TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

05446

Distr. LIMITED

ID/WG. 172/7
29 April 1974
Uniies Nations Industrial Development Organization

ARIFOODS - Regional Consultation on Promotional and Technical Aspects of Frooessing and Packaging Foods for Export

Casablanca, Morocco, 23-28 June 1974

CITRUS PROCESSINO IN THE UNITED STATES 1/
A. I. Morgan Jr. *

[^0]We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

Page

Introduction 1
Types of Citrus Products 5
8ido-Effocts 11

Introduction

My purpose is to describe the present state of the citrus-processing industry in the United States. Our citrus industry fs very large. The current value of the $U . B$. citrus crop (as firit) is about $\$ 870 \mathrm{milit}$ on, annually. Because much of this fruit is processed into various citrus products, the cotal contribution of the eitrus industry to the U.S. economy is several times this amount. With $1 / 4$ of the world'a production of oranges and lemons, and $3 / 4$ of the grapefruit, we produce more citrus fruit than any other nation in the world.

Table I
1972 Citrus Fruit Production, U.S. and World
Type of Fruit
Production, metric tons/year
U.S. World U.S. Yercentare of Total

Oranges
Grapefruit
$6.1 \times 10^{6} \quad 23.0 \times 10^{6} \quad 26 \%$

Lesons
2.2×10^{6}
0.6×10^{6}
3.0×10^{6} 73\%
2.1×10^{6}
28\%

I do not clain that our industry is the most advanced in the world or that it ought to gerve as a model for other nations to infate. Not $a l l$ the arts we practice may be inmeasately applicable elewhere, or aven detirable. That will be for you to judge.

While we do export citrus fruit and products, our foreign trade 18 a small percentage of our total production. Nevertheless, because the United States is a very large common market territory, and the most highly-urbanized nation in the world, with exceptionally long domestic food-supply lines, we can support a highly-developed citrusprocessing industry.

Our citrus-growing regions are located in humid, subtropical areas along the gulf cuast, principally fiorida, in parts of the southwestern desert, and in the Mediterraneari-type clinatic regtons of southern California. On the other hand, our largest population centres are in the Northeast. New York and Chicago are 1500 kilometers or more from the citrus-growing regions. Shipping costs are thereiore of considerable significance, and real savings can be achieved by weight and volume reductions. In March, 1974; I made a spot survey of retall citrus frutt and product prices which showed that frozen citrus juice concentrates are being delivered $t 0$ U.S. consumers at less rost than the equivalent weight of fresh truit. Such prociact: are therefore economically efficient in addition to any other attractiveness they migit have for the consumer, such as convemience and year-rouns availability.

Table I!

Retail orange prices, March 1974

Type of fruit or product	Cost of edible portions, solids basis			
Navel Oranges	$\$ 5.30 / k i l o$ of orange solids			
Valencia Oranges	$\$ 7.95$	$" 1$	$"$	$"$

These prices are quite somparable to our domestic prices for other fruits and also for tomato products. The avergge American consumer does not regacd citrus fruit or citrus products as aluxury. Size of the Processing Industry

The proportion of the total U.S. citrus crop that is processed is shown fis table III.

Table III

Agount of i.S. Citrus Fruit Processed

Type of Frutt	Production, metric ton	\% Processed
Oranges	$7 . C \times 10^{6}$	
Grapefrutt	2.2×10^{6}	2s
Lemotis	0.6×10^{6}	$\begin{aligned} & 50 \%-60 \% \\ & 40 \%-50 \% \end{aligned}$

The relative quantities of various products are listed in Table IV.
Table IV

Amount and Type of Citrus Products

Effect of Processing on Consumption Patterns

The dominate edible citrus product is, of course, frozen concentrated orange fuice. Since its introduction about 1945, its growth has been ramarkably steady, and shows no signs of levelling off in the immediate future. It has produced a dramatic change in consumer behavior. Until 1945, most citrus frult was eaten fresh. Only a relatively small amount was processed, principally into canned single-strength fuice. During the two decades 1920-1940, the per capito consumption of citrus fruit steadily increased, as more and more acreage came into production (bearing acreage incraased 2-1/2 fold during that perind). The Awerican consumer appeard to reach a saturation point for citrus products in 1945, at about the level of 40 kg per person per year. With the introduction of frozen concentrates into the market, there then began a sharp decrease in per capite consumption of whole citrus fruit, which has now lovellod off at or telow 1920 levels. Meanwhile, tot al per capita consumption remained fairly steady, and may now be again on the increase. (Since 1940 , bearing acreage has facreased only about 50 percent but is now increasing at about 5% per year.)

