrosut weruht to thewe int penderalites lithen a how rate of return piroiect in
 alole limefits. the burden ot primef clearly rast, in the inipuriberation

 that will the the same whether the pronemal in w. : ecet on rejected struald be included in estimoted earnings. and a like rule should tre appict t" invewtirent cal rubletions

 afe confimine ant inmaterial
ic. Timanc widestments and carning is wamin com and shiuld afiect the rate of reforr caiculatione
d) linally inlv diferemes in amwime it rivk thetwee: prquisils need 'e comulered The dispervi...

A final nete it would alwavs be remembereal that there 1 at leat une alternative to evers fir |owad capital expenditure fory of comre, be an catastrophic that refined measurement in mumeramin 1 ,

 portant to evaluate ench aretnlly lufare a dic:and is made

() CRithmia of indostrial projfit fiali atilin

Ranking a group of project propmeily acorlug '.
 inverament that can be experted frome eacle. ir .a
 solve the problem of makmg matmout hawoll The prepenall that rank, lighest man will ine whe"

 toul for exallyde, profitalility call gise W.a 1 ,
 to provite gerpie with work 111 an mile lowelamel
 available can take greater roks than call llowe wi:h

 by pirivate enterpirise

 melv fire rew jer"pisala

 "

actualities but must be projected into the long-run future. In measuring the company's total cost of capital, it is necessary to examine the cost of each vurce of capital available to the company-for example, through borrowing minew, issoing stock. fhnghin hack cash eaminge, selling assets. The total cont of capital is a combination of the costs of "ipntal from all sources open to the company.
lhis sugereaten of what cost of capital meane to the mdicilual tirm and how it is measured can. in primule. We loriacheneld to a consideration of the wat of cagntal th the national economy and to rexiets.

There are three alternative concept of the cost of capmal to the nation (infertmatels, they pro-小ure 小atra-ingly different estimates of this figure.

The fit it concept is that to gerverniment, capital

 mblimed quatitio, of mones. Ilowerer, creating

 Lr"us. canses inflatmo. Tlms capital oltained in this
 i. .ankiated with inflatom

Whalier rearon is that government's fower to tin i- mimmel. Fxem taxation, howerer. destrova the tavalle hate of real wealth and hicome. (apital whamed thrugh inereased taxation has thilfen in the f.rm of at tecating growth rate. im

extent that these gifts and loans require no use of national resources that would le otherwise productively emploved, this capital is free. Often, however, a condition for these gifta and loans is the costly diversion of the nation's reanurces from more profitalle uses. In this case capital is obtained at the cost of crucial, scarce national remurces. for example, skilled latour and supervision.

I second concept of the cost of capital to a nation is the government borrowing rate, which is the visible market cost of horrowed capital. T'nlike the market cost of corporate debt capital, which is determined ly the n.arket forces of supply and demand, these rates ar manipulatable and arbitrary. Often, the governmeat rates conceal a sulwidy by not reflecting the degree of risk associated with the Inorrowing.

A third concept is that the coit of capital to gov ernment is the sim of the cost uf capital to all the corporations constituting the private enterprise sec tor of society in the nation concerned the reasoning hehind this view is that fonds must ultimately (ame fromi the private enterpise sectur and the alternative is to nave them emploved there rather than by government capital formation.
like all criteria, that of the cost of capital can be bypisard under certain conditions. Whenever that halpens. however, there should he ample proof that the investment project in queation is justified by other important comtributions. Such proof should be refuired of public as well as of private investments, since both government and private industry can rinly stand to gain by planning and appraising investment projects with as mich care and sophistication as presemt meethods permit.

loy A. K. Sen*

intmodiction

The different approaches to the evaluation of alternative industrial projects can be broadly classified into two groups those that try to relate the exercise to some explicit attempts at optimization. and those that sugest some rules of thumb withont any explicit use of optimizing methods of concepts. The adherents of the first type of approach tend to regard the a.therents of the second as unduly crude, and the latter in their tuin tend to regard the former as somewhat unpractical. The unfortunate fact is that each group is essentially right atwont the ither. and there does not setm to exist at the molient any detinter appeach to the problem of pro jert evaluation that is lunth interiectually satisisatery and practically usable. This is a dilemma that is difficult to escape, and we do nox intend to try to do s in this paper. Instead, our object will be to datline sume methods of exathating indastrat pre. lects that are essentially practical. Dut which inchidu. sonve of the more important elemients of the problem of eptimization involued in the exercise It can be regarded as a cross between the two tupeei of a) proaches outlined above and, while it probials has wome of the merits of both approaches, it a! a liars; - tme of the defects of each

There has been a great real of discuasion in recen: vears on the efficiency of market induced dienalion of remources. The question is not neresarme relatel th that of whaliom eorens capitation. as is cometimes thought: indeed, socialist ec nomies seem to make very wide use of the market, while wirne caputalist economies have very reatricted marhets. It is perhaps also worth mentioning that some If the earlieat and the bea works on the efficiency in the market mechanism came from eronomists aturating orraliem. The position will be takell in thi japer that. while the market mechanism has wine extremely werinus drawhecks. it pirnvides a useful starting point for regource allowation in kenera! and for project evaluation in particular is such. We start with an examination of the notion of commercial profitability. and muve from there to the emeral question of national eronumic profita bility

1 Commencial pmofitabifity

Fach projert progoserd can be deacribert in a spe cific blueprime indicating the amount of 'ine diffrenlit tupen of productive resources to the uned and when they will be used, as well as the expected inne

[^21]stream of ouphit or atputs. We tha, law lun time streams, one representing inglithe. init th. other coltput flows. While the w two vitative o.pil plemely describe the physical fedturn in the plow: thes dor mot, of themorlves. tell me mushe almote the

 we can convert the two time settes int , it a be,
 Hwe ageregate value of the ompmos and lo.e 1.1 the

 of the controseros of recint war-ine :.....
 Gue tinn We might therefore tirat ferene ing is

 aptim for cath tepe of ingut i. with i 1, 2

 there are somie infuit, and n_{1} ontpul- it a whic.

 over the entire pierient

 folluws

Similarly, given the pines of the ontputs for each perinl. $\pi, \pi, \quad \pi_{n}$, reperenting the series for the typirsil witp:nt $\%$. we have a time series of peresste :ahe of returns derived in an illentical
 the whe entirn, of em! periml the value of

 clarms. Wme. bume ver. we get the arime of net pernit, Whith we hall efer to lo the pector (i)

 tran, 1 at, of remern" and "ablation of the "prevent value of the series " at a given rate of intere-t, ar

$$
11,1 \quad \begin{array}{lll}
m & 11 \tag{121}\\
i & 11 & 1
\end{array}
$$

$$
\text { M: 1: , 11 } 0 \quad 1
$$

 ade Ur -hat! mot lere a entw the fllevtion uf the eveneme of the iniermal rate cif retuln whish mughe

is. in general, not a serious objection to the internal return rule. ${ }^{3}$ However. the question of unicpueness is a very important one, and the fact remains that a project may have more than one intermal rate of return. For example, the three-element stream of net profit $(-\ldots 1,+5,-f$, has two internal rates of return, namely. 1 and 2 . since the presen: value of the stream is zero if we discomt it at 100 per cem. or at $2(x)$ per cemt.

There is, hewever, we case where the prohlem of invipteness of the internal rate of return dues but comee any difficules. That is the ase when the froject in puestion is of the "msestment" spac. that is, has negative returns (costs, bill thent and pesitive returns bevond that. More formaits. there exists a time perial such that for $1 \leqslant \begin{aligned} & \text { a }\end{aligned}$ $\therefore,<0$ athl for $t>(\theta), \therefore 0$ il in perhaps of whue comfort to mite that the ivpical investment prolects that are to be considered very oftem fit this dewcripuch, and are this free fromithe pessi lility of having more than one internal rate of repirn. However, when we conipare ewn projects and try to lowik at the differences liet wern their net returns each period. this one-swith pathern mav nut hoidn

In my indgement. the firollem of hom minimeness of the internal rate of return in wor terhatis the nowe signiticant oheretion to it, for even if ath in ternal rates are uniplue. maximizing the internal rate of retirn mav not lee the best thing in do What we are concerined with is not anly the rate of return ter bint if inverment. hete alon the sioe of the intertaking for example given the choice be tween iwo incompatible prapects, it does not follow that the one w?th the higher internal rate of ewtirn hanlif hee choven. for it might be a bumb smaller breinet lie might preter tu hase 10 fier cent in Wlene rather than lon fer cent י"t \$1, when the liathet rite of mimerent is aiv. 5 per cent

The, main alvintage whith the altermitive "present valur" apreach is that it givea a cleat expression if the "otal net lienefit expected from the project is +inhated polas with the proper rate if interest IS the finfer rate of metersit is neant the market rate assuming the market to be perfect. which makes it the relevant rate for the commerrial profitdhithy calculatom The individual tiking the derichoth has the rption of trirrowing ur lending at the mark. rate of interest, and w the proper bavi for the Maluation of the time series. from the point ai wen of hic perwona! profits. is to dicoumt it throngh. 'III at the market rate if intereat

Thth. the cunc!avion we arrive at is that the


```
whith we to ne: a", here
```



```
acill sondrum [*4)
    * ver Ur.ghlam.
```


internal rate of return but the present value. This point has of course been much discussed in the literatiure. ${ }^{\text {a }}$ and is repeated here only because the apleal of the alternative criterion of maxinizing the "iate of proft" or the "internal rate of return" still seems to be very great. It should perhape he noted that the conclusion quoted is based on a number of simplifying assumptions that may be rather restrictive in particular, the :tscinption of a perfect market for borrowing and lending is a verion, onfe for the efficiency of the present valur rule. If for example the indivisible priject was on bige that the asomption of atomistic calculation was: no longer appoperiate, we shombt then have to consuler nut winls the mairket ritte of intertst. bet daso the fmasille changes in the market ritte itself as a result of the progect evaluatinn inf guestion

Obla with atomistic competition can one asolnte that the mathet price if evervhong. inchothog the rate of intereal, is fixed irrequectuve of the decision at hand The present value risle th hasid in this asolemption. bilt it mave ne he a vers geond one in the cere ot a lig pirised ant when werceme to the
 bler. fur example camids ceros the commers the flue at an if the variation of the market rate if in

 twe of the preane value techmple in that the market

 liarket for as much berrinimg allil lending as liey
 and it is of comise pulter reievant to aith whether guverimient call be treated like all mohsinhal :1-. vis the market EVell from the primt of view of
 value rule clearl lies in the nort periect nothise of the calntal market Inileel the milninatice if the "avaldhilit:" of funds as a determumant of invent neme that has breen discossed in the context if pri
 is ibearly an inflicator of an imperfect capital market

We need not ge, further into the question of ammercial prethitaholitv Gir interese in it is only incidental. heing confined to the light it thriwu on industrial projert evaluaturn from the point of view of the wicult Fir such a hackeromind. it is sufficient to wite at this stage that the greateit private protit

is ohtained by evaluating projects at the market rates of interest, converting then into present value, The rale of internal rate if return does not gise: proper indication of what to do in tha case We have also noted that the somindness of thiv pireselt value rule from the point of view of connmercial protitablity ia crucially dependent on the wamp. tion it a pertect mathet fur biprowilig amd trong

13. Nafonal emonomic phorilabilil,

The calrulaton of comnercial protitablity in .mat lytically immitr th, that of evahtatimg natwhit a. homic gith frome a prajeet, but the varnhties t., be leals with are often dime difteremt smee the teme

 turther moto the analys of national enobom fonl: ahility

 nemt inheates a stmatumal chame. whe. wime

 of his cun wettare, so that the farethon :mptom mellt nieans that at kast one petwon rgath lam

 wah wire ! cant. for example. |o wherel abll
 hinger while whers are extownty iothe. whik a

 and is conoment with aths degere of herph
 mality is that if i, wemething whuch rian if 11 will
 thong! we mas wit lind it bitteratit Ireietel in a

 thlo, this fresettis

$$
\begin{aligned}
& \text { "m日風 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1:11! } 1+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { |ropluel if lituoler whil }
\end{aligned}
$$

$$
\begin{aligned}
& \text { リtitath reat that }
\end{aligned}
$$

＊．．Thic remranten nuthink hatever tha：

 ther uwn imorests with those in lieer heirs wo that

 wis．is whether these future wrifure interest－irr

 n．

 nowilitum．The fict to horwever thet orme

 मीनertivil

$\cdots \operatorname{mec}$

 min birtios: the therter

w
.*W4***
*. $\times 1$

- H. Wri

 - 4 (

 -

 r. Mem

*

 (1)

 -
 $34 x^{2}+4$

w,400\%	,	10, ${ }^{\text {a }}$?	+10	U ${ }^{\text {l }}$	nite	*	4	-	- net

 the twon problewi. Wumely the chome in the wand riter

 takem on tremi low in men

 tor thery

$$
\begin{aligned}
& \text { * }
\end{aligned}
$$

1.1 بwot W.

'tuk will tw a fim..

". Wen
*

The (amplatatir ectom,intic advantage whech has leen damed tor it ass

 majus tectsion
 canme like in .it the n iv Jotake them as prelimi haty thins in what fuestions mo ask and what on expert an lighien the hurden of project selection. me* 'י, take thent as suthrieme gromind for mraughe forward thrice of periects sema in be a course full of pietalla In the last analvas, there is wo whatitue for the evallitiom of wrial coats and lemefits in mitine a pirin.r selectum of propects Thut is why tha palet his lmert itecited th the assues involved in this detaled evaluation

 - hil auti trean 1404

 1 hramil I reos retruest Mrm

 14 11 MaM

 - 4

- 4. 4

If I Hirschicifir. "Im the theory in aptimel mesemment decistins. Jowned of I'odeth al Eacmamv. I.XVI. Lin versity it Thwagn l'res. 1950
I7 A E Kahn. "Investment criteria in development Mr" Mrammes". Unarieply lowreal of timunnis. Harvard Cinveriny Press, Fetirmary 1451
IN M Kalecki Thoorv of Firmomer l'vamons Iavilan, Alien Unwin, 1454
19 T K Kapmens, Three Esubls on the Static of Eiot

A) O I ange and F M Taylor, Om the Fiowimec Theney if Yin mitime Minreapolis. Minnestian I niveraity Prens. 14.3

21 I P lerner. The Fomoming of (thetrol. New York Macmilton 184
22 W A Iewis. The Therry of Eic omonmec lirowth I.andan. Anom Unwin, 104s
23 I I. I.nd. "The social rate of twatomen and the
 oerly linmad of kramanacs. Herverd Cinmersmy Prece. Mny land
 Imbord, Cherenden Prees, 1437
25 J M Ifrie and I J savape, "Three prebleme me the talicmina of copitel". Inormal of Benowest, XYIII. I muersty (Thuago Preas, 145s

 143

The suciel race in diseroum and the equmed
 Hervard I miversuy Proen. Fobemery 1enj

 - I echmoniey Press lum

121 11 Pichlord and 11 Hegrer 4 wowe an we

41 --, Isclation, soentance and the socrel rate of

 Colitornis. May 190
 Olve Wintu, 190.
4. I N. Sotrionaen, "Inootimem erreeric and chavce of
 noter PMe.

 Md.. Jehne Hophtme Pre's. Iow

 Ficmondis. Hervard Limeresty Presc Way I'n

 *11+3)

 Inverseny Preme, I4nd

m C. L D Denee*

 dehinte in which it wowhed on mattefs is sejurete as

 I folity

*

clefity provises tosemt Thrdiv, the molion plat

 A criwtome are hurwithan it wheve eonlynalily

 liut atiel

 cammot to wowshed away men wowe iver al! minx!

the mencem ereret if ecomomic griwth. a ecret whely If is lon eaty to keep. and we are ading fir it m emeral in a form that will enable indichat den inom makers io the eromomy, treads inf hrmas and phoin

 printratime

Pherefowe twousar the lefoblem wa theriathert
 tactiorv. whethel aw warts by consultepine whem is

 *W'teiv, \#ambuitin

 4 I

 * mathe win the sayth ": we

 mithond

 to d

 4.

 -

 4. 4 ,

 *

 wuternat


```
*)
**)
```


$$
4
$$

J

4
06167

11
420
童
II!
|125 ||14 148
mum output at a given production capacity whike retaining the given asonrtment, and the mimimum that is an accurate realization of the programme of output if eich aretcle involung the leate pessible cerst. There costs cin be included beth in fixing prices and in patment in kind (particilarls if economies ill certan ecarce materials are neeted However. under preciluction comditum. factora such as meeting urgent order, necossitate consuleration. For ex ample. where an urgent oriler las t" be carri-1 out with the helf, of mathematical methods, it is possible
 "ptimim.

In the l'ivR, economic mathematic il nudelling was siccrasfully used in 1'ans to determine the optinum, diatribution and specialization of plants for repiating birries in Siberia and the Far Fast (transprift prosliction model of whole number prosramming , secialization of profuction of hariware in Xivonilirak (distribution of linear programming) and spradization of the production of a fibron half-
finished prodict in the palp and paper indwotry (general monkel of linear programmina). Similar methods were used in meny other eases

Designing by induatrial orpanization is largely used in the CSSR. The laboratory of eronomic mathematical investigation of the Novoeibirsk University alone carries out about twent y tasks of this kind in a year.

The problem of the optimum distribution of the production programme between several enterprises can be consider ed as an example. Iet us asoume that we have a certain number of enterprises of five types $A-E$. among which it is neceseary to distribute orders of products Nos. 1 and 2. A definite ratio of product No. 1 to product No. 2 has to be maintained: twice as many products No. 1 are required as products No. 2. It is desirable that each emterprise produce only ome kind of product. Data on the number of enterprises and their capmeity are shown in table 1 below.

7 wer 4 rentremers	Numtron 	Producting reparity if on emfopprise ...		Reiotice labrure econeminy chereiter of medurtion	
		II. 1 Omit umin	Py 100 fm mite Ar:umeti No ?	Prodncer No. ompered suith	Pridmets Nn 1 (monpencd vich Medwets No. 2
A	¢	(16)	15	67	0.1
H	3	410	200	20	0.0
1	41	A)	25	Pil	0125
11	4	ANO	0	40	0.25
F	2	(W)	2 N	24	041

 a comberl The question of transport is net conadecel. it is comalered bater in the present repmert. It is necesars nou t, deter:ume the opitinimm irder of distibution ambong enterpirises and possilite maxi"IIII uhime of piridiction under other equal randiturn.

If at tie enterifine were to pirndice article Nin. 1. then their int il untut would te equal to
$5 \times \operatorname{lin} \cdot 3$ a HK$) \cdot$ than $20+4$ a 20 n

11. We.er, a part it the pronioctum capacity mises

Tre used to produce article No. 2. By transferring enterprises A to the production of article No. 2 instead of the earlier proluction of 100,000 units of No. 1, we can obtain 15000 articles of Vin. 210.15 articles No. 2 to each article No. 11.

The data in the last column of table 1 indicate that it is more rational to trancarer enterprises of R tuje to the prodiction of articles. No. 2. But this is not enough, because the carrying capacity of three enterprises of the B type is eyual to to00.000 articles No 2. As a result of further "ranging" approximations, we ohtain the optimum plan shown in table 2.

In practice, the number of articies produced in each enterpirise is often ereaier than anticipated on account of the conditions of the given task. and the computation requires complicaterl methods if linear programming The establishment of s ratomal plan of smpplung and transwring loak is one of the most common types of problems solved hy nuthematical $\mathrm{m}^{\text {.hods. the }}$, nain object leing ti) transport loads from producers to consumers at min. nuni costs. The prime costs of transportation by railway, automotile and shipping comprise the given data. We must also take into account ad ditiona! factors, such as restrictions resulting from limited capacity of some transportation units, in terchangeability of some loads and necessity of supplying the most important consumers first. The optimum linkage of consumers to producers in nany branches of the national eronomy of the USSR has proved economically effective. Therefore similar control calculations in the evaluation of the specified industrial projects are highly recommended.

The main computation centre of the Gosplan has deternuined the optinimm plai for transporting saw timber and round timber on a countrywide scale. Three factors were involved: producers of round timber and saw timber (37 timber organizations): 87 intermediate sites of round-timber processing and, lastly, consumers (63 organizations). The restrictions on saw-mill capacities and the interchangeability of some timbers were taken into account. The optinum distribution of enterprises of each branch was determined, as well as the capacity if all enterprises required to mieet consumer de. nands.

As a criterion of the optinum, the nimimum combined costs of pruduction, consumption and tran:portation of saw-timber and timber was deternined. The optimum potential of the scheme was checked for the tranaport of coal, first to eastern Sibelid and the Far Fast and then on a country-wide scale (coal transportation constitutes 20 per cent of the whole railway turnover in the LSSK). As points of coal conaumption, administrative centres of ninety-eight main economic regions of the country (leningrad, Kharkov, Sverdlovek and others were taken. as well as the junctions of the conal basims (Debaltsevo for the Don basin, Usjat for the Kuznetz basin. Uxiovaya for the regions near Moscow). The calculations were carried out in three forms: for the minimum run (in ton-kilomate), for the minimum prime cost and for the minimum price of traneportation according to the actual tariff. Plans calculated on the computer have resulted in a reduction of the load-run of some 9 to 10 per cent and in a saving of 70 to 90 million roubles for operating exprenses.

For the wider use of mathematical methenls in planning and formulating projects, zone seminars are conducted; they are organized for persons dealing with mathematical neethods and their use.

B. Lineal mociaminimg

Mon of the problems mentioned alove were resolved by linear programming neethods. That is the
only methid of resoling many production problems arising diring the preparation and evahation of industrial rojects. in which the value consilered depends on many factors, "hat is why these problemis cannot lee resolved hy the usual methouls of mathe matical analysis (calcutation of the firct and secomd derivatives). W'ith the use of promraming. the main criteria according to which the wr that version can be determined as the optimmun can he. firs instance, the highest productivity of the gromp if units or the lowest cost of piopluction per nimit. the beat use of resources and, in particular, the renlucturn in the quantity of raw materials, energy anit , יher elements used. Available probluctoos reanarers (quantity and capacity of given umts, mathene tow machines) and the given proshiction asortineit can be referred to the principal given conditions

The case illnstrated alowe (see tables 1 .and \therefore, comparatively simple, with mare complex platal data leven without any great increase in the number of enterprises and products ${ }^{*}$, which are char ater istic of all problems found in practice, the problem can be resolved only by the linear jirngammang method

Let us analyse sone general methoutio of whition similar to the one considered. [at 11 s chmailer the operation of machine-tools (units) where marious articles (products) are prentineat. It in ther it machine tool if $1 \quad-3$, then machime timi N. is in duestion the $\boldsymbol{k}^{\text {te }}$ article is promberd, then the quantity of the aricles producel , lurme the thum of
 (1f in the $\mathrm{i}^{\text {th }}$ machine tool $k^{\text {th }}$ attule camont in proflaced, then the corresponting a_{6}, 0 ,

Now it is necessary to work tint a pmg amme it machine-tool uperation (artucle dosthintom; fresid ing the prodiction of the maximum gimatis it wat or to combine the conditions of the maximunn vol unte of production with the tealiation of the fils: plan of nomenclature.

 temil (a part of the total tinie of the mithone fati

It is known that the funntime h_{1} ir. ;".nitur ($h_{4, k} \geqslant 0$ and the sunt of all quantition $h_{1} k$ bliter the change of k from $l \mathrm{up}$ t. m is equal ${ }^{\prime}$. 1 , which fallows from the verv deter:manatum of the falatits

$$
\sum_{1}^{m} h_{1}
$$

From the determinatwangename tir the shan $a_{4.2}$ and $h_{s, k}$ it follow, that the potinncts of a $h_{1.8}$ correspunds to the $h^{\text {th }}$ producturn on the $t^{\text {th }}$ ma chine tiol.

The total protuction of all $k^{\prime \prime}$ aflifien $/$. witi then te equal t"

[^22]$$
Z_{k}=a_{i=1}^{m} a_{4, k} \cdot h_{i k}
$$

The comlitions of article sets under the alovementioneld ifesiguations will be as follows

$$
Z_{1} \quad Z_{2} \quad=\%_{k} \cdots \quad=\boldsymbol{Z}_{m}
$$

Thins the comblitions of the froblem under conaleration will le the tollowing

Tof find quatuties $h_{h},(i=1.2 \ldots n: k-1.2$. m) irnll the f. llowing :onditions
$1 h_{1} \geq 0$
2. $\sum_{k=1}^{m} h_{1 . k}=1(i=1,2, \ldots, n)$
$k=1$
3. Value $h_{i, k}$ should be chosen so that the quantity $Z=Z_{1}=Z_{2}=\quad=Z_{k}=$

$$
=Z_{m}=\sum_{i=1}^{m} a_{4, k} \cdot h_{i, k}
$$

be maximum.
L'ie the ratio indicated for the following example. Proluctivity conditions of three types of machinetools at the production output of two types are given (see table 3).

Table: 3. Machinf-tool prodictivity thepfinding on the tupe
of prometion

Machine tool tipe	Onantinyof mechinetiool	Productietity (in condithonal nnits)			
		Of "ne machine 1001		Of ell mechinc toods	
		$\begin{gathered} \text { Pridnction } \\ N 1 \end{gathered}$	Pridenction N 7	Prodwclim N 1	$\begin{aligned} & \text { Prodnction } \\ & N ? \end{aligned}$
A	3	10	21	30	60
I!	3	20	30	60	90
(1	30	8)	3)	40

* I.atile, turret lathe, awtomats and others.

It is necessary to establis? the optimum programme of marhane-tool operation (production distributions) under the condition of premluction in sets: iII this cane the set consists of profluction $N 1$ and pronhetion $V 2$, each per single muit lat the given that of this prollath be in the form of table 4 .
 THOAS KY ARTITR OF TWO TVOFS

Armiber			
	4	B	C
$\lambda 1$.11)	(ti)	3.1
1)	(0)	(1)	81

The formulin for the case convideted (with two tyers of artickes will be a follows

$$
\begin{aligned}
& 1 h_{1}, \rightarrow 0 ; h_{1} \because \because(1 \text {. } \\
& \because h_{1}, i_{1}, 1 \text {. }
\end{aligned}
$$

 \because will be Htivillullll

Iet rafios $l_{1,}$ la ind then always increase ie. $1 \leqslant 1 \leqslant 1,1$ the chation is ont fultilled. then

This wetenn of incymalities means that it is more protitable tu prodice the tirst article om first
 $h_{12} 11$. I11d in the lani $h_{1}, \cdots 10 ; h_{1}, 11$.

Let the transition from article $N 1$ to article $N 2$ be pertormed on $S^{\text {th }}$ machine-tool.

This condition can be expressed in the following way:

$$
\begin{gathered}
s \sum_{i=1}^{-1} a_{1,1}^{n}<\sum_{i=1}^{n} a_{1,2}, \\
i=a_{i, 1} \geqslant \sum_{i=1}^{n} a_{i, 2} \\
i=1
\end{gathered}
$$

wo that to make one article on $S-1$ machine-tools is little, and on S machine-tools is suficient or much.

Tlus, one can accept
$h_{1,1}=1 ; h_{12}=0$ for all i from l up to $S-1$ and $h_{i 1}=0 ; h_{i_{2}}=1$ for i from $S+1$ up to n : values $h_{8.1}$ and $h_{s .2}$ are found from the conditions:

$$
\begin{aligned}
& h_{\mathrm{a} .1}+h_{\mathrm{a}, 2}=1 \\
& \sum_{i=1}^{\sum a_{i .1}}+h_{1.1} \cdot a_{0.1}=\underset{i=1}{\boldsymbol{m}} \cdot a_{1,2}+h_{0.2} \cdot a_{1.2}
\end{aligned}
$$

[se these ratios 10 solve an example from talle 4.
Ratios 1 (coefficients of a labour-consuming nature)
will ine equal to: $\frac{(0)}{40}=2 ; \frac{0}{30}=11 / 2 ; \frac{80}{10}=2 \frac{1}{1}$
. rrange values ! in incrasing orcler:

$$
11_{2}<2<22_{1}
$$

H. ignating their promactiving in accordance with the new uriler bi machinetiont arrangement, we ohtan:

$$
\begin{array}{lll}
a_{1}, & (n) & a_{21}=30 \\
d_{1} & (a): & a_{3}=30 \\
a_{2}=(0) & a_{32}=80
\end{array}
$$

Tiking $S \ldots 2,1<i<3)$, we have:
$\sum_{1}^{1} a_{1.1}^{1}=\mathbf{g}_{1}=60<\sum_{i=1}^{m} a_{12}=a_{22}+a_{2.2}=140 ;$

$$
\sum_{i=1}^{s} a_{4.1}=a_{1,1}+a_{2.1}=(x)<\sum_{1=s+1}^{n} a_{1,2}=u_{3.2}=(w) .
$$

Consequently :

$$
h_{1,1}=1 ; h_{1,2}=0 ; \quad h_{3,1}=0 ; h_{8,2}=1
$$

To find $h_{2,1}$ and $h_{2,2}$, wise the efutatons:

$$
\begin{aligned}
h_{2,1}+h_{2,2} & =1 \\
\mathbf{6 0}+\mathbf{3 0} \boldsymbol{h}_{2,1} & =\mathbf{8 0}+\mathbf{8 0} \boldsymbol{h}_{2,2}
\end{aligned}
$$

whence :

$$
\begin{aligned}
& 60+30 h_{2,1}: 80+60\left(1-h_{2,1}\right) \\
& 90 h_{2,1}=80 ; h_{2,1}=\frac{x}{9} ; h_{2,2}-\frac{1}{9}
\end{aligned}
$$

The results of this solution are shown in table 5 .
Table 5. Optimum distaibetion of prodiction OUTPUT IN MACMINE-TOOLS

Merinime. toed iyp	Prodnction $N 1$	$\underset{N ?}{\text { Prodinction }}$
A	20	6
B	(c)	-
C	-	M0
Teral number of sets	W	\%

The optimum solution of the prohlem provides an increase in produrinity by 10 per cent in comparison with the simplest method of distribution: conservation of set production character in eich machine-tool group.

This index correrponds to the figures obtained under actual production conditions; thus, at one of the plants the use of linear programming in planning the loading of the stock of machinie-tools in operation and the time of the execution of ortlers contributed to all increase of 10 per cent ill shop productivity. At another plant, using 200 machineicols to produce several thousand articies (the vioume of orders varies from several units up to I million) the optimum distribution of orders in machine-tools made it possible to save between 15 and 20 per cent of the production time, and only one planner was added tu the staff of the shop.

To handle these problems by linear programming. it is necessary to have detaileri daia on the nomenclature of the articles prodiced, the prodictivity of the equipment of various kinds in respect of all articles, the tinie of the equipment niperation or units (excluding normal and abnormal wif-time and also the prices for different kinds of articles and the prime cost of their production.

C. Methon of bf(intiva fat thes

This nethool, worked ont in 193. by the Soviet mathenatician L. V. Kantorovich. ${ }^{3}$ topether with the simplex method and the transport (distrilnationi) methond described below. becomes more and more applicable.

[^23]Let us in'roduce additional desmantoms and con ditions, which allow us to use this metherd bor the solution of problems with machine dinula fremi the simple case $m \quad 2$ (two aricies) th the case of any m.

The given groblem will be reolved if l'we relation 1. corresponding to the value of the needed A is determined.

In fact, if this ratio equal t"

$$
I_{n} \quad \frac{a_{n 2}}{a_{0.1}} \quad \begin{aligned}
& \lambda_{1} \\
& \lambda_{1}
\end{aligned}
$$

 make the foliowing consicteratoons nure comseniont. further. the values $\lambda_{1}, A_{i n}$, will $l_{\text {we }}$ called dechive
 for which

$$
\begin{aligned}
& a_{1}: \\
& a_{1,1}
\end{aligned}<\begin{aligned}
& \lambda_{1} \\
& \lambda_{2}
\end{aligned} ; h_{1,1} ; 1: h_{1}: 1
$$

For the values 1 , where $A_{2} a_{1}:$. A la, : h_{1},

 the aquation

$$
\sum a_{i, 1} h_{1},-\Sigma a_{1}: h_{z}
$$

 for marlute torin if ece t.ble t.

A_{1}	\quad
λ_{2}	1

B.fore nathing clar the principte of the hetermmon tion of decinive tacturs. let as introntare the follow the change in the condtion of the typal prohle..11 ander discussion:

It is necematry on find \quad momikit h_{1} it $1.2 . \quad n$ k 1. 2....m:
from the following repautormi.
$1 \quad h_{1,2}>0$

$$
2 \underset{k}{\vdots} h_{1}^{m} \quad 1 \quad 11 \quad 1.2 \ldots n
$$

3. value

$$
\%-\eta_{1}-\gamma_{2} \quad \gamma_{1} \quad \vdots, 1
$$

is maximum.

$$
3^{\prime} \% \quad \text { ! }
$$

 $Z_{2}, \ldots Z_{m}$ ': our tiak is lo mathe wher P^{\prime} lle 'in: est friouble

 $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \ldots, \boldsymbol{\lambda}_{\mathrm{m}}$.

Thus imphticatuon is still greater, because usualls $n . m$ ill' reverse case they can be changed. but then we have 0 hatl the mommon of the tuncton, beot it, maxinimm,

Hiי pext viemin cill be called that of decisive tactur, $f+$ the problems of the type consulered
 then. peracolng the following property

It wer enl. gin.t i ale consider, products
 - dure of the lagest of theop product, then taking hat tatial buta. for which the errespomding

$$
\begin{aligned}
& 1! \\
& \therefore 2 h .1 \\
& \therefore \text { 亿 } \% \text {. }
\end{aligned}
$$

thas the froblem combst of tetermaning the Wecinge lactors.

This whinton can be actelerated through "rang-
 A tril dite of teristue factors one takes ramdon number

$$
\lambda_{1}{ }^{\prime \prime}, \lambda_{2}{ }^{\prime \prime}, \ldots \lambda_{k}{ }^{\prime \prime}, \ldots \lambda_{m \prime \prime}^{\prime \prime}
$$

then 11 in posible th whe the problem as thangh the delume lector, wore manown, namely: cont-
 the curtedemblug prodtec: is mot maximunt equal ser" Then, becatise the condetsen of the value Z "fintion will a the falthled, it is necesary to "pull"
 luemented.

Guth the man promipe , it the methom of ker -60 Anton, vingolag A_{k} "pull" χ_{k} gradually ap-
 the bulue

$$
\gamma_{4}{\underset{1}{2}}_{\sum_{1}}^{u_{0} h_{1 k}}
$$

the excalitiol has to tre frumb, enabling them to
 The hisputch of ure in an hour pronductivity for each kind of eperation and excavators is listed in table 6.

Tablef f, fyinator's peheitivity in vakiols -F, TONS, TON/HOTM

1:0.ms	110. otor 4	Fourator	F:Cute $+C$
1	10:	110	64
11	=n	On	38
111	in	$\times 3$	53

To find the mimmum duration oi operation at which the given level of piratiction is ensured. it is enough to find the distribition of excavators giving the maximum prodoctivity, if one and the same 'frantity of ore is dispatched © r, m each section. The conditions of this probbem (taking into account the designations accepted above) can be represented in lir firm of :abte 7.

Tamif 7 l'mofleminy ($a_{4, k}$) of fy. alators in

K	\ddots			3
1	1115	1117	94	276
11	56	06	38	100
111	$i n$	83	53	192

It has been found in practice that, as original meaning, of $\lambda_{k}{ }^{\boldsymbol{\theta}}$ it is rational to take values invervely propotional to the values of sums $\sum a_{, n}$.

$$
\begin{aligned}
& \text { Let } \lambda_{k}^{\prime \prime}:{\underset{u k}{1000}}_{u_{k}}^{100} \\
& \text { i.e. } A_{4}{ }^{\prime \prime} \begin{array}{c}
10 \times 00 \\
27 t
\end{array} \\
& 3.62: \lambda_{2}{ }^{n}=\frac{1000}{150} \\
& =6.24 ; \Delta_{2} e^{e}=\frac{1000}{192}=5.22
\end{aligned}
$$

Then $a_{11} \cdot \lambda_{1}^{\prime \prime}=105 \times 3.62=381$ and 50 on. Let us write out all the corresponding values $\lambda_{t}{ }^{6} \cdot a_{1, a}$ (multiplying the lines of table 7 by $3.62 ; 6.25$ and 5.22 respectively, in the upper part of the left-hand columns of table 8 .

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

I.et us choose the maxinum value which is marked by an asterisk in each column of the left hand part of tahle A. The value 381 is marked out of the values 341. 349 and 292.

For these maximum values. take the value $h_{: i} \quad$. Mor lie reat $h_{1,}$. 1

In central cobunns of the upper part of table R. write out the values $a_{1}, h_{1, k}$ (taking into account values a_{n} shown in table ; and values $h_{1, k}$ mital to zero ur to a unit)

The sums of these volues give values Z_{k} fir the
 136

By comparing these data we see that the value Z_{2} is low anil for its increase it is necessaty to increase the value λ_{2} arlitrarily chosen. Iet us consider, then, the second column of table 8 (numb bers 342.412 .432)

To "pull" the value closest to the maximum (the closest to 432 is 412), it is necessary to multiply it by a correction factor $\lambda_{2}{ }^{1}: \boldsymbol{A}_{1}{ }^{n}=4.32 \cdot+12$ Ills waluen $A^{\prime \prime}$ refer t: the zero approximationt. λ^{\prime} to the first one. and so on:

A way of refucing the value λ_{i} is the following
 reduce the value of the maximuni quantity of the first column of the first approximation in table 8 (381) to the next nearest quantity from the same column (365).

Since the value of the second line $1.365,4.32$ and 244) and of the third line (292, 4.32 and 276) re . main unchanged, assume correction factora forr λ_{1} and A_{3} to equal 1 . Thus, multiplying the values if the tirst line by 0958, insert ple cormenpinding values ir the section "second approsimation" iff table 8.

For the maximum value 27t, (see table X. $h=1$, for all oher valur, h a, hir eiphal maximum values ($\mathbf{3 6 5}$ and 432) one must again solve correspending systems of linear equations:

$$
\begin{aligned}
& h_{11}+h_{12}-1 \\
& h_{22}+h_{23}-1 \\
& 7_{1} 7_{2} 7_{3}
\end{aligned}
$$

where $Z_{1} \quad 105 h_{1,1} ; Z_{2} \quad 56 h_{1,2}+6 \operatorname{fin}_{2,2} ; Z_{3}=$ $\times 3 h_{2}:+53$.

$$
h_{1.1}=\frac{56, \times .3+(6.136}{161.83+66.105}=\frac{1.3 t, 24}{20293}=0.67
$$

$Z_{1}=105 h_{1.1}=105.0 .67=70.5$; to detain the remaining values h, place them in table 8 .

The values ? differ slightly from each other (within the limits of the accuracy of calculations) and thus the problem can be considered completed.

The resulting value $Z=70.5$ corresponds to the maximum average hour productivity of excavators, provided the same quantity of ore is delivered from each of the sectiona. Thiss for an output of 200,000 tons of ore it is necrssary tu spend $200,000: 70.5=2,840$ hours or 118 days and nights.

To obtain the unknown optimum duration of operation for excavators A, B and C in each of the sections, het us multiply the corresponding values $h_{1, k}$ by 118 (days) and thus obtain:
$h_{11} \cdot 118=0.67 \cdot 118 \quad 74$ and so ant the re sults are shown in talile "

 mine the nust ratwmal altornative 11.4 - t.it 10.........

 fillowing form: ${ }^{\text {b }}$

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+ & +a_{1 n} n_{n} \\
a_{21} x_{1}+a_{22} x_{2}+ & +a_{1 / n} \\
a_{m 1} 1_{1}+a_{m 2} x_{2}+ & +a_{m n} n_{n}
\end{array}
$$

 solution if the ere equitation

I'robably, one fart of all of the ghae equatoms were whathed lev rphatig har merbrite. Surd the inequality

$$
a_{11} 1_{1}+a_{12} t_{2}+\ldots+a_{1 n} t_{n}+l_{1,1} H_{1}
$$

can be replaced by the eqpinaitent eptuthm

$$
a_{11}, x_{1}+a_{12} r_{2}+\ldots+a_{1 n} x_{n}+1 \cdot n
$$

 this furnctur mimum ler the what a. it citad
 variailes) be characterized ly the fact that a materx
 non specific (that 1s, the determinator of the matrix is unt equal ow zerol. These varrabliles. in in whem to the others. will be called matil ome: the man
 variables to zern and by wolving equat:- ils for mam
 arder of woling the firsbiem will te the fillionmg First we hand the principa! whon of the rutation Then we determine if it is iptimum if it in diter mined that it is nit uptimum, then we emit one of the main varialile, and intrixluce momem another variable.

[^24]We du the sane with a mew man varialte, re peating the same operations. We may prove that thes perceses must le completed bis dramong the aptimonin whinin if hy rinkhilung as the the nem-rerrevandence of terms thus. in whine probitems by ihe singules methorl as in aphimg methouls of linear frigramming in exeral to determine the optimum, the methent of siccesolve approxination is lised
Iet us comoniter the application of this metheml in
 i.Alow.

$$
\left.\begin{array}{ll}
1_{1}, 1 & 2 \tag{1}\\
1_{1} & 21 \\
r_{1}+r_{2}+r_{2} & 2
\end{array}\right\}
$$

 it is ieceviery fil ietermine nagnituke x_{6}, for which magulucte $/ \cdot x_{2}-x_{1}$ is mimimum.

In the given came, the variables x_{n}, x_{4}, x_{3} enter one equation onlv late ins make variables x_{1} and x_{8} rutal t., zero. which we slall conditionally take as Aifliminal ones. alit wher equations in reppect to awth if the main wimblea $r_{3} i_{8} r_{s}$

Wr. then obtain

$$
1,0: x_{2} \quad 0: 1: \quad 2: x_{1}-2: 1, \quad 5
$$

1.1 M. Mres the maen variable and the value of

$$
\begin{array}{ccccc}
1, & \vdots & \vdots r_{1} & r_{2} \tag{2}\\
\vdots & \vdots & 1 & & 21 \\
\hdashline & 5 & 1 & 1 & \\
\vdots & r_{2} & 1 & &
\end{array}
$$

I.t 11 - tind ant wherther die minisumb of Z is

 comblitinn 1,00 .

 madinte: 1,2 omls.

$$
\begin{aligned}
& \therefore \text { 1: 1. 0. is } 1
\end{aligned}
$$

Hen- the men hand from watides which are mot equat :" ere comant, of $1_{1}, 13$ and r_{s}
lat we entro drain the urw main vartables and the me mang $/$ lis woll matit wrables

$$
\left.\begin{array}{cccc}
1 & 2 & 2 r_{2}-1 \tag{3}\\
i_{1} & 1 & i_{1} \\
i_{1} & 3 & 3 r_{2}+1 \\
z & 2 & r_{2}+i_{1}
\end{array}\right\}
$$

From the equality for $\%$ from the sane cumsidera thens as were nentioned above. It follows that its firther reluntion can le whieved by incrasing the nagnitule x_{2}.

Ind as it follou, from the syitem of equa-
 fion for is onlv, making it possible to increase x_{2} iIf : $: 1$ onlv $i x_{4}-0$. for $r_{2}=1$ we have $r_{s}=0$).

Thus we obtain

$$
x_{4}=0, x_{2} \mid: x_{1}=4, x_{4}=9, x_{5}=0
$$

We cilvain a new system of equations, repeating again the proxelure of replacing main variables finw r_{1}. x_{2} and r_{a}) and the value Z hy mom-main variable:

$$
\left.\begin{array}{l}
r_{1}-4-1 / 3 x_{4}-4_{1} x_{5} \tag{t}\\
r_{2}-1+3 x_{4}-1 / 3 x_{5} \\
r_{3}-9 \\
Z-3
\end{array}\right\}
$$

The whiturn olvamed is final lecanse any further norrase of x_{0} and t_{5} down not lead to a decralase of 7 .

Thus. for the final values ohtained of unknown quantities $x_{1}=4, x_{2} \quad 1 ; x_{3}=9 ; x_{4} \quad 0$: $i_{s}-0$, we obtain the minimum value of linear function Z

$$
Z=-3
$$

To solve nove difficult problems, the main rules of wrealled linear algehra are applied."

At one of the plants, the simplex :nethorl was sincessfully used to ortain the iptimum quantity of rolled metal of three types, the monthly gross ontput of which in money terms was maximum (taking into account the given powite of the rolling mills, annealing furnaces and an etching unit).

The simplex methoxl is of a labour-comaming character; however, it can lie used for the solution of any prohlem of linear prigramming and high accuracy if realt, is emsured

1. Graphical methon

This mether is suitable only in caves when one of $t w$ ") variables (" m " or " m ") is not greater than terth, for thret variables the walation of the problem becomes difficult, and for four it is practically involuble. The advantage of the methed lipa ill its winal character. Moreover, it makes it possible to understand throwh geonetrical interpretation the relation lietween the solutmon of inequalities and the equations corresponding th them and alon the principle of the graclual improwement of the original hasis (proxramme) typical of the problems of limear programming considered above.

F. Transport methon (Distriai tive)

The nethod of wolving problems by the transport methos is described in detail in a number of text lonks oll the subject."

This method. which is one of variants of the simplex methool. is characterized hy comperative simplicity. but it has prowed succesifui only in the solutuon of certain programming problems, in particular, of problems relating to the best organization of transport.

[^25]The comdition of its we is that all given factors of the problem and also all final remitis should be expressed by une and the same unit of measurement. If these factors are expreswed in diferemt unita of meacurement, then the trameport method can be used only where we have the possibility of reducina them to a commion unit

Most of the problems mentioned in the firct part of the present report were solved by this method. As we have seen from the methods of linear programming described above, their common iden is consecutive transition from one variant (beginning with the given, evidently non-optimum) to another. every new variant approaching the optimum.

In some cases of linear programming, a strict mathematical procedure can be replaced by a wheme of approximate solution.

(i. Plital comelation

If by experiment the infuence of accidental causes on a phenomeron under study can he excluded, then we obtain a strictly functional relation: the strictly known magnitude of one of them corresponds to the
nagmetude of another However. in is not attatiable very oft n, and then one and the same naguitude of mutuelly commetted phenomeria resulting from the infuence of accidental causes will correquand to a numiter of magnitudes of another which appeat with a known probablity."

14spite this uncertainty. the relation sturlied is realizel firut of all in a regular change of the average value of the given distribution. These dependericies are called correlational and a section of mathemittical statistics devoted to their investigation is kinwilit. the thengy of currelation

The correlational analysis is widely used for the inveatigation of the factors influencing the promer tion promess.
let us cite an example of making ip a correlatwon table on the following data

$$
\begin{array}{cccccccccccc}
\mathrm{X} & 12 & 13 & 15 & 19 & 22 & 27 & 33 & 42 & H_{1} & 54 & 5 x \\
1 & 51 & 4 & 6,5 & 73 & 7 \times & 79 & \times 2 & \text { k } & 102 & 10 x & 112
\end{array}
$$

let II: grony, these clata as in table 10 .

 Mptallurgitila. I'mi!

X	$\begin{aligned} & 901 \\ & 1091 \end{aligned}$	6070	$\begin{aligned} & 7 n+1 \\ & 10 \end{aligned}$	$\begin{gathered} y \\ \text { Ni, } \quad, 1 \end{gathered}$	in :	$\text { ; ! } 11$	111	m'
10-20)								
(15)	1	2	1	-				4
20.30								
(25)	\cdots	-	2	-	--			2
3-40								
(35)	-	-	--	1				1
40-50								
(45)	-	--	-	-	1	1		2
50-60								
(39)	\cdots	-	-*	-	.	1	1	?
m,	1	2	3	1	1	2	1	*

The values of x_{1}, in the first column. give the limits and average values of intervals of this indication. The values of y are placed thorizontally in tire upper line. Inside the correlational table frequencien are given which correspond to different combination, of the values of x and y. For example. 1. in the upper left corner, means that combination $x=15$ and $y=55$ was ohserved in oite case obly

It is clear that $\sum m,-\sum m, \cdots \cdots \quad 11$ from the data in table 10 . the straight relatem of imbications. is cle.tr: the greater x, the greater y : correlatomal and functional dependence may be itraiglit as well as : verse.

If the increase of ene indication corresponds to the increase of another, then the correlation is called positive. but in the opposite case negative. In the example in table 10 . definite average values of v.
which we shall tencte as 1 chereamind th differme

 W:|en ill table 10;

$$
\begin{aligned}
& \begin{array}{c}
\because 1.52 .751 \\
1 . \because 1
\end{array} \\
& \text { l.hewer we hal }
\end{aligned}
$$

We con reperant ther rewh , whtanel in He follow ing form:

$$
\begin{array}{llllll}
X \quad 15 & 25 & 35 & 45 & = \\
7,65 & 75 & \times 5 & 110 & 1111
\end{array}
$$

This ruw in figures expresses the empircal depend eme if "y" on "r". and depeliding on whether this equatiom is a straget line ur not one speaks about stlaght or non-atraght cortelation Similarly the PHiprical line of relation of x against y may be drawn
 kimi in in areat impertance

$$
1.1+1.8
$$

1 :1! ! ! . |a, quition we may mentuon some con reph wlah lats utten be fommi in a cortataton (10.1)

Whemtirle. 1 , en called covatiation of x and v. 11

$$
\operatorname{com}_{=y} \ln _{r u} i=\quad r_{1}(r \quad r)
$$

 ower.tan wher

 cal'el tle wefficient of the errelatiom of x and v atis , h.trateries the degter of riation leetween thene vatiahlen"

This rambient has the following matin froper tira

1. (rattermit uf certelations r is aluals in the mitu: 1 -r <1

 is tha relation between $;$ and ita a perme blae relation.

 ample, the following relitholy y aticicict * i ktm

For the limear relation in an equation of regres. sion

$$
v_{0} d \cdot t r
$$

 efficient if a straght hene means the increase s inficataי when matiotion r increases be 1 When the combilered maghitule dies mit lepend in two. but un many variatiles, the analvsis is made tiv the methons of pharal correlation This allows us in study the relation befween manv magnitutes. uning methods a!most similar to those used for the investigation of the relation lotween two factors.

[^26]If there is the linear relation tretween three varia. bes: $Z=a x+b y+c$, then instead of the macmituile x, y and Z it in better ol comoider their deviation from the average magnitudes x, y and Z. The linear correlation between the three variables will be the following

$$
1 Z \quad 1(r r+P(y \cdot y)+
$$

In this equation, coefficients A and B represent the corefficients of regression One can calculate them, for exaniple. from the bi-pair coeffcients of correlation $r_{a y}, r_{z n}$ and r_{w} between correspending x and y, x and z, y and z

Measurement of the degree (itrength) of the linear correlation ivetween z and the magnitudes x and v is total (p linal) cireficient R. which is always positive and is in the interval from 0 to 1

The value of the coefficient of correlation $R=0$ indicates the absence of the lincar relation between Z and magnitudes of X and V (however, there call be a non linear relation bet veen them as well). The value of the coefficient of correlation $R \cdots 1$ indicates that the straight linear relation exists iretucen 7 and magnitudes of X and Y, which are similar to $Z=a x+b y+c$.

To establish the strength of the relation between any two variables correctly, it is neressary to eliminate the influence of all other variables which are connected with the one under consideration (that is, we should conditionally assume that the influence of all firctors on the magnitude in quetion, except
 charactertzing the relation between two variables is callect a quectal copficient of the correlation. The special conefficient of the correlation between X and Z is dencred by $K_{\text {ser }}$, which signifies a measure of the linear relatum tetween X and Z fir Y constant the influence of X on Z only is considered)
sipecial corfficients, which correspond to two variables on the assumption that an additional variable remains constant, are called copficients of the firit iseconcl, third etc) (ider.

Thir properties of the specia' coefficient of correLatorn are simuliar to the properties of an ordinary costicielt of the correlation the magnitude, which is equal io zero, corresponds to the case when the linear relation does not exist (between X and Z, The value. ejual to l. curresponds to the case where the linear relation exists.

The application of the method of plural correlation in industry has shown that the relation between the variables noder consideration in many rases turns out to lie linear or close to linear. Thiss as the result of one of the inveatigations comerning the dependence of coke couts in the blast-hurnace priduction for 300 varimus production factors it was established that 15 factors possessed decisive inHuence. of which only two factors t the milphur content in raw iron and the dirability of linina, were coupled with independent variables foot of conke or carbon: as curvilinear In all other caces the relation was still near to the linear relation. These studies resulted in the improvement of the main technological and economic indications of blast. furnace operation.

At ane of the ming, the meined of phoral eorrelativen mes red ter tive ernharivo of an indrotrial project which anmilited the bivinal eapecity of a new relling-mill as 30 tom of relled metel per single strin. This evaluation was meencintied by the fact mat to shaiged power had nok hoen rosched in a prided of a mown of aperation wher the morting paim. As a romith of the cerrelation amalyain, which contioned ter trree weeks on the basis of an inveatiantion of the time of relling of 2,100 ingets, the comehncion wee drawn that a productivity of 1,050-1,200 mon per shift conll be reached at the mill and that at robing profies of an average blowrcommming character the mill's normal productivity cenll reach 1,150 per shife. As a reaulh of the inmerevements in the erganimation of prodnetion, the milh's productivity gready surpassed its devigred capeciry ond reachel the valuea prollicted on the hais of the earrelational maly ine.

Several years ago, the deagnime of wits for

sumption of the coincidence of the lorpen mat tube with the crose section where the rube han the brgeat diameter. Investiations P. T. Empliamenthe and \mathbf{N}. V. Paniushkina found by mathematcal methods that there was practically mo imerrelation between the alove-mentioned parameters. For enample. the coefficient of correlatim heeween the largest outer dimacter and the thickness of the wall of the tulve was found to the efinal to 0.00139 .

The investagatofs recommended a reduction in the dimensions of the original tuhes and offered a new method of calculating them wheh made pus sible a saving of up to 30 to por cent of metal. - reductum in the volume of rough mechanical treatment of up to 6 . per cent and in increawe in the productivity of rolling mills of . 60 to 00 per cent.

This in but ome of numerons exampies of the successful use of mathematical methorls for the evahotion of inchuetrial projects.

 by Iateria Reante"

 No..

 ع.u.t

Hy interimdustrial anperts of inventwent activity is meant the amalysis and consideration of interinduatria: relationships infuewrior the balance and
 as criteria and peothems of tiviriburmen of invest meits liy ectors or beanches of the ecimoniy 41 though intermdustrial relations in develiped ecino micg are as i rile mure numerinis and complex than iII developang comaties the analvais of such rela ticms in develipeng comantries is of mo less importan.t owill to the drecial sensibility of those ecimemies (1.) itristiural chatgev and unhalame in developing commones more ralid erietural chames accur.

 -ral
 It vart, with a preliminary design of development verning is a ketural tramework of rewnicie allima tioll if imeluden preparation and m chatwon of indi biled propect as wrll at mphementatmen and oub erplent whervision and exaluation of the chowen
 womint at all them vagev, hat thev yitear in com dellad horine at the propert evalhathen stame That in the wiace at which the presem poper deats with the
 witl: the cave devehped acomomes parturlarts

 if thi, develiped coumtries

muncomitm

In developed warket econownes, balanced growth

 path if grewth Thit mein- li.st tecistoms in

 ind ut : : whath imat and and mell in that rase ink

prodictuen alld perhape even un a larger wiale in vestment and devehopmem activities

Private proht moy be considered ts the main criterkon of primect evaliation in developeal market economies It may be neasured by varionis formulas drail with in detall in prochoction, eruineering and acconuting handleroks and manozls it is nesual in such formmas to mensure luth costs and limenefits from the emereperemeur's pont of view at actual market prices : with amicipatioms, and to rvahate onlv the stake of the production process performed by the given project, disregarding es mpact in the Phitency of ether proshaction units and activites Two mose commenlv used eppes of calculation and evaluation are compariwn of the pas off periodand comparimon of tetal costs and thenefits of the prifect liy disconinting nethods The fien criterion disregards the working tome of the perijects and the time after the fave if period respectively, as well as time preference aspects it comentrates in the gurk ent possible returit "in the muested captal in in quality atwl on rechocing duration of the rist The wher tum of evaluation - beised on a cimparising \therefore total (investment and inperathes costs and hene fies of projects. calculated at narket perices and for the foll life of the periperts prene and fitwre values nade efinvalem bi discomming wetherle
 (aven mot measurabie) factor, s, of romese, alw: recimmemided in le,th cases and is in fact widel practisel

Kecellt research has aisy, investigated the actual

 mall ierturnwel' live renits, wolle t" a mudeat 1 ie for caleulation, routine decisions are widespread
 whitied cos lwatit compariano are preferet 1

 imolirects lin perces and market ambie. It is san pened that bs takink pricer men cumsild.ration dint fos the use of market while - alod amalione of actial

 mellt. Illds lie correctlv allinated "C the armeture
 tical experwace wich an dation onderitilization if capectivs. seem. however to himi at leficiemien ill this peroces It is gume ceiserally ackiwowiedped ihat methal inlormation among liventor, as wril as a
 of inventiment plank and perijecis illay lue rerimi
 ateps nuat resture the riak. and iminulancr. if growth Pricta wrve criterim of folliems. ant the are
 Tive whe use if taxts silmilia dires inceationt

[^27]Costs indxates, however, that this nechamisil needs correctums in tho reapect da wall To phate Kulert
 cil. Lamdoll "posilive detion is nécessits . . 10 make the mollomik syitell wark lwatit atal the bies hanismin in which these ore jim! ult. , Heci the of the incost importallt wis. 111 wiml thas , 111 be

 whole Amother important area where action is
 for a merte ralional allal mformeal late ot Hialhate mumatment lea-ly

 I口Nomif.

 wf centrai planing and atmometralme ot the em it - 11 l

me rile in toreng tratk

The distribution of investments by sectors and hranches is luased in the first place in the co-orth nated production programines of sectors and branches. The harmonization of wech sectoral prot grammes is effecterl thringh successive treative methoris analying reanits. impatt on material and prodict balances mostly expresued in phosical unts), as well as on resomirces available for invest ment and :ureratsol the first experiments staried recentiv with the itthation of mpint ant ;ut and other mathematical meibods In thes irathework the dis tributen of memments hes sectors and lianches will tre crablatiol fron the print if view of the rectuire ments of the lealling sectors and lialanced gowth

Geecial rffirme calculatons and provect ex hat
 native uditum in inemisal project targets, that is. silintintive and techologecal vartants, aid vartants for size and lecatem In aldition "' partal measures. sviltietie formulas are lised the conumare coist and benefit per innum. benetits measured liv total value of cutput ar value adile I ?n eimerating cosis and liv the mormative charge on capital This charge on
 ant of capital, or vomal marginal rate of ulatimtion hetween laknur and capital. or preserption of a atamlaril perionl of recomplient. It order the equate bine tiffercors in the implemenation of popects. disconnting methols are aion applied The relatun shops of the hew estathiahments with input proviluge sectors will he taken intu account in the case ot
 satoms and (okal mines) he palating these that complexa or molti porpuse properts in wher cases mive alilitive (m!irest) miratment repmerements of
 natur \boldsymbol{r} wal meplead captal investments needed hy

In recent vears, nuct refinement and differentiation in thowe formulas has taken place in most centrally planned conntries, with which we canmot deal here in detal ${ }^{\text {a }}$ We shall mention onlv some characteristo problems and wodifications taken from llongarian practie in cimuexton with interimitiatial ankert if prenert callation These mav to wome extent ine regited is tepical for moxt chmeries of
 in the full realiatum of the great mportance of the onteriational divaon of lakur and firpign trade for a comutry the size of Hingary, st lacking in raw nuterisl (imsideration of the impurtance of foreigen trade has ifad to a chose analyos of halance. d- pavnients effects and to an assesminett of the lenetits ad prepects by value of efenss or net ou'pow in foreign currency equivalents I hulit. atwont the adequacy of actilat prices has led we experimental uses of accimonting prices to measure domestic in-

[^28]puns (coots) as well The realisation that foreign trade increases posomitities of subotituriom amom projects on an extraordimerily large sale in also very important

According to this frame of reference. projects serving the same gool may be and are in fact com pared Efficiency can be measured mly by equalizing benefits and comparing coets or by equalizing couts and compering tenefits Considering any expout or import sulistitition as ways of earning foreign cur rency these are idenical goals with commensurable trenefits and their costs are to be mimmized and may tre compared. This means that new projects shimild the choeen in ofder to make up for lack of capacities; moreover. since such lack may be eliminated by reducing exports of increasing imports. these project, can and inust the evaluated also hy the criterion of their efficiency as to earning (or aaving) foreign exchange.

In Hungary, systematic investigations of the actual role of efficiency calculations in investment decisions are now vet performed. Many indications suggest that the role of such calculations is fairly limited Interibdustrial relations and linkages of single projects have recemily been investigated with more aitentiom. Research is proceeding with a view to ensuring improved methods within the framework of input on tput analysis and mathematical programming Situe aspects of this research and wome proposals
 beline

1) Peoffit mabidation in brveloping market economien

l'roll: the punt of view of investment and project evaluation artivity, only three characteristics of developink as afainst developed market ecomomes need lue pointed out In developing market economies. the overwhelming proportion of investment expenditure and the vast majority of projects are suhject to governmemt decisions and in direct or indirect government influence pespectively; ser ondly. it is reengnised that the Aunctioning of the markel and price mechanion is eapecially imperfect and needs correction; thirdly. central netionwide planning may be reconmended and is widely used in promote ccomonic drefopment and the achieve. ment of acial objectives. As ter project evahuation. private inventors juspe inventurem poosibilitien in developing economies essentially by the same criterion as in developed ectmomies. namely. private profit O course, they also talee into sceoum the sperial contitions of theme coumtries (ruk and wher elements) and meourres of government developmem policy. Furtine amalyois is required. firm of all. of the problews, criteria and mophats of the projert evaluation to be carried out by central mathrifies and rovernment apenciet in developina connmines leither in regard to seff-fnanced projects or astistance to private emerprise)

The specific problemis of inveatmante in "undordeveloped" areas were raised in the iterumre an the mbiect some twewy years apo, and many eriterie of projet evalumem. theoretied eameltiratime
and formation for praction calculations have been magesened and drewomid cince. From the moltitude of the propoced erineria only some chapacterinic omen will be quotad here. The firut propomits (mach as theoe of J J Polak and N S Buchamen) recommended as we may call them now -."sarce factor" criterin rate of capital turmover (incremental capi-tal-outpuet ratio) and balance-of-peyments effect The critics of these propomals recognized the usefulness of mach partial criteria but denied their gemeral application, since they implicitly meglected other mportant factors, in the first place, labour The more comprehensive criterion of "socisl marginal prodectivity" was euggested by A F. Kahn and orhers This SMP criterion measures national in come instead of private profit Here, "sociai values" as well as econome factorn are to be taken into account

The quantifaction of this SMP eriterion. how ever, raises serious problems" and it may be and has in fact been criticized for meglecting time aspects of efficiency The "marginal per capila reinvestment quotient" theory put forward by Calensom and leibenstein aims at maximizing the per capita output potemial "at seme turure point in time" and gives eccording to some critics-an exaggerated preference to huture growth against present henefits Thin criterion favoura capital intensity, the argument beime that in thic ease the share of profit and the rate of capital formation will be higher than in the case of labour intensive techniques, where a large pert of the incremental outpu: will be aboorbed by wagea poid to workers with a relatively high propensity to conoume. Other proposala, such as the margimal growth comtribution criterion (by (ato Eckotein) or the time seriea criterion (by $\mathbf{A} \mathbf{K}$ Sen) aloo ancribe an important role to the time aspects, but in a more balanced form. The use of discounted figuren for both coets and benefits, an sugnested by J. Tinbergen," is also intended to measure time effects.

The disclasion concerning adequale criteris for project evaluation indicates clearly thet in each case (and eepecially in the ease of projecti auned at difierem porposes) many migets and comotraints muet be cemidered inmonaseovesly Some of these, however, cannot the quantified and it is dificult to comame even only the mooe importame cenciderathoms in a single criterion of sypthetic formala $\boldsymbol{\alpha}$ meacorewnemt To avoid these inficulties, combinatwom of partiol criverio ore alco raconnmended through qualinetive or pramitative veighing of the manfy evergan raings accosting to single criweria A sorvey of the pracice of wx tevelipina commries propered by the I'vited Nations Iivioum

[^29]of Induatrial Development ${ }^{\text {e }}$ reported that three comeries used muliple criteris with a weighting of the partial criteria, while the other three countries applied sunthetic formulas Discominting methorls are noed in only a few cases. The Mannai on Fromonac

 the use of partial eriteria and their combination by weighting and sunthetic formulas

Two crucial ponnts of project evaluation are stressed in the above paragraphs the problem of multiple criteria and the time aspect of inveviments We turn now to the third crucial problem and the maill subiect of this paper the interindustrial aspects as they appear in the course of project evalita thon in develonitig natket economum The need for an analysis of interindastrial relatoms and effects in evaliating single projects is wilety recogured. The following methods are recombiented
fixplicit analysis of interindinstrial effects and appropriste corrections on berth the romts and benents sules of the efficiency calculations: the effects to he examined inchule lwoh backwaril and firward linkages, recently, the we if imput :11!!'ll technipues has also heen recommended
l se of accounting or shadow prices in the calcolations of single projects whith ahould resuit. thrugh a correctkol in the inwe and marhet mechaniam, in an evaluation leablug th a consistent and efficient allocation of resimicce.
simultaneons evaluation of project- already selected by calculating their impract on warce tactors and utilization of rediundant remorires and, further in case of the availability of developunent programmes, by checking their consistency with the over all proeramme ; this analysis mat be con nected with the proxess of asoigning accounting prices and with simultanecus improvement in propect selection:

Choce of projects simultanerinvely hy mathematical prosramming, probably in cimsecutive steps, alternating and comnerting pircocturen of wer all and sectoral precrammink "
The limited ecope of thim peper dies noy allow detailed comment on the meiturds angested alouve and used in different countrien in the practical applicatom of all the methorla dealt with almur. K. N Tripathe contends. "In the actual formulation and implementation of the policy of ellocatiom of investment, planners in the developing cobintries may le predominantly influenced by political and uscial comsiderationa rather dan ly atrictly economic comanderations * Wie have not surveyed the apecific motives of investment derisioms in those comutrira. bet it in often primed not by experts with practical

[^30]experience that simple rule-of-thumb, scarce-factor approaches or selection of "key sectors" predominate This does not wean that the potential role of efficiency calculations and project evaluation should be moderestimated, hut it may serve as a warning M:Ins: extremely complicated methods and procerlures. It lurther underlines the importance of adapting profect evaluation methots to real decision proctane athl to the various stages and motives in thour promeras

EVALIATION

Interindiverial aspects will be reconsidered here ircoll 1!: print of view of central anthorities which hase tis walluate projects in the light of acial and nathon:tl cmernit It is assumed, moreover, that those anthumio have eronomic means of influencing inwolluat ativity and that the regnired investment
 not t:ake place if it is solely dependent on the entreproliourtal intiative resulting from the stimulation if a kiven incesturnt activity. The interdependence oi the projects to be closen may be analysed from the two puints of view of consistency and efficiency.
cinsistency means that the implementation of the porpects selected and the operation of the new estab-fi-huments colltilute th the balaneerl grawth or the blatured (presisimal) imbalance of the economy, than the mputs neerled are available and the ontputs offered are in lemand (permitting a provisional phomed imbalance). The cruterinit of efficienc: mbulves emmonteney hat alon implies a further ratelution the elegree of ittilization of available rewneres ducheling exinting capacition should mot lechine but rather inerease. and the selection fronn
 minti'ment of mational obicctices and development phlact tarect

The ewiblishment of new capacities means not ouh an : onditan tu ext-ving capactios at that stage of the !rmbuction proses hitt also atfects hackward and forwat lonked industries. The importance of Ha.. links.e effects depends on the one hand on th. relative value of the new capacities, and on the other hand on their place in the prombation pricese Ther lieq huhage efferts will tre produed be cafacilte - mamificturing inomestic intermediary prodhits fur inher intermediary protucts for domestic une proniry promiction has fewer hackw:rifl. prodin:lul of thal gonds fewer forward linkages
 Andion within a given time borizinf for the whole. the t^{\prime} wit chmulating and discounting tital cosis and beritit. This a powhle in practice, and should the
 counting methuls For the intal el of projects. and for the econnos as a whole. it presults serimis difficulties I sulllly one typic?! or rertaill selected 1. Is ate atalyed in this connexion.

[^31]Consistency must be ensured not only during the periods of the operation of the enterprises but also while they are under construction (in the latter case in terms of availability of equipment, raw materials and skills for the scheduled construction of the projects). To ensure the consistency of selected projects during the years of their implementation. total resources availahle for investment must be confronted with the requirements of the proposed projects. The scarcity of some resources, such as imported machinery, must be reflected in prices: factors of this kind will infuence the choice of projects in their turn. In some cases, actual (market) prices of these resources must le replaced hy estimated accounting prices.

From a macroeconomic point of view, the total economy may be considered as a single production unit with three primary inputs-labour, capital and inports, and an output serving final demand-consumption, gross investment and export. Strictly speaking, capital and imports, if not received as foreign aid, are not primary but produced inputs. since both capital gcods used for replacement and export goods paid for by imports must be produced by labour (and capital and imports). In this sense. the only primary input is labour, and its output the net national product (national income). Capital and imports may however, be treated as primary inputs. (apital goods represent a special materialized form of labour, their availability is limited, their production requipes time, and they serve production for nore than one conserntive cycle. Imports are limited tol, since as a rule they must be mid for by equivalent export gerods (excluding the case of forcign aid and other sources of income). and the possihilities of an increase in export activity are limited and are usially accompanied hy decreasing returns.

Cinsistensy in a broad sense may be defined as agreemen! between output of goods serving final demand and availability of primary inputs required for their prochiction. The flexibility of primary inputs, first of all of capital, dowever, is strongly limited by the fact that the iroduction process is tivided and organized in single production units with given capacities, staff and management. Since the mability of these units and the factors of prodnction is very limited, agreenient between total final output and total final requirements of primary inputs due, not nuall consistency in reality: excess and lack of capacities and labour may exist simultaneously. Therefore consistency must be analysed and attistied not only hy final goods and primary inpot- fint also ly intermediary stages of prodiction, that is, by sectors and hranches of the econonv. The consiruction of new eatahlishments adds new capacities, new production units to a giver vector or branch. lout at the sance time may require intermediary goods from, or ofter them to other vectors or branches. Whether the projects meet the needs of consistricy or not can be evaluated only in the cuntext of the whole system.

If actial (market, prices reflect the true "nocial" value of the gords produced and inputs used hy the naw captrities, the efficiency of the project in
the given stage of the production process) may also be correc ${ }^{+}$! y evaluated by the usual cost-benefit comparisons from a macroeconomic point of view. What are called external economies and diseconomies may le analysed in each case separately. In most cases. however, we cannot rely upon the supposition that prices are adequate measures of social values at a given point of time and even less that they are adequate in a dynamic sense, taking into account all the effects of the new investments and other changes over time. In order to overcome these problems, use of accounting (shadow) prices is widely recommended. A consistent use of accounting prices requires, however, a completely new system of prices. Sínce such a system of prices shomid reffect the impacts of new investments, it should be built upon an over-all programuing of the econminy

From a macroecommic point of view, each project may be considered and evaluated as a "humble of activities" in different stages of the total production process. In this case, in order to take into account efficiency in the preceding stages of the procinction process (in the backward linked industries), instead of measuring costs of intermediary products consmmed, total primary imputs shonld be measured (total in the sense of input-output analysis). Where the output is an intermediary ard not a final prodnct, forward linkages may he considered ton, and the efficiency of the final product (taking into account further prexessing) shonld he analysed. This analysis may be performed hy mealls of accounting prices for the intermediary products is well. Thu total primary input approach enconnters, however, similar difficulties as the former one. Since primars inputs are substitutive. they must be "valuated. and this needs availability of accounting prices for primary inputs. as well as anme lind of over-all firngramming Further investments mav be and as a ruie are allucated in the "linked" industries, and :heir impact on input coefficionts monst he convidered 100.

Buth approaches mentioned above-othe project analuhis by ne of accenting prises and the andivsis of "bundles of activities" of total primary inf"hts.... assume an anticipation of the project arler $\cdot \mathrm{i}$ in and If its effect on the given projects to be evalnated att on the over-all development of the economy repectively. A thiry approad of efficiency cualma. tion may be called the simultaneoms choice if pro. iect. This noty be carried out simultancemsle with the accigning of the accounting price or may be based on a :unore comprehensive programming of the economy. Hoth procedures presuppose the availabit. ity of the whole series of "candidate" prects with the detailed data meeded fur evaluation as well as the setting of national ohjectives and eronomic wiry targets For programmings, further data are reutiored, toro, but this selection of the best wombination of the ieasible projects take; into account thenretically all the interindustrial relationshifs and Afects Practically. however, this solution cannot he applied without many enncessions. among them linearity and divisibility. Fvaluation of linkage effects on efficiency may he performed in nore simple way through direet analysis of the major
backward and forward linkages. This procedore miny be combined with some elements of the fromer methods. The problems and practical possibilities of these different approaches will be dealt with later.

It seems appropriate here to mote the costs of projecting ansl of the losere cansed by rejection oli thoronghly elaborated projects. Of comese a minimom degree of maturity of projects is rempired for the first rongh evaluations, but this first selectiont should be performed as som as possilibe in order to avoid unnecessary further expernes lomithity analysis of interimhenstrial asperts furms the most int
 methenls of a preselection of prajerto seroll: Whe: a preliminary evalnationt and distribution of $1 / 10$: 11 ventments bes secturs ar branches of the reomimis Some major mothods if paject mablathe even reguire such an athalyus first lis sertur.

F. NFTHOM OF EV W.1.N! fROJPGTS

Two metbods of "valnating the amintome it single projects will he ontlined here hrieds the material balance method and the imput motplt

 is dired analosis of the majur backivad and enr ward hithages. lati thi, simple methoul dene mot re. -ptire turther teatment All there mellowh and the is

 :and ont the heve of avelopment phathos

Thae droignation. "material labatice worna!" of
 orditationt of material balance in the man matm

 The stiply sile of theo halation tomphom mat
 prodaction of the new entabliatineme and. an a

 demand. foreign trade, mator merme hate Nembed

 the may fe Irawn ilf, for the math material and proficts. But the neets havic whation! dicta and
 items tanch remalmptiom, foretgn erade aut wher bavic variabies of ievelipment planming

The material balance metiond may be used not only for the evaluation of single projects but also for groups of projects aggregated by sectors or branches, that is. for the checking of investments by secturs. This is valid for input-output methods, too, which are especially appropriate for sectoral analysis.

Input-output methods may be used to evaluate the consistency of projects in two ways: either by checking over-all consistency or by analysing the total impact of the projects. The first approach is well known. It may indicate the consistency or lack of consistency betweell final demand and total output by sectors or branches. We have to range each project in the corresponding sector and then check whether their cutputs are absorbed and their inputs produced within the given systen. A surplus of calculated total output zersus final demand indicates danger of muderutilization of capacities in the given sector; if total outpout lags behind demand, this refers to problems of supply from the products of these sectors. Inconsistency may be eliminated on the one hand by changes in the structure of the final denuald, of forcign trade. etc. which belongs to the competence of over-all planning, and on the other hand by changing the projects to be selected.

A sinilar use of input-output method may help (1) amalyse investment requirements from the point of view of comsistency or to distribute investment sources. For this purpose. we have to know the planned or anticipated final demand, the imports and the further excess capacities unutilized in the base perickl. all ly volume and sectoral hreakdown. ()n the hasis of anticipated final demand data, we may calculate the total output by sectors consistently "uly final icmand a part of this total output may lee sumhed by the production of existing capacities "unal to the production of the base period, hy the prontation of the excess capactios and by inports. Ih. nthe: part is needed from the new capacities. Investocot expenditure repuired for the establinhwent if there now edpacition may be calculated by meane ut capital (utpent ratios

I secould apprach based on input-output methods mav neasure the total input requirements of single projects (or groups of projects). For this, data are needed , in the oprerating imputs of the given projects in the breaklown of the input output tahle available a sector: Subsepuently, the inverse matrix of this input output table will be required. The vectormantix probhict gives the total input requirements of the proiect which may be compared to the resomries avai:dur An example of such calculation in presented in annex I This fexible inethod may le applied also to groups of projects with the same output or to " vector-investments", or to evaluate the inplact of choice of different technologies. etc. In the latter case, we have to calculate the total input requirements only for input items which are not identical in the two or more variants of the project.
lhe first approach mentioned above presumes the a vai'ability of a complete input-output table: the seconil may be applied if only the technological (and inverse) matrices are available. The firat approach involves sorne kind of over-all plannins; the seronil may be applied for isolated evaluations too.

Both methods are burdened with the well-known assumptions of the input-output analysis. In both cases an up-to-date technological (and inverse) matrix is needed; that is, corrections of the basic input-output table (matrix) corresponding to the actual and anticipated changes ill technology and import-substitution have to be carried out.

The usual aggregation of the input-output tables is disadvantageous as compared with the material balance method, but sectoral interdependence is dealt with more correctly by in sut-output methods. Some experiments are proceeding with input-output tables in plysical units which may help to resolve the problems of aggregation and may facilitate the correct use of this second appioach. Some elements of this method may be combined with the direct analysis of the major backward and forward linkages and this may offer a sufficient solution too. For this purpose also a "typical" technological matrix in some standardized form may give valuable information on the major linkages and may be fruitfully used. The possibilities of the use of some such standardized matrix will be dealt with later.

G. Methods of evaluating interindustrial efficiency effects of the projects: use of accounting prices

Use of accounting (shadow) prices is one of the most highly recommended methods of considering interindustrial efficiency effects in project evaluation. All manuals prepared on this topic for developing countries include such suggestions. Elements of accounting prices (although perhaps not always in the same sense) are largely used in centrally planned economies, and recently their wider application has been proposed, for instance in the Soviet Union and Hungary. Several methods of the use of accounting prices are suggested which have solne common features lout which in some respects differ significantly.

A connm, feature of these methods is the assunuption that the use of accounting prices, instead of actual (market) prices, gives a correct efficiency evaluation from a macroecconomic (social) point of view, since accounting prices are supposed to reflect intrinsic social value. There are differences, however, concerning the following points: what should be meant by intrinsic social value; whether accounting prices may be determined by some corrections of the actual (market) prices or whether this needs a special procedure; whether accounting prices should be determined only for inputs or for outputs too and, in the former case, whether accounting prices should be assigned only for primary inputs or for intermediary goods as well; how accounting prices should be used, since they may be aubstituted in the well-known formulas of eficiency calculations ui single projects or as an auxiliary inatrument (guide) in the process of the selection from the total set of projects. From the descriptions of the various methods used or sugsested we do not always receive clear answers in these questions. The raising of these questions may help, however, to clarify the matter.

As far as the meaning of intrinsic social value is concerned, there are two opinions, and consequently two ideas of what accounting prices should be: measures of actual social (macroeconomic) costs or equilibrium prices on an opportunity cost basis. We also find combinations of these views.

In order that accounting prices may measure actual social costs, the elimination of taxes and subsidies from actual (market) prices is often recommended as a first approach." Although this correction may help to eliminate distortions, some ohjections must be raised here. First, taxes and subsidies paid (or received) in the last stage of the production process by the output-sector, form only a part of total taxes and subsidies included in the prices. Secondly, in some cases taxes and subsidies reflect social costs (or benefits) and their elimination does not lead to a better approximation of social values. Thirdly, the distribution of profits in the prices cannot be assumed to be proportional to the costs they have to express (especially not in deveioping countries, in case of a very imperfect competition) and the differences in profit ratio may cause even nore significant distortions.

The practical importance of these objections may vary widely between countries according to the weight of these items. In annex II, some figures are quoted on the economy of Israel. As for the first objection, the differences in direct and total taxes and subsidies are striking only in some cases but in a number of sectors they may be considered significant. As for the third ubjection, the share of profits is in most cases much higher than the slare of the taxes and subsidies and the rate of return to capital varies in a large scale: if measured hy direct coefficients, it varies between -3 and $0 火$, and ly total coefficients, between 1 and 48 per cent. The diata on the Hungarian econony (see annex III) give a similar picture of the indirect effects of the sales (turnover) taxes and subsidies. The rates of return to capital vary similarly, tou; they are according to the direct coefficieuts between 0 and 71. and according to the total coefficients letween 2 and 33 per cent. The second remaik in the previous paragraph cannot be tested lyy the available data.

Some methods are used in Hungary which seem to avoid the first and a plart of the third objection but not the second. By use of input-output tables, all (direct and indirect) elements of taxes, subsidies and profits have leen elininated from actual prices and the primary inputs of capital and import have been converted to labour input in wage terms). The indicators gained by this calculation (total macroeconomic labour inputs) are intended and used as measures of actual social costs. ${ }^{12}$ These indicators serve as a rule only for measuring costs of domestic inputs. Output in case of exported or

[^32]exportable goods and costs of imported materials are valued at world market prices, i.e. at foreign currency equivalents The data on total macroeconomic labour inputs proves very useful for different analyses but their application to efficiency calculations as accounting prices is open to criticism.

Disregarding the deficiencies connectell with the use of typical input-ouput tables (some of them can be eliminated by disaggregation, by combinations with product calculations or with input-output tables by products, etc.), only four principal issues will be raised here. First, these "accounting prices" are based on data of some previous period, while investments refer to a future period: consequently they must be built up on planned, anticipated data (input-output table). Secondly, they exclude all income elements except wages. A part of these income elements reflect (or should reflect) social conts, or benefits. Thirdly, they do not take into account the scarcity of capital which oupht to be reflected by an adequate price system (this issuc is under dincussion in centrally planned coonomies, but in Hungary it is already accepted). Fourthly, they do not reflect such intentional departures from pirices as are considered necessary to balance supply and te mand.

The first of these criticisms is acknowledged in Hungary and clains involved are met loy some recent calculations, by mears of extrapolations. The second and fourth remarks were pointed ont only recently hy the anthor and await discmaino. The third ribjection is acknowlefged and in some recollt evaluations it is also avoided by calculating with ans "accounting" charge on capital fadeled to the trital macroeconomic inputs in laluour (erms). Simber ner merical examples of these caloulation, ate given in annex \mathbb{V}.
 of soxial proftability. of the real cone of foremgn exchange earned in exports, the work if 11 Hrumo, concerning the economy of INael mav low meri tionet ${ }^{13}$ Ile applies a correction of mostet picios by taxes/subsidies and exers remmeratmon in capital over an imputed hami: of X fert com

The alme remarhs on the Hung:atim experene nay lead to the comehsion that a comprebenome

 a consequent macrocomome row calcalatmen The third and fourth remarks refer th at vermmgiv ant
 accounting in thes cane tow the rate of the thatere on capital should perlapg le basd in mepumumty cost rather than on lata of hast \mid wermel athl blo applies in som. sense (although it is ieloiterl in Hungary, to the foreign currenev exchather sate. it
 not seem to be approphate to meabire the walat value of output with the "xcopion if internediary

[^33]goods). For this purpose, another set of accounting prices should lee defined. For geods circulating in foreign trade. estimated "world market prices" may furnish an adeguite starting point.

On the general possibilities of the use of accounting prices on an actual social cost hasis and in order to athere the guestinns raised above, several points misy le mate.

First, accommang pricer on an achat social cost hasis may lie applied in the nsual formolas of afticione ralculations. Their assigument is not connewel with at welection trom the frasible projects as in the cine of accounting prices on an opportunity cost havis. These accometing prices may be used hoth the evalnite singig projects and for the amalysis of מमompor of prajects a sector insestments).