The net effect of the availability of frozen orange juice concentrate has been to stabllize the comnodity against the attrition of per capita consumption that has affected a number of other agricultural commodities in the United States.

We are an affluent soclery, and affluence produces changes in aating habits. In the United States for maily years the trend has been toward higher consumption of meat. Meanwhile, total per capita calorie Intake hat remained constant, or decreased slightly. This has resulted in
rather sharp drops in per caplta consumption of flour and cereal products, egge, dairy producte, and noncitrus iruits. by contrast, per capita utilization of citrus (and potatues) has remained virtually steady, apperently only because of the availability of cunvenient processed forma of these two cummodities.

Nutritional Significance In the U.S. Dietary

Citrus fruits contribute significant amounts of caloric energy and vitanins to the American diet, and the propertion is increasing 10wly. At present we receive about 2% of our carbohydrate calorias, 1.3\% of our vitamin $A, 2.4 \%$ of our vitamin B_{1}, and 24% of our vitamin C from citrus fruit. The proportion of these nutrients contributed by citrus fruits has increased by about 10% during the last 15 years.

Sut the story of frozen fuice concentrates, while very important, is by no means the whole story of citrus processing, as everyone knowe. It is only the letest and perhaps the most spectacularly successful development to come along.

TYPES OF CI' CUS PRODUCTS

Cicrus processing probably began with the production of hand-pressed peel oils. This immensely laborious process involved pressing hand-held fruit against a songe, which received the extruded oils, and prevented then from being reabsorbed by the peel when the presaure was removed. Todny, mechanical processing of and/or distillation of oils is an important adfunct to fruit processing, but is by no means the principal process. Figure I indicates some of the major steps in citrus fruit processing, and lists the most important products and by-products.

I will now attempt to give a brief description of the manufacture of several of these products. Limitations of space and time will nut pernit me to go into great detail about any one of them. The main message I would like to leave with you is simply this: the manufacture of each of these products can be almost totally mechanized, even to the point of automatic sorting of fruit by skin oolour about which I will have more to say in a moment.

Sorting

Sorting is a necessary part of the overall processing scheme. Prequently the fruit must be separated tin various grades according to size, maturity, and condition, with some grades going to the fresh market and others into processed products. Automated sorting by size is a very oid art, and there is no particular need to discuss it here. Automated sorting by oolour is a much newer development, though now widely practiced.

One common type of colour sorter operates in the following manner: the fruit is singulated ata then allowed to fall a short distance into d moving cup which is equipped with a hinged trapdoor. While in free fall, the fruit is illum!nated by ilght of appropriate wavelengths. The reflectance of the fruit is observed by meuns of photoelectric cells, usually several in number, dispersed around the path of fall of the fruit. The aignal produced by the photoelectric: cells is massaged, avaraged, and through some elect:onic treachery triggers the release of the fruit from the cup at the instant the cup passes over one of
several conveyors that collect fruit of a specificoolour. These machines are capable of separating frutt 1 ito as many as 4 or 5 different colour classes.

Concentration of Citrus Juices

Citrus fuices are normally concentrated 4 -fold (1.e., to about 42° Brix) for sale as frozen concentrates. Much of the volatile flavour and arome are removed along with the vapour during concentration. Formerly, some of the fiavourwas restored by over-concentrating the juice (e.8., to $60^{\circ} \mathrm{Brix}$) and diluting ("cutting-back") this concentrate with singlestrength juice. Now, however, it has become possible to recover an easance fraction from the evaporators and restore enough of this to the Juice to produce a good-flavoured concentrate without over-concentration and cut-back.

This has come about largely through the adoption by the industry of the so-called TASTE evaporators. (TASTE is a rather contrived acronym for Thermally Accelerated Short-Time Evaporator.) Basically, the TASTE evaporator consiets of a multiple-st ige, multiple-effect system, in which each stage consists of a long (12 m), vertical tube-bundle. Juice flows downward on the tube side and steam or vapor condenses on the shell side. Typically, three or four effects and 4-6 stages are used. The firet everal stages correspond to different effects, but the last 2 or 3 are usually serial sections of the final effect. In older installations the firet stage may be the first effect, and so on, but in later installations the first stage of concentration may occur in the aecond evaporative effect, and vice-versa.

In this version, the fuice is partially preheated (to about $75^{\circ} \mathrm{C}$) and evaporated in stage 1 ; heat being suppiied by means of vapours produced in the second gtage. The concentrate leaving the first stage Is then further heated (to about $95^{\circ} \mathrm{C}$) and sent to the second stage. The second stage, containing the fully-heated juice, is heated by mans of condensing stean, and is therefore technically the first effect. The Vepoure produced in the first stage isecond effect) are used to heat the third, fourth, and Eifth stages, which cogether comprise the third effect. The concentrate from the final stage (about $40^{\circ} \mathrm{C}$) is flashcooled to $20^{\circ} \mathrm{C}$ or less.

Resence is produced by tapping vapors from the shell-side of effects 2 or 3. These "essences" (really vapoar fractions) may be further fractionated and concentrated as desired for their end use. One of the main virtues of the TASTE evaporator (apart from the energy economies of multiple-effect operation) is its short residence time and relatively compact size. it does, naturally, require considerably more energy to opernte than the tieoretical minimun that would be required to boil down the fuice in triple effect. Addftional steam is required to operate the ejectors for removal of noncondensablee and for flauh-cooling the product: pumpe are needed fur transportation of the concantrate betwaen atages. Some data obtained from the manufacture Indicates a steam consumption of abuut $0.4 \mathrm{KG} / \mathrm{Kg}$ of water evaporated. Freesing

Cooled concentrates may be alush-frozen, typically in a scrapedsurface heat exchanger, filled into containers, and hard-frozen in an air-blast freezer.

Q11 Extraction

A variety of mecinnical presses have been civeloped for extracting peel oils. Th is now a rather ojd a t. All have une finciple ia common: The macioine must be constructed so that the oil is transported away from the spongy peri zesidue betors the pres:ure is released-otherwise the ofl whit irmediately be reab:orticd. Some macinines accomplish this by uee of grooved pressing rolls. Another wiaely-usec extractor presses the fruit britween interlocising metal fingers so that the oil oozes ouc between them and may be collectiod separately from the juice.

Alternatively, the flavedo may be separated by cutiting or abrading it away from the fruit. By extracting the comminuted peel with water an emulsion of the oil is obtadned, and the ofl is recurered by centrifugation.

Table V

World iroduction of Citrus Oils

Type of 011	Production, Metric Tons/Year
Swcet Orange	2000
yitcer Orange	30
lemon	1000
l.ime	400

Since about 2 kilos of ofl are recovered from a metric ton of fruit, the total world of production of 3400 metric tons of oil represents about 2 allion metric tons of fruit processed for oil recovery. (A relatively amall percentage of the oranges, but perlaps half of all lemone.)

Pectin

Citrus peels contain pectin, which finds a number of commercial usen; much of it becomes an ingredient of fruit preserves, fams, and jellies. Typically, the pectin is extracted from shredded citrus peels with about 16 parts of hot, acidiffed water at $85-95^{\circ} \mathrm{C}$, and $\mathrm{pH} 2-3$. Starches and dextrins which appear in the extract aiong with the pectin are enzymatically hydrolyzed. Following hydrolysis, the extract is vacume concentrated about. 4 -fold. This concentrate may be sold as liquid pectin. Alternatively the pectin can be precipitated (e.g., with alcohol), dried, and marketed in solid form.

Citric Acid

Although most citric acid is now being produced by fermentation, there may be instances when its extraction from low-valua fruit is feasible. To recover citric acid, ofl-free fruit (lemon) juice is allowed to ferment several days with natural yeasts to destroy pectin and sugars. The femented juice, which contains 3-4 percent citric acid, is filtered and the acid precipitated by addition of lime $\left(\mathrm{CaOH}_{2}\right)$. The precipate may be sold as calcium citrate. Alternatively citric acid may be recovered by redissoiving calcium citrate in a solution of sulfuric acid. In this case the calcium precipitates as calcium sulfate, leaving behind a solution of citric actd. This solution is concentrated to the degree necessary to produce crystalline citric ecid.