Scomdly, as a first very reugh approxillation, taxes, smbidies and tranter payments may be eliminaterl from wetaid (market) prices Price changes munt la anticipated in eacle case. I'se of input-ontput meiluils th diminate even indirect affects of there itella, mis result in some inproventint. These acfombung price, mary be used ill the ustal formulas luth fur entput and input figures.

Thirells, atter the atmere currerthons, acomotiog
 put? , wime then corrections do inet aply the the abhation of primats capital and labemer inghats. Aeconnting priem mind $l_{\text {e }}$ determined for capital in carl core. and preterably for categuries of shilled

 forned in rongh estimations. The centertions accorting ") the vecond puilit yied seme hind of accomatHE

 -

 a.

 pion

 erombitis cont dedalation Fore this purfune. the

 wht the devign of the wer all deamplome of the Coultime
Schas with be poblems of arcumting price "1. 41 Mf(ftimity cont hass, we hall st:rt trome the manlerate and wethotio propenal mate in the i: : "if the torst kroup of experts oll pregrainming
techuigues of the United Nations Economic Commission for Asia and the Far East. ${ }^{18}$ This seems all the more appropriate since anong the authors of this excellent report we niay find Jan Tinbergen, one of the first and most respected advocates of the use of accouluting prices. According to the report (p. 40): "Accounting prices are fictitious prices which may be assigned to some cost elements, or prolucts, with a view t giving a better approximation of the relative importance of these elements or prodncts to the economy". Infortunately, further questions alout the cope and assignment of these accounting prices remain unanswered in this report. From examples described, however, it may he conchaded that the accounting prices of cost clements and intermediary products ate to be definted on an opportunity cose hasis: that accounting prices are to Ir used for final prolucts tho and that they must he fixed according to development prolicy targets; that accounting prices are not needed for each cost element or product but only for the major ones, and that the best way to determine and to utilize accounting prices may le considered a trial-and-error methor of the selection of feasible projects.

It is charactenistic of this type of use of accounting prices that it a-stmes the availability of the whole set of feasible projects, and data on the total investment resources and possibilities, including not only establishment of new capacities but also knowledge of the main development policy targets. Consequently this method may be used only in advanced stages of projert evaluation but not for preliminary selections. Firther, this procedure, with a mixed use of actual (market) and acomuting prices, renounces the consistener of the valuation. As a rule. primary imputs such as rapital, labuar and import will all have arcomuting prices, hat only vome of the intermediary gends. In order to evalhate not onls the direst, but also the indirect use of primary inputs at acomoting priees. we hase t. change the price of the inter. mediary gront- tow. Withont such corrections, the hias of the praject exaluatient will ilepened ant the hare of interme liars gerels w the wal iperating conts if the probert.

The kgical way to determine aconating pices an :111 Mprertunity cost basis is either through the probect selection methon treated above or through methonl, of programuing I'rogramming may te per cornerd either be trial-and error methods or lis mathematical trehniegles such as linear programining. It in torfoll to mater a divtinction between what is called \therefore prober ollection metloxe and a proxraming

 thes. i e exsimg equmbies is well The former betheil generalle amme a preflembar chaice of
 Harien

 limiteri momare of te:atile projerts, all these alter

[^34]natives inay be included in the model and the programming method may give the proper project selection and the accounting (shadow) prices simultaneously. A further use of these acconnting prices does not seem to he required. The bumber of the feasible projects, however, usually exceeds the framework of the workable model. The projects are to be aggregated, e.g. by sectors and branches, and the shadow prices thas obtained may be used for further selection of the projects, either in the usual efficiency calculation formulas or by further sectoral programmings. A similar procedure may be followed by the project selection method too, and in this case the accounting prices will have not only a direct distributing but also an evaluating role.

On tha" use of accounting prices on an oppurtmity cost basis, a mmber of points may be mentioned.

First, as a first approximation, accounting prices may be defined only for primiry inputs. The opportunity cost lasis for them may be estimated or investigated In a trial-and-error metherl. These accounting prices may be applied in the usual efficiency calculation formulas. In order to reduce biases caused by neglecting the use of accounting prices
 major linkages are to be analysed in this respect.

Scondly, accounting prices are to be assigned also for the valuation of outputs. They may le based in case of intermediary goods on opportunity costs or on "world market prices" (first of all for exportilile and impertalle goods) : and, in case of final gerods. on "world market prices": on priority ratings according to the national objectives and devolopment policy targets: on the elimination of taxes and wht sidies from actual (onarket) prices. or a combination of the alove methols.

Thirfly, the triat-and-error methol of fimbing proper accombing prices maty ix improwed in differ ent ways. If it i comerted with an iterative selection of projects, criteria of cimoce in hatmons with development poilicy targets must In stated dearts. Accombting prices may le calculated for major (saree bitermediary geods as well tath as thetric energes. If all cambinate persegects are ine luded in the trial pirkese, the acconnting girice will met hase an imbegendent role. The resilt of the tat step of itcration- gisen looth the preject velected ant lise
 ased, lawever, he evaluating even further variants of the dimen 1 rojects. The selection of the preject. mas le periormed in two stager The that stage gives a cluice of gromps of projects and preper ac

 for further selection. with theor accomating prices
 comang pricer with a better appexamation that the project ofection metherd. Thes wo not med a prefiminary selection or suggestion of poojects and they make possible a freer choice: whev take inlly into account activitie, of the economs even if mon touched directly by investments. On the other hamt. for programming reitier to ise performed in tral and trom or lin new malsematical methentor a great
deal of numerical data are neederl on development policy targets, orn resources available and uther cont. straints. on existing capacities and on techuthoges actually and potentially tued which are not availalle in most developing conntries. I'rogramming methots may also be used in differemt wals. fin instance. for a final choice of the projects when accomming prices are not needed more. in two stages as liy the projeet selection methut, when the final chese will be matre at the second stage ly means of the accommentimes obtainced int the first stage: or itt two st.ines. when for the final choice besides the accombing prices of the first stage, phegramming methons will be uscel again. ${ }^{16}$

Where accounting prices are anignect la neatn of input-outpert or pragratuming methels. ther will in
 by secturs or branches of the comoms. Secombing
 calculations at a second stage "The acconnting price for secturs or hranches may be irmifulls utihaed for sectoral analysis of ine estments and projocts shbequently, project selection themgh the wa of acommt ing prices or especially hy pagramming man and
 sectors or branches. This immediatels fresith an analysis or selection of prejects ls sectors. The zame applies to the total primary implt appach bavel

 will be (h..st with later.

 limito wia


```
w+1!:!
```


of programming can be applied in a very detailed model of the whole economy. At best they can be used to rletermine the proper accounting prices for some of the principai inputs-labour, capital, foreign exchange and a few industrial materials and to revise sector programmes. For the latter purpose, accounting prices are very important. since they make it possible to lecentralize the analysis while maintaining the comsistency of the result. ${ }^{17}$ The methons suggesterl along the sime lines in the Soviet LHion, in the first place by L. V. Kantorovich and V. V. Nowozhilov, are intended to achieve appor priate prices and not direct allocation of investments the sime applice the the investigetions now condacted in the licomonic lansitnte of the Acadeny ai Scince, in I langary)

An importati: frint of the over-all programming of the economy may be a preliminary allocation (distrihntionn of investments among sectors. Sectoral pitgrammings and single-project evaluations may correct this elistribution. Nevertheless, this distribuion provides an inportant starting point for further amalysis. Theoretical. computational machinery capacity. lata a a ailability prodlems of the programming methok are mot treated here, but they canse serious rifficultien aen in developed eonomies. Their solution semis to lie atteripted first in developed conntrics

A, a rule, acommting prices maty yeld a proper whathen tor primary inputs, hot they can hardly be determmed even for majur intermediary goods. Since the indirect mes of pimary inputs zia iuter. mediaty gomels maty befen excerl their direct use. the mav reduce the pocilility of measuri:g interminasinal efficiency effects on ; larger scale. These difticultier blat be ofercone not only by assigning accombitg jrices for imernueliary goods, bat. even mure canily. W alomating total primary inputs hared oll input ontpme amalysis. In thin case, accountthe proces are needed enly for primary inputs (as a mile for majon catherios of lalmore capital and foregn exchangel or even hiling proper accountme prome alevatiow wations can be simply apbinel an in the sam of pirametric programoming. Theor total primary mput tigures may le med in the arspueal cefticiong calculation formulas on the wie haml, and fur cullur amathes on the other.

Some further mpes oi amaluses hased on total primary impat dita will le mentioned bere which may facinate the raluation of the interimdutrial effi cieticy effects:

Ry we.ns: af an ordinary impht-ontput table, total promary input coefficients may le singly calculated for sectors and branches of the economy. Thay nay help to amalyse the characteristics of the sectors from a macrocolnentuc point of view, the average impacts of investments in these sectors on requirements of primary inputs They may help the formulation of a rational structure of the economy liy sectors. In order to eliminate the influence of the actual imar-

[^35]ket) prices on these indicators, they may be related to each other (as for instance total labour/capital. import/capital, etc.) or to the value of production at "world market prices" (foreign currency equivalents).

The total input coefficients of the input-output analysis measure interindustrial effects within the limits of the chosen model. The usual upen static model deals with replacement of fixed assets and exports as items of final demand. That means, for instance, that the usual total labour inpur coefficients do not include the labour input needed for the replacement of fixed assets and for exports to he paid for imported materials consumed. Interindustrial effects may be measured in a wider sense, too, by analysing further multiplier effects. The usual total lalour input coefficients may be angmented. for instarice. by the total labour input needed for the replacement of fixed assets and for exports to be paid for imported materials consumed. The e indicators may be called total macroeconomic latour input coefficients. Iater, to the usual total import coefficients may be added the import needed for the replacement of fixed assets, and to the usual capital coefficients the capital needed for the exports to he paid for imported materials used. Some numerical examples based on Hungarian experience are given i, :-man V Tota: requirements of skilled and unskilled labour, "stocks (circulating funds), several kinds of energy and other scare resources or goods may be analysed in a similar way.

Total primary input requirements for single projects may be analysed similarly. In this case, however, the cost data of the project are needed in the sectoral breakdown of the input-output matrix utilized and prublems of aggregation and disaggregation are to be solved as shown in section G above. Various criteria may be tested on this total primary input lasis, synthetic formulas may be calculated, etc.

The simple methods of direct analysis oi major backward and forward linkages do not need detailed description. I should like to emphasize the great importance of these analyses in cases where more sophisticated nethods are used. First it is difficull to treat forward linkages and efficiency effects by most of the methods mentioned alove, as for instance input-output methods. and they are often reeglected. Secondly, backward linkages (effeets which canl well be analysed, for instance, by inputoutput methods) are examined as a rule with aggregate calculations. Many assumptions vitiating these calculations may be dropped only in case of a detailed direct analysis. The direct analysis usually involves only some major linkages, one or two connected stages of the production process, but then this is done in a realistic way, without aggregation, and taking into account such specific factors as capacity utilization. marginal costs, returns to scale etc. The direct analysis of the major linkages and less precise methods of analysis of the further interindustrial effects should tre combined and for single projects this may provide the best molution for an adequate evaluation of interindustrial effects.

I. Criteria and distribution of investments by SECTORS OR BRANCHES OF THE ECONOMY

In section F, five methods of evaluating the consistency of projects were analysed which may now be listed in order of their complexity:
(c.l) Direct analysis of interindustrial linkages;
(c.2) Material balance method;
(c.3) Input-output methorl of evaluating single projects;
(c.4) Input-output method of evaluating general consistency ;
(c.5) Mathematical programming methods

These methods, as mentioned alove, may and are to be combined. Method (c.4), always, and method (c.5), mostly, are to be carried out rather for sectors or branches of the economy than for single projects: methods (c.2.) and (c.3) may be used both for sectors and single projects, while method (c.1) seems to be appropriate primarily for single projects.

In sections G and H, different methor; of evaluating interindustrial efficiency effects of ,rojects have been analysed. The following groups of these methods may be listed here:
(e.l) Direct analysis of interindustrial effects;
(e?) Use of accounting prices (both for injutts and outputs) to evaluate efficiency at a given stage of the production process ;
(e.3) Project selection method: simultaneous selection of projects and assigning of accounting prices;
(e.4) Total primary input approach (evaluation of the "bundle of activities" touched liy the project) ;
(e.5) Programming methods (with one or more stages).
These methods may and are to be combined as well. All these methods may le carried out both for sectors and single projerts. Methods (e.4) and (e.5) seem to be especially suited for sector analysis, (e.l) for single project analysis.

From a macroeconomic point of view, each project touches not only the given stage of the promluction process but a buntle of activities linked with it and it must therefore be evaluated, both for consistency and efficiency, by taking into account interindustrial impacts as well. As this notion indicates. interindustrial impacts, effects between industries (sectors or branches) are to be analysed. The methorls available for these analyses are suited in many cases only for evaluating linkages between industries (sectors or branches) and not between single projects. In other rases these methods require a two-stage evaluation, first at the sectoral level and then bu singie projects. (For the first case, see the input-output methods; for the second, mathematical programmings.) That is one of the reasons why sectural evaluation, or preselection or predistrilation of investments by sectors, may be recommended. A second argument may be raised from the time aspect of these evaluations. Projects may and are to le evaluated on the basis of their full working time. A total set of projects, however, can be checked for con-
sistency, analysed for interdependent efficiency and co-ordinated with the development plan-by relatively simple methods-only for a given point oi time. This issue demands a two-stage cualuation, first at the sectoral level for a given point of time; and then by single projects for the full working time. Finally, institutional and organizational requirements may argue for an intermediate project evaltiation at that sectoral level, especially in the case of devolopment phaning. P. Rosenstein-Rodan has cinphasized that "estimates of priority can be more casily formalated for sectors than for fangers within sectors.... Delegation of decisions as to sectors
 posing a sector secon to be the ippropisita mes of programming." ${ }^{14}$

Sectoral evalnation of investments deres mot remder superthons the evaluation of single profet or the analysis of their interimbustral impoct- Finst, sumpe projects and not uectors are to the domer ramily, the constrainis of the aggregated sotormadowne well known and their resnits. therefine, ate th le

 efficient from a macroecontomic pullit it sew that some "wrong" projects of another actur which
 aggregation, even a coinchlence of the smmarized input and output figures of ther -angir pmenets and atgregate figures calculated for ther monn wine do not prove a real consistency. Sectos. matnatmo of investments, combequentls. is whe in allont hor,
 tions. The main fields of :phlicathen in the vand evaluation of investments ater the pretimana sumb
 projects by sectors.
 hy seciors is an important 1 sis" if wr...pprent planning in catrally plamed ermmine anl it seems to be necessary or at lawe demahbe in carh case of central planning. (entral planamp, inpura a certain delegation of decision-, smume bther these concerning investments. For the nary distribution of inve sime t thal a nereled In
 tribution is based as at rule for combuntion om the naterial balance methow (0-2 and on hatel andorn
 direct analyses (e), and on at onote ir less wule

 of the other mothols listed .t?mes hav hem attempted

 These methombsation aphel. perhap in means of a standardized injut ontput matrix. W aremp ing combtries. For these atomathas accombung prices assigned at a sectoral lovel mad pacese whenl The prelinimary disertbutom of inventione funds may le based on a ranking of single pre meth pi", prosed. too, without any use of aggregate data.

[^36]A preselection of projects by sectors may le recommended first of alf in case of a great mumber of "candidate" projects and even more in case of a development planning with central and subordinate institutions. Is s $^{\text {for }}$ faluating consistency. the whole set of metholv, listed above may he used, frit perhaps the input-ontpit and prograniming methods (c.3-5) are to lie preferred. To evaluate efficiency. the project seloction methor (e.3). the simultaneous chaice of projects and assigning of accounting prices. and the total primary iuput approach (e.t) seem to le appropriate in the first place. Subsequently, economy whe mathematical programming may lie carrect ont an a role at the sectoral level and consequently they mat sield a preselection hy sectors too

The main eriteria of project exahbation from a macrorconombi (social! point of vew both for sectoral and single project analysis are consistency and efficiency. The criteria dif efficiency noed further explanations. These criteria are to be formulated in accordance with national ohjectives and eromomice policy targets, and slould take into accentint, first. if persible total costs and lemefits at womial values faccomiting prices: secomdly, the interimbutrial imbats, ond, thirdly. the time aspects. This pater has concentated on the problems of the interimhostial agurts "f the profect exahation. The time anect: are taken into account at heve evahation of simgle progects as a rule les the une of disambitiog methels with :at accombtige rate of interest 'this accounting rate of interest mav in differentiated in the calcubations ber periols and it latgely drpents on the oweratl design of develoment which forms all importath bachgromel to all the eve conlatiom amal wahations lisconting mathers mat be applaed Itant amber the methels listed :dones: for direct
 (6) \therefore wih case, at the project antection method and
 dfficulte and at programmings ie.5 with scrious

 praco of eaputal Therafore as a rale. smplified formulas of cathelation man be recombented tor

 hination with or withut weytumg. wr ane tor mare sunthetic ionmula are generalls wed lartial cri that. as a mine give a corret ramation rals in care of promet whath from the momt , the of
 bar phes reanoth and iortionlarls ill case of sectora!

 the cont vele, ameng the gartial criteria. the :here
 change mist low repreacute! in e.ach cise h heir
 foregre curcencies ate From a maroromothic print of bew the prinary input refilirement, are to twe analosed with the nefp if total miput cuefficelts. ie. hy the :1se of the total primaty ingut approach (e.3) Further. liesules their partial analusis. the
primary inputs may be valued and also added by means of accounting prices. For example, the folluw ing formula may he suggested:

Domestic value added at accounting prices:
Domestic costs at accounting prices
This indicator has been used in Hungarian practice for statistical analysis but may lie calculated for future periods, too. According to the Hungarian calculations, the nominator is the total value of output minus total primary inputs at world market prices (in foreign currency equivalents), while the denominator is domestic costs at accounting prices hased on total macroeconomic labour input coefficients (on total capital and labour inputs added at accomnting prices). An example of these calculations is presented in annex V.
In case of progranuling or project selection methorls (e.4-5), we can take several criteria for maximum/minimum, and other criteria may lee treated as constraints By asing direct analysis of interindustrial efficiency effects (e.l), various criteria may be evaluated lint primary input reguirements (and possibly total requirements) nust not be onitted, either hy this or liy the other metluads mentioned above Benefits may be me:isured as a rule by total value of output or by donnestic value addel and, of course. in accordance with the measurement of the costs. The correct evaluation must be ensured by the use of accounting prices and spectal benefits may he amalysed separately

We may conclude from our analysis that a project ewaluation from the macroeconomic point of vicu should lie lased on a measurement of total costs and henefits at intrinsic social wilnes. This requires first of all adequate consideration of interimbustrial amel time aspects of the proiects. As a rule, however. iuhb requirements may be met only approximately. iny methods of project evaluation, therefore. are hurlened with assumptions and hypothetical elenents. As I. Timbergen points out, "in oriler to calculate the fuil consequence of a certain investment till the natiomal economy one has to have a dynamic morlel of development of thi: economy (and even of the world economy!". ${ }^{18}$ Nevertheless, project evaluation may help significantly to make alequate. investment decisions in of der to nise national resources better and to promote developmemt. Moreware project evaluation from a nacroeronomic (sucial) point of view may not on'y le facilitated la formulating national objectives and economic policy turgets. but it also calls for nore or less detailed development plans. Deselopment planning may facili. tate entrepreneurial investment dections.

I. Doscibilitila of tisf of a standardizen inplet. ol tpli matrix

The coefficients of all input output matrix are determined hy a great mumber of different factors The major factors are technology, returns to scale import. price-relations, infrastructure In spite of these facturs onve empirical investigations (by W' leontief. H R Chenery, T. Watanalie and othersi

[^37]indicate a great similarity of input-output matrices in different countries. Further research has to show whether these similarities make possible the compilation and use of a standardized input-output matrix with special reference to developing countries. In this section, some lasic problems and ideas related to the use of such a matrix in project evaluation will be considered.

A standardized input-output matrix may he userl to obtain an over-all picture of interindusirial relations, linkages and impacts and to make sonme numerical calculations concerning the given economy. For loth kinds of uses, the inverse matrix (that of the total input coefficients) is needed and the matrix of the technological (direct input) coefficients has onls. an intermediate but important role. The standartized matrix yields information ahmut the nature of the interindustrial relations, alout the matore interdependencies to be analysed, and this may he useful in itself. For more precise analyses, however, the standardized matrix has to be adapted to the given conomy. The task to le resolved is, therefore. a twofold one: to design a standardized matrix and to facilitate its transformation in a nationa! matrix. In case of developing countries, the second task sefnis to be especially important since the characteristics of these econonies may deviate considerably from a "standard economy" (use of backwol technologies, special price relations, different infrastructure etc.). On the other hand, the lark of lasic industries which have the most interindustrial linkages may simplify the task. Of course. in each case only the major coefficients are to le calculated and analysed. In the Hungarian input-output matrix for the year 1959. for instance, of the possible 9.0 OM co afficients of the 95×95 sector table only 770 ciefficients had values of over 1 per cent.

Five major factors are listed in the opening pira graph of this section which have the most significant impact on the input-output matrix. Frim the standardized matrix one of these factors, imporis. seem: to tre eliminated in each case. The standardized matrix is to be calculated in such a way that its coefticients comprise the total use of domestic and inported materials: in other words, it has to lw drawn up for a closed economy. Suhsequently, each country has to separate the use of domestic materials and inports according to its special conditions, that is, determine the distribution of domestic production and import by sectors. That is one of the reasom why the inverse of a standardized infur-nutont matrix cannot be used without further improvement that is, without the corrections of the technological matrix based on innorts. Since the inverse operation! may encounter difficulties in some countrie, the. possitilities of the use of a triangularized matrix should the investigated as well.

Corrections resulting from the use of other that "standardizel" technologies mav be carried cut in is similar way, that is, before the inverse aperatur: F.ffects of returns to scale and of differences in the infrastructure cannot be isolated by simple methorls and may thus be neglected As for elimination of the impart of price relations, it is possible in atteapt the compiation and use of an infut-output matrix in
physical units, but this wonld refuire a ver detailed matrix. Some supplementary figure, on :he major coefficients in physical mits, lowever, maw be very useful and wheh a supplement is to le recom monded.

The possible ways of solving the pire perthems in the iransformation Gdaptathon athl 1 (We of the standardized input-output matrix bend hirther ith vestigation. If the standarlized mattix is expreach in it common cirrence wich as the drollar), he cor rections due to impurt and differences in techmon-
 of exchange rates. Sulsequently the matis mas lit imverted. evaluated and atilized in mam wa, w! out its conversion into national currence fint \quad II stance, the ratio of direct and total imprit certicionts. mensured in the common curfency mat with a great deal of valuable information. Mare sulbintichted a. of this corrected standardized mimis ralilir. vill. further calculations: either it comvereimin int. 11: tional currency must lwe attemperl, we lier rhatel
 and perhaps on the final results of cathalithomes and to lie converted into the common curmors lionth solutions need the calculation of yowill whane" rates, a complicated tank hat witumb what he
 cal calculations and atmalu...

 possilule alon some furtlier mumerla: il i.... Fit these calculation. howerer the: 1 Ben! ! conversion of the lavk mathmal dar a : 1,

 and rapmal in nered an wel There 1 , he
 in thes case, there appear to lie the liat itit one differences ameng cruntrire and comelnen' ,

 earher (et) may le inell. (in) liur (......... of \because buwever, a whole set of +xihange ine in incmaty and either the coreded itandardirel riaten mend
 number of natiomal hasic thata are i. io win.erent

AMNEX I
 or a mejuct almims at mumirram meuvcreow

¢wphier rectors			${ }^{1}+1$
	momina		
	1	2	,
Mining	0.5	3.2	n
Metalherey	1.5	4.9	3
Maximery and inotruments	0.9	1.5	8
Other mertal products	4.1	3.1	7
Electric power	1.1	57	4
Building moterials	2.8	4.2	\square
Themicals, rubber and plastic products	3.	14.7	5
Wood	33.7	4.0	0
Papr and printinat	0.6	15	4
Textile	17.2	21.3	9
Leather, apperel	c. 5	1.1	4
Food	1.0	1.9	13
Agricultwre	0.1	2.2	5
Domentic imentmediary gooh Imported roode	$\begin{aligned} & 73.7 \\ & 29.6 \end{aligned}$	$\begin{array}{r} 100.4 \\ 41.2 \end{array}$	6
	102.7	133.6	6

- (m the besis of the Hungrim input-ongot table for 19r1

ANNEX 11
 in thi rconomy of lsmall in tye yeaf lysea

Seroos'	Teres end mbinios			
	Durect	Tomer	Dereet	Toul
201 field crope	-3.9	-1.5	175	23.2
20 Livestick	44	53	22.9	31.8
201 ('itrus	23	1.8	30.6	37.3
204 (ther agriculture	01	1.0	14.3	19.3
20s Minima	10	3.8	107	19.0
man Fown	0.9	4.0	59	$n 8$
207 Textiles and apperel	12	-3	131	30
20/ Mont and cerpmery	124	14.8	79	481
	37	73	53	15.2
210 Leother asil leather proturt	14	33	21.	3.3
211 thather sowl plastic wobwets	63	8.4	154	24.5
212 Chemicals. oil and moed	6.0	8.4	0.2	7.5
213 wil refineries	01	11	-4	3.3
214 Glaes. revemics mad crmom	19	126	6.2	12.4
If 1 hamuma pelishat	40	e. 2	12.1	13.2
216 Boour menelo	18	3.6	2.0	7.1
119 Metel meturts	40	73	49	11.4
110 Mactimery and valucien	6.	\bullet	3.9	12.
${ }^{19}$ Conurnetion ad heumal	64	11.8	78	14.1
22^{10} Emetric pamer	31	50	1.4	67
in Wever	-132	-4	59	13
	:12	14.	13.2	n 6
	11	14	-40	-4
29 Other comumeneation	4.	6.7	130	180
	11	85	30	300

ANMEX 111
 In Tim yban lisge

Sectove	Selos neges end subservices	
	Divect	Toow
Minins	0.5	23
Mentmery	0.4	26
Mactivery	0.1	32
Enemiced merhinery	-0.3	14
Inatrumente	5.4	74
Ohmer medi prebucts	5.0	74
Ehetris power	0.0	16
Euftion meveriale	, 3	8.7
Chamietels	1×4	230
Sultar and plentic prodarts	370	431
Wed	18	13.2
Papt	13.1	159
Primina	72	14.9
Teastle	3.7	188
Lenter	132	189
Anment	3 3 3	414
\square	10.6	144
Compruction	03	17
Arrienture	0.0	19
Tramerert asd commmencetion	16.8	- 136

* In percontege of the value of ompun Total consienemts calculated irom input nutput mak.

ANNFX IV

Emampla calculatime accoumting maces on actual yacemponome (simial) cot mois my means of IFPUT-outwot analy

Accounting prices for (i) mrialk and tibe products and (ii) coment and concrete

A. Danc deta

			'ramome ond coecreve moune t:	
	Porcomeoce mbers if vilue of owtrut			
	Divect indme	$7 \text { Inem }$	i) weoct in inet	
- Dumetic indermetiery geodi	11.4		493	
4. Impartes gaeds	8.1	12.7	6.6	15月
c. Depresiprisa	10.9	165	68	146
4. Wemen melurios	27.7	397	122	241
a. Prown	18.7	23.0	113	244
1. Tawer and sulmidios	46	8.1	118	174
e. Taxi velure of anget	10.6	108.0	1000	1010
h. Corinal Menaremaent	14.4	2041	1140	2535

	$\begin{aligned} & \text { Anctimed } \\ & \text { mindivict } \end{aligned}$	(rmowe old meterts
	444	明 2
(ii) By crimimaing ment moes eat mbictioe	414	825
	49	542
nome	50	437
	40	765
	11.78	\$ 2
	1045	09 A

C. Methods of celculation, illmotrated by the erompte of the brich and alle pratucta

(i) $=(9)-(f 1)=100-4.6$
(ii) $=(g)-(f 2)=100 \ldots 8.1$
(iii) $=(g)-(f 2)-(02)=100-8.1-230$
$(1 v)=$ kotal lalowr + total import convertied in labour (based on averese of foreign currency earned by exports + total depreciation converted in then (based on average costs of the replacement of the foxed asoets) $=507-$ $7.6+8.7$
$(v)=$ (iv) $\times 1.75=56.0 \times 1.75$
$(\mathrm{vi})=(\mathrm{iv})+(\mathrm{cm} \times 0.15=56.0+345 \times 0.15$
where $C_{t m}{ }^{\prime \prime}=$ total macrieconomic capital requiremant inchudina requromente
of imports (ina experts) and depreciation (vin replecemem)
(vii) $=($ iv $) \times 1.25+C_{\text {im }} \times 0.10=56.0 \times 1.25+345 \times 0.10$

ANNEX V

 HFVII IENAY IMPACTS

Tw., weturs will he analysed hased on dota of the If ingarian input-1utput talle for the year $1 \% 1$.

ANNFX V (continnal) B. Sectoral chaturieriotics

	Soneor A	Sowter:
Per 100 mats of mamet. at FCE		
Total labeer ($10-4$)	57	ω
Tutal mecroecomomic lebrom $(10-4)$	05	77
Toud capital requirememt	113	4
Total macroncemomic cepital requiremomt	1.15	1,329
Tinal impan t FCF	11	17
Total macroecenomic impert - FCE	23	2
Tonal caplol rapirtancut per total lethour (10)	14.2	20.4
Tofal inumeri at FCE per towal intorow (10 4)	024	03

0rix DCondur

Intmenction hevelopment atiategy anil cenditions

Durine the lan twenty yemes. Hungary has ehomped from a relotively underdevelopped agricultwal coumbry into a relatively developed indwatrial combry. In this process the ingh rate of induatrial growth has played an important role between 1950 and 1 seo indmapiel production increased by 10 per cem en an mamal averape. The eernomice structure of the coundry chanmed radically W'mile in 193 m im duenry produed 35.3^{4} pe ceme of the national incorne and agiewhure comritumed 3.5 per eem, in \mid Wh| No. 3 per cem of the mational imcome was produced toy induary and conmeruction and onty 204 per cent by arriexinure. According to cenoms dota in 1941 . 44.1 per cent of the working popmetetion was agri.
 the agricultural portion of the papentation had the crooned to 352 per cem and the menduatrial populatrien had increased wo 31.7 per ceme of the cotal.
Thase recults wefe wheved oo lepre extent through extemoive mvemment sctivity Refore the socent Worlal War, the shere if accumulation in notional imerome was mi nure then 35 per cent anmmally Daring 1940-19.2. thes proportern in creased to 2^{5} per cem om an anmual averagr it should be mentioned that. in mome years, the in crosed eceumulation was as hagh as 35 per cent This feet comone be seen trom the statisics because of the two-level. distorted price symem (kow prices of expinil genals and high prices of consemver grown): The price syswem champed in 1959 . Before the war same 15 m 20 per ceme of itanal investrmenta was peem en motevery ammolly, white between 1"50) and 192. winh the emeeptiom of twe vews, the thare of
 them it per ecent ammully and in 1953 hed rewherd a paik. winh 47 per cent of the retal. We mention mose fave hree to indicice thet, thering the lom twent peres. Ppeciel attemivion hee been jwid in Hempery to inveriment protioms and alm, in if nomin and enperimemation. m order of find the proper erverin for evalumon indmeeriol peojects Theve soe sume rembin, bet we camen. if ecurse
 nath have now the enrreet aystem. prociptey and manato of indiverol projeet evaherision.

The fre beem we mey trow from our twenty

[^38]drawn from our pate expervences, and ifext explaim the mew ways and meanis we intend to use ill the neer fulture. The first question is what facts and principtes have to be considered in onder to formun late the proper criteria for project evaluat" in' And the second question is what are the rught criteria and the methods of applying thelli"

The second leason we should diaw frime the llumgarian experience and this is irrolumily the unowt important-is that it is impos-bitle i" formulate owh general criteria as (o) twe apilicalule many comery. at any time. Brespective it the kwn cir
 (rneria of project evaluatuon in getwral deperit iot two factors develinpment stritegy. airl the womenilur stuaton and possibilities , it a kivell comitry at a given period of ume.
The first factor, however. is wet wile feilemen of the second. and lwhth of liem chanke tri"t 'lime ".
 term ilveloymem targets and the bie ille refpured
 thes". We take into comenderation the winting ation :it of coputal, lalxur and batural embiomene anill the insetrutional framewith of the er, nowne whent:

 that we are malte i., formulate relatively vatile ert teria In a centrally planned system it u.ind lam im

 where investment teciutins atc take., hiv iw ale emterprines, the comotroms and or. 'in of the ill

 coomomer rrieath has devociel allinthen lath II the wem and in the ram 16 exierimelts wheh

 preatrienming

 imoth The murbis unsullv ctal with He lowenge

 epmonem vice of the wivity is cah wated at them

mum is always relative and depends on the evaluation criteria, while the evaluation criteria are deternuned mainly by the development strategy.

At the same time, research efforts are seldom directed t" finding out the proper ways, means and invethols of elalurating a long-term development strategy and further to formulating a sound investment programme on national and sectoral levels, applying the criteria determined by the long-term development stritegy This is one of the main reasons why it i, so difficult to formulate the criteria for project evaluation In the real planning activity. the criteriat for industrial project evaluation have leen decirled with the elaboration of the long-term development programme In the optimum calculations, the criteria of evaluation are built into the nucklel as limiting factor, and the optimum variant is a relaiive optimum. in relation to the limiting factors dec ided upon by the targets and objects of thir longterni development strategy. We hase this statement on the real experiences gained in the development of the Hingarian erononiv.

Tlie pont-war reconstruction in Hungary ended in 1447 1948 and a radical change of the socioec, nomic structure liegan. The development strategy cialurated by leading circles comprised such goals an sperling up the longterm rate of growth. rapid int Intrializatuin. full emplowment. complete reronwhiction of agriculture and infrastructure and an increase in consumption. thos ensuring the complete eronomic and political independence of the comintry and the attamment of the econonic level of the lughly developed industrial conntries within ten or fiftern vears. It was ohvious from the lieginning that the achesement of these ambitions goals rejilired louge mesatment. Thiee variants of an in vesthrent pergramme were considereal

Rapisl increase of inveatment in arch a was that \therefore n-mmpentin wold alse increase. hewreer slowly. as incefment and matimal income rose:

Rapil gluwth of in.estme.nt at a stagnant level of concimit? in

Rapill grinath if invesment at an allmolute de11 anllig law of cill amption

A! the same tume the prommic comblitens and pexilnties were is fillows external remorces

 atil icolineally lackwatil he eremomis had an

 transtorned fromi a market economivinto a ceniralls planneit noxtel lassel on state ownership of the meane of production

The offirial development stratery arcepted the first ine retment variant Rapud frowth of investment and a moderate increase of enommention were the targets in the firot five vear plan (1949.1054) Natmonel in
come was expected to rise by 63 per cent and consumption by 35 per cent.

At the implementing of the plan, however, the Government was forced to achieve all the above-mentioned targets at the same time and as rapidly as possible. In consequence of this development strategy, the third variant of the investment programme was realized. Investment increased rapidly while consumption declined considerably. In this paper we cannot explain all the consequences of the development strategy. We shall therefore focus our attention on the consequences connected with the criteria for industrial project evaluation.

The above-mentioned ambitious targets decided by the development strategy and the forced implementation of these targets within a relatively short period of time shifted the whole development programme towards an autarchic type of development, neglecting the open character of the economy. Every capital-intensive raw material producing branch had to the developed at a very high speed. as had every branch of manufacturing. This situation necessarily Ird to the dispersion of the limited investment resources: the volume of unfinished investment: continuously increased; the average time of project completion did not increase: and the technical level of new projects lagged behind the required levet

In consequence of the development strategy, every project providing the planned increment of prodisction in quantity was considered useful and necessary irrespective of the cost and commercial profitability of the project; moreover. the hasic criterion of a project was the maximum level of production and eniployment the new capacity could produce.

The Hungarian experiences indicate without any donlt, that the criteria for project evaluation are determined hasically by the development strategy. We would like to call attention to some of the consequences of the applied criteria in an extensive phase of industrial development since this might be ustful for some developing countries with an open economy where the extensive period of industrialization has just legun. In Hungaty between 1949 and 1053, the share of new construction in national income was about 15 per cent. The ratio of construction to machinery and appliances was 5.3 . (It is worth nentioning that the sanie ratio in the I'nited States at the end of the nineteenth century. when tive industrialization drive started, was alout $3: 1$, and atuer the Serond World War it had declined to $\mathbf{1 : 1}$ Mriecovar. the 'bare of machinery had lecome a litile higher than that of construction. At the same !itro. in case if new projects the capital coefficient

increment uf national income incremient of investment

was no more than 022 . while in old factories every one unit invested in expansion and reconstruction provluced 3-7 unit increment.

Between 1057 and 10×2, the construction-machimery ratio changed to $13 \cdot 1$ while the capital coeflicient increased from 028 to 0.39 In the first five-vear plan. alonit 35 jer cent of the national income wan invested and the national imcome increased by 50.3
per cent, about 8 or 9 per cent on an annual average: between 1958-1962, 23.7 per cent of the national income was invested while the inrrement reached 38.8 per cent or about 7 per cent, on an annual average In addition to this, personal consumption increased considerably.

In the 1960s, investment decisions have been increasingly dominated by the criteria of efficiency and profitability.
The basic shortcoming in our opinion of the development policy of the 1950s was that the open character of the economy was neglected. Therefore, in an autarchic type of development, the basic criteria of project evaluation were necessarily reduced to the maximization of output and employment. In spite of these difficultirs, one of the most important targets, that is, full employment, has treen achieved. Indisstrial employment increased from the 547.409 in 1949 to $1,193,800$ in 1962. Indeed during the 1960 s something of a lack of labour power is characteristic. indicating that the period of an extensive-type industrialization has encied.

We are approaching a new stage of development usually referred to in Hungarian literature as intensive industrialization. The most important ifues tion of this strige could be formulated as follows: wilat should be the criteria for project evaluation in an industrial country where natural resources. industrial raw material and energy are very limited and therefore a large part of the national income (more than one third of the gross national product) fows through the channel of foreign trade? In the following sections we shall try to summarize the new efforts and research, attempting to discover the answers to the almee-mentioned que tions.

A. Basic assumptions and thfesfs

1. Definition of the "open economy"

An economy is considered to have an open character when the actual and potential scarcity of natural resources and conditions makes it imponssible to utilize fully the existing and expected capacities on the hasis of domestic resources. From this definition follows the basic characteristic of the open ecinomy: the amount of foreign trade activity is very high measured by its share in national income, both in exports and in imports. The open character of the emnomy of course influences the criteria of project evaluation, hoth in the extensive and in the intensive stage of industrial development. However. in the intensive stage, this influence is much stronger. While in the extensive stage the rate of growth can be increased by thuilding a large number of projects of relatively low technical ievel and using the maximum amount of labour and domestic natural resources in the short run, in the intensive stage these resources are already exhausted. The more rapid the development in the earlier stage. the more pressin is the scarcity of natural resources in the in:ensive stage, since capecities have greatly increased. The import needs of the economy suddenly rise in a qualitatively new level. Therefore. in an open cconomy (such as the Hungerian economy) where a certain high kevel of industrial development has
been achieved, the implementation of any long-ternm development programme, even at a reduced, moderate rate of growth, is a function of the increasing export ability of the economy.

This is the most important premise in an open economy, which has to be taken into accomut in any sound development strategy. Taking into accomit the cumulative effects, one unit decrease or increase in export produces much more than one unit fluctiaition in national inconne, in employment and in the living standard. This indicates a very ligh foreign trade sensitivity. According to our present estinn:lt". one unit decline in export. through the decrease of import, produces $4-5$ unit decline in national ineone. These conditions of consse deternime the criteria of project cualuation. Since the increase af matimal income, employment and consumption are the function of the economy's export abilitit, the :mast important criterion for project cvaluation (anl at the same time the most inuportant criterion of offi ciency of the national commonic activety in the "x. perted maximum net foreign exthange atheng (yielfs) of a project. or of the natimand eromems as a whole in tine long run.

If in the open ecounny the maximum of the we foreign exchange earnings is the hasic crit rith. the character of the efficiency computations i. . Wen mined by this very fact On the ather homl. We. criteria of sectoral allocation ant project phaning are determined tuo.

> 2. In axperimental mithol for thi whemlation af net forign exchange rorning:

The objects of the experiments ate is forlows
(a) To determine the net vidN of a ingle project (that is, the difference intwern the int:n? and yieds in foreign exchange for the expecten him time of the project),
(b) To determine the expected ine rellient of ma tional income (expressed in foreign ex lange' $1 .+1$ duced by investment expenditure:
(c) To determine the expected net foncigin ex. change yields in every sector and in thabanall. cate investment fimits amomig sectors whowith the "leading sectors").

The first bottleneck encountered li. plammen. it these computations is the price avstelli in cent:alls planned economies, elomestic and forcign trade wime are rigidly separated Domestic prewherep pirmare calculated in domestic currency onl the latis of domestic inpuss. In addition, prochlucer prices anm consumer prices are eplarated twath for in hasiral and agricultural poducts The changes scourring in producer costs are mit reflecteit in cinsmumer pricen Taxes are differ atiated bis oestors Therefone the calculation ot real costs is vers diffocult sine 小, mestic prices are separated ir,im world markel prices (while more than one third of the national income is realized on intermationsi markets, na tional income, calculated tiy denpest, prices and m domestic currency. is different fromil the natimal income measured in world market prices
In an open conommy, however, where the real rie of growth is a function of export alnitivy cand ex
port alility is a functiom mainly of costs related to internationial standari's). the efficiency of a project or of the econbinic activity as a whole can lie measured unly by the net foreign exchange earnings ralized ir realizalile tom the world narket. In order th get the wet forcign exchange earnings of the eomoniv (or a sector, or a project), we shombl be alle to cxpress inputs and outputs inf foreign exchamge in the level of workd market prices.

The firn experiment in this direction started in loket, ant it is in progress. The experiment is called in wir literature" "world market price model". We laid tu previcle iw tions: an inpont -ntome tahle comtaining the grantitative relationsinips of sectors: and foreign cxelange rales for comparisen of domestic and foreigh trade prices, sulseituting for the rate of exchange.

In Hungary, since the use of input-output analysis is well known. the proper tables are availahte. However, the formulation of foreign exchange rates is most difficuit : we need the kind of rates that take into consideration the differences of the price levels of market and centrally planned economies. The root of the matter is that total domestic production will be calculated in dollar prices on the lasis of the imput-output talile. As a result, first we shall be able to get a real domestic price structure and, as a second step, we might have a static comparison of sectoral efficiency measured by the realized net foreign exchange earnings of the sectors. The main steps of the calculations are as follows:
First, the output of various producing sectors is calculated and expressed in dollar values, taking into accomint the average world market prices possible at a certain time. The total mutput of a secter is divided in two parts:

The world market prices of the main proxlicts are immediately given. In the case of secondary prodluts. we nace foreign exchinge rates. For products not characteristio of the sector's proxaction we nse aserage tale of toreign exchange calculated on the national level. while for products claracteristic lint mon inlowertint for the serkers main activity we nise avernge rate calculated on the sector level. In the formblation of premhact gromps there is a hasic rule: in gemeral th represent the domestic composition of proche thill in ewery seethe as acenrately as ponsilide. Aplving the metheml the total outponts of the come mentity pondiowg eetors are expressed in dollar tatme caloulta.! in average world market prices. that is. liwe sectors of the input-ontpot talle are cronesend in flollar terms on average world market prow hewh There are of comsese several difficulties (1) (1.ercombe during the calculations. We mention

 atr whate misleading and ith such caser we lave to Here Wice mulices erlited to proxhet gromps.

Wi. Lawe : mentioned the calcolations connected wih he comemembity prexhering sectors. This is, of

 -riktioul We hall deai will these sector, later.

 werage warlit market prices in dollar terms, that is. columb vectors of the input motput tahle have to be arrewed in dollar terms Sinse in the first step we
 in in llan lernes mil imersecter retanions are given
 thone inniratic miterial inguts originating from vari.
(J) Sicomdary priducts

A smaller pari ol ouput
Products not Proslucts tharacteristic of
characteristic the sector's profile but
of the sector's having litle weight of the sector's having litle weight profile
ons commodity proxincing sectors are also given in the colnmin vectors, expressed in dollar terms in averige world market prices.

The next input iten of the colmmn vectors is: import material. I ollar pices of import materials, however. are inmediately given. The most complicaterl items of the colamn vertor to calcolate are wages and anortization, which have to le calculated in dollar ternis too. Calculation of wage input starts fronn the so-called "food basket". We take the inerage world market prices of the prodicts represented in the "foorl hasket" in dollar terins. In this way one part of the wage bill is expressed in a proper scale. It is nore complicated to compute those services which are used by consmmers. We do mot have the proper methon . yet and many jossilinlities are under discnssion at the present tine.

The next input item of the column vector is ammortization. The calculation of ammortizations starts with the computations of the dollar values of investment expenses. Hefore that, however. we have ta be alile to express the value of constraction activity in , faliar ternts. The ontput of construction cannent le determinted from the connmexity side Therefore wages have to be dotermined first and later, using varions caiculation methokes lased on wage costs expressed in dollar valies, ontput of constriction (and i:1 the sathe manuer ontputs of service-pitoklut ing sertors will lwe computed in dollar ternis $f(x)$ At the pricing of ankortization a special intex will le useal which is a duotient of the total dinnestic price of investment-rquacemen: and toreign ex change price oi the same ageregate The sumt uf investment anll teplacment is piven in the invest nent collinin of the talile

The calembitum are accomplisited on three firice levels: -
(a) On the level of average export-import prices accepted in 1961 among centrally planned economies in foreign trade treaties:
(b) On the level of average Hungarian foreign trade prices with the western market economies (in the case of products which are not exported to western markets we use the method of "price identification" hased on comparison of technical-economic parameters of the given product) ;
(c) On the level of average prices of one of the "nain markets".

When the above-mentioned computations have been completed, we have the following results: the balance of sector activity, gains or losses in every sector expressed in foreign exchange terms (in dollars) and the net aggregated foreign exchange earnings (direct and indirect) for the national economy as a whole. These calculations, however. are static in character. Therefore, as a third step. the model has to be dynamized. Since we do not have an input-output table for every year. the foreign exchange gains or losses calculated for one base year have to le estimated for other vears. or for a period of time, on the hasis of changes in production, in technical coefficients and in world market price levels. The estimated foreign exchange gains or losses should be related to the foreign exchange value of investment expenses in every sector. The calculations reflecting foreign exchange gains or losses by sectors for $\mid 961$ will be completed at the end of 1965 and dynamization of the model follows in the next two to three years.

We indicated above that the first picture is a static one: gains or losses by sectors in a certain year. Therefore the next step is to dynamize the model try interpolation and get a picture of trends of gains or losses.
let us suppose, as a first approach, that we wish to know how the foreign exchange balances of vari ous sectors haive changed between 1951 and \mid 'Kil. l.et us supprise further that sector I had

Output	$\$ 200$ million
Input	$\$ 140$ milhinn
llalance of forcign exchange	$\$ 00$ millionn

Volunie of production in sector A doubled lorreign excliange gains of sector A interpolated only on the hasis of the production index equal $\$ 30$ milliont in 1951.

We suppose that the developments in sector A in the last eleven years were as follews (in \$ milhom)

Year	chens inder	Halence of forengm crichompe	hanars in tolamir of firrepe prithanger in tria finf the pertow :rat
1951	100	, 11	
1952	1111	13	1
1953	109	3	0
19.4	110,	30	1
1955	10\%	42	12
105n	107	45	15
1977	107	$4{ }^{1}$	$1 \times$
1458	106	51	21
1954	106	54	24
1 mal	115	57	27
1411	105	(1)	3
			81.9

Taking into account promluction increases onls ams extrapolating changes of forelgn exchange weht. during eleven years, foreign exchange emrings orginating from sector A are $\$ 125$ million total (hiscount effects are disregarded). We have neglecited. for the moment. the effects produced by chamge iot the technical coefficients" labour power, as well :is $1, y$ world price level movements: however. these cftert. should the taken into consideration tow 'The preper methods of considering thein are mit welatorited and various ideas are widely disctissid.

At the end, calculated forcign exchange increanes by sectors have to le related th the fintign on change values of invested capital by artor S Splame the methol descrilari almoce, we expert to get the following results
(a) When the "world price andel" iv amiplate. all basic data we ued to calrulate net hermen eirn ings of a project sectur. ur the nathmal cronomus as a whole are given:
(b) We will have a sumd basis ! difference athemg sectors in net foreign evehange ranming t for wer toral allocation of invertment funk liacel int the priaciple of max:mization of wet ioregn anttampe earnings fas the most impertant mindictur of eft ciency in an open economy:
(i) With the help of a Nummied "wathl fote: model" we expect to have a gonel methed for elitw. rating long-ternt investment progr.mimes:
(d) Since we expect to be able to hate all basie
 calcolate the increment of nithemal :Homate ine in forrign exclange and have a slean piture iteme the
 sectoral and nationat level

In other works, with the !ulp at the methenl. .". expert to apply in practoe an prment that. 11 : 11

 trends as ante on the ethe" haml fure ate en:

 tage of the meretment proptome lan , , ,

 varat, the lugher tia mumber it memtand t.e the

 -if ;mailue rath merome

 a
choose "leading sectors". The allocation of investment expenses mainly into these "leading sectors" and the additional and auxiliary investments induced by the "leading sectors" main investment expenses determine the investuent programme as a whole. As a conserfluence of applying the principle of the "leading sector" approach, the foreign trade sensitivity of the economy will increase in the long run. In bite of thive effect in an open economy. we do not sec any , ither way to achieve a considerable growth of mational incoms. amployment and consumption. in the loing rin. The concentration of scarce re wurres in a few leading sectors is the key to incrabing cffieiency, If the alwe mentioned principle is accepted ame of the criteria for profect csabuation are determined ahoses atomatically. The "pell cheracten of the comomy makes necessary and the comerntature of limited resources into "leasling secturs" makes pessible in generial the use of the most modern. ap-tudate machinery and echuology for the comstriction of new indmstrial projects. Prolably this is one of the most important criteria for project evalnation in an open economy

Applying the principls of the "leading sectors" aproach, and as a consequence using 11 -to-date terlmoligy. is the culy real guarantee against uncertanties and risk, in the long run: ahe:wise. fecreang conts and increasing net foreign exchange carriting, cimum in the long run be ensured

If ontr expetience, applying the above-men finned means is still not enough where the forcignt thate sensitivity is as high as it is in llangary An eronomy prochocing for the world market anel ifepudiuge on it to a large extent has
 reserves". which are athe to counterbalance the efferts of the uncertitin mowments in all circumstances. The quantity and composition of "strategic reserves" are detemined his manv factors, loth economir and pultitia, hut a considerable part of na
 gelleral. The material form of these reserves are c.pacits, lavour, raw material and forcign exchange reserver A. far as induattial projert evahation is concerned. tetermination of capacity reserves has a high importance At the present moment we do not have the proper metherl of determining the neces. sarv capacity reserves (one bart of research efforts
 It is obvious. hewever. from our present discussionthat "capacity reserve" is a special form of risktaking: therefore the costs of "calnaster reserves" should tre calculated as a rate of risk and should be incurporated! in the timuts of new proiects as a necessiry cost element 'lie other forms uf necessary reserves have to be calculated in the sanic manner. A tasic rule of development arategs in an open ecomouls which determines ame of the criteria for modustrial propect evaluation in in that halanced growth of the ecomomic canot be achieved without "strategic reserves", or in other worms a halanced and "pti mumi rate of prowth cannot lie sustamed at full
 material and forelgnexchange .

In this section we have tried to explain the basic ideas of "strategy" formulation in an open economy and in connexion with it those main criteria of project evaluation that are determined automatically by the development strategy. In the next section we intend to explain those conditions and methods by which the ahove-mentioned criteria might be used in practical project planning.

B. Process of industrial project evali ation

1. Preliminary steps in setting up industria projects

We indicated in the previous section that the "world market price model" is only a first step in calculating expected net foreign exchange yields in the long run. The static model should be transformed into a dynamic one in order to formulate sound investment decisions. The first step in dynamization is the elaboration of special studies about expected foreign market and price trend movements, that is, a long-term estimation of future market and price trends. by main products or main groups of products. We do not have wide experience in this field vet and the first studies were prepared in recent vears. Foreign and domestic market estimates and price trend movements should be calculated for at least ten to fifteen years in order to calculate expected net foreign exchange earnings. Market studies have to be prepared through a series of steps described below
(a) Selection of main markets. The proper selection of main markets means that we are choosing those markets where we are already in successful connpetition or we have a chance for successful competition in the near future. In general we have to analyse the "accessible mirkets". In this respect, current foreign tracle practier provides much information to start with. This information of course is not enough. The selection of the proper narket as a first action requires extended research and analusis
(b) Estimation of capacity increases and market possibilitios of prospective , impetitors. This study and analysis is the most cirnplicatetl to prepare. limited information is the most important bottleneck. In case of centrally pla aned eronomies we are in a liette, position since their development targets and econamic sithation are well known, so we are able to estimate their prospective capacities and export ahility too. To estimate trends in market economies is the most difficult task (business in terests and government interference are distorting factorsi. In spite of these difficulties, we have ti prepare sonie estimates, otherwise we cannot fore cast the expected supply position and price move ments in the market.
(c) Estimation of prospfcrize thamges in techmology and research. This must include the possibility of a new terhnology, creating new nuethods for nass substitution of the given product This estimate is very important from the point of view of expected costs and prices

The importance of these preliminary studies came io light infronnexien with the development plannina
of such rapidly growing industries as chemicals, artificial fibres, instruments, precision machinery and telecommumications. In these industries, calculations based on current price movements may cause a complete misunderstanding. We mention here just one example: and it is a classical one. Production of B_{12} vitamin was decided on the basis of current world market prices. When the capacity expansion started the prices were very high. At the completion of the now project. prices cane down to a fraction of the carlier prices.
 (In SUS gramme)

1958	1959	1900	1901	1902	1001	1964
100	85	42	16.5	9.5	8	6.6

In spite of the importance of market and price forecasting at the evaluation of industrial projects, only very few studies liave been completed so far. This is due to various difficnlties. The remmants of the earlier development ideas and criteria and botleneck, in information gathering have hampered the elaboraton of the above-mentioned studies. Notwithstand. ing these facts, preparation of market and price forecasting stndies have been carried on since the 1960s. The first experimental studies were connected with the development of mathematical firo gramming in twosestors: in artuficial filoes and in the atumiminn industries. of the following pase we shall explain the main steps of these experimemt.

2. Elaturation of prici-foreacstiny studies

The research work started in 10, 3 and it atm! was to predict the expecteal worlf arket proce leve In dollar terma for 1475 ior seme artatictal fibere and fo: aluminimm.

Plamners gatiered all information aboint the pro duction conditions atm echology of the prorluct (H : this hasis, and taking into account the apmatia then of technological disconeries they catahated the experied cost level in 1975 of slirect material labour imputs ete. The cost level gamed for 1975 was ex pressed in dollar values, amel it wath comsedered a mummom lew of the expected proce They for ifesumed that in cose of the bintolaction of a mus echnology between research and mase implement: tion, some six to twelve years wonld be regnired Therefore this process would not change the :amin price trends for the calculated periond of tine. Thes came to the comclasion that in 1975 the expected mumbum level of price would be equal to the cost of the product
lixport prices have leen analysed for the lat $1+9$ to twenty vears by products and main producers At fi-st. domestic prices were calcolated and ex. pressed in dollar terms by countries Sprealing was vert high and prices were very far from the price leve! of the Hungarian import Planmers then presumed that Hungarian impert prices from narket economies in the base vear were objective and real prices and transposed the price lines of various countries to the level of effective Hungarian impor: prices In this wav price changes were related to the
average Hungarian import price in the base year. After that, they constructed regression functions and fitted curves to the various prices, and in this manner prices were expressed it the fimction of time. The trend lines an! zones cowered by the curver clearly indicated world price movements at post. These export analyses inive been used is stirt ing points towards of ante fire amblas sis

As a third step, expected ixpunt whithe ch.mges were estimated. tioking min aromit forpertive
 in denand The lack of information :11 the fiell was greitest.

In the case of new products. currem pite were taken as dymamed median when. The methetamty of price level in this case was whentel ha a logher degree of oscillation aromed the curtem bevel.

Further research has tried to the illt., acomant as many tacturs a possible. In the ane of artimal fibres production, varions raw materab are lasel, such as bensol, fenol, tolnol and paraxilal, the su-called aromatic componds. Sime there proeloces are produced from the same have material (coal bitumen or by petro-chemite! b, market amalysis hat to deal with alt of them at wher Sftet the

 tu the petrochemical base ant the chatere mothemed atice mure than matm other chamer an terhmong

 laterechationdige of world price :maneme ine

 tween tarions prodact pation

With these methoulodginal ave.. Hhe prat 1 durnamm was . alculated at fillow.

(11

	ICOnnt			
Flectr:i mergy	14:1*	W H!	1:4i	1.
Alumbitur reitl	101	- In	w	11
Kirulite ath a imanimim. thenorote	41	6	13	17
- berte Ary	f**	${ }^{*}$		19
lamiat cint.		1		1.
' .				1.
				1
1 -				14.

The expreted cost lewel, $\$+30$. is equal to the expected mininmon price level. Dluminium price dala
were collected and transposed to the level of Hungarian export prices (western) and later deflated.

Aluminilim priess*

	(Iunada	$\left(\begin{array}{c} \text { Norway } \\ \text { (ivon, } \end{array}\right.$	Humgary $(1 / f, n+1$	$\underset{(\sin)}{(\operatorname{ton})}$	$\underset{(i / t o m)}{(\cdot K}$	$\left(\begin{array}{c} \text { fromir } \\ \text { (fr./ton. }) \end{array}\right.$	$\begin{gathered} \text { lialy } \\ \text { (lira/ton) } \end{gathered}$	W. Germeny ($\mathrm{Dm} / \mathrm{ton}$)
19.3.				926	314	38.100	574.000	2.900
194N					122			
1949					136			
1950	41.7			391	120	21.600	323.000	2.100
1951				428	9.3	18.100	366.000	2.114
103?		≥ 1940		451	139	21.900	388.580	2.250
19.3	437	3141		434	157	21.520	388.580	2.267
19.54	444	31070	525	489	152	22.000	379.000	2.280
19.5	4×5	3210	0.34	487	156	22.000	390.000	2.210
1956	525	3.590	497	508	177	21.300	422.000	2.180
10.57	531	38 mo	5194	522	184	21.600	421.000	2.220
1958	507	3 mm	520	506	182	21.900	403.130	2.130
1054	514	3.50)	470	505	177	22.600	410.000	2.050
Inu\|	516	3.560	474	531	180	22.500	413.000	2.040

(hatres in the above prices deflated ly wholesale price index and transported to Hungarian expritied prices in 1 H60) (to weiteril markets)

1934				825	$\begin{aligned} & 825 \\ & 322 \end{aligned}$	802	658	673
194\%								
1949					360			
1951)	374			350	317	455	370	499
1051				3.3)	246	384	421	493
1453		394		344	365	460	445	526
1453	41.3	417		403	412	455	445	526
151	415	4)N	525	388	403	464	436	530
11155	4.3n	423	638	436	412	464	450	513
10\%s	4×4	479	497	4.36	455	4.51	484	504
147	4 NC	518	514	that	484	455	484	519
1-b\%	tos	4×4	520	450	479	459	459	497
1959	4 OH	4*)	470	450	469	479	469	474
14.11	474	474	474	474	474	474	474	474

I mmine ni conchosms may le drawn irom these hisury
 bestixe the te are thee difereme periods:
(1) Dinewere lask ind lasa prices declined convelerably

 thate of hgith decrowag proe here an be ex-

 fanluets is lighls patatile
(d) P:(x):nath the pree !evel will wallate

(a) The mummone experted cont level is $\$ 430$ tom

 hatum own are ingher than \$: h. Theretire the dit teremer leturen (inted statev dentestic ind inter.

(!) The memational emmercial price of ablunaminn in 10071975 will fluctuate prosumaty
around $\$+30-\$ 450 /$ ton. While foreign inarket and world price-forecasting can be conducted, we are still in a preparatory stage, and a number of further investigations remain. Special studies must be prepared on the topics listed below.

Evaluation of import possibilities, including capital imports: at this stage we nity use the information f othered rarlier in connexion with market and price forecasting:

Calculation of the expected reserves: oll the basis of market malysis, we have to estimate future changes and calculate optinum size caparity, lalour. raw material reserves and the foreign exchange stocks uecessiry to offset any eventuality;
listmation uif integration and co-operation ;ossibilities, taking into account existing trade connexinns and tieaties:

Fistimation of domestic narket developments: in lhis study the upen character of the eronomy also phas a lery important roke. Son unly raw material mil machonery hut consumers tastes and habits are alvi often "miported". Therefore we lave to use the mothed of exirapolation hased on domestic normis allil the so-called "comparative analysis" which follow the development of more advanced countries and analises of the development of consumption in these countries, in the expectation that similar consumption miterns will dominate domestic markets.

3. Amolysis of domestic resources

This study should contain the following items:
(a) Natural resources: energy resources, geological resources, mining products etc.:
(b) Fxisting capacity: volume, age, technical level, possibility of reconstruction or expansion. capacity of construction by sectors and in the economy as a whole:
(c) Labour force: actual lalour force. reserves. long-run demographic estimates etc.:
(d) Material resources: stock and composition of raw material, semi finished and finished ןroducts. (import material separately):
(e) Foreign exchange situation: analusis of the halance of payments position, debts and foreign exchange reserves etc.

4. Preparation of a preliminary inerstmicnt programme

When all the ahove-mentioned information is collected and the main targets and political-economic aspects of a long-term development strategy are formulated, a preliminary investment programme should be prepared containing a hypothetical allocation of investment funds and indicating the "leading sectors" and the most important large single projects by sectors. This is what we may call a prime investment decision.
5. Optimum computations at the sectoral and national lezels uith mathenatical programming. taking the maximization of net forciyn cerchange carnings and/or minimization of import cxpenses as basic critcria
At this stage, three problems should he solved:
The sector model computations should produce an optimum variant for the sector as a whole and optimum variants for the most important single projects within the sector:

The model of the national economy should produce an optimum allocation among sectors:

The model of the national eronomy slouhd control the preliminary investment programme.

Finally, planners should have a quantitative form of criteria for project evaluation.

In this respect we are glad in introluce a new Hungarian experiment. initiated by the llungarian Planning Board in connexion with the third five year plan. and now in progress The experiment wirterl in 1963 and its object is in prepare a long. term plath by means of mathematical programming. A, far in we are informed, this is the first experiment of thikind in a planned eronomy.

Programming on the national level means a serie of calcuations by computers. The computations will |x arranged in fonr stages Rasic computationts ait :a sectora! !evel: sensitivity computations on a sectora! level : hasic computations on the level of the national
economy as a whole; and sensitivity computations on a national level.

(a) Rasic computations at the sectural litel

There are thirty-nine sectors in the natimal mondel. (The number of sectors might chamge somewhat during the research.) These secturs are as follows

is that sectoral models are aggregated into a large unified national model. The function of the national model is the maximization of the net foreign exchange earnings of the national economic activity. expressed in dollar terms. As a starting point, limiting factors are taken from the official development programme. These limiting factors, such as realization possibilities, capacity limits, investurent funds and labour are aggregated on the national level tow traditional methods for the time being. At the nittional level, the variables (the x 's) of the model are the optimum allocation proportions (anoong sectors) -including investment funcl allocation--applying the function: net foreign exctange earnings of the ecomomy as a whole should be $=\max \rightarrow \infty$. The na tional model contains about 2.500 varialles (x) and. as in the case of sector models. it is presullied that n n more resources will be used and no less output will be prociuced than thy the official plan, hut nure foreign exchange earnings should be gained during the same period of time, as in the case of sector models.

(d) Sensititity computations on metiomal level

The object of national levei sensitivity compulations is to measure the cumulative effects of any factors on the others. We would like to know, for example, the effect of a decrease of investment fund. on consumption, export or on sectoral allucation of investments, labour etc. and sensinivity computations will provide it easily if the model and the entetimum size of varinus activities are already determined

At the present moment we cannot give a detaiked list of mathematical apparatus. and other methonds used in model or programme conatruction since the research work is just in progress Some of the advantages of this phanning method, however, can be described at this mage.

In the case of traditional planning (belance method) "complex co-ordination". that is mensuring the effects of partio! changes through all the halancee and plan tergets is extremely dificult
(usually impossible within a slum pernul if :men In the model. lowever, plan io ordination i, minh anized, since every important blan tangt 1 - :an alo. in one simultaneous st stem if himeal ratutum
 alnost aut matically in every ogment if the nunt.

 nected and we get: "caknlatise fint wou". called "shatkw gifice shater" hothe was. we wiv calculate the following iteon forte exulh ate it
 capiral, rate of interest (1) fur musturnt is er faxes, rent, mine remt. tates of exthage whl

 scarcities and powside development ket 1 w
 tations of single prijects will twe com, , , , , 1 , : u
With the help of propramming. we are prombin wis

It is ohvious foom the requiremern, it w....fed

 poned wome of them when we imatulat theneril in the preliminars tage if popect wathone. .

 should lor Comilerel

 will inhwence the proxtocion cente ent neal pumion and eerhmoteng. As well a investimen an:....

for each product and therefore the methers of measuring them differ tow,

The simpley nothods are in casen where natural 'pushities ifetermine the lase parameters of a peod16. . for instance prime energy barars, coal, oil. raw miturals in gene eal, or perndists from extracting in-
 wibe prini -ume hatural entowment and wrather comblitions intlionior their spectal quality and ex pecterl mathet atill firices defend to a large rexent ill the youal nutural qualities of the promber in the case of hemomeneome permets (artificial firest prodin! ind $=$ lis techncal econnmic parameters 1. int wo compluatid lo infier liramber, however. in

 piot aneter. l'ruliat analvsis is mot very develiged

identification in order to modicate the importance of product analysin for project evaluation.

A compenimon has been made between two television sets (One it a product of a Wiest Geerman company. the eother in a Hingarian protuct The steps of product mentification are described lielow
(a) Determinetion of rechnical-economic parawneters
(1) Selectivity measured by field amplificatom (A) ${ }^{\prime}$)
(ii) I Inearity meamured liv per cent
(iii) Tulie sice mea wred by (i)
(is) Iine frequency meamered tiv lines
(v) Channels meacured by No.
(w) Aitrmatc hume woms measured by Vis, such as brightmess, remete comercil
(vii) Admptability mensured hiv W
(viii) Wevght measared lis kg
(ix) Sige meamered by m^{3}
(b) Comparimom of parantiers

Heammer	Crommen TV met		Hemamion 1 V	
	11. . luter		theoturer	Melower monte
- We:liva	lint mv	11	0 mv	1
1 inranity	man 3 mer comt	n an	Whax 2 Pr ! com	1
Tinw -1/e	4.3 rm	$0 \cdot$	49 -m	1
1 line fiellmers	4* liwa	* 0	504 limes	1
G limmela	11	A*	12	1
	4	10	4	1
Ataraticts,	14 W	10	- W	10
H.:min	w ma	$4 \cdot{ }^{(1)}$	14 ma	1
- 1	1112 mi	10*	A Mr mid	1
		78		8*

 , ! ! '

minty the time of resparch amd emperinewtintion as well as the materimil terhural persmel precimati

 rapmeley, awh inthei facturs: the new propect In

 ants heve loen himied einuterith sume the ancral

 erd the cre cimolivins are therefore reflected to the

Tinne of deliveries (domestic or imported) :
Finpeeted prices of machinery at the tifre of purchave (im the cace of imported machinery. foreign exchenge prices should be considered) and other omalitions of delivery (apare and reserve parts, coms of welivery, insuramee, and guaranters):

Required apace for machinery and a plan of the muilding site are extremely important.

In this plan we have to consider: what technological proceave are connected and in which building they are located; also, which technotorical processes will be kocated cutside the baidings and under what conditions.

9. Construction capecity

Ater technology and machinery have ixeen consolered, a construction capactity analysis has to lwe elatorated covering the following asperts

IMan of required buildings.
Information about avalatide conatruction capac:ties (local or mot local) and rechnotogy (mech. mized, prefabiricated locally etc.);

Fixpected coots of conatruction (taking into ac coumt all special condruction requirements).
fixperted techmology of heating, electricity. water supply canals, climetic appliances and special con aructum meeds in commexion with them.

Syatem of tranaportation and conntruction neerls of the planmed transportation system.

Time of completion of all buildings, ionds etc
There are many other constriction activities, which have to lie taken men accoumt later at the preparafion of detalled burpaim work

10 Fifomathon of optionnom capocily

Whell all the alwo nentiomeil minemation is at hand. preliminary estimute of optimum size should : prepared. taking into accomint lacal labour power. needs of kical inframetuctural and related invesemients. eranapertation cowts. gencraphical heation. peserve capmecties anol several outher prowts

and rachzelwin

1 ime of comptetion wimild temanaed in two purts

Time requirements at ter hacal planning
Time requirements of realization
The aegregued time if a prifect constrin tini is the lowal anmount of requered tine lisentured at the earlier wepm of the perparatum mage plus the time * lhaperm wirk ind rmalizatum The arereateri

 Amall ' 1 aken imis cinsoripratuon in the cure man ner as the enther efenments This aspect is uavailv - eglerted in que of the fact that couts are tivodiad
 owered the popar ievel Central plonning imolirs
should provide norms and inforniation . every pro. ject. This factor can lse calculated by ilput-outpett analysis only.

13. Methodoloyy of chimit

One of the most widely discussed probilems of project evaluation in Hungary is the evaluation ot project variants, the comparion of the efficiency of various projects. Despite the officially prescrived efficienry computations, since 1957 many Ilungarian economists have not agreed with the omputations accompiiahed by official methodology The authors are amons them later we intend to discuss the applied formulas used in official efficiency calcula tions.

The firm problem of efficiency calcolatoons applied oficially is comnected with the price swatem hir far. prices have been centrally administered fixed prices. and their function is to help implement central devel opment decisions. Therefore jirices slumblit is d, tinguished from the real conts. As a conscopurice. fictitions prices have been formulated as sulnithte, for prices reflecting real costs in orter in prisile an economic orientation for project evalustull, amil these are called efficiency calculatioms

Fivahation methort used in, these calculatiun. might be divided uito two main gromps
(a) Methords hased on the evaluation if hatwir costs.
(h) Methods of normative evaluation

Methols of the first group are wot mutible for efferency calculatoons in cur , phomion W, hat \cdots to prove ofir statement later in a eritical allalv, is in official donestic "'icieficy computatom, Withon :he second group we may distingusli twin :upe di cuth ation methods evaluaion hased in b!er real withl market prices which might lie realioel ha liniotg
 gained in mathematical premeamming

We mentiomed the firvt methinl "ulier 1 vert ments with the second ivpe startert in llumgins unter the influence of Niwisalow and kimiorinio. and the crommims working with 11 are 'folig '.. use a sywem of shadow prices for ethicienv cialin latums. The penm of the matier i. t. create an in, mum programave for the econcrive as ishole iov

 and diotent is

the economiv as a whole The optimum pregramine is developed on the basis of scarce resources (lahowr. wage find, existing quantity of arable land, geolegial revilir(es, , acimulation), fixed and circulating capital (forergn exchange funds elc.). The results of pr"gramumig are elaboration of an optimum plan in accordance with the target function, and a svatem if calculated shalow prices indicating "vields" of factors of profuctun (which will reftect scarcities) these tharlow price- are considered as "mormative cricilia ol activity (firaject) evaluation. Since sarci-He- il firichuction fartors are reflected in shadow prices. 'he higher the scapcity of a factor the hesher will he the shatow price or yield of the given factor Throukh, this methont. the vield of invested re whitco (rate if return) or the "efficiency coemciput are to te decermined In other words. it is intorale. to sul stitute for the real market a nuthe math if inorlel of the eromulay, pliving real market Lallu. with a fictitills market

Iis cinimexom with the practical lise of the nethod.
 the followilig can all mapket relatomshaps be in-

 alishluthe reat murkel galies - Hon and what nathe

 ploe formation' How val we follow halue. it

 Hos lace mot vet bert aloswered
 world matket prkes frome if it real market as a

 theret of the matiry whether we mas ise wishl
 In our chllion, there is reallv me other way loput

 ing in ! wated and the lime repiured tir imotel limileling is ling therefore m the interests io qued we hat the ine 'tre methat 11 tiand ankl experniven with eיtrers wi the meantime

APPWHAR M

1 Dime inctivimind appots:

Withom the lemert pace of then strict paper we cinnow andue the whole orverm of plamem There
 the halmoce mothud which we ecmenter mopertian frim ithe peim of vew of propent evabmaxin

The halunces etmopere movectmem remoweret and meeds Neris ape defermivet hy the rele of grometh of natimed recome Therefine every nowerment en
 cmover the pravat rave of prouth of netrema
focts the requerements of an emoneme type of develepment arabery, where the mom impuirtunt cilteric I invest mem or project evahuetion afe the maximum level of preduction and emplaymentit pt suluced by them. The prostucwis ume ore direeted by eentially elaborated ebligatory and desimmed pian targets, and they are interested un collection of reswarces for the fulfiment of the plan Since invenument funda are provided centrally. every emerprise is metested in ecruring the meximum amwint of investmont reamirecs in order to ensure ts mond rapid develig ment irremertive of whether this is the inw en cient une of resiurces for the mational cromomy is a while In consequeme of rhis avatem of direction anul pimmine. anducemeit to mevest is verv hich and a speciol "abourptom eflect" develops trom enterpriwes for central invemmem hunde

The central plonnman in investments liv balance methorls cannot properly take mint womme the re quirements of realieatom ion woild markets. that 1 s. the epen character of the economv The target is to maximuce mateonal meonce. and ampect of murket relutums are mecescerity pwined surde

One of the mam coryets of cemtral planning by Une lintume methed is to emoure the ecmisistetcict of the plan In onter wi have a erinumient plam, balances supprome the allocation of prextintom facturs firim the pentit of view of quantiontwe oquilibrium) at a prememed rate of griwth in nutumal mocolie irre apective of the ampert of efinciency (crmeris of of ciency hat been detcrimed alliost aummotwall In the losired rate of growth, There ix in ' hpory timul in furmalate real variante or for chonsing the "learling vertors" leasel in empienerv aritetas deter mined th the capen character if the ecom mo There fore effiemy colculationsare net oreancall cioll
 reamins whe for a hine fermed of time liefine 1957 efinconv catedutwon fin moentiwem planiman were wh elalurited at all
 owh proper unce 1997 mowever the reliation if these computatwos in diniteful In many casen emer prises use them 'a prove that extutinuliment of this
 provite funth fur wem Thetorted prwes tlow, are
 twens These reanom nomemp numy ithers heve lef to revisoom in the preent simem of direetom and planning which are at presert under diviosem and a reli,im of direction and plawning methods is exporeted in the mear fuwre (on the Anliowing juget
 fir procioct evahuation ofresem proctice.

ator fir ennames

Projert evshmevon in the peesern pertiee wecen metred with er rather in a pert of movedment plangme Ather to med for a wow eaperty onves efrime plan.
 poper in convinimed and propmetiven mapts In the

Simee projocts chould be mumericed by ecmiral pleaming antherivies, these unturities arder invemers to eeflect the information required for plan ce-ortimation
 project This collection of cemarally prescribed fock ments is called the menewment codt The charation of precieration is the time required from the eollection of tox coments in the deciurim making The documents discribed bekow have to be prepared during the preparation ance
(a) A study of the "oljpect" of invertment mint be elaberwert by the resprmatible authoritus on vari own levels It eombame the datia provisy the ecomomic meressiny of the project an well as the imitial deta required for econtrel, as fellows

Iterciplum of the projeet,
Gcegraphesel beation
Manf deta of investor
Inta of final realimetion
Finperted vilue of protucimen amounlly
The first shortecomige aep cuming tit latite alread: Phmer: minully to mot heve the targets of the homenturn plan whom they have to prepure the "objeet" of a preject and a back of ce-ortination is inevimate
(b) A sudy of the bociven five peojert num be prepared in iwe parts cure on the lectotion of the project and the ather om ms emathlichmem

In ecumperion with locetion and emablictheren, the prothem thet whit esetionel allowation is checided
 numi for the peppermine of projecta Thapefore there is a luck of symetromination therween rafiknon! plimen man and project plamana (omplete regional thevel chenem phang are mit ready when the investor writhes fol heate the porjeet
(c) A maty if the muearment princamiotir in the beace tricument momesicm with project ivahat twon M e shall therefore ery to inalver it in ente dein. especrelly the amperts concernien effiem: culrulatione.

The invedment pragranme theopetically hav fenir fucriume. manely to prove the meresumy if the
 iechoceal reacorements of the poniert lommaly the efincrency of the poojuct to horete the peolect

The invennmem progisomine struilit lie prepureal fire every peaiect ghove rertatm bowts These timit. are differewtioled hy mectors The pergratione thonid be elaberated for the bace project hea relited in

 spartmont. Maniw. meid rullueral and atminuetrative
 aupecto of eath of the troder at cour co ramit be

 chitionol dercuments reflecting vade eporwilics

 trewn beltum

Chapter 1

(a) Motivation for preduction increase comest merbet, expert meremem etc.),
(b) Neeesity of the preject (a comparimon or maluacing of tomestic demumed man minkift whit expetted eapacity mereases protured by the new project I.
(i) Mokivation for arcepted ierhmolous
(d) Motivation for geographer location
 meswors. duthirities and other miterested parties ohowild he attached!
(f) Declaratoons of riw matirmal printireme (in the case of mports, the Minstiv ot Fitergn fradt and the foreven trate companiss concerined should tate their views)

As may te sen from the alwe. nu-ntioned list the nowivation if a project in a complix a affair Yet informatorn in many cames is superticial. initwith standing the hime quartity of foximimillatill e (querel These mformation dociliments canmer sil stinite for a reat ecomomic ablusis, inclidusp the market and price forecasting vird a. mimmined earlier

Chapher ?

Here zechnwal and material fratire and the whand
 form This chatprer cowers the tollowhige item-
(a) A ermotere tectincal itex rifions it the prolect
 eapmerity
 of 1 I(OM), plan of hmiliong site meln it the the

(d) eiketch plan if the preert 'in of ! inding
 of palilis works, related declatatum. .i mi... ...t
 ment-

 wrighes ets;

(1) imune of pifiliminary and fiti.l te.t. . .

 "mpirted newherv ond athers
i^{\prime}) Conderons of mormal fum tren nk
(1) I dwimy iworimers willed williti where cillar welintal A
 terey ot liv phation ant - In

 dive wiftlv marteg fle

Chaptir 3

This deals with nutivation firs the efficiency of the feroject From the point of view of practical project planning and evaluation, this is the most important chapter of all, and we shall therefore focus. our attention upon it

Within this chapter, coufficients indicating the economic and techuical level ot the project are chalwraterl. These coefficients are the following
(a) Inepstment costs per unt of product and per limit of domestic relue of production

$$
\begin{gathered}
R \\
t
\end{gathered}, \begin{aligned}
& B \\
& t^{\prime}
\end{aligned}
$$

where A ilventment cost,
t mumber of proshacts
t. value of profluction expressed in dor mestic jerices.
(b) Ceptad per mant of prodwat and per mwil of mulur of prodnction

$$
\frac{F}{t} \text { and } \frac{F}{H}
$$

wherefrat fixerl allif circulating capital
(c) Quantil: of produits und ralup of productuon pio worker

$$
\begin{gathered}
1 \\
1
\end{gathered} \text { and } 1
$$

nlut. 1 mimiler of worker,

 me itt ...st, of infe illit it prenliction. These comefti-

 n!: : \quad "

In ibe inllotlla a formit

 whatur lier alculated lis central autmorimes
 livil int irculatimg capmal
(e) Amanal inpuls and costs of anmaally ippeoted inputs (\%)
Since the dimensions of these two types of costs are different (dimension of E is forint-domestic currency-and dimension of o is $\frac{\text { (orint }}{\text { year }}$) a common ilenominator should be provided to ageregate total expenses of a project. For this purpose an efficiency curefficient had been formulated which is indicated in the methodolgy as 4 . (In the liteurature this coefficient has other names, such as: normative of profitability, interest etc.) The dimension of Δ is vear. The reciprocal value of Δ is the recovering of the project expenses expressed in years. The Δ makes it posaible in aggregate these iwo types of inputs in two forme:

$$
\begin{align*}
& \text { (i) } o+B \cdot \Delta \\
& \text { (ii) } \ddot{I}+B \tag{i}
\end{align*}
$$

Usually the first form is accepted in the practical evaluation process. The Δ plays a very important role in efficiency computations. The methodolony defines the Δ as follows : in order to expand, production tooks and lahour shoukd lie consumed; presuming full employment. for production of a unit of liew product one unit of labour shruald lie liberated: investment expenses necessary to likerate one unit of labour required are indicated by ($h, 0$) ; this literated labour unit should be supplied with tuols of pro)diction. inclicated by (b_{k}): therefore one unit of value of new production annually repuires: $b_{\rho}+h_{k}$ invesiment expenses. The relationship expressed in ant ilgelorac form is

$$
h_{1}+h_{k}(f t)-1 \text { lit/year }
$$

In uriler to reduce the different dimension:s, the equat!on should be livided liy $\left(b_{k}+h_{k}\right)$:

$$
\text { I Ft }=\frac{1}{b_{0}+b_{k}}\left(\begin{array}{l}
(\text { year })
\end{array}\right.
$$

C Misequently $b_{0}+b_{k}$ is the anmual anount of new - alur prowluced by 1 forint of investment expenses. This $h_{g}+b_{k}$ walue is malled efficiency coefficient fir 1

The time element is alw considered According t, the methondologes, rules of simple interest are ured This methed of catculatum, however, is deemed untit tor comoulering the ture element by the cemeral atthorities theniselves. Therefire in the last year ruies of partial compuind interest rates have leen -umested fir efficiency compustations, hased on the priciple that mational income produced by the new project will lie used in part for accumulation and in bart for cinsumperm. Therefore omly one part of itw value expresmed by the fificiency cocficient will te caputalized, that is, that part of the incremert of natumal incrome which will the used for accumalation Her mew dalwe ensired for vear (m) by the total
amount of invested resources (B) after instainient of the new project-

$$
t_{n}=B \cdot \Delta \cdot q^{n-1}
$$

where: $t_{n}=$ new value of production at the ent of year (n)
$B=$ total amonnt of investment expenditures
$\Delta=$ efficiency coefficient

$$
q=1+\Delta i
$$

$i=$ proportion of accmmulation in national income
Value of tinu element $\left(b_{n}\right)=1+i_{n}$
Computations shomld be elaborated on national and factory levels. To measure the profitatulity of the project, netherlology contains the fullowing indicators.
(f) In case of projects of capacity expanding type Indicator uf profitability on natiomal level:

$$
y_{n}=M_{n}+A_{1}+T+\Delta / B+B+B_{k}
$$

where: $g_{n}=$ profitability on national level
7 - value of proxduction on world market prices expressed in domestic currency
$M=$ wages
$A_{1}=$ domestic material
$A_{1}=$ import material on warld market jirices expressed in dumestic currency
$\Delta=$ efficiency coefficient (0. $\mathbf{\Delta}$))
\boldsymbol{H} - investment expenses (fixed capital)
$\boldsymbol{f}=$ expenditures tin circulating capital
$\boldsymbol{B}_{k}=$ related investnvent expendimres.
The nethodology regulates the firice prolilem. Worlil market prices shorid be ased at the calloulation of value of prodertion and import, incloding transportaton costs. Prices dif Hangarian export pronlucts shonld le calculated on border parity. l'rices are given in dollars ar in romhles ami central planning anthorities are giving exchange tum fur calculatiem. The reality of the werld marhet price should be proved by a declaration of the Mininaty of Foreign Trade

In the profitability sheme, lossen originating trom capial alworption for more than a vear are alow comsiderad. As we mentioned eariier, the timu factur is taken into consideration bis the simple intorest formina We will illistrate the methon the a hype thetical eximple. We presume that realization of a projert takes four years and bou umits of expernes are used atinually. The following correction should be applied by the time factor:

			 Nitme ferter
1 yeat	${ }^{1(N)}$	10	1ea)
Evear,	lim	14	140)
3 vear,	(10)	12	181
t war	10 C	1	101
Treai	*n)		0

The carrected mput is nuch higher.
The function of related investinemts (F_{h}) in the almerementioned formulat is to ensure the agyeregite character of the formula through the complexity of expenditures. In the develogment of momitacturing. for example, musstment custs of raw material are taken into accomit be comsidering related invert. ment expenditures. This method in applied becmse raw material neds are reflected in pricers, bint do mestic prices do mot react on capital imtennty the rehated marstment factur in mod to comader coplital intensity.

Kelated investment expenditure are caloblated bs single projects with hurms. Related movment ex peblitures cansed by motasimg raw matholal med. are also regulated by norms. This nom is mified for all the secturs (alenlation of this 1 ,n:m is done in the following mimere:

$$
R_{k} \quad 2.51 .1,: 1
$$

The metherlatogy has changerel and mentio ate mun differemtiated hy sectors. So bir we hawe deorthed the protitability indicator formular an ar netional level. The satme formmia is differemt in two revect whell calculated on a factury level: first, impits of previous stiges (material and .moptization) ate mor inchoded in the demminator, lant are taken min a comont is decreasing items; scomdly, related busen bent expenditures are neglestel thoctore the farmola it the factory level in

This formala is used for the cedenhathath of peatit ability only at the last techmologeal wig.

 projert. Latwor saving mat low "homg lakotr own"

 the soving of cowts or he the cathonion of the cont
 sharply differcmitated lis case of tixed libume s.a


```
                                    H. !!./
```


$o_{2} \quad$ costs before the investment
$\ddot{o}_{1}=$ cost s after the investment
$B=$ costs of the project
$B_{k}=$ related investment expenditures
$F \quad$ circulating capital needs

It maty loe seen from the above formula that this is an indicator of the turnover type. The reciprocal of ((io) indicates the years of moner of a project.

1). Rfiliabhity (if methons tesed

We mentioned earlier that we had some douhts concerning the reliability of these calculations. Our reasnns are set out 'relow.

1. Difficulices originating from the institutional

 framctoorkP:fficiency computations are elaborated after planning activitv, allocated resontes and balances (incluming investment) are ready. Therefore computations are prepared after the most important investment decisinns have leen taken on a national level.

Because of the "absorption-effect" mentioned earlier. of the enterprises for investment funds, investors in many cases use computations as a tool fur further "capital absorption". and manipulate thent to prove that their development ideas are the :unst afficient :and uspful. This fact of course will inluence the "tentency" of the computations.

\therefore lifficultics orminntin! from the price systim

In cases where proflucts are expmeted to contrally phaned and market ecomomies, rentls calcolated by different exchange rates will differ. Investors would . pply the most favomalle exchange rate: therefore the real efficiency might be lifferent from the one calonlaterl.

The calculated valuw of prowhction may oscillate from 0-1(x) per cent abowe the real levet.

Then itrere is the problem of calculation with very high wouth market prices. There are cases where foul imentor, मive fors different "world market prices" for the vame product. |exween $\$ 300$ amb $\$ 200$ per tont. Sometimes prices are taken from less int pontimt, small volume furegn misiness contracts. amb the prowhetion salur calculated retlects thas price as not representing real market opportunities.

There can also he miscalculation of the technical parameters of the padict ielivered by the new proiect. Parmmeters of the exprected doniestic prodwit are tiken, indicating a higher quality (and berefure a prossibly higher pricel than the potential connetitirs mav achieve. The real situation is just the opposite

There call a!so be misalublation of the assortment prowliced be die urw project. In many cases. inventors use atl assorment of products with which the calcuiation of value of prublaction is much higher than with a "realistic assormment".

Fimalls, there can be miocabotation of the effect of matural feitures of the pronlact, for example in coal millung, when prices dibluding transporiation mans: are calculated as a function of caloric values. These muscakulations are vely difficult on discover.
and efficiency computations may therefore mislead rather than orient in the right direction, from the point of view of realistic world market prices.

3. Difficulties origimating from the structure of efficiency or profitabitity quotients

The quotients have a particular character. Therefore the efficiency of projects on a national level cannot be neeasured by them. A project appearing efficiellt from the particular calculation nay not be efficient for the economy as a whole, and vice versa. In a simple aggregated national economy, a particular efficiency is not identical with the macroeconomic efficiency.

Profitability formulas, by their particular character, cannot represent or provide alternative suggestions. The chacice is reduced to one question: should a given project be built or not? There have heen cases in practice, where the efficiency quotient indicated high profitability from the point of view of a single project, while during mathematical programming it came to light that reconstruction of old factories was more prolitable. With particular calculations we do uot have an opportunity for simultaneonls comparison of variants.

Alternatives are prepared by various investors. and despite central regulations there are differences in collecting and evaluating basic data.

Bata contain nany uncertainties for particular projects. World market prices and various cost elements catimot be expressed by one single number. It is impossible to apply "price zones" or "cost zones" (as expressed by "from . . . to . . .") in these particular calculations.

The form of efficiency computations (quotient) can also be discussed. lirom the arithmetical point of view it does not matter whether 10,000 units of inpat will restlt ill 12,000 units of production or $1,000,000$ units of iuput in $1,200,000$ units of production. From the econnmic point of view, however, it is quite inportant, since society is interested first of all in the whlume of the realized net income. and omly after that in the rate of it. These difficulties conid be avoided by mathenutical programming on a national level.

4. Difficultie's ortiginating from the evaluation of zurious parts of the quotient

Results ancl input are evaluated differently. While output and import material are evaluated in world market prices. input is calculated in domestic values. ant almost every part of them are formulated by ilifferent principles. "living lahour" costs are calruluted loy wages plus wage taxes, while "fixed l:ahour" costs, because of the price system, consist uf :arions amounts of net income or accumulation. Huring the last vear, lonwever, in order to eliminate these contradictions, a new method has been tried. Varions calculations are used. Besides calculations hased on promlucer's prices. evaluation has been marle on the bissis of a m-called "net wage cost" or "real cons" level (net of net income or accumulation included in proclucer price). The point of the matter is that all inputs are reduced to wage costs. in other words, nfaterial and amortization costs of the hast
stage of production are calculated as wage costs of the previous stages. (This is possible by using input-output coefficients.) Particular fixed and circulating capital needs have been reduced to the level of "real costs" by the correction of the efficiency coefficient (Δ). In this way, a common denominator has been created. We do not mention here prublems connected with aggregation.

Unified measurement in the form of real costs, however, cannot solve the problems of resource scarcities, for it is incorrect to say thit varions inguts may be evaluated by wage costs from the point of view of nacrocconomic analysis. In construction. for example. labour absorbing less productive technology secms to be more efficient than mechamized techuology. If labour costs reflected the real supply-demand position (equilibritme wigest, it might be so. In practice, however, there is a scarcity of labour, of unskilled construction workers and. in spite of this fact, labour-consuming activitie's seem to be more efficiently met by labour-consuming technology than by mechanized technology. Therefore our requirements of efficiency seem to be in contradiction to pconomic possibilities. If scarcities were evaluated as in our example. it would be more efficient to use a mechanized techuology because of the higher costs of unskilled labour.

5. Diffowlies originating from the eralialtion of the efficiency coefficient or Δ

\checkmark arious views and ideas exist alout the fuluction of the efficiency coefficient. There are economists who state that the coefficient provides only a com1110 denominator for particular and regular exlienses; others atribute a normative role to it. There are again others who discuss whether a national average coefficient or a differentiated coefficient should be used in each sector. Some economists siy that the coefficient should be differentiated on a territorial basis. There are discussions about the le cel and the solune of the coefficient. We have to mention here that an exact quantitative determination of norms of (b_{p}) labour saving investments and (b_{k}) labour outfitting investments is almost impossible.

As we mentioned earlier, another possilitity is given by the shadow price calculation. by progranming to determine the level of the crefficient. In this case, cakculated returns of inputs of a project would reflect its efficiency where scarcities of various factors of pronluction would be considered. The practical preconditions of a shadow price system are developing in these days but are not ready yet. Therefore we may say that at the present moment we do not lave the proper metloods for determining the level (volume) of the efficiency coefficient.

Since ideas differ about the nature of the efficiency coefficient there are also widely differing views about the quantitative magnitude of the coefficient. from a suggested 0.8 to an 020 . In electric energy production. the coefficient similar to efficiency coefficient (known as the "intercaloric factor") has a niagnitude of 012 . This factor or coefficient is not only a common denominator for particular and regular expenses, but its function is also to discount
various rethras amb inguts fur a common base in time. In this commexom, anotimer pont arine in electric energy production. simple or partial am pound interest cannot be applied, but rubes of com pound interest are used. The pirtiat cimpund in terest used by the methowlogy is not correct smew calculated rates for different point, of $: 1 \mathrm{mb}$, Live various results. 1 et us explam it be att example.
the handred mits of lex insestment expenditure accorting to the method werl eymats in 1"5:

If we tate the $52 . f$ mots amb reapit.diz. is th:
 101 units: in ofler words. here suate in lomet fobll his heall to his tail than from lis tail 10 oh lame
 panding invertanents on the factory hew?

$$
\text { of }=\frac{1}{11}+\begin{aligned}
& 10+1 .+1.1 \\
& 11+1
\end{aligned}
$$

 world marke prices while items catenlated in domestic prices $\left(. I_{6}+. I_{1}+l.\right)$ shminlite delacted from that vahe of prodectom canditel in world market prices. As a consenperict. the mommater has
 $\rightarrow A_{1}, L$, the value of the fractorn will he 1,

 puts should alos he calculated in werd mathet prices.

 tain a considerable net mome of in mombatom which increases :he segrec et the on lea. .! der how
 investhent requirements should le then mit. . .t

 caliulated.

Smmarizing all the remath. We hase :umbe

 comainugg sereral uncertantier rather thet in exam computations of pofitalohty or rfliowne it infins. trial presects eaher will the bumai as ins ther factors level
 tions since 1057 haw hal a great mine. ime ' 11 :

 cates that ecomomic pulice has diangel radmaliv for

 evabation The obler verv ingortant fis: ath atly
 tion shobld lie calcolated in warld matket peters. is a big step, forwared Wir might sas that thin. ath "unconsciebs" art. te accept samehow the bian pronciple if priject evaluation in an "opeorerome:s" namely the waximuzation of lift forla: watame
earmings in the bong rim. The eflaciency computietunns indicated tirst that domestic prices were not proper prices on an open ecomomy for the calculation of prombibility mether on the macresebumic or on the microecomomic lavel. These developments influencerl many llugarian comomists in the proper drectum We wombl like to !upe that the reader will conclude from tha paper that the new experitie itt, wath bationte programming models have their origh botewine in those tough estmattes which we atocer wh hemp.

t. Shetr of divisiom : ritirta of droision

Diter the preparatom stage, we presmme that all basce infumbation is at hatal and that we have relable data for vecison-making. In spite of the mont percise breparation, hewever, decisions comot be consulered as indsolutely site. This is true in gen"rai. hat it as more w in an open ecomomy, where uncertaints is yery high The more molitions the mentmem frogramme. the longer the time of imbferemothtum, and the higher the uncertamts will be. Therefore satablation of rish and bith tahing is onse of the mose mipertant athities al the stage of
 tather atd bevt of mat tahing helow

(a) lists al mok tatina

kah :anl itt thing: ate motuenced hy the ensti
 tan ,f ith, thang is complately different in the Gane it a phaife firm or hage corperationt or in the
 porduril mas lata a preater moth than a mall priwate
 lowas of we :

 I noertamts is mbeated the lewnom makers on the

 valties it reath ore enmalered l'm methed is cobled "vtoteg it maxmum certams". In :he
 that chamen in a megative anl paiture threction will hataner emb wher lithe was. tur example.

as variants in the zone of from $190-\mathrm{to}-210$, since in both cases 200 as average is, used tor the evaluation of the variant. The most hazardous case is the third, where mocertanties are wot calculated practicatly. The second and third netheds have proved to be extremes in which criteria of certanty are neglected. Therefore Ilungarian literature amel prac tice for determming uncertainty ustally applies the method of "stritegy of limited certainty". Vibues built in the programming moelel are determined by the following paranteters:
$\kappa_{\text {max }}=$ ntaximmon costs
$\kappa_{\text {min }}=$ mininumin costs
$\kappa_{a}-$ average costs
$=$ level of certanty valie of costs, condition 0.5
$K_{0} \quad-K_{a}+\left(K_{\text {was }}-K_{\text {nla }}\right)(\quad-0.50)$
For example : $(\hat{k}$ max $)=100$ units, $(k$ mint $)=$ 70 units $=0.70 \mathrm{mmit}$
$\kappa_{0}=85+\left(100-70^{*}(0.70-0.50)=8.5+6\right.$. 91.
In the Hungarian literiture, this is called programming with "cortainty bhocs". Despite cautions plaming, unexpected changes may oceur becanse of changes in techmolngy prices, markets and other Atuthations. Therefore cvery kevelopment decisien shutd be regarded as a tisk-taking action.

The measurement of risk is that guantity of potenbial losses or lack of getins vihich cecers lucathas decision-makers did mot chense the variant proved to be most efficient ar post lasses may abor cocor throngh eframstimces hevomal air contra, ar is a comeremence of volmenty rish tathing ant the hipe of expettal gaills.

Hazarilous decisom-mathing, of course, mperth babinced growth, but irom this we mast mot contlate that a decision-making policy of maximum certainty is the right pelios. The policy of maximum certamts or sitety womld decrease rate of growth amd hamper economie devednpmem berimse of a gradnat back warduess from the point of view oi techumat level. In .11 יןen exnoms, howe er techmial hactward
 ton if of umbmed high rate ai halancol growt?,
 techmoal ame technolugial levels.

Amother pecial problem oi ristetationg in a comerally phmed mented is to determme the varnom, tegreas of tiak taking on varinus levela of decision mahing. These degrees are determined to a liage extent by the institutional frathewiot and by varions unthorls of plaming and direction.

The degree of riok tathing by varous enterprise . in a centradle pimmed nudel in limited even in case where deschoment and propect dectsoms are decentralized on the enterprise level. Sectoral allecation of resomices, chowing of "leading sectors", detistems .ffectung miternational economic relitions etc, cantot in our madel le decentralized. This, of comse doe: not mean that every devehoment decision should is. centralized, and a central atiluority should regnlate project evaluation and rish-taking in the form of mandators targets. Producing units, that is, in-

market" where the rules of the game are determined by central plaming atothorities with such regulators as monetary policy, central bank system, price control, wage control, credit control, duties and suhnidies. Hut in such a case, responsibility for misinformation originating from centrally decided policies and lisses caused by them camot be laid mon cuterprises.
l:nterprises may take it "managerial risk". Since directors of cutcrprises are not owners they cannot take a risk in the form of material consempences. Therefore rules of risk-taking shonld be comitrally regulated, leaving enough space for "managerial rishtaking" on the enterprise level.

(b) Actual and potential scarity of production factors as limits in risk takind

There is is form of decision-making whore planners are awate of petemtial losses even at the decisoon stage. These peotential losses are in many casce comecterl with scarcities of resontecs. Tlis is ome reison for separating the stages of preparation and decision-making in the process of project evalnation In the preparation stage, all possible variants of a project shondel be collected. while in the decision stage, those variants exceeding acthal and putentia? limits of erobiters shomit be selected. Calenlation of potential losses origimating fron: limited resources are very important. for example, in decisiom on international co-ngeration or integration.

In our present practice it is rather a fallure that limits of various resemeres are regarded as fixe:l. absubute limits Substitation of rexarces and comvertibitity are biot calculated properly. Substitution powililities and the role of time ill this pereces should lie taken into accomit ; buwerer, in :t wategs where full empentment is a stable repmirement, whb thation of facters of production lise a very lamited parsilifity:

Wr the role of time in the certainty of dersion

In tige of preparation. Wr hase mentionel the time tactur 111 commexiont with eos of effect, Itere. we investigate the time factor as a part in rink taking. The time reppired for carrving out a project is comerted with the uncertainty factor in alecisiont making. If the refpited time of realization is longer. not onle does the degree of uncertainty inerease, lat potential hoses mave also occur liverecially in the case of new proritucts in rapidly develophing induthes. Hexibilit: ami qeedy aperatame on the mate ket uffer the alvantage whell we mave call "i transiturs monopoly of a seflers' market", in "hier werth
 decivion is late, lo ranse decision-maker, hevitate it are unable to calculate the perential rish invelvert. there is petential low. lasing time mprejoct reah 7ation may unfavomrable inflemere efficence There fore potcotial gails from flexibility and epeed and alditional cests for it shoutd le romodered and setted at the derision stage.

(d) Risk-tisking and "sivatedic riscratis"

One of the most diffirult tasks in the stage if decision-making is tor determute the quanti?s of
 will influence the rate ai grawth if the eromems as a whole. No general rale can be ugented fur revery project concerning the necosats ghantity of reserves. All information gathered an the stage of preparation shonld be comsidered ag:an ant andinn in order to determine opthum size of capatio. labont, material and forcign exchange reserme In many cases, political comsiderations ah pas a decisive role.

At the present moneme. We the atot lase the proper mathodolegy for calonlating theme ex pat anme hasie rales which we are trying io aphle in propect evaluation. From the point of view of catalatan. there is a basic rale : coery eont of deverel bumes
 for insurance and sately

 plas as important a rehe in a coma alls finmot momed

 pendility is comecterl wly the prosen at that

 nather munde.
(f) I'risut Murtiri and fewlims

 preparation
 the pepatation of the lome wom flat Xew al:

 put aside.

Approval and preparation are generally accomplished in two steps: investment programme; plan target.

Plan target is much more detailed than the investment programme described earlier, and needs elaboration only in the case of large projects with complicated technical and economic relations affecting other sectors or the economy as a whole. There seenis to the only one process of decision-making in
other projects. In practice, however, there are two processes, because the plan of the investment programme and the investment programme itself are approved separately. In ardition to this there are several difficulties originating from the process of approval. Decision-making takes a long time, which increases the time of realization too. These questions have heen under frequent discussion recently in connexion with the revision of existing planning practices.

XII. THE RATE OF INTEREST AND THE VALUE OF CAPITAL WITH UNLIMITED SUPPLIES OF LABOUP

by Stephen A. Marglin*

Introduction

This essay investigates the choice of technique (labour : capital ratio) and the choice of the rate of saving as joint decisions, linked by the following mechanism: (a) the supply of labour is always infinitely elastic at an exogenously determined wage rate; (b) all wage income is consumed; and (c) the marginal disutility of labour as well as its productivity, unassisted ty capital, are nil.' The principal conclusions of this investigation are, first, that for the optimal technique and saving rate, the marginal productivity of labour in the capitalistic sector lies between the wage rate and zero. Secondly, and more important. neither the private nor the social rate of return (or marginal prodnctivity) of capital is equal to the subjective rate of interest defined by the margin.al premium on present over future cunsumption implicit in the economy's social welfare function optimally, the suljective rate of interest is equal rather to the physical marginal productivity of capital. The difference between the social and physical productivity of capital is the difference betwern a mutatis mutandis and a ceteris paribus change. The social return measures the extra output from an extra unit of output of capital if emplowient illcroases sufficiently to maintain the socialiy optimal latwur : capital ratio, which is, of course, the correct employment strategy under the assmbutions of this essay. The physical return to capital momarte the extra mitput, bucter the asimption that empormont floes not change with the addition of a mnit of capital

The implication ot this second coucha-int for investmet, planning will he discosoed later. hat the extreme nature of our assumptions about the avait alility and hehaviour of halour conge'l at leat curcory attention at the outset to the relevance of these asoumptions. Stated batdly they are far irmu realistic, especially the assumption of perpertally unlimited supplies of halmur at a fixed wage '3ut the germ of truth that makes the assumption of untimited supplies of labour worth exploring is that in many developing conomies purmphyment and underemployment is large, and the wige rate of

[^39]unskilled labour is well in excess of its upportunity cost measured in terms of either marginal disutility or of alternative product foregone. And worse, in many countries the creation of eniployment oppor tunities hardly keeps pace with the grow th of the labour force. In India, for example, the relative as well as absolute amount of anemployment has apparently increased since Independence, despite fiftern years of planned econonic development: This is not a state of affairs that will continue in perpethity. one hopes, hut certainly the wige rate will excertl the opportunity cost of labour for some thate to come. and India is not unique in this respect.

The assumpton that workers consume their atire wage-income may seem mappropriate in at malel which attempts to simulate the choife of aivang sate a. well as techmique. With mbimited inplime of labour, surely the habour : capital ration should be increased until the marginal pronlactivity of latonr falls to zero, and the consumption of workers shomble be a separate issue. Jiven of worker, cmum \ln. in
 force savings ont of wiges throngh at combimation of taxation atul redaction of real wore h me.trof inflation. ${ }^{3}$ However. (iovernmu uts ate in pernesal severely restricted in their , dility ta combent the rate

[^40]after all, are a minority of the labour force even in the most hamour-surphus economies, so that even if man for mann the inemployed were as powerful politically as the employed, the sheer weight of mombers would make the interest of the employerl in low taxes and price stability carry the day against the interest of the unemployed in expansion of the whmer of investment and hence employment. ${ }^{4}$

Fum in more highly planned and centralized eonsmies, the latitule of the fovernnent to increase sabige and investment by decreasing the consmmptioll jer cimployed worker is limited. Joseph I'ajestka indicates that the attempts of the Polish Government w do just that in the decade following the defeat of Xisi Cirmany "placed heavy burdens on certain sucial groups and brought in their wake the wellknown social political reactions and dispositions whin resnlted in checking further economic devel"pment".s

The lolish experience shows that it is consumption pre worker rather than per capita that is at inase. Hore intensive use of existing capital goods miker it possible to increase total (and thus por (18pifa) consiumption and investment, at least to the pont that the marginal profuctivity of labour falls to acr. lint to increase the labour : capital ratio beworl the point where the marginal productivity of Paknir falls to the level of the wage necessitates either a fall in real consumption per worker or a fall in the rate of profit per unit of capital and hence in the rate of inve-minent and growth. That comsumption per worker rather than comsmontion for capita handel lie the puliticatly sonsitive magnitude is perhays wot so surprising after all. A society need not le. Calvinistic for differences to exist in expectations .mid abpirations lietwen employed and unemployed. ludividuals mat herome imard to chronic undermapoyment or iancmployment. lut, like individuals in pursession of jolss, may feel legitimately entitied (") anter ininimun level of consumption in return for a days neik. allel the exercise all the politial power at their command to resist tavation or intlation which might deprive them of their aciustomed $\rightarrow t . \min$ ard.

The preceding discossion is ten intemeted tw she
 reabion of the asoumptinns that underlie the mindel anatural in the mone The ingredients of theoretical mumble gemerally represont an extreme sumplifation af the artaal envemment of econombic derinions. and the prenemt ane is to exception Neverthelew. the momel examined in sulsequent sedians of this
 large number of comberw in . Wia and elsewhere to

[^41]nake it worth-while exploring its implications for development policy.

A. Technigue and saving divorceit

To provide a basis of comparison, it may le a good idea first to set out the relevant results under the assumption that the Government is able, by one means or another, to achieve any desired rate of savings regardless of the labour:capital ratio chosen. Thus the choice of technigue can be divorced from the savings discussion. Given unlimited supplies of lakour and our assumption that both the disutility of labour and labour-productivity unassisted by capital are zero, we may suppose that the labour intensity is chosen to maximize the ontput : capital ratio regardless of the level of the wage rate. In other words, labour intensity is increased until the marginal productivity of lalour in the capitalistic sector is driven to zero. So much for the choice of technique.

Following Ramses. the mpimal savings programme is defined as one which mininizes the integral over the interval $(0, \infty)$ of the difference letween "bliss" (the least upper bound on instantancous utility) and the utility actually achieved. If we denote consumption at time t by $C(t)$, instantancoms utility by $I!(C)$, and bliss hy B, the objective function can le written

$$
\begin{equation*}
\left.\mathrm{Min}_{1}=\int_{o}^{\infty}\left|B \ldots I^{\prime}\right| C(t) \mid\right\} d t \tag{1}
\end{equation*}
$$

Lct, staml for the output : capital ratio, ${ }^{7} K$ for capital. μ for investment," and Y for income. Then

$$
\begin{align*}
& r=\mu K \tag{2}\\
& \text {) }(+\dot{k} \tag{3}
\end{align*}
$$

And expession it bechums

$$
\begin{equation*}
\left.\left.\operatorname{Nin} \int_{0}^{\infty} R \quad l \mid \rho K+t\right)-\stackrel{\bullet}{K}(t) \mid\right\} d t \tag{4}
\end{equation*}
$$

If we apply the calculus of variations to expreswinn 5 . the first order liuler-lagrange equation herome"

$$
\begin{equation*}
\rho^{\prime} \cdot \stackrel{\because}{r} \tag{6}
\end{equation*}
$$

י1

$$
\begin{equation*}
\frac{\stackrel{\circ}{\dot{r}}}{u_{0}} \tag{7}
\end{equation*}
$$

In view of the zero marginal productivity of labour associatel] with the optimal technique, the output:

[^42]capital ratio becomes equal to both the sucial and the physical marginal productivity of capital. But both may differ from the private marginal productivity of capital since a private computation of profit properly dedicts any wage costs from the total return, despite the assuncel redundancy of labour. The right hand side of (7) is the percentage rate at which the marginal utility of consumption falls over time, or the subjective rate of interest implied by society's utility function. Thus (7) expresses the lisherian balance of opmertunity and impatience in the determination of the optimal programne of capital accumulation, although in the present in stance the balance is une of social rather than private return, with a scidai rather than it private subjective rate of interest.

Since the integral of (5) is a function (anly of K and \dot{K}, we can integrate (6) to obtain is solution in terms of \dot{K} :

$$
\begin{equation*}
\stackrel{\circ}{K}=\frac{B-1}{U} \tag{x}
\end{equation*}
$$

Pxpression (X), the Ramser-Keynes rule, says that the optimal rate of saving at any moment it time t is given by the ratio of difference letueen bliss and utility at t to the marginal utility of con smuption at $t^{1 i \prime}$

To give concreteness to (X), we shall irlept a specific form of the utility function, mamels the constant elasticity function.

$$
\begin{equation*}
!(i)=a)^{\prime} \tag{111}
\end{equation*}
$$

where a and v are pesitive comstalls. " This. finctum naturally suggests zera as the hline.fovel. that 19. $R=0$. The marginal utility of comsumption is given by

$$
\begin{equation*}
U_{0}=\operatorname{tr} C^{11+1} \tag{10}
\end{equation*}
$$

and (x) lecomes

$$
\begin{equation*}
\dot{K}=\frac{0-1-a C^{*}}{\pi t(t+1)}=\frac{i}{2} \tag{11}
\end{equation*}
$$

Consumption plus savings are rqual to tota' . 'u! ${ }^{\text {nint. }}$ that is,

$$
\begin{equation*}
Y=i+\ddot{\dot{R}} \tag{13}
\end{equation*}
$$

So. (11) is equivalent to

$$
\begin{aligned}
& { }^{16} \text { F. P Ramisey, up cit., p. } 547 \text {. } \\
& 11 \mathrm{Cl} \text {. }] \text { Tinbergen, "The uptinum rale of saving" } r \text { : }
\end{aligned}
$$

and "Optimenn saving" and utility masimetratimi uver
p 4il, and S fhakravarty. "Optimal saving, with itmit"
planning horison", Imtimational Eiomumh Kirwa. O.aka,
Japan, 1se2, vol. 3. p. 33. This mility function har sim-
filicity in recommend it, bet it als, has the quality-cum.
felling 10 nome and fistresing wo chers-al being the
only tility function which imptiee that the selaective rale
ni inderent depremis andy on the pale af gevouth of com-
cund:ixn and is indepentrent of the level of comsumplian:
1 comprehansive dircuscion of the peobleme of defining a
utility function in the crumest of infinite tume ram be freond vol. 3 - 172

In other words, the optimal saving rate $\hat{A} \cdot \hat{b}$ constant civer time and erpaal to the wexathe at the inverse elosticity of marginal mblite with reypert to ransimperom Sote that the eptimat whige tate in independent of p

For future reference we prohags ought to quats sonetys sobjective rate ot illterst (which lence forth we shall demote by r impliat in the collst.min elasticity utitity function Divismon of the meatome of the time rate of change of marghai intits
the the marginal ntilit of comombthon (f10, gise the suhjective rate of interest

Krowth of comsnmptimen The anturtis rate of

 (1.3) hecomes

$$
\cdots \quad 11+\pi
$$

11.

$$
\begin{aligned}
& \text { 4ト1.1!! }
\end{aligned}
$$

 wage, and let λ denote the la'kule (aful 1 + wi lat

 function of λ aleme $l s$ virtise of the momitioniol

 that all wares are consummel wethe it tip t". lowing fimetron if a and a

[^43]progranime, in whinh A and a, and hence pand s, are hixed olice and for all at ume seres

1 he exireme solition to the pereme prowlem in to pricied as lofore to choowe a to manimase monedi ate outpilt, that is, to maximise o- hat subject now (1, 'he collataint impomet bo labour's inasonence on

$$
\begin{equation*}
\text { - } \quad W^{\prime \prime} \geqslant 0 \tag{16}
\end{equation*}
$$

Manimizalion of the preficutivity of captal represenis a direct application :" the laterer merplus eeonomv of the suciml murginal prothetivity (SMP) erf: terkon of Alfred Kahn ${ }^{16}$ and Hollie Chemery ${ }^{14}$ Bat n showild to insuerved that the econeem in wituch the SMI' criteriom was advanced was nox ame in which the rate of saving wa limhed wo the etwore of tech
 enituitied in expression (16 , will - the cemetrame is anding fead tu a errer rate of saing and hence a "rri rate if griwth of comsumpuon And perecisely por llis reawin tive criteriom if maximazionge is
 supplar allil lwhavanis if lalanir t tecreace in the lalnilir capllat ratu and the coupuat remal rato m cirder to step lif lie waving. rato and the rate of
 called for

 an. 1 cinmanitiom Thi, is indered the criterom malarateil by Wather 1 intenam and Hervey I athen. secin. 't an the recoumin that the manimal growth pilter will evewnully provide nuwe ecomumpewom
 fion Miximizatum if the arowith rate ep clearly

 cundieticm
er
Maxwing win in the anwh riep iwhwh fier 1 i. culum : wo the mivetalite surpulue per int if - Ival inplies chimove a to epande the marginal

 the refurn an capolal as a wate copinaliut of pivate
 coods Tli, milullon weffer, frims the tefort of
 of how junt the present niay morenne edorive to the

 Frow l|s1 wel of *

 - 5

 * Wy acometion
 the furwe may be to which tive prociti is ceerived.

Ma riee Doch," Owto Echmein. ${ }^{10}$ and Amartye Sen' hove poinid out the extroune mature of then whutw ne. and anch has shetched the eutilue of an alvernetive approach. ()ur ava appresth, elviee at A. s. and it merme of wility marinneeotren, ib move in the equrit of Echation then of Dow or San. As before. we suppere thet imenotenceue witily and connimpution are relesed by the functson

$$
\begin{equation*}
110,-\infty \quad \text { e. } \geqslant 0 \tag{9}
\end{equation*}
$$

Tipal ittiofy is is fiven ty

$$
\begin{equation*}
v=\int_{0}^{\infty} 1((\|)) d t \int_{0}-a \mid((1))^{*} d t \tag{18}
\end{equation*}
$$

Winh hlues rebien as sero, Runney's obgeetive of numumasen the megral of the cilineponce betwoen H and 1 is erpinalent in muximasetrin of U

Since we are crininomy our atrentien to anceand for all chowe 'r A, a. S. and o. we can mbeninue ber the equetiona

$$
\begin{gather*}
Y(1): W X(1) \tag{2}\\
Y(1) \because(1)+X(1) \tag{3}
\end{gather*}
$$

the equations

$$
\begin{equation*}
1+1 \tag{14}
\end{equation*}
$$

$$
K_{1}(1) \operatorname{sp} K(1)
$$

Imerration of engreesion (20) givee
All K(0)eser
where $A,{ }^{\prime} \prime$, is the given intial coptal sturk This alw, mives

$$
\begin{equation*}
1 \quad 1 \quad 11: p A(1): \text { en } \tag{22}
\end{equation*}
$$

mplace if 1191
If we anbotitine the raghe hand wode of 22 , lit ithe

$$
\begin{equation*}
2 \quad \int_{0} 1 \operatorname{sip} A \cdot \infty, d 1 \tag{23}
\end{equation*}
$$

 inm of kit U_{1} U menmination of bl 1 C1. and the lant of the eacien empreenen to work woth viru, miv, ingom by the equation

$V=\operatorname{lng}(U)$ kenetwing loctomi)

Neepotery cenditione for masimication of (25) are given by

$$
\begin{array}{lll}
\partial l & \geqslant 1 & 0
\end{array}, \begin{cases}11 \tag{x}\\
0< & 11\end{cases}
$$

and

$$
\begin{equation*}
01 \tag{27}
\end{equation*}
$$

From (25) we have

$$
\frac{\partial V^{\prime}}{\partial \theta} \quad \frac{(-w A)}{-(-w A)}+\frac{1}{!}
$$

Thus (2 n) herones

Now combuning (14) and (15) gives

$$
\begin{equation*}
r=11+\tan (\operatorname{mon}) \tag{2}
\end{equation*}
$$

w) that (2H) beeomes

$$
\text { - }\left\{\begin{array} { l }
{ \geqslant 1 } \tag{.}\\
{ - 1 }
\end{array} \text { as } \left\{\begin{array}{l}
0 \\
11 \\
11
\end{array}\right.\right.
$$

The derivative
as given hy

Tham equation (27) beeome:

$$
\begin{align*}
& =c(m+m)+m \tag{32}
\end{align*}
$$

same the tale-hanal mine of 132 , in sumbilier than
 thea er equal to. the aqualuy in $(2 x)$ ean hold
 men ac (.M) retwee to the Euler I aprange equition. (7), ther charceverises the aptimed growth path
 ore divarced. Thio should mot the merperinge, for in mero morginal polmetivity of blamer n ecmeintom wh the aptinel shituen im the persout proditem. the conserant on meviege imponed by thr comoumpthom of wage neowne is in furt mu bindina, and the

present problem reduces to the previous onc. in which rechowive and wavigs can be imiejendently optimuard
 conatrant arising from the comsimition in wake meone limits the chance of sating rite .and the
 in (. W) That is to wy that a mon mpal cmits. "I other words. (petmal growth regures reinvestment of all surphoses remannug aftet patiment in the imstlitetmally tixel wame hill and lin thiv case. the epellial echompe is grem in the vilue on t. for which equititem (3.3 holds

$$
\rho \cdots \quad r \quad 133
$$

Fquation , 33, reflect, a halame letween "opuner

 mylue and vaving, tate Mambind imputietme is refiected III the value of the shbectio : ie if
 pheseal marginal powhetivet if (applat.

$$
\binom{\partial l}{\lambda \Lambda} \text { emph vment unst } \quad \text { ul }
$$

 dumble be dostmpurshed trin! the maremin? ancal pereloctiver of rapial.

$$
\binom{i v}{i k}
$$

$$
A \text { whin }
$$

which meamures the extra ontput friml all matra
 nusintain a comatant lalumir caputal retwe nlin' in the equimal emplovment utrateg: frimi the pulit of vew of soroul intiletr inmimmatum. The pivivenal perchuctivity of caplat is erpual to the refiern on pappial mosanient bu sitheracting fromi the unval produceiver a labowe coup computed liv repitacing the wage with a lower shallow wape erfual tu the miarginal pernthrtivity of laluner wn "fir tire eqpimad ternongue and saviges rate the foll!,wing imerpiality mokls

$$
\begin{equation*}
\bullet>\cdot A^{A}=\cdot \cdot p \text { wh if } \tag{34}
\end{equation*}
$$

 , home in a applarties the balelimin leilematem growthmaximizing chore, and the pilvocal perxartivity of expiva' and sutjoctive itte of interent appoth the privale rate of return $1 \cdot$ apntal $\quad v \bullet 0$

 "rgunemt umablishex that as $v \rightarrow \infty$. the optimel chowe A appernerver the SMP chice of A is
 masers,

[^44]If nimmenterily champe to groumal onime, and cemume that a a parametor foned esommandy ratior than a chovee verialik, apualiny batmom tha smbjective rave of motereat and the physinal pretherivity of capival no longer charactoriates the meially optimal choice of terhoigue. In thio ease, wiveh correspends in a mineed recmony in which the (anvermment controls emphonient hut mot savings (the value of a being ortermined, for example, by the mehaviour of privave eapintiofe, jum ta the coneumption of wage mecme in deterwinad by the
 terises the optinuman, and the coptinnal physical prodertivity of capital execedt the numbective rate of mererest The rato of the phissical productivity of capilal to the subjective rate of interest.

$$
w^{\prime}+(1-\ln) p
$$

 0

 hae hoom mole. sappeos proluction in goverwed by the Cobt-Dongte lumetion (with L reperomina onyploymont and the other variables deflned an betrove)

$$
Y-L^{1}: \boldsymbol{K}^{1 / 6}=\lambda^{1 / 9} \boldsymbol{X}
$$

* that

$$
\theta \quad A^{1}
$$

Further let $v, 2$, and bex $w-2$ Them, the rable below given the valwes of the several wornateles ansx abed with mility mammpantion and. for eewtion, with mossimisaction of unneatiove onepect and win manumuratien of the rave of gremith

	(ribereom		
	Max	Han 6	Wint
	*	10	1.
$A=1$ atrutr eapintil meto	H 25	6173	0.438
	$4{ }^{5}$	0416	1125
s. rate of surime	00	- Ins	H!
rate if petirn on enjuphit*	40	0 Anen	-124
p_{x} = merginal producivity of limiow $=$ shadow wase	10	12	20
	A 85	A 3	H123
- abhectice rate at merest	11)	(1) ${ }^{(10 \%}$	0.17^{5}

[^45]A nhould the ohserved in the rable thet the physieal prentertivic of calnal and the endiective rame on motereme are equal oniv for the initunal grewth poth "mux v " t rowith rater less tham ruwinual. Ad which the "max -" path in en extremoue emample. the 昍vacal prowhactivity of capinol ewceeth the rate
 of whech the "max se" puth is the linumina case the chposwite in trwe
 the tatife The mext three ficures indicate the Imoe mintes of serine consumptoin, and employmem restikime frime the threw crimern livintel capmel
 1(1)

$$
\begin{aligned}
& \text { } \boldsymbol{f} \boldsymbol{l}
\end{aligned}
$$

provided hy the mew oppertunney. let men mppoes. is geven hy the functrum $\Delta(1), t_{0} \leqslant 1<\infty$ ITms
 phomes wer wane cone) The etrowe facmal the phomerers n whether or to droent ame min at mucowirm to the new equom whom the aqnomming ar inem

How magh planomers male then terenien? The

 whilvy in va. we can write

$$
\begin{aligned}
& =1 \cdots e^{-m_{0}} \int_{t \mid 1 t^{-i+t_{0}}} \omega
\end{aligned}
$$

 the rhu teriey of meinev:

$$
1=1, \infty
$$

Piguee 1

Ontpit, whage anb intremet as a Jfvction et meanc men recturyit

 men from (15, and (H) given equaliey

$$
\begin{equation*}
t_{11,1}-v_{1,1}, \infty \tag{.m}
\end{equation*}
$$

 by mermaliven by mean. divioum 137 by

 towe 1 Then

$$
\begin{aligned}
& \text { is } \\
& \text { - } \int_{1} \cdot
\end{aligned}
$$

$$
\begin{align*}
& \text { ", **** } \tag{3}
\end{align*}
$$

Pipure 2

Time mopre of output manktinc ham utmity

Strl the opterinm of apmernetil of the new nor
 11. Ima...ita,

$$
\begin{equation*}
\int_{1}^{\infty}, 1, \cdots \quad i \quad=i \tag{101}
\end{equation*}
$$

 let

$$
\begin{array}{ll}
\text { 8a.t. } & \text { w } \tag{41}\\
1 \ldots, & \text { me. }
\end{array}
$$

 the utar crand perment value of survinevi in the
"rptinal" terhnipue Then moy be mannewhet mepprieing. Aif the ghysical trade-th rote betwoun concompunon and mvenement determined by the equatinn

$$
\begin{equation*}
\overrightarrow{F H} \quad(H+\ddot{\boldsymbol{K}} \| \tag{.3}
\end{equation*}
$$

is units, and we mingh therefore have enprected that the inew invegtmem oftimen would be attractive fris then the freornt value.

$$
\int_{t_{0}}^{\operatorname{sit}} \text { otti. dt }
$$

evoeptril ullis
Pun in the fresent nurult! linvinativan on the chave if I Frean that the maringal rete of whetituticn, as remerted in the marginal presem value of invest-
 tinn rave, and it is winh tre fors patmer them the coreond inet the prouent velue of chorivaive

Figure 3

Time mophle of comsuntition maulting mom uthity manimization ane mom alttanative carteala

numet be cemmpared.
The marginal presemt value of investment $w /\left({ }^{2}-p_{n}\right)$ is thus the shadow price of inventment Since in the presem model average and morginal values coinoricte, $w /(m-m)$ in also the shadow price of capital. This shadow price falls to unity only in the liminions cace of $p=0$ and $p=r$, when the prontartion fuention of $A 1$ ithe elosticity of utility r. and the wage rate comotine in make it possibie to dirnce the aving quevion from the lechnigue question. At the other extreme, when vore to nero and U maximiantion dictaces choumin A to provile a rave of growth of owpout and conmamption that aprreacties the maximal fessible rate of growth. a gees to w and the shadow price of capital approseches influity.

Manemernext of the eflertivenees of penemitial mventmones theme ropioces a more elaborate evaluation them would be emcesary were it mot for forow's effective imainonce on commimption hecture the
choice of the rate of saving catnot in divireed from the choice of technique, investment planming repluir. now only specificatom of a discount rate lent alos specification of a shartw price of capital The prewnt value of comsumption stream rewilting from each inve itment equeritunity fimcluding whateser consumption is afforded by reinvestment, nulst be cominted at the social rate of discount. and this present value compered with the capntal iont comperted with a sharkw price equal i" ithe cromemis marginal present value of capital imly in the event that $p=r$ for the opemal technequer and the contiot between savinas and growth, on the one liand. and innmediate output, consumptiom, and enyllounient. on the other, disappears, dies thiv evaluation firke dure reduce to the more familuar priceclure of zomparing discounted present valie with the iwhmal capreal conet

It is evistem that hasies-fawe cannue im reliest upen to prosture the aptimal rechnuriue under the escumplinens of the nurdel lecemtalised anofeme.

Figure 4

TIME PROFILE OF EMPLOYMENT RESULTING FROM
UTILITY MAXIMIZATIOX AND FIOM ALTERNATIVE
CRITERIA

itiurs left to their own devices would maximize the private rate of retisrn to capital, p-wh, as would profit-maximizing state capitalists.

Derentralized "market socialists" of a langelerner type could be guided to the \mathcal{U}-maximizing choice of technique by an order from the planning commission to choose the technique of production to maximize the physical rate of return, p-pa ${ }^{4}$. computed with a shadow wage equal to the marginal pronductivity of labour associated with the optimal technique. This instruction would have to be mupnlemented by an order to reinvest all surphuses ramaining after actual wage conts are paid.

Keplacing w by p_{A} in choice of technique calculations amounts to an "as if" sutsidy of w-ad per unit of labour. Choice of the optimal technique could be achieved through payment of an actual subsidy of m-pa to private omerefrowows or state capitalists; but the taxet levied to pay the mabidy mast mot lall on the workers, for this would violate the rules
of the game, which requires conoumption of all wage income.
The difficulty with decentraliastion of decieionmaking on the bacis of a shadow wher is a fanitiar one: the optimal rechnique mant be krown to the planning commiscion in order to determane the appropriate ahadow wage. Hence, thepe migite seem to be little advantage in decentralization. However, the optimal technique and shadow waye coald be determined simultaneously by a decentralised lisomemew procedure. If λ is iberatively adjusted according to the formula
$\lambda^{n+\lambda}-\lambda^{n}=-^{\bullet}\left(\rho^{\bullet}-p^{n} \lambda^{n}-\infty^{\infty}\right) \quad \omega=1,2,3, \ldots$
where $p^{n}, p_{n}{ }^{n}$ and p^{n} are values asoocisted with $\lambda=\lambda^{\bullet}$ and 0 is a positive constank thea convergence
${ }^{92}$ The indirect contral exerciead threnth the mbuily of wages would have to be mphlomand brimet cumod to

 tire rety quickly of always hovina mair colve mal mever anden.
of the sequence $\left\{\lambda^{n}\right\}$ to an arbitrarily small neighbourhood of the optimal labour : capital ratio can lie guarantced by suitable choice of θ regardless of the initial choice of λ^{28} Equation (42) says in effect that the labour: capital ratio should be decreased (in order to increase the rates of saving and growth) so long as the physical productivity of capital exceeds the social rate of discount, and vice versa. The social rate of interest would be recomputed from (14) by the planning commission between iterations and transmitted to the decentralized managers, who after computing the values of ρ and p_{λ} would calculate the new value of λ from equation (42) and transmit the associated values of ρ and s to the planning comnission. This would in turn suggest a new value of r. which would form the basis for the next iteration.

Conclusions

The basic assumptions of the model explored in this essay are, first, the availability of unlimited supplies of labour, in perpetuity, at an exogenously. determined wage rate and, secondly, the consumption of all wage income. A third assumption is that labour neither involves disutility nor is productive without the issistance of capital. Witheut the second assump, tion, the choice of technique is a relatively simple atfair: the geal is clearly to cloose the halour: capital ratio λ to maximize the output:capital ratio p. In this case the choice of a rate of saving s i which together with ρ determines the rate of growth of output. consimption and employment) is a separate question. But insistence on the part of halour on consumption of its entire income makes it inyossible to divorce the choice of technique from an uper Iximid on s : sitings now can come only from profits. The greater the value of λ and p (heyond the proint where the narginal productivity of latour $\mu_{\text {k }}$ falls to the level of the wage rate w), the lower is the Mifer linit on s. Others ${ }^{24}$ have explored the conflict hetween immediate output and the rate of growth that the dependence of s on λ poses, and it las been printed out that in general the optimal techniupu can be expected to reflect a compromise hetween the unxinal feasible inmediate ontput and the maximal feasible rate of growth. The present analysis, couched in terms of maximization of an explicit utility function (chosen for convenience to reflect a constant clasticity with respect to consumption) confirms the wisilom of compromise, but our chief interest has been not in the compromise itself but rather in its implications with respect to wages and interest.

The principal conclusion was stated at the outset of this essay, but it certainly bears repeating : neither

[^46]the social rate of return (or social marginal productisity) of capital ρ nor the private rate of return $\mu-u^{\prime} \lambda$ is equal to the subjective rate of intercot r that reflects the marginal premion on present over future consumption implicit in the economs's utilits: function-even for the optimal techmigut and saving rate. The Fisherian balance of opportumity and impatience characterizing utility maximization is im. plemented instead by the following equality betwers the physical marginal profluctivity of caphtal and the subjective rate of interest:
\[

$$
\begin{equation*}
\rho-\mu^{\wedge} \quad r \tag{.3.3}
\end{equation*}
$$

\]

 the left-hand side of 133) is equivalent to the sietd on capital measured by subtrathg labmor cont evaluated on the basis of a shadow wage (equal to the marginal productivity of balomer aconciatiol with
 Furthermore, the marginal prodactivity of latwor optimatly lies hetween zero mul the athal wage, w that

$$
\rho \geqslant \rho-\mu_{n}^{\lambda} \quad r>\mu-\pi \cdot \lambda
$$

 of growth of outprit, constmption and amplenalit. sp. prowided all surpluse remamus atter panamat of wages are reinvested ${ }^{25}$ so that ($3+$) ean la inter preted as setting ulerer and lower lamilld fir the rate of interest is. respectiols. He wapint wintal ratio and the rate of growth of the econsmo. The rate of interest will actually athan her unger bemma only in the event that the telamong: wach a to permit the best of koth world , immitationaly the
 pa O) athl indepembelt गthmzation with ternet to the rate of saving.
 the consumption stream gelerated hy ath ow in vestment opportunitie, that wav lw afterderd frwin

 by its marginal utility. But the Iecinith whether ir net to midertake any such involment canmot he. made by comparing the present bilue of it $\quad \cdots$ sumption stream at r with its copital eont Tilir inability of the economy to optimize indepentemts with respect to the rate of saving moans that this marginal rate of substitution if romsumption for investinent, in other words, the margital firmett value of investment at the exal rate ot lace am: pacterls the physical rate of tratoformation of bmes at "erpilibrium". The preoent walue affiriled han and inventment opportanity mast herefore her amparmal with its capital cost evaluited at a shachow pirice erual to the marginal present value if inswiment in the economy This margmal prewelt whe till w mitw minly in the event that p and the conflict

[^47]whe hand, and savings and growth, on the other, disappears. ${ }^{25}$

Because of the difference between the private rate of return and the sicial rate of discount, laiscez-faire could not be expected to lead to an optimal choice of technology. A subsidy on labour costs to private entripronerurs or state capitalists, or an "as it" subsidy th, market socialists, would, however, make , rivate and shadow returns coincide. In principle. the size of the subsidy $w-p_{x}$, with p_{λ} the marginal profuctivity of balour associated with the optimal
as the puint in a general one. When institutional constramt al any kind precent optimizalion with respect to the rate of salling the social, private and physical productivities of capital wili in general differ, and the price, or "opportunity cos!" of capital will differ from the purcly physical matelial rate. of tramsformation between consumption and mentrient ginuls. The question of interest rates and capital valuation for purposes of pablic invesiment is explored from a hasis that reflects the conditions of mature mixed-enterprise economies rather than the destructive laloner-surplus feature ai developing economies in two articles: S. A. Marglin, "The social rate of discount and the optimal rate of investmeat". Ouaverrly Jmpenl of Ecomowics, Howard University l'rom, inn.3, vol. 77. p. 95, and "The opporlunity cosss of public inventmen", Quarterly Jowrnal of Economics, Howard ('nicerity Press, 1903, vol. 77, p. 274.
technique, can be determined along with the optinial technique by a decentralized tâtomement as well as by centralized planning.

The model on which the conclusions of this essay are based is an extremely simple one. It ignores the existence of a multiplicity of sectors, technologies and outputs in the economy. It ignores foreign trade. It assumes unlimited supplies of labour not simply for the present but in perpetuity. It assmmes absolute rigidity with respect to real wage rates and consumption by workers. Moreover, the choice of technique and savings rate are posited as once-and-for-all decisions. Finally, the utility function chosen-besides being extremely simple with respect to total consimption-does not take distribution of consumption into account at all, and distribution is surely an important aspect of the conflict of immediate output and employment against savings and growth. Nevertheless, the propositions we have sought to establish are qualitative rather than quantitative in nature, and for this purpose a simple model suffices as well as a complex one. The precise form of the conclusions will certainly be affected by ajded doses of realism, but not their nature.

XIII. PRICING PROBLEMS IN INDUSTRIAL PROJECT EVALUATION

by M. Ootrowaki and Z. Sadowcki*

Intronuction

There are two possible approaches to the problem of pricing in industrial project evaluation: one niay be termed the computation approach, the other the policy approach. The computation approach is predominantly concerned with the techniques of consputing the value parameters needed for making decisions on investment choice. The plaloration of such techniques necessarily means major pre-occupation with some kind of model-building. It is now commonly admitted that such value paranieters as ought to be used for this purpose can hest be arrived at hy finding the solution for the dual prohlem in linear programming, the programme itself reflecting the desired development of a given poonomy. This shows the main line of thinkillg contained in this particular approach: it is maimly concermed with techniques of optimizatiort.

The policy approach, hy contrast, may leest lxe presented when starting with the assumption, ullrealistic as it is, of the existence of a perfect set of value parameters for the development oi a givern economy. Such a perfect set can he termed. for brevity's sake, the set of shadow prices, which necessarily differs from the set of market prices. This heing so, it is clear that, even on such an assumption certain policy problems must arise for the Government in the matter of inducing individual decisionmakers to use shadow prices instead of market prices in their project evaluations.

In practice, however, it would be unrealistic to assume a perfect set of value parameters which would correspond to the optinum solution of the development programme. While a perfect solution may be found in theory, in practice it is levond reach, because of the lack of sufficient information.

This leads necessarily to the emergence of a second type of policy prohlem, arising from the nonexistence of a perfect set of shadow prices-or rather from the imperfections of the set of value parameters that can lee made availahle in reality, and which shall be called, for brevity's sake, the set of accounting prices as distinct from the set of sladow prices representing the perfect solution. The accounting prices represent better or worse approxinations to shadow prices. Thus the problem of how to make them better instead of worse seems to le an example of the second type of policy problem.

Another such prohlem can be seen in the need fur an assessment of the conserquences of the disparities between accounting and shadow prices, that is, of the fact that such approximations as are being mare must necesaurily inchude a margin of error. The gen-

[^48]eral result is elearly that the derisions atriwed at la means of the accomoning prices are met cxath what they ought to he if the optimim develuphent pron gramme is to he implementer. This leats ta che more prolicy problem: that of thaling mame of wom tralizing the fiffects of error, resilting fromin davati ties between accomiting and blandow prica 1 las can be dote etther la the we of emtain dirat com trols. or by successive adjustments in the wit of accomuting prices, or lwoth.

 ment policy and inventment hecisioms. It womb, lum ever. that so far relatively more atterotion han luen paid to what we called the conlputation aplowich than to the policy aproan. This usmation w.tmade in the course of the wotitige of the brame paper. which was intended first tolw a general - 1 It ves. and perhaps a simmars, of rxisting lome of thinking and methods of apprach to the mothen of pricing in industrial project valuation It than pired that wot vers much could la sat in thiv can text about the policy appoad to there prohlem.
 to finding more or lese ade mate" methents for mone

 that the former.

Investment project evaluation is mowaliab one of the crucial problems of ecrmomic theners and pint tice. leing a form of iealing with the oll , of bow to make the liest use of existing rewiorion If we imagine a revelopment economy with some kind of central loody responsible for prepialing a ite velopment plan, it is easy to see that for this crilteral body the prohlem of the best allocation of rewource. in any circumstances, means a multitede of decinu:n as to the particular investment projects that , hiomit be selected.

This central body must have a criterifon fur selec tion, whose purprose is to indicate the relative all vantage involved in each project. We may. then. think of the criterion in very general terms it is a way of comparing benefits with coata or, still more generally, with sacrifice:. The general formul. for such a comparison may written. after Till bergen:1

[^49]$$
r=\frac{\sum_{t} q^{i} d x^{i}-\sum_{i} f_{i} d a_{j}}{\sum_{i} f_{1} d a_{1}}
$$

We denote here liy $d x^{6}$ the addition to each of the conceivable aim or target variables, x^{\prime} made by a piriject, while $d a_{j}$ stands for the quantities used of all the sicrifice (cost) items or factors a_{j}. The total mumber of ain variables is indicated by I, the total mumber of factor variables by J.

Thns, in its general form, the problem of finding a criterion for project evaluation is a problem conreming a mumber of indeperndent elements which bate to In. herought ander a common denominator. Fach iwhatrial project an be characterized he these wemolts. In primciple, these independent elements. are :Hll the aims and all the factors which appear int the development prilicy and its instrmments.
hn these general terms. the first thing to to is for 1 Mmpere : fill live of these independent elements. Tis see the full conplexity of the problem involved
 ments repreatelts (both onl the aim and ont the sacrities sibe a magnitule varialike over time. Thus tath sume fie target variable fath as imcome or (empenvinent) for cach particular vear to come anght th lite treaterl as a separate varible The same ap-
 A-Pment: incroses with the mumber of time rmits. amindered.

 in a conerom mit, all |romfits mitained fram and all

$$
\leq y^{\prime} d^{1} \quad y^{1} d^{1}+q^{2}, r^{2} \cdots \cdots+q^{l} d r^{\prime}
$$

.1n: the s.antices lowing

$$
\text { Ind } h_{4} \quad \mu_{1} d l_{1}+\mu_{1} d_{1}+\ldots .+\beta d a g
$$

 q' fur aims.

For :ans nmbler of inderendent aim and cost berbhins the pirndith of pricing can find. at least thenretially, a solution. Hut it can be easilv veen that. for any practioal purposes of project evahathan amb etection a cortain chuice monst he naale. firot if all, as to the scope and meaning of all the 1^{4} rathe a, a imolued in the general formma. These murt the atmehow limited on as to embirace onlv some particular himls of hemefits and wome particular kinds of siar ritices Thers some simplified form of the general criterioll mont le choven

It follows, then, that in uperatiamal terms the general problent of projec: evahution can le lowked at is embracing tuodistinct probilens:
(a) That of finding a satisfactory furm of the criterion, such as wonlid take into aceolitit what are comvilered important efriments on twoth the tenefit ane the cost side : and (A) that of finding the equili-

[^50]brium prices for all the benefit and cost itens considered in the criterion, that is such prices as would balance a given development programme.

1. Relationship between the accounting formula and prices

The problem under (a) may be termed as chonsing a particular accounting formula.

The solution to it may be arrived at, on a macroeconomic scale, only try a decision of the planning authorities. The decision is more or less of a political nature. Because of the very complexity of the general problem, the authorities have no choice but to adopt a simplified formula. On the other hand, they to have a choice with respect to the particular simplified form of the accounting formula which they are to adopt. The latter choice must always be made. What may vary is the extent to which the choice is motivated, as well as the degree of conscionsness with regard to the full range of consequences of adopting a particular accounting formula.

We shall not he concerned in this paper with the problem of how to arrive at a satisfactory accounting formula. What is important to note here is the fact that, whatever the particular decision, it affects seriously the second problem, that of pricing. at least in so far as it determines the list of items in lacepriced.
(iven the acconnting formula, the set of prices enathes us wo whath for each investment project a figure represonting its relative attractivencs. It is pelative heannse it is valid only on the gromed of the ahopted accombting formulis and the adopted set of prices. W'e shall be concerned here with the prollem of how to arrive at a sitisfactory set of prices. But it is now whions that the set of prices itself is relative with respect to the accominting formula. Hence, the irierconnexion hetween the choice of the accounting formula and the problem of piricing needs closer examination.
lint before entering into it one special aspect of this interconnexion seems worth noting It is clear that in any project evaluation the restult depends inoth on the adopted accounting formula and an the way the problem of pricing is solved. Owing to this. a kind of substitution emerges between the actual thape of the formula and the price relations Starting from al given situation, we mav oitain the came result etther liv changing the formula or hy changing price relations. This fact shows its significance, especially when we have to deal in practice with simplified formuths and approximated, quasi-equilihrium pirices. Wie shall, accordingly, return to it when discissing the problem of the price of capital.

2. The meawing of shadote prices

tiiven a particular chosen shape of the acoounting formula, it is necessary to decide what value parameters are to be used for project evaluation.

One olvinus possihility would tre to use for this purpose the set of market prices. Rut, considerint the general shape of the accounting formula, we see at once that the set of market prices would not suffice even in the technical sense: for some of the in-
dependent variables, particularly on the henefit side, we could hardly find a market price at all (if, for example, one of the benefit variables is improvement in health) ; others, representing some kind of future outlay or benefit, would have to he valued at best at some expected future market prices, for which the current set would give no information. But even more can he said against the use of market prices. It is now commonly admitted that they do not properly indicate the actual social values of the relevant benefits and sacrifices, particularly with regard to situations involving the existence oi sullstantial disproportions in the availahle amounts of various factors as related to aims. Current market prices serve different economic as well as social purposes. In this sense they fulfil several functions. As has been mentioned, they are certainly not equiliIrium prices, at least from the long-term point of view. Yet, though iaulty, they cammot be totally aloolished or replaced for different reasens. This does not mean, however, that the crrrent set of market prices could not possibly be replaced, at least in some respects by some other set of prices created for the purpose, which are sulbject to some institu-: tional conditions. Such splitting of the "natural" functions of prices forms a basis for advancing the idea of designing and using a special set of pirices for a precisely defined aim: to provide a yarlstick for long-term evaluation of production factors allocation.

Theoretically, such indications of the actual social values can be found ly means of progranming techniques, in the form of so-called shadow prices. (For clarity, we shall be concerned here only with the linear form of programmes.) In ternis of linear pirc. gramming, these prices represent the set of parameters of the dual solution to a given aver-all development programme. When ming the premmisty introduced donations, we may present ith wer-all development programme in the general form of:

$$
{ }_{i}^{x} q^{\prime} x^{\prime}=\operatorname{nax}
$$

suhject to the condition $\sum_{j} b_{j} x^{\prime} \leqslant a$,
and

$$
x^{4} \geqslant 0
$$

where b, is the teclinical coefficient shrwing the amount of the $j^{\text {at }}$ factor needed to prolicice a mint of the $i^{\text {im }}$ benefit item. The dual programme would then be:

$$
\sum_{1} f_{1} a_{1}=\min
$$

suhject to the condition $\sum_{1} b_{j}^{\prime} p_{1} \geqslant q_{1}$
The solution of this dual programme gives the shadow prices of the factors f.
These shadow prices can now be uvel. in principle, for purposes of project evaluation, inv a in, y ing them in the criterion-formula as factir value-

It will be noticed that, in the foregong pioncedure for pricing. one set of value parameter,-that for irenefite-was treated as given. and only the set of factor prices was oftained by molving the dual programme. The possibility of treating twith se:s as
unknown, although theoretically admissille. ${ }^{3}$ will lue disregarded here lecause so far it has min pratical significance.

Thus, from the point of view of a given deveinpment programme, the set of shathw prives repl. resents the value parancters that ought th lee an signed to all the "sacrifices" (or simply factors, as the case may be) in order to give than particulat programme its optimum solntion. The whulow price slow the weight of each of the combraint of the given pregramme. or that in fact. the shew the social values attached to cach sacrifice item for i.n eor) within the given programme.

When using these prices for coaluating a mew invertment project in a given aroumbing firmula. what we really to is compare the promect that in its tenefits and sacrifices) with the comblition of the over-all development frugramme, out if which the shadaw prices were ditainel If its ant revilt, per unit of sacrifice, is greater than zero ir $\cdots 0$ in min

 thing that was previons inchoted 7 han. 1 , dew
 also lee interpeted in terme if hownge the
 the development programme

There is, then, at chase link lutwern the in'at:

 Charls, there wombly he we vilue walution

 kr:mutur.

 value parameters of the ke: thaneroll are glus:
 this can le interpreted in two waw

It may mana. on the one han I, that tom the wath
 of developmentere treated in dirents commenw, able
 Ix equivalent to saving thet the geno 1,41 ath of 4 .
 nitule wach an the wher of rime now wal preflut in this care all new ;ripeth. Ireporther, of the

aims as conmensurable, the planning body has decided to resolve the general problem of optimum allecation into two groups of problems: (a) making a proper choice of directions of investment and (b) taking for granted certain directions of investment, making :i proper choice of the comlinations of factors for fiture production that are set in motion in carrying out new investment jurojects

The latter approach seems nearer to the practical solution in development planning.

When thinking of any strategy of development in terms of himiding a development progranime, the normal situition will lie that of having a number of degrees of freedon in choosing the directions of investment. Hence, the decisions concerning this particnlar question nust be arrived at, at least partly. by taking into account not only purely economic condiderations. In the programme, such decisions acynire the form of certain constraints of the general type of $X^{i} \geqslant A_{1}$. where X^{4} denotes the fiture net output of a given good aud A, stands for the minimum amount to be propluced. Wy treating such constraints as given, we are making allowance for the existence of 1 on-economic factors in shaping the strategy of development, and the same time we eliminate the general problems involverl in cherosing the directions of invest ment.

Comsequently, in our firther reasoning, we shall diaregard cotirely the gucstion of choosing wahe pirameters for aims and concentrite ont the second catcgory of problems that of the value parameters nerded for a satisfactory selection of factor combinatimis in deciuling upin investment projects. This matan that, in our general formala for project evalor atom. We diaregard entirely the problems incolved in evaluathig the expressien $\sum y^{\top} d^{-4}$ and confine omr attention w these of evahating the expression ar, i_{12}, mire sperifically. in finding the proper f_{1} e $f_{1} t$ all the kinds of acrifices involsed.

4. Nhadurepricis and tra of dizelopment programent

There is low gencrit rale alant the apparatice of
 frieramme mone comsist of a mmber of conctramts and of a goal function to lee cither maximized or moneicel The goal functam is not at all the same in al cars of development plaming. It most lie dhose hy the plaming lanty Bat, depernting on the Pase of the goal function chasen. the shadew pricen will acpuire varions economic manings.

There are mamy possible thims of programmes that an twe used, tepentaige on the way in hich the func
 the purncular simphtied form of this fumiton that
 das, there are wring reavens tu treat as the mam: furm of a develogment programme that which wow mancumeation of the national prorluct as the gea: functorn The reawons differ for different tyme if
 wh is wheis neel as ant approxination t, the maximustiom of sexial weltore. whitcier meaneng in awritel the the atter concept

However, this maximization of the national product can be considered as a goal either in a direct or in an indirect way. Because of certain difficulties involved in direct maximization of the national product, the goal function nuay sometimes take the form of ininimizing social costs.

Thus it seems that there are two main types of programmes (and goal functions) used in development planning. One is the programme serving to maximize the national product which will be referred to further on as the A-type programme. The other is the programme in which the desired value of output appears as one of the constraints, while the goal function is that of minimizing the input of a given factor; this will be densted as the B-type programme. Both types of progra nmes can he solved in such a way as to find the corresponding set of shadow prices. But in each case the shadow prices will have a different meaning.

Let us consider both possibilities with reference to an aggregated programme in which the factors will be represcuted only by two items, each of them homogeneous, called labour (L) and capital (K).

The A-type propramme will ihen have for its goal the maxionizing of the national proxluct (as the sum total of outputs of various goods x^{4}, subject to two constraints given by the available ammunts of capital and labour. This can le written as follows:

$$
Z=\sum_{1} q^{\prime} x^{4}=\max
$$

sulject to

$$
\begin{aligned}
& \sum b_{1}^{4} x_{1} \leqslant L \\
& \sum b_{R^{4}} x^{\prime} \leqslant K
\end{aligned}
$$

with

$$
x_{1} \geqslant 0
$$

Fromi this. Iy writing the dual programme and funting its optimmm solntion, we can determine the whe for $\begin{aligned} & d K \\ & d Z\end{aligned}$ will represent the marginal prodnctivitio. if, respeetivels, capital and lakour in the nftemmen. It the same time, they can he interpresel as batew pricea "f catio! and hatwur for this thee of programme.

Tlie B-type progranmie for, rather, family of programmes) may be lescriberl in a programme where the goal is either cpitial minimization or A.fane menmization, while the other facere and ther value of ontput are the comstrain' lt is atse to ser that the dhaton price clerised from this twe of fregramme will refiresent the price of calntal bor
 (a, function) in terms of 1 - margimal rate of oll.
 will then lie $\begin{aligned} & \text { dt } \\ & \text {, } 1 \text {, }\end{aligned}$ the reverse
 "bharlow price of lakour" mean different things in each case thev accuile full meanmeg on'y when adiled to whatever twe of programme io which thev refe: Their smilarity is only in the fact that. in each cave. they reflect the alocation of p rofluctive
factor: in a developr,sent plan. But since in each case they reflect different objectives (although the initial situation may be exactly the same in terms of constraints), tiry necessarily differ in the kind of information they give. In the fornier case they indicate what prices ought to be charged to the factors in order to ohtain a maximum nitional protuct given the circumstances: in the latter case they indicate the optimum rate of substitution hetween capital and lahour required to oltain a desired level of output. given the circumstances.

Since the two sets are conceptially quite different. they can quantitatively correspenid only hy chance. Still there remains the question when or under what conditions a set of shatow prices derived from one progranme is equivalent to such prices derivel from another one (;iven the sime intitial rommonic andttions and spectrum of techaigues. the sohution of t!e Pityle pragramme would be equivalent to that of the if eve only provided that the value of output uned as a constribint in the k type is equal th the maximum of the focal function arrived at in the I ippe. Bitt this can happen onty by pure chance.

It nay in taken for grated that in mont cises the A type programme would be nost suitable for furpres of developme int prexramming. But then thet question arises is to de-irable degree of aggreghtion with respect tu tactors to the constrant if the programme.

The assumption of lumbencita of latuine and cuptal ohsiondy cannot be abminted for ims :atr
 the asommption of : given strmatire of the prenhact
 proctical apprames. Thus the athenat of imernothene neerled to huild up and solve tilis type of pugtaname

llence recome is fremently hat the the $1:$ Nak progranme, whel seems letter surte. for justitialle smphtiations. IIt thes sellse. the \boldsymbol{B}-tope progranmie bos serve as is abstitute for the A type, althugh

 whes that the precedure of astring at athamom
 umberwme

 f : we mot as a whotitite fir the I tipe hat on

 lerised from the of tipe firgranime
shadera' priepr

Since the shadow prices to is avel in the firmula fir jriget evaluation are entirels dependent: fir theit
economic meaning on the type of programme chonen for the purpose of tinling the "phmam who"."n, it follows that the degree of aggregatiom of the shadow prices is also degeitelot umen the ifgree of aggregation of the presramie 11 . fur example. "W. coltsider a highly aggregated programme of the 1 type formukat in terms of maximizing the naturnat probluct subiect to the comstioints if coptal an 1 balweur, what we ottan as dithow pricer in at gregated valur parameter, tol mplat .anl ...tow, (related to the natomial jermbict $1 i$, atl the wher hand. we consider alt erpallis aghegated fogr.mbour

 of cipital in terms of saling the latuen , nthes thet is. a rate of substitution of cophal for lateone lhat it

 were piresented in the fotill of wet maneter

 of capitial gen'l.

 of ret $\because h_{\text {, }}$; 1.1

 forill:

$$
\sum_{1} r_{n} \quad r_{x} \kappa \cdot r_{1} \quad j
$$

${ }^{n}$ ․․ . diadow pirce coputal derived from the given
 ing all the premams open Tlie jractical siletwon in ofenen ta use market prices for the p.

A chowe ling at tive proteral formala motorms us that the final resinh (the pirict if eapotal) is the pend-
 durder ci capmal surut.
II. Miav. then arrive at the ame proe of capmal
 f. will imifurn m_{n} and (h) liv using differentiaped Pn ran

 is nat merlis iollorling the firt mentword

W) fap, huwever, has lieen inituenthe to moild
 owing to modramate mormation or imbluity lit proce esa avalahte moformation Therefope, in peactice. the value perancters thet are te reffet a ceptoin velin, mem programme emm the wothuge rowwe than apprecximations wo the indeal shadrem prices that wowld he derived from a perfort over-all permeramo Among the callses the following mav le ented
(a) The programmes (and accordinglv, the a riniming formulas) are mimplified tw fiwequrding wint of the independent varbilikes im luch the treweric and the secrifice wides

 vilatifution are adepted
(1) The muthouln of conulutiom are fir frime precise
T.. fistingloh betwem the appranematr : ing

 1.1".

 :.. © ©

 phomine in the terelinmett priseos tetinal pir

[^51]prortired eantitiens as regerde ecomonnc of annstion and plicy which sere mot envy to mont.

Motwinnomeling these ofracien. and in the shsegee of litinted imiermation thet would be needed fir retinat a cempretrensave invermonairy pro
 sested in which the ratumain of the ineal amalyical noed a model of an optimal developmem prograinmeis atiempted, to he kollowed hy approminulion
'remerally spataing, the eamence of ill implificid whis, is rectuced to the fact thil that are |hartias! whotuns as an aternafive to : whition levivel from an over all pragramile eartial whotion means
 fititels
 -aliniter and dilemmas fors the tate the fue

 - merned thout the we rate it wativiohs that each

and foreign exchange tccounthy prices of natil, il pesmerces afe mot combiteted late, alle they dit compured in pratice ant yersulually

 (a) 4 tal.

 arnilld of the
 "Al|ant ll,

nlump is :hilem

maimpiar currar. .

 11. $-1116+1$

 The whemov trived at will atwi. be chartaternel

 the exifa afromet of enpo al by the anomel suving in

 is onowetwirs under wond at the ciwe menched to re $-\cdots$
mrat

$$
\cdots \quad \begin{gathered}
i, 1, \\
i
\end{gathered}
$$

 trwite tifermen cont iteme valilited at p. This

$$
A \cdots \cdot I
$$

 latmill Inatial we may I/ar wite

$$
\frac{k^{\prime}}{r}+1
$$

 calmal

 pity the reamunay ase foth etwermetrefled by the

$$
\boldsymbol{K}_{1}, \quad=\boldsymbol{x}_{2}, l_{2}
$$

$$
K_{1} m+I_{1}=K_{1} m+I_{z}
$$

$$
\begin{array}{ll}
\text { A. } & 1 \\
\text { H. }
\end{array}
$$

 4！inemt

 eviluation hama mived m difiorom wav，me dot terent ranourres

There me coture，in wheth the currem mork．．．

：！日⿱一𫝀口㐄
－illini．

 w yrenter ll：4m｜

(1): In a region of tatunir excess, T^{\prime} in to the hixher than l ir $l^{\prime}>I$
 -etil from the "have" form of the accounting for chila emmon's useit in whe centrally flanned

wher changes can profound!y aker the strikture of demand and of monerts and exports of a comintry

A variant of the aboive approwech is to compare prese in the coniutrv and in the world market for the major domestically produced and conmuned com. molits or comnocotivies and derive the exchange rate from their relationship. This is, if the country pri narily produces and consumes rice. and the pirne uf rice is 1 (OMO memetary uniss per tom while it is \$2(I) per ion on the world market (cif). one wrould conclite that the accounting exchange rate shombit the five units to the dellat A comparimon of emal. that are largeiv imported ur exported is not of moch lise for thos purpense slike their international perce wit the onncit exchange rite are the mall deter munuts of their domestic jiree Thas methed is there bint asefal only when (a) the conbitry tivelf pro dhers and connomes ont or a few rollmudteses that mak ill a sulmotareial part of the gromg natoonal
 natinnally hot are out major mimeres or exports tor die partocular conmery, and (a) there are mosermen pedilem in comparing quality fien oo. the metherl

 tat ir which mercitike pree datirimons ${ }^{\text {is }}$

 $\left.{ }^{1}\right)^{\prime \prime}$. ". $1 .$.

\％fow tom	$\begin{gathered} \text { 1'moriti } \\ \text { 'impisurnt } \\ \text { ic' } \end{gathered}$	－reaym erithump 10tamement 1 ：	A，meters	
$A_{\text {，I }}$ Imported eatupment		K，		
A_{2}－Ilommetic equitpmeme	＊$\\| ⿰ w_{1} \mathrm{~A}_{2}$	＋M A	 	
An．－Stumpres	$+1 \mathrm{H}_{6} \mathrm{~A}_{4}$	＋ 14 R	ture hrimith	
A．Inventiofiea	$+1761 \mathrm{~A}^{\prime}$	$4 \boldsymbol{N}^{+1}$	 	
	N_{1}	\wedge	$\begin{gathered} \text { funtin } \\ \text { an : } \end{gathered}$	
C dests enterien the protidatily				
A盉 $/ \boldsymbol{K}+\boldsymbol{N}=\boldsymbol{N}$ pr：解	0 Na	119＊＊	Maxil on the M fiet re：it． Ht acaumplay	
O－．．Inpreatatom	11	＇＇	taia	
M－－Itapmetel lak matrral．		9		
11 1＂mperesalion 1.1 emb plyen－	11			
1.11	$\begin{gathered} 11 \\ 11+1, \\ +11+11 \end{gathered}$	$\begin{aligned} & 1+14 \\ & +i+17 \end{aligned}$		

Ind（，requetively，ill in eerm，of a commentil wim in tomesere pirices．It then the atwive able seta thit the axectients of the catculation in a whelratic fasmon wheh we hrige is welf explanation
lhe ingretions of this calculation mighe be clarnied be relatmg them to the amal exheweive
 direct ind indirect cont clemomes mports（ M ，com－
 amiverallom on caphal（ ${ }^{\prime}$ ）．and laxes met of unsiders 1 i $W_{\text {e have }}$

$$
M+W+I+P+1 T \quad 1-1
$$

 （Alumestic＋foreqgi，as derived from the moluifia cirmpaneme st the abuve tible．We ithein

$I-5 /-/ P+10 / K+X^{\prime}$

 was evatuated in 1 a at the existirg ithe al exchanke

$$
r_{2}=k, \quad 1.1 \omega, 1
$$

 Priand ty M Kalerki and Finlacet if Ito en

Ghage rite is ohtalled，when starting from any mimal ，ituathm，low comparing the value of a possible ＂xtril ，Im＂mit of fureign exchange th le earned（or －wal，whh the correyonding increase in home market supply ucredel liecanse of the rise in total
 this extrat athinite The mereate in the home market

 a，：：：：

 1＇，．．＇：．．．．．．．．．．

1 imestoment dichom modrls

In anv mentieronal in profect plitatioricon －tites in inquifant elomint of investmett activimes

The iliference between ilifferent set－ups is that of criteria and pricedures of eviluation．

To begill with，two extreme investment decision mone＇s may be listmgusher that if a market commy and that of a centrally plamel economy． Here we shall call＂market ecombing＂an economy in which all the investment decions are made en－ titely by mividual decisiom－mahers，no cemeral strategy fir developmem existing at all．In thin case． the melionluat decimon makers have tie altermative bu＇to make their decisions on the basis of：（a） cherent harket prices： 1 b ，expectations，as tul futhre fice changes．Whe intontine of their decosions is a certall dechepment path of the econdilly，wheh brings，donat a detmate ot of prices after a certaill perial．Thus，in anch in norlel，we habe to deal．for
 at lestot thrie set of pirices

（11）She expecten set if market prices inhoch．
 different price expectatums of the indiodual recinitim makirs）：
（191）Thercal fimure of maket perices．
If in tive haremence luetween（it）athl（iti）which

 liore

 いいい

 Bemt all its gmikement，akont different imestment perefect，wifle om the hasts of phavical hatancing

 lee thought of as wirkablile only in very specitic cor－ clitiotithe

 ans kiml if realits l＇ie rett ase lies somenthere il

 wrent plan the individual decistom mahers are the
 llie difference inturen particulitr ciese cimsomes in the dimerent emilowinwill if the entrai lwarit in the
 the andivilual deriakm mathers so an tu liake then conit ric with the wier all seritegy

If nuay lie sutel a4maned that．man type of cultuml the rramn tow preparmia a development

 ecincovis．Whach in men has diverem cameses．The

decisions of the individual decision-makers are not easily influenced in the desired way by the measures available to the central lyeard. Thus, in any type of ecomomy. provided unly that the central braid exists and elaborates a certain strategy of devel品ment. it must strive to affect efficiently the decisions of the individual decision-makers ing
(a) boring then as nuch information as will make their decitons consistent with the nerall -ir.tegy
(b) lofluencing them to ure this information is their mestment derishens in a wially desirable wav.

For the sake of hrevity, let us call task (a) "infirmation", and task (h) "indurement".1"

Ghe. by drfintion, by "market ecomemy" we mean an econime withent a central lxarin! we may -relude it from firther comoderation. It mas howwer ter worth while th , hw that even in this type if comomis theare in : : :atk, ire performed the indurdual lecision maher gete beth his informatom and his indicement from the "imasible hand" of the
 imwible hand does mit prepres allv ifereloment dian

What remaina to be discussed is a planned ecomonn in which mustment dechisins are to emme extent lecentralized and a mixed ecent mi the diftereme between tha is in the ext-tence ir men extrence of the prevate sector in inher worts the metindual decision makers may he ruther pullic er privatr en-
 great !!fference to the nam ex momul problem of the central buard buw th provile the oftminn intino. tun ") the mdividual deciown-makers. It milv af iect, the techmiques of inducement.

Tla piretblem of how to prepare the necessary in formathon wav treated at aime length while divelos ng the methuls of compuratuen if toth hatiw and

 Grib arise evell if we atre drathe with a piplect set
 iti theorv,
 Wheral lmoard the arcounting pricen are th play

 - Wirket menedill lay is dien. the direction in

2. Influence of specificientistment decioum madilis on the role of accounting pricies
Assuming a given swstem of information tramsimit ting the strategie ideas of the central luard tw atil the individual derisom-nakers, the actual system of inducement necessary to make the :nthowhallal iectismmakers nse this uifurnathen in the proper way de pen:ls "an certain fraturon of the inhtmution.al set M1
 leroad caste the cane of the ontmone deresion maker and the case of the teschant teriven maker.
 level prefjecting wint whet: has mer reis-m, if its

 the central bairal it will be inditernant that winh a sitnation of the mivividnol decinom maker vis a vis

of the individual lecision-maker, sheh an institutional system repuires high efficiency on the part of the central board in preparing the necessary intormation. The at of prices given by the central board to the individual dectsion makers must indeed reflect very adepuaidy the atrategy of Irvelopment, since otherwise the incestment fhoice made thromghout the
 thime.

Thus in the case of the stbmissive fropect-maker. accumbing prices, as the instrment of intormation. arguire an aboblate meaning in the stose that any wh af acomoting prices preparal by the cemtral board has the sime kind of intheme on the actions of the imduridual decision-makers.

It bould, perhaps, be noted that an endeavour to create an in-titutional sostem of submissive project. matite has been characteristic of the centrally phanerl eernmones wath revect to all major investment densoms. ${ }^{\text {an }}$, the wher hand, minor investment derciont, hawe beett decentralized in the semse of licing left to mdividnal enterprises. Thus a certain combluation of the two cases is, in fact, typual of the piratice of a centrally phanded economy.
(inming buw to the rase wit the resintant deciatonmaher. We mat smphity the proture by reducing it to the protiem of diparity lietwieen arcomuting and mathet prices. Int us sulpure that the mormation
 combets of a wot of aconnting prices for, alternia-

 h hombal deconom maters. Decause they have goals
 Whwer the wh of curient and expected market grese The ghestom then arses for the central bard

 mathet prowes.
 Abums, althongh cruile, way of influpicing the deciands it the milanded decosmen mathers is to ver
 "tureti the two ve: ' ${ }^{2}$ What seens important, how
i* Ithe posothle inse of tax subsidy devices ratuen the fur then hinw lar it is advisatide to use the gequenily sume
 puch by elimnating from market pinces the taxes dind
 base n thing (.1 小he with the a at ath isture
ever, is the necessity of understanding this method in a more indirect way also.

For example, the subsidy intended to induce greater use of unskilled labour (because accounting prices are nuch lower than actual market prices) must not be paid out directly to the firms. It can also take the form of policies tending to bring down the market price of such labour, for example, through a deliberate policy of low food prices.