Disposition of Pomace

The pomace remaining after extraction of juice, oils, und pectin finds use as animal feed, primarily as a source of caloric energy. Sterile Products

A discussion of citrus processing would not be complete without soma mention of canned fuices and Iruit sections. Such products have a long history of use, although tioy are a ratier small fraction of the total citrua market in the Unlted States, and (excent for canned eingle-strength grapefruit juice) their volume has not grown in recent years. Both orange and grapefruit fuices are availahle, as are canned grapefruit sectiuns. No particularly novel technology is involved in the production of sterilized citrus products. Grapefruit-sectioning machines have been developed. The ones that i have seen have been a marvel of complexity, as you migint imagine. The main engineering problem in this case is accurate placement of the sectioning knives at the divisions between sections, despite the highly-irregular topography of the fruit.

SIDE...E PECTS

In this day $n: .1$ age it is not possible to consider any major change In technology without taking into account tive side-effects it may produce. (In the United Itates concern over side-effects has been iastitutionaliaed in the form of an Office of Technology Assesament, an arm of the Congreas.)

One side-effect of orange-processing rechnology, alluded to earlier, wae chage in the pattern of fruit utilization. Americans now eat
fewer fresh oranges than they used to. There has in fact been virtually no increase in the production of navel oranges (a variety that is not processed) in California since at least 1930. Some of this lack of growth may be attributed to displacement of orange groves by urban expansion in the Los Angeles basin. But in some measure it must also be due to lack of increase in the domand for fresh fruit, in consequence of the avallability of frozen orange fuice. Since orchardists cannot quickly convert from growing fresh-market varieties to processing varieties (and some might no: be able to convert at all, because of differences in climatic requirementy), new lechnology is bound to introduce stresses in an existing industry. This is one kind of side-effect that has to be considered.

A second kind of side-effect concerns energy and other resources. The manuacture, packaging, storage, and distribution of frozen orange juice uses large amounts of energy. Energy is required not only for procesing itself, but for making processing machinery, for manufacture of packages, for freezing and cold storage, as well as for transportation. It is likely that far more nonrenewable resources are consumed in packaging of processed foods than in the marketing of raw products. On the other hand, the shipment and marketing of fresh produce also requires energy. Some new studies indicate that the total energy required to deliver processed fruit may be 10 times that required for unprocessed products. In America, where libour costs have traditionally been high and fuels cheap, the delivered cost of processed foods has heen competitive with fresh food. This has been enough to justify them, and we have not until reccinty, at least, had to be particularly concerned about the effects of energy consumption on our foreign-•payment situation. Elsewhere the situation
might be different and the effects of new technology on the national energy bill might be a very imiortant consideration.

Finally, a few words about envi: moental problems. Yood processing does not ordinarily create any pollutant that would not be created by use of the unprocessed commolity: ti merely concentrates the pollutant In upecific locations. But it is one thing to have a few million tons of orange pomace distributed over the surface of the globe, and quite another to have it all deposited within the boundaries of the state of Florida, where it could annually create a pile about 1 Km on a side and several meters deep. Florida baing a rather small, flat state, a substantial part of it could disappear from view by the end of century unless action were taken to dispose of citrus pomace by some wethod other than land fill. Using it as feed for ruminant animals is an obvious step coward reducing its volure, though perhaps not its magnitude as a pollution problem. In thit way, much of it leaves the locale by air (as CO_{2}), some additional gues out on the hoof, and only the indigestible remainder must be dealt with in situ--but it must be dealt with.

To launch into a discussion of disposition of manures would seem to be far afield from discussion of citrus processing and 1 will, In fact, not duell on the subject at any length. However, I would like to emphasize one consequence of the American historical experience of progressive urbanization, mechanization, antomation (and all the other "ations" we have fallen heir to): we can no longer gingle out one

Kind of activty, sucia di citrea proceising, atil considar it alone, without also onnsidering its sideenients and ateractions in a larger context.

It mav seem tiat. I an teliung yris that a presentation such as thia one is an anachrontow. That is not so. Rather, I am suggestiag that in telling you something about citrus proccsaing, I have told you only one amall part of a much larger and ve:y interesting atory; one that tis bringing about revolutionary cianges in iny field of agricultural and food research. Bue that is a aubject for another time and place.

Pigure 1

Schematic Diagram of Citrue Processing

[^0]: \# Director, Western Regional Researoh Laboratory, Califormia, USA.
 The views and opinions expressed in this paper are those of the author and do rot necessarily reflect the views of the Secretariat of UNIDO. This dooument has been reproduced without formal editing.