Let us consider the simple case when the correc tion if market prices is limited to the exclusion of taxes and subsidies. Suppose that in a given country cement is taxed at the rate of 10 per cent. By eliminating this tax, we want to pass to the individual decision-makers the information that, from the social print of view, it is advisable to use more cement in their investmelit projects (as compared, with, say. stere or timber) than it would seem from the relations of market prices. Indeed, if we have to choose betwerll a project that consmmes more cenment and one that consmues less, other things being equal. we shail chonse the latter when using accounting frices, but the former when using market prices.

But what inslucement are we to offer to the in. dividual decision-maker so that he will actually dhoose the project which consumes more cement? The answer is that we must subsidize the use of cement, either directly or indirectly. I lirect sulosidizing will man simply repayment of the tax paid by the individual decision-maker on cement. Indirect smbiditing will mean, say, charging an extra tax on steel. But then we want the individual decision. maker also to use as much steel as womlly ine in dicater! ley it, tax-free accominting price. In other words, we would have to repay the tax on steel in sonle form. This brings us to the conclusion that, in order to bring into, play all the necessary induct. ments for the induvidnal Iecision-maker to shape lis clemand in a way reflecting the sonial cost structure (approximated in the tax-free accounting prices). we would have ether to remone all taxes and suhsidies, in which case the reasoming works the other way round or, at least, to bring all the market prices, by our policy of taxes and subsidies, to exutly the same relative proportions as those existing whing the tix-frep accounting prices. Thus the ust if accumating prices by individual decision-mahers muluev a broad and complex fiscal policy.

dIV. SHADOW PRICES IN INDUSTRIAL PROJECT EVALUATION

by J. S. Flemming and M. S. Feldotein*

Introduction

The economic context

The economic context of this paper is essentially pragnatic. Although the analysis is relevant primarily to developing economies in which underemployment and disequilibrium are particularly frevalent, it is by no means restricted to them. Indeed, we assume throughout the existence of a substantial private sector, so thai the diversion of resources to the public sector from the private one. the impact on the private sector of public projects. and the allocation by the Government of resonrces to the private sector for specific projects are all relevant problems.

Furthermore, despite the frequent occurrence of imperfect competition and the existence of taxes and subsidies affecting resource allocation, we shall assume that market prices provide a starting point and a framework for evaluating social benefits and costs on the basis of which more sophisticated sharlow prices can be deveioped.

The administrative context

In addition to an economic context, the pesper requires an administrative framework (curral to out analysis is the "planning agency", this is the troly which evaluates projects typically presented from outside, although it may participate in the -election of potential projects for detailed design preparation
Individual projects, once approved, are assumed to Ire handed over for operation to managers who mav be in either the public or the private sector and whose objectives cannot be assumec: to be identical with those of the planners.
The function of the planners themselises can be divided lextwren "project analysis"--the application of ecomonic reasoning to the evaluation of varknos alternetive projerts-and the more mebrikus taska f taking decisione which have substantial value implications We would expert the planmers to conceminte on defining the areas in which surh deriorme were regaired sed to seek guidance from a political level. Nevertheless, we shall refer "" "plan wers' valuec", meanimg values apptio-d by the p,tanning amency which may of may not have onerinated there.

[^52]fication of the circumstances in which they are likely to be necessary.
Where changes in an ecomming wecur sor ripilly that the market mechimiom f.iits to allinit, the dis. epailibrime prices will met reflet true antal ont. and lenefits. It may be pmollile th calculate equit librime prices and ane them for ertand deand before those prices wruld hase lued .themed in: free market.
 occurs with projects which are wocoulh l.ane ant
 market prices to chinge, ©o that in mav mut lwe posible to find a single unambigunil market hate with whic! to me:amre tive value it mint? in -ut puts.

A third reason for wing shatow proces intowlit market prices is the existence of methindoth de ments in the market. ir tixes and whouler, whin cause market prices th diverge form: the frimet measure of social lenefits and cont.

Finally, there is the case in what unly a furn of the effects if a perijuct ran lie acombited with a.s exchange of nowey. There maty the either to it it or cost, which, for technical, .dimmetration i"

 evaluation.

1 Shadine fri.,
A shadswe price is atur pitice oflen that II wherved narket prece for whit purpow. . itl int:

 in a large cirgaluation, where an mitity n linbl
 untputs in the open market for inve.thent atil percing deciscions of an entity aluere it i, devered

 payments for manager. our withers ar ac li, whike them to rperate in a way hat wo.its withe on uswol erveria

Fermelly, shark wiwnea mar whentited in the mothempical prodiom of monemiry or muminuaing
 value if the moximand 'er dercese in the citimumi.
 und ctrage in a crooersinet verumte then the
 alculan, is the value the "dual" shation to the bimat if gerablumg irublem one below, sec tion 1: 11

2 . lriountim, prices

Trombuthg pricts are shadow prices which meet
 example, if sme wete tw prite alectricity on a strictly marghal ext basos. the "ptimat shatow price wodd vars contmomas with the sale of load and its:
 ons. 11 mbstit lar land thunt that met more than ther erparate tome of day price could he used.
 dentlt the enthomen oft of prico and the periods tol whath they somble operate
hidedts, t!ee demmontrative cossin mpened lay

 lont that athalls will pretall of the propect is

$$
3 \text { lowintic priti }
$$

 Wanlier
 where thi.ive liaking life dowioneme will min have
 surinal prow' na $1, \ldots$ hliate the periert the cious

 vi.ets are' ithell int ithe hasts the wine ert shathow

are assessing the claims of a private enterperise to some xerce reworess allocate il by the planners. it will the known in advance thatt this will not occor Thus, in gelteral, the level of subsequent inplots atid outpots will have to bee predicted or calculateal on the lasis of the expected behaviour of the oubseguent operaturs. This night affect the priorty given t" different project, lor instake, in keneral. impit flexibility is a desorable characterntic of propects Henerer, if the planners attach a liw badow jrice (1) latwor it mas be more desmable that at proate - protit maximizing-firm shobled alept ant metexble pexpen with a fairly high labour momalty thind a more ilexible procens compatuble with a woller range of latuiur ine ensities. This tollows if we recognize that the latter shombe bevaluated on the asstmptom that it wilt be operated at a lewer labour motesoty by the privite firm than it womld be liy operator
 picios of the pianner.

5. I:xtermal and intional shadina preis

It is lisetill to distimutish betwern "extertial and "mternal" shadow pricen. The first type are those which might reamilath le latel down mote pendently of the particular project leming evalated Exampley of external thatlow prices winild be a general directive to take laberur as fice, or to use a crrtaln set of disetount rates. On the other hand. intrmal tharlow prices are lerived from the charac ternties of the particular project. The example is the "iritiofer geice" between different vections if a -ingle complex project This might be quite mportamt if ofli attempe to design rach component of lher project ptomally rather than assessing a ungle drast liv all "arcejterejert" criterwon. Another casearias with the velection of construction wherlutes Thpuswe that phase I of a project requires a cer tail site ; ;lant which will alw, be required in phase 3 and that nowe of this plaite would be used on phitur 2 it it were conted upmately on a weekly hire bask Tlue lact that the plant is there meanthat it could be used at litte extra cost It should be apparent that ifdernal shadow proes are relevant omly at the iroject desugn ant wowk whediling stapes rallier than at the stage of apraisal of a Klurn pra;

A Imolentotelty

ketior lowing at the preblema of asangumg

 aet of lirect anil indirect bewefis !oulpulsi asw, rated with all project herothts may row coure. acrite cien it livere art mo anmanated revenue re celpts In dimumana the activaties of pivite firms.

 the promerv cutpen a projert may youd wa reve mues, the nalice in splliwers and externalities be conves Warted it ue mevertheion memertan the the -fiorts in thous wit derectly eerved by the weaject to

power plant may produce irrigation and Howd control. In addition to the direct and indirect lenefits provicied, the project may also have the effect of ensuring that certain prohlucts will be availathe of thes are wanted in the future and of decreasing certan risks wheli individuals prevomshy had io lear. A:ailability itself, and the avolidace of rioh may leoth be consilered of value.
Although it is necessary to avoid omiting any lenefits and costs. it in equally importint to avoid double-counting them. "iliree tipes of beneft double conting inistakes have leen marle in cost benefit studies. First, a temefit wremen and an asanciated change in an asset value may both be colunted. If land is irrigated, atl increaved crop may the grown un the land. this raises the value of the land Onlv one of these shemild be crimed as it measure of the value of the irrigat on tecondly, a "national income accomuting" molake midy be made hy summing the value of internediate peoducts rather than looknge onls at the mot value at each stage This, irrigation mas produce more wheat. which promices more Aour. which prohlices more breal it would rer tainly the inappropriate to hook at the sume in the additional sales at all three slages. Rut a thivid type of error is made by counting the bread moleat if the what. The value added letween the whest tage and the bread stage is (except ill all ecomorny with suhstantial unemplaynent or market winct fections) asseriated with an egtial decreater in value Wewhere ill the economy
When the physical quantities of the lwenefits wif the proposed project doring each uear of it: life have luen estmated It in necreary to assign shadow prices to thenl. Fir simplicit! wr take as the basic urit of measure that which correspembla the thonev prices of ic incumer coods sold in comuritive market, in the economil This allows us, under sultable conditions. to use the money prices at which propect ontpulire wid as appropriate shadow perice meavires of their molal valise Consimer pirtich are stitable when
 and in a small enomegh quantity that the market price is ind affected liv the incrementai "Inf:"! The comperitivenese of the market lows not rectioure that exactly the same perchuct the wid bu a large number of other prombers buit . mbls that there are comimeting close sebatitutes and it "ase if entri intw the ferint ult market Thus a conemment fertilizer folam
 rrally take its selling intic as all appropmiate mea-ure of the ometpen's valiue

In the remainder of this wellin wr hall coitwell trate in methent- if evaluarin bemeti., when mithel
 consale poparitaly salen to ther firmlimer. ond 1. final cunsumer.

1 In icemednele heme hit

 mat call these ineermediate hemetic, os, seteas ther

(a) Market price paid tor substitutes alriad sold undir smitabli market conditoms 1 i frivate fro. ducers previnusly used coal and mis mhotitite electricity prombed by a propect. the sathe of the substituted electricty is the dememed and ant. in
 the electricits. While in the case of electac: whent

 irrigation, that are ben ond hat teat replace pravan actiont liwe perblem is mere conplatalel if the

 (f) and in, lielow:

 the ald
 riodly wad 16 e ate le.l wathalls la the incoma

 v.alue

 1. 1. 4

2 1 onemere tienet

saved by road-users and the decreased motor vehicle cost, must therefure le brought into the evaluation of the rail service improvement

Thuse premeluct or strvices which the project sells to the pmblic in clireet competition with a large number of other efller, and in such quantities that the market prices are not influenced by the additional mit":t. man be walued at market priers. Nathougli these iopurements are unlikely to be met for many public projects in developed errinomies, many develoring countries may sponsor projects that prorluce collolimer gounly for sale on the domestic market.

Il hou market prices are not apprspate. we nust con-uler a wothol of finding hadow prices. The first
 tromelathe benetis. may alw le applied to fimal comainier gitals.
(:1) Market prie paid for sulistifutes alrecady sold unilir switable market comdusoms This mav not be -ubatintially different from selling a proxiset in compettion with private producers of the same product. in wholi ase the shadow price obtained would be "flis.ilent t, the prodict's selling price. But two carre arme ill which it is necesisary to look at the market pirce paid for smbstitutes. lirat, if the product of the porevt is wot wid, the relevant criterion is the wimk "th presum smbititite pmrehanes. fiec. '"inlls the 'pmontios of the product wold mav liw such thit hee - ellitig price is sulstantially different from what it wemild have lieen had the projeet had a mush cmaller coutput a measure of the value of the project's intplit tin its intamarginal consmimers is given by the pric. whel ther previnusly paid to achieve the -ann satmaction it must lue emphasized that this method asolmes that ali ontput simply replaces fieviontiv piorchased gouls (fir example. a sillisti thtun (f) electric heating for coal heating and that (:ll-uner lemand for the tvie of good theating' is conpietely pirice inelastic When projest
 p'ini lint is int ald in a compritive market. we linat ior able to evimate the value in comanimers of lis ineremelital ontpir This ia disclissed in (e, and (1) IWhow

 e.o. hinher thatn its market ferer. thet walal come whuld for uned to measure the valise of the replace nient the relevant cont is the margimal or eocapmile ancial e at that is the aving lie to the replacement

 reire....' , ilie fir the reglacemient in the rediuced Hachece ise ullil tiut the consumer atlafaction

 shathom price ut a net increame of a Einat can be Altotied bo meamerna the lowest eimet akernative metinat il privatona the same comomener giod or erine
(A) 4 onnogmess in rav i mopthe cridiovion I In enmeral. we wr to shative-price the peoveri's empent

to pay, regardiess of whether or not they are actually male to pay. This underlies each of the approaches mentioned above, except for the case where consumers had previously been paying less than the social cost of providing the good or service.

Difficulty arises in applying the "willingness to pay" rule whenever the good is sold but the project output is large enough to cause a fall in price, or the good is not sold to those who benetit from it.

Consider a project that produces shirts. Figure 1 represents the demand curve, DI), fir shirts and show' the price $\left(P_{0}\right)$ and output (\dot{V}_{0}) prevailing before the shirt factory is built. Now assunie that for technical reasons the project must produce a minimum number of shirts per year so that the total number would increase to N_{1} and the price fall to P_{1}. This raises the problem, how shall we value the $\left(N_{1}-N_{0}\right)$ sh rts? At price P_{0}, or P_{1}, or some other price? Although P_{B} is the price that a consumer would be willing to pay for the "first" shirt, the "last" consumer values a shirt at only P_{1}. Thus $P_{0}\left(N_{1}-N_{0}\right)$ overvalues the output while $P_{1}\left(N_{1}-N_{0}\right)$ undervalues it. The appropriate value would be the entire shaded area under the demand curve let weel: N_{1} and $N_{\text {. }}$. If a simple shadow price were wanterl. it would not be unreaconable to use an aveiage of P_{0} and P_{1} (as long as the difference were not so great that non-linearity might be significant).

It must be atressed that the approach of estimating the total that consumers would be willing to pay for the increniental ounput-that is, the entire consumers' surplus-is appropriate only when the incremental output is indivisible. If it were possible to produce a smaller quantity than ($\left.N_{1}-V_{0}\right)$, the use of the consumer surplus method to evaluate the
 ine intramarginal output in consumer surplus terms would overestimate the benefits of the project in comparisom to the output of private firms

The proper shadow price is generally the average consumer surplus of the marginal indivisible block of output units. But even if output could be varied continuously, there are certain cases in which (notwithstanding what has already been said) it is appiropriate to value the entire output at consumer - urplun, harlow prictes. First, if a pir ject procheces several different types of henefits in a wav that does not allow the individual ivjes of benefits to be varied separately, the smallest possible increase in one type of benefit may vield a much larger change in another type of benefit, the latter shonld therefore be ealu. ated at consumer surplus shadow prices. Secondly. consider a project that produces only one tupe of outpult but does so under conditions of decreasing cont. This is shown in tigure 2, where margin.al cost, fall :tutil N : and average onste until ina It may be that the high unit co-ts of a small nutput ifess than
\boldsymbol{V}_{1}) are not junthed by the bemtits bis. is wint costs fall even more rapully thall combunt vil: per unit. there is somme larger walle of firnett it which total consimer surphis exceeds total cost in
 vant lat it would still l_{m} ingpryprate thext and

Fupere
Nimber of i'vits phodi (eid

ciples of when and to what extent consumer surplus chedow prices are relevan remain the same, the demand curve anust mow be estwated whout direc; reierence to market prices. Market research type studies may indicate the prices then different propor inome of inctividuals woruld be willimg to pay for the lanefis recriven In ounve cases, however, this may not be ponaible. If individuals fear that they may be specially charget or taxed m relation to their awn valuation of the bervefies racetved, they will wort pro vide an homest assesament of the benefit's value Fren when they are now mhobuted from prowitial an thonest vaiuation of bemefits received, many motivimals may to mable to mex a price on beretits of a type thet ther are ont secunooned ho buying. ach at theve mied in wavel beemene of mproved rracopen herib-

 ther athictim

 neressary for eimate mot piast mangita an".." of the demand curve lim the entire lamand rue: a wire detaled set ! evemates is ievplited
 apir aches that have tiern deacritiad, morluding thove for shedow pixing interwindiaie ipmefits. "it ult. matriy en the implax as amemption thal any mexhuct's

of chas - it which wemp" rejerts the mativithanls

 (H) lak

 "4. | 1 ,

 moner to an motivinal. the peppeted thoutitity of a lorge low mav be Eroater them the dioweility of a small premmum, athough the monory value af the permilim is freeter than the experted money liss womdly. the motivatual prosers in rentuce the un certaint ahout has future "komess" and therefore to witulitite i krown trean of premotim pavments for on unkmiwn wream if haves Thes tvope rist aver won (an disc twe seen in the motuviduls' pertolm welfortion !ehavime where moerts a siven vield atid risi liny he preterted to oxhers of hisher vold
 contrul. l'ie wave risk efelintimi bempfits rowild he coniferted biv an inatiralk'e wheme withenit inmep laking the ;htwal jwolert. T inther cases the profect
 tht ir themes as woll ts of finamotal losons The

 rer ymized

 Leflems when ther are abmantial motivishatienes:

[^53] thomith the project amalyot eoruld asmg artmotrary values the such bernefite. It wand be heter to monvit
 fix and cowe of a preject in term met andy of monery het also cof suecife physueal eflerts A final come
 the net verial vahoe of thove benefits and comen te which shadtow firices can we asumed. mather wint an iteminatko the imropmematroble phvaral heme hes und conts anwriated with the periject and a terription if the expected intangite eflects

The perewome of uncommensurable efects makes the hinul selertiom of peligets mure diflectithen the number of incommienmarahles in not large, choice mat be farilitated by examanim the emoitivtiv of the derinum to difierences in thatow priceg le mav well twe that for all "reawmahle" shudow pirces if the incrimemenourrabtes the prolect is weceptable and
 in lue the rawe some can umety the grocime valive of the shadew jrice which will make the projert ace cepahle wo make ome atternative frreferabie to another

(Proppt inples

The wet : "Impit, anselated with a proiect thuild empude lath direct impuls ithe rementrem lased by the perejert, and imflipect wreal tust. ithe

 disulity to indivituals and tirms ther than the we upratime the priject

$$
\begin{aligned}
& 1 \text { limict:mpuls } \\
& \text { Rewneme sued directle ha a prosect homid lie }
\end{aligned}
$$

 hate frewn pint

 binat lo funlul for the injuls.

1, 1,iofermoened peri hasp dirring mathet perice It the 1 oovernnvem purchase finctio of services in a comperitive narket lat in such grantity thit the
 "uth unit is the price thet the Government as a dimemonuting monoratiot would have had on juy
 haring of inca lehwar for a largeprulect In figure line is in the mpate mapuly cowve Without the imput
 whi if the imper ma to and the rirxe waw P. The Itrolect requitev om ingit of $Q_{1} Q_{n}$. raineng the market proce w P if P_{1} were wod as a shedtan
 cout if the remantere wonild be overemintated: the ennvere watal the Tre A prue P. wore ued I he

1 wiwe 1

 the firice chanke 1, tolt keat ur molit tuallime a
 allit f_{1} as ath appucmibite vheston forme

$$
\begin{aligned}
& \text { fi/ho: }
\end{aligned}
$$

WN: I', (1, 1 : , the diaded area lion this unceasell 1.1itful has lowered the cost to perevils uare from

 $r, \varphi_{1} r U_{1,}$ The approperate hadrum prese

! Al. and ...t odd. When a propect mone is

 - M. 'iken as. ir an private asery 'ist rather

 an mel wiver orcom

 sverage cem of produrtmon wih chonye end. lin small wremars in atumt, will dercrose if the
 chawer. machanyest, the wasel coet itwe ivere sed

 las price ilmbanemed the reatt int than will the to Thance the juantity peor hatard liv moli project udefs The rasil "entif with therewl an the onture if the jropects, ctrmand corve anl the pectous trmand clirve to well an ion the perith come circies Not in the whation lhat mat to ina laket the ifice with

 itn wiclal cent

In these cases to clear thal a slimele tiatiow

 the tolal puchatio it mpots

 ferew :- lotwern the wate rate and omemplonntit -ompenation trewehi

 feerlatr: militivient

 wourcen. there tre iwn macimpa why mow we If
 poumble to peochice them groelt win ther moem-
 can The cher is the the mode chetheng and shelve, mav toe regerded mat merelv am mecesary smpoters
 a) well home

 pirsinet. Theer grown shided be valured at a huchiw
 manal to the wave incomanem of the atmerwive un moplowed latmor $A H$ labour inpotes. trourt and in

 thit ape atreaty inmed by twe 1 iovermonewt thowld to

 Minturet
 mint he emporach have a ferovin enchanpe vilut thit mav femerve a prenumin over the valse indrated
 the was of importempert prirem

2 Indwert sertind insts

由orcmetion of expenditure. The nowlew proce gepe

 mether morse net hever all
 expondtrowes that motor them an well in as they wope haleope In perovei the evebuntion is monder to
 recipient: A somplified ememple will incuerime the
 huik If the is dowe thue who live on the area

 witd the w. conalior the exprocred finf in rewdrmitial land whers in the area The extew of thes fall much be pretiocted on the besm of experimere with ipher.

 firt if the monse thus ehmmeed whild tor ". use the cire of vound procinas the howies wi liat the wi.ne witr mes heard in the nolle Tha might - ecure be imperaitio and monv cave nintid

 in wi a chethite of the amonems that the homor owner wrwid to williag to pay t" prevent the 'in:

 pemeration twe pretmetif ownile wo we:

 pow rased miw and witemine lalep

 A Mheough the liferiture thet ham ritilv. I in ti.. . 11
 le meviewed

 some priepy are Whelv ti, change reintive fic the:

 stantatits if in in in thit iull! li.
 lions.

1 Sound mon. M.1....n

 mon retter" an irretwonal bins in laviour if the meap

 this lectenting the sumifitime div Eivem than

 in:

$$
\{\text { Nint.it : innion!mt, }
$$

If however lie afericis handere is limuted withat

 leremil

 when

1 Wing ipimviral natt.

 chavalike the values (perace) of a vilule man of

 insollte wimal hav. 1 thlike equal that illy"!

 w : He, the latal thathe come if mon purchasables

 phetis cer

> ''m thi wer int imporipepiel perien

 rye dindow jurce, their mert m the analvoss ram womethors to iaken liv wifl marivet prices muport

 at eether theer maegmal precluctivity in the procilue
 Hev art inmemphived The catemation momeral

 markel percem ire imotentate at anole tor whadion

If II（all the amenned that the angregme levelt it

 the waremat com and marimal revenue rewecta．tlv

ratlwaw or horises will be noentil and tha uill inver

 aperaporiace exira com to the fircileci the fiomect

 ate tw いie

If tumid to remmithaweed here that is in in

 sun thi they will alue low losed for res intelt the：

In thi gmier we hase metmerally ianimed that

 whole In any paricular ecomency tho．mat wit be

 14.4.4

 May Mns

 Mow, 140

 Prome. Monometrer rath

 D. Atarime M. ©itmano *

The fores if this pmoper is the meed for humis wo arti nut mew mithatrial proimets and prothems re
 wots In iriler to sumpitity the presemernem in our udens we asotime in thes paper thet a men cor jow ato emiery rite will serve as the vehule fow earrvine one He indeatrial imolet'

The goum of view in the artele is thet af a deve linnem twancing oremization it is pretwied on

 ald modracatom of lite plans

 the prolect

 eaver til hiod matames it inadeypute in tank

 relitively torief and gemeral in mature? Heme the

[^54]

 lem. is the a

When wll the mod '"月 :14. If.
How heres uill her aw :
la wether ited te...n the
themer reprav lo.,
Hew are the meert, l., lim: ,

whe whe.

3."...in
llin amaly be :10

* entilially li.4 il:... is

1 in! : nu:

terime is leavil involved in ibe: am

 the \｛！！：

Iffect：hanncial tirechatily for the ien profe 1

 bire tog＇mathe requmements oh mel wht
 （1）Howe יh imatakes are derribed below
the lerct iven ablofioted by mallagement fol：，

 life

 ｜＂：！

 いいい．

 －woll to that ot the new emeflirise can make －Hertue ine it the forecasts as a mandard akainat whit iwerfermatice can the imaoured and evalisited

 if e.ut imalls in dealt wh

 th:

 inverninent refinted in earh of the kev ivien it

 ter tath:atterl 01

- जh clac : 11
'midur bater

 frace and the rinatw man and

 1 : mat.

 cam tre cerical in indtumtrial propects Normally the

 mum: the asuliate of inemmel deanand fier the prodwet. it the tirm in eritual un beridinal how large a meeturtive isn showid be imare estrmetes of the knal market and the morlwet there that cem to

 mwe remaured tu prodere thet omput

Withom the heroud limut mo the mechoalngy or the indu-irv allil the requmements of cele a varnety
 mifmitian $\mathrm{V}_{\text {thy }}$ woms or ervees can either be unimertiken hi the new induatrial firm, purchaed or wheninititied tram fillvide suarces Prigresmive Plasili cetian'v will recuure the prodactwon of nurild of dialle the distinctive imeers of chnner ware it will primuce if it decides mo in, it own mobid miaking certan facilites and itemis of equay menil will te erepmed then wrould mot he meecsury

 provilit part. if the prothictiom percese are areate: II' reltaculy rimplex and mughly Arveloped erom

In addllicin the reqiurenmewts for fined samet in

 Hum fromers itak

In manv inetues the heuw mallang and l:and in which the new enterpice is bo housed can be rewathed i. a mineing tructure rather than a Heal th requirewnem Gany cikerperees thi mat need dintimitive propertion (onverniomal induntrial

 a n indie the twiswom whether in rewn or consurict

 d timetive an thet in mav he tearabie m rem rather that i, constrict mow farilieves In some matances

 for tepding and moneng ewphivers ean call hor large

 min foritures The mew enterper ming well rom
 irancimrtalion eququiem as afand the uwe of com num ideriect or contact carriers the the pueprope
 seured for a Eiven phymed lavere in the qu avom of

faritives th be emipticed the differemere in antiov
 cquopmont and sotivis mp the bratites with a chowe

- K,y ditemimumats of miontiov mi..d
 liv ume it a rule it thumal. drawn trom the experience

 deis setes I hiss it might le foternomed that an
 a
 nurite under polises and comidulims amblat re

 fan

 vary whatallialls Hefre dil avetige rial. his

 matuatry exi*ernice is thelefole iffeles ant to the
 H: A. meerts is the train of ratuis tawil hioll
 wowe comart may therefire promise lameromaly
 the serv iact of menmesm nis somer the effillire nem: . if the bew hrm haninclive
 bres a a whotiture wir more palamiaking and

 4x a warinion "t the whe wind mathelv infate

 1ess The varuatua from the aver all averamen

 forme whili the satre nilumery

 ndewithed ${ }^{*}$

 ponght, minul of vilue

 fremirement lotil the that 1.

 lanm to:

 lirrme thet I

pros. © , wopetivits

 ,rtially completed pivhtris

 asvemilit of the complianated ameratt 10 extond ivir mant mwathe. w. lime the alrcrall fillifatly
 Ments in proces.

 Fir exientive the irciratt manufactilier wiokime an

 shit' reals whach is at tion thongetm morelv a pro dowitan proditwi hav tehmer luplecations is th
 He leat that ons interrapleitio in the A.sw of work

 Einmi, investroent is the thatity the form whem bumintion and sale. If the rompany id tertionate

 In: he alowow emircly avonded in lins imwame 11 1. jumatile wi the putern if malen campletely

 he will le ahle la will ver the enire veer comp

 iver the calewdiat vend
 If: ") powkrel will have mapar mitupmee in 'he
 It alleithe marketing lunawim charenterized in ov

 - on: mot sh ta riwk the kow if stes thet mume newe

The thitiv ies Gurmat suber with tratact - tirether tetermanam of the lectets if fimuthed

 requill
 live compeitive med for twal dint illiken ank. ill ins wien territory Vormally it ale are .."l

 a minlat votume of sule is mater ueve a wov ulite area. where it will be biessam t, carry illobitt'al weks in varkits regnulid warelinits.

 the exterlt of the dowriluelom netwiotk will ife, ,he level in inventorses

 luakels of the compuriv, "unpul 1 meneralls areaking.

 a miven level of vales deriond

As ill the cawe of incemery if in (wisedtle i. make
 fobes by reterence $1 / 1$ ite roperieive of other thitim trallalatal in terme the numter ot has. the tyamal
 lo wited that the inserstivent in recillathes of all

 in the presectom "parion" Ipaim. however we casen where nuwe than vely robly appomimatioms ire
 ""tumatiance. it the partictolar firm thed the facior, that are lithely to deterimere that firin, inveminem in recenvelite.
 the mee of the particular morm, incexoment it er cetvoblen.

 ceovmery it mav wifly form cash om-delivery in orfter 1 II avoud ivina up humelis in receivatios and

 for cosh

Mire commendy the cimpletive thotion will rem

 mumber if ither ecrumeries. perticciliur rerme ato site have berecowe tratwewnal fur menv priduat howe. This
 (m nermis of cewh bavmem unim drivert ... parp dealer cundumets whic manutarturees anel wire

[^55]

boliur

 and Impumthon pracellu. III lie at

 the ville is!

 por coudm It the ther intirn ant ,.... . .

 (1) linh atmernatio.

3

0 F

 4
06167

 ||125 || 1.4 || 16

permit payment of maior expenditures by cheque or ilraft. Usually, a portion of the nominal bank balance is immobilized in the bank's processes of collection of cheques and drafts deposited. The projection of the minimum balances required to nieet these operational needs seldom is very difficult.
(b) A second determinant of the need for cash balances is the extent of routine fluctuations in daily receipts and expeolitures. The cash account serves to absorh mormal ebbs and flows in funds from day to day and week to week.
(c) The bank balances also reflect the desirability of advance accummlation of funds in anticipation of major uitlays for such developments as planned expansion of inventuries or receivables, income tax paymeuts, debt repayment and purchases of major iteins of equipment.
(d) A fourth, highly subjective and highly impritant med for cash bilances stems from the desirability of maintaining reserves of financial strength amd liquidty against major mexpected needs. Accur:te precliction of requirements is particularly difficult for the new enterprise, and generous cash reoreves call pretect against serious underestimation of routine needs. Further, unexpected demands on cash can conce from interruptions to production and salcs. due to such events as strikes, transportation tie up s, or fire or storm damage to prodaction facilities. sulfen declines in sales or unexpectedly high expenses may create major cash drains at a time unpropitious for borrowing or for raising further epuits. Mureover, a firm mas be forced by competition to make heavy expenditures for new, nore efficient plant anel equipment in order to cit manufacturing costs, at a time when new capital is relatively mavailable. Often adverse developments setting up heavy cash needs are coincident, so that pressures on cash are multiple in nature. In this connexion, it is interesting to recall the wry comment of an Anerican sake, Henjamin Franklin, that "in advorsity a minn can count on only three reliahle friends: is faithful log, an old wife. and money in ther hathk".
(In the wher hand, absolute security is impossible fur int: cuterprise in an uncertain world. Moreover, maintenatice of large amounts of unproductive cash :hainit possible needs dilutes over-all return on the investillent as well as boosting total financial needs. In the last allaly is, the judgement as to the size of the protectice cash reserves to be maintained reprerells a balancing of risk errsus cost considerations.

Alsu important in the deternination of the optimur. size of protertive cash reserves is the assessmert of alter mative methods of providing reserves of fin oncial strength. Thus it may prove on balance more desirable to maintain open but unutilized lines of lank credit agaiast the possibility of unexpected needs. In other cases, equity investors may be able to invest additional funds if the need for such develops. Altogether, the possihilities for developing alternate sources of back-1p financial strength should be thoroughly investigated before it is determined that large, protective cash reserves are necessary.

10. Projecting major somrces of funds

Above we have discussed the manner in which the amount of investment in each of the major asset categories can be forecast. The total of the projected asset investments represents the gross need or use of funds by the enteryrise as of the date of the particular projections. Now let us consider the sources of these funds, or in accounting terms, the liability side of the balance sheet. Sources of funds may be usefully divided into three main categories: "spontaneous" sources of credit, negotiated credits, and owners' or equity investment.

(a) Forecasting spontaneous sowrces of funds

The term "spontaneous" sources of funds is a somewhat overstated label for credit that the new enterprise may normally expect to enjoy without special effort or negotiations on the part of its management. These include a broad category of diverse items under the label "accrued liabilities". Usually it is possible for the business to receive certain services before it must pay for them. Thus, in many countries, it is customary to pay executives on a monthly basis after their services have been rendered. The total of such outstanding obligations at any single balance sheet date may be significant. Significant accrued liabilities also arise out of the fact that taxes on the income of business units usually are deducted from income well before actual payment mist be made.

More importantly, if the new enterprise has reasonable financing and prospects for success are good, it can ordinarily expect to buy raw materials, components and other routine itenis on the normal credit terms generally extended by suppliers. If the amounts of purchased materials are large, the level of normal accounts payable will also be sizable. The size of the accounts payable then is a function of the amount of the firm's purchases, the terms of purchase and the promptness of the firm in settling its obigations. Normally, it is prudent to assume that trade payables will be paid when due. If significant cash discounts are offered for early paynient, nanagement must decide whether to take the discount and forgo the alditional credit that could be obtained froni suppliers by forgoing the discount. Uniess the costs of capital to the enterprise are extrenely high, it is normially advantageous to take all available cash discounts.

(b) Projecting sources of negotiated credit

Earlier we have spoken of normal trade credit as an important "spontaneous" source of funds. In a great many instances, potential suppliers of items of p^{\prime} : and equipment for the new industrial extablish. m : are sufficiently anxious to achieve sales of such volume that they will be willing to negotiate special credi: deals. Thus the new firm may be able to buy major equipment items on extended terms-as much as five to ten years on important, long-lasting items. Special credit terms may also be available on routine purchases of materials. Normally, the chances of getting senerous special credits from auppiers is greatest if the following conditions characterise the supply situation:
(i) The main producers are large and comfortably financed themselves so that they are in a financial position to extend generous credit to their customers;
(ii) A variety of suppliers make products that are essentially similar;
(iii) The major suppliers are operating at less than capacity and additional output can be accomplished at low, marginal cost ;
(iv) The additional volume of orders from the new enterprise promises to be significant and continuing.
The main thrust of these commenis is to suggest that it is often to the advantage of sales-hungry suppliers to extend special credit to new firms which promise to be valued customers. The possibilities for such special terms deserve thorough investigation as the amounts of potential credit are large.

Commercial bank credit will also represent an important item for most new industrial firms. A reasonably well-financed firm with attractive prospects can normally expect some current credit from its commercial bank. On the other hand, bankers in a great many countries are more familiar with the financial needs of agricultural or trading firms than with those of industry, and may therefore be very cautious in evaluating new industrial enterprises. Consequently, before nuch reliance is placed on bank credit as a source of funds in the projected balance sheet, it is highly desirable that the attitudes of the conmercial hankers be pre-tested and c edit arrangenoents made as precise as possible. Furthernore, it should be kept in mind that bank credit may well be withdrawn if the enterprise encounters difficulties. Thus, for the new enterprise, bank credit is likely to be a significant yet not thoroughly reliable sonrce of funds. Further, as indicated earlier, in inany circumstances it may be prudent to develop unused borrowing arrangements against the possibility of unexpectedly heavy requirements in the future.

In the United States and some other countries, life insurance companies and other financial institutions are prepared to make intermediate and long-ternı loans to industrial enterprises. However, unless the new enterprise has unusually favourable prospects, or can offer some valued security such as ir cts of land, the normal uncertainties surrounding new ventures are usually sufficient to turn away iong-term lenders.

Where the new firm has been successful in negotiating with 1 bank or other instituions, the length of ternı of the loan may well be a measure of the dependability of this source of credit. Manarement may make firmer plans if the loan is covenanteci for a year or more than if it is merely a revolving line of credit.

(c) Equity sowrces of fruds

In normal circumstances, the owners of the new enterprise can be expected to provide tire bulk of the funds necessary for operation of the business. They will share in the profits above the return of interest to lenders and they muxt absorb the principal risks of the enterprise. Equity investment for the new basiness normally takes the form of capital paid in
by investors subscrihing to new conimon slares. However, the base capital will he supplemented or reduced according to the projected protits or losses of the firm between the interva! of its inctption and the dates on which projected halance slieets are set forth. Thus, preparation of the projected balance sheet requires an estimate of a protit and loss for the firm in the interval between its inception and the date of the projections. Seldom is it easy to forecast accurately the operating results of a new firm. However, the requirement of a new profit and loss forecast in order to make a projected balance-sheets forecast of financial requirements should not be viewed as an additional hurden. Certainly, it i., desirable for planning purposes in anty instince to prepare forecasts of the estimated results from operations.

A few useful generalizations can be made regarding the projection of profit-and-loss statements for new ventures. General experience has underscured the importance of conservatism in preclicting the results of operations for the new firm in its early months and ycars. Commonly, the conts of getting started in business are inordinately high, and fre quently combinations of unexpected priblems force costs well above what might lave seemed reasomable estimates. For example, it is normal in the mew manufacturing enterprise of any complexity to an counter problems in training labour alld supervisury personnel, so that a higin order of rejects and naiterials spoilage must be exepred. It secilis gumb general advice to suggest that the projectur shmild expect the unexpected and that such umexpected developments will probably be unfavourable. The thrist of these conments is to urge that the estmates of near-tern profitability for the new vemture be made on what the projector regirsls is highly conservative or pessimistic assumptions.

11. Illustration of the projected halance shett apfroach

Now iat us provide a lorief and over.simplitied illustration of the pronew of developeing a formast of financial meeds by the prejecteel hatione theet method by reterence tio our earlier example .. Progio. sive l'astics, inc. The primeipia! promoter of the proposed company is Di: I. .I. 11:andy. whe has beren serving as execulive bice jreorlent of a platio, firm in a different part of the commtry inmons tin her head of his own operation, he han suceeded in persuadiug friends and acquant:ance ${ }^{\prime \prime}$ inved in his new tirm. Total commithents from the e fuent amount to $\$ 300,000$, including a $\$ 40,000$) investment of his own. He has decided we ily l" mike the. amonnt suffice. although two larate immorn ina, : indicated that they "gether comit bupply an ditional \$50.(0)

After carefui investigation. Mr. Hamly fonm : large industrial building in which iw.. thome a alrefuate for his needs could be leased. The urimasiry electenc power and basic tacilitios were aiready avalable

After carriul amalysis, Mr. Ilandy he:erninel that the new firni could expect tis acheve . sile, level of approximately $\$$ enf)(0) a mionth by the end of the
first year of the operation. The sales were expected to remain at about this level for the next two or three years.

Mr. Handy sought to minimize equipment needs ly procuring only three new compression moulding machines. A fourth machine would be purchased in the used machinery market for a cost of no more than one half that of the new machines. The used machine would be used primarily to provide standby capacity to cover peak-load reguirements and breaklowns in the new machinery. To minimize invectmerrt in equipment. Mr. Handy planned to operate new machines on a three-shift. 24 -hour basis. even though labour on the second and third shifts would be paid somewhat higher hourly wages than for the first shift. Other fixed asset requirements consisted primarily of polishing and grinding maclines for the finishing operation, materials handling and office equipment. Since the costs of the prilishing and grimding wachines for the funishing operation vere modest. Mr. Handy determined to hay enough of these so that this part of the operation could he accomplished through single-shift operation. inasmuch as the prospective employees for this operation would be women, who preferred to wurk daytime shifts. He estimeted that total outlays for equipment would come to $\$ 263,000$.

After intensive negotiation, Mr. Handy was able to arrange deferred payment terms on the new moulding eqpijpment, so that a large percentage of the purchase price could be repaid over a 3 (u-month period.

Mr. Hamrly docide to forecast his requirements after the company had reached its anticipated level of siles volume, which he believed wonid represent the time of greatest financial strain for the firm. Since this sales volume would be reached in approximately one year, he tecided to project requitemoits as of one year after the company began operation. It womld take some three months to get ready (o bexin irobuction. so the balance-sheet forecast wombl be mate appoximately fifteen months in the fiture.

Mr. Handy wanted to operate with a level of inventory that would provide reasonabie piotection agausi interruption in saw material flows and sudden spurts ill sales. With this policy. he hoped to avoid probuction stoppiges. No marked seasonal pattern in sales was anticipated, and Mr. Handy hoped to probluce at a level rate once sales had reached a certain whme.

Mr. llandy estinated that raw materials would amonint lo about 40 per cent of the total cost of goods mamifactured, which in turn would amount to about $\$ 1 \$ 0,0 \mathrm{OH}$ per month ance the $\$ 20,000$ sales level was reached. Cinsequently. raw nuaterials purchases would approximate $\$(0), 000$ a month. After consideration, Mr. Handy decided to try to maintain a supply of raw materials equal to one month's nsage.

The requirements for in-process inventory ap praterl small. In order to ensure that the labour in finishing the dinnerware would not the left idle due to interruptirns in moulding. Mr. Handy decided to carry an in-process inventory of about three days'
output of the moulding machines, representing about $\$ 12,000$ in total value.

Mr. Handy planned to sell his tableware in sets of 30 to 60 pieces. Several different designs were to be employed and in each of the designs six basic colours would be used. These marketing requirement appeared to dictate a considerable stock of finished goods, inasmuch as the competitive situation demanded that the company have finished merchandise on hand for immediale delivery as orders were received from retail outlets. Mr. Handy first planned to carry a finished goods inventory equal to about one month's sales at cost. or $\$ 150,000$. Afier consideration of the fiuancial hurden, however. he decided to accept a lower target figure of three weeks' supply, or $\$ 113,000$.

It was the custom in the trade to offer retailers 3C-day credit terms. Since some customers anight he expected to be slow in payment, even though most of the prospective customers were well-estahlished, well-financed firms, Mr. Handy projected his reccivables' investment as one and one third months' sales, or $\$ 267,000$.

Other asset requirements were expecterl to be minimal; Mr. Handy decidet to make a $\$ 5,000$ alInwance for these.

Mr. Handy was conscious of his earlier assumption that there would be no seasonal fluctuation in sales. However, from experience he had learned that there would be some fluctuations in the rate of incoming orders and certain unexpectedly slack periods of sale inight well occur. To provide for such contingencies and routine fluctuations, Mr. Handy decided to maintain a bank account of $\$ 75.000$ a a figure equal to approximately two weeks' projecterl, normal expenditures. He would have felt much more comfortable with a larger figure, one say, equal to one month's expenditures. However, he did secure the categorical agreement of two investors to invest an additional $\$ 50,000$ when, as and if needed by the firm, so he decided to rely on this additional commitment as a contingent reserve of financial strength.

The tabulation (see below) of anticipated investment at the end of fifteen monthe totalled $\$ 795,000$. Armed with this estimate of probable gross requirements, Mr. Handy turned to the task of generating sufficient sources of funds. First, he undertook a projection of profit and loss for the three months of organization and the twelve initial months of operation. After detailed calculation, Mr. Handy determined that the company would become protitable after about six months of operation and that, in the second six months of operation, the profits would be sufficient to recoup organizationai custs and the losses of the first six months. Hence, the owners' investment would be intact by the time of the pri.jecred balance sheet. As indicated rarlier, Mr. Handy had negotiated a special credit on the new equipmertt. After allowing for down payment and payments during the first year, an amount of $\$ 100,000$ would be outstanding on the projected statement date. I-counts payable were expected to consist predominately of payables for raw materials, but some additional supplies would also be bought on credit.

The terms of purchase of the principal materials were net thirty days, so that Mr. Handy projected a figure of $\$ 70,000$ as a normal level for accounts payahle. Accrued expenses would consist largely of accrued rental and accrued wages. While these figures would fluctuate sonewhat within the month, they would generally be at a level of about $\$ 25,000$.

These projected sources totalled $\$ 500,000$, leaving approximateiy $\$ 300,000$ of needs unmatched by sources.

Mr. Handy then investigated the possibilities of bank credit. He found that the local commercial banks were unwilling to make unsecured loans that would be outstanding continuously over a long period. but that one bank was willing to make a revolving credit loan arrangement under which the bank would advance 80 per cent of new receivabies of firms of good quality. Since Mr. Handy planned to sell only to firms of good credit, he felt justified in projecting bank credit at $\$ 200,000$, a figure almost 80 per cent of the total receivables outstanding. Combining the "source figures" in the projected talance sheet, Mr. Handy found that he was still short $\$ 102,000$. At this point, he faced some unpalatable choices. He was reluctant to reduce the scale of the enterprise, since a smaller operation could expect to have little impact in the market and could not carry an adequate amount of advertising to support sales. Consequently, he decided to take the cilances of operating with a two weeks' stock of finished goods, thus reducing the finished goorls' investment by $\$ 38,000$ to $\$ 75,000$. Next, he considered other possibilities for credit. After investigation, he fompd a leading sapplier of the plastic powder, his principal rau naterial, who was willing to grant (0)-day terms instead of the normal 30-day terms, provided Progressive Plastics' puichases were concentrated with his firm. This made posisble an additional $\$ 60,000$ of contınuing credit, or a level of acconnts payable of $\$ 130,000$. A recasting of the projection of sources brought the total to $\$ 755,000$, so that, if the cash balance were reduced to $\$ 73,000$, sources and uses would be equal.

On the face of the matter, it appeared that Mr . Handy had a feasible financial programme. Yet he queried whether his financial plans made adequate allowance for unexpected needs and unforeseen problens.

Progressive Plastics, Incohporated

Projected balance sheet as of end int first year of operation
 (Dollar figures in thousunds)

	Imitial projection	Retised projection
Cash	75	73
Inventory		
Raw materials	60	60
In-process	12	12
Finished soods	113	75
Accounts recrivables	267	$2{ }^{\text {a }}$
Plant and equipmient	233	263
Miscellaneous assets	5	5
	795	753

	$\begin{gathered} \text { Instial } \\ \text { probiction } \end{gathered}$	$\begin{gathered} \text { Rizisid } \\ \text { projection } \end{gathered}$
Bank lnan		210
decounts prayable to suppliets	71	130
Accrued expenses	:	\therefore
Notes payable-equipment supplier	(14)	(19)
raid in capial	301	$3(4)$
Farned surplus.	1)	1
	-	-
	415	$7: 5$
Shortfall	360	

12. The projected cash floze mothed of firciastm! fund requircinents

The nus lasic and comprehensive mothen of predicting the amount and the timing of future cant needs is through peparation of a cash thum firecant. Essentially, the 0 : h flow forecast, or "cash hurdere". is a tabulation of the plans of thr firm in t"rens of their impact on the receipts and expenditures of cinh in future periods. The basir theary of the canh thow forecast is simple-it seeks merely to predict whon and in what quantity receipts of coch will conce int., the firm and when and in what quanity pathem. of cash will be made.

In the cash forecast, all antic ipated reccipt of a $:$ an are inclucled, repardles of whether or wit they repp:sent income in the accountiag sense. Thas, meluhed along with collection of cash from siles and recm ables arising out of sales are cash receipts fomm wall sources as sales of securities of of fixed anome
 along with such routine payments as accutat- pasable, wages, salarie's and remts, any phamer / \mid.atnent. of taxes, dividends, Ioan repayments or ontlis, for equipment or buildings. It , hond mot inc:urle ex. pense items which to not repereme ontlan of cash. such as allowames for depreceiotion amil f., ! !at debts.

The forecaster for a now firm in memented in revealing bot anly the totid umtlow and milh, an : : atn eatended periosl, such is at yar. lutt ahe, tho timing of the cash fows withan thin teriol lin mowt cash forecasts, receipts and piaments are lintiont down by months, but, if unevell intlow :and wht ${ }^{\prime}$, atr. anticipated within the monthly intelvals. It maty lie necessary to break the forecont downitht, weekl: .. even daty periads in wier to expere maxminm needs.

As in the case of the prajecterd hatance sheret method, the results of cash-flow forerant, will ;rowe only as accurate and as reliable an lier anderlying planning on which the forecont is hased ind is we have seen, virmally all the signifermt activties of the firm affect its need for fimids. This, for complate. effectiventess in his work, the furecister of rasho How, needv comprehens:ue and accurate data $\cdot \mathrm{m}$ whitt the operations of the firm irre likely to ler

In this discission of carh-How forecasting. we will assume that basic plans for the epelithen of the business have lieen tevelined and that the gerems constructing ther cavi-ilow firecast will lave the benefte if such besic piannmg naterials as the forecusts of anticipated sales liroken down intu aiales for
cash and sales on normal credit terms; and, if an important volume of sales on special credit terms is anticipatel, a separate breakdown of sales on special credit terms.

From the sales forecast, a schedule of collection of receivables can be prepared. In this schedule, the collections are lagged behind the credit sales by use of appropriate assumptions as to the average time receivables, will be outstanding. A next step involves the projection of other receipts; for example, from planied sale of common shares or from anticipated bank loans.

With these data, a schedule of anticipated cash receipts can be prepared which pulls together the projected receipts from cash sales, from collection of receitibles and from the other anticipated sources.

In forecasting planned payments, total anticipated outlays are built up from a series of sub-schedules. A tirst scherlule, particularly inportant in the case of the enterprise just getting started, tabulates the costs of facilities-plant, equipment, spare parts and any other facilities required. This s-hedule of facilities requirements then must be converted into a schedule of payments for facilities, loy lagging the planned paymeuts behind purchase dates according to the credit terms of purchase of the facilities.

Anong the important schedules that follow from the phanned production schedules is a schedule of $p^{\text {lamer }}$ purchases of raw materials and other production materials. 'I his whednle of planned purchases in turn must lie converted into a schedule of payments for plamud purchases by timing payments according to the turms of purchase the firmi expects to enjoy.
lotom the productiont soledile, also, is derived a
 trinslated into projections of wange expense and in turu into a whedule of wage payments. Similarly. other manufacturing expenses must le converted into : wherlule if piyment for other mamacturing expellises.

In a similar fashion, a schedule of payments for general diministrative expellises can be made along with ith . .d ditiontal seluedule of "other payments". which lists any other expected outlays not included in :lae other paybuent selicdules.

The totils fur each of the time periods in question for each of the schedules of receipts and expenditures are buought tegrether in it summary whedule of projected receipt amil payments. The totals for payments plas the kesired bank balance, less anticipated receipts. represents the net cash neved forecast for the peitiol. Normally, a comulative figure for net excess or shortuge of cash is carried forward from month to montin, so that the net need can be deterinined as of the end of athy forecast periods.
(impared with the projected balance-sliect method, the furecast cash flow approach has some advantages in simplicity of concept and apparent ease of preparithom. Actually. in each case mach underlying $p^{\text {lomoning }}$ is necessary before meaningful financial forceasts call le put together. If comnon planning assunntions are used in the two approaches, the two should priduce identical tesults. Thus, if we were
to prepare a cash forecast for Progressive Plastics covering the period until it begins operation and the twelve months thereafter, the cumulative figure for cash from the cash forecast should equal the $\$ 73,000$ balance shown on the projected balance sheet for the date one year after beginning operations. In a real sense, ach approach supplements the other, and a good set of financial forecasts should include both cash forecasts detailed by monthly periods and projected balance sheets as of month-end for the similar span of time.

C. Some common pmoblems in forecasting needs; APPROACHES TO thEIR SOLUTION

Case studies of the results of new industrial ventures have shown up widespread weaknesses, often serious ones, in the financial planning associated with these projects. In this section we shall identify some of the most common problems in the forecasting of financial needs and, where possible, suggest approaches by which these problems may be eased or overcome.

1. Inadequate emphasis on the process of planning by management

In a great many areas of the world, there is a distinct shortage of highly trained, professional managers, skilled in techniques of business planning. More often the potential managers of new industrial enterprises arc men with an orientation towards action rather than towards analysis and planning. Their experience has included little exposure to business planning techniques and they have been accustomed to operating in a manner described as "flying by the seat of your pants". Once they see what they judge an attractive opportunity. they are eager to get started, expecting to improvise and adapt as necessary to make the enterprise succeed. As we suggested at the mutset of this paper, planning, particularly with reference to the projection of needs for financing and the mustering of sources of fuuds, has very real advantages. Work on planuing can be extremely productive, not just a matter of meeting bureaucratic requirements of a development financing agency. In the long rum, education in business management, a training which will doubtless include emphasis on planning tecliniques, will instil an appreciation of the usefulness of formalized planning. In the short term, however, it seens widely necessary that the de celopment financing agency undertake a continuing missionary effort to promote a greater managerial interest in planning and planning techniques. At the same time, it can insist on the preparation by miaragenient of meaningful, forwart plans as a prerequisite to its financial support. The broad educational effort and the rigorous requirement should go hand in hand, since the quality of the plansing effort will be much greater if management is convinced of the importance of the valise of the effort to itself as well as to the financing agency.

2. Limitations on the caparity to plon future operations

liven where management is impressed with the desirability of careful playning, lack of skill due to
inexperience may limit its capacity to plan effectively. As suggested earlier, even a trained manager may be experienced primarily in marketing, production or general administration and have had little exposure to operational planning. We have emphasized over and over again the point that financial plannirg is simply an adjunct or a follow-on aspect of over-all planning for the enterprise. Thus, a great many of the financial requirements will relate directly to the volume of sales achieved. Yet management may have had little or no training in market research or other tecliniques useful in projecting realistic estimates of attainable sales volume. Where the need for the project is great or where management has other skills that are impressive, the development financing ag ncy should be willing and able to lend active assistance in the development of the forecasts and in the total planning function. Technicai assistance of this nature may prove to be a more valuable contribution to the success of the project than the money provided by the agency. Many development financing agencies do not appear to be sufficiently well staffed to provide this assistance at present. It seems to us highly desirable, indeed essential, that they equip themselves to render managenent a high quality of assistance in this area.
In other situations, uncertainties inherent in the environment may effectively limit the capacity to plan operations. In many instances, for example, the action of the Goverument relative to tariffs or other import restrictions may be of great importance to the forecasting of sales by a new doniestic enterprise, yet changes in these government policies and attitules may be extremely difficult to anticipate. In such circumstances, accurate planning is impossible. It is very important to recognize the degree of uncertainty behind forecasts, since blind reliance on inherently tenuous assumptions may lead to results worse thain if no planning at all had been attempted.

One useful approach in situations where inliereut uncertainties are great utilizes multiple projections, based on different assumptions about the more im1po:tant variables influencing future couditions. These can lead to tabulations of minimum and maximum requirements, as well as to an estimate of most prol). able requirements. Even if plans are besed on thr most probable rather than the maxinum repuirements, management and all concerned are alerted to the possibility that needs might well be at the maximum rather than at the most probable level.

3. Failure of projections to reffect the distinct circumstances of the particular project

As we have indicated earlier financial projections must reflect the circumstances, the environnemt and the plans and expectations of the marnagement of the particular venture. The use of standard ratios drawn from the experience of other firms under different conditions and under particular operating policies can be dangerously misleading. Thus a United States manufact. .ing firm undertook the establishment of a new plane in the Far Fast. Drawing ratios from its domestic experience, the total requirements for plant and equipment and working capital were pro-
jected at $\$ 2$ million. A variety of distinctive local conditions, including the expectations of customers for long-extended credit, caused actual needs to amount to between two and three times the original projections.

Sonewhat similar hazards obtain when the jow of preparing the financial forecasts is turned over liw management to outside accountant. Bien if the outside accountants are skilled in the mechamics of forecasting, they often have proved reluctant to question management closely and thoroughly reg.riliug its particular plans for the fiture. Consequenth, the forecasts have been mechanically perfect yet hive failed to represent what management actually phomed to do and hence have proved sterile and mislcoding. Certainly it is permissible, perhaps desiralle, for perple skilled in accounting to prep:irr the eletiniled forecasts, but in such circumstances top mamagent participation in and detailed acceptance of the imbplicit operating plans lomilt into the forecat in as sential. Often, it is useful for develymemt finaming officials, examining projections sulmittel to them. to ceview the forecasts with the top magement of the new enterprise, in order to verify the relitions of the projections to the actual urerating pians and expectations of top managenent

4. Hidespread tindency toverard "ndirestmanting financial nicds

As moted earlier underestimation of athal re quirements is much more commen thou is ave estimation of financial neets. Derhaps this stroms from the natural entimiont that inle would eyact in men willing to mule rtake the chadrenge ai a 1 ww enterprise. While a certain optimism in perlapen an
 a weakness of financial plaming inkers it is tompere od with realima. As we have indieated eulur, hienher
 tures, tardiness in stirting inf ope tions, ofyeres

 achieving targeted sales level and collection elyol ules are extrentely commom. Finlure for , iltow an

 :marice, :

 in fact, there winte will ! growh milephate "t

 phisied, the net nerels whimld toe eident

Many firms have succeedel in financing the initial sales volme projected, only to encounter difficulties when the company has subsequently achieved a suhstantially higher volume of sales. Is we have seen, the investnient in receivables and inventory tends to increase roughly in relation to the growth in sales. While some offset to the net increase in gross working caprital needs due to exparled volume is obtained trom the boost in trade credit related to increased purchase volume and from higher profits as a result of the higher wolune, these conimonly are inidequate to match the higher investment required in inventery and receivables. Thus, working capital stringency nay be encountered at a tine when the company is enjoying an unusual prosperity measured in terms of sales and profits. Kinown as the "prosperity squeeze on working capital". this phenomenon needs more widespread recognition and explicit reflection in financial forecasts.

5. Fallure to proside sufficient uncommitted rescren's of financial strongth

In a mumber of instances, enterprises quite promis. ing for the long term have failed hecause their managers did not provide sufficient reserves of finallcial strengtl to permit then to overcome innmediate difficuties. As indicated in the discussion of the functions of casli reserves, a balance nust be struck between a risik of failure due to inadequate reserves and the problem of raising enough funds tu get the enterprise started. Wherever possible, however, specific and substantial reserves of financial si renuth shond le built into the financial projections. This can be done hy making highly conservative estintates of funds requirements at each point in the furecast, by maintaining substantial cash reserves, by mahing explicit arrangement for additional sources of funds when needed, or ly a conbination of two or more of the above. Speaking broadly, the size of the unconmitted reserves of financial strength should vary inversely to the flexibility of operating plans of the venture. Thus, firms operating according to a highly inflexible schedule should plan for greater reserves of financial strength. For example, a promising venture in the construction of prefabricated houses in the north-east United States went into bankruptcy after less than one year of full operations. This firn hat experienced management and an excellent product. Operation was to be built around assembly line production of large wall, roof, floor and parsition panels with major economies anticiproped from continnous large-seale production and volume purchase. Yet it was apparent that the success of the plan depencled upon costinumus production at a high volume and that any interruption to the production or sale of houses, or to the collection of the sales receivables, would cause inventories and rereivables to pile up and financial requirements to skrrocket. Actually the firm did encounter significant production and sales difficulties and problems of financing the operation quickly became acute, since little prowision had been made for additional unplanned needs. The failure of this company might well have been avoided had the original planning re.
cognized the inflexibility of operating plans and the consequent need for a flexible financing plan.

6. Methods of reducing needs for funds

In seeking to maxinize the productivity of available funds, financing agency officials should develop skill in bringing to light alternative approaches or devices of nanagement minimizing the need for funds. It may well be that the easiest way to "raise funds" is to take measures to avoid the need for them. A formal checklist of ways of reducing net capital requirements may be useful. Where the situation suggests that particular need-cutting methods from the list might be applicable, these can be raised for consideration of the promoters of the new firm.

More as a means to stir thought which will lead to very much more comprehensive lists, we present below a number of questions designed to expose fund-conserving possibilities. Some have been mentioned before in this paper; others are added.
(1) In considering location of plant or office facilities, is appropriate attention given to the availability of such infrastructural items as feeding, housing, transport, educational, and recreational facilities for personnel? water and sewerage facilities? road, air, rail, or water transport tacilities? electric and steam power facilities?
(2) Is leasing a satisfactory alternative to ownership of factory buildings, office facilities, warehouse facilities?
(3) What are the possibilities for subcontracting operations requiring very expensive or infrequently used equipment : operations at peak load periods; operations which require unusual skills?
(4) What possibilities exist for increasing usage of expensive equipment or facilities by multipleshift operation?
(5) Have the possibilities been inveatigated for joint-ownership and use with other firms of high-cost facilities such as computer centres?
(6) Are opportunitien for employing used machinery effectively exploited?
(7) Have the possibilities of use of air freight been taken into account in minimizing spare parts' inventorics?
(8) Have considerations of credit availability been weighed appropriately in selecting equipment sources?
(9) Are the plans for equipment thoroughly suitable to local circumstances such as the costs of labour, maintenance skills etc.?
(10) In the design of products, is maximum use made of standard components or materials and of domestic materials available from suppliers' shelves on short notice?
(11) Are viporous methods used to keep stocks of various items in balance, recognizing that the utility of inventories may be limited to the level of the bowest vital item?
(12) Are the routines of receipt, stock-record keeping and isuce thoroughly methodical and fully disciplined?
(13) Are the shortest procurement lead-time assumptions and leanest stock levels employed consistent with reasonable safety?
(14) Are the procurement offices and production scheduling offices working closely together, so that changes in production schedules are quicky refiected in material orders?
(15) Are routines established to get production orders set aside in the plant back into the productive process and the goods into salable condition?
(16) Is vigorous action taken to dispose of obsolete, surplus or otherwise unfit materials or components?
(17) Are constant efforts made to shorten production cycles? Do existing methods ensure full recognition of all costs and risks of inventory in the decisions as to length of production runs?
(18) Have full efforts been devoted to development of multiple sources to replace sole-source suppliers?
(19) Can special price cuts be used more quickly on slow-moving finished goods?
(20) Are maximum efforts being made to flatten out seasonal sales patterns that bulk up inventories?
(21) Are devices that show movement of goods from retailers' shelves being used to provide
timely warning of changes in sales at retail level?
(22) As new items are adiled to the compraty's bitw of products, are organized. contimuing effort, being made to delete items so as to prevent needless proliferation of inventory itens?
(23) Has the feasibility of air delivery to customers been analysed recently as a substitute firs decentralized stocks of high-value, slow -moning inventory items?
(24) Will conmetitive conditions permit insiatence upon deposits or advance payments againat customer orders? This is most likely to he a possilinitity in the case of orders for suecial products taking a long time to produce.
(25) Would use of prompt payment discommt, mi:1terially reduce the level of outstanding receivables?
(26) Are procedures for the swift investigation of customer complaints and expeditions rewolution of disputes with custonters in effect:
(27) Are office routines adapted to promititinuicing of deliveries?
(28) Is the follow-up on overdue accomit, vigutin: and continuing?
(29) Are receivable accounts reviewed perionlicalls to expose chronic slow-paying ellstomer, wh: could be put on cash terms?
(30) Have all possibilitios for getting "ownura cheques into the bank rapidily, such in lue "f banks as collection points, heen invertigated?

PROJECT EVALUATION

by William H. Newman*

Introduction

Able executives are one of the crucial requirements for the success of any enterprise. ${ }^{1}$ No matter how sound a project may appear, unless good managerial talent is available to run it, it is doomed to failure.

In the other hand, justgement regarding future management is often difficult to make at the time of project evalonation. The subject lacks public glamour atul therefore may receive little attention. At the same time, the personal ambitions of individuals who would like to run the project are involved, so that the subject must be handled delicately-or gently sidestepred. liven when it is acknowledged, making wise and ohjective appraisals of future executives calls for suljective judgements, and these are difficult to discuss and defend in public.

The subject of this paper, then, is both vital and haril to perform. No formula or well-recognized steps exist for its easy soltution. These characteristics-importance combined with difficulty-make careful and srstematic analysis of potential management one of the erncial aspects of projeet evahation.

This payer deals with the assessment of executive qualific:ations needed to mamige a project after facilities are in place. We are assmming that the economic and political smminess of the projeet has been settled. and that problems of trsign. financing and other arocts of proparing the project for operation are being combidered in uther ports of the over-all evalua tion. (hur quecifie question here is: what kinds of people will le necessary to operate the project succenfully after the facilities are in place and what are the frowpets for attracting and retaining such qualilied jeet solls?

We shall consider this gnestion from the pwint of view of thone engaged in the actual evahation of proposed indenstrial projects: thus this is neither a thenretical treatment nir a report on scientific resarch. Minty of the suggestions are bised on such studies. bitt the purpose here is to transhate what as known into "prational terms and to express ideas clearly with a minimmon of technical jargon. While the ajprearli recommented is applicable to all sorts of sithations. the ferns is on industrial projects in developing comitries.

The allalytical framewnt proposed extends from the needs for exectitive personnel arising from the project itself to the means for fulfilling those needs.

[^56]In the actual evaluation, the steps will not, of course, be followed in rigid sequence; the evaluator must assemble data from numerous sources, and he will often base his ideas upon other aspects of the project evaluation. Nevertheless, some framework is valuable in organizing such diverse information and in ensuring a thorough and systematic review of all important aspects. The following points should be considered: realistic statements of managerial tasks necessary for successful operation of the project; tentative managerial organization to perform the identified tasks; appraisal of potential staff to fill positions described; possibilities of training men to fill managerial jobs; difficulties arising from different cultural backgrounds.

A. Realistic statements of managerial tasks NECESSATY FOR SUCCESSFUL OPERATION OF THE Peoject

Managerial requirements arise from the project itself-it's nission, size, degree of integration, novelty, affiliations, and other values. Some aspects of nanagement will be similar to those found in other enterprises. Grave danger will be encountered. however, if lists of tasks are merely copied. Instead, the first fluestion is: what managerial tasks must be performed well in order to make this particular enterprise a success? Some suggestions can of course be chtained by examining similar enterprises; but each enterprise is unique, and the particular array of activities necessary to the project under consideration should lee carefully studied. A list should be made of the total tasks to be performed together with an indication of those requiring exceptional skill.

The following outline, while not intencled to be comprehensive, suggests several points of view which slomild le considered with respect to every project.

1. Making technoloyical decisions

Within an executive staff, there should be considerable hnuwledge regarding the technical processes and the general "know how" involved in the particular lire of husiness. Oil refining, steel making, or leather taming olviously call for distinct knowledge and judgentent. In this broad field of technological decisions, it is often helpful to distinguish betweer. two types of problems:
(a) Process design and modification : decisions of this sort are typically made only occasionally and are often highly technical in nature:
(b) Technical operating decisions: here we are concerned with maintaining conditions that ensure
efficient operation of, for example, a loom or an openhearth furnace.

In view of the rapid changes taking place in the technology of many industries, an ability to keep up with new developments, in addition to familiarity with current technology, should be possessed by at least some of the executives.

2. Maintaining effective external relationships

Every business is both dependent upon and contributes to a variety of external groups. These relationships must be maintained so that the mutual exchange operates on a continuing basis. A breakdown on any one front may jeopardize the entire operation of the project. The external groups with which good relationships are essential to every enterprise include customers; co-operating industries such as suppliers, transport, services, bankers; government and regulatory igencies; worker representatives; local communities, schools, and the like.

The basic point here is that every new enterprise will become an active part of its economir, political and social environment. Being new, it will probably be the agent of significant changes in one or more features of that enviroument. Consequently, the success of the venture will depend, in part, upon having executives who can effectively foster successful relations between the new business and the "outside" world.

3. Internal administration

The largest volume of managerial work in terms of man-hours typically deals with internal administration. For purposes of evaluation, a threefold breakdown of internal management is heipful.

(a) Creating goods and services

Here, we are concerned with managcment of the main production functions of the enterprise: the creation of goods (or services) of the right quality, at the right time, at 2 reasonable cost. These may be steps in a process or, for a diversified venture, activities relating to varions products Because these activities are the justification for the existence of th:e enterprise, they normally will be easily identified

(b) Providing necessary anxiliary functions

Managers must also deal with a variety of activities necessary to facilitate and support the basic functic Is of the enterprise: accounting, finance, personnel, maintenance and other se:vices. In remote areas and in non-industrialized countries, the variety and innportance of these auxiliary functions increases. The project plan should not only indicate what auxiliary activities are necessary but should also make sure that the executive talem needed to direct them is included in the evaluation.

(c) Managing uperations

The functional breakdo in suggested in points (a) and (b) above emphasizes the subjects in which competence is needed in the executive corps of the enterprise. Cutting across these functional fields is mana-
gerial skill, which involves the ability to plinn, to organize, to select and train petsonnel, to supervise and to control.

The reason for giving specific attention to these managerial processes is that a man may he anf cxpert in, say, accounting or personnel, but lack manageriat ability in applying such knowledge to all uperating situation.

4. Integrating zarious actirities into halanced. tim.ly and effective action

In addition to making technological decisiommaintaining effective external relations and mimaging operations, another highly important task of management is "integration". A good mimager must tike into account a variety of factors which are oftern (puledifferent in nature. Issues relating to techology. external relations and internal administration are interdependent: usually changes cannot be male in one without affecting another. The manager must pros vide a lalance in the weight given to varinus cont siderations and do this in terms of a serperice or then: of operations, without merely comprising anc tirt the other. Instead, to use a chemical expression. he achieves a synthesis which graduces eflective result. with a minimum of econumic and sexial (ant.

This integrating task is dynamic. It delv with changes in the external enviromentit and within the enterprise. Consequently. it incolves a never comber process of adjustment. Also, if done well, the ill tegration anticipates changes amb prepares to meot then: the mechanism for doing this may lee longrange plaming or informal fori castug and affun nent. Furthernore, management may mitiate change with respect to markets or other conditious clowely related to the enterprise. (Hovionsly, some projects will be expected to carry a greater burden of dynamis. leadership than others. In today's werld, a mimage inent must have at leavt some capacity to alap and change if the enterprise is to survive

The rentral theme of this section is that an evolua tion of management must rest on al chear muler ntant ing of what the managers of the esectic enterprive are experted to do. Xis realy mate list of duties is satinactury for than pimpone. Vach enterpoise varies mot only in the sope of its internat activite.
 it ocrmpirs in the ecomony allil the antely it it country. Therefore an imbithative allatrot of the
 step.

13. TeNtative maNagimit, omeani/atind to PERFOKM IDENTIFIID 1 ASt,

Since our abject is the paluation of manprowet, the managerial tisks identified in the preceling malysis must be trimslated into jobs that will be fillet by people.

1. Combinin! tasts into manatertal job,

Analysing and organizing ate not the some thang Fur examile. monont tuls is a peneriml twat fat mphoving nir:lows of woik. lat we hare lrathel
through intter experience that the narrow subdivi－ sioms help，fnl in atn amalvsis are rarely the best way t＂anvign task，to intlividua workers．The same prin－ cipe aphier to manageriai jobs．

The tanhs itentitied in the analysis suggested above can be combured in numerous ways．Some activities will be wh important and so specialized that they would be dsigned to a single indivielnal．I．ess im－ furtant task maty le gromped with several ohers to form a single job．Still wher activities may be divited ammeng several executives．But，in this process of combining tatsk，imto jobs，each necessary task should be ensured adequate and specific attention．

A vital part of the organizing process is relating the sarinus jols to each other．Channels of commu－ nication，influence and authority are essential to co－ ordinated ation（onserguently，the various jobs need to lise fitter together into some form of organizational stracture．${ }^{2}$

2．Successize rifincments in arganizational planning

When a project is in its preliminary planning stiges，the projected organization is likely to be vagne For example，if economic feasibility is the rentral issure and skilled manpower is readily avail－ able，the entire question of management evaluation mity le deferrei．However．in miny countries mana－ gerial mannewer is a critical and scarce resource． In uch situations，a tentative organization plan，or perhaps alternite orgamization plans，should be pre－ pired when it is decided to give the entire project carcful evaluation．

Is phans for the project are refined，and especially as．certion key melividuals are selected as future execu－ live of the project．the organization plan should bectme more definite Frequently，the sone and perhap＇s the mature of a project are morlified as plan－ ning jurceseds．This leads to successive refinements af the orgamization plan．

The purpuse of these orginization plans is not t ） impone a rigicl structure on the exaculives who are finally selectetl to manage the enterprise．Instead， diey are projections which are necessary to define mathagerial manpowir requirements－just as physical川的rating plams are necessary to predict raw－material requirements．

3．Instinguishing bervice full－time and part－time jobs

Most pesitions in an effective organization should be tilled by executives who devote their full time to the enterprise Occasional exceptions may be war－ ranterl，especially for small ventures that cannot affurd to hire technical talent on a full－time basis． Memiers of boards of directors，scientific advisers and representatives living in foreign countries are examples．${ }^{\text {s }}$

[^57]Use of part time executives has drawbacks．These men may get onit of touch with the current operations of the interprise，they may not be available when needed，and they may not have the same degree of commitment to the enterprise that its full－time execu－ tives normaly exhibit．Nevertheless，in projecting an organizational structure，a few part－time executives may be the unly practical way to provide for all the tasks that will be necessary．

4．Recognising feasible compensation levels

Most projects are planned in a spirit of enthusiasm and high expectations．While in this mood，we are likely to project managerial jobs that can be filled only by men of exceptional ability，and we tend to overlook the salaries that will have to be paid to retain the active interest of such individuals．The question whether it is practical to think in such terms must he faced realistically．

An enterprise has better prospects for success if it can make its positions attractive to at least a group； of highly qualified executives．（ienerally speaking， the salaries paid by enterprises associated with gov－ ernment to key personnel tend to be too low．This practice tends to lead able men to take positions in several different enterprises at the same time，or to other questionable means of receiving compensation． Nevertheless，we must recognize that there may be political restraints on high salaries，and also that not many enterpises can support the burden of high bily for more than a few key individuals．These facts minst be kept in mind when projecting a tentative organizational structure．If the plan is to be realistic， it must be suited to the kind of executive that can， in fact，be attracted to the enterprise．

The end product of this stage of analysis is a list of mathagerial positions that need to be filled if the enterprise is to prosper．Associatel with each posi－ tion are the tasks that must be performed effectively if the organization is to function properly，and the appropriate salary range While in practice there undoubtedly will be sonse adjustments in the alloca－ tion of tasks among members of the managerial team， this list provides the standard by which the available manuower will be evaluated．Its purpose is com－ parable to the specifications for the nachinery to be obtained anu the budgets of the capital that will be necessary．

C．Appeaisal of potential etaft to pill． POSITIONS DESC胃IERD

Having identified the managerial tasks to be per－ for med，and having crouped these into realistic mana－ gerial positions，the project amalyat has a basin for evaluating the people who will be needed．However， the appraisal process itself deservet careful attention．

[^58]
1. Translating job descriptions into manpouer specifications

A job description normally sets forth tasks to be performed but dues not desciibe a person. Consequently, we have to make a translation from tasks to man specifications. Such specifications often include four interrelated aspects.

(a) Formal traininy

Some jobs require a technical expertise that can be açuired only by formal training, for example. civil engineering or accounting. Formal training of a more general nature is highly desirable for many other jols. Most managerial jobs will have some minimum educational reguirement.

In practice, formal education often receives undue weight. Certificates of tegrees are an easy and widely recognized measure of a person's educational hackground. However, we know t.iat a man with a degree does not necessarily possess namngerial ability : only recently have universities a'tempted to provide managerial training as well as technical and substantive training. Thus, while fornial training may be a neeessary preparation for many positions, additional qualifications are also important.

(b) Desired experience

A second convenient way to check qualifications is in teims of experience. For instance, we might stipulate that a plant manager should have had at least six years' experience as a supervisor of production operations, or that a quality control director have had three years' experience as an inspector.

Again, practical difficulties arise. Frequently it is :urreasonatile to expect a man to have had experience in performing the specific tasks contained in the joh description. For example, a man with experience as an inspector certainly will know something about the practical problems of quality control; but that experience does not ensure that he can perform the tasks of a quality control director, which are different from those of an inspector. Furthermore, Hany development projects deal with a new kind of activity, and past experience will be even less directly related to the new work. Successfal experience is probably the best indication we have of how a man will perform in a new job, and it normally should be a part of man specifications. However, we may becrime unrealistic if we press this kind of requirement too far, and in doina so we might eliminate some of our best potertiol executives. A useful practice is to stipulate "X years of experience as-_, or equivalent". The last two words provide fiexibility in the application of the measure.

(c) Domonsmeted performance skills

Since formal tmining and experience are often inadequate, ahthough helpful, guides to a man's ability to perform a new job. we turn to more indirect eridence. Key aspects of the job can be singled out. and we can try to judre whether a man has the skill to perform these leafures of the work. Examples are : his ability to budat his expenses and then live
within his budget, his capacity t" work effertivels with labrur unions; or his skill in :mentioning com sumer needs. Note that the specitications are stated in terms of results: what a man an du. liven thomela a man may have training and experience, we seru tinize the evidence to see whether be bas thesio pur ticular performance skills.

(d) Personal qualitics

Even more indirect is the listing of the peremal qualities which a man should posses. \mathbf{t} fulfil a given position effectively. Such qualites might incluck. decisiveness, physical vitality, etheal wambart, dedi cation to the oljective of th: project objectivit and emotional maturity, empathy. intellectual capacity and the like.

The difficulty in preparing a list with anch guali ties for specific positions is that experience inderam that executives with quite different characteristion may acheve the same results Scicutific vindence an to the qualities nealed for particular typers of wort has not yet been developed. (On the other hand. when we are dealing with a completelv new hime of project, or jobs that are new the country, we mav have to rely primarily unon a list of ubalite. betieved to be important for the joh. \therefore i: bepter alternative exists.

Man specifications for each position, then. normaliy will consist of some combination of elesired training, experience, performance skills and persomal qualities. These specifications should not reflect an abstract notion of what makers a gorol execurne. instead, they should be based directly on the tankthe executive will be expected to priform hacilen tally, since it is often difficult to find executiven wh., fulfil all specifications. the wsal patice is 10 distinguish between those refinirament, which int executive must possess when he takes the joh and those which he can levelcy, by sturly and experience after he takes on the joll.

2. Aparaisal techniguf:

Intormation about pertential executices is :ypically obtained in several ways. Some informatmo. जnch as degrees received from shomols allil collegen ind titles of jubs held, wall be readily avalable (Ather information will rerfuire more investigation

(a) Performance analysis

The objective here is to finsl out what a prospective executive actually has accomplished in his previous jobs. This requires considerably more information than mere job title. What were the duties 'f the particulaz job: How did the joh fit into the reat of the erganization? Was the joh newly rreated or could it be carried on by tolkowing prevkius prastice? How successful was the man in the jot): Are there any reports or oljeative measures of his achievements " What reasoms led on promosion of transfer to other joths' Is there any evidence of unusually ienof preformance of of diffruties armituf out of the performance?

How far an analyst should go in obtaining such "facts" will depend upon their availability, dorect
relevance to the new position and the importance of the position the man might occupy in the new enterprise. Judgement will be neeried in interpreting these data, because perfornance will obviously be influenced by the help received from other people and by the difficulties encountered, and on such natters the views of various people may differ. Nevertheless, a t'orough understanding of what a man has done is very helpful in predicting his future potential.

(b) Gathering opinions of others

Valuable information about a man's capacity can be obtained from people who have worked closely with him-former supervisors, associates, subordinates, staff and outsiders with whom he has had close contact. Interviews with a large number of such people are rarely necessary or feasible. Nevertheless, some cross-section view from such sources is particularly useful in assessing performance skills and personal qualities.

(c) Multiple interviews

l'ersonal interviews with prospective executives are highly desirable. Occasionally it is not diplomatic to reveal the purpose of such interviews, but contact can still be arranged on some subject of mutual interest. Reactions of one person to another are strongly influenced by subjective feelings and personality preferences. Consequently, interviews by two or more people of a prospective key executive is common evaliation practice. Information from all of the aloove sources is then related to the main specifications outlined in the previous section. Normally, two or more people will take part in this evaluation stage.

(d) Special assignments and qualifying tests

In an enterprise already in operation, trial on a series of jobs or special assignments is a common means of evoluating an executive for a new post. Occasionally, qualitying examinations are given to men outside the enterprise when technical knowledge is a major criterion. Except in unusual circumstances, weither of these appraisal techniques are suitable to a new project that is still being evaluated. However, if the project is a modification or extension of an existing enterprise, or if the project is a pilot operation, some of these other appraisal techiniques may be feasible.

Fixecutive appraisal suggested in the preceding paragraph clearly involves more than a one-page curriculum ritre and a ten-minute interview. A comsiderable amount of searching out of facts and their analysis is implied. Fiven क, the ammunt of work reguired is modest compared with efforts devoted to economic and engineering analyses. To be sure. many of the final judgements must be subjective. but these judgements should nevertheless be based onf the best relevant data that can le assembled.

3. P'rospects for attracting and retaining a dedicated team of managers

The type of managerial appraisal we have been discussing focuses on the adequacy of potential executives to perform essential management taska. By
implication, we have asoumed that the individuals appraised would be willing to work for the enterprise and that they would fit together into an effective team. These assumptions may not be valid. Having identified men who are qualified, we muat now ask ourselves whether these particular individuals can be attracted to their proposed positions.

(a) Providing mecessory inducoments

Will the new enterprise be able to attract and retain the men deemed qualified for the executive positions? Important cunsiderations in this regard are: salary (and bonus); pension, houning, automobiles; prestige; social contribution; enjoyable work.

An occasional project may be of such pre-eminence in its particular country that almost any qualified man will be glad to work for it. Much more often, men with the qualifications denired in executives will have several attructive alternatives. Consequently, an important part of the evaluation is a comparison of the inducements offered by the new enterprise with those of other employers. On the basis of this comparison and the value placed upon desired executives, a prediction of what proportion of prospects would accept jobs must be made. For some projects, the services of two or three particular individuals may be so crucial to success that their willingness to serve should be discussed with them. An important part of the evaluation is their personal interest in the project.

(b) Ruilding an effective team

Not only must individuals of the needed competence be willing to work for the new enterprise but they munt also be prepared to function as a team. The group as a whole should be reviewed in terms of:

Balance: not all should be encineers or external contact men but an appropriate mixture of different talents and tearperaments;

Leader ship: at keast some key individeals should be present with ancicient initiative and preatige to push continnally for the objectives of the enterprise;

Co-operativeness and personal commitments: the members should demonstrate a willingnest to zubmerge individual ambitions and work together towards desigmated objectives.

Obviously, it is very difficult to predict whether the executives who will actually work in the enterprise once it is extablished will form on eflective team. Negative predictions are easier. We can often guess that a particular collection of individuals will not work well together. This might be due to personality clashes. problems of social statua, previous relationships, age differences or similar causes. If such difficulties are known to exist, then the manpower considered to be available should be reflaced to men who presumably will be abie to work to ether effectively.

4. Ideutifying geps betuwen managrid requiramovels and ervinde Nosomad

We are now in a position to conpare meede winh rescurces. The amblysis of mangerial turne and ther
combination into positions in a tentative oryanization provide a statement of seeds. Then, the appraical of potential erecutives against these specifc requirements-discussed in the present section of this paper-providen a review of the persons available. Frequently, when a comparison is made of specific positions and available men, gaps will be found.

When managerial personnel is plentiful, the gaps are likely to be minor and probably can be overcome by adjustment in the organization plan. However, if executive manpower is not plentiful and shortages appear in particular types of work, the success of the project is in serious danger. Some ways of overcoming such gaps are discussed in the following section. Nevertheless, objective and honest evaluation requires that the potential difficulty be frankly recognized in the over-all evaluation.

The appraisal of potential executives for a projected enterprise involves several phases: describing the kind of man needed for each position, that is, setting up man specifications; gathering information about individuals and deciding how they measure up to these specifications; estimating the likelihood of attracting the men who are found qualified to take jobs in the enterprise; and then summarizing the conclusions by comparing projected needs with good prosprects and realistically noting gaps between needs and resources. Lack of systematic attention and sound judgement on any one of these phases may result in serious error in over-all evaluation.

D. Possibilities of training men to fill managerial joms

Managerial manpower evaluation will reveal gaps between needs and resources for most projects. The gaps may be serious, especially in developing countries. While this indicates trouble ahead, it does not always mean that the project should be abandoned. Training of needed executives is a possibility, and temporary measures fur management nay le adopted while the training is being completed.

A systematic examination of executive development is beyond the scope of this paper. Nevertheless, we must look briefly at some of the possibilities beranse they determine how serions a lack of executive personnel really is.

The need for executive development is almost always greater than apprears at the cunclusion of the first matching of needs and resources. Experience shows that not all men will be as capable as predicted. The discreparey may be due to mistakes in juderment or problems of health : of the-job difficultiry may sap the men's effectiveness. Also. there will be some attrition, through death or resignation to take other jobs. of the inevitable clashes that arise during querations. Predicting how much afety margin is meedert is hazardouse because mech turnover is inherently uncertain. For a new enterprice, a turnover in execwtive positione of 20 per cent during the firt two years in a hw fagere, and is the enterprise runs into dificulty this turmover may be mach
hisher. ${ }^{4}$ Consequently, realistic plans for filling gaps should also provide for some turnover.

1. Long lead times ineolued in mamayerinal training

Executives are not made in a day. They may be given a title but the knowledge, judgement, skill and other attributes take time to develop. For example, an analysis may reveal that a country has university graduates but lacks men trained in the particular field needed by the new enterprise. Six months to a year are often required to identify good prospects who have the necessary interest, native ability and background training (langulage, mathematics etc. a and to arrange for them to start formal training. In the more technical subjects, particularly if the training is taken abroad, two years, full tince. is often required. After the man returns, another two years may be needed for hinl tu learn the particular characteristics of the enterprise and to get some experience in dealing with suecific problems in his new field. In this exaniple. fonir or fire years was the minimum lead time liefore the man wis ready to take over an executive position. Not all jobs will take so long, but the example does nugest the order of magnitude.
lead times are important in project phaming. The longer the lead time, the sooner nust action be initiated. One of the reasons for early evaluation of managerial manpower is this long period reppired to fill gaps. If a shortage exists, it shoult be identified early and steps taken to overctime it Thare may be many uncertainties about the nature of the job five vears hence, and how particular individuals will develop, but there is no way to avoil anch uncertainties if the gap is to be filled.

2. I'se of forcion consultants as trainctercontiots

One way overcoming a shortage of execoltives without long delays for iraining is 'o use foreign consultants as temporary execitives The foreign consultants perform managerial tack n, while at the same time training nationals to rarre the foll ho. 1

Many variations of this arrangement are pxoblale. The consultants may have full revp:msibility for operation of the enterprise. with matimals eerving as their assistants and advisers. The combiltint, may axcuper only those positions which canmit be filled locally. Respemsibility may be shareal ha an sultant an l a national with some arrangement fur rewolving differences of uphion wien jringl action in necrsary. Firnial authertit hat ler flatel in the hands of lecal exerutives with an under-tanding that they are to rely heaviv ufen the "ilicr"; rionerl by the comoltants The particulay artankement adoperd will depend. of consue. upin the extent ablel nature of the manfrower gap, the urgency if peting the pirnjert in operation. the ecmpetence of the con sultant availahie and similar considerations

A significant distinction in all such arrangemente N Pretween terhinkal and keral matter, More pre civiy, the distinction is beeween imperwinal things

[^59]and systems and jersonal relations and social pressures. Kinowledge and judgement regarding impersonal matters is much more readily transferable among countries than social skills. This distinction is rarely clear-cut; technical decisions often have social impact and the local trainee may need counsel regarding effective social action. Nevertheless, gencrally the trainer-extecutive arrangement is more likely to be satisfactory if it focuses on impersonal matters.

Eivery exrcutive-trainer set-up is a delicate arrangement. Inevitably, there are problems of status, relative salaries, language, total cost and many subtle relationships. A full exploration of such matters is minmalls separated from a management evaluation. and is hevoutl the scope of this paper. Nevertheless. we unst be very sensitive to the problems if we wish to use the outside consultant as a solution to a shortage of executives.

3. ['se of part-time nationals

T'I some extent. the gap leetween manpower needs and resources may be filled by nationals who hatve other jobs but can arrange to spend some time with the new enterprise. We are speaking here of a different and additional group of part-time executives from the technical advisers and members of the boart of directors discussed in section $\mathbf{B}(3)$ above. who will continue to serve the enterprise on a parttime lasis indefinitely. Instead, we are now speaking of temprary assistants who will provide managerial help during the period when the regular full-time executives are gaining experience and training.

The use of part-time nationals during the early stages of a project is appealing for two reasons. liirst, starting a business poses more difficult problemts than maintaining it after it is already a going rincern. Fach problem is new and policies have to lx- developed; employees are just learning their resuretive roles and how to work with one another and prompt 1. mnagerial action is needed on many frouts at the same tinse. Secondly, a variety of social and eonmunic changes inevitalyy occur within the community, with customers and with other outside groups. I huring this perind there is need for respected sponsorship and confidence in the executives who are initiating the change. If experienced national executives are active in the new enterprise, they will be hetter prepared to cope with such problems. and they may be able to enlist public support more casily.

Unfortunately, arrangements for part-time executives often do not work well. At leas two requirenients must he met.
(a) Pixperienced executives who can really be effective on a part-time basis mus be found. Many nenl are excellent executives in companies they know well, but are quite ineffective in a situation in which they spend only a few huurs a week. Unless thev have quick perception and rapid discernment. thev may be more of a burden than a help.
(b) Able trainees, who have basic backeround and talent, should be active in the situation. Thes are the ones on whom the detailed administration falls. and, atter a "breaking in" period, they are the
ones who will have to carry through the initial decisions. Without such strong support, the busy part-time executive is rarely able to carry on what should be a full-time position.

In evaluating potential management of an enterprise, then, the use of part-time nationals during the early stages of a project can be an inportant supplement to inexperienced management. However, if the organization analysis indicates that a full-time executive is really needed, a man with a potential for nowing into that job in the near future should work with the part-time executive. It is not practical to) assume that even a good part-tine executive can hold down a full-time job alone.

One of the most sensitive parts of a managerial evaluation is deciding whether the means for bridging the gap between needed and available manpower are adequate. Men can be selected and trained, but this often takes a period of years, and ailowance should he madr for attrition. Foreign experts may be brought in as trainer-executives to fill the gap temporarily, or part-time nationals may be used in a similar manner. Both of these arrangements, hy their very nature, require a delicate hlend of abilities and personalities. They need to be investigated carefully, and even if tinancially possible should not be regarded as an easy or sure way out of a managerial manpower shortage.

E. Difficilties arising from different CULTURAL Backgrounds

The preceding sections of this report have outlined steps for evaluating managerial manpower available for a proposed enterprise. Also, in each section problems deserving special attention have been noted. The present section differs in character. It focuses on the people who participate in the evaluation and notes a basic source of confusion in this difficult procese. These final comments, therefore, apply to any or all of the steps outlined above.

Many sharp clashes about the adequacy of management arise from rather fundamental dififerences in viewpoint. Most of us have opinions regarding management that arise from the kind of work, the type of business, and the underlying culture in which we work. The following examples indicate differences commonly found among people participating in project evaluation.

Engineers, treasurers and sales executives, for example, not only stress different things but often conceive of the managerial process quite dififerently. The engineer tends to be mechaniatic; the treasurer tends to reduce the entire process to decision-making and financial terms; the sales manager is much more likely to think in terms of people and their reactions, and to carry this point of view over to the entire managemem process.

Civil servants and morr:prewewrs are likely to have quite different views about what makes a pood executive. The civil servant quite maturally thinks of complex and proceduralized activities: the antro premaer typically is impatient with detaiked procedures. makes docision on kess volvminows evidence and takes more chances.

Differences in national culture make a subtie difference. For example, a person with Nordic backerround normally thinks in terma of sharp definition of duties, individuai accountability, and an authoritarian hierarchy. Persons from latin countries tend to personalize issues; they rely on personal relations, and pay less attention to timing. A man from the East is too polite to enjoy rough-and-tumble debates, and normally prefers group rather than individual responsibility.

Many other and perhaps more important differences may be found. These brief examples do indicate how a person's background may strongly influence what he considers to be a good executive.

Tirse normal differences in views about managing an enterprise may lead to divergent evaluations, affecting a man's judgement regarding:
(a) Recognition of needs: both his identification of important management tacks and his tentative organization of those tacks:
(b) Appraieal of individuals: his eatimation of the charncteristics he considers desirat'e;
(c) Ways of filling the gap: his insistence on formal training and his willingmess tu rely on expedient menowres.

Such differences nay result in slashes of opiniont between various people participating in a management evaluation. Gathering additional data will not necessarily resolve the clash, because the differences arise from "value premises".
Awareness of the effect of cultural background on management appraisal is valuable luoth lecanse it puts us on guard about possible biases which may lead to too rigid or too relaxed an cevaluation, and because it helps us understand why a persmi may hold a particular point of view.
A comopolitan view is clearly deviralle. More apecifically, in technical areas we need the julgentert of men who appreciate what is really required in each area, for example, production, finance. ir marketing. Also, we need to recognize laxal attitudes towards authority, responsibility and similar matters: and on such subjects the opinion of sompeone intimately familiar with the lucal sulture slould he sought. To be sure, we then find murselves evaluating the evaluators (a problem not unique in manageri.al appraisal, but one that arises in all phases of projert evaluation). However, manjower evaluation involves to much subjective judgement that a comin. politan view is the safest, and probably the wispst.

XVII. INDUSTAIAL PROEECT EVALDATION IN TEE UNTED STATES, TME UNTTED KINGDDM AND FRANCE

by The Ecomomide Inarllimemee Umin*

Inthoduction

This report is a broad review covering all phases of piroject preparation and evaluation and aims at highlighting and discussing the problenis experienced by companies and agencies in the developed countries. It is hoped that the information it contains may enable the developing countries to profit from the lessons learnt in the advanced countries, by appraising their projects in such a way as to achicve a more rational allocation of resources and a higher rate of conomic growth.

The project was directed from London by Mr. C. B. Eilwards, industrial research consultant; interview's wrre conducted in New York, Washington, Brussels, Paris and london. The interviews were arranged by the offices of The Ecowomist Intelligence I'nit (EIU) in New York and Paris; the Paris office also arranged for questionnaires to be sent to a number of French companies and financing agencies. Details of the methorls of researh used to discover the practices employed in the three countries are set out below.

['itien Kincimom

Postal survey
The following questionnaire was sent to 100 of the largest quoted pullic companies:

[^60]7. What minimum pay-back period or rate of return, if any, do you look for before approving expenditure projects?
8. Do you senerally carry out post-morteme on projects in order to compare the realized with eatimated profitability?
9. Is there a company policy which limits the annual expenditure to internally generated funds (i.e. to depreciation and ploughed-back profts)?
The companies were selected from each of the manufacturing and service industries, as listed in the main Standard Industrial Classifications, 1958. Thirty-seven usable replies were received but the author places little reliance on the postal questionnaire as a medium of reseach since it is well known that such questionnaires have a number of dieadvantages. First, since those who do not respond may have different characteristics as a group from those who do, "there is no assurance that information obtained by mail is derived from an unbiased selection of respondents".' Secondly, as with certain forms of personal interviews, there is no assurance that the respondents understand the questions and, likewise, no guarantee that the researcher understands the answers. A considerable amount of doublechecking should therefore be made to ensure that there is common understanding of the termis used. Thirdly, even where the reopondent understands the questions, there is a possiblity that he may, for a number of reasons, give false or "premice" anawers. As was stated by a team of management conmahants in the booklet, Imevestiment in Mactine Tools," "it is our experience again borne out by the presemt in-yuiry-that sometimes a company genminely believes it is doing certain things which in fact it is not doing. or sometimes its anawers may be colowred by what it knows it should be doing but is not doing".

For these reasman, and becawe the research has ainued at discoverim not only which meethods of projert evaluation are used bat also why they are used in preference to akernative methods, if was decided to place as much emphasis as possible in the tinie available on the results of personal imterviews. The reaults of the quentionmaire and of other published surveys were used to supplement the interviews.

Personel indowtrous

Interviews were hold in laodon and at a manepment conforence in Iruade with anve than thirity

[^61]five people employed by: the Department of Econonic Affairs; the Treasury ; the Ministry of Power; the Ministry of Transport; one of the largest merchant banks in the United Kingdom; eleven public companies, all with net assets in excess of $£ 20$ million at the end of 1960; four of the nationalized industries, and a British overseas development bank.

Other surveys

A number of surveys of investment appraisal procedures used in the United Kingdom were studied and, where relevant, these are referred to in the text, with acknowledgements given in footnotes.

Franci

Postal survey

Ninety questionnaries, translated from that shown above, were sent to a selection of large companies, nationalized corporations, municipal undertakings and four of the lirgex merchant banks.

Although the questionnaires were dispatched at the same time as those in the United Kingdom, only eleven usable replies have been received. Eight were received from companies, one from a municipal undertaking. and two from nationalized corporations. It is difficult to account for the difference in the response rate between the United Kingdom, where it was over 35 per cent, and France, where it was under 15 per cent. French businessmen, however. were generally more reluctant to be interviewed. and this may reflect a greater degree of secrecy on their part. On the other hand, once interviewed, they were as frank as their British counterparts, and generally as helpiul.

Personal inderciews

Personal imerviews were held in Paris and Brussels with twenty-five people belonging to : five large French companies; the Ministry of Transpurt; the Saciete natomale des chemins de fer frangais (SNCF) , Electricite De Frame (EDF) : the Commission de l'energit, one of the vertical commissions helonging to the Commissariat geineral du phan: CEGOS, a large management consukancy organiza tion. the Institut ruropien d'administration ies affaire: (INSEAD), the Furopean Busimess School at Fontainebleau, and a Fiench developiment bank.

Oother surieys

Only a kew surveys of French investment appraisal procedures have been carried ont in recent years; where relevant, references to these have been made in the text.

Unitmp Statas of Ampica

Poomel mowy

In mecordance winh the teems of reference, mo peomel urwey was condretod in the Uniwed romes This was mot though meressary, becouse a lirge member of marvers have been corried out in the I'miend Staves in reem years. Thene were sudind

Persomal intervictis

Interviews were held in New York and Washing. ton with more th:n thirty executives in the following organizations: Touche, Ross, Bailey \& Smart, management consultancy firm: Chaie Manliatan Bank ; First National City Bank; Irving Trust Bank; New York Graduate School of Business; International Bank for Reconstruction and Development (18RI)), Export-Import Bank; International Finance (orporation (IFC) : Agency for International Development (AID) and the Pan-American (Hion (PAI), the Brookings Institution; Inter-American Development Bank (1DB), and three of the larpest industrial companies.

Other surveys

Where relevant, reference las bern made to, the many surveys published on this sulbect in the I'mucd States.
A number of companies and agencic, interviow and a number replying to the 'fle thinatio wern not willing t" allow there name (1) |he fextowe la many case it has not, therefore, leatil :umble i. give the name of the company of aselly billy the information.

The financial institutims (the Britis) and liend development bank-1, the Intelbutumi kionk it R. construction and i Pevelyment ibRb! t!e! ! ?
 the Inter-Anericon bevelomiem Bank (11013, H1,
 Export-Imprirt Rank, ill aptantig milu'rial projects in developing comm:tre, stemed the wi. portance of tesurre and deman! amalue. to. :w. . 1
 feambility studies to reveal altetu:1s...

The finalcial invitutus, complatiod of , f... ege of worth while prometa

 pare akernative promet, the Anetion sumpan at" more erlective than the Bratho or I ench
 panies in the there comutrie.

$11.11+110$

[^62]The French nationalized industries generally use theoretically correst methools of appraisal: those in the Cinited Kinghom are leos consisteltt.
the fimancial insitutions, copecially the multihateral agencos. are aware of, and use, methods of appraisal chosely appoximating to theory, although son complained that too much emphasis was put on the teclinical apraisal.

The finamcial institmions, and the few complanies that used them, tited that deeck-lists were helpful as atn and to mire accurate forecasting and appraisal. atill woltovity analys was useful ill assessing the effects of selected iariables.

Much mportance was attached to the acquisition of diata, evpectal! that relating the cost of nom. mambiatming tavilimes, the cont of working capital and the gevation juriod : and the correct use of data once collecterl.

```
GNTROL. UANAGMINT AN| PrIST-AITOTT OF
    |RIJFCTS
```

The prace of smple management terhniques. such as budgetars control and critical !ath xherluling, in the conten of experditure. Wis cimplasised.

The muat pregremate companies thought that groject andramat and commen shath! be the spectic reveminhlity of ane prison or department in the. agatizatom.

The funare ial inatiutions thenght that the mini mumb team for a fervilitity stady thould consist of

 spellmor
 Whymer the heht the the exammatom of individual

U $\mathrm{A} \| \mathrm{IK}$
I in. Fowins that an be drawn for the developing

 14-led. in!

 the crite al bermbles

(aqual investment is all mpeitant teterminam of comomic growth bs rasion the level of labour pro thactivet and thri,ugh its income eremeratina charac wrintie: llow inumiflant this comiribution is. and to what extent dutierem raves of growh in varionn
comutries can be accomed for ly differences in the ratio of capital investment to gross national product. is a blatter of controversy among economists. ${ }^{3}$

However. it is accurate to say that, together with industrial organization and teclmological clange. capital investment is the main factor in ecotomic growth. Moreover, becanse for the developing mations any sacrifices in presemt consimption entail greater hardshijis that the equivalent sacrifices by countries with advanced economies. every effort should lee made to ensure that resomeres are directed towards the most productive ends.

Not only have the poorer countries a lower haberit promluctivity in all sectors. But they also have a concentration ef (mployment in the sector in whis? labour productio it! is lowest, that is. in the primary sertor (he of the featuren of economic progress is the shifting of employment from the primary to the secondary and tertiary sectors. The object of planning the economs is to ensure that this slifting of employment is accompanied by steady and stable growth and that any mperfections in the warking of the comon!y are counterbalanced as far as possible by gosermment action and direction. Owing to the ali sence of the classical conditions for equilibrium, it i, now generally agreed that the Covermments of poor commeries have a responsibility for gniding ecomomic development by channelling investment in specific directions. They legin by trying to create a c!mate which is faconrable to private investment in both agricalure and industry (a) by making the necessary infastuctural inverment: (o) by somoring or conontiging private mestment wherever the later offers the lihelihood of favourable results, and (o) by mulertioking brojects itself in the absence of private initiatise

Planuing at the national level help, the Gevern meni to decide the directions in which it should guide investment, plaming at the level of the firm similarly help, to tefine the objectives of the firm and to co: ordinate the means soras to achieve thowe objectiven In the questimmaires and personal interviews. com panies athe agencien placed considerable enpulason in the relationship between an individual project and the mational or company plan and it is for thirean that the need for planning and the ctear definitwil : mhertive iv atressed.

1 Obpertines

In a mation ... a whole the matn chbecta wal
 of tim peppulation. Eiven the existing resources
for the firm oprating m the private sector and finamed lis rish in equiti caputal. the prime obyective

 theoretcalis. heraume the actual hehevioar io com nhis it lewe in France and the linteil hingdow hut 10 a lesser extewt in the Imed States : oemm to apiromimate what has heem reter red to by a number of wrilers as sefingume tehaviour for example

Carter and Williams have stated that "a quiet life: the enjoyment of public esteem and power; a reluctance to experiment; a reluctance to change the organization these may all militate against profit maximization": However, the divergence of ohjectives from protit maximization is smaller the greater the pressure on profits ithrough competition or counterviiling power) ; and the greater the importanse in the companty of a specialist function for creating and erdhating technical and market possibilities.

For other corporations (such as nationalized corporations or semi-puldic companies) or for the fuancing institutions, the objectives are usually set out ill the acts or agreemencs establishing, them.

2. Resourci and demand analyois and national planning

Once the nation, bank, company or other decisionmaking mit has decided on the objectres at which to aill, the next stage is to analyse the relationship Intween the resources available and the demand for those resumres. The demand will have inell determined w erme extent by the definition of the whfectives The importance of an initial resource and ilemand analysts lies in identiting priorities for two kinds of oppertmaties. namely opportumition for quick and subsantial gains, through, for example. multi-shift operation, sevelldas wonking and the more efficient use of existing resources and op portmition which have a long lead time that is. insestment "pportunitios.

Time and again, the development agencies, es pectally those dealing with large induntria! in in fristricture projects such as the Ull or IhRO) stressed the ecomomes that comble leeffected thrmagh the more efficient use af existing resources

All) and the Hromings lostitution placed moch, mimertance on (a) planning be stages ib: resource allel demand analyses, and 1 i i perefeastility stodie: III indicatug the kemeral order of priaritien and fompontion the opportunities, ind afternatives. Thes looth stated that the hugh cost at a det uled feaciblits otucis might alul almost certanls had whetmes based the ifeciwem an 10 whether if not to go theal with a project

Ghoe a divermment h.i. prepared a keneral plan the the ecomony and carriest oilt at rewonce and
 whrces inteligently sibe m: project cal tw cor eectlvembated in indation liven when gint in the comext of an econnume plan, 11 in dificult t, asown
 conume umber the genelal brading of inframpiction projert. I mumber fodies have been carrief inll and incolels prepared. in the helifs it irallopmirt." watel

[^63]resources ${ }^{7}$ and others. ${ }^{*}$ but the evaluation of mon
 new field of appiied ecomomics it was, haretome InO surprise to har frum the Britsin Tressma the Prench lenergy Commission, ihe Rrowhing I Astith tion and other arganizations, that the internectoral
 on the basis of political jorlge nent-
 funds has been made, it is important to rimate that as far is pessible the wat margita! andi! parhastint of a prajeet is eqpal wh that of all mble peatect within the sume sector. This, urame that alt pelatial
 feesibility study

 set out the reationshijs in plasal tequ- 'w.two. the imperts, comamition and exputh al hanir

 -uggented in section IS. hem
$$
3 \text { Ihamine w the no. } 1 \text {, }
$$
(a) Iha sear, lifor wheme:
 if

than one half the interviews with the companies in France and the Linited Kingdom, it was stated that projects were rarely compared one with another.

The general pittern of capital planning by companies in France and the United Kingdom ${ }^{11}$ seemed to be ont the following lines:
(i) An estimate of the capital that would be atailable within the next financial year at reasonahle cost: that is, the cash flow that the company expected to penerate plus the capital that could be raised externally on "favourable" terms:
(i) The allocation of the asailable capital between suldidiarits. divisions and departments on the basis of pant profitability and, to il lesser extent, future markrt prospects:
(iii) The allecation within a subsidial y, division or department of the butget as decided in (ii). This alluation betwren subsidiaries was, to a greater "xtent. decoded on the basis of future profitability, bint even lere the companics gave little impression oi making choices amongst a number of competing ailtremithes

Fur companies there are a bumber of problems a-weiaterl with the cualuation of projects, such as the rriteri: to use (see section B), the interdependence of projeets espe section ($)$, and the difficults of guantifying the benefts arising from certain Np, of progeta, for example, research and develGMemt or wellare facility investments. By failing to a,mpart alt :mative prisihilities, however, the allocalom if rewource, th hardly likely to the improved. In cxatutive in a leritish chemical company sug-
 - Mvelemed tewer alternatives than American com
 hew tum ant mumes on lowking for oprortunities and
 in1 the fitt in lionish managers to take risks ${ }^{12}$ and

The ewe utce ot a Fremeh tyre manufacturer, who bud wophet m the linted states for tive years.

 Whe '., the :- A.mmanter an American companies of

 ma, ament patental. and the greater iegree of

l, linaditis

[^64]Kingdom carried ont by C. B. Edwards in 19621963, the extent of planning was investigated among a sample of sixty-five companies. It was stated that "it seems fairly safe to assume that only a minority of companies plan their capital expenditure in broad outline for muth more than two or three years ahead, and it seenss likely that there is little detailed planning of capital expenditure, especially amongst the smaller companies, defined as those with net assets of less than $£ 10$ million as at the end of $1960^{\prime \prime}$. This analysis seems to accord with Tibor Barna's surve\% ${ }^{18}$ Williams, however, in his study states that "the definiteness of planning was not... a guide to the efficiency of investment". ${ }^{14}$

In the Smith and Remmers study of the investment decisions of nineteen companies in French industry it stated that "about two-thirds of the firms visited spoke of a three-to-five-year plan", but that ". . . the planning was indicative rather than detailed. A sales figure or seginent of the market was ordinarily set as the objective. This was arrived at by such means as projections of current market and sale's trends, economic studies, the fourth plan's indications and management 'feel'.'1s

The length of time the plan covers will of course depend on the gestation period and the ability of the firm to forecast. It may be a mistake, however, for a large company to think of five years as longterm planuing, for as Baker says "it may take that long to acquire land". 16 In the United Kingdom. the Central Electricity Generating Board plans ahead for ten to fiftern years, the Coal Board attempts to forecast demand for up to twenty years, and therefore in very large-scale organizations. "twenty-year planuing would seem to be generally necessary". ${ }^{17}$

(a) itabinized ine estmont

In the I'nited Kingdom, Barna found that each stage of expansion was usually regarded as a separate event. It is preferable, however, that planning be regarded as a continuous technique; this will facilitite the co-ordination of policy and ensure that flicthations are minimized. Investment decisions tend to lie hased to an undue extent on business "sentiment" I see section R, and, becanse of this, fluctua-tion- are greatet than they would be were project assessments mure ritional. Lean, ${ }^{14}$ however, has slower that there are many defensible rational argunkents for investing during boons, although the srength it these arguncits vary with: (1) the antplatude of the business cyele. (ii) the rate of discount uset, and (iii) the ecomonic life of the asset. Thise

[^65]arguments against spending during recessions emphasize the need for government inducements and action designed to reduce fluctuations in the business cycle. ${ }^{10}$ For even in the United States, where plans are generally longer, ${ }^{20}$ forecasting more accurate, and evaluation of projects more "scientific" (iee section 13), "quick and unpredictable changes in capital investment plans are the order of the day". ${ }^{21}$

One of the most important causes of fluctuations in cipital investment is the fairly widespread practice of rationing the investment to internally generated funds or a ratio thereof. For example, Dean states that fluctuations in private capital formation in the past can quite largely be accounted for empirically by changes in curreit corporate profits and in corporate profits one year earlier. It seemed from the interviews and questionnaire replies that a number of conmpanies in the United Kingdon and France were naking a less stringent examination of projects usiug internal funds, than of those requiring outside capital. Many companies both in France and the United Kingdom stated in their replies to the questionuaire that their expenditure on replacement was geared to their allowances for depreciation. This would imply that the replacenient expenditure of some companies was not evaluated as carefully as the expenditure on expansion projects

(d) Classification of projects

Most companies, more than 75 per cent of those replying in the United Kingdom and the majarity of those in Frarce, stated that they used, as a minimum, a replacement/expansion classification of their expenditure. A variety of reasons were given for this classification, the most often quoted ones being "We would expect it higher return from an expansion investment owing to the greater risks and uncertainties". "There is a different nuarket 'stiategy' behind each type of investment." "The classification gives a guide to the sort of information which manayenient expects to see on the evaluation form" "Replacement is a must if we are to stay in business." "The distinction enables us quickly to examine the lists of replacenvent projects and thereby to deal frot with those which are essential." "The power to authorize replacement expenditures is delegated to a greater extent." ${ }^{\text {m }}$

The general attitude in France and the United Kinfdum seems to be that replacenient requires little or no economic appraisal because of the lewer uncer

[^66]tainties involved and becanse of the interdependence of the project with a harger production unit. This, seems to he a dangerous attitude since the replacement/expansion distinction is largely arhitrats, ats some companies hastened to point ont. The attitude seems to imply that, because replacement expenditure is easier to assess in economic terms, it is antomatically more profitahle, and therefore necessary.

This section assmes that the itecesaty lhat: fo: an evaluation are available and that there is 10.11 m certainty attached to the dita and on rink :annector with the project. 'the probleme of hew t. , ohtan the data, the misconceptions to atoid, and the mothos: of assessing the effects of risk and nucertainty w!ll be disrussed in section (.

The present section is divided montwo patis. The first part deals with the apprabal of pirngects in terms of their commercial profitablity, the wornd deals with the apprasal of projects in tetm- of then national profitability

1. (ommors al profindilits the thici-

It is here assumed that the promer obsectuse of the managers of a company is to maximize the tome run earnings to present equity shatrholders. In irilet to maxinize these earnings, the management ma-1 obviously aim at channelling expembunte int" the most profitable outlets. It is char from the internen. questionnaire replien and uther survew thit the theoretically correct methoth of aplotiomg catid expenditure projects are rarely used.

There are basically four methods it aptatime $1 / 1$ worth of a plojert used by rempentic mange ment in France, the coled Kime:den and the lintel States. Becanse definitions varn wirlely in the fich. of economics, they are birifly explaned twinw

(a) Pry-back

 the strean of cash Hows of all mestment t, "pha the original cash ontay. It primpal allantage its simplicity looth in concept and alculation it his two primipal disadiantages that it hem inn ineavire the profitabilty of the progect ind that it take. of arcount of the tome patten if e.olmig, withm 1 ha pay back prowel

(h) Rook rate of retarm

 atteming a conference where fomitery umpanio

The experted on techmal freht os a perientage of the average capatal empuoyel wer the life of the preniert thie is neteri called the "lumik' 'uethed
 al :

The expected or normal profit as a percentage of the initial capital employed; this is often called the "engmeer's" method.

The main defects of this method are: 24
The difficulty of defining the normal profit where the profit miy but be constant wer the vears:

The difficulty of clefining capital ontlay where investment alhwances are given and where working capital forms a large proportion of the capital invested:

That wo allwance in marle for the fact that $\mathfrak{E l}$ comorrow may be worth less than E 1 todiay.

$$
\begin{aligned}
& \text { (c) "/'ostpumbinh". "nirissity" and other "nom- } \\
& \text { doitomintide a'duations }
\end{aligned}
$$

The mandepmacie- of "hameh" methods are : wious. Gnly ratrels will these methods lead to an optmmen allication of resonaces. and wet they seem to be in widentrad nse in the I nited Kingion. France and the L aited States.

(i) Misumenting method.

The cash thous generated by ancestment shombl be sufficient to repay the initial outlay and to pay ial alequate rate of interest on the outstanding balance. The discounting methorls measure the capacity of a project to do this, since they take acconnt of the time value of money- -that is, they take account of the lact that a given simn of noney now is worth wure than :me rual and certain sum at some future ditte. hecaltse it permits profitable investment or consmmpton in the meantime

The disommting methods can be classified as shown below
(1) The mternal rate of return (IRR), otherwise cherred to as the interest rate of return (Weaver aml Kcilly', the vield (Merrett and Sykes), the mosems imethed (llill and (iregory), rate of retarn
 mil the magimal efticiency of capital (Kevnes). The intermal rate if return represents the highest rate at interest in mestor conld afford to pay without hasing mentes. If all the finds !" finance the invest ment were borrowed and the loan. proncipal and acorned tultreat were repaid by application of the cosh prosemils
 if a pronect is fimmel b discounting at an interest
 net cashl llow, arising from the proiert. In the ex ample lelow. the Xpl ot the proiect at a lo per cent diwentit rate nomid be ralenlated itt the following way it is assumed that the projest requires an initial -utlas in t lank and lhat it gemerates an income of $\&+15$ fer anamm for an assumed life of three vears

[^67]If the project were financed by a loan at an interest rate of 10 per cent. $£ 33$ is the net gain attributable to the project after paying the mterest and repaying the loan.
(iii) Annual capital charge ($A C C$). Wherever a capital investment is made which gives rise to a constant, or approximately constant, net cash flow it is possible to make use of the anmbal capital charge method. Extensively msed by Grant and Ireson. ${ }^{25}$ the ACC nethod aims at charging depreciation on a sinking fund basis, such that the full capital invested in a project will be recovered at the end of the pruject's life. This method will lead to a rational allocation of resources, as long as the cash Hows are constant. Whenever there is any irregularity in the net cash flows, the ACC method is forced into the difficulty of turning them into regular cash flows of the same present value.
(iv) Varions other discounting methods have been developed but, since they are even more rarely used than the IRR, NPV or ACC in the assessnient of projects requiring an initial ontlay of more than $\$ 250,000$, it will be sufficient here merely to note them. They are various replacement formulas, such as those developed by Akchain ${ }^{26}$ and Terborgh, ${ }^{27}$ and lie "filture method". 2 A

The IRR method suffers from two disadvantages. First, in certain cases it is possible to find more tian one solution rate. Soperts has shown that this cannot happen provided the capital outstanding is non negative during each year of the project's life. Again, where a choice must be inade between two mutnally exchusive projects, the project giving the highest internal rate nf return will not necessarily be the one that will maximize profits.

It can therefore be proved that, under the classical conditions of a perfect capital market. the NPV approach is the nost suitable measure of a projects

[^68]worth, since the cost of capital ${ }^{20}$ will then reprisent the alternative use of the funds to the economy after adjustınents for risk. But under realistic conditions of capital rationing and uncertainty, the internal rate of return will be a more useful ineasure. There is, however, no reason why both methods should not be used tugether, since once one has leen calculated, the additional calculation required to arrive at the other is negligible.

2. Commorcial profitability; the practict:

United Kingdom

The replies to question 3 of the questionnaire were analysed as follows:

Mrthed of apmerasal	Numbit: f companies msing mithod	inmber of iompenirs haing the mithod as a primary madase
Pay-back	13	1
Book rate of return	18	16
Discounling methods	14	11
	45	280
Number uf companies analysed	32	--.
Non-classifiahle replies	5	9
	37	\cdots

- In four peplics, no primary measure was indicated.

In the author's 1962 /19 2,3 postal survey the methods of investment appraisal stated liy the commpanies to be used were as follows:

$\begin{gathered} \text { Method uf } \\ \text { ineroemens effraisel } \end{gathered}$	Number of companies			
	Lergea	Mrdimm'	Smalla	7oted
Pay-back	9	2	2	13
Bunk rate of relurn	22	16	11	49
Hiscouning methods	9	2	-	11
Ohers	--	4	11	15
Total.	40	- 24	24	88
Number of companies	24	19	22	65

- The size if companies was defined as fillow,

Net essets at the end of 1960
Large more than 50 million
Medium more than 10 million but lest than $\mathbf{t} 50$ million Small more than $\mathbf{4} 5$ million but less than 410 mailion

Twelve cortpanies were common to both surveys and nine of these cave easentially the same answers in both surveys.
Other surveys ${ }^{21}$ into the methods of investmem appraisal used in the L'nited Kingdom seem to come

[^69]to roughly the same conclusion, namely, that managers of companies in the Cnited Kingolom use methods of investment appraisal which are only likely to lead to the optimal choice of projects lay comioidence. For example, one of the principal limtings of the Inerstment in Machine Jumbe stady in that " Whe methols of investment apprasal in we by most of the companies in the angmeering imblet? arm wither nen-existent or maccurate and misededhar. Twoms two per cent of cille sample need wa catablindod method, while of the rembining is per cent ill ion ployed the pay-hack method for aprainum mormal
 into accoult. ${ }^{\text {" } 32}$
 the extent to which shlinticated methioh are wail is probably overstated. This is beamse, in two it the personal interviews, it was disconeren that athamand the companies used some sort of discombing method, the way in which they arrivel at their hata was.
 project which hat heen rejected ly : harge engime ing company, the internal rith ui wompo, colculatem ont the hasis of correct acmunic piminders us demble that calculated lav the compmas: andmal Indect, the contruller admintiol that. If the cambuis

 of rejecting it

It is therefore likely 1 !.or a member of cumponmen whis stated in their replie, the the gestemamen that
 use meh methonts correctly (seresection (1) Fiven as stolning that they are, it is probathe that owar twit
 by the pribate sector in the lontel kimglem $1=$
 allecation of remorice obly is ibatict

 conglex to be immatriad minterie:tly

 lint Sirvey"). (d) luiestoment in Marhine tiodi Satiomial
 imerview survey if companses in the marhine tat indusity

 Fronumici and Political Sience, Firoruat: wh 1

 area. ith $\mathrm{B} K$ Williams, Intiomaticn und iriterna on
 Centre for Husmens Kewarch, ITh4, a atid) withe invest. meit proxeduree in ihirteen compenves
wsee forlmote 2 shove

* See foctrone 32 |hi above
the firm, since large companies tend to use documented, sophisticated analyses: secondly, the nature of the indhstry, since the oil, chemical and vehicleproducing companies tend to use theoretically correct methods of appraisal, whereas the food, drink, tobacco, non-electrical engineering and distributive companies tomd not to nse liscounting methods, and thirdly, the nature of type of project to be evaluated.

The olijectives of the nationalized industries have, in the pist frw years, been increasingly defined in terms of financial targets. ${ }^{4}$ Indced, in the Select Committee's Report on the British Overseas Airways Corporation it was stated that "Your Committee fomed the fimancial direction by the Board of BOAC hiad leern defective in a crucial respect, namely, they land unt consintenty enforced the test of what was the corporations strict commercial and financial advantigere.ts The bards managing the inchastries are appointel by the royponsible minister and since 1956 all external funace, apari from advances from the hambs. has beed proviled by Excherumer advances.

Mirrett and Sykesse state that the annual capital dhage mether is commonly used in the british nationalize. industries. From interviews and other sources. however, it seens that a great variety of methoul is ised. The toust Office, for example, stated that discomoting methots had been employed for the past forty years, whereas other nationalized industrics secmed to use unsophisticated methods of evalnation. In fact, here seemed to be a wide gulf !ertween the best and worst practices in the nationalized induatries. and an expecutive in ne of the minintries stated that "the liggest prohlem is that of improving the practices of the worst". There currembly seems to be much thought applied to the suhject and the Treasury has leen holding neetings with representatives of the various industries in an attengt th achieve some inprovement and standardwatinu of ippraisal procedures. ${ }^{37}$ From the interviews, mudilied thinking. similar to that in the private sectu, was evident (see section C).
llaving arrivel at some index of the economic worth of a project. compinies and nationalized indinvier scerned to lise a variety of cut-off rates as a knide in deciolng whether to accept or reject a proiect since the capital market is an imperfect maiket, the theoretically correct cut-off rate to use is the maigmal eftheiency of capital, that is. the rate of return whilh can le earned fromit the best alternative use of the resources. However berause of the difficulty of measuring the return from certain types of projerts ancl lecause of other factors, such as the tillug of investments, murh guesswork is involved in arrivine at the opportunity cost of capital. Never-

[^70]theless there seemed to be a general consenas among experts interviewed in France, the United Kingdom and the United States that a figure of between 7 and 10 per cent ${ }^{\text {sh }}$ reflected the opportunity cost in those countrics.

All the British companies using the internal rate of return used a cur-ont rate of 7 to 10 per cent as a guide. They emphasized (a) that this might alter with the change to a corporation tax and (b), to quote an employee of an oil company, that "because in the last resort, any investment decision is made on the basis of husiness judgement, the part played by analysis and technique may be small, however sophisticated the procellures that are laid down'. The other companies used gutdelines varying from: 25 per cent before tax (expressul as the ratio of "expected" profit to initial ontlay) to "the rate earned by the company at present".

One or two of the nationalized industries stated that they generally took their financial objective ${ }^{s 0}$ as a guide. The objectives differ accurding to the circunstances and prospects of the different industries. but in general they are equivalent to between 6 and 8 per cent. ${ }^{\text {ta }}$. Since the nationalized industries obtain their capital from the Exchequer and are subject to c:pital rationing, the money cost of capital will usually differ markedly from the opportunity cost of capital. (iiven the risk associated with the investments of the nationalized industries, 6 to 8 per cent probably reflerts the opportunity cost of capital, lut here again there is a certain amount of muddled thinking. since the objectives were not established for the purpose of reflecting the opportunity cost of capital. 1 In order to avoid misconceptions of this sort. it would be better to restate the financial ohjectives year by year in terms of a cash surplus to be earned by the varions industries.
The concept of opportunity cost of capital is an important one for the developing countries to bear in mind, since the difference between the money cost of a loan from a financing agency and the opportunity cont of capital in a developing country will usually be considerable. The develeping country should be aware that the money coat of capital is largely irrelevant to the investment decision.

France

Approximately half of the French compenies replying to the questionnaire used some sor of discounting method to evaluate the worth of a project. Again, however, there seemed to be misuse of the methods. One company claiming to use the met present value nethod stated that it deducted depreciation from:

[^71]the cash flows hefore calculating tice NPV at a discount rate of 8 per cent. Another company, using the future value method, calculated it on a different basis from that established hy theory. After deducting these two companies, it seemed that four of the eleven companies replying to the questionnaire were using discounting methods correctly. The general impression gained from interviews was that the largest French companies were beginning to ilise advanced methols, the impetus coming from the Common Market. An executive of a large company manufacturing heavy engineering products spoke of a conference in January 1965 at which 90 per cent of the companies attending had stated that they used discounting methods. This state:, ent is difficult to reconcile with the findings of Smith and Remmers. In their survey they state that "qualitative chassifications such as 'very important', 'important', 'less immertant', continue to be the operative categories into which the majority of Inisinesses sort their possible capital expenditures", and they go on to say that "the Lasic difficulty was the lack of adequate cost data . . As a consequence the factor considered to be of the greatest practical importance was the ranking given to an item by the department manager concerned... The minn'gers were engineers and they seemed relurtant to :ulmit that there could be a need for any justification beyond the prompting; of their good sense"."4
The impression gainel from the interviews was that projects are generally given a very complete teclonical study. Discounting methods seem to be nore widely used than in British companies of similar size. This is supported by the experience of a French management consultant who stated that discounting methods were generally used in French companies with an annual sales turmever exceeding F100 million. French companies are generally ell-gineering-oriented, whereas British companies tend to be more infurenced by accounting considerations, and thic may explain the French use of discounting methods as (ppposed to traditional accounting wethods.
Iarge French companies gemerally placed much emphasis on "the influence of governmestaction on their investurent decisioms". Hy "goveriment action" they seemed to usean the direct nnturence which the kucrenment exercised through incentives and purchasing power. As was stated by Politual and Fiomonnic Planning in the booklet. Frewch Plannini- some lessums for Britain, the incentives have introduced into the planning syacm the notion of a contra, beeween indwe idnal tirills and the state which requires a mosh greater degree of intervention in the internal affarrs of firms than has up to now lren accepted by British induary" ${ }^{42}$ On the other hand. little importance was astached to phaming as an influence on investment priticy.
The proportion of matival invewteme directly conerniled by the State in France is equal to ap-

[^72]proximately 50 per cemt a iaz de Frathe. Flectricitic de France, and SNCF (French railways) use discounting metheds, and Charlonuages if litance stated that they used the NiP' methowl, unnparing the actualized value of the results witi the initial investment.

Companies in France, as in Britain, uw a widw variety of cut-off rates as guidelines for the' apprusal or rejection of projects. The nationalized indurtrirs, on the other hand, gencrilly 1 an , as a g guike, the rate set out in the lituch pham Fin the therth han this was set at 7 fer cerit. hat in was thmelia that this would be raised to $\&$ or 10 per cemt for the fiftlo plan.

The apprasal practices uxed by the Fiow ha: tionalized industries prolably corpequ nd dhelv to the theory because "a majorits of lienche ecomanic theorists are assmiated in one capacity or anotluer with the nationalized industries, sosure in the highest managerial posts"."4

Cnited States of :Imerica

In Tapies of Cost Accountiong and Decistoms, Wierman states that "in fact, this (casla pay hark) is the most common methorl in the at the time tlii lnowk
 Capital, Hill says "The committee fonnul that ; surprising number of companies hand no swateme if evaluating or justifying capital expenditure. hom depended entirely on the judgernent of their ?.ect tives".4

In a survey of 127 Americm companier, mintal in the NAA (National Association of Acommentsts)
 used some forme of return: © x, lued wed proy licick, 59) the look RR and 38 one of discountiug teclo. niques. Professors Brockie and Grev, in a survev of fifty-seven large American manufacturers" investment, ${ }^{\text {an }}$ found that 85 per cent of the requondents
 survey of alont thirty mannfacturm; conlpmince nade hy a vice-president of Thanow fawn l_{1}. dustries found that "the mest miver bal stanthel employed by enlightene: managerment is the return on investment the particular product wili; trovile" "4 Fisner found that the aserage relurn onf whtal (,.es was communty nsed for major as well : momer investment and be expressed distrese that the elite of Ameican businessmen nsed this "cruble" formulation of the rate of retuin." ${ }^{\text {m }}$

[^73]In Istvan's more recent survey of forty-eight companies, ${ }^{51}$ all but seven stated that some minor proportion of their capital expenditure was treated as "absolutely necessary". Sixteen of the companies used discounted cash flow (DCF) for at least some of the projects (see below).

Methad of investment appraisal	issed as	
	Primary	Secomdary meseswre
DCF (including the MAPI formula)	7	9
Book RR	24	8
PB	13	21
Others	4	44
Total	48	

Istvan states that "there is apparently a direct correlation between the use of this measure of acceptability (DCF) and a generally superior capital expenditure programme". In the Minneapolis project, Heller discovered considerable use of pay-off formulals but diversity and irrationality "in the method of calculation and in the treatment of income taxes and interest". ${ }^{32}$ De Chazeau also finds "stubborn resistance of businessmen \mathbf{t}) scientific economic furmulat fur the timing of capital outlays", ${ }^{\text {a3 }}$ and Gort finds the use of illogical methods (for example, deluction of depreciation from inconie but not from capital) which nay not reduce the level of investment lecanse of the adjustment of the cut-off rate, but which almost certainly will lead to the wrong choice of investments. ${ }^{\text {s }}$
On the basis of a number of surveys, Solomon conclucles that "most large firms do not use refined capital rationing techniques, though there may be a correlation letween systenatic capital budgeting, size, and separation". ${ }^{3}$ Separation here means the divirce of ownership, from control.

Norman E. Phomm in a more recent study of the experiences of 346 manufacturing companies states that "the pay-back period is the most commonly used fintucial measure of capital projects alloug operativg companies".".s

On the basis of the alove surveys and the interviews, it appeiss that companies int the United States tend to use more formalized techmiques than French os British companies, lmat less tham half of the large companies i these with net assets excceding, say, $\$ 30$ milliwn! use discomiting techniques. The largest combinies, and particularly those in the capital intensive implentriss, such as oil and chemicals, tend to

[^74]use the most advanced techniquen, and here the pattern is aimilar to that of the United Kingtom and France. An executive in an American chemical company atated that the gestation period for projects in these two induatries was generally longer than that for projects in most other induatries, and he thoughe that that made those compenies time conscious, thereby inducing them to use a method of appraisal which took account of the time value of money.

3. National economic profisability; the theory

Tinbergen ${ }^{37}$ has pointed out three respects in which the appraisal of a project's worth to the community differs from the appraisal from the viewpoint of the individual firm. ${ }^{\text {se }}$ First, whereas the firm will calculate the economic worth of a project using the market prices of production factors, the evaluation from the communitv's viewpoint should use prices which reflect the scarcity of these production factors. Market prices may not measure the marginal productivity of production factors because of imperfections in the narket, and "shadow" prices may therefore have to be imputed. Secondly, the "community evaluation" should take into account such factors as the indirect or secondary benefits or costs attributable to the project. Thirdly, the evaluation will measure the net return to the economy, by relating benefits to total costs." rather than to any particular factor. The evaluation is therefore calculated in terms of the social rate of return. ${ }^{\infty}$

The relationships between projects, industries and sectors of the economy may be assessed by means of imput-output models. Work is in progress, for example. on the preparation of an input-output tahle for 500 t, 600 sectors of the American economy hased on the census of manufacturers for $1063{ }^{-1}$ A social accounting matrix (SAM) of the British economy has l,een prepared ly Richard Stone and his colleagues at the University of Canibridge, England. © Statistica for these kinds of models are obviously not available in the developing countries, but even very elementary statistical analysis may be useful for outlining priorities.

Some particular factors that should be considered in assessing the economic soundness of a project are listell below.

(a) "Shadou'" prices

Attention has already been drawn to the difference leetween the money cost and the opportunity cost of

[^75]capital for a developing country. If therefore, an evaluation is made using the NPV technique, costs and benefits should be discounted at a rate which reffects the alternative use of the capital.

The price attached to labour imputs should again reflect the alternative use of the resources. If the market price does not reffect the marginal productivity of labour, the labour cost should be adjusted.

For various reasons, such as exchange controls or temporary loans, the official exchange rate may not be an equilibrium rate and it may therefore he helpful to evaluate the project at various "penalty" rates of exchange.

(b) Secomdery bemefits

Projects which have significant buckward and and forward linkagees effects may have a greater attraction for developing countries than projects without the same effects. The benetits arising from this sort of effect will usually be impossible to quantify. and it will only le possible to note the efferts of the project on other sectors of the economy
"A significant consideration in appraisiug a project is the extent to which it will result in the introdiction into a country of new and advanced techniques.... When new techniques are introduced, there often arises a problem of the existing industry which will be rendered obsolete, with the conseyuent loss in value of existing investment, cost of training new workers, dislocations, possible immediate decrease in total employment, increasing economic concentration and so forth." ${ }^{\text {en }}$ Again these factors are dificult to quantify and the emphasis is diverted to considering the project in relation to the economy as a whole.

Another non-quantifiable factor which may be worthy of consideration is the extent to which the project gives rise to "external economies". These may be defined as arising "wherever the output of a firm depends not only on the factors of production directly employed by it but also on the output and factor use of other firms"." Such external economies arising from common service functions can only be evaluated by considering the project in relation to the economy or particular sectors or regions of the economiy.

4. National aconomic profitability; the practice

What factors are taken into accoum by financing agencies when a project proposal is being considered? As is to be expected, the criteria differ according to the nature and objectives of the agencies.

Uniled Kingdom

A director of an organization esuablished to provide investment finance to firms in the United Kingdom stated that the main criterion was the creditworthines of the project, although. for the

[^76]more risky type of projects. a few members of the industrial staff of the organization spent two or three days with the sponsor checking (oll cost and market estimates. Fome weight was aloo given to the promution of exports, but no formal stinly was made of the effects on the batance of panment-

A merchant bank stated that it, tow, assereel projects on primarily qualitative grounds For ex ample, the quality of management, the ilegree of risk in the industry or comutry, and the hasume, back ground were all factors which might be considured

A govermment-sponsored developmeit hank stated that the main criteria employed were whether the project fitted in with the governuments phas whether it was comnercially profitible; whether it was technically feasible, and whether the inollouts were "porlitically acceptable" in their own comintry

No discounting analysis is carried unt biv the thath and the main economic criterion axinn serims 1.1 tre the repayment of the loan, although the fuality of management is an important consideration. The bank operates through a mmiber of "ilewhipumen companies" in various territories and, for the villil ance of such companies, a check-list has lorent pre pared with fifty-two points raised under the hradings of "sponsor's status", "suitability", "stake in the project", "general" (place in the bank'4 puticy and developmem of the country 1 , "process". "manage ment", "markrting". "finaluce" and "trem, of agreement". The check-list is shown int appendix 2 .

A policy which has been used hy ow wif the bank', development compranies is to work up "ugreed proposals" with the sponsor which contain full ifrails of the projert and the basis on which the development bank is prepared to invent it appoars that this scheme has been working well. Iwectuse the "agreed proposils" are in a form which inith thedevelopment bank and the sponsors are prepared to sign as representing full detals of the propect as agreed by all parties, but smbject to the :uproval of the respertive lxards.

firance

Interviews were held with three enphinyer, of a covernment-supervised French development lank. From these, it appears that kans are generally given for industrial rather than infrastructural or agricultural projects and are often channelled thromali development barks in the particular countrias. The prime consideration is the creclitworthiness of the Inorrower. although it is thmagh: that the lanilk liny, more attestion than commercial banks to the secondary economic effects of the project.

An assessment of the market is carriel mut and even though the market analysis is linited to one or two years ahead it emabies the bank to avoin Guvarite "prestige" propects, such as rement works and airlines. Cost-brnefit analysen a:e mo usualis carried out، but consultants are mcaqumally emploved to carry out technical arpraisals. Only rarely aie projects compared ome with another. The benk had prepared a check lise for the uee of the sponeor and this asked for the sponeor's ecomomic and finamcial heckground and pooition, and detale of the
project's finances extending over the period of the loan. This is shown in appendix 3.

United States of America

The main criterion used by the commercial banks when investing in overseas development banks or projects again seents to be the ability of the sponsor t" repay the loan. However, when an "equity" investnient is made, the banks calculate some sort of return. One hank stated that the ratio of the average annual return to the initial outlay was calculated. When comparing one project with another, the salne hank stated that risk and "social worth" were the chief factors to be considered if the profitability of each priject was more or less equal. Again, no detailed cost benefit or profitability analyses are made, but the bank has prepared a "check-list for project investments" for the guidance of afplicants. The check-list asks for details of the applicant company's background; an outline of the project to he finaucel and it:; contribution to economic growth . details of the quality of the management, materials and libour supplies; markets; operations and financial results ("for at least the first three years of "perations"): the investment climate; taxation; the sources of capital requirements; and finally, details of any feasihility studies carried out in connexion with the project. The check-list is reproduced in appendix 4.

The other financial institutions interviewed. that is, the Expon-Import Bank, the Internetional Bank for Reconstruction and Development, the Agency for Industrial Development, the Inter-American Development Hank and the International Finance Corporation, generally inake detailed studies of projects.
. III. for example, has prepared a capital assistance manual covering all phases of project preparation. evaluation and control ; this consists of a few hundred pages of small tupe. A shorter booklet entitled. "Feasibility studics, conomic and technical soundness analysi-apital projects", sets out the requiremients of \mathcal{C} ㅇll of the Foreign Assistance Act of $10,1 .{ }^{\text {at }}$ and $S .101$ of the Foreign Aid and Related Agencies I poripriation Act of 19x3 and then goes on to detail the strps to be taken when assessing the eronomic and technical soundness of various types of projects. The analysis for industrial projects is shown in appendix 5. According to the statemente made, diacounting methods are sometimes used and the screrning mainly depends on the personal assessment of the head of the particular capital development office dealing with the project. The importance uf pre feasibility studies and two-stage analyses was stressed. and it was thourlit that ton much emphasis hatl. in the past. been placed on technica! appraisals to the detriment of the economic appraisal. More stress sl uld also be placed on the comparison of

[^77]alternatives, ${ }^{\infty 0}$ alkhough formalized procedures could not be eutablished owirg to the diversity of projects. AID stated that it worked closely with multilateral agencies such as the IBRD, the International Development Association (IDA), the Inter-American Development Bank (IDB), and the European Development Fund (EDF), ${ }^{\omega}$ The Capital Assistance Monual states that "the role of AID should be viewed as that of a catalyst and supplement to other alternative sources of financing".

The techniques of development lending which have been evolved by IBRD are set out in a booklet published in 1960.70 The looklet consists of five chapters entitled "Introduction", "Creditworthiness", "Selection of I rojects", "Appraisal of Projects" and "Supervision of Projects". "In general", the booklet states, "the project appraisal has to answer three main questions which involve the investigation of the project from six different points of view. The first of these questions is: are the goods or services to be produced by the project needed by the economy for consumption or for export? In order to answer this question, the project must be investigated from the economic point of view. The second question is : is the project properly designed and planned? To answer this question, the project must be examined from four different points of view, namely, the tachnical, the managerial, the organizational and the commercial. The third question is: is the proposed method of financing the project appropriate and (where relevant) are the earnings prospects satisfactory? This requires an examination of the project from the financial point of view."
A form outlining the information required by IBRD on light industrial projects is reproduced II. appendix 6. Again it was thought that there has, in the past. been an overemphasis on technical sppraisals. The Economic Development Institute of IliKI) has however, been holding a series of industrial project evaluation courses which attempt to explain the primciples, and give some examples, of the preparation, evaluation and control of capital projects. ${ }^{11}$

[^78]The other financing agencies interviewed, that is, the International Finance Corporation, the InterAmerican Development Bank and the Export-Import Bank seem to carry out detailed studies of industrial projects. ${ }^{71}$ Some of the points stressed by these institutions are as follows:
"More importance is attached to the institutional framework than to theoretical concepts. Development banks are viewed as a particularly useful part of the institutional framework."
"The effect on the balance of payments is usually quantified since foreign exchange is almost always a constraint."
"New industries are generally preferred owing to their linkage effects."
"It is essential to study the economics of the country as a whole so as to reveal bottlenecks and the general stability of the economy. Every study shows the relationship of the project to the econonty, although 'shadow' prices as such are generally not used.'
"The Du Pont formula ${ }^{73}$ is generally used in the appraisal of a project, although discounting techniques are used for irrigation projects."74
"There is usually an incentive to invest in infrastructure projects because ot the greater ease of getting a government guarantee for these projects."
"Cost-benefit analyses are not usually documented. but we do try to take account of such factors as: the effect of the balance of payments, both directly and indirectly through the action of the multiplier; the labour intensity of the project; the linkage effects; the diversification effects on production and exports; the impact on income distribution; the promotion of technical skills Very seldom do we use shadow prices as such, but comparisons are made with a similar type of project in another country or with a simulated 'challenger'."
"Most projects are suggested on grounds of 'political expedience'. The problem is to find alternatives, and introduce objectivity into the analysisthat is, we act as an educatimal pressure-group."
There seems, among the international agencies, to be a raoidly growing concern that assistance funds be used more effectively, but it was stated many times th: three formidable obstacles were barring the way to such an improvement: first, the application of political prejudice to investment decisions; secondly, the difficulty of collecting data on which

[^79]to base a detailed appraisal, and thirtly, the wortage of projects. ${ }^{\text {T}}$
C. COLIEETION Ot DATA: SOMF (OMVON MMけい CEPTIONS: ANI A MISCESSION OF RISK ANO UNCERTAINTY

1. Collection of data for arsessment of womerial profitability

United Kingdom

"Few would complain that the Rritish mamifacturer has neglected the une of :narhet wemeh ill home markets; membership, of the British Market Research Society is approximately 1,500 and total expenditure on all forms of dontestic resarch con sumer and industrial markets. trade, morlia and advertising and sales-must now be in the neighbourhood of $£ 15$ nillion a year". ${ }^{74}$ So states Mark Abrams. An expenditure of $£ 15$ million a vear. ${ }^{7}$ howevir, represents less than 0.5 per cent of the turnover of these manuficturers. Moreover. (iarter and Williams have said 'in our case stutics we found relatively few firms with efficient arrangements for market research". ${ }^{78}$

On the hasis of a survey conducted among mem bers of the British Market Research Sixiety in March 1965, reported in the fimancial Times Keme'ze of British Industry (July 1065), it is stited that "it is highly unlikely that Hritish industry yemt as much as $£ 1$ million on wersean market restarci in 1064: more prohably the hgure wan barely $£ \mathbf{\$ 0 0 , 0 0 0}$ ". The report also says that a mainerity had used "desk research". which dill not invilve interviewing. The respontents were driwn mimlly from large and middle-sized firms with sume in terest in overseas markets.

If Jacques Lesourne's ${ }^{70}$ division of maiketing studies into predictions and structure analysis is used, it would seem, on the hasis of the Frami ual Times Survey, the questionnaire replies and the personal interviews, that the majnoity uf Hritioh companies rarely use structure analisis when making market forecasts.

The fict that companies pay little attention to market research in general is reffectel in the !irk inf market research applied to individual propects Forr expansion projects, for example, cumpulies in the EIL survey generally forecast for five to, tell wars ahoad wheren replacement prepect are getment appratised on ther first year's waving Gumer exten
 into detailed costs. In sonne cases the prolitiohil. its of projects are not assessed at all (ssee set tinn H).

[^80]subsidiary measures are often used This is particubarly true of replactement projects, where contparions ill termis of laboul prodictivity are often made. Three of the companies interviewed make extensive une of check listsm ${ }^{\text {min }}$ o try to ensure that a reasmably iecurate estimate of the capital outlay is chtained.

Many of the organizations in the survey, in fact. bure thim onte thirel of thoue questioned. made "errers if pirmeiple" when collocting data cime of the nure commen pittalls are heted later in this chap ter When the e "errore" fore cample, the allecation (if existing werherel, tha mew plant) were peinted
 the were, in fact. "erious" Thes issumed that they hid loeen using the methods correctly

All thirty-aeton companies giving replies to the furesthmaire stitef than outhys for we rking capital were incluted 111 an extimate of the capital ontlay Howecer, a bimiter of the companies interviewed merch apply the preselt latio of current-to-fised asects to project estimbtes and one company stated that credit received from suptiers was iguored al Ratrely, it verms, are tetaited estimates mate of the buiddip of inventories ar credit given 1 . constamers ins relation to indivithal projects

In the postal survey fourtent companies stated than they hooked at the worth of a project after deducting emmpatis :ax sixera stated that the re thrn wa- hathally calculated before tax Other replies wete bugle ame chald ont be disiotied. the vague 113.- arme from the intrexluction of corperation tax ' the reivoll commomly given for extmating rates of return on a fire tas hass win lecames rates of twation and it tax allowanes wert comotantly ch: heme whe repls of at memetectical engineering
 wem stated that ther wonld have regard to the beredie of capital allowame and in particular the "ulwids" which might arise from insestment allow
 thi ghant. it is efficult to come to anv lecimite con-
 allice has their wosigual effect. It cill, however. satich be suil that the effect of tax allou alices on a profects worth is rarel, examilued by docomong erchinus, and it atobable that the allowances Wh wa have thein intended effert.

Fone of the organzatons interviewed have attempted to asses explicitly the effects of a project on

[^81]the total profitability of the enterprise. For exmmple, one oll company is attempting to set up modela whith winull show more clearly the effects of a project on the other operations of the company. A large chemical company requires that the pre-extension price and cost structure of a division of the company be compared with the post-extension structure of the division on the project proposal form. The electricity industry in also accustomed to stisdying the effect of an individual project on the existing activities of the industry because a new generating station affects the merit order of all other stations. Some inventments may, of comse have their own demand curve due not only to the size of the investment but almo t: the míqueness of the product or service produced The effect of large prejects on the demand curve for evisting products is rarely assessed, with the notable exceptions of the organizations listed alnve

France

Of the organizations surveved in France, the majority forecast between tive and ten years ahead for expansion projects above $\$ 250,000$. whilat for replacement projects a shorter period is generally consiclered. Only two of the organizations indicate that forecasts are made for the economic life of the project. The impression gained from the interviews in that the market study is generally made in more detail than the marginal cost study y vet the market study is generally limited to desk research. French organizations are even less market-oriented than their Rritish counterparts. The cost structure of existing plants within the oreanization is all too oftell assinmed to apply t: new expansion projects. Where the projert involves the replacenient ${ }^{\text {th }}$ of ex inting assets, the comparison between the "defender" and "challenger" is usually condicted in terms of technical data

The deat market research, for the companies intervicued, nsually involves is mere extrapolation of price and volnme trend. Only rarely are analyses marle "f pirice elasticities and future trends of import, ir 'if the effect, of competitors' likels reactions. Indeed, the prime motive for a study of an expan,ion firoject seems to be a lengthening order book ur the need to maintain a certain rate of growth or share of the market A few companies here tandard forms fur the piresentation of projects but only rarely du these ask for detailed cost or market breakdowns Onls une of the companies interviewed nass an information check list, althongh the majority said that thes were abtoult in introduce them.

The Simith and Remmer, study sheds little light (a) the ferecasting technieques used by French com

[^82]panies, but it etetes that "it wus almust always the tectraical comaideration that were at the forefront of any choice" The stindy alen states that "expansion (in some cases) was intended to ensure that the firr. conid maintain its share of a developing marlet"

Very few of the executive, interviewed had a grasp of the economic principles insolsed? It the appraisal of a project and anve of the nore collmon mis conceptions are detailed below.

Eight of the organizations stated. in reply to the questiomaire, that they tooh working caplat require ments into account hut, on further investation if wemed that, in many caste, the existimg ratue of current to fixed assets was applied 1 , the new projert
 kooked at the returis in a project before tav the of these companies stated that mientive, chamelled through the Fouds de developquinem conomume a social were alvals consulered

The companifs interviewed seemied tw asmess the effect of the project un the total organization. hut this was not usually documented, and the assess ment was usually made subjectively at the lect of the buard of directors.

The nationalised industries seent to make nure detailed forecasts and analyses of projects. The Commisaion de l'énergie libade formints for the fourth plan of the demand fon wergy III wai equivalent up to lows assumang certam pirice ievels After making certain adjustme luts tor , other lartur such as the cost of retraining coal workers and the security of supply, furecasts were made of the in rut nent required ith meet the fortrast dematirl at the lowest possible cost " When attelliping t. forecast the tonal demand for fuel, the elasticities of prict and income were asammed to be constant as luetween fire? and other sectors of the economy. However. when ith lotal fuel demand was apportioned between the van bus types of fuel, a minier if formast, were madr. for various price levels. ${ }^{\text {日T }}$

When appraising large projects, the French na tonalized industries. especially thes operating i"1 the roergy sector eneralls witus the etion in the project on the total orranization This is eqpecialis neressary for Flectricite de France. ance a nen inwer station will aflect the merit arder of other station, "n

For some very large projects, detailed sudes havebeen made by the gas and electricity modustries and for wome problems, linear programming and oneqia tional research techniques have leen used mo

[^83]
I'mitid itates of Imerica

 plannime borizon is hanger. where is a promblifloll that their forerasting is mure retheal than that at french or Rritioh compante Thi homotr.: il

 data which form the bes, fin the whate dit:
 that. When collecting minmatern tor dymens

 datia Two th the compans: we detaled : int lat wo copies wer made at atahite the that

 calls for overwea propects

A management comsultant in Nirs lat

Firs, a study of the over-all inventment climute' 'in and an erimonime foreram for the mext five to ten years.

Secomaly a sturly of the merntiver of doincemeives
 on the expritiation of divibewds, tax allowances. crame whsidice and tariff profertom;

Thurths. a -tidy of the wize of the market 11- rela tronshis, "' the ecimomic sief of plant the estimated gercromage itilization of capmectiv. and the efiert on exiating and forecast experts of the compans to the conatrs
Fourthle a liecrad evaluation and memeral analvaia "f the peojert and

Fifthly. if ach analuos in pomione a tetaited feasihite sterts

 1 In patruletimi compans gave an examph of liow.

: Ciommen misicimifotions

 lewits thew alreach nomberwel wheh compomes

I'rofit after depreciation is ued for tak natime the internal rate if return in iphiect be lare:

 Frame

Henit values of phant io tre replaced art iften taken
 of culles ti es hapient lo crincide with the valuer at
 if lisemotike are diwovered in the linened King h. wim and Framel
(ilirem orertheod faltis are athormed ko the wew

 vame lis tive aprathal

 edimated that, whout the project. probies will in
 iribued to the proivet the rimparimon shombla he conclucted on ierms of whe wif happen with and withuit the peomert

[^84] in the mppraisel by a Britum enabeerime company (hacly pant cowts ape irrelerami. encept in on far an they are a couche io the fiture
liverent invwents are flofucted irome the cadh in
 covered tow the centenf rave ty a Freach ive man furturer.
 llatum wherea- factor rome forl wion owe twe to

The pestation permal in gmered toy © Promet.

The compans \therefore own lalumer used in comerurtion " ine chareed to the jpopert ing a Mritinl ternetio
 Whe lie used fior enter jurinume.

 hing dowi and the mermanionel armeres. in Wandien lim otreaned the moed her carretel fourecamem if the

 In the perifert rether than fon ithe erime whim which the jrochere is clasonifed of
life aperows stated then the: used chent hat. w that firm imbormation whe revetied in the fumi in

 In allower in ther ymanam. "Whach in wall iy iman

 wrined helow

 iftreiam wi the envemum woph all the prepert Thas

[^85]
 trantion so "tmocel mevima". Nevertherom ithey
 α_{t} merthonaine to the mopiet
 ramb in itw ingitemomation of the proiert have or:-n heon inchatiol in aneromeots if the factirs leatimg in the rexcreane ow theresise on itr price if the

 carce n has hem ruwnem in peripert. it the per

 Trymen

4 Ihr mamert of rot and eriviotwir

[^86]
 Theme are

\[

$$
\begin{aligned}
& 1 \text { inw ine "m }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { 14. } 4.41
\end{aligned}
$$

Wich "amenell"
Subiertiwaly
Hy rloantyina end requirnag tiferem rafes of entorn or ma-hect privent fit vallum "iyper" of invotiment
hy meacurion the return in the capmal thet or liy meant of ex
 - Alion
T tal at rimpaniex and notixaticed induatries inmet ine wed and curveryal

$4 \quad 0$

6

M

A numbier of the companke and organizations uning sensitivity analysis have prepared computer promrammes fir cakulating the wirth of an investment athl inert fon arondo if the computer's time aft repinited to cakulate the effert of a chane in
 (inctrawid, mamsal poien , out. "variations on the mann wilerlying asouniteniss thate for the project often the met meresmate complete retatrulariona of live IC F return" The efect of the change in merels calculated in cash terms. the wet premint value of the cash mow: is cakulated the mef jeresent values for the juroject are then discovered. and a new descometl rate if return is then foumet by interiudetion

Cennitivity smalysis seems to have been owly recently appord by the componics uamen 1 . For

 (
esample, the manager of phominn eperations in a Bribish compueter company staved that "we are cabing the frat suepe nowarts allowing for Hiferennea in risk. This is dome by acerlines. gmontitative percentares to major fecture and evelnotion the recolts whit the upper and lower condibence linwt uned. We have a compeny model expreosed in the form of a compater programme. This emables many poodinities to be evelumed rapinty. It aloo meana that all factors can be changed by set amoumts to establish thome factors which have the greatem mefert on the final resum. The factors on, determined receive sperial atternion.

The Commoission de l'energie has used mencitivity analysis for the fourth phan to nosess the effects in the eneray programaxe of chanues in prices. cuat. imports and expurts of varmes types of fuel Com ; wines stated thot they had uned it in commesion with civersess myedments in devermune the minumum price for a comirat, of wan allow mex from a Government, that cosuld be accepped whint heaving the project ecumomically viable.

Compentes made exieneive moe of charta to show the efiect of various acmamptiome on the profinalinity of a project. In the exumgle telow a cumpany has shown the raves of retues carried on equity and retal invenment for a project dependina on the level of the selling price, the tan payalo sod the wiliantion of caperity. The company emphaciaed that the uce of charts could save time in mepotintions with cus. tomers, meppliers or the Govermment, and would reveal the "cricical" varinbles to the furtiver inves. tiguted. Atremion could then be cirected rowarls unearthing more information, or Checovering methede of reduring risk arioing from thetwations in anch

verinulen. Some of the methoda mated to have beem used by componies for retheing the rick of a project, enpecially an overmea one, are
(iomrects with amplivern or cumomers turnkey contracts for the comatruction of plam were said to be esperially unefol for reducing uncertainty :

Joint ventures with ofler companies for part ir the whole of the project ;

Government tax, tarif or subsilly guarianters "ir compeneation cuaranters in the event of a devalua tion:
(ouvernmem-becked capital koon, or, better still, lexal equity investments.

Flexible conmmiments as whell a plant is desigmed so thet it con use nume than une type of raw material.

Where sume of the capital "tied up" in the project has a high value in alternative uses (for example. if resold) the project will idovoualy lie less riski that one which utilises captal mpecific to itself. since. if the project fails to be profitable, lowes can be cut by using the asmets in the aliernative use For ex. angte, mot of the capital sunk in oil exploratom is "at ridu", whereas a retail shop, will umally have a high abernative valuer relative to its coet. and there. fore only a mall proportion is at riak (Ine company stated that it did not une the parideck nuethod in the secesonkm of risk berawse of its failure to measure the return on the capital at risk wat

The American compmenes imterviewed all used unice firm of probability or minimax analyar, in conjuaction with semsitivity analysis.

The internatmmal apencies ernerally favoured menerivity analyses for the appraisal of panject. they did. humever, differeminte betweetl the rish and uncertainty attributable to project for exaniple, wonie rinks cowid be insured mainet ${ }^{\text {tow }}$ where as by definition the range of uncertainty was It11 known It was emphasised. however that wenotivity analvisis could the very uncful in revealing the effect. if varkus ranges of shadow pices on the erontime impitability of the peroject

" CUNTMA, MANACEMENT ANO MKT MOATEM AF

The appraimal on imhumetal projert can ir obly into foup parts. Asswming that a plan has beren worked out for the company ir romerts. a plan in the conerit of which the individual project can he apprained. the atages in the mppraisal if a propact with be indiation and pre feamblify stody of ohe peroject. evahmation of the hewrits arining frim. perijert comparisom with the akernatives. and its anthuriation or rejection chelliling and cimerol of the project. past murtent of the projert

In the previnuse thres serifums. the dicilusion has raned from the mintaicm of protential cupportunitiea

[^87]th the evaluation of a project The fremellt section discuases the methonds used by complamis. Hation.il
 managre and post-aindit project.

1 (omtrol of propsit.

 phatmaremical mannfacturer wrote Itie pive vo 1

 that quotations are on a comprethenotie hast. this requires til be aecompanied lis close antractial arralsernems-preferably of a recomozed chatisiter

 lance. we make a pracict of havime a formal monothla
 whin ing the varkis items. as III the collolite anel

 and ne recinnmend if at all powhle the walian.

 ariker. on wite

 making in the cremt it the foblet wat in. the entillate

[^88]poseible to arrange such contracts, compeniea emphasized that strict control was essential, with proper use being made of material requisitions, works orders and wher control procedures.

2. Managrment

The commoneat type of capital budgeting organization", siy Merrett and Sykes, "is that where the capital budzeting decision is largely taken or at least almont all the investigation and analysis is perfornsed by that department primarily interested in the project". 14 ' This would seem to be confirmed ly the Smith anil Kemmers' study and it is almost certainly true of the small and medium-sized companic: Iarg projects (those above $\mathbf{E} \mathbf{1}(\mathbf{0 0 , 0 0 0}$) in the larger companies (those with net assets above
 committees or departments.

If the appraisal and presentation of a project proposal is assigned to the originating department. the job of project evaluation is almost certain to In made more dificul, especially if there is no standard form of prescutation and analysis. I is pronably because so few firms have formalized capital budeetink procedures that there are few in which the analysis and evaluation of projects is a special managenvent function. Those companies which had ansigmed the comparison, analysis and evaluation of propects to one person or department thought that lliss meint that a more objective analysis of the propect womld be made than if the joh were assigned In a |erswh or departneent with other responsibilities.

Mont of the large organizations in the United Kughom and france, that is, the nationalized infllatite allul the ten or su largest companies, have Hequitmoms whose wole responsibility is to plan.
 explitithe The turee Americar: companies have Shlilar drgartowits. hown as panming departments.

The meter batial inencies and the Finglish, and I weach wochpuntit bank, kenerally differentiate 1." 'we:l the man wemem required for : feasibilits. -ruds :Ind for the supervision of a project

I! a apenies found it dificule to generalize in the IS, ! loanin for a featbility study but thought that the mumbum tame hould consad of an accommtant.
 that it was dittu ult to eliminate hias from reports and stindes. hit if wias thought that. with the use of clieck list, .med pre inverment atudies. the risk of lims on the pant of the frasibilits tratm of member of the te.nin conld tre tediced

IlRKl statel that the mumber and yualits of applit

 tedimeal ansistance

Is iar as the sipmervisiom of pupect is concerined

 leat tor a lellef there are string arguments apainst lise method. at first wight attractive, of anpervising a peniert b means of a rendent representative The

the risk that the leader will unintentionally but inevitably become involved in managemem decisione which should be the responsibility of those running the project. On the other hand, there are riaks involved in depending exclusively on written reports submitted by the borrower. Such written reports are certainly necessary for the efficient management of the project, and should therefore be readily available without the need for special procedures". ${ }^{100}$

The agencies were generally against their own staff supervising the project or interfering with the project in any way: and this eniphasized the importance of the project appraisal. There were usually objections by developing countrics to the employnient of foreigners in positions of mamagement responsibility. Industrial development beanks were therefore often used by aqencies to provide wruicrs that would otherwise have been provided by expatriates.

3. Post-mortems

The answers to question 8 in the questionnaire were analysed as follows:

	Number of compmies	
	1 minod Kimotem	Freare
No post-mortems on individual projects	14	4
Pont-mortews on "most lare projects"	10	4
(Wher answers: "post-mortems in the early days of produclion"; "on sam. phes "projects"; on "very larme projects". eic.	8	2
Nun-classitialte	5	1
	37	11

The classification of answers was, to a latge ex tem. arbitrary.

Most companies seem to have a follow -up procedure on expenditure, but it is not clear how thorough IIt the investigations of differences between tise actual and entinilated expenditures. It is likely that fou conpanies check thr actual date of expenditure with the wherluled date. This would seem to be true in limerican as well as of British and French compomes, for. of the torty eight firms studied by lstvan. - in' inenty ane incheled an and it of the time dimen
 onputal will gromerally be commritted to a project (rom the time of the decision to go ahead with that priject ans delal in the comstruction will cost the tirm unsey For example, if $\$ 500,000$ is "tied up" for inl, six nonths liy a company with an opportumity cont of capral of 10 per cent. the cost to the compons in terms of the alternative foregome will be : 18.00

IIf the Simith and Kemmers' studv of French cont patme. it is stated that "nost firms did not attempt ans subequent review of capital expentitures once Her hand ixem made. The largest tiom in our simple hard a department whose main function was 1". cilculate a porecruwi the profitability of the most important pripects, and find out the reasons for any

[^89]deviations from the original eatimates. In a few other cases, certain investments selected at random were followed up. But in all the instances in which some kind of review was being carried out, considerable leeway was allowed before any explanation was demanded from those reaponeible." 112
It seems from the pootal survey and interviews ${ }^{111}$ that few companies or nationalized industries in France or the United Kingdom have any systematic procedure for examining the results of individual projects. A variety of reasons were given for not examining projects individually. The main reason given was "it is often impossible to isolate the results of individual projects, due to their interdependence with cther activities". In this respect one reply from a British fertilizer manufacturer was fairly typical: "once a new process has trcome embedded within a works total, redistribution of overheads makes a atrict comparison of profitability hardly worth-whik. An over-all measure of profit before tax to assets at replacememt value is preferred." Most companies seemed to review and "control" the proftability of projects by building the project estimates into the total budget and, in the words of a Rritish confectionery manufacturer. "thus a cycle of plan, budzet, achievement, plan is naintained".
Other reasons given for not following up projects individually were: changing circumstances; cost inaccuracies; confict of personalities; lack of man-

110 See footnote 15 above.

111 Tibor Barna found in his survey (see footnote 13 above) tha! "one firm in four in the sample conducted uccasional inquests into the success of projects" and that "remular serutiaies of the results of investmens are few and cursory".
agerial time. Indeed, the post-nortem of individual projects is rarely a specific responsibility, and the tack is usually carried out when manakement has some spare time.
Some companies, however, notably two American companies, had made the post-mortems of projects a specific responsibility. Post-murtems int these comrpanies seenied to be detailed but linnited to a sanuple of projects or those above a certain value. Even in those companies, however, comparisons in terms of profitability were rare, and were usually made by looking at certain "critical" variables. Dost-mortems were stated to be nseful hy a few compmilies. One French producer of natural kas observed that usefinl lessons could be drawn from them ill regard to new projects.

Cienerally, however, little importance wiss attached to the post-mortems of individual projects although the majority of organizations emphasizel the importance of budgetary control and "management liv exceptions", that is, the method of control whereliy the management of an organization directs its attention to deviations from pre-determined targets.
An executive in All) stated that "rarelv arre ire tailed post-audits carried out" in the territories for which he was responsible IRRI), the I:xpurt - Import Bank and IDB stated that detailed pont-mortems were carried out where mroujets had failed, butt thet as a matter of course. The general absence of. and difficulty of carrying out, post-nertems on individual projects emphasized the importance of the close control of the assets of the organization as a while and the careful appraisal and plaming of projects liefore any capital is commitied

APPENDIX 1
Pmesent value op Cl

Yom	Pepresmer							
	1	\bigcirc	\bullet	10	12	14	10	in
1	. $\%$. 4	. 93	. 91	. 9	88	8	K
2	. 9	. 89	. 6	. 8	80	. 77	74	72
3	.m	. 4	. 79	. 75	71	67	6	61
4	.65	. 79	. 74	. 68	64	59	55	$5 ?$
5	. 2	. 75	. 6	. 62	. 57	52	4 H	44
6	7	. 70	. 63	. 56	51	46	41	17
7	. 7	. 67	58	. 51	45	4	35	11
8	. 73	. 6	. 54	. 47	40	35	31	27
9	. 70	. 59	. 50	42	36	31	26	21
10	. 4	. 6	. 6	3	32	27	$\therefore 1$	14

$V_{a} / r=(1+r)$-to determine the orenem value of fulure ash H.w.

APPENDIX 2
Projkct apmaisal a suectsten checeletst
It is clearly imposaitle for any list auch as this bu be exhametive, mince ihe poseible variety of candidates for appreinal is infinite, and the key to a projeci's viability may te a factor aot here mactioned. Similarly, the exmphasis to be pleced on the varions factors will very from project lo project and the prenence of one or mofe uadeairable but incwithle fatures does nol necesurily preclude a project's vichility.

1 Spomsiops
A sharms

1. Cerirtal businest standing bankeri' feferences. Itim

? Are any pentical ishections 1 i. the opmasond lisely
 vestifal?

3 If vantwiri are a cumpany in peatinetshup a) Whal in peat up copmal?
(h) Ito memorandum and articles conasin any undesirable features?
(c) Have Ifgal requirements been complied with as remards renistration, returns etc?
(d) W'h, are the directurs, auditurs, bankers?
(e) Is an audited balance sheet avalable?
B. imitatility

1. Fast of present experience with the type of project proprised (hther experience.
2. General husines, ability.
3. Finthusiasm and drive

C State im the projed

1. Huw much will the sponsors lave at stake?

2 Are the poissors involved in the management of the project:

1. Could the poonsors have an ulterior motive in promoting the propect. What are their uther business interests?

11. Project

A. iemeral

1 Would investment in the project confirt with the stated policy of the deveo? 'Wther policy nbjections if any, will ow me tis light through the clearance in principle pricedure)
2. Ines the project show promise of aiding the economic development if the cisuntry?
3 Hies the project conflict with government policy as stated so far? Are there any indications that fovernment prolicy midit change in this respect?

4 lhes the pruject provide for the cumprehensive tianing of beal citions th all levela?

H. fromess

1 Ire there any leval resirctions on the propmed mambacture: motruction culter thon:
 of the ster ontalie
3 Idax aporpprate land tenure been sezured"
t llav the necowary intravtrurtine lwen established? 'unminicati in pener, water supply. ete?
: 1. atergiate lalmur available" Are propoued oundi:"ins .t wirk in a:crilanie with employment regulatimes?
b 1 , the surpls it raw material asoured' Are supply arranuement, suhiret t. timiry contrels or duty? Are they at arm's lenath'?
7 Is an anisside techncal aipilawal necersary?
*. Is a pilot scheme levrahie.
C. Manugemint
 ment
: 1s there adequate peiviwon for the supervision if technical asirects at all levels:
3 1, accountile taf adeteate?
4 1, management, remuneratian appriptiate:

1) Markinans

I What stationen are availatic it local and ivermas prosicuts? Tre ang linal or wifld trende voservable' Is on intende ammy we droirable?
\therefore Wral cimpetition ion expreted:
 propued marterts?
4 What are secails of whing arragemenis?
3 Have any usinicam cromerncts already hem erurei: Cin any povernowit bumeve to expocted?
6. Con any rarff prowection be obtained in the local martet?

E. Fineare

1. Is capital gearing suited to the project?
2. Are estimates of development and rumming conts reasonable? Could devco investment be servieed?
3. What contingency provisions have been made?
4. It adequate working capital provided?
5. Is devco asked to provide a disproportiomate amount of the total financial requirement?
6. Have any other Aevelopment institutiona been approsched? What were their reactions?
7. Has short-term mank finamce been considered?

F. Terms of agraement

1. Finance to be provided by sponsors.
2. Finance to be provided by deveo; rate, repaymen, security, limitation of riathe to creale other charges.
3. Drawings; againa schodule or certificates of work done.
4. Investigation/nemotiation/commitment fees.
5. Provision of end frnance.
6. Early repaymant.
7. Pre-emption rights.
8. Insurance.
9. Appointment of audivors.
10. Inspection of books.
11. Nisht to receive accoments, prigress reports.
12. Roard represemation.
13. Lemal teet

APPENDIX 3

Chicelist to completer my mivate unmetatings atelasting mate loans*
A. Ricmumic postion

1. Cimpany's Deckground.

2 Sites of production centres and description of means of production requipment and existing plant), with information concerning their production capacity, condition and age.
3. Stafl empluyed (rumber and brenkdown).
4. Business development in the course of the lat few years volume of production or of jots completed and turnover for the peet five fineacial years. Marketp and marketions arrangements.
5 Itrails concerning branches or firms beluging to the same group
B Jimuacul puation
I. Growth of captal.

Mides if latest capital arquisition.
L.st i, it principal stockholdera. with information concerning their share in the compmin's capical
2. Audited baliner sheres, opersexonel scoomens, polit-and-loms acrumts. aeatements of tiatrimation of profits (for past five fina:xual yeers).
3 Current hnancial wituation and estimated earmings for curremt mancial yeer.

- Intailet smalysis of bat certiford belance sheet and formonia! statement
Inerriptiom and breakdown of primecipal pooss:
Explenation of chames in momen neta:
 tomed by compary and wrom (ravea, ruagmem mandition. mevity onerall
- Submared in Fremeh.

5. Details of market valme of fixed movets, whant and nel.
6. Preferred claing on the company and commitmem: monertaten by it, particutarly in the form of performance bonds.
7. Matters in diapote: suiks in progress for or against the company (subject and magnitude).

C. Nole pertaining to the request for crochit

1. Programme currently envisaged (production suals and future prospects as regards supplies and markets.
2. Detaiked accume of projected equipment pergramme. Breakdown and coot of investments required.
3. Means of fimancine envisaged for the part of the invenment programme for which the company retains esponsibiblity.
4. Repaymemt plon.
5. Projected meems of amortization:

While the inventment programme is in progress.
After completion of the pronramme.
6. Surety offered: mortgages, securities

D. Anwexed documents and information

1. Certified up-to-date statutes.
2. Composition of bourd of directurs.

3 Keferences concerning aponemits and management.
4. Extract from minutes of board meeting at which it was decided to request credit and accord the necessary powers to the designated agents.

APPENDIX 4

A. Check-list mor phoject inhestments

1. Company to be financed
(a) Deacribe the (proposed) company, its capital structure. location and nature of major activities. Give biographical notes of promoters. principal stackholders. directors, manafement and hank reterences. If goine cuncern, submit current halance sheets, earnings statements, financial history.

2. I'roject to be fimanced

(a) Describe the project: is it an expension, modernization or a new undertaking? State and describe cosis of plant and equipment. [escribe prodicts, their economuc juatification and contributions to the hont coumfy. i.e, what will make it welcome in the hose country: (Will it generate dollar income, sav: foreign exchange. utilize iccal raw materials of larsl labow?)

3. Mangoment

(4) State whe experienced corporate entity will crin. atruct and operate the plant, its competence and forergh emperverac.
(b) What local independent professional services will be used (lawyers, accountants, engineers, marketing experts, ete.)?
4. Row materials and labowr
(a) List raw materials, source and cost May they he freely imported?
(b) What are labour requirements: lical and expaltiatic skilled and unskilled? What rovisom is there inr training and advancing local latour?
5. Markets
(a) State projected demand ar 1 sales for next five yoar What is the statistical hasis of the progectums? Where imports or experts are part if the market, show quantities and value by country.
(b) What is the competition, doncostic and forrigu?
(c) Are there import restrictums, duties, or whthe poveth ment regulations whoh may affert saies either in the host country or in export markets? Dhes the company have loneterm sales comtrats?
6. Operatuons and finuncuil resuits:
(a) Submit:
(i) Projections of output. cast. reverimes, tixen and protits for at least the fint three yeats, if operations or for the perionl tureigin deht will be outstanding state conntrutan dan start-up time. (Cost tems shewh whith can materials, lalxur, power, adinmisiatise is pense, sales expense, Ifeprectatholl atit taxe:
(ii) Cash flow statement. Vluwning wirce ant in position of fund, firing constuctem and har periad correvamiting (1) (1) alune.
 and start-111, costs:
7. Gozernment int tronmint
(d) What role will govermurnt have in: be project
(b) What incentives will it offic. What in R'verimment policy remarding rematriation of profito divituith, interest ant caphal, entranc. and irwhere if them: technicians and other fations whith may athen tha project?
A. Taxation
 each tax. its rate and aly inx pieteromm.
9. Capital repurements and finuminal plum

Show in detail ly smbe and currency bew manman captal needs will the wit incluch wink rathed aind

 lembers or investirs.

10. Independint siwdirs

 have been made, sulmit them if of, matre vale alat ath arrangements will !e natr

B Pmijectid gash miow

> a. Papocies cael now (contrand)

	$\begin{aligned} & \text { contin } \\ & 1 . x^{2}+\operatorname{mon} \end{aligned}$	Pine yom	Somerim
Increace in sundry curremt Habillides Not polit ather tames			
Ad beck:			
Non-esth charges exemeriog livere			
Not profit ather mares			
Deprecimitan			
Resmerve fer thel teits			
Total cabie mexipt			
Cach dishursomonte			
Copinal expmaliures			
Replocmmati .			
Doik reparinemt .in			
Stapt-rerm lowm			
Lang-term dedt			
Invemory increanes			
Increse in mecounts remotribe			
Increat in madey ewrrext emmen			
Dividman			
Net cach mamenot turlat meoted			
Acewmminted canh proition			

> C. Tmont and sam mopecrive

		Panelim
Not malce		
Lom: Cont at roods min.................		
Comes mave		
Nat mearemis menti		
Lon: Imarcen		
Mantrs		
Smany mam		
Soserve for led enive		
Net morlt meome ranes		
Lese: lmoune tmen		
Net momt antu pame		
Legel and other rewrves		
Net avaindie to mockhelters		
Diviteme		
Tu samme sermes		

APPENDIX 5

 imousvial morect
(Pume tor protiction or precesine of cenamive or

 an andintor enduralime)

 Indmorid Dowolomand - A Guide for Accoloratiog Ecomamie Growht, by Murrey D. Dryer, New Yort, MeGerw. Hin, 19a. Cosies of thin hook will te avemiabie to al Unitan staves AID miscions, for the met of appliement: for AID inmencine.)

1. Semmery

Type of plame and kind and mamities of commonotities to be mobuced.
Locmion, illomested hy map showing morremotinge and tie-in with wampertation facillikes and exiention wilnies.
Distances to sources of supplies and raw materials and to markets.
Relation of project to applican's present operations, if any. Develtes, cont and proftability.
Reference to any apalicable reports (attached or readily available efse where).

2. Commerciel ecomomic aspects

(a) Martels

Local or regional market trends during past five years for cach major moduct and any clovely related products, tabeloted to show:
Domestic moluction:; imports and experts: net local consmmption, and anticipated development of the hral marhet.
Present per copida rensumption in cumbry, and comparimon with other commeries.
Local laws, regulatioms or customs affecting marketims of proposed probacts, inchedine import and expurt duties. tariffs. antas, restrictions and subtinties.
If pert of proposed production is intemied for export. show for each majue protuct
Number of units expected to be exporten; prophewd markelf and conts of transpert and mport duties.
(b) Applicant's mesemt operations. if any
lescription of present opprations, includiage those of subsidiaries or parent companies.
Cimphete financiel statements, incluationg molance sherts. profit and kose statements and dividenda maid for past five years (see annexes 1, D. and E; mineol reports are usually acceptable in plece of ampex \mathbf{C} if reasumably equivaleat infermation is given).
Present production capecity for each printuct
Satrs volume value of each muduct for pess Gue years, showing seperate furwes for domestic and export sales
Inomestic and export prices. foh plam for pase hive years
listimaved production of eech major proftuct in prement plant for mext five yewts.
Fistmated adinimal production requinad :o meet over-all demand for next hue years including intended exports
(c) lampeltions:
 conts and sellines prices of present lural competitors me the same held of production.
Information an to amy antripated changes in compectitum. sich as exparimen, mioferwination, now donts, vew cim. peting wabucts, efc.
Infirmation at to fireige comprotion and any amtixipaied changes in laws or regulation which magte effect volume of maperts.

[^90]Manimamen competitive selling prices fob plant
Competrive advantages of proposed project:
Relative availability and enot of labrume : availahiliey and smality of raw moterials: efficiency of muderi proxifiction: cymingem and processes: quality of products: tependahility of sumply to consumers.

(e) Sommery of commercial prospects

Schedule showing forecast of wales volimic for the in. mestic marbet and each export market. and perichtager if totel marthet claimed in each cave. with full exim,mathon and juntification.
Justification of propood capacity if platit in be cin Aructed
3. Engimecrim! artits and tiantal whonim...
(a) ICrion

Fiant lay-oun, inclucting storamp for raw matetials amil finisher protucts and provisume fir prosible expallsiom

Tre-in with tranpportation systems
Type and siae of major insialled ripulpment itellis atil strmetures, and justhcatin) of the velotinn of winis and
 molong.)

Function perfirmell be eath moper willt
Pricess Aow shert
Amailiary capital equipment (natilly, pare path, trall. port. materials mondling, etc)

Pidemts and licentes involvel.
Planned capacity and burid-up if inither afta, virt :;
 of thest five year. of "peration
Anticipated use of combultants on bemial fhan. ." theil projec: desinen.

 advartage of perchanna akannt in plant fintiviont
Power requirement in prak kW demaint and amitial $\mathrm{h} \mathrm{Wh}_{\mathrm{h}}$ consumplom, initial airl filture
Electrical system shewil hy wimp hime dixpian i.....ita major powor uner
Fivel for hrat, atram and filane firwea...

 product,


```
*"l wmi-hlished matrial.
    Pr,oved remerve, in isar aip mumiai.
```



```
.i swach plont
```



```
Iaw materia':
    Avalable fecthime tir tiatuting and on,rlue
```



```
    Prelonmery plens for gll conveructum wotk on sumem
```


Outline specifications fur equipmemt and construction, defining particularly thove standards of quality which will have a significant effect on the cost of construction, whth specific justification for any unusual standerds adopted to conform with local conditions.

(e) Constrmction labowr, muterials and equipment

Manpower requirements and availability, including skilled and unskilled labour, and technical and supervisory permancl.
l.ocal availability ' cement, steel, asuregates, water for concrete, building is ie, lumber and wiber constructiont materials.
Types of constriction equipment required for the work, indicating what is available lixally and what must be iniported.

(f) Special comerviliom problews foecrich

Climatic conditions, equcially time and lereth of wet and dry seasons as they affect conatruction schedule and minipment tise.

Vecescity of kecping in txisting plant in service.
Time required to whtain delivery of imported materials and equiparent.
(x) Plan for e recularm of propect
eneneral construction plan.
l'regosed nuthods of contracting for engineering, constraction, and construction supervision.

Tests til le performed in completed plant.
F.yminime milarantee to the requiren.

Flowmering and constriction schedules.
(H) ; Piritimy irganization and ymality of management
lbwription of orgalluation which will manage the busimess and whetiare If efreration, arcompaniet by organization Ahat, present abl prajecterl

Keptured mumiver alul qualifications of management and techucal enployees.

Fxpri:nie recurils of available key management and trahuical peratinel.
Sumimer, ulualitications and availability of remired operatine employees.
Halls for rectuteng alue training
Prowni" fon cempetent management and maintenance livomenont the life of the propened loan
(1) Miotrall technical sumedmess
lastitiation of selection of leration for prosect.
I'rovel relimility of plant processes and equipment.
suptiority of athented procesmes.
Dwily, uif any miverse factors and measures to over1 onic theris.

Assilance that fall descrituril will proxluce the quantity and grality of proxtucts specitied, on a continuing and repiembable bas.,

4 Finame whercits

1.) fitimated nomblat .ind

F dimates if icnt of land. engineerine and construction.
Tifal estimated captal cout in L'S dollars and local curimey
To be financed by applicent:
Tu ine financed by boen srant.

(b) H'ueling cophed ecquer emoreats

 of the forst, weind and third gears of rierchime to cover

Wocess, friabed roobs, accoment pectivale and crsh on 1 and.

Sources and availability of locel and foreinn currency funds reyuired.

Anticipated occurrence of seagonal peak: in workina capital requirements and method contemplated to meet such peak financial requirements.
(c) Prodection cost (broken down to local currency and dollar costs)
In estimate of the direct cost of producing each of the major products and any intermediate products, upported liy detailed calculations (ree annex F for suacested form).

Adopted wage rates and production factor: uned in production cost analysis, taking into account legal wage and salary scales, including all fringe benehts such a social security, vacation pay, medical allowances, displacement allowances and travel pay, etc.

Provisions included for personnel facilities auch as transportation, housing, subsistence, recreation, medical care, etc.
Number of shifts and days of operation per year used in calculations, and basis for determination.

Government preferences or allowases talen into account such as: exemption from or defermen of any seneral or specific taxes on products: exemption from or deferment of corporate of local taxation: any special depreciation allowances fur tan purposes.
Estimated effect of possible wide fuctuation of any cont factors entering into computations.

Where applicant is producing the same or equivalent products in an existing plant, show present production cost in sume general form.

Availahility of foreign exchange to permit necessary imports of materials and supplies.

(d) (insts of distribwing and sellong

lescription of methuds of distributing and selline products and estimate of conts thereof.
(ont of advertising.
Administrative expense.

(e) Selling prices

Proposed selling prices in domestic and export markets
leduction for cost of selline, distribution and Iramportation.

Net selling prices at the plant and adjuntments that might the made in case of wide flucturtion of any of the cont factors.

(f) Profthebitity

Analysis of predicted profit and loes and forecast of earnings, recelpts and expenditures. prepared se per anmex E.

Estimated level of production and aiks at braw-even point.
Estimate of net annual foreign enchamge earnings from exports, if any.

General conclusions as to commercial promability of the enterprise, including percentage of returma on total investment and on owner's equily.

5. Netional erconomior beropfits

List of bencfits which will scerme to the ceanomy, in adition to the profits earmed by the projeet owners, wach as tozes mid to the Covernumet by the induatry and import tarifs included in propoend sule vices of proberta.

Mare effective veiliation of Intere commerel with rhere availathe ocrupations.

Prowision of a mortie for local raw mamplas.

Forcian exchange gain if products are exported, after taking into account any foreign exchange costs in project operation.
Benefit! to consumers on account of lower prices or more depemeteble mupply of soods.
Stimulation of other industrial efforts.
Trainine of people in factory operation and management.
Evaluation of above and other possible benefits in monetary terms where feasible.

ANNEX C*

Indwatrial or commercial project

Balance shect

Attach comparative balance sheets for the past five years, according to the following breakdown.

Assets

1. Current assets:
(a) Cash.
(b) Marketable securities.
(c) Nutes receivable (show separately amounts owed by subsidiaries; directors, shareholders. their families and agents; all amounts other than nornal commercial debts).
(d) Accounts receivable from customers.
(e) Inventories.
(f) Other maset! (describe).
2. Investments:
(a) In subsidiaries.
(b) Others (describe).
3. Capital assets:
(d) Land.
(b) Building and site facilities.
(c) Machinery and equipment.
(d) Conaruction in progress.
(e) Oihers (describe).
4. Gross assets (1 to 3 inclusive).
5. Depreciation reserves (state method of amortization).
6. Net capital askets (3 to 5 inclusive).
7. Imangibles (patents, lictiices, good will, trademarks, formulat, franchises, etc.).
8. Other assets (specify).
9. Total assets (6 to 8 inclusive).

Liebilifies

10. Current liabilities (due within one year).
(a) Notes payable:
to banks or other short-term lending agencies
to molders of long-term debe maturing willin one year
to directors, shareholders, their families and agents.
(b) Accounts payable to commercial creditors.
(c) Cuntractors' bid and performance bonds.
(d) Royalies.
(a) Other current liabilities (describe).
11. Lonatierm debe (over owe year) (indicate terms).
12. Comatruction corfe payable.

Capinel and surthe

13. Capital (authorized, ingued and reid-in).

14 Remerver (describe).
15. Surplus :
(a) Revaluption surplus,
(b: Earned surplus (or deficit).
(r) Net surplus (or deficit)
16. Total liabilitics and raptal.
(10 to 14 inclusive. minus as plas 15).

ANNEX II
Industial ar commerical proifis:
Fimancial information

1. Capital structure (present idel plamed)

Authorized capital.
Issued capital.
Subxcribed capital.
Paid-up capital.
Capital surphus (if anty) ariong from ansets icvaluat un
2. Distrilution of shares.

Ni. Hined

l.ifal n. rmoteal dmone ma	7.4.101 perdmp वmas	

Ordinary
Preference
Deferrel
3. Indicate number and type af shares in in lis anty in dividuals and/or gremp contrelling nuore than mir fitht of the voles. Indicate relamonsling of suth intiviluais and/or group to the compiany. If lield loy a huilu:k company of other inclustial enterjerise. firminle lalame sheets. profitand lins vatenients and raphtal winture
 perivile peneral and finiancial intermation in int mo. diviluals.
4. Outstanding ielentures iterm of ianoe anil tembertion, interest rate. ex.c.
5. Oustanding montgages anll other loms teini dith iminns of issue and repayment, merest rate. ets.
 terent rates, terms, renewal arrangemruts ant unimed credit limits.
7. I'ending liligation ruther by or against her compumily
8. Contingeit liabilites, guarantees or embersementh
9. Method of valuatini of inventories Niste any demartuie
 in attached statrinelit.
10. Henk value ami rotumatril current markel valise it int
 purable hasis
11 Give the lomok value if fixed assets for the pant font year, accurding to the fillowing breakdowil

Hock value of fixell ansets at heginumin of year (demrilie basis of valuation?
I'mu acyumations duriag the year. at cont
minms retirementi, during the year, at buik valur
minus normal depreciation (itate noirnal iepreriathat method and ratts used by manere calegeriee if aveta,

 plas revalumion of heret aseres
Aherite value of foxed asoett at end of year
12 (a) Give the averame annulamantit written iff inf bat detts luring the pact fons years
Ah: Give the tinal amoumt if c!arme on-ilue at of the
 maminal value at whoth rlams ale rectioned in the balarve bleen

AMMM:
 Indrootid of commercied mejoct

Forecast of cernimas, recolpts mad expmilimen

A. Earnings from operctions

Kevenue (separately for each major product
of category of maks)

1. Annual sales (mits per year)
2. Unit ales price
3. Gross revenue from sales (1×2)
4. Other income (describe)
5. Total income $(3+4)$

Cost of operobions, wet income and proft
6. Operating expences:
(d) Manwacturing
(b) Maintmance
(c) Ceweral etmimistration
(d) Distribution and marketina
(e) Short-twrm interest
7. Depreciation allowances (show basis)
8. Tases (describe)
9. Total cont of operation before invereot on lonetierm delt (6 to 8 imelvive) \qquad
10. Net income before interest on toner term deta (5-9)
II. Interest on bong-term debt
12. Net profit (or loes) (10-11)
B. Sources of funds
13. Net income before interest (ition W)
14. Depreciation allowance (item 7)
15. Increase in paid-in share copltal
16. Borrowings:
(c) Existing DLF or AlD lome
(b) AlD loan proposed herein
(c) Owher kna-term lorrowings (each lown separately)
(d) Anticipated shortterm loans
17. Other receipts (describe)
(show terms)
cterma)

If. Total receipts (13 to 17 inclusive)
C. I'se of funds
19. Conatruction expemplitures
(a) This AlD proiect

Fi reizn currensy
local currency
Total AID project
(b) Other construction
(i) Total construction expenditure
20. (iurremt ancets (minimum expertod) (sor maver C)
21. Fined, intangible and other assets (me anmer (1)
22. Dete service:
(*) Amortisation of primcipal

1. Fxisting DI.F or All) louns
2. All) knan proporsed herein
3. Other botrowinga
(B) Interent
I. Existing DIIF ir AID loms
4. All hown propoed herein
5. therer horrowings
6. OMer expentionte: (descrite)

AMMEX E (cominual)

AM期至

Imbestrial maject

Produrtion cest

Coot per wiot of omput (pumd, ton, momand, etc. based on ——_ maks per day or -- umits per yeer)

APPENDIX 6

 Leint inmustaial mojerts
The following questions hould in muwerod when they are pertment:

1. Borromer:
(a) Name and adress.
(b) Navire end leealion of anoricile.
(c) Corparate or camiantion-whether privately or inlibicty owned, by whom theres held, brief drtail, if athlia ton to any other commany or group.
(d) Quality of management, husiness and techmial is periencr, k lowledere of this industry
(e) Piam deseription, profuction caparity. coadition of Ecilities, etc.
(f) (Merrational and financial history
(i) Record of production and seles for piavt four yests;
(ii) Finamesal sotrments balance sheets afil protit and lons statements and distritution: of carnirales records for past four years.
(y) Finuacial position-unalysis of mont freft halance shert, incluatives comments in rapital structiorf, neture of reserves, valuation of inventories and fixed sesets. etc.
2. Project
(a) Deacription of entire projert, incluation thet imart, if any, funaced from other then Intil humdn, in dication expecced resulfs, incruese mondurimon capacity, increase in efferency, refuction in protaction copts, etc.
(b) Are qualifed personnel availatle for the ongineetione ond intullation, mantename sad operation of the equiment? Will mechuical wefvice: be requirmi"
(i) Total cont of the project, thowime ond of frod aseete (in ouichile breantown) sopponely from wartime capival reanorementh Indicate forrign eurhange re-

(f) Lint al paote to be sccciret Wit cementitive brite ta chacimad for twi equiment?
(i) (onstroction and inatallation chedute

(f)	Propmet worect of ran m water, transprtation, the
(a)	Prement status of the project
	11. Fexpenditures in date
	(ii) 1 gutamemt of: indel
	(iii) Problems, if any

(h) Market
(i) Intormation (a) existin markets and plans fir supalying and (xpurwing them. Imaportio in past years,
'11) Fotmaled itemimed primuction cont in um pared with exting pilis it comprotition. In. 'hicithig untom duty fin taw materialn and

11: Methads of morketing the profuct and atoliany
 Fxpat possibilites
If Intormation availaht an existing of expected cometing dants, such as their copecitien and

(1) Operatime and hineprial mulectionn if applitatile)
(i) Fommated unt profuction fin rach of the first three years of oprciation
(ii) Eistmanted sales revemuen. costs and emfenses 1 showing interest. Sepreciation and taxes appa rataly, and oet protis tor each of the fort three veepa of upratsem. Profits shauld tre
 abte dividewat Rayments
(iin) Cuch Alw estimete for each conctrwetion iear
 amenal.
(iv) Prof forma balance shoets as at the completion of the project and irnt yeer of normal goprations
 mplucable)

1) ©her ill tweneftr to the cumery
(ii) L'tiliathom memakuyed intural remomets

(I) : Purrime axithemet savina.
iN Facmamy diversabatuon
(w) the wit, l. o ther milustres
(A) Ans oher rile ant information ef om wecosury government licences, concents, efe of erint, laxes. etr
3 Irrimsed loun
(i) Imanam requasted

1.) Security dalable for haden


```
    **inv"
    | Name and abtres: & Mrrownt
    : Typ
```



```
    4 A"xumen ol ardin
    S I erme of romevment. invereel rate
```


1. Bimet turiqtien ul trojert

- Defercure mumber of credth
 molet the capitel firode mapart prapremine? If ca, erow amonem ext dute
II Arwoumt of this wiphtrewal appication

AWHEX
1 and Antax
Liumics of gunde

Ifonicionion of fomeds

Hivestmem in fireat anome	
IHKI) mopect	0
ther rumotruetun	4
Rementis and replectuent	0
tatized	-
Intwren	
Shunterm detu	0
1是保) therer tumes.; encluding wat whish verm dete is complixed	
Imertiratim:	
IHR!	0
aluet linu term debe	3

laven	nut
I Mriterinl.	
leviear ill slumt eerm deba	
Incrase in ther currelt lumbluties	
bisreace ill curremi asouth fonter than . H)	(
(liker itemute)	9
liash surplue or mefoct for yeer	
lash malen't at mernmman of year	T
tach hatance at end of y	

Intandicion

The field of indectrial project evaluation is a $r t$ batively mew branch of economic analyma, and asuch is atih in its formative anges Numerous Eap: aill eviox in the available literature. and in mann cases atherrative appraches to problema have beell mameened which emtall diferences of concept that are as yet umresolved. These facts have deternined the devign of this survey. An attempt has been mad. here to take a cometructive and forward looking aj, proach, focusine on gaps, wraknesme, and inrevolved isaves in the fied and attempting t". contribute t." at; improsement of exioting procedire, wherever pos. ithle.

Hecause the greak butk of the literature availator in the I'moted States concerns project evaluatom in predtuminamtly frivate emerpnise of nuxed eco twomes, the presemt study has been confined to stuch cases, making mo attempt to consider the rase of completely centra!ly planned eromonies. Hut it i. recounised in whit fothons that vocial bemetits and coots de mot always conncide with private perumar. benefine and conts. Incteed, mas lo valil that uns of the princtial conceras of coat beriets analyan $1-$ to appraier cons and berifit, fromi a wartal pum ${ }^{\circ}$ view in caces where them diorefe fom the incimiar, conta and thenefil, !erceived by the indiveduals in the market-place

Section I foclises on the controversial prodelem of the relevant rate of diecrum for ume in men tremetit analvos. Firnt the advantages and divadvan tages of the internal rate of return are discumerd ant it is comoluded that, though usefil is a womnury indicator of a project', promtability, the ineernal rate of return should mot br used as the laoir criterion for project evaluation Then market rater of inveress on bomis. the "social rate of time preference" and the marginal productivity of capinal in the privete enctor are conaidered It in comcluded th:t the optimal rate for use in diecowntime cones and benefits, in it market ectmomiy, is the maremal productiolt! if capital in the private sactor of the ecinomus. W fining this marginal productivis: in vich a was in on inctuate oll social berefits and enves io the cater: bations Fimally. the question of the variation of the discoum rate thringh time is considered It ic conclurted that the appropprinte diacometing of Arowif benefts and brin thould urimmall to dome at rates which may vary from year to year. the priwiph being that frows occurring in weop ien ahruid to fincrommed back to vear nime at the mangimal per durtivity of capital experted in peevail in vear nine that there forws. in turn. should be fiecrusterd bart

[^91]to vear eight at the margenal prohtertert i. . experted to preval it that wat ond

Thes procipte an a car athe dix cumer vary in urter tareat! frope? dectotit

 funds are enthet purtwitaric ilumblat: "p...... harly warce reluthe the eveling we illite nite:

 path of expectel lene til, athl: in It tul

 year throwg the elitir, ©. incorporatine experte! , li.the I'

fat that in | dewhyene ...t. , ,

 a relevami measire of the wionutiong fin. athan bienir

The method of setting the accomatias price of foreign exchange is then outlined, the principle involved being the estimation of the market value of the goods that would probsbly be imported as aconsequence of the availabilify of additional foreign exchamge. The poasitility of using mocouating prices for maberials inputs is then examined, the conemaion here heine that, ahhough accounting prices may in oome cases be justified for such inputs. equivalent icwits, are achieved by generally valuing all materials inputs at their market prices, and comaderimat memaratily. as indirect lenefits of the project, any surplus of benefits over costs generated in the mate ial producing induatry as a direct consequence of the project in quention.

Finally, the queation of sccounting prices for the outpint of a project is coneidered, the focus betang particularly on caces in which this untpent is aubject to indirert taxation. The conclusion is reached that, "rcept in unusual instances in which the indirect tax wa itself placed on the product in order to coumeralt in existing external diseconomy asanciated with the prothact's production or conoumption, the social lentefil asomeiated with the outpur of a project is so ine measured by its price including tax.

A birief addendum to section C considers the possilility of obtaining appropriate acconnting prices through the use of linear programming modets for the emire economy. Here it is concleded that in order to make a linear programming model for the whote economy feasible, the characteristica of the monomiv must the so drastically oversimplified as to make the resulting accounting prices highly un1, itithle

III section D. problems of timing are comoidered. First, the influence of high discount rates on projects of different prodective lives and gentetion perioda is revirwed, then the question of whem to conetruct a puen project is considered. and frally the question of how to deal with risk is faced. The hey conclusions are. first, that the timina of the comstriction of a project is a problem of comideralte impurtance Cinseruction should not be undertalean at the moment when the present value of bevalist exceci, the presem value of coats, but should be delayed to the point where the excese of the present value of herefits over the present value of coets is a maximum. For a particular class of canes, it is shown that this rule entails the delay of a project until such time as the bemefits of its first year of uperation exceed the interen charge on the capital investment in the project. Secondly, it berehits and cosis are appropriarely projected, 20 as to lake acrount of poashle reductions in the value of bervefits of a project stemming from future improvements in productive ichnique, there is mo need to add a risk factor to the discoment rate used in contlremefit analvis
In anction E., interrelations mond projacta are considered The importance of analyeing empartely the roverilusion of all emparable compopenents of a project is emphasized. Finally. the princtples for deciting which of a at of interrelated projecta monald Ive undertaben ape bivily see out.

A. Pasant valit caitmain verow tmi inteanal bate of metvan

1. Adrumberes and dopects of the indernal reve

 of retwinThe internal rate of return on a project (P : is cbtained hy the solution of the fullowing quotation:

$$
\sum_{t}^{N} \quad \begin{aligned}
& R_{1} C_{1} \\
& (1+p)^{\prime}
\end{aligned}=0 .
$$

where B_{1} represents the benefits anticipated to socrwe in year t of a project's life and C_{1} represents the conts amticipated to be incurred in year $t . N$ is the length of Whe of the project. Couts are defined to inchuce capital outlaya, babour, materials, energy and transport coots, and maintenamet and repair expeonditures. Costs do not include depreciation charges or actual or impaited interest charges, as the intermal rate of return itself reffecta the implicit "net intereat yield" of the project, and in this sence alows for the depreciation of the project's cont. Thas. a project has a capital cont of 100 in year 0 , and yield a benefit of 120 in year 1 , with an operationg cot of 20, the net effect of the operation of the project would be -100 in year 0 and +100 in year 1 . The capital inveated would be jum bercty recovered one year later. Sech : project would have an internal rate of return of zero, indiceting that no mure than capital recovery can be expected from it. On the other hand, if the project were to have a thenefit of 130 in year 1, with an operating ooet of 20 in that year, its internal rave of return momld he 10 per cent, indicating that the capital invested in the project will produce a yield of 10 per cent atter allowing for capital recovery. Fimally, if the bencift in year 1 were merely 110 , to pether with an operations con of 20 , the value of $\boldsymbol{F}_{1}-C_{1}$ woukt la 90 , aml the internal rate of return would be -10 per cent, indicating that the project in incapable of yielding sumicient benefits to cover the cost of the invested capital.

The great advantage of the internal rate of return lies in the fact that F can be calculated on the basis of project deta alone. In particular. its calculation does not require data on the opportunity coet of capital which, as will be seen below, is crinical to the presert value technique and can often be exceedingly dificult to entimate. Thus, when s project evaluator has seversl different projects to be surveyed, he may independenly calculate the internal rate of return on each. and use the resuking fyures as one bacia of comparison armong the projects.

The disadvantagen of the internal rate of ieturis are severe, however -so severr as to warrank the greatent caution in ita use. In the first place, there are some projects for which it is not possible to delermine the internal rate of return uniquely. Fizure Ia shows the time-profike of net benefits ($B_{1}-C_{1}$) for a typical project. In it an initisl period of inveatment, dariat which the value of $B_{1}-C_{0}$ is nessive, is followed by a period in which the met benefit of the project is always positive. For all cases of this type there is a unique solution for the internal tale of refurn. However, if the time-profile of net hemefits

Crive ave more than once, there wim te minixite
 of mat propects are came in which major herne
 ovver riee to megaive met bemefte, say, every five
years when these replacements are accinnolinlided (ser trace 1 b) ; er caces in which the termination of a project entaile aebetantiol met conts (auch as retorimg foumed trativiee to their former sate) (ser figure 1c).

Pigne 16

Pigure 19

All cases of the types maprati in fywes 1 b and 1 c will yield multiple sobretons for the intermal rate of return ; threse maliple colwioni are a meltematical macesilty and prevent a pollem of cholee from which there is no excape. Comiltor the cmompe
 bemeft of 1,500 in yeer 1, and a mit con of 1,000 in year 2. Otvioully, one solution for the invernal rate of return is aro, for at a sere drocoum rave the
 value of cone. Bue amother colvina in a 11.11 per cent me, for setting

$$
\begin{aligned}
& \frac{1}{1+\infty}-9, \text { and }\left(\frac{1}{1+e}-k\right) \text { we obtain } \\
& -900+\frac{1900}{1+0}-(1+0)^{1} \\
&
\end{aligned}
$$

Even where the internal rate of return cat be umambiauously calculated fire ea. h propert unde! con sideration, its use at an inveument erlternon on commers , oher difincultien when wave of the projerts
 life a cane ill whels all project are strictly in－
 wlelian will woth well lis arraging the projects
 ratl wlest firat that proper wuth the highest internol bate．When th． 1 with the wext highot．ete．．proceeding III thin war inilil the avaliable investable funds are exhathatel Gupene that the＇iat project qualifymg minle blan pancolure han all mentaid rate of return of \times pet cem．Then x per cet：will represent the

 propect－mage blas ate．Cimen has all the project atepted mille：the meraid tate of return criterom
 smming there mimermal ratev in la mique die．，as
 of the kited ！mown an tixure 1 al，the present value of all acepted proiects．evaluated at K per cent，will In puntur．amb tie perestut whe of all rejected

 whetron hark the contratictions

Sun．hemotr，comuler a case in which two

 lancene in 12 pet cent the memal rate of return

 A⿻川⿲丶丶丶⿴囗十力

 peljelum in 1 andial imeathem of $\$ 2$ million． whit powes！／has a wel benefit of \＄1tion ger wan ：11
 exdinted it a wr celli，is $\$ 3$ million．while the f＂het owi 1 ，$\$ 2$ millon，welding a bet excess of

 If Whe leot diernatior las for the slemonno this weil a．＂margimal＂mestment with an in tremat fate of tetarn ot onls x per cent．will wheh
 Mipalthnte cont rate of k per iem wonld he nil

1：mownans of the internai bate of retinn as a mhotull can to t und in lriedrich and Vera 1 atz． The theiry of lmevstmen of the Fiom＇in Rolaced
 tems fmalusis＂and in 1 Hirshleifer．＂On the theory
of＂ptimal invectment decision＂．${ }^{3}$ ： $1 /$ these writers recognize the disadvantages indicated aloove．

2．Choice of discownt raies for use in connexion zuth a prisent zulue criterion
 （a）The marginal producticity of capital in the privele sector

It was slown above that the use of capital in a given project was justified if the benefits of the project exceeded its costs，evalitated at a discoment rate reflecting the opportunity cost of capital．One highly recommended neasure of the opportmity cost of capital is the expected nargilal productivity of typical capital investments in the private sector of the ecomomy．If a public sector project is to：le financed by lorrowing from the private sector，it is to be presumied that the funds so mobilized could， in the absence of this project，have been used to finance private sector investnsents；hence in this case there is a direet sense in which private－sector investment can be considered as the relevant alter－ native to the project．When，on the other hand，the funds to be used are part of the savings of the piblic sector，the connexion between a public sector project and its private sector alternatives need oun lase we clear citt．If the funds available to the ：mblic sector investment authorities are sufficiently ample．it may work out that，in order to use all the available funds within a given set of projects leing considered，the pulbic sector authorities make uls，atments having a yield of 5 per celti，even thagh caplal in the private sector has an expected rate of marginal prodactivity equal to 10 per cent（iiven that the ficlds in ixoth cases are worked inp on the hasin of social benefis and sexial cosis．the acceptallece of pullic sector projects with rates of return lower than those to be anocipated from ad－ ditional pivate sector insestrients mast be con－ wered noteconomic It woukd be preferable in this case th axoot only those public sector projects exhibiting a social yield of 10 per cent，or hore， an I to invest any remaining public sector funds in finincing atilitional private sector investments with an expected vield of 10 per cent or more．Thus in this case the optimal use of the funds available to the public sector leads to a result in which the private iectur investments are the relevant alternatives to marginal investments in the miblic sector．

One case in which the marginal profluctivity of investments in the private sector might not be the appropriate criberion for public vector decision－ miking is where the investible funds of the public sertur are ${ }^{\prime}$ s severely limited that the call lee exhamsted on public sector projects．all of which have a higher expected vield than a typical private sector invertment In sucli a case，if the limitation on public vector funct，is a binding constraint，the relevant opprortuniti cost for public sector investments would be that rate of discount which，when uscd as the basis of a present value criterion，would result in the acceptance of a group of projects whoee cost was just barely sufficient to exhaust the available funds． For example，in a case of severe budgetary sirin－

[^92]gency, it might turn out that, using a 16 per cent rate of discount, the projects vielding a positive excesa of benefits over costs would not fully exhaust the available funds, but that, using a 15 per cent rate of discount, sufficient additional projects would pass the present value test so as just to exhaust the given budget In this case, the opportunity cost of capital for : , sblic sector project would be 15 per cent, in spite of the fact that private sector investmeuts have an expected marginal yield of only 10 per cent. However, this result occurs only when the hudgetary restriction oll public sector projects is binding. Otherwise, int a case such as that just deseribed, the optinal result can le achieved by the pablic sector authorities accepting all projects having benefits kreater thatt their costs, evalnated at a discount rate of 10 per cent, and borrowing the required additional funds from the private scctor.
Thus, the opporiunity cost of capital is best measured by the marginal productivity of capital in the private sector in virtually all cases, the only serious exception being the case of a hinding budgetary constraint on the investahle funds of the pimbic sector. in which cane the private sertor marginal productivity of copital still remains as a lower limit to the disconitt rate relevant for public sertor investment decisions.

We turn therefore to the prohlem of estintating the marginal productivity of private sector capital. Consider any line of activity ill the private sector. the line of activity being defined as inchoding all operalions proclucing a given product by similar production methorls, fur sale in the same market An increase in the allount of capital invested ill such a line of activity will augment the supply of the product in question, and neay affect its price if it does affect the prise of the product, it will alter the naskimal productivity of the capital previously iuvested in the line of activity in gurstiun. lint it will similals affect the rate of return percrivert by the owners of this previonsly invested capital. Thus, Where the newly invested capital is of the same ther an that already existing. the private rate of refurn io cagital in the line of activit in guestion mav le taken as a rough first approximation to the marginad productivity of capial in that line

Pome prollems mist. lewever, be noted :mmordiatels. If a technological advance has occurred, it mas be true that new investment, abing the new terlinique. will have a marginal profluctivity, and a fate of retirn. eqpal to, say. 20 per ceitt. bit ihe imbrofuction of this technigue may reduce the price of the prodict to the point where the return on capital invented it the old technique is hilt 5 per cent. The rate of return on all capital invested in the indosiry will be a weighted average of the 20 per cerit rate on the urw terhnisulue allid s pert rent on the old And inderd it will tor trur. if not other cim. plications enter into the calculation, that the marginal productivity of capital is 20 prer cent for that int. vested in the new iechnique and 5 per cent for that invested in the old technique. The nvep-all marginal productivity of capital in the activity in question wil! also, in this case. be a weighted aucrage of 20 and! per cent. and will be messured lagain
barring additional complis:tions) by the rate of retirn on the butal capital invested in that actwity.

The problem here is that any new mesturent that occurs will use the new terhuigue, si that the marginal prochetivity of capital that in melowint for
 oblainable from the new techuigue The use of the observed rate of return in thr c:nite antivit 1 ont both old and new techuigues theretore umblemation mates the rate relevant for the ex.hnation of ambemt and future projects.

 in the calculation of the marginal prewhatuit al capilat to be nsed in frojert wahtatmon. whl the 20 per cent rate arising from imvestment in the new terhmigue. The rifficults with the ityourlo items from the was in which the wailable das lypically aprar. i.e. from the finamoll arcombs. it
 distmgushing how much capital is incourel in a new technigne and how mulh ill .ll ell c.me. .mal likewise there is monv of allemathig the monerne
 :1 new :ind a part atributalile to all wh tre lumpue This the data anmonatically vich fate it 1, than

 recently scourred

 remertit are piramit

 W. Kemirak in l'roductroty Trindi in the I mited Stafers the later lralugg fieinclath with lie protifem of meaviring the stork of tajntal the litrature in the cobject is av vel very weak 'en the

problems of measuring the social as distinct from the private yield on private sector capital.

There are a numiler of posssible sources of divergence lertween the secial and private benefits of private invoumont ; lut of these, by far the nont impurtant ronsists of taxes. Curporation income taxc: typially accomnt for between 25 and $\mathbf{5 0}$ per coll of the inconte generated by capital in the corperate secter; the secial yield of capital (including the corperation income taxes) car thus easily be 12 per cont. Acm thongh the private yield is only 6 per cent. It wonld accurdingly le erroneous to proceed on the assumption that the private yield on capital reflected its full opportunitv cost. (f) iwo investments with the same private yield, one of which generates coroproration inrome tax payments equal to its piivate yiell, and the other of which generates no tax piluments at all, the former is clearly socially preferable, as it either enaliles the publice sector to have more command over real gonds and services or, altermattivelv. it permits the public sector to peduce sollue other tax and thus perinits the private sectur th huy more real goods and services. The indic:ted procedure is therefore to incliste corporation tix pavimens gemerated in anv industry as part of the axtal retirn to capital in that induster. And if the urcial rate of return to capital is estimated for the frisate sector as a whole. the entire vield of the corporation income tax should be added to the income perceived liv private enterprises in order th. consert the latter to a acial concept of "income gemerated ha capital"

Where milienct taxevexist on a final problect. they
 prohict of rach factur of proxuction involved in that kowis purnlisction excreds the incrome carned bs that factor liv the percentage rate of indirect tax In this cane. the income from capital (gross if compiratinn income taxs stould be alagmented by A fractooll it the recelps trom the indirect tax. the
 the milhats in yumetion
(Hther wilteres of divergence between the private
 of devetellim of the market prices of tactors of

For an Ittempi at estimating the sucial rate of return tu capilal in a develipinge comintry, in which explecit accomint is taken of the effects of tazes and of iertanl pwoibie divergences between market pricer and "Ifortunits coats, sere A. C. Harberger. "Investilient in man versis investment in machimes: the save of lodia":

(h) Market inderest rates

The conventional way of convertian coets and benefits to present values is by the use of some mapket rate of interea. Market sates of innerest enerally subetantially undereximate the opportunity con of capital, hecause they fail to pelmet the taxes that are paid on nocomat of the proits of privale sector projerts, and berause they nagiact

[^93]other external lenefits pemeratod by private sector investments, particularly where there are divergences between market prices and opportwity costs of factors of production or goods.

Two examples of the conventional view follow :
"It is recommended that estimates of benefits and costs accruing at various times should be mare comparable by adjustment to a uniform time basis through the use of projected long-range interest rates. Perding the development of such rates, the average rate of return i.e., yield, on long-term federal bonds over a sufficiently long period of time to average out the infuence of cyclical fluctuations is considered appropriate for uniform application by all agencies on the condition that adequate allowance has been made for uncertainties and risks." ${ }^{7}$
"Interest rates are a measure of the value attached to time differences and, hence, provide a means of converting estimates to a common time period. In calculating the costs of developing a project, interest should be charged on the project lor its entire economic life and reduced to an annual lasis in order to compose annual costs and benefits. The rate of interest to charge a project depends upon the rate you must pay for financing the project. (ienerally, government financed projects can be financed at a lower rate than private industry. The government rate of horrowing is relatively risk free because the security is the general taxing power and because the over-all degree of security for the loan is relatively certain. In view of these considerations, it is recommended that the expected average long-term government bond rate be used as the basis for calculating public investment costs and the thigher rates be used for private investment costs." ${ }^{3}$
The approach reffected in both of the above quotations fails to appreciate the difference between the market interest rate on bonds and the opportumity cost of capital. Tinbergen, in advocating the use of accounting prices, has a much clearer appreciation of this distinction. He says that
"[accounting prices of factors of production] represent the value of the marginal product to tre obtained with their aid.... The interent rate to be applied should express the real scarcity of capital. to be derived from the marginal yield of projects as well as from the marginal rate: to he paid for foreign loans."
Tinbergen sugerats the use of a 10 per cent interest rate. Which is far alove the rates applying to government bonds in mout countries, and which undimubledly lies clueer to the uppurtwaity cost of capital :hen the govermanem bond rate.

[^94]Likewise, the United Nations Industrial Development Division recognizes the unsuitability of bond rates:
"More specifically, . . . accounting interest rates may be set at least double the rates on government securities or on interrational loans, and possibly at as high as 20 per cent." ${ }^{10}$

(c) Cther methods for setting discount rates

Some of the theoretical literature reject, both the rate of interest on bonds and the private sector marsinal productivity of capital in favour of what is called the "social rate of time preference" or the "social rate of discount". This concept attempts to represent the relative valuation which society puts on a marginal amount of comsumption in different time periods. For example, if "society" considered $\$ 1.10$ of extra consumption next year to lie sutrjectively equivalent to $\$ 1$ (10 of extra consumption this year, the social rate of time preference leetween the two years would be 10 per cent.

The main ground on which this part of the literature rejects market rates of return is the lelief that the market, which reflects the resultant of individual, atomistic savings and investment decisions, does sot give any weight to the preferences of future generations and hence tends to save "too little", with the result that the market rate of return on investment is "too high".

As Eckstein puts it:

"Soxial policy, as derived from the political process, may prefer rejection of present intertemporal preferences in favour of a redistribution of income towards future generations. Much of the conservation philosophy can be interpreted in these terms. Resource development is a field particularly suited to this kind of redistribution berause there are genuine opportunities for making investments, purt of the benefit of which will accrue in the far finture. And pertape equally important is the lact that it is in the rescurce area that the idea of making provision for the future of the country has caught the imagination of the pubtic. It is not Ingically in onsistent for the same person to be willing to bor row at high interest rates to increase his present consumption while voting to spend tax money to build a project from which future generations will beneft, for in the case of a vote tn tax, he can be sure that the other individuals in the wrevty will he compelled to act similarly. .. Our notion of efficiency is relative to the distribution of income: should we seek in redistribute incesme in firture generations, the interest rate loses its meaning as an efficient price " 11
More detailed discussion of this view may be found in O Eckatern. "Invectornit criteria for ecomomic development and the thenry of inter-tem-

[^95]poral welfare economics". ${ }^{12}$ A somewlat similar position is expressed by Stephen .S. Darghin in "l he social rate of discomit and the optimat r.te of in-
 the rate of saving" ${ }^{14}$

The inficulty that emerpers from the likhtim Marglis:-Sen position is thatt, w'ren the what rate
 fits and costs is likely tu leal to the accoptine if a great many projects in all hedilunel mute thom can be financed.

Fckstein says:
"I propose the following compromis. which, is designed to preserve the long terin ferpertue it the federal programme, yet winlil amure that ...nls projects are undertaken in which copital widfo as great a value as it would in its atternotiver.min. nents: let the Government use a relatively low in. terest rate for the design and evaluation of projects. hut let projects be considered institied anls it the benefit-cost ratio is well in excess of $1.0^{-1 / s}$
Marglin, in a more elalnoritcle develomel dicomsion than lickstein's. developis tormulik for we:atit ing the apportmity cost of fullic inve tment wtell the social rate of discoment lice lefow the mareital pronfuctivity of capital in the private eneter llin formulas depend on the nanure: in whil, the fulinic sector funds are raised: he conidera blac ". .a." in $\$ 1$ of public: funds rainel at the experthe of a arrent consmintion to he $\$ 1$, while the cont if $\$ 1$.of thend.
 his hasie motel to be $\$ p / r$. wheth of in the meterimal productivity of capital in the prisine actot whl is the social rate of discrmat. Thiv :-amme flat \$1 of private investment would hase a pelpethal sidt
 at the saxial rate of discoment, would have a pirermit value of $\$ p / r$. If the froction a of putha, fiont. raised at the expense of investment. and the fan
 present value of the foregene ahembume of : dallat of public funds will tre \$ $\mid\left(A_{p} / r\right)$ + ($1 \quad A_{1} \mid$ Marbin then proceeds to, recommend th:t the firewe 6 dite if the lienefits stemming from a dollar of pillow in: t ment should be at least equal to \$ $1 \mathrm{Ap} / \mathrm{r}$, $\left.11 \mathrm{Al\mid}\right|^{\text {is }}$
 Steiner in "Choosing anworg alternative pinta: anvestments in the water rearource firid" ${ }^{17}$

The solutions rearhed i:v Fichetein. Nirulin :and Striner are all suliject to : sing!e. 业chive ifit: :-m: tiey may lead to resulty in whel the rate if ration to investments in the public sector lien lielow that which could tie oltained big piacing time atir furila

[^96]at the disposal of the private sector, or hy investing directly in private sector type activities. Future generations lose. rather than gain, if funds are used for a 5 per cent public sector investment rather than for a 10 per cent private sector investment. The public sector can, and in many countries does, provide both equity and delit financing for the private sector, and can thus assure itself that its financing of private sector activities does not entail the grant ing of a sulsidy to the private sector hut rather simply enables the public sector to oltain the same rate of return that prevails on private sector investments. (nnce the pulilic sector is prepared to accept this cegree of flexihility in its use of investable funds, the criterion for project evaluation reduces once again to the marginal productivity of capital in the private sector of the economb, discussed in A.2 (a) alove.

The fact that the social rate of discount may lie loelow the marginal productivity of capital proves only that the rate of investment should lee expanded; it does not prove that, for a given rate of investment, capital should have different marginal rates of productivity in the public and private sectors. The end result of ant optinal inveatment policy, with the social rate of discount taken it givall, would therefore be a situation in which the marginal profluctivity of capital in both the private and public sectors was equal to the social rate of tiscount. Lharing the transition from a position in which the marginal pronluctivity of appital in the private sector lies aboue the ultimate serial rate of discount to a position where these are equal, the optimum path would entail su allocating the investable resuturces of the economy as to maintain contiming equality of the marginal rates of profluctivity of capital in the public and private sectors, with these rates declining together from their initial (high) level to their ultimate (lowir) level as a connequence of a stepped-up rate of invertment ${ }^{\text {is }}$
(d) Chanyes in :ic reliturnt discount rate throwgh time

The case cited in the preceding paragraph gives only one of many possible ways in which the relevant discount rate may vary through time. Another pussihility - nure optinustic from the standpeint of ecomumic development-is that through adoption of superiot techniques. through letter management and organization, and through an improved mix of social overhead investments, the marginal prococctivity of capital might rise rather than fall through time. This corresponds, in techinical economic language, t" upward shifts in the production fumtion thr'uigh tine. which more than outweigh the dow:l

[^97]ward pressure on the marginal productivity of capital stemming from the effects of increased capitalintensity of production.

Actually, for those countries for which it has lreen possible to estimate the marginal productivity of capital over substantial periods of time, there appears to have leen no very significant upward or downward trend in this magnitule. Stigler, for example, finds the private rate of return to capital in United States manufacturing to have fallen in the 1930s to less than half the level of the late 1920 s , then to have risen in the late 1940 s to about $11 / 2$ times the level of the late 1920s, and finally to have fallen by the late 1950 s to approximately the same level as that of the late 1920 . 1

This experience is suggestive of the prossibibitics that nay emerge in other contexts. In the 1930s, the conditions of the United States economy were such that an abnormally low rate of return on capital prevailed; in the late 1940s, on the other hand, the need to restore the capacity for production of nonmilitary goods created a situation where an extraordinarily high yield on investment could be oftained. In neither of these instances could it rensonably be expected that the then-prevailing rate of marginal productivity would be maintained indefinitely into the future.

Similarly, it may occur that a developing country may face a situation in which investable funds are abnormally scarce relative to investment opportumities (as when large deht service payments are due and available investment opportunities are particularly good) or in which investible funds are alinsirmally abundant relative to opportunities (as when the country receives a particularly large amount of foreign aid, or when its main export product experiences a temporary large increase in price, without investment opportunities expanding correspond ingly .

In circumstances like these, the country shoukd attach a "price" to the use of investable funds w!ich is higher than the expected future price if funds are relatively scarce, and lower if funds are relatively abundant. This can the done by attaching to each year a discount rate that corresponds to the expected marginal productivity of capital in that year. Thus, if we have a project with an expected life of three vears, we would diwcrunt lenefits and cosets expected to accrue one year hence at the rate ${ }_{1}$ to bring them back to the presert. Likewise, we would discomen benefits and costs accruing two years hence by the rate r_{3} to bring them hack to one year from now, and then ly the rate r_{1} to iring them back to the present. Thus, the acceptance of rejection of a threewar periject would turn on whether the sum

$$
\begin{aligned}
&\left(R_{1}-C_{0}\right)+\begin{array}{r}
\left(R_{1} \cdots C_{1}\right) \\
\left(1+r_{1}\right)
\end{array}+\frac{\left(B_{2}-C_{2}\right)}{\left(1+r_{1}\right)\left(1+r_{2}\right)} \\
&+\left(1+r_{1}\right)\left(1+r_{2}\right)\left(1+r_{3}\right)
\end{aligned}
$$

was greater or less than zero. The general form of this criterion, for a project of A years duration. is

[^98]$$
\left(B_{0}-C_{0}\right)+\sum_{i=1}^{N} \frac{\left(B_{i}-C_{i}\right)}{i=1}+\left(1+r_{i}\right)
$$

It is unfortunate that the great buik of the liternturc on cost-benefit analysis has been based on the simplifying assumption of a constant discount rate, because this assumption fails to give guidance as to how to overcome periods of unusual stringency in the supply of capital funds or how best to take advantage of a temporarily large availabiity of such funds. One nuable exception is the work of Pierre Massé, in which changing discount rates are discussed explicitly, and in which the analyses are carried out in such terms. ${ }^{20}$

13. Meastement of renefits and costs

1. Projections of demand for the affected product

Projections of demand for the affected prodict are an important element in estimating the economic feasibility of a project and determining its appropriate scale. The techniques of projection appropriate to any given case can be only determined by a careful study of the case itself, but certain general statements can be made.
(a) The potential market for the product must he ascertained (local, regional, national, international).
(b) Factors influencing the intensity of demand for the product in this market must be isolated and projected.
(c) On the basis of (b), the over all level of demand for the protuct must be projected.
(d) The pronpects of expansion of existing alternative surces of supply must be examined and corresponding projections made.
(e) The prospects of new sources of supply appearing in the future must be evaluated and, if they are likely to appear, suiply from these sources must be projected.

For any market, a key factor influencing demal.d is the level of inconse, and the projection of this magnitude is therefore of key importance. Unfortunately, there is no touchstone to estimating the rate of growth of income. In particular, the rate of growth of income is not directly tied to the rate of capital accumulation in the crimnunity. but is the resultant of many factors, of which capital accumulation is only one. ${ }^{21}$

This fact introduces considerable uncertainty into all income projections, and magests that basing such projections mainly or exclusively on capital-output ratios is unwise. The most appropriate procedure appears to be to ascess the relative contribution of

[^99]certain key factors (capital formation, lalmorir furce increase, improvement in labour force phility amil technical advance) to past economic grow th. tu inne.. their probable future strength and to estimate the likely rate of incone gr with of this hians

Having projected the rates of growith of wimile. population and so on. the froblem of wlatimg demand for a particulat promiuct alepent: on the nature of the presluct. Fint must rinumer goms. Hintme and relative firice appatar to be the key de. terminants of demand; what a mame expresel .a a function of price, can be projected ome the conire of income is known. However. for pernint, whiati are materials or intermediate gonels, the liest pro. cedure is to estimate the Immanl lor enl| for" ," end-use separately. and to project the drmomil fir the material according to the projectel growih it each of its correcponiling ent $10 \times{ }^{22}$ (ari mint low taken. however, to allaw for pasalile fathite chic... in the quantity of the noterial used per unt of e.ath end-ase prodict. Capital genelv lemamil lanila ine
 be required for replacement. flas the whithon,
 the final product of the artivity in whiel the (.pptal
 prospective development of impiruel and competmes types of equilpment le taken wito acomont

Since the market price of the outple if . p...jo. t

 include projections of the prolatite path at t'uv pion

 prices (i.e., general pirice intlatom or lethitum: a

 t", project their menements relathe to the f.e.w:al price level Concernagg the firse if the manat of

[^100]prices in monetary units of the initial year's purchasing power. Thus the projected price series would be of the form $P_{t o}\left(P_{m} / P_{w}\right)\left(P_{\infty} / P_{n}\right)$.

The factor $\left(P_{i t} / P_{10}\right)\left(P_{p o} / I_{g t}\right)$, will average ont to unity over the whole economy when the appropriate weighted average is taken for

Thus for a tupical commotity, the projection of a constant product price is likely to be justified. However, relative prices exhibit substantial variations over time, and it is inportant to attempt to identify situations in which a particnlar price is likely to rise or iall relative th the general index of prices. In general, for industrial products, the course of prices will lee the resultant of changes in input costs on the one hand and improvements in technology (inclutiang ecomomies of sale) on the other. Since the wage compmont of input prices is likety to rise over time, the qu'stinn largely centres on whether future terhonological alvances will be sufficient to offset this force. In many industries, some indication of the likely force of future techoological advances can be obtamed from the processes that torlay are being studed for pwsible future ipplication, and projections can be mate on that hasis. In some cases, the prosent marhet for the promet may be fuund to be abmormal, in the sense of a current shortage of output cousing an musuatly high price or a current glut of smply cimsing in unu:ually low price. it is particnlarly muremant that such situations be identified, as in these cares it is highly molikely that the assumption that the price will remain at its present level will the warranted

Tt hengh mol divensions of cost benefit analysis bay hervire to the prituryle of taking expected price changes intw accomit. Hed generath do wot go bevond this. lrobally the nost extensive treatment of the probidm itself int very extensive lint at least

3. I'rujethons of cost compoments
(a) 16 imas

O Bre uf the gravest deficiencies in fle existing herentire a 1 promet evaluation is its fallure tor alione. expleitls and watematically. for the expectation that wige tite will rise regularly in the fluture, relative to promlut pirices. In an economy expriencing successful economic devekopment, it can be anticipated that real wages will rise at a rate of 2 per cent per year or more. Thus, whereas the price of the average product will change in accordance with movensents in the general price tevel, wages will increase at a simenificantly greater rate. The rise of wages at a greater rate than that of prices is possible hecause of the contınued improvement of productive techniques.

[^101]But in a given project, the technique of production is often determined by the design of the project inself. In this case, labour requirements will be determined by the lay-out of the plant, the types of machinery inst:lled, etc. Future rises in wages will not in this case be accompanied by reductions in labour requirements, hence project coats will increase to reflect the rise of real wages.

A proper evalisation procedure should surely take into account expected rises in real wages. In cases where future labour-saving innovations are anticipated, which will be applicable to the project in question, these may be taken into account, including in the project analysis the expected cost of introducing the innovations as well as the reduction in lahour requirements that is expected to follow.

(b) The exchange rate

The exchange rate is an exceedingly important factor in project evaluation, and an adequate projection of its expected future course through time is therefore necessary. As with other types of prices, what is of interest is movements of the exchange rate relative to the general price level. Three key questions should be borne in mind in developing exchange rate projections.
First, does the present exchange rate reflect the normal torces of demand and supply, or are certain abnormal forces present which produce an exchange rate that is unlikely to be maintained in the future? Abnormal forces might reflect unusually high or low prices for key export (or import) commodities, unusually large capital movements and/or receipts of foreign aid, etc.

Seconclly, what are the likely trends in the basic demand for imports and the supply of exports? Here one must take into account not only the effects of secular income growth, but also the effects of the changing composition of production. Thus projected expansions of export production, or of import substitutes, would influence the probahle futire course of the exchange rate.

Thirdly, what are the likely changes in government policy with regard to import restriction? Here one can expect that the liberalization of trade controls will produce a higher price of foreign currency, and their tightening a lower price, than would be the case with unchanged policies.

(c) Other cosis

The prices of inputs that are manufactured products can generally be projected by the same method as was suggested above for projecting the price of the outpatt of a given project, that is, as a resultant of expected changes in input costs and expected improvements in the technique of production. This procedure is based on the generally valid assumption that the prices of manufactured goods are largely cost-determined.

Minerals and agricultural products, however, are not typically as elastic in supply as manufactured goods. Hence their projection requires an analysis of the likely movernents in both supply and demand. Moreover, because of the characteristically low price-elasticity of demand for these products, it can
readily occur that the price observed currently is far different from the price to be expected in the longer term future, after the level of priduction can be adjusted to accommodate the demand situation.
(d) "Annmalized" benefits and costs

The many possibilities listed above of prices and costs changing over time, as well as the likelihood (discussed in section A) that the relevant discount rate will itself change over the life of a project, indicate the necessity of carrying out project evaluation by projecting expected benefits and costs on a year-hy-year basis, and then discounting them hack to the present by the appropriate discount factors. The often recommended procedure of attempting to put all benefits and costs on an annualized basis ${ }^{2 n}$ entails the possibility of dangerous oversimplification. As it leads one to presume that all the relevant components of benefits and costs will be (comparatively) constant over time, the "annualization" approach tends to distract attention from the whole set of problems considered in this section.

4. Indirect benefits and costs

In addition to its direct benefits and costs, a project may induce a series of indirect effects. which in principle should be taken into account in its evaluation. These indirect effects are the result of changes that take place in the rest of the economy as a consequence of the project in question having been undertaken. Obviously, any project is likely to have some perceptible effect on the denland and supply of goods prodiced by other industries. the main effects of this type being in the intlustries which supply the materials used by the project. and the industries which supply gonds which are either complenentary to or competitive with the project's ontput. If. as a consequence of a project, changes escur in the output of an industry for which, at the margin, social benefits equal social costs, wion adjustment need be made. But if changes occur in the output of industries for which benefits exceed or fall short of costs, at the margin, an adjustment is in order. The appropriate adjustment is the difference between marginal social benefit and narginal soxial cost, per unit of output in the industry in question, times the change in the output of that industry which is induced by the project under consideration.
The task of measuring indirect benefits can thus be reduced, first, to ascertaining those industries or activities in the economy for which marginal social lenefit (MSR) is likely to differ from marginal social cost (MSC) : secondly, estimating the magnitude of the difference, for each such industry, per unit change in its output and, thirdly, estimating the likely change (ΔQ) in the output of such industries as a consequence of the project being evaluated. Having done this, the estimation of indirect benefits can be calculated by the fornula $\sum_{1}\left(M S R_{1}-M S C_{1}\right) \Delta Q_{n}$, where the subscript i varies

[^102]
C. U'se of social. or accom ntinit phitisin INILSSTRIAL PROJEICT FWAIITATION

The early work on cost-leenefit amalysis did mut rece. ommend the use of soxiat or acemutin! pitiom. In example is the following :
"Ideally, measurement stimblards in prifict evaluation should reflect the interest of andith . a whole: as such. these standiats newild lw on cerned with 'real' cosis and broptits. Howere: it is not practicalle t" establish amp :ppl| 'real'
 terms rather than in terms of at minetiry mit All things considerel, the mout satheneturs if proach wonte resule from using prics antwind as they are expecterl to be at hice tilur when costs are incurred and lenefits reccived
This procedure in recommented as the lical available methorl. It permits a wistul wirhuts: relationship with repayment determinititine. It takes account of future prices and price whation: ships lased on the best julderment .a hand ":
This view is in marked contrist with the hilien of the mare recent literature. as reprewitel li, the following :
"The market price wombly repromet bir trine value of genels and services of the law of and and demand mperited frecels. under betion a.me petitive conditions, with full rmplownmen ail resources and complete mehihite of all futhe. If because of any interference, , wist:cls- of went,
 system will he distorted: it will wot correynend
 the value of the factors frome ile pewith if wew of the communiny as a whole. 11 i, therctine i...n. sidered necenary to corret nawhet biter ill wh:
 of the factors. "wn

 alternative use. . Lateme. importel| matriais and expert and imp, int chatilution: valuel at accounting prices Tlue remashing whe are salied at market prices exce,t for a fow mpartiant elp. ments. such as eleeitri" priwer and tranymort, for
 the amome of resesurem 11 sel in their predtution In there cases. accometmeg prom sh will the cal culated also." ${ }^{3}$
"I Ender the circumstances, : selection of prepiect. based on markep prices will result in a misalioma tion of recmurces, in the sernse that there will twe :e heave strain on the resentres that are inter porm while part of the rewnirees that are over-priefel

[^103]will be left idle, so that the aggregate yield of the selected projects will fall short of the maximum yield that could have heen obtained from the available resources. It is thus necessary to introduce into the evaluation procedure a device intended to restrain the use of under-priced factors and stimulate the use of the over-priced ones. This can be accomplished . . [hy hasing] the evaluation on 'shadow' or 'accounting' prices instead of the market prices. The accounting prices are intended to reflect as accurately as possible the intrinsic values of the factors involved."an
There can be mo doubt that the recent trend towards eonsideration of accounting prices represents in principle a substantial advance over the alternative position. sinee it attempts to take into account the efferts of divergences le'tween market prices and social conts, while the altermative approach does not. However, the prohlem still remains of obtaining adequate estimates of the appropriate aceounting prices to use. and it must be admitted that this aspect of the problem has not been thoroughly explored in the literature. We turn, therefore, to the examination of this question for the main types of prices.

1. Accounting prices for labour

The "shadow wage", or accounting price of labour, is an elusive magniturle to estimate. particularly because of the great variety of skills and types of labour, and because of regional immohility of that factor. It ean therefore readiiy occur that the opportunity cost of agricultural labour may lre quite low. while the opmortunity cost of emploving the same labour in industrial projects in the cities is consiclerably higher. It is necessary, when consiclering the accounting price of lalour, to lee specific binth as. to region and as to skill, and to recognize that it is gencrally not possihle to obtain even the most unskilled lalour in urban areas at wage rates similar to those paid such hamur in rurat places. Thus the accounting price of urban lalumer should not he considered to he the actual wage received hy similar labour in rural emplowments. but should rather be baselt. first, on the wage that is reguired in order to attract this type of bitmur from rural to urban cmplosment, and seemully, on an adjustment factor reflecting the higher costs of providing social overhead facibues for urb:an as against rural workers and their families. It is not correct, as suggested on page 205 of the ICCLA Manual, ${ }^{31}$ to consider the agricultural wage as the "pmortunty cost or account. ing price of blume diverted to wran emporment

Similarly. the existence of memployment slould not be taken to me:all that the aceominting price of labeur is zero. miness the unemplisyment is so widespread is to inilude substantial fractions of the labour force of every type and skill. In general, it is likely that the nore highly skilled grades of lakour will have accomiting; prices at ur very near to their market prices, as thene grades of lakmur are typically in relatively scarre supply, even in periods when the

[^104]unemployment rate for the total labour force is relatively high. Even for the lower skill grades, the phenomenon of unemployment cannot be taken as direct evidence that the accounting price of labour is substantially below its market price. The unemployment rate must be viewed as the nutcome of a numleer of forces : plant shutdowns, normal labour force turnover, migration to the city and so on. Suppose that. as a consequence of these forces. 6 per cent of the urban labour force is at any moment unemployed, and that a new project is established which will occupy 1,000 workers. This new project will also have plant shutdowns, seasonal variation in its demand for labour, normal turnover, etc., and it can very well be that over the year this new plant will engender for these reasons an average unemployment equal to 6 or more per cent of its own labour force. In this case it mught be concluded that the opportunity cost of labour for the new plant was givelt by the market wage rate, in the sense that at that wage rate it would be drawing 1,000 workers from the market. who would have been employed 94 per cent of the time and unemployed 6 per cent of the time, and it will itself employ :hem 94 per cent of the time and leave them unemployed for the remainder.

It is not contended that the aloove type of calculation should be used as a guide in attempting to arrive at accounting prices for lahour: it is merely presented as an example of a case in which the existence of reasonably significant unemployment might plausibly be interpreted as being consistent with an accounting wage equal to the market wage.

Actually, the estimation of accounting wage rates for labour classified by different skills, types and regions is an extremely complex and important area of research which deserves much deeper study than it has had. Such research should take into account not only the forces of seasonality, normal turnover and shutdowns mentioned alove, but also should investigate the forces which are operating to keep the market price of labour aloove its opportunity cost. These latter forces include wage rates set either legally or by union agreement. but often there are large segments of the lalour force which are unprotected by either of these means. It is generally to be presumed that in these segments of the labour force the wage rate reflects opportunity cost; and such wage rates can often be taken as mininuum estimates of the aceounting prices of labour of similar skills and tepes in the industries and activities in the same region ill which lalour is protected by minimum wage rates and/or union agreements.

Attempts to specify the nature of the discrepancies between market and accounting prices for labour are necessary for another reason as well--the projection of how these discrepancies are expected to change in the future. It is to be anticipated that, in a developing economy, gross differences between market and accounting wages will tend to be eliminated over time. hut the process and speed hy which this occurs depends upon the source of the initial discrepancy. In any event, it is reasonable that a cost-benefit analysis should allow for at least the gradua! reduction over time of such discrepanciesthus confronting us once more with the importance
of carrying out a project analysis through a year-byyear protection of lenefits and costs rather than attempting to summarize these solely through annualized estimates largely lased on the current situation.

2. The accounting price of forcign exchange

Whereas labour is characterized by great heterogeneity and substantial immohility forcign exchange. at least in a world of convertilile currencies, is a basically honogeneous commodity that can readily he slifted from one use to another. Thus, where in principle numerous accounting prices will le required for labour, only one will typically the required for convertihle foreign exchange. Nonetheless, serious difficulties arise in estimating this accounting price, owing to the many distinct uses to which foreign exchange can lie put. This can easily be seen lyy considering a tariff structure in which some items are not taxed at all, while others are taxed at, say. 20 per cent, and still others at, sily, 50 per cent. If the exchange rate is 5 rupees to the dollar, a dollar spent on imports of category 1 will bring in goods having an internal value of 5 rupees, white a dollar spent on category 2 will bring in goods having an internal value of 6 rupees, and the same dollar spent on category 3 will bring in goods having an internal value of $71 / 2$ rupees. The value produced by the dollar thus varies with its use.

The key to estimating the accounting price of foreign excharge is to estimate the likely pattern in which incremental dollars would be distribute:l over the various categories of goods. If it was anticipated that extra dollars would be spent 50 per cent on category 1, 30 per cent on category 2, and 20 per cent on catcgory 3 , then the internal value of a marginal dollar wu.ld be $(.5)(5)+(.3)(6)+$ (.2)(7.5), or 5.81 upees.

This procedure for estimating the accounting price of foreign exchange can also be applicd to goods which are sulject to licensing or other restrictions rather than tariffs, but here one must estimate independently on the basis of available market evidence what is the internal value of a dollar's worth of each type of goods so restricted.

The lasic difficulty with the suggested procedure is estimating the pattern in which incremental foreign exchange will be distributed among imports, but this can le at least roughly estimated on the hasis of pasi marginal distrihutions of foreign exchange, for instance, ly ascertaining from import statistics how the increase in foreign exchange availabilities from, say. 1960 to 1965 was in fact used. More accurate estinuates comid be obtained by serious econometric study of the demand for different categories of imports. In some cases, the exchange licensing authorities might themselves have a policy indicating how they would allocate any additional sums becoming available.

The procedure outlined alove assumes that the incremental foreign exchange will be used to alng. ment the total supply, that is, that it will not force down the price which expmoters receive for forsign currency. If it does this, then the above pracedure would be applied to extimate the value of the net
increment to the supply of foreign antrina, amit the rate of exchange applicable to expurts would refleet the value attaching to the use of incrinemat tor eign currency for displaced expert.

This procedure is closely attmucd whe eromentic reality: as such it is far preferable to the prok...hat. reconmended in the l:Cl.A Nanmal $(p, 1)$ it . . 1 riving at the accounting price of toreign arrient on the basis of a porchasing power parity fontambat The great difficulty with the purchasing pusen furtoty approach is that it is valid (anly whent the e....1.al
 compared were completely monetary as in the ane of
 whose currencies are being onmpinel but the fint. tion of the exclange rate $i n$ cost helletit, abalunbasically as a guide to lesource allowatum K, wher than looking backward t" a hiae veat atul lwollg concerned with monetary changer humg bihen piand in the past, cost-benefit analysis linok, at the frewolt and the future, and attempts to evaluate .llotmoms. projects in "real" terins. There catl ler an 小mitit that a direct effort at estimathig the value to the economy today of the geots alle extra lollar in lihs to buy forms a letter basis of juigement if the b.llue of foreign exchange than a merhamical extrapulation from some past year By the sallie tiken, the ath.ibo. of the current value of foreign exhatuge. in the mon ner indicated alove provide, the mon ream.ind: starting proint for the projection if the allir path of this variable in the fitture.

3. Arcounting pricis fur in? ilfs of mutinno

The problem of arriving at atcomutime place ont inaterials is in some respects aimilar wimat fo. for eign exchange. Suppoue that the m.uk ket pithe ., at material is $\$ 5$ and its secial cost ot proulatum .- $\$ 4$ A project under comideration: will 11 w. wint ,it ith material, and the flestion itres of wetme the ap. propriate accounting price. The problem thot f心. us can be summarized liy considerimg iwn extome possibilities. On the one hamul. the wint un the. material may remain constatly. allil the vuph for the project under comsider:ation maty la fande.t from other nses. In thas case the appoprate in counting price is the market price whin dan the taken to reprevent the margilial value of He materi.al in its other uses. One ther wether himil. the firfent. denand for the material might be met in mumamg
 accounting price in \$4. the ther an minn (art on producing each adte innt

This apparenty plansille conclusem. benwery, is not alwass correct. For, suldwes that the maternat,
 the samie anmint. in the alisence of the piriget tring considered This increased mutput comid. firevimat ls
 lowteren $\$ 4.3$) and $\$ 500-$ onl the ipell market Some recluction in price would prexumbilly hate to, occur to moluce additional sales. but milenv the ir mand of the project in guestion were very great unieed reiative to the intial level of promiction oif the raterial, or unless the over all demanill for the naterial were very inelastic, the required reduction
in price would wot le very great Thus even if the production of the niaterial expands in response to the project's additional demand, the opportunity onst of the project's use of the material call be approximated loy the market price of the material rather than liy its social cost of production.

The use of the nuarket price of materials as their wicial ur accounting price has another advantage in avoiding the double-comoting of benefits among projects. Suppose that project A is a construction pro fect. in which abotantial ammonts of cement will Ine ured suppose. further, that project B is a project tor apand cabacty in the coment indestry If cemont is valued at its market price in evaluating project B, and !s aloo valued at its market price in evahrating projeci A, we can be sure that there will be no fapble connting of benefits. But if cement is valued at $\$ 5$ II mahbicting project k and at $\$ 4$ in evahating project. 1. the difference of $\$ 1 \mathrm{per}$ unit will be comented as benefits for leoth projects clearly a dubirins pitencellure. In order for $\$ 4$ to le a valid accounting price for the cement used in project A, project B minst meet two stringent conditions: first, present value of Denetits emials present value of costs. when the cement is priced at $\$ 4$ and, secondly, the cement frwheral hy project R must hate a value no greater thant $\$ 4$ in alternative uses (other that project A)

Having thas incticated the gromend for preferring the we of markel prices for materials inputs, it iimperation to pualify this preference by noting that when the outpout of a material in fact expands an a comsequelue , if a givell material-using project, and where that material dies not have an alternative us. III which its value lies alove the cost of producin: : lie material, amet where the market price is nonethe Fos alowe the coat of producing the material, all accombting price equal to the cost of prodiction "t the material is apropriate for use in evaluating the material using project

18:amplas of cases mecting these comblitions can inulecel $1 \times$ foumbl Ferhaps the clearest case is me. in whel', firs. the naterial has an infinite elasticits of atply at a price equal to its unit cost af produc trim and. evomily. it tax exists which makes the market price higher than unit production cost. In this case, atty expansion in the industry has social benefits preater than social costs by the amount in the alitional tax cullections. Moreover, even thong with a cost of $\$ 4$ and an market price of $\$ 5(-\$ 4$ p!as $\$ 1$ tax , added production of the material could busold if offered at a price of $\$ 4.95$, it will not be ar sold lecanse the would entail a loss to the producer, In fact, the expansion of mitput of the naterial 1 . strictly contimgent on the emergence of additionad demand at a price of $\$ 5$ and, so long as the tax $r e$ mains at $\$ 1$ and the net ef tax supply price remainat $\$ 4$, each incremient of demand at the price of $\$$: will in fact generate the additional supply necessarn to mee: it And, assiming the supply price truls reflects the social costs involved, the net-ot-tax pric. call in such cases be used as the accounting price of the material.

Fiven in such a case, however, it might be prefer ahle to use the market price of the material in the hasic calculations of the direct costs and benefits of
the material-uaing project, and to coun the extra tax payment genesated by the project on account of the expansion of material mupply as an indirect bemefit of the project. The two procedures amount to the same thing, and counting as indirect benefits the excess of benefits over costs generated in other activities as a consequence of a given project permits. the adoption of the standard rule that accounting prices of materials should always be their market prices.

4. Accounting prices for the output of a project

Where products are freely sold at the market price, the social benefit attaching to such products should be measured by their market prices. Where, however, goods are subject to rationing or licensing, accounting prices different from market prices are indicated In this case the accounting prices should attempe to reflect the intrinsic value of an increment of out put to those who purchase it.

Where products are subject t: indirect taxation, the market price inclusive of tax shonld be used as the measure of benefits. This is seen clearly by the United States Inter-Agency Committee on Water Kesources:
"To the extent that taxes are reflected in the market prices of goods and servires, such taxes. will have been considered in estimating the value of the goods and services produced by ... development projects No deductions for taxes in market prices should be made, since this would reluce the value of benefits below the actual appraisal of the market as indicated liy consumers' preferences of willingness to pay." ${ }^{18}$
The t:Cl.A Manual, on the other hand, recommends climination of taxes alll subsidies on the ground that "greater or tesser customs duties or sales taxes caue sariations in selling prices, unrelated to the effort involved. . Thus variations in the amount of sales tax, or the list of groods to which it is applicable, can vary the apparent productivity of projects emiploying such goods or services, distorting their relative position in the priority scale. althongh there have heert in fact no changes in productivity. Similar umervations can be made for subsidies, inasmuch as they are 'urgative tixes'." m .

The position taken in the FCIA Mamal is diff. cult to interpret as it does not distingnish clearly between taxes upon materials inputs and taxes upon the output of a project. In the example given, the refrence appears to le to materials inputs. If correction for taxes and subsidies on materials inputs is all that is meatit, thell nowexception can be taken to the statement. Taxes an materials, as indicated above, niean that benefits exceed costs in the mater-ials-producing industry, and 2 project cant in this case legitimately consider the additional taxes generated on account of its increased use of naterials to be ant indirect benefit of the project.

On the other hand, if the statement is taken to refer to taxes on the output of a project as well as on materials, one must take exception to it, the value

[^105]to purchavers of the product being the price that they pay for it, which clearly includes the tan.

The only exception to the general rule that tixes poid on the product of an activity are to be included in the benefits of that activity is the case in which the taxes are designed to correct a previously existing disequilibrium bet weell social benefits and market price. Thus, if an activity produces a product with a price of \$1, but the consumption or production of that product engenders external diseconomies of $\$ 10$. the market equilibrium will be one in which, at the margin. consumers of the prodinct receive a benefit of $\$ 1$, but others suffer an added coist of $\$.10$ for eaci, unit consumed. In this case a tax of $\$ 10$ would be indicated as a corrective neasure. The price, including tax, would be $\$ 1.10$, the consumers of the product wonld have a lenefit, at the margin, of $\$ 1.10$. but other consumers would lose $\$ 10$ per unit, so that the total social leenefit would be $\$ 1$ per unit, in this case leing the market price less the tax. Since in fact virtually mo taxes are levied for the pulpose of overcoming the external diseconomies associated with the comsunipion or production of a product, the general rule should be to neasure benefits hy market prices including taxes, and to declict from such benefits any identifiahle external diseconomies.

In short, since no presumption can be estalilished that the existing taxes are an appropriate measure of external diseconomies, or that existing subsidies are an appropriate measure of external ecombaies. market prices gross of taxes should the taken as thr proximate measure of benefits. ald in the project analysis itself the attempt should be made to correct for external economies or diseconomies issiciated with a project either in the prodistion of the pro. ject's output 10 in its consumption. It is to be antion pated that cases of significant external effects of this type will be rare. and not closely related to the amomists of tax or subsidy on the proxluct in question.

5. Accounting prices obtamed from linear programming models

It has sometimes been suggested that accounting prices be obtained on the basis of a linear programming model ${ }^{34}$ This approach has proved highly valuable in the progranming of activities within a firm, and its successful extension to prohlems of grcater scope is a distinct possibility. However, it is unlikely that this technique will be ahle to vield relevant accounting prices for a national economy as a whole. In principle, this would require an accurate description of all actual and potential productive processes within the ecomony, and an accurate inventory of its resources. Moreover, it should also entail a study of the transferability of resuurces from one categury to another (i.e., how many factory operatives could work effectively as carpenters? how many could be trained to do so at a given cost etc. 1 . These requirements of basic data go far beyond the foresceable possibilities.

As a consequence, the application of linear prosramming techniques in practice requires that the

[^106]problem be drastically owersimphted liy wommung that one or two or three procesws all descobe the

 little fath rati be placed on the wali- in me pot

 resilting "sharlow ptices

1. (holics amomit fabita if ditter, it Nata lizis and differint is blathen i, wod.
As the inalysis of section I the weit, the prollem
 comparable tometme is redne ed io the pidideat ot

 ($r_{1}, r_{2}, \ldots r_{2}$ for yars 1. 2. i in the fitme)

 in tinture sears.

 20 per cell test The requirel alowhte bewtht me creases laplls with ther lelgith of the ketathon

 rate of discount.

By the sallie token, the longth of flur athen if the benefit stream takes u"1 Iros mimestothe it high
 of $\$ 100$ per ytar, in perpetumis. at at en per itilt
 for just the liext tell veas, in \$hly in weath a much an that of the ferpetual sitream.

These conoderatmins comer lo be of crumet inn poriance when the relevant discomint fitevale lingh, which is likely to lo the wase for buint tevelighing comintries. Sot only is it irne that the jrivate rate of relurn tends to le high (probalily lo per cent or nore) in these comentrien, but this rate of irtunn has a'so to le adjusted upward to refiot luatl tasen attributalile to rapital and differences lietwerti the
market prices ath opportmaty costs of associated factor, of production in oreter to arrive at an e-stumate of the social rate of return. In particular, alle mintamtial excens of the market price of labour wer 18: "川nortunty cont is likely to raise the surial rate of return lo capital significantly ahove the $^{\text {a }}$ market rate I his pomt is clearly seen by Tinbergen, ulent he ats. "1 ery probatly the equilibrium level of wige rates will be consideribly less, than market wages (lothe cther hams, cumbibiom interest rates proliably are moth ligher than market rates." 3 b

Comblerations of gextation periocls and prowlac:tive hit are minittant in the choice of the salale of a proprot in well as in chowing among different pereet. Ombotsts, the wale of a project will affect

 If teme is that for which the present valur of beenefits momb cost is a maximome if scake is a contimoms vatiable. then uftimmon wale is reached when the bice ement to the fresent value of benefits stemming from a vmatl apamum of scale is just cumal to the atherment mincent bialne of costs associated with th:at ame expansion ${ }^{3 H}$

2. Critcral for de: idiny whon th postpone a wivem project

The exintug literature on cost benefit analysis tylically is mot at all explifit oft the question of when to imitiate a project. Fallure to consider this thene can leal to seriots minakes, however. Supphere. for ex.mple. that a project could le constructed this veat for al capit.l cont of $\$ 1 \mathrm{MO}$, and warmid then freduce a stream of expected net henefits having - preatit value of $\$ 1.050$, evaluated at the relevant it of discomit rates It apmar, that this project is wreth ding. Yer anpore that the sme project. comotmeted next ycar. would have an expected captal cont of $\$ 1.050$. and an expected present value of lied lemefit , if $\$ 1.150$ The net present value of the proiect soold te $\$ 100$. evaluated as of mext vear. ir $\$ 10\left(1+r_{1}\right)$. evaluated as of this vear. - Ho mosts. it pan to pextpone construction of the poreret, of lings as r_{1}, the rite of discount applicahle for comparisom between this year and mext. is less than lon pier cent

The solution the there timing prohlem, an to when to do a partionlar project. is simple an application of the genetal prevent value rule. let N, be the net prevent value. evaluated as of today, of the pracet in 'puctom if it in to le constructed in the war i The optinnmm converuction time is thell that var ie for whicl: N, is at its maximum $N_{\text {, can }}$ vars with, becolse the capital costs of the project will deprud on the date of its construction, and or beraluse the net leenefit accruing in any fiture year will vary. depending on the date of construction that is. Impending on the age of the project). and or hecause by pustponing a projert for a year we lose the tirst year's net benefits and gain an extra vear's met lenenefits at the end of the projert's life. All these elements are incorporated in the

[^107]calculation of N, for various starting times, and in the procedure of choice which choses i^{*} to maximize \therefore.

A particularly simple special case of the timing choice occurs when net benefits accruing in any year depend only on the year (in the sense of Calendar time) and not on the age of the project, and in which the anticipated capital cost of constructing the project does not change through time, and in which the project has an infinite life. In this case, prowided that the net benefit strean is an increasing finction of time in the neighbourhood of the optinial construction date, the optimal construction date is that point in time i^{*} in which the first year net benefits of the project are just equal to its cost of construction times the interest rate $r_{\bullet} \bullet+1$.

The reasoning behind this is simple. Regardless whether the project is constructed in the year 0 or in year 1 . it will be in operation from year 2 onwards. Therefore all net benefits from year 2 onwards will be jresent in either case, and the decision whether or not to postpone the construction of the project from 0 to 1 cannot depend on them. The postponement decision turns simply on the question whether the net lronefits to be obtained in the year 1 , which will he enioyed if the project is already constructed by then, are sufficient to compensate for the cost of constructing the project one year earlier (in year 0 rather than year 1). The cost entailed in constructing earlier is simply the interest rate reflecting the opportunity cost of capital between 0 and 1, which we have demominated r_{1}. Thus the fact that net lenclits will increase in the future does not justify the construction of a project now. The time to construct the project is when the immediately forthconing benefits are sufficient to justify the immediate tree of the captal funds in question.

In a slightly less simple case, if construction costs are expected t: increase between this year and next. the requirement for construction this year is Shat the net costs of postponement (which now counsts of the net lenefit of year I plus the increase in construction costs between year 0 and year 1) be less than r_{1} times the capital cost of constructing the project in year 0 . Thus a project whose capital costs are expected to increase with postponement will tualify for earlier construction, while one whose capital costs are expected to decrease with postponement will require further delay of construction than was indicated in the previous example, which assumet capital costs not to vary with the date of construction. These modifications can be of some importance, for in some industries experted improve. ments in technology can lead to reduction over time in the capital cost of a proiect, while in other lines experted rises in labour and materials costs can work in the opposite direction.

In excellent discussion of the timing problem, including a consideration of the case of projects of finite life, which reveals only minor differences from that jut outlined for the case of infinite life projects. is to be found in Stephen A. Marglin, Approaches to Dymenvic Imerestmont Plemming. ${ }^{\text {If }}$

[^108]
3. The relation of investment decisions and timing to uncertainty and risk

The conventional approach to making allowance for risk is well reflected in the following quotation:
"It is recommended that net returns exclude all predictable risks, either by deducting them from benefits or adding them to project costs, usually on a present worth or annual equivalent bisisis. Nlowance for mucertainties or unpredictable risks in benefit accrual should be made indirectly by use of conservative estimates of net benefits, requirement of safety margins in planning, or including a risk component in the discount rate. ${ }^{3 n}$ The difficulty with this statement, and indeed with most discussions of the subject, is that it is not explicit on how to cope with uncertainties or "unpredictable risks". Virtually all writers agrec that predictable tisks of fire, hazard ete.. stomkl be deat with on an insurance basis. Hut when it comes to other types of risk or matertainty, a wide divergence of opinion emerges. lickstein argues that a premium in the interest rate is "the most useful adjustment for risk in project evaluation ${ }^{\prime 3} 39$ and Hirschleifer comes to a similar conclusion. ${ }^{41}$ Arrow. however. argues ${ }^{41}$ that the dovernment should display risk aversion, that is, should not incorporate a risk premium in the discount rate it uses, and Marglin maintains"2 that where the net-benefit strean is rising over time, the criteria arrived at in section 11,2 , above give appropriate guides to investment decisions and their timing, without adjustment for uncertainty.

The issue in quastion appears to be in lavge part (although not entirely) semantic. Eckstein asserts that future changes in technology will, if they orcur at all, be improvements, reducing the net benefit to be oltained from an investment made tolay (which would in this case become obsolescent). (learly, if the probability of such changes has not already been taken into account in the estimation of future net benefits, it must be considered at some point. and one way to do this is to give relative! y less weight to future benefits by raising the discount rate ap, plicable to them. Likewise, if future technological changes have not been adequately foreseen, taking thell into account may alter the shape of Marglin's rising net benefit stream, and turn it into one which finst rises and then falls, or one which falls uniformly with time. In this case the fact that next year's met benefits covererl the interest cost on this year's investment in a project would n ne be a sufficieut bavis for justifying the jroject's construction; there womld have to lee further checking to see whether the press ent value of the (adjusted) net benefit strean was in fact greater than or equal to the capital cost.

In principle. Arrow and Marglin appear to lee closer to the trutl than these who would plate an

[^109] assmmes that all estmates of bithe betmita amb mon have been adjusted to inconperate oum best kilow as to expected changes in these mignatmines it mis

 assumbing that "madjusted" alculatum- it lato: bencfits shomkl be aljuste.el in the sume wat rex.mil

 and line of investment. The whatemest the thas chages should be catricil att !n an lathe! a. p"

 fitture disemut rates.

The procedure suggeated hote mothith andim. that the Gowroment doess mot have rivh werame a

 slomid be used as the discount rate in phathe imsor ment decisons are themurdo. entronts and diversified, and when tithen in the ateptentr
 risk. Thus with both the pahhe weten patase eit

1 Separacility of compoments al a prope:

Like the chnice of salle of a [moject, the problem of dealing with separable compenme 1 :c.nble

 Resources 1uts, it:
 velopment is exteaciol t. the point wher the

 as nuch or more lernefits is it id!d, cont "or

[^110]to recognize that the principle applies to large as well as small components of a project. A case in point occurred in the evaluation of the benefits of the publicly owned beet-sugar refining industry in Chile. Here large benefits were attributed to the indirect effect of the extension services given to farmers 11 onl their general efficiency of operation. On the presumption that similar extension services conuld le given even if no sugar-heets were cultivated. the ienefits in question should be attributed to the extension operation and not to the over-all sugarbect project. This the extension operation could be viewed as a separable component, and evaluated separately from the rest of the project. When this was dene. the maill project turned out to be of dubious vathelity, ven though the extension component was glite clearly worth-while."

The carefnl exanination of possibilities of separating compentuts from : piraject is as important ath apect of appropriate design and evaluation proceclures as the study of pessibilities of adding components. It is. mureover. all aspect of cost-benefit athalyis which has not recrived sufficient attention tw date.

2. ('ritivin for the conduation of aroups of projects

The evaluation of gromps of projects is quite smilar in mature to the problem of dealing with separable components. There is mo need to consider groupings of projects whell their benefits and coats are independent, lout when the benefits or cost associated with once project is to be different. depending "pmill whether ur not another project is undertaken. the analysis of the projerts so related should be done joulutly The appropriate nethod is shown below.
l.et Il'R (.4) stand for the present value of the Ikenefits of project A if it is undertaken alome, and I'P((. A) stand for the present value of ins costs (including both capital and operating costs) if under. taken alone. (orrespondingly. PVB (B) represents the present value of the benefits of project B, undertaken akorie. and II'K (.4A) represents the present

[^111]value of benefits of A and B taken together. A similar notation will be used for conts. Two projects are independent on the benefit side when $P V^{\prime} B(A B)=$ PVB $(A)+P V B(B)$; they are independent on the cost side when $P V C(A B)=P V C(A)+$ $P V C(B)$. The projects are:
(a) Complementary on the benefit side when $P V B(. A B)>P V B(A)+P V B(B)$;
(b) Substitutes on the benefit side when $\operatorname{PVK}(A B)<\operatorname{PVB}(A)+P V B(B)$;
(c) Complementary on the cost side when
$P^{+} C(A B)<P V C(A)+P V C(B)$;
(d) Substitutes on the cont side when $P V C(A B)>P V C(A,+P V C(B)$.
let $N=P V R-P V C$ be the net present value of any project or group of projects. The principle of choice is to maximize the total net present value. Thus if there are three projects which are interrelated on cither the demand or cost side or on both, there will be seven possible options. A. B, or C can be undertaken alone, or A and H together, A and C together, or B and C together, or, finally, all three projects together. The criterion for choice in this case is reduced to finding which of the following seven magnitudes is the largest: $N(A), N(B)$, $N(C), N(A B), N(A C), N(B C), N(A B C)$, and investing in that project or combination of projects.
This criterion for choice among groups of projects can le extended to any nunber of interrelated projects. It automatically takes account of the effects of any given project on the benefits and/or costs of other projects in the group. Moreover, it can also handle the problem of timing, simply by including as separate projects in the list the possibilities of constructing a given project at different times. Thus if we had two projects. A and B, and were considering the benefits of constructing either or both of them, with options of timing in years 1, 2, and 3. there would be fiftren possible options whose net present values would have to be compared: A_{1}, A_{8} $A_{1}, B_{1}, B_{9}, B_{5}, A_{1} B_{1}, A_{1} B_{2}, A_{1} B_{s}, A_{8} B_{1}$, $A_{8} B_{8}$. $A_{8} B_{\mathrm{s}}, A_{8} B_{1}, A_{8} B_{8}, A_{2} B_{8}$, and the problem woild be reduced to finding which of these options had the greatest net present value, when the benefits and costs of all of them were discounted back to the same point in time.

XIX. FOLLOW-UP FIOCEDURES AND PAACTK:ES

by H. T. Parohh*

Introduction

The framework of the work in the follow-up division of a developnent bank is the appraisal document and the heads of agreement governing a project. The appraisal document defines the project in terms of cost, means of financing, schedule of construction. the cost of producing its output and, assuming a rate of work, the profitability of the project. The heads of agreement, besides defining the project for which finance is provided, lay down the hasis of the legal relationship between the development lank and the company being financed.

However, in the final analysis, the relationship tretween hank and company is a business relationship. While an appraisal estimates the cost and working of a project, such estimate is hased on assumptions that might not turn out to be correct : the evolution of the project might turn out in practice to be on altogether ilifferent lines. Moreover, the ultimate justification of a development hank's operations is the success of its operations. and this cannot be had liy recourse to its legal rights against a company. Follow-up work, therefore, requires of those involved in it a thorough understanding of a company's changing operations as it responds to the actual economic conditions prevailing in the country, and their approarl must be flexihle enough to enable the cumbpany to ineet them.
ludia is a planned economy with a substanlial role illowed to private initiative, particularly in medium industry. The nperations of the Industrial Credit and Investment Corporation of India (ICICI) are concentrated in this area. Beccusce the operations are in the private sector, follow-up on the working of the project needs to be done carefully.
Follow-up work commences immediately a project is sanctioned finance. When a project is sanctioned finance, ICICI requires the company to sulmit regular progress reports. These progress reports furm the lasis of the operations of the follow-up division.
There are two main phases of a project : construction and production. The problems in each of these phases valy. in ICICI, it is the practice to requir. the company financed to sulmit reports every quar ter during the construction phase; every noonth in the initial stages of production, and every quarter suhsequently. Thrse reports are obdained both on the physical and the financial progress of the company. The information is then compared with appraisal estimates and scrutinised to anticipate protlems that might require attention from the development hank.

[^112]
A. Constriction rimese

The prohlens in the construction phase reliate t. the arrangeneut of finame. dellws in completmy construction. overruns in costs ixyoul mithal wat mates and weak nanagement.

Arrangement of finamce

Recanse the projects financed by 1 (III are in in private sector, arrangenent of timance is wit a mint ter of hurgetary allocation. In a devertoping womom such as India's, the rate of siving in low. ins.r.t.". in: hahits are not we!l developed and the institutional structure for providing industrial finance. is inmit., Consequently, arrangement of finamber irpuite, , fint on the part of the promoters.
Besides providing the initial fitu nce: $11 / 111 \ldots+$
 other likely funanciers its awoll apraisal if the po..
 where there is a marginal shortfall in the arrme.t.
 comes in with additional furam ins li.r dis shortfall.

Delays in construction

 ment exercises control over wathiveromat wis ters. Cinvernment apmerval is reppurel fon t.aning
 allocating controlled commulitio, woch as wayl and
 for example that a nitrogenom, tralient ;rime:

 feet ICICI-financerl prougets.

In framing the constructum whdri. :

 permissions are twe ebtamed withon the tow - t.
 building materials lis wit then in a- at:... .e.el:

Many JCICl-finalle ed prejerth hawe cimfroment
 financed by ICIC I drlit, haw !arid ikermand in .22 cases. as shown in the fillowing tathr

[^113]Tamer 1. Delays

"tiver the latresty "llin known" are includel projects

A We veloment hank such as ICICI can help in rellochge uth delats onls in a limited was: generalls. with regart is sosernment permissums. it trie- to fallitite negetiation, sn as to experlite them.

(iqutrien in insts

 pletang projects raiem pre-operative expenses such as enallanmemt expelime and merest charges alone the levels inithalls extimated. I inderestimiation of conts pemeralls eccurs on site levelepment; for example. wite levellign wark might turn ont to he mere extomone than ratimated initially. or hailding contrmition. Itacinite. fon ex.minle, uwing to sult-swil cinfletims. finmbation coms go up or owing to a lirger laite ut arta fotten to provide for future expomanint. the cont of limilding rises. Thus, in the case of a pheme mill, the fonmtiation costs increased leactuse the arr:1 was in the earthquake gone: in the cant of all alle s steel pripect. site development costs berame highe. tu privirle ag:anst food: and. leecause nit whemel water. the fombelation cost of the civil constriction refinerel for a forge shop turned out to lw minh higher than earlier estmated.

M ins of IC It'I finumer! projects have come across cin: worrmus (If the 25x projects financed thy 16161 . cont wertill, have been deterinimed in the
 t:1.1.

tramiderame	Number ip poriect:
No . .ertern	(1)
I ear than lio per cent	19
Neluern lo and wi fer ient	21
Rerween diand mior cemt	77
*1 per cent aml shove	13
Ni.p known	0
	ac. 22

[^114]ICICl generally considers that it is the responsibility of the promoters to bring in the funds required to cover any shortfall in the means of financing, and this is incorporated as a condition for ICICl finance. However, very often the overruns are so large that it would not be possible to meet the repuirements from the resources, personal and institutional, available to the promoter.

It is for this reason that IClCI generally insists on a strong equity base for a project, so that the promoter would he able to arrange for extra funds by way of lonns to meet the overrun in the cost of the project. In such a case, where ICICI has given the initial finance as loan and taken a mortake of assets, it is willing to cede a pari passu charge on the assets to a subsequent lender.

When such finance is not available from other sources and if 1 ClCl remains satisfied ahout the viability of the project. ICICI iself also provides a part of the funds required to complete the project.

ClCl assists the project either by providing the arditional finance or by rearranging the amortiza tion schedule. In such a case it is the policy of ICICI to revirw the working of the project and to reappraise its future prospects to arrive at the financing lecision In the light of sctual experience, such further financing would be made conditional upon atleypate strengthening of the management. Of the 228 projects referred to earlier. ICICI has provided additional firance to sixteen projects and revised the amortization schedule in the case of fifteen projects.

Case (a). In the early stages of ICICl's career, an industrialist approached ICICI with an underwriting .roposal for a pulp and paper unit proposed to be up in a forest aren of an underdeveloped State. While the industrialist had experience of other industries, this was his first venture int" the paper industry. ICICl underwrote the whole of the public issue snd was required to take up a substantial proportion of the share capital underwritten. later, the project ran into difficuhies, mainly because the region iacked transport and ancillary facilities, the project coet was found to be substantially underestimated and the promoters appeared to be incapable of handling a project of the size involved. ICICI at that stage suprested the appointment of a fireign paper technologist as a consultant, appointed a nominee director on the company's board and agreed to underwrite a part of the further issue of the company's share capital. The proiect was successfully completed, and 1 CICI was later able to sell uff its holdings of the company's shares at a substantial premium.

Case (b). When ICICI considered its first proposal for a phomphatic fertilizer factory. it had little experience to prepare estimates of conts and workian. And because the promoters were entering the induwry for the first time, there was little date available from them. Gradually, cont extimates were built up, operning costs and profits calculated, and a financing decision arrived at. In the course of esem. tion of the project. however, it was found the capital cont eatimates insil rivem by aimoer 20 per ceme, perty
because adequate provision had not been made for the storage space so ensential in a seasonal-demand industry such as fertilizers and partly because, with inexperienced management and delays, pre-operative costs had risen. The management was able to raise only a small part of the additional finance, and approached ICk'I for further funds. It was a crucial decision for CICl to re-examine the viability of the project in the light of the proved inexperience of the promoters. Ultimately ICICI agreed to provide the additional finance after it had nade a revised appraisal of the project, taken assurances for the strengthening of the management and appointed an experienced executive of a chemical company as its: numinee director on the buard of the conipany. The project was completed within the revised estimates and proved so profitable that the company offered to premature the ICICI loans.

I'orking capital requirements

Very often, the promoter uses up the margin provided for workinu capital requirements to finance the overrun in the project cost. Conversely, it is also found that the requirements on working capital account increase hecause prices rise or, owing to control procedures, larger stocks of raw materials and components have to be held or, owing to adverse market conditions, socks of finished geords accumulate Where the company has also at the same time undertaken another project, the financing of such a project would be jeopardized.
Case (c). ICICI provided to a structural shop, depending upon job-work, a hoan to enable it to take up manufacture of a regular line of procluction. In the process of executing the project, the company failed to obtain jot-work on the scale anticipated, with the result that the cash accruals needed to finance the new project did not conie up as estimated, and a large part of the funds, raised according to plan to finance the new project, was locked up in inventories. The company's shares were quoted on the market at a discount, making the raising of further cipital by way of a share issur difficult. The company therefore appraacherf IC ICI for additional finance through a lwall althugh its. assets were inadequate to support the further borrowing. ICICl agreed to provide an alditionai loan, atthough this reduced the margin below the i: rmally acceptable limit, introduced the company to a banke: who agreed to provide short turm financing against increased inventories, and proposed the iss le of unsecured convertible debenture" to provile for the additional long-term finance needed by the conpuny.

Weok management

Very often mamagement is weak, and dors not have the drive or industry-consciousness needed to carry throush a project In such a case, ICICI impores a conclition regarding atrengthening of management and zonnetimes requires the pronuser to be becked up by adequate coasultancy arrangements.
Case (d). ICICI underwrote the share isume and gave a limen to a cumpany ir a complex-technique
netalurgical industry. There was a substantial overrun in the cost of the project. and the comprom approached ICICI with a propusal for minderwiting the further issur of share capital ICl() was ?n, satisfied with the management's approach in hanbling the problems facing it. and olitained a report on the technical problenis facung thic cumpony trom a reputed firm of Indian consultents in the merta! lurgical held. In view of the problem, montual. ICICI provided a loan to the compuny cmsteal of underwriting the share capital, as preminisid, on the understanding that the promocters would carry oint the consultant's recummentitions, ant : director to the company's beard. As a resollt, the promoters gradually began to apprec...te the technical implications of the project and bronglit athett hamges in approach to tackle the problenins. The cunbony is now "perating satisfactorily.

Case (e). An Indian technician-entrefrencur, afore a stay abroad for several years, returnerl io Inilu in set up a project. ICICl pravidell a large foreign currency loan. Not ielilig conversant wath lowal cint ditions, the entrepreneur was able to nlake only slow progress on the project. Worcover, as the popect was located in the interior, the promieter was mable to obain suitable contractors tu corry cout the work. IClCl reviewed the progress of the project, ap pointed a nominee director, and agreed to ciniont the further financing of the project, if fount :erses sary. At the same time, the promoter wis encours.gel to enter into an agrecment willt a reputed com sultancy firm which undertook to execute the ie maining furtion of the joh on almest a turnkey bian.

The follow-up divisiom, in wateching , iner tir ph.
 that disbursement of the tevelepment hat, 1ond: to the project is matle in keeping wuth Hiw fogm.... of expenditure and the finaciul phath of the ;ripe. Before disbursement commences. the declojpent baluk has to assure itself that thir repures/ foc.in detoms. for example, that rathing whe theng of

 dishursenient of funds cammen exemel the tot.al anterunt of expenditure incurreal on :lie periject.
 sources of the company (whether internal or thuse ralsed from the market, int i.t the wewlomen bank, the develpment bath hin i.. Gurn la..: adequate finaturig is effected tam, the cumpan,
 bank to doburse outt of ta tumik Where a for th; ment lank give, a hoan. darnimeneot on the han is made generatly atter the rempure. , bhine c.pphil is raibela and used 川, by the cotipu..
 practice of ICH to reirw the total wantin ion phase of the project and to remintare is wuh t!e ap praisal estinates the review seck, th, athlum the differences leetwern the apprassal estimate. and the actuals. for example, regarditig the cunveriction schedule or the capital cost of the propect, and determine the bacturs making for the dif rences The rev:ex :theretion ineipm bo provicie guidelition for improved eximation procedu:

B. Pmoduction pfase

The problems that a project faces in the production phase are mainly technical ones of developing production, improving inadequate supplies of raw materials and marketing.

Technical problems in developing production

Many projects face teething problems in developing production. These relate to inadequacies in the engineering details of the plant, the use of nonstandard raw materials, and lack of development of labour skills. In many chemical projects, the main problems arise because of plant or raw material dificulties. In the engineering industries, skiil development is a major problem and, for individual companies, the difficulty of retaining trained labour. For example, in the case of ICICI financed forge shop, it was found difficult to build up production as labour-skills had developed gradually. And in the case of a spun pipe project, it was found that the rejection rate in the initial stages ranged from 20 to 30 per cent of production. In the case of a textile machinery-manufacturing plant, special steps were taken to train staff both in the designing and production sections.

Case (f). ICICI financed a project for the manufacture of an insulating material based on a process developed by a national laboratory-a mall project started under a new company. The project needed additional financing for its completion, and ICICI provided a part of this. However, at the production stage, the company faced unanticipated technical difficulties. After consultation with the laboratory which had developed the process, in was determined that a special variety of metal would need to be imported for pricess purposes. IClCl tonk up the matter with the Government and made possibie the iniport of the material, financed out of the remaining portion of the ICICI boan.

Kise material supplies

Many projects work on inported or controlled indigenous raw nuterials and components. The supply of these is based on governmental alkcations and with competitive demands for limited supplies, the allocations are not adequate for the requirements of industries.

In a developing economy, this is a constantly changing problem, Is indigenous production of comnodaties increases, the nature of requirements of imports changes. In India, for example, the compusition of in:ports has changed radically from finished goorls to conlyments and raw materials.

Murketing problems

In a developing cuuntry, marketing preselits many peoblems. Where a produrt is manufactured for the first time. there is no basis for forming estimates of market demanda. For example, when an ICICIfinanced hardlyard project went into production, it was found that there was not sufficient demand to take up its cutput, even atter considerable reduction in the price of hardboord. It bermane meceseary to educate the pubtic in the uses of the mow material
and develop an elaborate sale: organisation. This hed to be done also in the case of particle board, where technical stafl had to be recruined for the parpose.

In India, the sellers' market has ceased to exist in the case of many commodities. This is due to many reasons. While the industrial licensing system seeks to limit industrial capacity within the estimates of demand (indigenous and export) for the project, these estimates have not proved accurate. Among other reasons, there has sometimes been a bunching of projects at the production stage, with the result that the market has tailed to absorb the whole of the output from these projects. This happened, for example, in the case of figured and wired glass projects for which ICICI hed provided finance. Moreover, the over-all rate of growth of the economy has been lower than estimated. Secondly, demand for various goods is interrelated, and where the supply of a basic product is inadequate, it leads to a lower demand for other goods. Thus, because of inadequate mupply of cement, the demand for housing materials such as pipes, sanitary ware and glass is reduced; because of inadequate electricity capacity and cement aupplies, demand for electric cables and electric meters becomes lower than extimates.

Many ICICI-financed projects in these lines have therefore come up against dificulties. While some of these difficulties are transient, others may not be so short-lived. A developnrent bank can help a project in such a case by rearranging the amortiza!ion schedule and inducing the diovernment to give. it export incentives or by enabling the project to diversify its operations.

Other problems

In addition to the above, other problems arise which are not related so much to projects as to perscnalities. Such problems, for example, are thoue relating to conficts between the local partner and his foreign collaborator. A foreign collaborator brings to his function different perspectives; owing to the different hackgrounds in which he has been used to operate, his attitude to various construction and ;roduction problems differs from that of the lucal partmer. A degree of adjustment is required for the two partrers to operate amoothly in the economy.

Case (g). In a chemual-based project financed by ICICI, disputes arose between the Indian ombropronew and his foreign collaborator. Mediation was sought from ICICI. Initially, the reaction of the foreign collaboratur to the effort was adverse. However. ICICI explained its position to the foreign collaborator, advised the Indian entreprewewr to make a special trip to visit the collaborator and discuss the issues across the table. As a result. the two parties artived at a workable understanding for the further execution of the project and the role of each in that task.

On the other hand, where a promnter forfeits the confidence of the development benk, there is no recourse but to take decisive action on the basis of legal renvedies availale to the developonem bank. This is a cace of humen finilure and, while in in met
peosible in all cases to anticipate it, it requires frm setion when discovered.

Nomimes directers

At a condition of providing finance, ICICI requires the right to nominate a director on the hourd of the company. Where the finance provided by ICICI is large in relation to the total cont of the project or it is felt that for other reacoms the project meeds to be closely kooked atter, ICICI generally exercises the right to appoint a director to the board of the company from the beginning. In actual fext. ICICI has so far appoimed directors to less than 10 per cent of the companies financed by it. Of the 228 projects referred to earlier, ICICI has nominee directors on seventeen projects.
Such a director is apprinted with the consent of the promoters and is an outsider whose services would be of use in the company. ICICI's nomince dinectors have come from industry, the civil service and other firlds, and their presence on the board, besides beime of use to ICICI in enabling it to remain in close touch with the progresn of the company. haa been of considerable help to the companies in their operations.

It is ICICI's policy to appoim mon-ICICI persom nel as nominee diroctors. Thie eneures that the nominee cirrector bring! ma informed, bat independent. outiook on his ascignmem and is able to enjoy the confidence of the promoters. Generally, the presence of ICICI's nomimee difecturs has been apprecieted by the promoters, mit the nominue directors are an importam lint between ICICI and the companion accioted by in.

Perspective of jollow-wp work

Unimately, the main utility of follow-wp work is to provide a feed-beck for improved appraisal procinaves. The efferences betwem the spprieal enimates and the actiml evolution of the projoct
might arise becanse the assumptions on which the appraisal estimates were mide might not lee correct or because of the intervention of fortuitous circumstances which could not be anticipated at the appraisal stage. For example, where the supply of raw materials or the demand fur fininied promhe", is highly seavonal, aa in the cisse of case (b) neוntioned above, it should be pussible to anticip:ate the storage and finance requirempnts for the miximum: inventories to be held. On the wher land. it wo no: possible to anticipate the changing govermurent poilicy on import of raw materials. which would affect the working of an enterprise dependent npwin imported raw materials.
As experience is buik up in the follow-up divisinin, it should be possible to acquire dhtat on costs or factors influencing the constriction scledule of piro jects, and on the role of skill development in :cffercting the luild-up of production. These diata can then act as 2 cross-check on the estimation procedires of the appraisal division. The validity of the appraital estimates can be enhanced to the extent that it tricto incorporate in its procedures the lessons gathered in the follow-up work.

The follow-up function is mot standardized hur presents diverse problems. The follow up staff has to be capable of meeting these problems. The biasic requirement for carrying out this furction is to anticipme problems before they becinue serions and to provide a Aexible response to owercontre them. The staff of the follow up division have to have an adequate backgronnel in proferwinal diwinliner ont h as cromomics, accounting or rugherititg. bint minst also be alite to take an over all wirw of tire problems facing the company ankl singert remedien for mert inge them.

The essential concept of follow -1 , is partinerchin, between the ciecelopment lank and the componty finanred by in to bring the project to successiul fruitiom. This is the basis of the flunctioning of a folliww. up division in a development bunk.

XX. FOLLOW.UP

by B. Berkelf*

Introdection

It is essential for the success of any industrial undertaking that, once its form and size have been determined and the management has been selected and supplicel with the necessary hinancial and other facilities, the nanagement shonld be left to disclarge its functions with the minimum of interference. Nevertheless, the supporters of the project-those who have provided money or facilities for it-will normally wish to keep in touch with its progress so as t le setisfied that the intended objectives that they have in mind are pursued and fulfilled, that their investinent is safe and will become remunerative, and that any special privileges or assistance which may have beent extended to the project are justified. Moreover, the project itself will benefit from the existence of third parties who are to a certain extent identified with it, who are regularly kept acepainted with its progress and its problems, and who can be crpected to react readily when excernal suipoit financial or otherwise-is needed.

The function of the activities comprised within the general heading of "follow-up" is to luild and mailtaill a system and a relationship which satisfies these needs. In the absence of some such system it would lor possible for all those who have supported the creation of the project, but who have no part to play in its management, to lose sight of it and become disimterested; it would also be possible for the managemert to depart from the original purposes of the pirnject of to manage it badly, without the knowleilge or consent of the project's supporters.

There is onte anest of follow up activity which is charly getmane th the subject of this Conference. momely, that it call be used as a check on the efficacy of the maluation mechods used during appraisal and as a means of builling up experience to be used in future evahations. But this is only one function of follow-11p , and liy wo meats the nost important. It has a mach more constructive role to play in molustrial developmunt and it would be misleading to discuns it fonn tha: one narrow viewpoint. This paper will, therefore, entleavinur to give a com prehernsive vew if it, functions and the methorls conmmotly emplosed.

As explained later, the ubjectives and principal concerns of the person conduting the follow-up acwity are different in different cases. He will not in every case be interested in all the objectives listed ; in wane cases he may be interested in only a very few. For the sake of urderly coisideration, lowever, I shall now put forward a comprehensive list of the purpose it is designed to achieve.

[^115]Fo: brevity I shall refer to the institution or person who is to be provided with follow-up information as "the financing institution". In many cases this will be a fitting description: the insitution concerned will in fact be a financial concern-such as my own company, CDFC; but, for the purposes of this paper, the phrase will also include a parent contuany receiving reports from a subsidiary; a development corporation or a government department receiving reports from a wholly or partly publicly financed industrial project; a government agency which controls the grant of industrial incentives receiving repoits from a beneficiary company and so on.

A. The functions of follow-up activity

Follow-up activity has two prime purposes and three important side-effects. The prime purposes are:

First, check that the project follows the agreed lines and is conducted skilfully, vigorously and profitably.

Secondly, to create a relation of partnership and understanding between the management of the project and the financing institution, so that they both have, and are regularly reminded that they have, a mutual interest in consulting about and resolving the nuajor problems of the project.

The side-effects are:
First, the maintenance of a living interest on the part of the financing institution in the project, so that when the time of expansion or extension is reached, its support, particularly financial support. is likely to be readily forthcoming:
Secondly, the necessity it creates for the management of the project to install an effective system of producing managenent accounting information: while it would seem impertinent to refer to this effect in cases where the management is experienced and efficient. this will sometimes not be the case in developing countries; with a new and inexperienced management, insistence npon proper fol-low-up reports can have an important beneficial effect on the control of the buasiness:

Thirdly, the provision of a check on the efficacy of the financing institution's appraisal methods and the collection of information and statistics about industrial performance which can be utilized in the study of other indusirial proposals: this could be of significam benefit in developing countries where there are no publithed tatiotics-perhaps no adequate records-of industrial costs, yields and ratios of profit ; the experience accuanulated from following up a considerable number of indmetrial projects can create a valuable reservoir of experience for the
benefit of subsequent developers and for the appraisal of their proposals.

To take the two broad declarations of purpose in a little more detail: the first one, which night be called the "supervisory function", will be directed to checking whether:

First, the resources allocated to the project are used in accordance with the agreed descrittion:
Secondly, the management is capable, active and responsible;

Thirdly, management's physical and financial controls are adequately deployed and function speedily and accurately;
Fourthly, financial estimates are adhered to;
Fifthly, the financial results are accoptable
In the event of any of these requirements not being fulfilled, the financing institution will inquire into the reason for the shortcomings and luok to see whether corrective steps are put in train.

All the above are really different aspects of management. Follow-up, in its supervisory function, is little more than a system of kerping a watch on management. It may be of interest to note here that a well-known firm of business inquiry agents each year prepares an analysis of the reasons for the failure of businesses (bankruptcy or liquiclation) in Canada and the United States. The following summary table sets out the causes of the failures listed by the firm for the year 1964:'

Calises of fallumes of fiems in fobut

	Comeds	$\begin{aligned} & \text { United } \\ & \text { Stiats, } \\ & \text { America } \end{aligned}$
Total number of failures	2,499	13,501
Causes of failure (in percentages) :		
Neglect	1.5	2.8
Fraud	0.8	1.9
Lack of experience in the line	5.2	8.8
lack of managerial experience	23.	20.9
Cubalanced experience	13.2	19.7
Incompetence	55.3	42.5
Disaster	0.6	0.9
Reason unknown	0.2	2.5
	1000	100.0

To avoid misunderstanding it may be noted that the number of failures recorded is a minute percentage of the total number of firms in business in the two countries. Nevertheless the percentage of failures attributed to incompetence and other shortcomings of management is dramatic and highlights the overwhelming importance of management for the success of a business. Managenvent needs to have the qualities with which to deal fairly and effertively with its employees, that is, integrity, honesty, a sense of fairness and the ability to communicate. It needs

[^116]technical skills in the fields of design. prodnction. accounting, financial control and selling. It needs foresight and the ahility to look ahead, whas tio m . sure that today's decision, are consistent with the probable circumstances of tomorrow. It in also is. ir able that it should have the ability to look cribically at itself and judge whether it is using atl these qualities in the most effective and far-bighed w.a. and the flexibility to change its comese if necomon.

It is in relation to thes critical function that the financing institution c:an sumetinles be of parte athas help to the management. In l:nglis! prowth su, that the onlooker sees most of the game: the than ing institution, fooking at the progeresont the bow-incos with a more detached eye thant Mathusellion. mis well see the picture in better peralective and be able to give useful adrice. This will be mont hats la occur if a follow-up system is devined which prownle, in a succiuct form a set of indicators to shom how the business is progressing and the managenient dicharging its functions: and if the fintmeing intinn tion is regarded as a candid friond whose sugetions for improving the comblet of the lusimes at. treated as helpful advice and mot as : bovile julfec nient.

This oliservation leads us directly to the wemml broad purpose of follow-inf, which hive been dearriberi as creating a kind of parthership, relation luewo.a the financier and management if the limatime in stitution is regarded as nothing but a pelicembim. an outsider whose only connexion with the havine in to act as a judge and critic. adelemwn .mbitule on the part of the management is likely to rint lat that event, suggestions made bey the financing in stitution could well be regarded as alserse rilliman rather than constructive lielp and be met his 1. sistance. If that hapens, perniatene be the finamome institution couid lead to : breakdown of gonid 10 lations. To ensure a froitful relation-hat leforen the two interests the creation if: :-llat of patmes ship, mutual support and mumal reyped in of whe? inportance. This calls for care. julderollut, thel anl forbearance.

Of course. the context of the relathm, hife will har an important bearing on t!is a-plet of ble qumelt:a In the case of a pirem complome and a whindar: where the senior management uf the anbuhlary mas the old friends and colleagiove in the stat of the parent. their relations will. wen pills be low fragn'
 ermment department is mating combatio: withe performance of a compotny st: 0 fled be lown whe at, comparative strangers to it. '1'has 'que then will he dealt with in, omewhist perater letall leter

The first of the thee side eftext whentinut atme is the olverse if the oljective jut deveriled it

 partner. hut it w-ll alw matitathl the inte...t ef lle
 recresary and panhlie lt mat. for matume lue able to help find sentir statf or arramer :manme fo. there, or to use tis influetere to lianten the wiply ef utiluies of caputal goods Almive all, wimen firther
funds are needed for an expansion, or to tide the business over a period of difficulty, the basic relationship should be such that the financing institution will n:turally expect to be approached, will be so involved in the project that it will be likely to agree, and will be less fikely than any outside source of finance to fall into any misunderstanding about the business and the reasons why extra finance is needed.

The second side-effect can be an importent contributing factor to the growth of management expertise in developing countries. A frequent characteristic of inexperienced management running an industrial enterprise, even a small one, is that it has no efficient way of keeping itself rapidly informed of developments int the business. As long as the business is so small that one man can be in charge of all the managenent activities concerned with production, selling, accounts and finance he will generally have a shrewd idea of any shortcomings, although unless he is very active and methodical some aspects of control are likely to fall behind. When the business is big enough to necessitate delegation of management functions, the proprietor or genera! manager will lose close control of it unless he institutes a system by which each of his senior managers provides him at regular intervals with an up-to-date and fully informative summary of the part of the business for which he is responsible. Without this he will not be able to keep proper control of the business; he will not be able to keep the different activities of the business properly correlated; he will learn of shortcomings a long time after they should have become apparent. By requiring follow-up information, the financing institution provides an extra incentive for the installation of a system for producing complete management information quickly and accurately.

The final side-effect is the information it provides and the lessons it teaches for use in future appraisals. It wilh throw light both on the efficacy of the managenent's estimating and forecasting procedures and on the financing institution's methods of appraising and evaluating them, on the methods used to assess the market, and so on. It will provide the financing instituticm with many sets of comparative figures to which the latter can refer when making appraisals in subsequent cases. It can also indicate particluar aspects of project preparation. For instance, systenatic analysis of follow-up reports will give early warning to the staff of a financing institution that, in a certain country, capital estimates are regularly understated because managements do not make adequate allowance for infation, constantly changing inport duties. frequent labour troubles and oo on. If a number oi follow-up reports indicate poor performance by civil contractors of a certain nationality, due perhaps to difficulty in getting good supervisors to po overseas, this will put the staff of the fnascine institution on its guard when aponsors of a new project propnse employing contractors from that country.

In countries where there are publicty publiched indeatrial tatistics, the efficiency of the manarememt can be measured by enmparing certain sigrificant
figures extracted from follow-np reports against similar industry-wide performance figures obtainable from the publications. In countries which have no such statistics the records of financial institutions may provide a valuable statistical nucleus for the later guidance of industrialists and financiers.

B. Fohlow-up techniques

These may conveniently be considered under three heads: personal links; reports and budgets, and processing of reports.

It will be assumed that in every case the project is a new development undertaken by a company which has no other business. This will enable the main principles to be discussed withnut the complication of such questions as allocation of overheads between two or more nanufactures carried out by the same company.

1. Personal links

This is the most important feature in the building up of an optimum relationship between the financing institution and management. Many financing institutions insist on nominating one director to the board of the company financed. Some demand the right of nomination, but may defer making a nomination so long as the company prospers. In all cases, whether or not the right of nomination is obtained, the contract requires the management to provide all facilities for regular visits by representatives of the financing institution, at which they are to receive any information they desire.
Whether the personal link is a nominee director or a representative who pays periodical visits, his personality and the attitude he adopts in his contacts with the management can have a major influence on the relations between the two concerns. In the majority of cases this role is given to an accountant, although experienced businessmen have also been successfully employed. While there seem to have been fewer cases oi inadequacy among accountants than among non-accountants, the desirable professional background of the man to be selected needs to be judged according to the circumatances of the business and the abilities and shortcomings of the management. Where there is a one-man or very small management, it is wise to choose a nominee director whose abilities complement the skills of the management. For instance, if the business is in the hands of a small group who have selling and financial experience but are weak on industrial techniques, there would be virtue in nominating a man with engineering experience (provided he also understands finance), until experience has shown that the senior technical staff merit full confidence. A more frequent shortcoming is that the directors and senier manage. ment lack experience, and perhaps understanding, of management accounting and financial control. Hence the general preference for accountants in the role of personal link.

While visits by a represernative of the financine inatitution are useful and, if skilfully handied, can be very effective, the proition of a nominee director
is quite different. By joining the board of the company he becomes a niember of the managenent "family", with director status, with regular access to much confidential information and with a place at the table when the project's nain problems are being discussed. He receives a director's fee from the company and the company's problems and policy are put before him automatically. Between directors ${ }^{\circ}$ meetings, senior members of the staff will regard him as a man to be consulted on problems falling within his own special field. All this results, on his side, in his developing a loyalty to the project and, on the side of the company, in his being regarded by the directors and management as one of them. Thus there builds up a relationship of confidence which is generally not within the reach of a man who is no more than the representative of the financing institution calling at intervals to ask questions, however skilfully and tactfully; such a man is clearly a visitor from outside.

This perhaps gives a sonewhat idealized picture of the nominee director in real life. There have been cases of nominee directors-and this is perhaps particularly true of government-appointed directorswhose conduct places stress on their representative capacity and makes clear that they are at the board meeting mereiy to look after the interests of their appointor. In the majority of cases, this attitude is a mistake. The nominee director's responsibility to his appointor is a factor which he slould always remember, but he serves his appointor's long-term ends more effectively if he makes himself a true member of the team controlling the business of the project.

There have been cases of the sponsors of a project specifically asking the financing institution to appoint a nominec director, either because of a recognized gap in the expertise of the proposed management or because of a zeneral lack of experience on the part of the proposed board of directors. This shows a degree of sophistication on the part of the sponsors and confidence in the financing institution that is not always present. The reverse attitude is frequently met: the management contends that the financing institution's only function is to provide money and that thereafter it should leave the company entirely alone. In such cases the appointment of a nomince director of the arrival of a representative of the financing institution may be viewed with suspicion and difficulties put in the way of giving him the information be needs. Great understanding and tact is needed to overcome this kind of resistance; the nominee director or representative should be on the look-out for an early opportunity at which he can proffer some advice or help which is clearty helpful and disinterested and in no way critical. When this occasion arises, if the opprortunity is cleverly taken, the resuks can be beneficial out of all proportion to the actual aervice proviled.

In addition to the nominee director or visiting represemtative, it is desirable that somebody else in the fimancing inatitution should become acquainted with the manapemern. This has two prinipel of jectives: the firat, to avoid beine completely de-
pendent on one man's viewpoint ; the atcont, to create two levels of contact with the pujet.

The nominee director's exchanges with the management will normally-although not always--ber ensentially functional, and he himselt by becomine mvolved in the common effort to matk: the pmoject succeed may lose a little of his detachunert. I thit ferent view will be ohtained by allother member of the financing institution-preferably someme at a higher level-meeting the management, perliphn owi" or twice a year, merely to bectme acopanmal with them, form a view of them as perestins und gill am idea of their husiness philosophy withomt the dis traction of discussion on practical detals. In all. dition to the different perspective this gives, it ald a valuable clement to the relations betwern the two concerns.

Considerable attention has been lovoted th this aspect of the subject, becanse it is of great int portance. Carefnl and sensitive attention to it will greatly facilitate the acoptance be the manderoment of comments and suggestions made liy the financing institntion. Suggestions ann be inherened lov form. as it were, in the case of a parent compane whicli feels dissatisfied with the management of win if its suhsidiary companies, but imposition biy furs is not generally open to a financial institution whids does not hoid a majority of the shares; mor dw., it ohtain the best results in the long termi, even in the case of a subsidiary. Suggestions can be put hirward from the outside, by a financial institumen whe: maintains itself at a distance and has a relotionthup with the nalagement which is "correct" withoul being friendly, in which case thery may well ment with resistance and resontment. The beat whlation 1, to create the position where they come st welcomin advice from one whose intcrest in the sumess of the business has been demonstrated liv a comise of (ana duct.

A further probable consequerse of a cluse ir lationship will be that the fintancong institution will
 difficulties, shortfalls or other oferating inmernite: One confides one's weakiesses tu whe's fromditurd
 This can, on accasion, we:all that the fimbumg in stitution can propuse remedtal action cinher than if

 assorciates.

The forgoing may have given the inprigum the the numunee directur will uniallv low a memiker of thit staff of the finawing institution This will frequenti lie so, but is not esorntial: it may even im mprosibia, "wing to manpower thortages There in mirawn why suitably fualified men from ment anle whitd not: te employed for this purpores. : Shev have, ill many cases, been empleyed with surcess They must, of comirse, be fully liriefed by the firana ing inthtution and the managensert of the projert mollot le wiafied that they have no mompeling interest and can be truatert with comfidential informations, and a parti cular memher of the financing inspitution: waff
should be named as their normal contact, so as to provide continuity on all sides.

An example of a financing institution which has set up an elaborate organization to provide a high degree of contact with managenients is the Puerto Rico Eiconomic Development Administration, which has an Indistrial Services Department whose special function is to act as a link with cach new development it has promoted. This department gives the organizers of the factery assistance in setting up and installing equipment ; in seeing that outside utilities are brought in ; in recruiting and training personnel; in the provision of homes and schools for the families of personnel brought in from abroad: and it keeps a general watch on the factory operations. As an administrator said at a conference in 1961: "Wr are pronce to attribute the high productivity rates our workers have achieved in Puerto Rico to this broad programme of after-care. After all, it makes no sense to spend hundreds of thousands and sometimes millions of clollars in establishing industrial plants and then see them close down for lack of sympathetic acluice given promptly.' ${ }^{2}$ This system is an elaboration of the ideas presented here. It is particularly suitable where small industries are fostered or management expertise is very scarce.

2. Reports and budgets

(a) Capital progress reports

Most financing institutions call for frequent reports during the construction of a project, that is, while the capital funds are being laid out in the building of the factory and the installation of machinery and facilities. CDFC generally requires these reports to be supplied once a month if the construction periorl is reasonably short, say up to eighteen months ; otherwise, once in three months. The reports will usually consist of statements of the amounts expended on varions itens of capital, together with a phyical description of the progress achieved: they are accompanied by information about major contracts placed by the management. C1)FC's appraisal procedure includes securing summary detail of all major contracts placed for site development, building comstruction or supplies of plant, machinery and equipulent. With each capital progress report, the namagement is required to bring this information up, to date.

Normally. an official of the financing institution would visit the site from time to time to ohtain visual verification of the reports. CDFC, heing sep-

[^117]arated from most of its projects by some thousands of miles, cannot conveniently do this, so it asks for, and has never had difficulty in obtaining, photographic confirmation.

Receipt of these regular reports and supporting data enable the financing institution to ascertain whether:

The money is being spent at the rate forecast;
It is being spent in the way agreed;
The progress of each different element of the plant is correctly phased in relation to the others;

Estinates of expenditure are likely to be exceeded.

The capital expenditure should be broken down in the report into a number of headings, which can be compared with the corresponding breakdown furnished by the sponsors of the project when applying for the finance. The hreakdowit should be sufficiently detailed to make plain whether any part of the construction is out of phase.

When construction of the project is completed, CDFC usually asks for a final cost analysis giving a breakdown of the capital costs into the constituent elements of each section. Such an analysis gives a clear picture of the way estimates are fulfilled. It provides a useful check on the management's own estimating practices, which should be of value to it in relation to future capital expenditure; and it provides the financing institution with information about the degree to which estimates have or have not been fulfilled and about actual costs of the items of capital used, which will be useful for reference in subsequent appraisals.

(b) Operating reports

When construction is finished and the plant has gone into operation, a new type of report is called for and the interval between reports can generally be lengthened. The general practice varies between three-monthly and six-monthly reports. Some financing institutions have in the past required monthly operating reports, but have abandoned them as not sufficiently informative, or even misleading because of the distortions introduced by short-term fluctuations in expenses and earnings. On the other hand, an adequate watcl on the liquidity position cannot generally be kept if reports are supplied at long intervals such as twelve months. This is particularly important in businesses which are affected by seasonal influences. This is exemplified by the following details taken from the monthly balance sheets of a fertilizer factory whose selling season extends from April to October, sales being at their highest in August-September; most of its manufactures between November and April 80 into stock:
(in $\mathcal{E}^{\prime} 000$)

	Stockt	Dethers	Creditors	Ore ift
January	1,700	325	200	4.5
February	1,850	425	28010	0.0
March	1,850	750	2m0	(1)0
April	1.990	1,000	3 M	1.450
May	2,200	280	280	1.360
June	2.400	8.5	340	1.500
Ju'y	2.450	780	425	1.410
August	1,950	1.100	410	1.2(H)
Seplember	1.800	1,200	375	200
Octuber	12:0	1.100	325	1(4)
November	1.2(0)	750	20)	125
December	1,4(k)	700	210	4.50

It will be clear that the liquidity position and the state of the company's working capital will have an entirely different appearance in returns prepared at the end of March, June, September and December. If the financing institution were content with a report prepared every December (or, worse still. every November), it would never see the company's finances under their biggest strain, and might therefore be oblivious of structural weaknesses in them, or cven of a dangerous situation impending. For a company with such a highly cyclical business, three months is the maximum desirable period to elapse between reports. In the case of a company whose business follows a steadier, less dramatic p.ttren, six-monthly repors will probably suffice.

The financing institution will, of course, ask for the information in a form which facilitates its own survey, but it is worth taking trouble to make the form as nearly as possible similar to the returns which the company's manazement should, in the interests of proper control, require for its own internal control purposes. It is recommended that thi reports should be signed by a director of the project company and not be treated meiely as an accountant's exercise.

In cases where the financing institution has appointed a nominee director, it is generally also advisable for the operating reports to be forwarded through him, so that he can add his own comments and views. Most financing institutions require every report to be accompanied by a summary balance sheet prepared at the same date.

In addition to the reports supplied by the management, the financing institution will, of course. receive copies of all audited accounts of the project. This will enable the management's figures to be verified at least once a year by comparison with figures produced as a cesule of a professional andit. This can sometimes disclose significant weaknesses in the internal accounting system. Ir une case lrought to our notice ly another financing institution, the management submitted an operating report showing a profit of $£ 8.000$ for the previous six months; this was followed by audited accounts which indicated a loss of abour the same amoum for the same period. An eccountant was seat by the financing institution to
lexik into this and he fomud poor quality accomuts staff and a virtually complete alsence of any nores: control.

(c) Budgets

The capital progress reports will, of curse, be compared with the original estinates and su, for a period, will the operating reports. However, it wonld be a remarkable coincidence if actual operatimg re sults were ever to coincide precisely with the" "sti mates. In the one, two or three years that will have elapsed between the preparation of the estituites and the starting up of production, nany circumstances may have changed. There may have lieen clanger, 1 !
 in fact. in any one of a latge number of circumstarces. The comparison of operating returns with urigiral estimates should not, therefore, be proseld very hard. It is more important to ensure that the business is p ogressing satintactorily and reaches, profitability at an early stage, rather than to dipplay concern atiout failure to aclieve the original fure. casts. In fact. as soon as profluction has turimel gathering inomentum, it is probably leether to put the original estimates away in the file antl never to refer to thern again except for some specific reate:a.
At that stage, the question whether to refuire a yearly budget may be considered. This is one if the toxis used by moklern nianagement for the cuntrol of business. It either remains unchanged throughont the year ("fixed budget") or is moslified in the light of experience every month of every quarter ("Hexible budget"). In cases where a project is mperated by a subsidiary of the financing institution, an annual budget is practically alwass required by the parent company, which approves in (ןerlaps after requiring it to be noodified) and then uses 11 as a stanlard by which to judge the project's performance during the year. Where the parelt-sulbsidiary relationship does not exist, it is a matter for cunvideration in each case whether the financing insittution should require to see the manakenient's budget for each year. It is not usual to do so, but with inexperienced managements the financing institution's comments on the budget, and on the com. parison of actual resulte with budgeted results, may play a useful educative rok.

3. Processing of reports

The financing institution should have a systematic method of dealing with the reports. In CDFC, capital progress reports are first studied by the technical staff. who are best able to interpret the technical and practical implications of the report; check performance and prices with the forecasts and with the termis of the miajor contracts placed for the project, and perceive the reasons for variations from estimates. The teclmical staff then pass the repurts and lieir comments to the accounts staff, who check the figures, take note of the state of the capital expenditure and make any corresponding adjustments they think necessary in their own disbursement forecasts. If their study of the reports suggests that any change shomld bre made in the capital estimates, they advise t fue (t)liC management and the question is raised with the project managenient.

When construction is completed, or sometimes when it is well advanised though not yet complete, the aceounts staff take over responsibility for study of all firther reports, whether concerned with capital expenditure or aperating results, consulting the technical staff only in case of perplexity. The acconilts staff who undertake this work have duties othor than follow-up, but they are not the same as the staff who studied the original application for finance, althongh they have ready access to the apprainil staff in case of need.

This procedure is not universal. In fact, there seem to be several variants of it. Some financing III (ifutions leave follow-np work largely in the lamuls of the staff that examined the original application. Sone allow all reports to be handled hy a speciatist follow-up section composed of accountants whor do no other work; its members rnay include an ellgineer or may call for help, from engineering staff onty if they think it necessary. There are possihle drawhacks to each form of organization: a man following up a project on which he originally reported enthusiastically may be under a temptation to close his eycs to shorteomings which reflect on the quality of his appraisal; there is sonve danger that staff whose only work is the study of follow-up reports nay become bored and. therefore. less effective (this risk will be reduced if the same stiff visit their projects from time to time, but this may be inatvisable if there is a nominee director). The manngement of the tillancing institution mist decide on the beat urgamization in the light of the mumber and twis of men available. the kinds of projects involvel. and the degree of fellow-up control they comsider it necessiary to exercise.
(apital progres reports will be atholied to ohtain contirnation of the four main puints previonsly lived whell disulssing the firm of the reports. The reasoll- for diserpancies from the original enti mates will tre wught and recorded and the appropriate lesons drawit The consequences of any likely delives in constriction or delivery on. first. the combpleton of the whole project and. secomily, the correlatwon between different parts of the plant, will tre consilered Delays in starting up the plant will kencrally result in a need for further capital. berause pre production expenses such as ctaff salaries and
wages, rent, interest on borrowed funds, etc. will lee incurred over a longer period than was previously envisaged. A delay of sixteen nonths in completion of a project recently financed by CDFC necessitated increasing the capital estimates hy 26 per cent. If a delay is expected in one section of the plant only, the consequences of this will have to be assessed. In a fully integrated operation, it will usually delay the start of production as a whole. However, this will not always be the case. For instance, in a spinning, weaving and finishing textile plant, delays in completing the spinning milt need not hold u_{i}, the weaving section if arrangememts are made in time to buy in yarn of the right specification. Similarly, if the finishing section is completed first, it can go into proluction on bought-in grey cloth, thus minimizing the loss.

Simply because finance is their main business, financing institutions are likely to look out for and detect needs for extra finance at an earlier stage than an industrial management. Discussion between them based on study of the capital progress reports could result in special action (either hy management making changes in their organization plans, or by the financing institution using its influence with government or with suppliers) to try to accelerate the completion of key sections of the construction, and in early warning of extra funds that may be needed as a res..$^{\prime \prime}$ of delays that cannot be avoided.

The follow-up staff should report to their own management on each project at, say, three-monthly intervals during construction. The reports should be brief; they will need to go into detail only where a project departs signiñcantly from schedule or from the estinuates.

The managenent of the financing institution should require a statement of the reasons for any such discrepancies and ensure that the appropriate lessons are drawn. They could result, for instance, from mistakes in estimating or from technical mistakes on the part of the management of the project; defective evaluation methods on the part of the tinancing institution; inadequate contingency provisions in the estimates; shortcomings of the contractors or machinery manufacturers; changes in design introfuced for good-or for inadequate-reasons; changes in government policy, as in regard to import duties, etc. The lessons they teach may point to the need for an overhaul of the management organization of the project; show up weaknesses in the financing institution's staff or methods; or merely indicate the existence of certain pitfalls which there was no reason to expect but which provide a warning for future project evaluations. Every case should adrl to the experience of the financing institution and contribute something to the reservoir of knowlolge on which the project appraisal staff can draw in finture evaluations.

On receipt of each operating report (assuming that these are furnished once quarter), the financiug institution will make a simple analysis of it and compare that quarter's results with the reault of the corresponding quarter of the previous year anll. where appropriate, with the immediately pre. ceding quarter. It would, for imetance, be of fittile
value to compare with the immediately preceding quarter in the case of the fertilizer company mentioned earlier. It will also compare the cumulative results for the current year with the results of the corresponding period in the previous year. A specimen analytical table for use by follow-up staff is attached. It contains only the main indicators of the progress of the business; there is no need for it to include the other details which will normally he furnished by the project management, such as details of the main items of production and selling and administration costs. The latter will, of course, be noted by the accounts staff but need not enter into the analytical table, unless the business shows signs of leing in difficulties, when similar analysis of these latter items may throw up useful indicators of the cause.

An example of the use of that method was the case of a company manufacturing a number of special papers whose profits took a downturn. The financing institution (not CDFC in this case) askerl for an analysis of the production expenses going back over more than a year, which showed a sudden upturn in the ratio of the cost of materials to selling prices; more detailed analysis showed that certain chemicals were responsible for the increase and this threw suspicion on the pricing policy of a new type of paper which had been introduced at about the time when the upturn began. Examination of the estimating calculations showed that wrong pricing of this paper was, in fact, the cause of the trouble.

The specimen form attached is designed to facilitate comparison of the current results not only with the preceding quarter and year, but also with the original forecasts (for as long as this comparison is thought useful) and with the annual budget, if any. It will be a matter for judgement whether to use this as a fixed budget, that is, to make no changes in the original budget and measure each quarterly or half-yearly report against it; or to use it as a flexible budget, changing it each quarter in the light of new circumstances revealed by that quarter's trading. In making the decision, much will depend upon the financing institution's view of the ability and philosophy of the management.

The annexed specimen analysis contains two significant ratios: untaxed profit as a percentage of sales and untaxed profit as a percentage of net capital employed. ${ }^{\text {a }}$

Fluctuations in these ratios probably give the best indications of the performance of the project. They are more informative than the plain figures of profit Take the following hyjothetical case:

Yeer	$\begin{aligned} & \text { Copried } \\ & \text { cmployod } \end{aligned}$	Net ides	Net profit
1060	100.000	C1,000	10,000
1\%1	100.0m)	60,000	10,000
158	100.000	75,000	13000
183	13000)	80.000	14.000
194	1.50,000	120,000	16,000

s "Profi" for this purpose is amertained before the ne duction of incerest, ac, that the prafi which is compared with net capital employed is the whole proft eternert by the ue of all the projert' capial. im-luding that fraviced by koans

The profit figure has been stearhly increasing; between the first and the fiftls y ar it has gone up by 60 per cent. However, if converted into ratios, it will be seen that net profit in 1960 was 16.7 per cent on net sales whereas in lixet the larger profit was only 13.4 per cent on net sales. In 1960 the profit on capital employed was 10 per cent ; in lokt it was 10.7 per cent. Tluss while protit as :ate aboulute figure has made what may appear at first sight to be very satisfactory growith, the profit margin on turnover has, in fact, fallen sharply, while protit on capital employed has shown only a very slight increase. The lesson from this will depend, of course'. on the answers to a complex of questions stimulated by the circulation of the ratios, but which might well not have been asked in their absence: were profit margins too high in I'for)? is the fall in nargins due to lower prices or higher conts? what is the present state of competition and the market? in what way has the extra capital elliployed been invested in the business? has the extria investument made in 1963-1964 yet begun to have an effect oll prorluction ar sales? And sis on.

In addition to comparing the figures with previons results, comparisons with statistios of the recults of other similar industries, if availahir. ${ }^{\text {t or }}$ or the finaticing institution's own collected statistics of ather colliparable projects may tirow it turfill light on the project's progress.

It cannot be too strongly stressed that aus in dividual report should never le lowierl at in isolition. Even the comparisons which have been mentinucd may give a misleading picture if forked at aloure. The sturly of exh report nust be marle in pha context of the progress of the entire project. geing hack tol its inceptien or at least there or four fuar There is nuch to be said for the same nientier of the financing institution's staff remaining in charge of certain projects for at lengthy perioxl. If this is mot possible, each newcomer taking ip the task should always be required to make a careful sturly of the history of the project and familiarize himself with the previous patern. Any ofler course is inomel to lead to misconception and perhaps to minuecessary ialarm. This is particularly so in the urore volatile industries, those which are stbject to great flumbat tions, such as jute manufature of minume and smelting. What appears to le all alartimbs wate of affairs in one year may turn out t. We inlv a stage in a series of cyclical fluctuation which will show satisfactory results over a periom of veitr.
If the financing institution's fo! If,w -11) staff is sufficiently large. wome refinements on the atuly which have been alerady mentioned may lo fowil vety valuable Gue is to maintain an index of the ration of profit/sales and the ratio of protit/capital emplowed, taking a particular year as $1(0)$ This will whow the nanagement of the fluancing imtilution quichly and pointedly the pattern of variations in

[^118]these ratios, alrl should help sound a warning note at an eariy stage. Another graphic device is to inaintain clarts for the project showing, say, quarterly production, quarterly trading profit and quarterly ratio of profit to capital employed. These charts, once started, call very easily and quickly be continued each quarter as the reports come in.

It is imapropriate to discuss here the method of scrutinizing the quarterly reports in detail; that is something the accomuting staff should decide and it may vary from one industry to abother.

The following general comments may, however, be of interest

(a) Regularity in proziding returns

Sometimes the first indication of trouble or of management falures is delay in the provision of operating returns. Apecely, properly extracted operating and finamial information is needed by the project managentent itself to elable it to keep proper control of its own bissiness. If this is prepared at the right time, it cant le easily used as the basis for the returns refuired by the financing institution. If the returiss are late, the financing institution could justifiably suspect failure of the control system within the project. or reluctance to disclose poor results.

(b) Changes in siock lerels

Stocks at an unseasonal level may be an early danger sign. If they are too high, this could lee due to such causes as joor salesmanship, deterioration in the quality of the product or its obsolescence or failure to meet strong dimestic or exterial competition. These are not the only possible reasons: some exterinal or temporary factor may be responsible. But it provides an indicator which should normally be followed up.

(c) Monements in the figure of dibtors

Inereases in the figure may indicate that the company is giving too much credit or for ton long a periorl, or is making insufficient inquiries about customers' credit-ratings.

(d) Changis in the arerdraft or cash anailable

These conild provide indications that the company has tow little working capital; or has been using lank facilities to make expenditure which really ought to be financed out of long-term capital; or that it has more cash than it can usefully employ in the musiness.

(e) Slinu grineth of production

In develiping countries. where trained himur is scarce, and cuery new factory will prohably entail somie training of workpeople, the operating returns may throw light on the progress of the training progranme. If protuction falls behind the estimates
in the early days, it should be remembered that this is one of the factors which merit inquiry in addition to the other possible causes, such as inadequate stocking of raw materials, excessive machine stoppages due to mistakes in design, and so on.

Conclusion

This paper endeavours to sketch out the subject in broad tines, indicating the whole field which may be covered in follow-up activity (although without going into matters of detail). However, it is not intended to suggest that every institution or authority which conducts follow-up activity should adopt all the measures described. The limits observed must be judged in each case according to the facilities available, the particular interests of the financing institution and the ability and manpower of the management of the project. Clearly a project managed by one man, with a total of fifteen employees and a capital expenditure of $£ 25,000$, would not be able to provide such full and informative information as a $£ 2$ million project undertaken with a staft of experienced accountants, engineers, etc. Moreover, an institution which provides finance always in the form of well-secured loans lent only to projects whose management is highly experienced and trustworthy, need not insist on the same degree of reporting, or seek the same degree of supervision, as one which has provided finance as an unsecurred ban or as share capital, or where the ability of the management has not been fully proved. The extent of the information required would be different in the case where a parent company is supervising the business of a suhsidiary company compared with, say. a government development corporation receiving reports from a project in which it has made an investment but in which it has only a minority share position, or a financial institution which may liave no real interest in the development as such, but is concerned only with the safety of its own money.

The job of management is a demanding one. It requires a high measure of concentration and the financing institution should avoid creating unnecessary distractions. It must obviously have all the information it needs but it should define clearly for itself the limits beyond which it need not so. and avoid imposing on the management the burden of providing more than is really needed. The financing institution will at the same time help itself, because it will have to employ accounting and cierienl staff to examine the returns and will be incurring unnecessarv expense if the returns are longer or more detailed than is really necessary for its purpose.

Finally. it is necessary to stress the great importance in nearly all follow-up work of establishing and maintaining good relations between the financiag institution and the management of the project. and fortering the concept that development is the sabject of a continuine partmershop relation between them.

ANREX

Amelysis of operating progress efport: Qwarter anding 19

- If the mpoject mambactwres a mumber of differem products, a Hoe showid be alloted to each product.
${ }^{\omega}$ This colvanm will te mod tor anly a limined period; see eection B 2 (c) above.
toe These columme are optional; see section 13 above.
Notr. This form should be moll only by follow-m atafl. The poject menagemen should never be anked to complefe in

XXI. mocess and sti evaluation pon the imon and stixl midustey IN Mixico

A. FVAI.tATION of iRON. AND stEEL-MAKING PROCESSES

In this part of the paper, the authors explain the methorlology used by Nacional Financiera, S.A., the official industrial development agency of Mexico, to evaluate different irom- and steei-making processes. in relation to the availability and price of several resources. livaluation of this kind is of great interest to Mexico because the most important iron ore deposits are relatively far from the coking coal sonrces, and relatively near to hydroelectric power in one case. and to non-coking coal in another.

Explained in a very few words, the evaluation proccdure consists of : first, determining physical inputs per unit of production corresponding to all the applicable pacresses; secondly, making the prices of those inputs vary between minimum and maxinitin pussible values, and thirilly. finding out the impact of these variations on the total cost of iron and steel. From the very beginning of the investigations, Nacional Financiera wanted to produce a work that would he useful not only to Mexico, but universally. For this reason, the results were given as indexes, incti id of absolute cost figures, and the prices of inputs were expressed as maximum (plus sign), minimum (minus sign), and medium (m) prices, insteal of using specific figures.

Hy means of an electronic computer, it was possible to intronhice in the study all the possible combinations of iron ore reduction and stee!-making procresses, and all the proballe combinations of price levels of the 'ifuts. Ammex 111 attached to tivis paper showa relative costs for 4,332 of such combinations. correspomeling to 76 combinations of the siderurgical activities deseribed in tasle 1 of annex II and 57 combinations of imput prices. They can be used not only to determine the relative adventages of one process in relation to another, in a particular price situatwil. hut also to ascertain the sensitivits of steel coats to infut price variation
The figures of annex III were used for the preliminarv selection of the possible manufacturing processes for the fiture Mexican iron and teel mondustry. in relation to all the locations which at Grat sight seemed to have some advantages as sites for the plants. Once this was done, the production costs were recakulated with more precision, this time uain actual prices of the inputs. The we of the tahles thes rembed in a considerable savine of time and effort, inammoh an the precise calculations were made ouly for a relativety small number of ahernative locations and anmefacturing procesues.

[^119]The hardest part of the process evaluation work was the determination of input coefficients, atarting with the production of sinter and coke and ending with the rolling of sections, hats and seamless pipe. This work was done by Nacional Financiera in consultation with national and foreign experts, and taking advantage of published information, which unfortunately is rather scant. ${ }^{1}$

As it may be seen in tables 2 to 6 of annex II, the coefficients were arranged so as to form column vectors, which in turn were grouped together in matrices Fach vertor correspronds to one mannfacturing activity. ${ }^{2}$ The minus sign neeans an input, and the plus sign means a product or by-product. Alf the inputs are given as per unit of the main product. The left side of the matrices consists of two parts: the upper contains the linear inputs, that is, those directly proportional to the level of production; the lower part shows the non-linear inputs, the hehaviour of which in relation to productive capacity can be represented by means of logarithmic equations, formulated with the data given. ${ }^{3}$

The linear inputs are in turn classified into exogenous and endogenous, depending on whether they originate in activities different from the iron and steel industry, or within the industry proper.

[^120]The indirect cost inputs do not appear explicitly in the matrices. They have to be calculated by means of factors, as a function of investment, or labour, or both. ${ }^{4}$

In order to calculate costs satisfactorily, it is preferable to "integrate" the coefficients of the seriec, of activities that form a total manufacturing process. When this is done, the process can be expressed by a single vector, in terms of exogenous inputs only. An example of the integration procedure is shown in table $7 .{ }^{\text {. }}$

Although this paper deals only with the methodological aspects of the subject, it is important to state some of the assumptions made regarding the nature of the exogenous iuputs. The figures are based mainly on Mexican data; they reflect average characteristics of the resources. Thus iron ore is supposed to have 60 per cent iron. Ahhough sulphur, phosphorous and silica are not recorded in the matrices. they were taken into account implicitly in the calculations. The ash content of coke is about 20 per cent. The manganese content of the manganese ore is 35 per cent, and the heating value of natural gas and fuel oil were taken as 900,000 kilocalories per 100 cubic meters, and 1 million kilocalories per 100 litres, respectively. Other assumptions may be seen in the parenthical figures in the tables.

4 The factors used in this work are the following

	Labop cast factor	Capital cost fectar
Supervision	0200	
Maintenance	0.100	0.0 .30
Social security and welfare	0.200	0005
Administralive cost	0.150	0.006
Depreciation		0.050
Insurance		0.010
Cpportunity cost of capital		0.000
Others	0.550	0.010
	1.200	0.190

Thrse factors are related in the following equation, expressed in any monelary unit

$$
C_{1}=\frac{1.20 C_{L}+0.19 I}{T}
$$

in which C_{4} is the indirect unit cost ; C_{4} is the annal labour cost: I is the investment and T is the yearly produclive capacily, in metric toms. For the purposes of the Mexican stuity, the price of labour was estimaled at $\$ 50$ per man. hour

The refractory expense was estimated as follows, in dof. lars per ton of pig iron, or steel.

Redurtion		Stocl-matisg	
Blast furnace	075	Open hearth	44x
Electric furnece	0.80	Converter	1184
Electice furnece with		Fleciric furnare	
pre-reduction	0.80	With scrap	1.12
		With sponce iron	1. 24
		With pie iren	1 tm

"The caleulation mechanism is as follows: if " N " tins of pis irun (besides many other inputs) are required to prodice a tom of sted, "N" has to be multiptied by all the coeficionts pertaining to sta pis irea activity; the coeficient "M". explemans the simter mecesary for pre iron, will have to be multinlind by the coellicient corrumpending to the ircm ore which groe into the maintoy of simer, in order to obthin the coefliciont expramener the smount of irem ore which in the form of fly irea in mecemery fer one of of Nuel. the conticiovt infrating the irem ore introlneces dirnetly to the weel-walaine Imrnace will have to te adicd to the oneficinit the encrimed.

Investment includes construction, basic aud auxiliary equipment, service equipment, shops, fare parts, engineering, erection and offices.

It is pertinent to say that a determination of physical input coefficients for several industries is a task that one institution alone cannot do properly, if the coefficients are to be kept constantly up to date. This meeting provides a good opportuinity for organizing co-operative work of this kind amourg institutions whose joh it is to evaluate projects and is programme the development of the industry.

Besides their use in process evaluation, thee imput output coefficients were employed as thols for the projection of the future needs for raw matrerials and productive rapacity of the industrv. Thic was done by means of physical input output tables or matrices, which not only reflect the dentad fur the different materials, intermediate prodtucts. firl :mind electric power, but also exprees the interrelatiomhing among different sectors of the industry, and cuen with other industries which either suppiy mitcrials to siderurgy or use iron and steel products as atw materials.

The fact that the matrices represent anditions of equilibrium between inputs and products. wimideting return scrap and non-recoverihlle wostr, and! lie tween production and consuniption. comulithur imports and exports, helps keep uniler a wirt if accounting control estimates that 11 unally his. 1 complement scarce statistical data

Imports and exports of siderurgital naterial, or products are of little importance in the c.a. if Mexico. For this reason, they are taken into aremit only in the balance, at the bottom of the matrices For countries with considerable foreign trals in this respect, each of the input ind prothict lint- if the matrix can be trebled, to show frowlationi im ports and exports.

Table 8 shows the basic matrix for the Vrexi an iron and steel industry in 1963 , and :able 11 , the projected matrix for 1975. The latter is bawl of the input coefficients of tables 2 to f hut it w whet an illustration made esperially for thin fiper mon much as the decisions on lecations and prowe for the future Mexican irun and steel induatry hawe mit been yet made.

It will be of interent fir this andurn, i, p,ens that, in its industrial programming, Natom i in, on ciera is trying to use physical infoth me:n . .t.". for most of the industries lly mean, fint ththe and the inclusion of memetary input. wiwh it, wid

 units, the purpume is to interrelot talite lelimueng to different industries, as well as to interemiat. " dustry with other aectora. by meang if the... 1 , : ingut-output matrix for the Mexican ecromms whet is beiag prepared jointly by the minivery of tithanc. and the presidency of the Kepmbli, Her lani if Mexico and Nacional Finanrirn.

B. Site naluation

Once one of more procese combination: are as lected by the procedure explained eatiet in this
paper, the more accurate calculationa of med ingot costs for different sites and several mamifeturing processes are made by means of two sets of figures. For one of the sets, the transportation of irom ore and coal was computed with the aetual freight rates of the Mexican railroad system. The results obtained in this way express the worth of the site from the point of view of private enterprise. The other set of figures was based on freight rates adjusted so as to reflect "shadow prices" or "accounting prices" for transport, which represent what the nation actually spends in fuel, labour, materials and depreciation, when transporting a load from one place to another of its territory. Although shadow prices were used only for transport. it may be ald that the results arrived at by using tisem reflect the worth of the site from the point of view of the national interest. The results obtained by employing "virtual" prices better reflect the interests of private enterprise.

The -eason for using shadow prices is that in Mexico actual freight rates do not reflect the national expenditure. The general average of what the railroads collect is less than the cont of transport and, as far as siderurgy is concerned, the rates for transport of minerals are too low and those for finished prochects too high in relation to the actual cost of movin those materials. The graph in snnex 1 shows the differences between actwal and chadow freight rates for Mexico.

Beraume total costs or prices of minerals, coke, etc., as intluerced by the present freight rates, cannot be called actual, owing to the fact that in most cases the having of selling of them has not yet been emathinhed, it was derided in name them "virtual" eoma of prices. in order to avoid confusing them with thome handled by the existing iron and steel cimpanies, which would the truly "actual".

When estimating costs, mo attempt was marke to Pet claoe to the firwres actually recorded by the oxintion milly. The enjective wan rather to arrive at a en of fipures calculated all with the same criterion. since in a study of this ourt whet matters moot are the relative values, nut the abmolute ores. Furthernuope, actioal conts are generally dimorted by factits which ith mon beling to the reaim of the eromumis of the influsiry

Table 10 in mmex II illukrates the reiative conts of steel ingote in some pre-selected locations, as computed for what turned out to be the most mitable mamafacturing processes. It is interesting to point out that, as the diatance between the site and the iron ore deposits increases, the costs differences computed with shadow prices of the imputa tend to be more significant than thoue obtained by maine virtual prices. The hecation of other factors of production, such as coal, colke, limestone and electric jower, do not seem to matter very much in this respect.

Manufacturing coets are not, of course, the end of the atory. Finished products will have to be tranaported wo the steel users, which are mot concenkrated in one poim but widely distributed, ac. cording to a particular geographical structure of the marret. From the mational point of view, the beat site is that which would minimise the tutal mational com of producing and distributing steel from all the plants-the projected new one and the exioving ones-to a market defmed by its given exographical structure. The problem was thus one of claseical tramportation limear programming, and it was resolved with the aid of a Control-Data 170.A computer, in approximately four hours of computing time.

The calculations of minimmen coot were referred to a dictant date because a large meel project marted now will not be in normal production before five to seven years. As it was not possible to forecant with mecuracy the future reographical structure of the market, it became necessary to play with several hypotheses of structures, as indicated in table 11. The conclusion in this respect, us may be seen in table 12. is that, although the geographical distribution of the market is an important becational factor. significant but reasomable changes in this reapect to not significantly alter the resalts of the minimization of the total mational cont of producing and distributing steel for a given location. Furthermore. in eremeral, relative sifferences in total virtmal coets are nor very sigmificant, but aboolute differences in menctary uerms are quine relevant. In the case of total shoodw coots, differetres are important in both relative and aboolute terms.

ANMES I

ANMEX II

Astovily number	
1.	Sinopr procesoss
11	Whathed coial and natured gas
1.4	5 meh sceke plems
13	Wiabled coed mot fuel oil
1.4	Cobe breese sul fuel oul
1.8	Colve breese med netural geo
16	Irom ore fines, coke mreest and frel oil
2.	Cohe
3.1	Normal eide production vector
3.	Pig irem (a) Shati furmese
J. 1	100% simerr; natural cae secing as fivel and as reducins agent
3.2	100\% simer ; inel oid
1.1	100\% simer; withow mine hydrecartions
1.4	50\% sinere and 50\% irom ore; netural gap
3.5	seg sinher mad go\% iron ore: fmel ofl
16	50\% mister and 50\% irom ore; widhout hydrocartome
3.7	100\% irsm ons metural ens

Achuve:	
3.8	100\% irum ore, fuel at
3.9	100\% irom ier
	(b) Hiecticic furmace
310	100\% sinter. che and rike breeze
311	10\%\% sinter, anthraritr
3.12	incere
31.3	
3.14	lin\% irmm ine. rithe and whe bretae
3.15	100\% iron ire. anthracte
	(c) H.lectric furmace with fre reducinm
3.16	100\% irun orr. colke
317	10 (0)\% iron ore, anthraile
	(d) Sponge wem
318	100% simier
319	Som ninter and som iron ore
3 2)	1m\%\% iran ore
4.	Steel mparts
	(a) Upen hrorth (Siomoms Martu) furmacr
4.1	65\% die-irom and 35\% acrap; with ircon ore

ANNEX 11 (camomod)

Antruv. member			
4.2	65\% pivirom and 38\% scrap; oxygem	6.10	Staets
4.1	co\% pig-irem and 46\% scrap; onyen		(d) Tinplate
	(b) Comerriops	6.11	Immerim grecen
4.4	Ling-Jomewitz (1,-D)	6.12	Wectrelytie grecme
4.5	Kaldo	7.	Roflod swetiven
	(c) Ebectoic furmect	7.1	Diecma ; Meeming mill
4.5	Sprone iron and ircn ore	7.2	Oloome ; centionows canions mill
47	Spounge irom; oxymen	73	Pthet; reverale
4.	Scrap and ircm ore	7.4	Brete ; continmom mill
4.4	Scrap; onym	7.5	Heavy weinit sections; seini-contimuens mill ;
410	Pig-irom and srap; oxycen		hainet ower 76 mmm ;
5.	(entimge	7.6	Heavy meint sections; contimwone suitl ; miden
5.1	Ingut manlis (normal vector)		over \% mmm
5.2	(Wher products (averaye imputs)	7.7	Salls; sema-cominwous mill
53	Steel caminga (averase inputs)	18	
6.	Flads (a) Slebs	7.9	Malium woint soctime; semi-cominmous mill ; mindin over 38 mom
6.1	Blooming mill	7.10	Menmim maint suctions ; cmminuans mill ; heigin
6.2	Continuous casting mill		ower 30
63	(b) Hot Strip; Stechel, or reversing mitl	7.11	Light wolyth sections; semi-contimwown mini ;
6.4	Strip ; vemicontimuous mill	7.12	Lintut weint sections; contimous mill ; heigh
6.5	Strip ; centinuown mill		
66	Shoets over 1 mm thickness	7.13	Wire ; semi-continuous mill
6.7	Sheets mador 3 mm thichness (c) Cold rolled products	7.14	Wire; centinuenes mill
6. ${ }^{\text {d }}$	Strip; eemicominuows mill	8.	Semoless ripes
6"	Strip; eontinums mill	81	Seamiess gipen; pilser rolling mill

(Mafric soms)

Inputs Asturivice	Siner						Colve
	1.1	1.2	1.3	1.4	1.9	1.4	
Lineter cxogmews thats							
Irom ere (60\% Fe)	-0936	-0.936	-4.93\%	-0.903	-0.93		
Waohed coal ...	-0.075	-0.075	-0.075				-1.37
Fiectric energy (10 kWh)	-0.10	-8.100	-4.10	-1.10	-0.100	-0.10	
Natwal gas ($100 \mathrm{~m}^{8}=0.9 \times 10^{+} \mathrm{KCal}$)	-0.055				-085		
limestome	-0.110	--4.11	-0.13	-0.110	-0.110	-0.11	
Fivel onl (100 its $-100 \mathrm{KCa})$		-0.05	-0.050	-0.00		-005	
Mineral fines						-0.935	
I mear endoluetwe ins inputs							
(i)he frus:				-0.055	-0.059	-0.035	
I'riducts and byproduits							
Sinter	$+1.00$	+1.000	+1.000	$+1.000$	+1.000	$+1.0$	
line							+1.00
Cake gas ($1.100 \mathrm{~m}^{2} \mathrm{~N}$)							+6.20
Coke tines							. 40.110
Nom hucar erogrmons inpunt							
Annual capacity ($100 \mathrm{t} / \mathrm{ye}$ ar)	150	0.170	1.500	1.560	1.30	1.50	1.48
luvestment (100 dollars)	5.7e	asm	5.74	5.700	5.20	5.7	40.4
Expaneme investrment equation	0.010	0.73	0.610	0.619	0.619	0.69	C
İabour (m.h/t)	1.50	1.00	1.500	1.50	1.30	1.50	1.50
Exponent labor equetion	0.80	0	0.500	0.30	asm	0.5	0.5
Capeeity limits comaidered.							
Lower (10 t)	U.50	0.170	0.50	0.50	0.50	a.se	0.23
Higher (100 1)	250	0.50	2.80	250	250	250	1.26

[^121]
(Metric

Sowpe: Intmatial Programming Divisiom, Nacional Finemiera, S.A. (Morice).

Tame 4. Peysical inptitoctptit coerficients mot the moduction of steel incots and castimgs (Metric tows)

10 man	Acmithes	Opel hearth fmonece			Convornes		Ebectric formece					「oundrot												
		$\begin{array}{r} 5.35 \\ 41 \end{array}$		$\left(0_{i}-e_{3}\right.$	${ }_{4}^{\text {t-D }}$	5	Wint pomemirow		Wioh sirap		$\begin{gathered} \text { With } \\ \text { now in } \\ \text { ion } \end{gathered}$	$\underset{\substack{\text { Inowot } \\ \text { s.ids }}}{ }$	$\begin{gathered} \text { Cose } \\ \text { inow } \\ \text { s. } \end{gathered}$	$\begin{gathered} \text { Sveel } \\ \text { castinas } \\ \hline 5.3 \end{gathered}$										
							8.6	4.7	1.8	$4{ }^{\circ}$														
İmee exogitor inpela																								
Scrap		-0360	-0.385	-0.40	-0.202	-0.204	-2.20	-0.375	-1.090	-1.009	-0.360	-0.373	-0.853	-1.618										
Irom ore (0 \% Fe)		-0015				$\rightarrow 0.1$	-0.050		-0.015					-0.025										
Limestom		-0000					-0.010		-0.040			-0.045	-0004	$\rightarrow .067$										
Fluorspar		-0.005	-0005	-0.005	-0.004		-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.006	-0.019										
Alonimien		-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.0071	-0.001	-0009	-0.001			-0.002										
Graphite electrotes							-0.008	-0.09	-0.065	-0005	-0.004			-0.010										
			-270	-0.300	- 0.550	-0.630		-0.040		-0.040	-0.270													
		-1.304	-1.000	-1000																				
		- 200	$\rightarrow 0.180$	-6.165	-0.140	-0.160	$\underline{-6.600}$	-5.300	-5.000	-4.000	-2.800													
Lamer (ive		-0.03	-0.00	-.0.050	-0.000	-0.050	- 030	-0.050	-0.038	-0.00	-0.0.0	-0.90	-1.000	-1000										
Hot metal		-6.60	$-.714$	-2.60	- 0.818	-9.781					-0.670	-089	-0.54											
Sperse irem							-0.81	-0.916																
Ferrompatmese		-0.010	-0.010	-0.010	-0.008	-0.0.08	-0.016	$\underline{-0.010}$	-0.010	-0.010	-0.010	-0.092	-0.002	$\rightarrow 080$										
Ferroeilicia		-62	-0.02	-1.002	-0.002	$\rightarrow 02$	-60^{2}	-0.002	-0.02	-0.002	-. 0002	-0.00	-0.00s	-6.014										
Cake Return scras									$\rightarrow .04$	$\rightarrow .004$		-0.150	-0.214	$\rightarrow .007$										
Return scrap lager moults		-0.025	-0.025	-0.05	-0.025	-0.025	-0.055	-0.03	-0.025	=0.0es	-0.025	+0.150 +1.000	-0. 315	-0.567										
Produrts med by-tralurtie																								
Steet ingots		+1.009	+1.00	$+1.000$	+1.000	+1000	+1.000	+1.000	$+1.000$	+1.000	$+1.000$													
Retume mera		+0.09	+0.00	+ 000	+0.025	+ 2025	+ee22	+0.020	+0022	+0022	+1022	$+0.150$	+0.315	+0.59										
Non receserable wast		+0219	+0.219	+ 6.22	$+0.143$	$+161$	+022	$+0.204$	+0.183	+0.18\%	+0.210	+0.300	+4.393	+1.258										
Comel incor													+1000											
Senel catimes														+1.000										
Camaity ($\mathrm{Me}^{\text {t/yew) }}$)		100	1.00	1.00	1.000	1000	1.00	1.00	1.00	1000	1.000	50.000	100.00	10.40										
		33.00	29.00	27.500	17.000	18500	27.300	24.300	21.00	21.00	17.500	3.00	125	33.000										
Exponem inverineot eqmaina		e.cm	0.0	2.60	0.69	0.07	0.63	0.620	0.620	0.620	0620	0.70	0.70	020										
Latheme ($-\mathrm{m} / \mathrm{Kom}$)		4.00	4.04	4.00	300	3.00	4.500	4.50	530	5.200	4.800	6.009	16.05	30.000										
Expeneen lihour equerien		6.70	0.70	00	0.80	$0 \times$	0.70	- 700	0.700	- 700	0.70	0.500	0760	1.760										
		$\begin{aligned} & 0.500 \\ & 2.000 \end{aligned}$	2.500	$\begin{aligned} & 0.500 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 2.000 \end{aligned}$	0.50	0.300	0.500	$\begin{aligned} & 0.500 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 0.509 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 3.750 \\ & 50.60 \end{aligned}$	$\begin{aligned} & 15.008 \\ & \text { soa.ene } \end{aligned}$	$\begin{array}{r} 15.000 \\ 109000 \end{array}$										

 (Metric nows)

[^122]
 (Metric toms)

Sence: Iflemial Mrepreaing Divinion Naciued Fineaciers SA. (Memieo).

N. Activitus.
(Hemictions)

19808		, 1.3, vecters	Codr mation		Piuwan x	7.uan of oper min	(4) $\times 1.818$		Tancon
Irsu are (te coly)	-936	$\begin{array}{r} -0.000 \\ -\quad .004 \end{array}$	-1.370	-0.754	-0.000	$\begin{aligned} & -1.004 \\ & -0.818 \end{aligned}$	-1.308		$\begin{aligned} & -1.308 \\ & -0.100 \end{aligned}$
Antmacin and	-0.110	-0.0.4			-0.300	-190	0.32		-3.32
Lime								-0.0.0	-4en
Manumese eve (39\%)					-0.05	-6.045	-0037		-0.08
Frooriver								-004	-am
Almenina								$\rightarrow 01$	-0.01
Onygen ($\mathrm{He} \mathrm{m}^{\mathrm{o}} \mathrm{N}$)								-3.38	-0.55
ciraphive electrontes									
	-0.050	-0043				-0043	-0035		-6035
Stram (-1.00	-1.00	-4818		-0818
Flectric amergy (ime kMil)	-0.10n	-0.cos			-0.350	- 4.4	-4.356	-1.10	-0.43
Wamr (Ktum,					-6.150	-0.150	-0.123	-1020	-0.143
Scrap								-2.22	-272
Ferinmangarex								-cm	$\rightarrow 0$
Ferromituc,								-0.02	-9002
								$\rightarrow 0.5$	-0.05
	+1.000				-1.80	-1040	-0.818		-0.818
					--				
Cote (30x mat			+1000		-0.550				
Cure Dreve (304 ash)			+0110						
Hes moul					+1.000			-0.818	
Spunge irim									
Cobe gan (1.000 $\mathrm{m}^{2} \mathrm{~S}$)			+024	$+413$		+ 0178	+6112		+0112
Best furnore eas $100 \mathrm{~m}^{3} \mathrm{~N}$					+2824	- 2×24	+ 2314		+2316
Heturn srap								+0025	+003
Staperenterable waste								+014	$+6143$
Ster! nelit,								$+1000$	+1000

[^123]Tame 8. Pirmeal inour-artior maman
(Mown

Inputs Prederts	Somotimichar menumo						
	Couctorom		Sumi				
	Pif now		Opent	Farnote	Iment	Tand	
Lincer exopernome inpuls							
Irom ore	1,313,600	294,550	13.23	5, min		1,69,963	
Frogenous ecrap			174,70	513,124	2,311	713,115	
Colue	4n30			13,12	80	ciser	
Limestore	311,230		4530	34,00	2 ml	415,39	
Lime.			4,23	12,44		Sx34	
Mangmene ope				10,		31434	
Ferrodloys			13×0	11,2-3	43	23,513	
Fluersper			5,775	4,200		M, ${ }^{\text {a }}$	
Graphine electrusies			7,300	5,24		1284	
Soderbers efectrates		67				475	
Fret of (${ }^{\text {N Ms. }}$) Natural mae (100 m)	(12.4)	(4.3)	(161.3)			(161.3)	(12.5)
Electric mercy (10 a Wh)	(\$1)	(1.4)	(23.1)	(480)	(8.0)	$\begin{gathered} (59.3) \\ (582.6) \end{gathered}$	(144.1)
Total esogomen maberial	2,24,700	261,3m	305,10	63,35	38,00	2, $2,0,111$	
Limerer endogenows inpmos							
Pir irom for steel-making			74,640		3,10	42,74t	
\$pampe iren				10,7\%	H10	1030	
Return ecrep.			241,003	216.836		4×1	
Open heerth steel							
Electric furnace stoel							
larot mowlde.			240]	21,34		5,40	
Told endogemown matmid			1,23,12	man	31,103	1,5u,2	971,010
Finimed products							
Flat remiod products							
Relled sevions, bars and wire							
Rails							
Scamles Nos							
Totel finiohed producls							
Tolul mome	2,266,700	281,393	1,370,22	1,093,5\%	71,022	Somareat	971,010
-Retwrm ecrap			31,185	2,70	3,642	9,012	211,
... Wastes and others	1,413,600	91,618	14,103	171, 5	16,37	1,2mi,se	4.31
-National prodiction	133,16	109,703	1,159,000	43,90	5,423	3,632,123	
+1 mponts							21,40
$=$ Tatal expply	233,160	16n,700	1,159,003	84,904	5,423	3,052,123	73,
-Experts.			1,15430			310	133,
z Anperent comsumption	833,100	169,700	1,154, 0	43,30	23,42	3,41,804	57470

Pateled manmo				Mral						'owernd
Rallat					10	nemien				
	200	Sompex	Tad	mon	Conama		max	Inome	Tind	
(182) (A1.)	$\begin{aligned} & (8,4) \\ & (2 m) \end{aligned}$	(24) (919)	$\begin{aligned} & (2,0) \\ & (2.2) \end{aligned}$							1.00
										714.115
										415.977
										S6,344
										318,524
										25.513
										0,1013
										12.04
						.				6,74
										(4)3)
						\cdots				(7ate)
										3,49,411
$\begin{aligned} & 34,12 \\ & 489 \end{aligned}$	21,	14804	$\begin{aligned} & 1,144, \times 10 \\ & 44,9 \times 1 \end{aligned}$					300		
										830,94
										169740
									300	1,153,420
										-4,3,000
										50,43
20.315	21,2010	$\underline{10808}$	1,mam	mand				30	300	3,500,189
						M,	$\begin{aligned} & 18,30 \\ & 4,20 \\ & 3,500 \end{aligned}$	13180	723,300	72a 100
						40		40	(95,300	675.319
									13,500	\%.3.300
						138.10		7,500	140,600	140.400
				$\overline{7 m 8}$	44,732	$\overline{14, n s}$	103,200	161,30	1,627,7\%	1,627,700
23,515	31,30	18.80	1, mam					30	300	7,007.94
134,164	120	43,234								458,431
480	1,298	18.20	1197							2,04,354
crem	Mme	127.70	1, mam							4,540.323
3×3	4n	11 mm	13140							139,300
679,30	4350	layem	1,077\%							4,699,83
\%		7,	Marm							161.men
674300	04, m_{0}	14, ${ }^{\text {a }}$	1,4min							4,518,003

ingem.

75.06 .06

(Thomanesis)

Inpurs	Proatures	Somilmintor modecte						
		Crado mon			Sow		Innot	Toud
				Speope	Elecomix	$\underset{\substack{\text { ryperes }}}{ }$		
Lincer eroganome intws								
Irom ere		4,9026	357.0	1,339.0	9.5		4.4	6,24.9
Emamenoun merip					5\%.6	40.9		4.5
Cobr		1,414.9	112.4				10.0	1,54.2
Limentone		\% 3	78.5		35.5		6.0	1,6m. 3
Hone (lite kes)								
lime						221.6		2016
Mamanese ore		123	10.1					135.4
Ferroallay:					19.2	4.3	1.1	64.6
Fherroper					8.1	16.1	0.7	23.6
Graphite eleciredes					10.0			10.0
Somerbers electrokes		81.	22					2.2
Onyen					(319)	(1409)		(1048)
Ahaminimen Furl oil (10 Ms)					1.6	(1.4.3)		${ }_{\text {(}}^{5.2}$. 4.3)
		(148.9)	(11.6)					(710.2)
		(3,356.6)	(20.7)	$\text { (} 0.0 \text {) }$	(831.3)	(90.9)		(4,03.4)
Toud erogemame mavirial		7,0m. 1	360.2	1,339.0	60.5	cen 2	7.1	M,30.1
Linoer atugemome inpus								
Pies-iren foe enol making						2,00.9		$2,007.9$
Pre-irnom for fammains							115.1	119.1
Spombe irrim						029	19.9	1,200. 7
Eiertric furnese meel (Wher typen of merl Ineor mintids								
Inay mentids					4.2	9.3		132.5
Totel malowrmome melerial					1.200 .7	3,727 9	138.0	3,1472
Pimintiod Praderis								
Fion relliod preducto								
Rollod seetiome, mare mil mive								
Maile								
Seamber mipes								
Gorey inom cenings								
Stail eambuy								
Toral inama		180.1	08	1,38.0.	1,2012	4×1.8	3121	18ssus
Remern ecres					88.4	151	193	mes
-Nisume mill chowe		4.2.2	39.1	480	weo	3148	9.8	3,20
\therefore National maturtion		1800.	20.1	0	1.50.0	1.7 l	128.3	9,310
$\begin{aligned} & +1 \text { mparts } \\ & =I_{\text {real }} \end{aligned}$		2 me.	221.1	00	1.380	8.m.3	18.5	9,190
- Finports								
$=$ Apporear comemmption		200.0	223.1	00.0	1,5490	3,771. ${ }^{\text {d }}$	1325	934.8

$\begin{gathered} \text { Govy } \\ \substack{\text { iven } \\ \text { cotimec }} \end{gathered}$		Fitued		Kails	Senteres	Tour	Indumines		$\underset{r}{k i n d}$	1 Pro.e	'"\%"
											0.24 .19
19.3						10.3					1.4.4.
4.1						41					1.951 .3
12.2						12.2					1.176
		(450)	(73.9)	(1)0)	(sac.s)	(2,78.0)					2,729.0
											221 n
											13, 4
1.5						1.8					-1
						11					257
											10.4,
											ine
											8.2
		(40.7)	(89, $)^{\text {a }}$	(180)	(188.5)	(1,4m)					(1,611)
(8.7)						(cuas)					(7112)
						-					(5.17 ${ }^{\text {(}}$
184.2						121.2					10,447.3
											2.9079 9
14.0						1080					2231
											-40 0
99.9						59.9					1.261\%
	4.9	436	83.1		* 4.4	1,5390					1.52911
		1.18 .4	1,94.0	1280		3,771.3					3.771.3
											1329
10.9	40.9	2.159.0	2.09.0	18.0	48.4	3,400. 2					12.6154
						1,500. 7	193.	24.1	412		1,4040
						83.4	1,01.6	12.	1.39		1.9M9
									1021		9021
								49.0			340
						12.1					197
						126					32 n
						2,457.8	1.264 .6	30.1	188.2		4.271 .7
20.1	4.	218.0	2,290.0	18.0	40.4	5,509.4					21.1027
90.	3.3	413	83.0	81.2	181.9	1,001					1.2196
3.1		773	117.1	1.7	48.8	3 mas					6,215 5
19.1	38.6	104.0	1,801.9	M.1	34.0	4,271.7					13,025 5
18.1	1280	1.80 .0	1,901.9	108.1	300	4,2717					13,0ys
18.1	316	1,men	1,men	10.1	3070	4.271 .7					13,023

 neree, an momeans ceentione
(Lownot man $=10$)

Plow			mbion in mive	
	Conemer	Ammino	Comember	Heamy
1	112	12	111	4
2	113	11	113	7
3	105	6	10	3
4	10	\%	111	3
6	1×1	9	119	11
7	145	4	121	13
*	14	3	120	12
9	10	1	100	1
10	105	3	112	6
11	107	7	117	,
123	119	13	120	11
12	1 M	3	103	2

Tame 11. Hypotmesis op gbochapmical. mathinution the mapret man non-fiat molim stati muetcts
(Percembages of totel merkel)

Moman	Hyputhoses	1	2	3	4	,	0	,	1
A		51.0	600	40	450	540	45.3	45.0	40.0
n		4.0	3.3	4.9	3.5	4.2	3.6	4.0	4.0
C		5.0	4.1	6.1	4.4	5.3	4.4	5.9	5.0
1)		8.0	63	9.8	7.1	6.5	7.1	80	8.0
E		15.0	12.2	18.4	25.0	10.0	13.4	15.0	20.0
F		5.0	4.1	6.1	44	53	4.4	50	50
G		10.0	8.2	12.3	8.8	10.6	20.0	16.0	160
H		2.0	16	2.4	1.8	2.1	1.8	2.0	2.0
	Total.	1000	10.0	100.0	100.0	160.0	100.0	100.0	100.0

 mstaisution ef mom-rhat melige stamen mobucts

$$
(\text { Lowen malu: }=100)
$$

ANNEX 111

	3		\%		H			$\frac{5}{3}$	Siomews Mertin (00-min wril mayen																
									lest furnace									Eletel. furma.							
							17		100\%s			gow: 5			$180 \% \mathrm{~m}$					$4{ }^{\prime \prime}$	- \|	$1 /{ }^{\prime \prime}$	v		
									G	F	-	G			6			wc	4	H^{\prime}			1		
						4	\checkmark		1	2	3	4	,	-	7	1	-	10	11	12	11	11	15		
0	$+$	+	+	$+$	$+$	$+$	$+$	$+$	86	89	91	84	87	89	81	83	85	97	91	43	$8 \times$	91	80		76
06	m	m	m	m	m	m	m	m	70	72	74	68	70	72	65	67	68	77	71	i4	69	314	6 -		(x)
0	-	-	-	-	-	-	-	-	56	57	59	54	56	57	52	5	34	59	53	. 6	12	56	50	4	$4 n$
1a	m	m	m	-	-	-	-	-	63	64	67	61	6.3	65	59	60	62.	65	s)	02	57	61	5		© 1
1b	-	-	-	m	m	m	m	m	63	65	66	61	6.3	64	59	60	61	71	65	68	64	ox	0.1		55
1c	-	-	--	$+$	$+$	+	$+$	$+$	73	75	76	71	7.1	74	68	69	70	84	70	12	78	81	\because		A)
2a	m	-	-	m	m	-	-	-	60	61	6.3	58	60	61	5 A	57	58	67	62	0.5		$n 4$	(\%)		52
26	-	m	m	-	-	m	m	m	66	68	70	64	66	68	61	63	65	68	63	6.5	(0)	64	50		54
2 c	-	+	+	-	-	+	+	$+$	78	81	83	76	79	81	73	76	77	89	8.3	86	41	± 3	- 4	0	(1)
3 a	m	-	-	-	-	m	m	-	60	62	6.3	58	60	61	56	57	58	6.3	$5:$	0 d	56	(1)	54		511
3b	-	m	m	m	m	-	-	m	65	67	70	54	66	68	61	6.3	64	72	67	70	65	68	61		sn
3 c	-	+	$1+$	$+$	$+$	-	-	$+$	78	80	8.3	76	78	81	73	75	77	88	4.3	86	${ }^{1} 1$	4	-	6	が
42	m	-	-	-	-	-	-	m	63	64	66	61	6.3	64	5)	60	61	66	(x)	0.3	51	6.	:-		51
46	-	m	m	m	m	m	m	-	63	65	67	61	6.3	65	59	60	62	70		0.7	61	6t	6.1		54
4 c	-		+	$+$	$+$	$+$	$+$	-	70	72	74	68	30	72	65	67	69	4	34	\because	72	75	1	(n)	06
5 S	$+$	+	$+$	-	-	-	-	-	69	71	74	68	70	73	65	67	69	71	6.5	0,	62	6,	(H)		in
5b	$+$	$+$	$+$	m	m	m	m	m	76	79	81	74	77	79	72	74	76	* 3	77	M1	34	;	72		65
5 c	m	m	m	$+$	$+$	$+$	$+$	$+$	80	82	84	77	80	81	75	77	78	91	¢	M	41	(6)	$\cdots 1$: 1
69	$+$	-	-	$+$	+	-	-	--	6,1	65	67	62	64	65	59	61	62	75	711	71	0^{1}	7	$6:$		5 m
6	$+$	m	m	$+$	$+$	m	m	m	74	76	78	72	74	76	60	71	72	84	79	12	7	$\times 1$:		(n)
1 c	m	$+$	$+$	m	m	+	$+$	$+$	82	85	87	80	83	85	75	79	1	43	87	(x)	N4	8 :	02		75
7 F	$+$	-	-	-	-	$+$	+	-	64	66	67	63	65	69	61	62	62	67	61	64	61	6.4	${ }_{*} \times$	5	54
\%	+	m	m	m	m	$+$	$+$	m	74	76	78	72	75	76	69	71	72	81	75	78	33	7	31		04
7 c	m	$+$	$+$	+	$+$	m	m	$+$	82	85	87	80	83	85	:7	79	81	93	87	(N)	$x_{4} \times$	17	$\times 2$	72	71

	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & \frac{1}{3} \\ & 3 \end{aligned}$		5	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{array}{\|} 3 \\ 1 \\ 4 \end{array}$	$\left[\begin{array}{l} 3 \\ 3 \\ 3 \\ 3 \end{array}\right.$	$\begin{array}{\|l\|} 2 \\ 2 \\ \hline \end{array}$																	
									Blast furnace									Elactin furnara						EPPR	
									Mavi, 5			昭 ${ }^{\text {c }}$ S			He\%: M			H00\% 5		Smins		mam		H0\%\% M	
									6	*		G	F		G	F	$-$	WC	A	WC	1	W ${ }^{\circ}$	1	A	WC
		\pm				4	0		IN	14	(4)	21	22	43	24	25	26	27	2%	29	*	11	32	33	${ }^{4}$
8 m	$+$	$+$	$+$	+	$+$	+	+	+	An	41	44	(\%)	89	91	${ }^{2} 2$	85	87	100	94	96	49	9.3	87	77	77
Ot	m	m	m	m	11	m	m	m	71	74	76	04	71	73	06	68	70	74	73	75	70	73	68	60	60
\%	-	\cdots				-	\ldots		5	58	(0)	54	56	58	52	53	55	59	53	56	51	5.5	49	44	44
1.4	m	m	m			-	-	-	04	∞	64	62	64	60	99	01	6.3	67	60	6.3	57	61	55	50	50
ith		-	--	n!	m	m	m	m	6.3	6.5	67	61	63	64	18	60	61	72	66	69	64	67	62	53	34
1.	-	-		+	$+$	+	+	+	7.3	75	76	70	73	74	68	69	70	86	m)	83	78	81	76	65	65
2.1	m			n	m	...	-		$n 1$	6.3	64	49	6)	62	56	57	59	64	6.3	66	61	6.5	59	51	52
2h,		m	m	-		m	I'	III	6	6)	71	64	67	69	61	6.3	65	69	63	es	59	64	58	52	53
4		+	+			+	+	+	79	22	84	76	m)	22	71	76	7*	82	${ }_{4}$	97	80	84	78	68	68
1.1	m					m	m		O1	6.3	6.	54	01	62	56	58	5	64	58	61	56	6)	54	49	49
(4)		m	III	m	m			m	06	64	71	64	66	64	61	62	65	74	68	71	65	68	63	55	55
3		$+$	+	t	+		\cdots	+	78	81	84	in	78	82	73	75	78	90	84	87	80	8.3	78	68	68
4.1	7						-	m	64	6.5	67	61	63	65	59	$6)$	62	67	61	6.3	58	62	57	51	52
4h		m	n	: 11	m	m	1	-	04	60	nk	61	64	66	59	6)	6.3	72	66	68	52	66	60	52	52
4	-	$+$	+	+	+	$+$	$+$	-	71	74	is	\% 8	71	33	6.5	hi	71	12	76	79	72	75	70	60	59
5.1	$+$	+	$+$		-	-	\cdots	-	71	74	77	69	72	75	67	68	72	74	67	69	62	67	61	56	56
5b	+	$+$	+	m	m	m	m	m	79	81	84	76	79	82	73	75	78	86	80	22	75	79	73	66	65
5.	m	m	m	+	+	+	+	+	81	81	85	78	81	83	75	77	79	9.3	87	(1)	94	87	82	71	71
6.1	\dagger			$+$	+			\cdots	66	57	69	6.3	65	67	61	62	6.3	78	72	75	79	73	68	57	58
6h	$+$	III	m	+ +	+	m	11	"'	76	7*	9)	73	76	78	70	72	74	88	82	84	18	82	76	66	66
4	m	+	+	II	m	$+$	+	+	84	87	89	81	84	86	78	80	8.3	93	89	90	85	88	8.3	73	72
74	+	-		-	\cdots	+	+	-	66	68	69	64	66	67	61	6.3	64	69	63	05	60	65	59	53	54
76	$+$	m	m	m	m	+	+	m	76	79	m	7.3	76	78	70	72	74	84	78	00	74	18	72	64	4
7c	m	$+$	$+$	$+$	$+$	m	11	$+$	83	86	89	81	84	86	78	80	83	93	89	91	85	88	43	73	72

				\%		\pm	$\begin{aligned} & 6 \\ & \frac{1}{4} \\ & \frac{3}{4} \end{aligned}$	5																		
						Blast furmate			Electric furnace						FFPR											
									0%			$0 \% .5$		10\%\% M			100:		seri,		Inas:		(10): M			
						G			F	-	G	F		${ }^{\prime}$	F		wC	A	WC	4	НС	4	1	wc		
		U	F				4	\checkmark		14	19	20	21	22	23	24	25	26	27	28	29	4	31	12	13	14
8	$+$	--	-		-		-	-	$+$	74	76	78	72	73	75	64	70	72	77	71	73	68	73.	67	011	62
\%	+	m	m	m	m		m	m	$+$	81	84	\%	74	81	83	76	78	00	89	83	86	¢0)	N	78	70	71
Ac	m	$+$	+	+	+	$+$	+	m	78	81	83	75	78	81	72	75	77	()	83	86	79	A1 7	77	67	67	
92	m	$+$	$+$	-	-	-	-	-	67	69	73	65	67	70	62	64	67	169	6.3	64	61	62	56	54	52	
9	-	$+$	+	m	m	m	m	m	69	72	75	67	70	73	64	67	69	77	71	73	67	71		57	57	
sc	-	m	m	+	$+$	+	$+$	$+$	76	79	81	74	76	78	71	73	75	18	82	85	74	\cdots	77	67	67	
10.4.	m	-	-	+	+	-	-	-	68	70	72	66	68	64	63	64	66	71	65	67	6.3	67	61	55	56	
106	-	m	m	$+$	$+$	m	m	m	67	69	71	64	67	69	62	63	65	78	73	76	70	7.1	67	57	57	
10c	-	$+$	+	m	m	$+$	$+$	+	79	82	85	77	80	82	74	76	78	87	81	81	76	*1)	74	on	66	
11a	m	-	-	-	-	+	+	-	62	64	65	54	62	63	57	58	59	65	58	${ }^{6}$	50	(0)	54	4)	49	
11b	-	m	m	m	m	$+$	+	m	67	69	71	64	67	64	62	64	66	75	69	71	0.5	(1)	6.3	55	56	
11c	-	$+$	$+$	$+$	$+$	m	m	+	79	12	85	76	79	82	73	76	78	91	45	87	1	$\times 4$	78	68	68	
12a	m	-	-	-	.-	-	-	+	69	71	73	67	69	71	65	O	68	73	67	69	64	68	62	57	5n	
126	-	m	m	m	m	m	m	+	72	75	77	70	73	75	67	69	71	m	74	77	71	75	69	61	61	
12c	-	$+$	+	$+$	+	$+$	$+$	m	74	76	79	71	74	76	68	70	73	H	74	1	75			63	62	
13,	$+$	m	m	-	-	-	-	-	67	69	73	65	67	70	62	64	67	69	63	64	58	62	56	152	52	
130	$+$	-	--	m	m	m	m	m	72	74	76	70	72	73	67	68	71	81	75	78	73	in	71	62	62	
13 c	m	-	-	$+$	$+$	+	$+$	$+$	78	20	81	75	77	78	72	73	74	(1)	84	87	12	86	$\times 1$	69	70	
14a	$+$		-	m	m	-	-	-	65	67	69	6.3	65	67	60	61	63	74	68	31	66	6)	04	55	56	
14b	$+$	m	m	-	-	m	m	m	75	78	80	73	75	77	70	72	74	74	72	74	6*	71	0	61	61	
14c	m	$+$	$+$	-	-	$+$	$+$	$+$	34	87	89	81	84	86	78	${ }^{1}$	83	H6	79	81	74	$7{ }^{\prime \prime}$	31	68	6.4	
13a	$+$		\rightarrow	-	-	m	m	-	61	6.3	65	59	61	62	56	57	59	71	68	71	06	64	6,3	53	54	
156	$+$	m	m	m	m	-	-	m	75	77	80	72	75	77	70	71	74	H	77	79	14	77	72	6.3	64	
15 c	m	$+$	$+$	+	$+$	-	-	$+$	83	85	89	$6)$	83	46	77	99	82	95	17	41	85	${ }^{*} 8$		¢ 72	71	

隹

		$\begin{aligned} & 3 \\ & y \\ & y \\ & y \\ & y \end{aligned}$		$\begin{array}{\|c} \stackrel{\rightharpoonup}{6} \\ \frac{5}{5} \end{array}$			$\frac{2}{5}$	Electric steel furnace							
								100\%;	; 5	Scrap 50		$\begin{gathered} 30 ; ~ s \\ 50 ; ~ \end{gathered}$		100\%: M	
								00	70	71	72	73	74	75	70
Oa	$+$	+	$+$	$++$	+ +	+ +	+	79	78	90	89	77	76	74	73
0	III	III	nI 1	m m	m m	m m	m	64	64	69	69	62	62	59	54
Oc	-	-	-	- -	- -	- -	-	51	51	56	56	50	4)	47	47
1.	m	m	m	- -	- -	- --	-	56	56	56	50	54	54	51	51
11	-	-	m	m m	m m	m m	m	59)	54	69	68	58	57	55	54
1 c	-	-	+	+ +	+ +	$t+$	+	69	68	90	89	68	67	6.5	64
2a	m	-	n	m m	m	- -	-	58	57	57	57	56	56	53	5.3
2 b	-	m	m	- -	- m	m m	m	57	57	67	67	56	56	53	52
2 c	-	+	+	- -	$-+$	+ +	+	66	66	(9)	89	64	64	61	61
3 a	m	-	-	- -	m	m m	-	56	56	56	56	55	55	S2	52
3 b	-	m	m)	m m	m	- -	m	59	58	69	69	57	56	4	5.3
3 c	-	+	$+$	+ +	+	- -	$+$	68	67	(9)	8)	66	65	6.3	62
4.	m	-	-	- -	- -	-	m	58	57	64	64	57	56	53	3
$4 b$	-	m	m	m m	m m	m m	-	58	57	6)	6)	50	5.5	53	52
4	-	$+$	+	$+1+$	$+t$	+ +	-	64	6.3	64	64	62	61	51	58
50	$+$	$+$	+	-	-	-	-	61	11	56	56	50	55	50	56
5b	$+$	$+$	+	m	m m	m m	m	69	69	69	69	67	67	64	63
Sc	m	m	m	+ +	+ +	$++$	$+$	74	73	90	49	12	71	69	68
6	$+$	-	-	$++$	+	-	-	64	63	59	58	62	62	60	54
c	$+$	m	m	$++$	+	m	m	70	69	70	69	$6 \times$	68	65	65
6	m	$+$	+		$m+$	$+$	$+$	73	72	(1)	89	71	70	68	67
4	+				$-1+$	$+$		62	62	56	56	61	61	5\%	58
Jb	$+$	m	m	m	$m+$	$++$	nı	70	70	69	09	68	68	6.5	6.5
7 c	m	$+$	+	$+$	$+\mathrm{m}$	m m	+	73	72	(0)	89	71	70	6n	67

E. Relative athel conts, accomding to manufacturnmo

L. Relattive eteill conts, according to manufacturdmo

 phocemens and infut paices (concioda)

XXH. SEIICTMB EMMOGMATI**

Miklon Ajtai, "Infuence of construction periods on the effiency of capital investments", vol. 10, Plemotorye Khozinytho, Moscow, 1961.
Akartemin Nauk SSR (Sorviet Academy of Sciences), "The economic efficiency of capital investment and the new sechnolury", Moscow, Sotsekgisdat, 1959

- - --... "Standard mpthodology for determining the eronomie efficiency of capital investments and the new technolory in the U'SSR natinual economy", Moscow, Gosplanizdat, 1960.
A A. Alchin, "The rate of interest; Fisher's rate of return inver coses and Keynes' internal rate of return", American Iicomomic Review, Evanston, Ill., Northwestern (inversity, l)ecember 1955.
-... Einmomic relacement policy, California, the Rand Corporation. 1452
A. M. Alfred and J. B. Evans, Discounted Cash Flous, Lamilin, (hapman llall, 1065.
Todor Anqueloff, "Some methodological questions concorning the interiationial comparability of the efficiency "f rapital investnent in the socialist countries", Planove Stupunstro i Siatistika, vol. 3, Sofia, 1962.
k. J. Arrow. "Discrimbing and puhlic investment criteria", Western Resomrces Comference, Ithly 1065
-....". Optimal capital policy, the cost of capital and myopic ilecision rules", Anmultr of the Institute of Statistical Mathemultir, wol XVI, Xo I. Tokyo, 1 Stat.
"The ecombinic implications of learning hy doing", Ke: wite of Eronumic Stodies, Edinhurgh, Jure 1962 .

11. (i Aubrey, "fowestment decisions in underdeveloped countries". (ipitul li, mation and Ecomemic firowth, Wash-

A K Haxchi, "The choice of the optimum technique", foinomil Iumpall, Ian bridge, Finglanil, September 1062.
T. Malugh, "Fspuity and efficincy the prohlem of optimal devilopmeite in the framework of unierdevehpment", Oxford Liomomi I'ipers, 1 imdon. Oxford University Press, Fel)ruary 10 . .
T Harna. iniorlmint and giroteth Pidiotes in Rritish In-

M 1: lleorley and (1). Finster, "Virtoria line: social hrieftit aind hilance,. Jompal of the Keval Statistical Sociefy, vol 1.\$, I.indon, 196S.
K F. Herrill, Pinhimai liarlopment, uth lipecial Reler-

lakdish Bhaguati, "The pure thenty of international trade
 10W
H. Hierinan and s Smidt. The Cispial Hewdyrting Derision. Nem Vork, Macmillan, 1404.
k 1. thinr, "luecoment criteria tir manufacturing industics in underdeveloped comiries: Rerwer if t onimes and Slanstions, Harvard l'niversity Press, May 1 'sad.
M. 1 Howmar ancl finder som, 1 deration and fionowic De. relipmow, Chisapi. Aldine Publishing Co. 1.05

- I'repared by (NIIt) following the Prague Sympoaium.
F. Brown and R. Edward, "The replacement of obsolescemt plant", Ecomonica, London School of Economics and Political Science, Aupuit 1961.
M. Brumo, "Interdependence, resource use and atruxtural change in Israt?', Special Smalies, No. 2, Jerualiem, Bank of lirael, $1 \% 2$.
M. D. Bryce, Imdusirial Development, New York, McGraw Hill, 1900.
J. M. Buchanan and W. C. Stubblebine, "Externality", Ecomomica. London School of Economics and Political Science, November 1962.
N. S. Buchanan. International Invesiment and Domestic Welfare, New York, Holt, 1945.
J. Burkhead, Government Budgeting, New York, Wiley, 1956.

1H. B. Chenery, "The application of investment criteria", Omarterly Journal of Economics, Harvard C'niversity I'ress, February 1953.
S (hakravarty, The Logic of Imeestment Plenning, Amsterilam, North Holland Publishing Co., 1959.
-.-. "The use of shadow prices in programme evalnation", in P. N. Rosenstein Rodian, ed., Capital Formation and Ecomomic Develipment, London, Allen \& Unwin, 1964
-..-. "Optimal suvings with finite planning horizon", Intermatiomal Ecomomic Ketirew, vol. 3, Dsaka, Japan, 192.
-, "The existence of an opsimal savints programme", Eromometrica, vol. 30. Yale University Press, 192.
de Chazeau, "Regularization of business investment", ProbIrms of Capital Formation, National Bureau of Fennomic Research, Princeton University Press, 1954.
H. B. Chenery, "Development policies and promammes", Economic Bulletim for Latim America, vol. III, No. 1, United Nations, March 1958.
-_Comparative advantage and development policy", Amprican Ficomomic Retirw. vol. 51. Evanston, Ill., Northwestern University, $1 \% 1$.

- The Imerdefrndonce of Imerstment Drcisions. Stanford University Press, 1959.
- and P. G. Clark, Interindmstry Ecomomics, New York, Wiley. 1999.
…-. and M Uawa, "Non-lincar programming in economic development", in K. J. Arrow, ed. Studies in Limar and Now-hmear Progrumming. Stanford University Press, 1958.
R. H. Comse, "Prntilem of sorial cost", Jomrmal of late and Acomomics, University of Chicazo Press. October 10n0
C. Cukor and M sagi, "Enerey requirements and their long-term planning", Budapest. 1964.
G. Cuknr and Z. Roman, "Utilization of the interindustrial input-output balance in the investigation and plannuge of the industrial structure", No. 9. Budapest, Institute of Economics of the Hunsarian Acedemy of Sciences.
G. B. Dantaig and P. Wolfe. "The decomposition alsorithm for linear programmes', Eronomotrics, Yale University Press, October 1\%1.
- "The significance of solving linear programming with some integer variables", Econometrica, Yale University Press, January 1961.
- Linear Programming and Estensions, Princeton University Press, 1963.
O. A. Davis and A. B. Whinston, "Externalities, welfare and theory of games", Journal of Political Economy, University of Chicago Press, June 1962.
J. Dean, Capital Budgeting, New York, Columbia University Press, 1951.
E. F. Dennison, The Sources of Eiconomic (irceth in thi United States and the Alternative before ws, New York, Committee for Economic Development, i 962 .
Maurice Dobb, Econamic 7 heory and Socialism, New York. International Publishers, 1955.
——. Political Econowy and Capitalism, New York, International Publishers, 1945.
-..An Fssay on Ecomomic Grouth and Planning. London, Monthly Keview Press, 1960.
R. Dorfman, "Basic economic and technological concepts". in A. Mass ct. al., Destign of Woter Resiurce Systems, Harvard University Press, 192.
R. Doriman, P. A. Samuelson and R. Solow, Lineor Programming and Economic Analyss, New York, McGraw Hill, 1958.
D. Bosser, "Gieneral investment criteria for ten developed countries: a post-mortem", Scotish Journal of Politicol Economy, Edinburgh, June 1962.
Jules Dupuit, "On the measurement of the utility of pablic works". First published ill Anmales des l'onts et Chawsices. Ser-2, No. 8, 184.4; English translation in International Economic Papors. No. 2, Lendon, Macmillan, 1952.
O. Ekstein, "A survey of the theory of puhlic expenditure criteria", in J. Huchanan, ed, Public Finances: Needs, Sources and litiligation, Princeton University Press, 1961.
--... Water Resoufies Detelipment, Harvard University Press. $1 \% 1$.
--.-. "Jnvestment criteria for economic development and the theory of intertemporal welfare economiss", (umirterly Jomrnal of Economics, Harvard University 1'ress, 1957.
O. Erkstein, Water Resources Development; the Ecomomics of Profect litoluation, Harvard l'inersity Press. 1958.
Eisner, "Determinants of capital expenditure", Situdies in Business Expectations and Planning, No. 2, C'niversty of Illinois. 1956.
S. Enke, Economics for Derelopment, Englewood Ciffs, N.J., Prentice Hail, 1964.
M. S. Peldstein, "Net social benefit calculation and puhlic investment decisions", Oxford Eiconomic Papers, London, Oxford University Press, March 1964.
"The derivation of social time preference rate"" Kyblos, vol. XV111, Basel, Switzerland, 10,5.
"The social time preference discount rate in cont benefit analysir". A:conomi, Journal, "amliridge, Englanl. Jwar 1964.
and J. S. Flemming, "The prublem of time-ticam eviluation: present value versua internal rate of retur ri rule $-\cdots$. Enlleting of the Osford Institute of Ecomomirs and Stativitiss. Pebrmary 1964.
Irving Fisher, The Theory of Imereat, New York, Mac millan, 1930 .
Christopher Foster, The Trmensort Problem, London, Blectie, 1933.
C. D. Foster, "Surplus criteria fur investment", anllith of the Oxford Uniersity Institute of Li, inomics und Sititistics, November 1960.
- and M. E. Beesley, "Estimating the wxial cont of constructing an underground railway in Lumb, in", Journal of the Royal Statistical Society, I.ondon, 1 Wh.3.
Miltom Friedman, Essays in Pastitic /amemtu s. Inwornty of Chicago Press, 1953.
W. (ialenson and H. Leibenstem. "Inventment interid, proluctivity and economic development", Owartarlv l., in hal of Economics, vol. 69, Harvard Unversity Press, 105
R. F. Gomory, "larec and non-convex frullem, in limar programming", Amerian Mathemati, Sterety. wol \t. Providence R.1., 1963.
-- "The relation between integer and num-integet whe
 of the National Academy of Sciencis. Febrnary $1^{14}, 5$
 day, 1ox2.
F. L. Girant and W. (; Iresom. I'rinciplis of I:monn., in: Economy. Dew York, Rumald l'rore l'wal

1. Gohni, "Le rapport énéral de la timmionon dic

F. M. Hahn and K (. O. Mathrws. "pher thery of ar, nomic growth: a survey", ficunom, houmat (ambune. England, Decemier 1 KMA
R. F. Harrol, "An essay in 小bamic theor". I ,יmom, Jowrmal, Cambridge, Finglanil, Malch litic
 $1 / 4 \times$.
 ledge and Kegan l'aul, 1950.
 the United Kingelomi", Rull.tin of the (Itherd Institut. if

$\therefore W$. Hess and H Q Quigles. Analwor if k'uk in in -restmentr, using honte corlo Techniques. Chemical lingineering Sympesium, wies 42. Nirw furk, Aıwriuth fustitute of themical ligenerring, $1 \times 4,3$
1). B. Hertr. "Kish analwe it captal matment", Hat:and Business herict, Jathary l'mat

 (nemed. lmit.

 Hunliro, Kresarch. lwol
 London, Allon tinwin, lose
 Allen © Linwin, $1 \mathrm{H}_{2}$
A. E. Kahn. "hivecturent citeria :ll Irvelipmient pros. giammes'. Uuarterly Jiurnal if lianomins. vil is Halard Conversity I'ress. 1951
M. Kalecki and M Hak',waki, "iencial formula for de termining the ecumomu efficercy of catial illvestment", ioospodarto pluncrea. Warsaw. 1954
L. Kantrnvich, The Best l'se of Ecomomic Resowces, Lomdon, l'ergamon Press. 1 Wh5.

- -. .. "Mathematical meth inds fir the organization. and planning of profluction", I eningrad State University Press, 1939.
J. G, Kemeny, Finite Mathimatus unth Busimess Applicathons Englewionl (liffs. ソ !., Prentice Hall, IW2.
T (. Koxpmans. "A signment problems and the location of eccinumic activities", Jichometricu, Yale U'niversity Press, fanuary 1957
- - . Fconomic growth at maximum rate", Quarterly Journal if Fionomics, Harvard Cniversity Press, August 1004
Janos Kornai, "Experimental promamming in preparation of the third five year plan". Kuzgazdusagi sarm/e No. 6, Hudaprat 1'ms
...... and T Liptak. "Two-levei planning", Ecnowatrica, Yale U'nivernty I'ress, lanuary 1 O65
--. "A mathematical investigation of some economic effects of profit-sharing in soctalist firms", Econometrica, Yale University Press, January 102

1. 2. Koralev. "(Cimpurtation techniques ir plannink", Aconumica, vil 21, 1anilon School of Economics and Political science, IOMA.
O. Lanme. ed. Prollims of fiolitical Econamy of Sucialism, New belh, People's Publishing House, 1W2.
"On the ec minuic therry of sexialism", Retien of E،omomic Studies, linhurgh, Octuler 1936.
. .. . "Komomic ann! social papers. 1930-1960", Warsaw, $1 \% 1$
"The thenes of reproluction and accumulator", Warnen, \mid (kit

 Harvatill bicurety l'ress. leetruary 1 ond.
1. Lefelker and M. i) (lanithari, "Transpertation policy

"Kexiondal allication of rewurces in Inclia", in 1' N. Kisechetin Kexdan, ed, op cit.

 [inwo. 19:-
k is linee anik lanatel the erimetal theory of
 bireh 19:7
I M If little. Real cont of lalurur and the chonice between

-.. \because r ritical examinatuon if Indiax third five year plan".
 frimurr lomz
A 1 . I urie. "On matheniatical methods of resodving optmum ;r, hieme in phaniat the wialist economy", Mogcon. Iedatelativo Nacha. 1904.
F. andi V. I uete. The Theory af Intestmont of the Fwrm. Princeton Linversity Press, \mid
A. S. Manne, "Key sector: of the Mexican ecomomy, 19601970", in Manne and Markowitz, Smdies im Process Amalysis, New York, Wiley, 1963.
——. "Capacity expansion and probabilistic growth", Ecnnometrica, Yale University Press, October 1\%1.
Manual of Imdustrial Development wit's Special Application to I.atin America, Stanford Research Institute, Jure 195月.
S. A Marglin, "The mocial rate of discoumt and the optimal rate of investment", Qmarterly Jowrmal af Ecomomics, Harvard University Press, Fehruary 1963.
T. Marschak. "Capital hudgeting and pricing in the French nationalized industries". Jommal of Business, vol. 33, University of Chicago Press, 1900
A. Marshal, Principles of Economics, New York. Macmillan, 1948
P Massé, Optimal Inrestment Decisions; Rwles for Action and (riterin for Choice. Englewond (liffs, N.J., Prentice Hall, 1962.
P. Masse and R Gibral, "The application of linear programming to investments in the electric power industry", Mancgement Science, Abington, 1'a., January 1957.
E. Malinvaud. "Capital accumulation and efficient allocation of resources", Econumetrica. Yale University Press, April 1953.
-..-.. "Analogy between atemporal and intertemporal theories of resources allocation", Kerieve of Economic Studies, Filinburgh, Jure 1961.
J. E. Meade, 'External economies and diseconomies in a competitive situation", Econamic Jourmal, Cambridse. England, March 1952.
-.-. Ilanning and the Price Mechanism, London, Allen Unuin, 194.
R. 1. Meek, "Investment chaice in the electricity supply industry: some recent developments", Distrit Bonk Reance. Manchester, England, Hopwood District Bank, 1,tl, March 1% A
A. J Merrett and A. Sykes. Fimance and Amalyses of Capital I'ropects. New York. Wiley. 1×3.
O A. Mihailov, "Mathematical uttistics and linear programming in the steel and irom industry", Moscow. Metallurmiziat. 1901 .
M. Morishima, "Economoc expansion and the interest rate ill gencralizel von Neumann modrls", ticuometrica.. vol. 28, Yale L'inversty Press. 1 "00
 g'ewiont tlifts, N.I. I'rentice Hall. lwat
2. won Veu:nann, "Moxlel of general equilibrium", Keare if Limomer Studics vol. 15, Edinturgh, 1248
K. Nirlid, "Replacement policy". Viunomal instituter Foon.omi. Rinueti, Loniton, National Institute of Ecomomic and Suctal Kesearch. Niveniler lobs
I A Norilin. "The marginal cist controveray: a reply". formomicu Londin sclmol of Ecomemes and Pultical Science, 144 .
I P'ajertika "Solle problems of coonmic development
 if Sinculism. Xew Delhi, 1'cople's P'ublishing Howce, 1 W2 Gustav F Prapanet and M. A. Quresh, "The use of accountile prices in plannina". in Orgumation. Plamaing and Priogrommany for bicenmer Dicriopment, vol Vill, Hast. ington DC', L'nted States Government Printint Office
--. The use of accounting prices in planxing", United Sations Conference on Application of Scieace and Tech-

A. T. Pencock, ed., Public Expendionere: Approisel and Control, Edinbureh, Oliver and Royd, 193.

Gil Pelaer, A. Camacho and P. Revilla, "Economic development and enerry consumption in Spain", World Power Conference, Belgrade, 1957.
E. Pfomm, "Managing capital expenditures", Study No. 107. National Industrial Conference Beard, New York, $1 \% 3$
E. S. Phelpa, "The golden rule of accumulation", American Ecomomic Reriew, Evanston, 1II., Northwestern University, September $1 \% 1$.
J. J. Polak, "Balance of payments prohlems of countries reconstructing with the help of foreign loans", Querterly Jowrmal of Eionomirs, Harvard University Presn, February 1963.

Programming Techniquis for Eionomi- Divelopment, urith Special Keference to Asia and the liar East, United Nations publication Sales No.: 60.11F.3.
A. Qayum, Theory and Policy of Accownting Prices Amsterdam, North Holland Publishing C'o., 1960.
F. P. Ramsey, ": mathematical theory of savins", Ecionomic Jourral. vol. 38, Cambrider, England, 1928.
G. Rauis, "Investment criteria, prosluctivity and econumic developmeit", Quarterly Journal of Eiconomics, Harvard University P'ress, May $1 \% 2$.
M. V. Roberts, "Current problems in the economics of capital budgeting", Jomrnal of Rusincss, University of Chicago Press, vol. 30, January 1957.
Joan Kubinson, Escoys in the Theory of Ecomomic Grocth, London, Macmillan, 19 3 3 .
P. N. Roseristein-Roxlan, ed, I'rian! and Fiscal Policics, Loniton, Allen \& Unwin, 19at
---' 'Determining the need fur and planning the use of external remorres in science, technology and development", United statis Papers perpared for the C'mitid Viations Scienci and Tichnology Cimference, vol. B, Washingtin, D.C., L'nited States Government Printing Office 1062.
-_, "Problems of industrialization of castern and wutheastern Furope", Fomomic Journal, Caniliridge. England, June 1943
———"Xotes on the theory of the 'hig push", Pricocilmas of the Contarince of the Intermational Eicummic Assumation. New York, St. Martin's Press, 101.
P. A. Samuelom, "liamammati, expmition of a thenry of
 Harcard C'muersity Piesu, Nosemiker 1855.
"The bure thenty of fullic expenditures". Remite "f
 vemle, 1'54
-.--. "Aspects of public expenditure theorice, Kicitio af Eiomumis and Statistici, Harsaril L'mbersity I'reo., Lir vember 195\%.

P A. Samuelorn. R. Silliw and R inifinan. Lincur Pro. gramman: and liantmic Indisir. New Yurk, Miliraw Hill, 1954
 Nen York, Assa Publisheng House, lwo
1 Sapmir and W Binco. "imoiderationso on the interrelation between encrgy conimoptom and motuatrial prodiction in

A K Sen, "some nite, on the chume if capial mitensity
 vol 71. Harsard C'nuervity Prens, 1959
-_, "On optimizing the rate of savings", Economic Jowrnal, Cambridae, England, September 191.
H. W. Singer, "Development projects as part of natiomal development programmes", tiormadation and Eionomic Approisal of Detelopment Projicits, United Nations mublication, Sales No.: 51.11.B. 4 .
Solomon, The Mamagemint of Cirporate (apital. Illinois, Free Press of Glencoe 1959.
R. M. Solow, "Technical change and the aggrecate prixinc tion function". Kequctre of Formomics und Stulistics, Harvard University Press, August 1957.
-C.Captal Theory and Rate of Retwrm, Ansterilam, North Holland Publishing Co, 1963.
C. S. Soper, "The marginal efficiency of apital; a it ther inte", fiomomic Jourmal, wol f9, 1 amliridge, Fingland, lwis.
P. O. Steimer. "Prak lads and efficient pricing". Quarterly Jownal of E:conomics. Harvand L'muersity lreas, November 1957.
(i. Tinhorgh, Rusincss Investmint l'olity, Washingtinn, D.C., Machinery and Allied I'rowlucts Instute. Ibsk

Jan Tintergen, "The optimum rate of savimg", /..micmi Journal, wol. ©o, Cambrilae, Fnglanl, 19ish
--.. Thi Disign of Dioulopmint, Batimere, Mil. J.hns Hopkins P'ress, 195s.
...--. "The relerance of the setical criteria in the whetion
 fironth, 1 ambitate L'muersty Press, 1955

R. Turvey, "On divergences lentwell owital com and private cosst', L:commici, lomdon hehow of lionnimis. and Political Sconce: Augnst 1 W0.3

 ductioty Rullotion No. E Ented Vatiom publiatum, Salion No. $: 21131$

 chll 131. $41111 . \sin$

 224 1: F4F+5

 1×1


```
Yurk, Ma|malam l'ant
```



```
Gionk. Wiley 1'mij
```

-_-, "Induariel \&evelopmemt plaming matelh with ecemo-
 cintion, val. XII, 195.
 Machines Corp., Yorktown Heighas, N.Y., Inermelionel Buniness Mechines Corp., Research Repert RC-14m, 11 March 103.
H. M. Weingartiner, Methematical Progrcmaning and me Amelysis of Capinal Delgeting Probloms, Englewoed Clifis, N.J., Premice Hall, 1\%3.

 momics, Shervart Uudversivy Prome, Aumin IVid.
R. R. Wimmane, Indomational Repeet an Foctors in Investmown end Echniow, Purla, IME
———Ioformation Critoris in Couinal Expondinure Docisimen, Univericy at Memchestor, Comere fer Bminese Besometh, 1sen.

$$
0
$$

[^0]: 1 The seminer an industrial progranmeine heid by the

[^1]: grammine of the sertival ievel in the motal transformint herniral pulp and maper and toret induatives. mami, in the ligite of wher had hoen dime in latm America
 levels of productivity and procistranal effiretery in lai:

 witre erobleman te prichucividady peeforicimatient., te

 $1 / \mathrm{nad}$

[^2]:

[^3]:

[^4]: as a lesolt "it reempment (nearly 80 ber cent of the Indechinery in use is ribsolete) at too high a level of autio. matum a study was mate of the alternative techniques and muipment available and a scheme proposerl for carrying cul machinery replarement in such a way as to ininimze unemphoyn At, without unduly sacrificing operational effi tiency and costs. This investment posicy would be applied hirough a system of incentives. which would make the granting of tax and finarcing privileges conditional upon the adopton of eceminues and equipment unsidered suitable aithin the context of a proframme formulated for the whole textule sectur. This would give rise to entrepren urial treciutis in accordance with a system of mplicit shadow lirices See The lextile industry matim 4 merica. II lirucil (Enited Nations publication, Sales No: $64 / 11 \mathrm{C} .2$ haguers 1111 and IX.
 T Ta indestria meidnica del U'rngmay (E/CN.12/743)
 nThe testile industry in I.ation America II Bracil (I'nited Nations publication, Sales No.: GIIG.2). chaplers V and $V \mid$

[^5]: - Ihid

 1" The results obtained show that in all the establish. mems considered only 14.4 per cellt of the variation in productivity is attributable to obsolescence or sise some more detailed examples relating io establishments manu facturing the same yarn coum help 10 romfirm the vita! importance of such factors a or oranization and administratiom in determining productivity levels For instance, in spinning nuille producing yarn count 10 it will be moted that plants of the same sise (about 3,000 spindiles) and with the mame high level of sobolescence show a productivity range of from 1 to 3 (200 to 908 erammes per man-hour. respecively). The mane is trwe of other coums. See thr testile industry in latm America' II. Areaid. pp 78.79

[^6]: 1: Mentun showh alus te mate of the promeramme for the expansuin of lenerveta: metal :ranaforming induatry
 ou' ase Filla, la infustria mecanica de lenezuela un trearrania de suctituction de importacromes para su de
 liment. f'rograma de agpansión de la industria metal.

[^7]:
 mortheastern remoin if Mrand)
 In view of the recturat whan al ar ,

 alatabie

 proverame

[^8]:

[^9]:

[^10]:

[^11]: TSer G Cubor and M Sixi. Wenty rapuromemts and

[^12]: "sial I with li.al with limeir propramming. av fors

 1f:11 109\%

[^13]: insie lanos Kurnai. "Fxperimenta! programming in frparation fur lhe lhird five-year olan", Buclapest, Kuzazdavagi Szemle, fry, No. 6.

[^14]:

[^15]:

 (tit

[^16]: ment liank uf Irani, has lxath imllat,lig ith own pricits.
 A.sistance in shasung a rhent, Drioet mav ive dicingueshed ir im thear effirts. althourh it is wery chiacty relati if sire al trross the metitulo, mar lie coniribetian mute tian the pitrntial ilient
 *i' is "f inuri, pusible that these instilutiolt, can w.irk duficiently clerelv with thise frounding the finative l_{11} the Sudon the indumeriel development cenire and the devel pFonl tinace mationtuon have ofticen in the same bulldine
 land in glive

 - A rerent survey if lim businesumen in the I'inied athea ranket cotinseling a business puitheme thirl amime

[^17]:

 ate dixusuet at fillesenl flamation

[^18]:

[^19]:

[^20]: ${ }^{19}$ United Natrone publicatiom, Sales No: s8.11 G.5. p 10

[^21]:

[^22]: * To determine the utmum disir butuin dive tives at

 is emporable even with the use of rapht. up tos dale f. enethuds.

[^23]: 31. V Kantorovich, "Mathematical methends of the "r ganization and planing of protuction" Publicaion of the Leningrad Stase University, 1939
[^24]:

 " "a," should be reat ": ine. omr". not a eleveri"

[^25]: - See M 1. Romakin "Filements of linear algebra-and linear proframming", Moecrw. Visshaya Shkola Publishing Homer, 1%.
 iser. fur example, ithe ahove-mentrated handbook by M I Rownem; alco 0 . A Mihaihov, "Mathematical statiainc and lineer grogramming in the abel and iron monasy". Moxrw. Metaiturgiadat. I\$1.

[^26]: - Fir exampte of calculation uf comficent il cerrelation ser it A If lialiov. of at lare formite M alm ve

[^27]:

 lopuab: (opromeny en

[^28]: a In addilion to national puhlicgitrons, see "Fralmetion

 publication Saien No Cilf 61 On the somet I'mon. receme worthe ty T. S Necheturn may be recemununded and. am Poland M Reluvalsi's mody

[^29]: M Chemety, "The application of investmont crimeria".
 Fionvery IMy

[^30]: - Sm "Fraivetion of propects mationinentiy private

 4 III!

 - See H Clumery "Dowelepomeen ratix ice and pow.
 4meve vol 111 . No 1. March 1954

 tay. July lina. : 7

[^31]: Hirahmanm. 1 he lioingi if Komemi i'rerliment. Vale I...versity Prest 1951

[^32]: 11 See for example Monual on Fcomomic Detriopmemil Projects (United Nations pubtication. Sates No. : 58 II.G.5), pari II. chap. II

 12 The calculation was jeriormed by means of an inputotrtput lable in sector ageregation; the ration of actual and "calculated" prices by seciors were applied 10 the corrections of the individul prices Experiments are pro. ceedin with input-output tables catculated by producis mostly expressed in physical unis.

[^33]: 18 Sme antirx 11

 mpulis if foreitn exchange carned it experts

[^34]: .irionming Trihnoywes tor Eicomomai Drifi pmont. with

[^35]: 14 "Ievelopmerst policies and proprammen", in C'mited Notions, ho conarir Bulltion for Letim Amorica, vol. III, No 1. March 1850. p. 71.

[^36]: 1*"Promamming in therery and in liakian practice"
 above), D 25

[^37]: ${ }^{10}$ Up cit mee formone 5 above), p. 12

[^38]:

[^39]: - Mansachuselts Insibute of Technology. V'nited Siales of Atrerica

 1 These assumptions represent a ienotical simplificalion of the framework of trowth roing back al leasi 10 Karl Marx. For a modern discussion. see W. A lewis. "Economic development with unlimited supplies of labour," Manchester School of Feomonic and Social Sturlies, Ne. 22. Manchester', England. 1954. and "Unlimited Iabour further notes", Manchester School, op. dit., 1958. See also W. A. Lewis, The Throry of Eccunowic Grousth. Icondon. Aller: a Inwin. i95?

[^40]: 2 The following whmater are taket forn, V R k lidak

 Mambay J年5, y 27

 more difterule t., cotmal.

 made independerity of the diverihntion of :lle ther ave int

 nol ar;ear, lake bery errmaly the : thith at a itak numi:! :ror

[^41]: * The irons of thas conlict of interest is that the meres
 avine and emplowment tiv lava.om of inflaliom. The mure ditholiti it encounter, ling the very peipite who are maved lo.mi the ranks of the unemployed to the emplived wha mukht tre expecteit to tre the nomit vical sapporters oi the taxam:n in milation that crealed their fobs now edentify ther interests with thewe who were already employed and herner lose ifom lavaluth and mflation
 s 1 Pajesika. "Sume probiems ot economi- development ptaninge in O lange ed Prohlewi of l'ifered Fromomy
 $\therefore 124$

[^42]: "F P Ramsey. "A mathematical thoory of saving". Ercmomen. Jownal. Cambrider, England, iees. vol. 3a, P. $\$ 4.3$

 TH.e shall assume inroughur this eweey that the groduction function is homotemeous of hrat degree which means that of is a function of the tobour : canien ratio sleme.
 D Dots will in emeral indicate time rated cheage.

 - Sutberipts will in general indicate eirerentintien what

[^43]: 12 we (.texte strive

[^44]:
 Irxim |l: THus sumprotion pres

 $$
 a=\frac{1-10}{11-10}<
 $$

[^45]:

[^46]: 23 This proposition presupposes that the optimal technique implies = λ. (The more general case can be covered by suitably amending the algorithm embodied in (42).1 The proof of the convergence of the sequence defined by (42) to an arbitrarily amall neighbourhout of the τ 'maximizing valise of A requires ansthing more than modificatoon of the prond of convergence of continuous eradient process to Hlluw for discrete changes in the values of variables. See K J. Arrow. L. Hurwica and H. Lzawa, Simdes in limerar and Nom-I inear Progremming. Stanford L'niversity Press. 15.5 N , chapter 10 .

 24 M Doble. op. cin (fontmite 17 almue): O Fckatein.
 10 ahove)

[^47]:
 rate frowh dinablear.

[^48]: - Plannine Commistion, Warsew.

[^49]: 1] Tintergen, "Project criteria". in Fionnmir Plammo The Hagu. 198,

[^50]: 2 This cenceal firmula can ahviously be rewriten in any contmems function of atuch as $t+11$, which may be more convensent 10 ume but is no more then a echnical A'teration

[^51]:

[^52]: - OnGored Enviond

[^53]:

 is corneral's nure umetwal tham mave at all. thepe are

 wht a* ithe imperevemert of a lenturepe by a port

[^54]:
 ? The expermuce it the auth r lian mam lergelt wh
 inemed While the irame if refurence emplovien: thr
 the auther belvice then moens it the bacc ponit. wit be

 " 「home empritly interested may hat the toth wnm * : Aftit texth.th. if value

 'apler, 3 t. J neluenve
 *omil. ilinots, Hehard il liwin ime lant hate:

 - 11 me luave
 the F Megee fiuites "I Incemiry Pilky", Horended
 1944: p 4

[^55]:

[^56]: - Giraduale school of Rusiness. Columbia U'niversity. Liuted Slases of America.

 1 The term 'enterprise" is uacd fu designate the venture or business-mublic or privale-which is being evalumtect Thus. "project" and "enterpise" have the sume meanias.

[^57]: a For e diarugsion of how 10 build an adminitirative of－ Eancaliom，see W．H．Nowman，Admumisteative Action，En－ tewinul Clifs．New Jersey，Prentice－Hall．Inc．I95I and Ton． 3 （also availabie in Spanish，Porlurwese，Italima，Dulch ant lapenem translations）．

 Propa troep of diotinguiahed citiseva，formina an ＂edviniry council＂or＂live of sponsors＂may also be estab－ fished the primary role of such erowp is to provide en－ dorsement and mecure popular sepport for the enverprixe．

[^58]: They may ulso erve advice on mroponat chamees of other actions，but mormally they do not initiate action．Exeeutives of the enterprise are expected to how treck of moblemi and opportsanties and to brives such motwors to the athemion of the advisory ercug．In other worda，a advisory bourd mey serve a very usefal function trat is mot relly pert of the managerial organimation．

[^59]:
 wort is needel regartilest at the cause cif the lurnower

[^60]: Umesthomairf "/'roject lizulmation"-for projects cbote Clorano
 Site The questioms have beev: erouped together so as not in mhiht your anawers by the size of the gaps between the questhms. Ilease wrice all your answers below \mathbf{Q}.
 1 When evaluating capial expenditure projects. do you distimgush hetween "expansion" and "replacement" projects and if sol, why?
 2 (hn averate how far ahead dit you forecaat coot and revenue Lows for (d) Expansion projects and (b) Re. placement prolarepl

 1. What methusts "f evaluainui do you use for comparing evientiture propmosali? (a) Qualitative? (h) Qumatita live Stale briefly the reasons for chousing the methat you favour
 4 I ${ }^{\prime}$, yin sllow for difierences ill riak and uncertainty between the varion proposele? If ma by whet methods?
 s. If ram use a enatitative methos of evaluation when annesing a project's worth. do you caliculate ithe payback period or rote of return on an after of liefore orpmation ien tain?

 - Fallowinat on Iram question s. do you talue cotalays in
 seronet?
 - I intin

[^61]: Aevow. Now Yort MeCrow. Min.

[^62]: a min alxill othe thel at the....

 of data in widespreat in all thier ammetion lat lact,

 methouls which they fall to undritam

[^63]:

 Remarch inchiste Cilufirnat for tor Inecinatimel

[^64]: ' lly. ratien w uht als. rem applicative lo a refiam

[^65]: 181 Harna. Imirstment ond cirowth fohises in Brwin Industial form. I ambindee Conversty Press, 102.
 14 Whiliams. Imtirmatimal Repert in Faitues on lwerst.
 "rrat:" and i inelymient! iow
 on Iromich Imdustry. Paris. INSFAD (Imetitur puropeen dadomistration der afares) The compmes emerviewed ter ihs stody ransed witely in sime of totel geteli. from ahour F 25 millow 10 F 2.0
 lsell Inal
 $19 / \mathrm{mal}$
 Tinuerally Prese 1481

[^66]: 10 The anvesiment reserve schewac curremty in operation in Dwrden misht be ume method of stabilizing inventment es bet Mack, The Fhow of busteres limels and (ino sumer l'urihasing Pounf, New Yorlx, Collumbia l'niver viy
 Hine Thry are Melt large Corporanema Bureew of Hustrem Rewarch, Indiona Inivernily. 193t. atw. M Girn, "The planning of investment a sudy if capital
 mess. C'miversuly of Chirng. April and luly $14 \$ 1$
 Itimus. Fre Press of gidencice. P34

 tudet. for the 1 wi: purpus.

[^67]:

 investment deciamine

[^68]: 2n Grant and Ireson, Principles of Engineersng I.innamy, New bork. Komald P'ress, 10 oro.

 * Alchain. Fcomownc Replocement Policy, Rand Corpara. jon. lafiforma, 1452 .
 at Terborgh, Imerestment Policy. Challenge to Amavicen Momavement. Washergton, D.C., MAP1. 194 An excellen! description if lhis method colsen calked the MAPI method afier the Machinery and Ampal Products Inatime) is comtanued in K A Midmeton. The Ecomomics of (cilal EnProhiture. Aunirahon Socinty of Accommants, July 1904
 ${ }^{2}$ Ser Hotert H Deldwin's artick in The Herverd Bemmese Kretre of May-Jume Ise9, "How to asgese inveptuani poned phon- proin-maler or not", in Tibe Cumoder, Hew Tork. November ped
 He S soppf. "The marginal cirivency of capital-a
 1949, vol 69. 日e 174 lut 177.

[^69]: ${ }^{30}$ Inefined by Jolun F. Childs as "the over-all composite per cent net cont rase (after allowing for under wrilers come pensalion and experses of honaming), which investirs re. quire 10 induce them to povide all forme of lorcelerm capital in a conpetitive matiet, on maverato over a period of years". See The Comoroliter, New York, Fetruery iman.
 il Sen (a) Thranters and Sheepers, PEP (Poltical and Economic Plenniea), Lomdon, Allan a Unwin, 19x. a survey
 Remerrment Poticy, NIEil (Netional Inhertrial Eqwigmean
 licigents in a conformace hald by the Production Pingmeerine

[^70]: 24 Nep The I I inomicial and Fromomer Ohlipations of the Nutionmined Industries. Cmud 1337. April 151. im which it was stated that "althongh the induntries have oblifntions of a mational and non-comevercial kind, they are moty. and onshis ned be regarded as surial cervices absotved from erimomir and enmemercial jurtifertion".

 35 Vol 1. Jume 184. 10.1
 0 A. J Merrett and Alkm Sykes. The Finame and Andyrit of (${ }^{\text {dinad Projerts. Londom. Longmen, 18). }}$
 Ahapraisal of netimalised induntry invertime pojnety.

[^71]: anc catculated on an internal rate of retwrn banis.
 ${ }^{*}$ T:" implement the puicy set out in the Wibite Paper (Comed. 1335), five-yoer finalacial objectives were agreed with most of the indwetries concermet
 ${ }^{\omega}$ a per cont in the rave maned by the Trenemry as corresponing "broclly to the wrouprive apportminy coot of
 "Appriael of morionelioed indeotry tevenimet projectu"; mer lootains 3t shove).

[^72]: 1F atuone:
 ${ }^{4}$ Landtan, PEP (Polvical and Exonomic Plasaina), Sop tember limi, ons.

[^73]:
 breiv, f hwagu. vi. I., I'an
 : Sew Vork. Meroraw Mil, Ime 3

 - \quad mures:mens", SiA Bulhetin, June 1 '*A
 1950. wh oustion

 swioner. Herermitiant, of rapitat emperaliure". Mritill

 verove .if Jliom is. :48,

[^74]:
 of Busibers Revearch. 1861.
 sa Heller. Har:urd Rusimiss Kiticte, March 1991. p. 101.
 s3lte Chazear. "Kexilarization fosineas invesment". in Probicems et apish fiormition vil to, ionference on Rescarch in insme and llalih. National Rureall of Fonumic Kenearch. I'riacet In I: :nversitv Pres,
 S4 M1 Girt. "The planning of in vestment a suludy of capial budgeting in the electric power industry". Jommal "f Rust.

 as al Solom \cdot n, Inevstment Decisions in I mall Bnamesser. Kenlucky l'niversity Press. 1Ons
 se Norman E: Pfomm. Managing Capita' Expentituers. New Liork National Induatrial (onference Bomerd. Study No i07. luai

[^75]: ${ }_{57}$ Intestment Criteria and Economic Grouth. Centre f:r Invernati, inal Studirs, Massachusetts Institute of Tect. noting, 1 abl.
 sm For a sludy showing the adjustments required to reflect macroeconomic rather than microeconomic values. see Murray N Rryce, Industrial Development, New York, MeGrawHíl. 1'mo See also Has ral and Kuhn. -Trannmort plamina in devels ping countries" (unpublished). Brookings 10 s 5
 ${ }^{50}$ See S Enke. Fromomics for Development. PrenicerHal!. l'xit
 on For a discussion of social mareinal productivity. see A E Kahn. "Investment eriteria in developmemi". Quarielly Journa: of Ficumomics Harvard I'ni ersity Press. February 1951
 ${ }^{11}$ See Wassily W. Leontief. "The Structure of the L'S Erinomy" Crentifis fancricom. April 1835
 ${ }^{\text {as }}$ See the series published mader the gemera! thle of "A Programme for Growth" by Chapman and Hall.

[^76]:

 - Frr \& further diccwaserm of this prom see Jame: A Lymu. Temage del IID. Awril IMA.
 © Sor J F. Heade. "Eineernal ceommies and linecomoment in a competrive sinntion", Ecanowar lownal. (antirnime, Tuyland, vel 6. Na. 1. March $1 \$ 82$

[^77]: * Afent firp Inlersati nal Development. Washington. lif. Frewher, jom

 07 This requres that suficiens emginerime, finascial and other plans mecranary to carry oul the proposed capital ac ivivi, "Irether with reasonably firm estimsie of the cost af activity in the l'mied States Cuivernment, shall te completed belore any funds are obligated.

[^78]: a After atudyins a number of tralsport feasibility sludien commissioned by AID (Agency for International bevelopnient). Tillo F.. Kuhan comes oo the conclusion that "many of the transport sludies sponsored by AID in effect seek justifications of predetermined decisions as opposed to 'evaluations' of meaninglu! ahermatives". See pere 190 of "Transport plamoina in develoging comni ries" by Clell G. Harral and Tillo E. Kuha of the brooking Institution, 195 (unpublisherd) ; see papes 191-193 for other criticisms.

 * The impression gaired from the interviews with the financial agencies was that comfict between andocien very rarely urcurred. This is usually lecause either the agencies finance different types of projecis or their efforts are coardinated by the Development Assistance Commillee of the OECD of through more of hoc orcanizations surh as fuancial consortia and consultative and , ,-ordinating eroups For examole. consultative groups organised by the IBRD (fir Colombia and Vigerin) aim at bringina actual and po. tential donors torether to consiter the development efforts and external assiatance nends of a specife recipient country For details of ther co-ordinatin arransements amone aid donoris, see the la64 review of "Development assistance ef. forts and policies" puhlished br OECD
 to See Some Techmiques of Derelopment Lamding. IBRD, Washington, D.C. September 1000.
 ${ }^{71} \mathrm{CEGOS}$. the Fremeh mangememt conomitancy firm, will be holding a co..ses, bce in the lase quarter of 1505 with the

[^79]: genefa! title of "Techniquses d'étude économasulue du projet induatriel", and a number of banks and compranic, are at templing to close the gap between theory and practice in the field of project appraisal by holdine courses.

 72 See lame, A Lynn. The diplication of Intestment Criteria in a Detelopment liank. Timas del R/I). Auril 1904. The minimum information required by ithe ExportImport Bank from proposers is lisied in Bryce, up fil (see footnote 59 above), appendix 1. The linernalional Finance Corporation also has a detailed check-liat uellinu oul the insormalion required under eleven mann heating,

 7 This wat orisinally defined as the averame income or beneft divided by the average capital employed
 is Following the memorandum of Presidenl Kirnnedy duted 15 May 1×62 and S. 101 of the 193 Foreien Aid Ap. Wopriations Act, cost benefits pludics are required fir walef or related land-use projects.

[^80]: ning in developing "umbiries" (see fixtone is . whem
 "Ser 11 Ahrama, "The role uf matket rwatich" the

 markel rexearch
 of Management, lital expentitere mathe. , wat that

 195:
 ticr Hall 1-3

[^81]:
 lan.an' |n:

 Wa. ureater than that fiot InMow

 Sinrmikel itm

[^82]: - If Renul: and K iflusth. The replacement of (由)
 11) av : ant a calutd : ! ! envested is greater than the an unt required to meel demand the difference is known a* "utinal capual" and "t whuld normally be sanetioned - thly if it could thom a return if ahout 10 per cent nel labout

 Ja:m 2.4. I May 10.3
 a The diatimction hefureti replacewnemt and enpanian propects is an arbtrary ane, mut. as stetod in enction A. 11 ci.mm nly made by componies in the threp countriey

[^83]: 15 atmo

 Aprillos
 *Pline fetails if the mulels used by the Cimm ann it lenergie for the third plan, see J lessurne. of al
 fuatmote to abive) chap?
 metire examule the ElOF stalet that the procioce wa:

 of existing propect and hat the neth. of emplotied wo. tha
 of actumlised belence shels, the rate ., actualizaliom beme
 7 ive c.ent
 to see P Manct and I Githon. "The aplication of limeal propemming i: invermenti, in the etectic power induatr)

[^84]:

 iry Alvary Cimmeries af iliti

 morat hates

[^85]:

 catial invensive mentich tureld tom meotiored

 I antrotion. Heme

[^86]:

[^87]:

 I apeman firem and Ca In ins 10

[^88]:

[^89]:

[^90]: (d) Comproten \& posinem

 Seltime wices to be met in A meric and esperit mertet.

[^91]:

[^92]: Prest Augusl 1054

[^93]: - In C A Anderean and M I Bromer. ade. Eloration

[^94]: 1 United States Imer Abency Commintor nater Remources, Propocol Prarives tor Ecomumic Analvais of Rove Favin Properls. Winatiagton. DC., Governimem Priming

 - H W: Siager, "Develogemen projects is met of metinal

 Mi. Jotmo Fation From, for on A

[^95]: 10 "Fvaluatiom 3 proierts in predominantly privale enterprise ceconomies". Aellefin an Indurtralicetion and Pro.
 62III. 30
 ${ }^{11}$ Onto Fidtritein. W'aser Resowice Daviopment ite
 vard 1'miversity Prew. 10in, io. 9o. 100

[^96]: liariard linivesuly ferne letriaty w ?
 19/hid. Febrinary $t^{\prime} \mathrm{m}, 3$
 101
 Kratild and O. Kknle:n Multiple Puppure ture lleaviop

 IA wee Stepplen A. Maralin. "The "yparciunity enots of
 bridyr. Kasi, Harvard L'muersity Plets May !'al

 19, Amencen Ricomanis Rovire. Fvantich. 1!1. North. wection i nirefvity lucember topit

[^97]: in This view is oupperied in a receni peper in Arfin. what ags that. wh hy a puthe inveriment can be hionced by
 (puble and prwate should be eqmeled al every indant of time bal the fovernment throagh ils buan and tas policres shumid aim al driving the common rete lowarde the natural rave of mierent. The iplimal policy may well involve mgelive fonkt finascinat.."e guvernmeen lending or retirememal
 pubing inventineat criterse". poper presemed at the itas Western Resources Cimferenc-. Semmar on Wiater Re.

[^98]: 15 Stiglef. op cit. (eee foumode 4 meve). P 23

[^99]: ${ }^{20}$ See Pierre Masse, Ophinal Imeratmmol Decinome. Engiewood Clifs, N J, Prenice-Halt 1982, pp. 10-20. For
 The Threory of /miferof. New Yorh, Macmillan, ISN
 ${ }^{21}$ See, for mample. R. M Solow. "Technical chagre and the agreeate production fanction", Rrimer of Ecomomers and Smaiters, Auguet 1957, and E. F. IMmoun. The Sowres
 Mirs Betove I's, New York, Committo for Eronomie Devplopment, 192

[^100]:

 pubhiralwn, Saies N, en 11,5124

 4 IIB1

[^101]: 34 See fountinte 22 sbove.

[^102]: over all industries for which $M S B_{4} \rightarrow M S C_{1}{ }^{20}$

 20 See I'nited States Inter-Agrncy Committee on Water

[^103]: 21 H W Singer. "Itevelopoment projerts, ay parl of na licnal development prosammes". in Fiemmintion and Fromomic apprisal of frerlopmont Provecti, Inited Valime publication sales No $5111.84 / \mathrm{wol} 1$ pp 121.122

 - Ercoromir Commission for Asia and the Far Faet

 (7)

[^104]: * "Fivaluatium of projects in predominanly private enleprise scommies". Aulletion in Industralitation and Prodectrexts. No 5, United Nations publication, Sales No. Aㄴ! P! : ب
 ${ }^{21}$ Ser fimente 22 ab we

[^105]: ${ }^{12} \mathrm{Op}$. cit (see fontmine 2 zo above). p 30
 :10p it (see formote 22 above), p 201

[^106]: ${ }^{s}$ See H. B. Chonery and Pael G. Clark, Imternadusit: Ecomomics, New York, Wibey, 1999, chap 11

[^107]: al Op an. Ise fuxtuote 9 above i, p. 39
 an On these poinss, are Friedrich and Vera lutz. op cil. I see finatnote I ahovel. pp 22-32, and Pierre Masst. on cia. (see footnole 20 above). pp 42-81

[^108]: 37 Amsterdam, North Holland Publishing C.. 1963. we especially pp 9 to 34

[^109]: * Cinied States Inter- fuency Cummiter on Water Kesources, op cit (see footnote 7 abowe). y 23
 ${ }^{30} \mathrm{Op}$ cit (see footnote 11 above).], 90
 "0"Risk, the discourt tale and invesiment decisums". Americon Ecomomic Retret: Evanston III. Northwestern ('niversity, May lx,
 ${ }^{11}$ Op. cit (see foolncte 18 above)
 42 Op. cil. (see footnole 16 above), pp 31. 71.72

[^110]:

[^111]: 44 See Ermeto R. Fontaine, "Un amaisis lo costos - bruthous suriales the la indusiria aricmere nacional. S A", ill I stmphos de ticomomin, Santiago. (EAholic Univer sity of Chile, 101, pp. 31-32.

[^112]: - i ieneral Manager. Indastrial Credil and Invctimem Cor poration of India (ICIC1). Rombay

[^113]:
 on appraising an industria' pengery in ladia it them porijects. is al the and af lume labs nimety liun lise ther comploted and 1.44 were at various preliminary "age.

[^114]: "not known" comsit of pojectsemer sill in ther

[^115]: - Commonweelth Development "iname Co, Lid. (CDFC), Londom.

[^116]: IDun Aradateret Inc., New York. "The failure reord

[^117]: 2 "Industrial development in Puerto Rico", asper included in Withouls of Indmstrial Detelopment, ecith' Special Kefer. ince to liess neselited Areas (ed. A. Winsemius and J. A. 1'incus), OECD, 1932, p. 107.

[^118]: - For inclance. the Areails pubtisthed by the limell Kingdom Board of Trade in Ecomanuc Tronds. No 122 (I)erember 1\%.31, pp xxi-xxiv, and No. 136 (Febreary 16.5). pl
 cames. P'rice, limplormant and Prenducturn N, I Apris

[^119]: - Nacireal Fimemierta S.A. Mesico.

[^120]: ${ }^{1}$ Bronks: Uniled Natims. Problems of the Steel Making and Transtorming Industries in Latin America (Uniled Nations publication, Sales No.: $57.11 . \mathrm{G} .6$), vole I and 11 ; Iono-Term 7 remds and Probirms of the Ewropeam Steri Indiontry (Unıed Nations publicalion, Sales No. : 60.11 E. 3): Comparisom of Stecl-makimy P'rosesses (United Nations publication, Sales No.: 6211 E.4); W'. I ard, 1. Schomer and T. 'ietorisz, Industrial comples Analyas, Wiley, New York. 1×2.

 Periodica! peblications: Metallurgis: (translaled from Russian), New York: Jowrnal of the Iron and Sieel lmatiTwe, London; Stah Und Eisen. Dusseldorf; Jowrmal of Mrfals. New York. Kaista latimoomerica de Sidermegin, Santiagn. Chite
 ${ }^{2}$ For the purposes of this type of work, "anctivity" is defined as ihe iransformation of sixed propertione of inpuls imlo tixed proporionss of producis and by-products. It can be expresset as a function of the princlan input or the principal produci. A crilumen vecinr is a malrix with ooly chir column
 The equations relatine investment and labour with profutive caperily are the followina:

 $$
 \begin{aligned}
 & \frac{I_{0}}{I_{0}}=\left(\frac{C_{0}}{C_{0}}\right)^{\prime} \\
 & \frac{L_{0}}{L_{0}}=\left(\frac{C_{0}}{C_{0}}\right)^{\mu}
 \end{aligned}
 $$

[^121]: S.worce: Imbartial Programaing Divioion, Nacional Financiera, S.A. (Mexics).

[^122]:

[^123]:

