

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

05280

7)1L

Distr. LIMITED 1D/WG.146/112 17 August 1973 ORIGINAL: ENGLISH

United Nations Industrial Development Organization

Third Interregional Symposium on the Iron and Steel Industry

Brasilia, Brazil, 14 - 21 October 1973

Agenda iten 8

CO-OPERATIVE RESEARCH IN ITALY, A COUNTRY WOTH A RECENTLY DEVELOPED STEEL INDUSTRY: TECHNICAL AND ORGANIZATIONAL PROBLEMS AND POSSIBILITIES FOR INTERNATIONAL COLLABORATION¹/

Ъу

Oscar Masi Centro Sperimentale Metallurgico Italy

1/ The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

1976

<u> S U M M A R Y</u>

The paper begins by bracing the basic stages in the development of an iron and steel industry. It describes the structure of the fundamental consumptions, together with steel consumption data, and gives some details relating specifically to western Europe.

The stages in the organizational development of research in the iron and steel field are considered, and there is an evaluation of the present size of research activity in the industry as compared with its size and structure.

The Italian example in then discussed in detail, in relation to the development of the world iron and steel industry.

Since the recruitment and training of engineers suitable for research organizations is a crucial problem, especially for developing ' or recently developed countries, consideration is next given to the past and present status of university teaching of metallurgical subjects, and an outline is given of the general problems in teaching metallurgy.

The origin, manning, and buildings of the Centro Sperimentale Metallurgico in Rome are next described. This leads on to a section on the organization of research in CSM, with investment and operational costs.

Special attention is paid to the participation of CSM in joint research programmes sponsored by the European Community, and to the meaning and importance of co-operation at regional level.

There are three appendices, detailing plant and equipment installed and in operation at CSM.

Section 1

The background, the objectives, the stucture, and the motivation of the Centro Sperimentale Metallurgico in Home may be of some general interest to this Symposium, largely by reason of the fact that Italy, having recently joined the ranks of those countries for whom the iron and steel industry is an important factor in their economic and industrial structure, can be taken as an immediate reference point by those countries that are in the process of passing through the initial stage of development.

A centre for applied research and its problems may be described and assessed in various ways. Straightforward technical data can only be of interest, if at all, to a limited number of specialists. However, taken in the broad context of their industrial sector it is possible to consider their importance in relation to the development of their industry, and this is of much greater interest for this Symposium, and especially for this Mighth Session.

In this section an attempt has been made to bring together certain relationships, of greater or lesser importance, which can be established between data relating to research and to the development of the iron and steel industry on the one hand and certain parameters of a more general nature relating to this industry at different stages of its development. It is by no means the intention to construct from these relationships any reference models against which every country can set up its own iron and steel research policy; it is intended, on a more modest scale, to offer to colleagues some themes worthy of consideration and to draw out their considered reactions, whether favourable or otherwise.

As a first observation, let us repeat something that has been expressed many times before, namely that apparent per capita steel consumption (defined in the accepted way) is a significant index of the degree of economic development of different countries.

Figure 1 shows graphically the figures achieved in the years indicated over the period 1913-1970 by regions and for typical countries which in 1970 were at the stage of major world consumers (Sweden), average-major consumers (ECSC countries, Japan), consumers with over 200 kg per capita (Italy, Spain) or at present nearing this level (Argentina, Brazil, Mexico, Venesuela). The importance of a consumption of about 200 kg per capita

- 3 -

Is shown in the three diagrams on Fig. 2 — For three countries that are geographically neighbours and which have a generally similar socioeconomic structure (and also with supply practices that are sufficiently comparable), such as Prance, Italy, and Spain, the situation that formerly obtained (high concumption of forinaceous materials, low apparent consumption of steel) is compared with the present situation : a per capita consumption of 200 kg comes at the intersection of the two curves for all three countries. The three economies have obviously been transformed, at various dates (1952 - 1958 - 1967), from predominantly agricultural to predominantly industrial. This general critical level corresponds, in western Europe, to the entry into operation of national co-operative iron and steel research organizations - IRSID in France (192 kg in 1949), CNRM in Belgium (201 kgin 1949), BISRA in the UK (287 kg in 1949), CSM in Italy (267 kg in 1963), so far as those countries, the structure and history of whose iron and steel industries is roughly comparable, are concerned.

The origins of these coincidences becomes clear if one analyses the distribution of consumption in the various user sectors in relation to the increasing totals.

Figure 3 shows a disgram taken from a UN publication which illustrates graphically the dynamics of development by type of consumption. This figure will be interpreted with the same reservations expressed in the publication from which it derives, namely that the composition of consumption is, to variable extents, influenced by the industrial specialization of the country concerned, and thereiore at an early stage of development the discrepancies in relation to average operations are larger and more frequenc. However, even with these reservations, at a per capita rate of consumption of 200 kg there is a change in the rate of investment consumption and obviously an increase in more diversified consumption, in which it is not only the basic physico-mechanical properties that determine the choice of steel but also a more "scientific' correspondence of the material with the specific service requirements.

The relationships between apparent steel consumption and gross national product have been analysed broadly and now constitute the basis of forecasts of total consumption. Less attention has been paid to the relationships which derive for the most part from these basic correlations; in the same way that the major from and steel consumptions can be defined and characterized, so it is necessary to identify the priority objectives for research, which means that the erscatial problem for those responsible

- 4 -

for research is to concentrate the forces and skills that are necessarily limited at the outset, and can grow only plowly, on a few important problems.

It would appear logical to assume that those countries that wish to tackle the development of their iron and steel industries with an adequate level of research activity should solve problems relating to the following :

- 1. the preparation of an initial nucleus of qualified personnel;
- 2. study of the most suitable raw materials and energy sources;
- 3. the production of essential finished products which meet the typical requirements of the country's steel market;
- 4. selection and optimization of processes and equipment in the light of the local labour situation and local raw-materials and energy possibilities;
- 5. the introduction of user industries which favour the most rapid achievement of economic stability and which are characterised by low specific investment costs, simple transformation cycles, and the possibility of gradual replacement of existing oraft activities.

After having collaborated in the choice of process and location of the production complex and after having contributed to the resolution of problems relating to the start-up and adjustment of the production cycles which are successively installed, it is up to the research organisation to define the best characteristics of materials that have to be supplied to meet the current market applications that are gradually set up.

Section 2

In the same way that it is today possible, based on past experience, to Forecast for the icon and stock industry the initial moment for a more specific activity, it is equally possible is the field of applied research to predict the developments in remearch activity as productive capacity gradually increases. In other words, the decision to establish an applied research organization should not only lay down the extent and the initial methods of the innovative force but should cleo be orientated on the basis of the rational development of the industry in the immediate future.

It is appropriate to dwell a little on this concept, because the real difficulty in taking the decision to set up a research organisation is not merely that of realising the first phase but, more important, that of visualizing the size and the capabilities in a proper parapective, in relation to the stabilizing size of the sector. The steel industry is accustomed to this type of of long-term planning in its production departments; however, forecasting for a research organization is linked with a still greater degree of uncertainty. It is considered that a research organization needs a period of between five and ten years to begin to become productive in terms of knowledge and innovation after its establishment; the structure planned at the outset will thus begin to reveal its efficiency in the areas originally laid down between its fifth and It will therefore be necessary to carry out certain logical tenth years. changes, by reducing or increasing, in the structure of the organisation, between the third and the fifth years, thereby anticipating probable changes in the field of operation that may come about between the eighth and thirteenth years, and so on. The periods indicated should not be regarded as excessively long; however, they cover the training of personnel, identification of problems of a specific nature, acquisition and/or construction of suitable equipment, all of which involves decisions that are fraught with risk, anticipation, and good sense, but above all in close contact with the organisations and individuals responsible for the overall development of the sector.

In countries with a long-established tradition, iron and steel research developed first at the works themselves, in laboratories orientated towards immediate problems, whilet at the same time, is some universities, in a sporadic way and for reasons that were above all due to situations or individuals, problems of a more general nature began to be tackled.

- 11 - **-**

The works laboratories then became identified with research workers better suited to deal with medium-range problems, and no this was followed by the establishment of laboratories removed from the production units, with tasks of a wider nature, and with certain links with the universities, which had meanwhile set up specialized laboratories.

A later stage is represented by the establishment of co-operative research centres, some of these as a result of state initiative, especially when the companies concerned are numerous and of low or medium capacity.

The ultimate stage of this evolutionary process is the establishment of continuous and effective links between the various similar centres in a single economic region and of the different countries themselves, resulting in the development of common research programmes and eventually in the exchange of research workers.

Numerical data on iron and steel research which are valid when comparing different countries at varying stages of development are not easy to come by; as a first systematic attempt at comparative study one may quote the one whose results were brought together in an OECD publication of 1969 (2)). On the basis of this and other published reports (11, 17, 33, 41, 45), on the significance of which one must express considerable reservations, it is possible to construct diagrams which give an idea of the costs and the number of research personnel in certain of the more advanced iron and steel industries, collected at various stages of their development.*

Figure 4 shows research costs related to progressive national steel production figures, between 5 and 120 million tons pur year, over the period 1955-1972. The single points appear to describe a rate of progression characterised by - up to a production of 30-40 million tons a year an initial stage, in which the unit cost per 1000 t increases almost linearly and a succeeding phase in which the cost rate decremes until it reaches a maximum level. From this attempts are made to establish similar correlations between the number of graduate research workers (per million tons of steel) and the total production (see Fig. 5) : there is growth during the first stage (mimilar to that shown in Fig. 4), while for higher productions there means to be a reduction in this parameter. Comparing

. 7

^{*} The author would be grateful to those who could supply data that are more complete and more up-to-date than those shown in the diagrams.

Figs. 4 and 5 leads to the conclusion that above a contain total production the major costs are absorbed by ancillary percennel and by equipment.

When research expenses are calculated in terms of sales, it is noteworthy that - in the USA, for example - the iron and steel industry ranks low among the manufacturing industries.

In 1970, in fact, by comparison with a general average of 2.2% (between maxima of 5.1% for the optical instruments, surgical, and photographic industries and minima of 0.4% for the food and kindred industries and that of wood and its derivatives), the iron and steel industry achieved only 0.7% (0.75% in the same year for Japan).

It is evident, however, that these indices represent average values in the countries concerned and in general in the more developed countries there exists an industrial structure that has achieved a balance between its various components. In developing countries it can be seen that, where there is satisfactory local availability of raw materials (iron ore and coal) and of energy sources (oil, natural gas, hydroelectric power), iron and steel industry development becomes, at least for a certain time, an essential, if not the sole, component of economic development.

The data below (from Table 1) show that the proportional total contribution to industrial production of coal, iron ore, pig iron, and steel have for the countries selected from among the more developed - been of roughly the same value during the three-year period 1936-1938, and that whilst pig iron and steel have maintained their very high values, those of coal and iron ore have significantly decreased. It can be seen that if a minimum production of 1% of the world production of the four materials

Average 3-year period	Coal \$	Iron ore	Pig iron	Steel %
1936-1938	82.9	81.5	89.6	89.5
1952-1954	79.2	80.4	82.0	82.2
1%2-1964	59+3	62.8	82.0	82.2
1970-1972	55.6	52.6	80.7	80.3

- 8 -

Table 1. Development of coal and iron ore mining and of pig iron and orade steel production in 10 industrialized countries and in the world

Motorial triant France price France (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)												(1000 1)	(†)
1936-1936 1936-1936 1936-1936 1936-1936 1936-1936 1936-1936 1936-1936 11736-4169 1736-566 440 45248 11736-566 563		Average triennial period	Benelur	France	F.R. Germany	Italy	M	Smeden	Japan	NS SU	V SU	Total	World
42247 45360 130455 1082 235653 449 45248 111396 41693 2013 irren 5145 34772 924 960 13132 13377 664 26982 5073 irren 5145 34772 9545 1796 16520 2145 17196 14473 2933 14475 creat 59519 55753 155686 1077 228700 - 44080 248000 4175 creat 29539 55753 155686 1077 228700 - 44080 248000 4175 creat 29539 55753 155686 1077 228700 - 44080 24000 2475 creat 2136 51047 16301 3553 17742 9942 2420 2745 2475 2542 254248 42456 5675 56717 6505 56717 6505 5777 6505 5777 6505 57777 6505		1936-1938											
Image 6145 34772 9524 960 1312 13377 664 2632 5073 Image 5137 660 1971 1910 1033 5832 1733 2993 14472 2933 44773 2933 4775 2933 4275 2933 55753 155686 1071 228700 - 44080 248000 4175 Incen 7392 9091 1824 1231 11442 2933 9393 9393 Incen 7392 9091 1824 1733 1649 2630 2430 9393 Incen 7392 9091 1353 17192 1649 26303 9303 <	Coal		42247	45360	130496	1082	235663	949	45248	117 206	000917	1 033 060	
Incase 5137 6681 1571 964 1761 635 2293 1477 2933 5832 17333 4290 1552-1954 5091 6950 16520 2145 11910 1033 5832 17333 4290 1552-1954 7553 15566 1071 228700 - 44080 240000 4175 rene 7392 9091 14324 1231 11442 966 4200 243000 4175 etten1 7729 10097 16991 3553 17796 1777 7456 36018 914 17729 10097 16991 3553 17796 1777 7456 36018 914 1962-1964 7178 1574 12776 2455 259248 42456 or 21316 51047 147898 582 137192 167192 or 21363 582 17796 2455 2455 259248 42456	Iron ore		6145	34772	8924	960	13122	m	664	26982	50575	15,552,511	-
area yoy oyy oyy <th></th> <td></td> <td>131</td> <td>6681</td> <td>15871</td> <td>364</td> <td>1781</td> <td>635</td> <td>2293</td> <td>14472</td> <td>29233</td> <td>82,957</td> <td>92.500</td>			131	6681	15871	364	1781	635	2293	14472	29233	82,957	92.500
Core 29539 55753 155686 1071 228700 - 44080 248000 4175 9949 irron 7392 9091 14356 1450 16123 1649 1062 58859 9175 e steel 7792 9091 14356 14706 16123 1649 1066 9446 9460 248000 4175 e steel 7729 10007 18824 1231 11442 946 2005 5943 913 e steel 7729 10007 18891 3853 1776 1177 7456 36018 914 0562-1964 7166 51007 147896 582 193756 - 52475 259248 424266 056 2355 13718 1754 15756 2452 259248 424266 057 1057 14413 15756 24252 2460 11457 68005 10541 057 11079 145163	19918	1052-1054	1600	0660	18520	2145	11910	1033	5832	17333	42906	111,720	
Core 29539 55753 155686 1071 228700 - 44080 248000 41757 irron 7392 9091 14356 1450 16123 16449 1062 58859 9949 etteel 7729 10497 14824 1231 11442 996 2500 9134 etteel 7729 10497 16890 3653 17756 24256 5947 or 1962-1964 14769 582 198756 - 52452 259248 42466 or 11959 14695 24780 5602 171792 7675 or 1970-1972 11059 14695 24780 25430 2052 509140 511452 or 1970-1972 10903 11764 16138 - 26515 289140 511452 or 1970-1972 10903 1070 11568 29526 26515 289140 511455 or 11970-1972<		すうにしょうで											
ore 6884 42823 14356 1450 16123 1649 1062 5859 9949 irron 7392 9091 14824 1231 11442 996 4200 2136 5913 a steel 7739 10497 18391 3653 17196 7165 5947 a steel 7729 10497 18391 3653 582 193756 24256 59478 424266 areal 19609 23353 17754 15756 24252 259248 424266 areal 12057 14759 5622 13713 7675 24252 26903 7675 areal 12057 18169 33833 9902 23449 39503 29722 7675 areal 12057 18169 33833 9902 23449 39502 76514 7777 68003 areal 12057 18169 33613 5002 22452 289140 71455	Coal		29539	55753	155686	1077	228700		44080	248000	A17526		
iron 7392 9001 14824 1231 11442 906 4200 7486 5947 e steel 7729 10007 18991 3533 17796 1476 36018 9134 1962-1964 21316 51047 147898 582 193756 - 52452 259248 424266 0 6805 62355 13718 1754 15756 2455 259248 42426 1970-1972 11059 14696 24780 3622 15430 2052 103547 1970-1972 11059 14596 24780 3623 2623 6423 10156 39211 6805 1970-1972 1700-1972 2663 117049 264 1660 3002 20522 103541 16456 1970-1972 12067 31873 8784 16132 26514 16202 20524 103561 103561 1970-1972 19803 31873 8784 16132 2806 <th>Iron ore</th> <td></td> <td>6884</td> <td>42823</td> <td>14356</td> <td>1450</td> <td>16123</td> <td>16449</td> <td>1062</td> <td>58859</td> <td></td> <td></td> <td></td>	Iron ore		6884	42823	14356	1450	16123	16449	1062	58859			
• steel 7729 10497 18991 3853 17795 1779 1456 38018 9734 1962-1964 1962-1964 21316 51047 147898 582 198756 - 52452 259248 424266 1962-1964 11059 147898 582 198756 - 52452 259248 42426 ore 6305 62355 13718 1754 15756 24552 25452 259248 42426 1970-1972 11059 14596 24780 3622 15430 3054 30541 160552 103541 1970-1972 12067 18189 23833 9902 23449 3050 32948 80522 103541 6803 ore 4567 36933 117049 284 145188 - 36515 289140 511458 ore 4567 36933 117049 2844 16506 2039140 511458 ore 4584 165182 28239 6423 1010 11508 33012 16206 11328 </th <th>Pig iron</th> <td></td> <td>7392</td> <td>1606</td> <td>14824</td> <td>1231</td> <td>1442</td> <td>966</td> <td>4200</td> <td>27.86</td> <td>59470</td> <td></td> <td></td>	Pig iron		7392	1606	14824	1231	1442	966	4200	27.86	59470		
1962-1964 1962-1964 are 21316 51047 147698 582 198756 - 52452 259248 424266 iron 11059 14596 582 13718 1754 15756 24252 24502 137192 7675 iron 11059 14696 24780 3622 5430 30522 103541 1970-1972 10059 14696 24780 3622 24543 30522 103541 1970-1972 15067 18189 33833 9902 23449 30522 103541 1970-1972 4567 36983 117049 284 145188 - 36515 299140 511457 ore 4881 56239 6423 1010 11568 - 36515 299140 511457 ore 4881 36223 13713 8784 16132 2806 71616 89211 79516 irron 18913 31870 18200 25902 5305 72652 11223 erteel 18931 231	Crude steel		7729	10497	18991	3853	17795	Lili	7456	38018	14616		
21316 51047 147896 582 198756 - 52452 259246 42426 iron 6805 62355 13713 1754 15756 24502 137192 76756 iron 11059 14696 24780 3622 15430 2052 20562 58777 68053 iron 11059 14696 24780 3622 15430 30522 103541 iron 12067 16189 33833 9902 23449 3050 22948 80522 103541 iron 12067 16189 33833 9902 23449 3050 22948 80522 103541 ore 4567 3693 117049 284 145188 - 36515 289140 511455 ore 4581 56239 6423 1000 11508 33012 1620 20220 869221 19231 ore 4581 56233 6423 1000 16132	4-	1962-1964								•			
ore 6805 62355 13718 1754 15756 24252 2460 137192 7675 iron 11059 14696 24780 3622 15410 2052 20562 58777 68005 1970-1972 12067 18189 33833 9902 23449 39560 32948 80522 10354 1970-1972 4567 36983 117049 26423 1000 11508 33012 1620 202200 86895 ore 4567 36983 117049 284 16132 2806 71616 89211 79516 iron 15814 18813 31873 8784 16132 2806 71616 89211 79516 iron 1581 23557 43019 18200 25902 5305 92926 120524 11922 erteel 18581 23557 43019 18200 25902 5305 92926 120524 11922 ces: <	Coal		21316	51047	147898	582	193756	t	52452	259248	APAPED		1 346 000
iron 11059 14656 24780 3622 15430 2052 20562 58777 6800 1970-1972 12067 18189 33833 9902 23449 3960 29552 58777 6800 1970-1972 4567 36983 117049 284 145188 - 36515 289140 511455 ore 4567 36983 117049 284 16122 285914 511455 ore 4567 36983 117049 284 16122 28926 1716 39211 79516 ore 4881 56239 6423 1010 11508 33012 1622 20524 119516 irom 15814 18801 23557 43019 18200 25902 53059 92926 120524 119221 etteel 18581 23557 43019 18200 25902 53059 92926 120524 119221 cest Estenduby Statistics - Iron and Steel 1/1973 United Mations - Statistical Batistical Eneruthy Enrery Statistics - L	Iron ore		6805	62355	13713	1754	15756	24252	2460	1 27 1 02	76750		
e steel 12067 18189 33833 9902 23449 3960 32948 80522 103547 1970-1972 4567 36983 117049 284 145188 - 36515 289140 511452 ore 4567 36983 117049 284 145188 - 36515 289140 511452 ore 4567 36983 117049 284 16132 28908 71616 39211 79516 iron 15814 18813 31873 8784 16132 28008 71616 39211 79516 iron 15813 31873 8784 16132 28008 71616 39211 79516 iron 15813 31873 8784 16132 28008 71616 39211 79516 e steel 18561 23577 43019 18200 25902 5305 92926 120524 119221 ces: Bi-eonthly Statistics 171973 United Kations Stain u. Eisen - 75 (1955) Mo Bi-eonthly Energ Statistics 1797	Pig iron		11059	14696	24780	3622	5430	2052	20562	58777	68002		
1970-1972 1970-1972 1970-1972 4567 36983 117049 284 145188 - 36515 289140 511456 are 4567 36983 117049 284 145188 - 36515 289140 511456 are 4881 56239 6423 1010 11508 33012 1620 .002200 86892 are 15814 18813 31873 8784 16132 2808 71616 89211 79516 areal 15813 23577 43019 18200 25902 5305 92926 120524 119221 cest Exc Lintenbaure Annal Statistics 171973 United Mations Statistical 179225 cest Exc Lintenbaure Annal 23007 19505 92926 120524 119221 cest Exc Lintenbaure Annal Statistics Example 75 (1955) 105255 Bil-eonthly Statistics Linted Mations Statistical 171973 Bil-eonthly S	Crude steel		12067	18189	33833	3066	23449	3960	32948	80522	103547	318.437	1014 1014 1017
4567 36983 117049 284 14518 - 36515 289140 511456 iron 1581 56239 6423 1010 11508 3012 1620 202200 86892 iron 15814 18813 31873 8784 16132 2808 71616 39211 79516 e steel 18581 23557 43019 18200 25902 5305 92926 120824 119221 e steel 18561 23557 43019 18200 25902 5305 92926 120824 119221 ces: Exc Luxembaurg Annual Statistics - Iron and Steel 1/1973 United Mations - Statistical Ratio Bi-eonthly Statistics - Iron and Steel 1/1973 United Mations - Statistical Ratio Ratio Ratio Bi-eonthly Energy Statistics - Annual - 1960-1971 Bi-eonthly Energy Statistics - Iron and Steel 1/1973 United Mations - Statistical Bi-eonthly Energy Statistics - I/1973 Bi-eonthly Energy Statistics 1/1973 Gatistical <th>*</th> <td>1970-1972</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td></td>	*	1970-1972								I			
4881 56239 6423 1010 11508 33012 1620 202200 86892 15814 18813 31873 8784 16132 2806 71616 89211 79516 15814 18813 31873 8784 16132 2806 71616 89211 79516 15814 18813 31873 8784 16132 2806 71616 89211 79516 18581 23557 43019 18200 25902 5305 92926 120824 11922 8C Iureenbaurg Annual Statistics - Iron and Steel 1/1973 United Mations 5tatistical Bi-conthly Statistics 17973 United Mations 5tatistical Bi-monthly Energy Statistics 1/1973 United Mations 6f Statistical Bi-monthly Energy Statistics 1/1973 United Mations	Coal		4567	36983	117049	284	146188	1	36515	289140	511452	1 270 5VE 1	
15814 18813 31873 8784 16132 2808 71616 89211 79516 18581 23557 43019 18200 25902 5305 92926 120524 11922 85<- Lureebourg Ammal Statistics - Iron and Steel 1966 5305 92926 120524 11922 85<- Lureebourg Ammal Statistics - Iron and Steel 1/1973 United Mations - Statistical 841005 N.Y. Bi-wonthly Statistics Ammal - 1960-1971 Mations 75 (1955) N. 841005 N.Y. Bi-monthly Energy Statistics 1/1973 United Mations Statistical 841005 N.Y. Bitional territory in the period under consideration 71973 0f Statistic 6f Statistic	Iron ore		4881	56239	6423	010	11508	33012	1620		B6895		
185812355743019182002590253059292612082411922BC - Lureenbaurg - Annual Statistica - Iron and Steel 1/197318666Stail u. Eisen - 75 (1955) NoBi-eonthly Statistics - Iron and Steel 1/1973United Mations - Statistical Natistics - Annual - 1960-1971Stail u. Eisen - 75 (1955) NoBi-eonthly Statistics - Annual - 1960-1971Statistics - Annual - 1960-1971Statistics - Annual - 1960-1971Bi-eonthly Energy Statistics 1/1973Bitomal territory in the period under considerationStatistics - Statistical No	Pig iron		15814	18813	31873	8784	16120	2808	71616	A0211	70516		
ESC - Lurembourg - Ammal Statistics - Iron and Steel 1966 Stahl u. Eisen - 75 (1955) No Bi-conthly Statistics - Iron and Steel 1/1973 United Mations - Statistical Energy Statistics - Ammal - 1960-1971 Bi-monthly Energy Statistics 1/1973 Mational territory in the period under consideration	Crude steel		18581	23557	43019	18200	25900	5305	92926	120624	119223	267,537	532,166
ESC - Luxeenbourg - Ammal Statistics - Iron and Steel 1966Stahl u. Eisen - 75 (1955) NoBi-eonthly Statistics - Iron and Steel 1/1973United Mations - StatisticalBi-eonthly Statistics - Ammal - 1960-1971Naited Mations - StatisticalBi-eonthly Energy Statistics I/1973Bi-eonthly Energy Statistics I/1973Bi-eonthly Energy Statistics I/1973Statistics I/1973Bi-eonthly Energy In the period under considerationof Statistic													
- 1960-1971 Mations, N.Y Mations of Statistic Mariod under consideration		1	bourg - An mthly Stat	istics -]	៍ភ្ម ឆ្ន	11	1	6 B	а. Ма	- 75 (- Stat		т о́	Urited
in the period under considered		Bi-mo	o Statisti uthly Mer	cs - Annu	1 👖	120				Matic of St	2H ()	- Morthly Bulletin	alietin
		Matio	mal territ		e period und	ħ							

referred to in assumed to be an index of a sufficiently high industrial activity, the number of countries that attain this level present certain aspects that are indoubtedly interesting and significant. The following tabulation shows the number of countries that have exceeded $\frac{16}{2}$ of the average production of coal, from one, pig aron, and steel in the two end periods considered in Table 1 and also the number of countries which in the period 1970-1972 exceeded 1% of pre-war production :

Feriod	Coal	Iron ore	Fig iron	Steel
1936-1938				
No. of countries				
with production 21.% of world	13	12	11	12
production	(= 12.5 Mt)	(= 1.89 Mt)	(= 0.92 Nt)	(= 1.24 Mt)
1970-1972				
No. of countries				
with production >1% of world	13	17	18	16
production	(= 21.2 Mt)	(= 7.63 Mt)	(= 4.13 Mt)	(= 5.82 Mt)
No. of countries				
with production >1% of world	14	32	30	30
production		-	-	-
1936-1938	(= 12.5 Mt)	(= 1.89 Mt)	(=).92 Mt)	(= 1.24 Mt)

To the largely unchanging structure of the coal industry there has been added, over the period of time covered \Rightarrow a little more than 30 years a considerable degree of proliferation in the other sectors connected with this entity; this diversification can lead either to the use of a substitute source of energy instead of coal, using appropriate production cycles, or to the breakdown of the link between the location of raw materials and the installation of iron and steel plants, which has been in evidence since Norld War II. It is to this basic fact, as is well known, that one may attribute the enormous increase in sea transportation of iron ores, which is shown diagrammatically in Fig. 6 and in quantitative terms in Fig. 7.

To put iron and steel research into a proper perspective, and one which corresponds to one of its essential roles, that of economically optimizing available raw materials suprlies to the limit that is technologically possible (the other ecsential role being the economic optimization of the contribution of compositional elements up to the limit of their physico-mechanical properties), it is worth briefly considering the present and future availability of energy sources which can in one way or another be utilized in the iron and steel industry. First of all, let to been is mind their, is the second are concerned, the situation can be represented as above in Table 3. Table 5. 3 shows the position regarding proved reserves of various primary energy sources. Table 4 gives a comparison between the present orune steel production rates and the predictable available reserves of energy. The imprecision of such — data is recornized and it is moreover obvious, in view of their indequacy in terms of analytical basis, that they must be based upon a — detailed and up-to-date knowledge of the local situation. However, taking into account the great mass of past research and, most likely, of future research, they will find their inspiration in the data collected in this table.

Section 3

It is appropriate at this point to deal, for the particular case of the Italian iron and steel industry, with the basic directions that iron and steel research must follow, and the frame of reference within which the development of the Italian iron and steel industry has taken place - and will presumably continue in the future.

Table 5 gives the ensatial data relating to the development of Italian production over the past forty years, from which may be deduced the following figures relating to the percentage of world production :

Year	Coal	Iron ore	P-6 LFOR	<u>Steel</u>
1929 -1931	30.1	0.3	0.8	1.8
19 36-193 8	•	0.5	0.9	1.8
1952-1954	•	0.5	0.8	1.7
1962-1964	*	0.3	1.3	2.6
197 0-197 2	*	0.1	2.1	3.1

On the basis of inventments declared by companies to the EEC, as laid down by Articles 46 and 47 of the PCSC Treaty, it is possible to construct the predictable development over the 1966-1975 decade of pig iron and steel production, their location, and the breakdown into different fabrication processes (Table 6). The following results emerge :

- a. the LD process has become the predominant one, passing the electric furnace in the three-year period 1971-1973;
- b. the LD converters will be located almost exclusively at coastal sites, supplied with imported coal and iron ore used for pig iron production;

- 11 -

Table 2. World iron ore reserves, by geographical areas (Situation, January 1966)

Geographical areas	Neasu	red, indic re	sted, or is serves	nferred
	Millio	n tona	Р	(\$)
Western Europe	20034		8.07	
Eastern Burope	104331		42.03	
Total Burope		1243/55		50.10
North America	52895		21.32	
South Amorica	<u>41767</u>		16.82	
Total America		94662		38.14
Africa		12606		5.08
Par Hast and Middle East		8406		339
Ovenia		8152		3.29
<u>Total World</u>		248191		100.00

Reserves measured, indicated and inferred are defined as mineral mass considered exploitable for usable material under existing economic and local conditions. The term "Reserves" is used only to refer to specific areas on which enough geological work has been done to ensure with some degree of acouracy the physical existence of ore.

"The World Market for Iron Ore"

Source: United Nations publication Sales No. P.69.II.E.10 (ST/ECE/STEEL/24)

Definition of Geographical Areas

Source: United Nations Standard Country Code, Statistical Office of the United Nations, Statistical Papers, Series N. No. 49 - New York 1970

Table 3. Actured	Received of Different	Privery Bu my Sources and
	Consumption for	1909
		É.

Total Energy Communitien 1969: 32.5 x 10² kcal (World Total, Excluding Socialist Economy Countries)

		n sin <mark>tiganan kali</mark> nan s		Uı	raaium for	reactors	3
	Solid			The	mal	Fai	st
	fuels (coal and lignite)	Crude oil	Natural gas	Heat equiva- lent of kWh produced		Heat equiva- lent of kifh produced	heat energy
) Unit Measurement (UN)	t	t	⊬. Jim ³		kg	;	
(UN x 10')	a) 420 b) 2300	65	32		0,64	5) ^c	
) Energy equivalent, Goal/UN	d) 7+4 e) 4	10	8,2	9 5	316	2850	9500
) Energy content of remerves, 10 koal	a) 2600 h) 14900	6 50	262	61	204	1840	6150
) 1969 consumption 10 ¹⁵ koal	8,2	17,4	6,2	-	-	-	-
) Ratic d/e = no. of years consumption for each source	a) 320 b) 1700	37	42	-	-	-	-
) Ratio d/world energy consumption = no. of years reserves (considered as sole energy source)	a) 98 b) 430	20	8	1,9	6,2	55	190

te: a = Neasurel reserves

- b Measured reserves + estimated reserves
- $\sigma = 0$ res with extraction cost lower than \$ 10 per lb. $U_3 O_8$
- d = Coal
- e Lignite

urce: BELLANO, W., "Metallurgical Coal in the Soventies" (I.I.S.I. Conference, Paris, 1970) - E.N.I., "Energia idrocarburi nel 1969"

Table 4.	Crude	Steel Production and Iron Ore Mederves and	1
	Power	Reserves Expressed as Percentages	
(World	Totals	, Excluding Socialist Economy Countries)	

Year 1969	North America	Japan	ECSC Countries	Remainder of Western Europe
\$ of world steel production	31.6	20,2	26.5	11.2
\$ of world iron ore reserves*	32.85	0.3	6.07	12.04
\$ of solid fuel resources	65	0.4	13.5	8.0
\$ of crude oil resources	8.0	-	0.30	0.25
\$ of natural gas resources	28.4	-	10.5	4. 8 [·]
\$ of uranium resources	57.2	0.3	5•7	2.7

Situation 1 June 1966

Source: BELLANO, W., "Metallurgical Coal in the Seventies" (I.I.S.I. Conference, Paris, 1970) - E.N.I., "Energia e idrocarburi nel 1969".

The world market of iron ore - ONU, Marché mondiale du minéral de feu - New York 1968.

Table 5. Development of Italian Iron and Steel Production

1929-1972

		Pie	Crude	e V		A q	by process (\$)		
Period	iron ore (000 t)	iron (000 t)	rteel (000 t)	special steel	Basic Bessemer	Open Hearth	Electric	e	A cid Bessenar
\$: 1929/31	665	622	1,758	(6•9)	B	87.3	12.0	ł	0 • 5
gc/96ó1 : ø	1,010	873	2,145	(12.0)	I	74.6	25•3	I	0.1
ø : 1952/54	1,450	1,250	3,850	14.8	7.3	49.3	43•4	I	I
\$: 1962/64	1,750	3,600	9 ,9 00	12.0	5.7	50.9	41.0	2•~	ł
5 : 1970/72	1,010	3,760	18,200	14.8	1	23.6	40•6	3 5 •ĉ	I

Source: Relazione Banca d'Italia - Economia Italiana - 1531-1936, Vol. II - Rome

150 - Luxembourg - Annuario statistico "Siderurgia" 1966-1968-1970 - Bollettino bimestrale No. 5, 1972 Commission Economique pour l'Europe - Nations Unies - 1968 - Doc. ST/ECE/STEEL/22 - No. F.53.II.E.4 <u>ASSUTER - Industria siderurgica italiana nel 1972 (Milan 1973)</u>

IB. ø = triennial average

() = estimated

Table 6. Development of from and Steel Production Capacity in Italy (1966-1972)

			ΡΙΟ	1 r R	C N					
Regior.	1966	1907	1.963	1964	1970	19 <i>1</i> 1	1777	1977年	1974+	1975*
	1	2	ĵ.	4	Ę	Ê	ï	-	9	16
Coastal 🐔	93.6	94.3	93.8	98.•7	93.5	94+5	95.2	25.7	95.6	95.9
Other %	6.4	5.7	6.2	7.5	6.5	5•5	4.3	4.3	1.4	4.1
Total Mt	7.8	8.6	8.7	9.6	10.7	11.9	12.5	14.0	16.0	17.0
ن بالانترابية من	P	I G I	RON,	/ S T E	BL R	1 T A 1	0			
Coasta) 🖇	79.4	78.6	73.4	83.1	90.9	92.6	85.6	84.3	87.4	86.3
Other ≸	0.0	0.58	0.6	0.72	0.68	0.58	0.56	0.55	0.63	0.60
Total %	44. 6	45.7	44.4	41.2	50.5	52.9	50.8	52.2	55.9	55.9
a			S	TEEL	•				•	
Coastal 🛸	52.6	54.8	52.0	52.7	51.9	54.2	56.5	59.5	61.2	62.2
Other 🐔	47.4	45+2	4 3•0	43.2	48.1	45.8	43•5	40.7	38.8	32.8
Total Nt	17.5	18.8	19.6	20.3	21.2	22.5	24.6	26.3	28.6	30.4
		(PEN	HEA	RTH					
Coastal \$	21.2	20.7	19.9	18.7	16.5	12.0	10.9	10.0	9•1	8.6
Other 🗲	13.7	12.8	12.3	12.3	•1.8	9.7	8.9	7.1	5.2	2.9
Total Nt	6.1	6.3	6.3	6.3	5.9	4.9	4.9	4.6	4.1	3.5
	an an the second se	ΕL	ECT	RJC	STER	5 L				
Coastal 🖇	3.4	3.7	3.0	3.9	2.3	2.6	2.8	3.0	2.8	2.6
Other 🗲	33•7	32.6	35•7	35.0	35•9	35.2	33.4	32.5	32.9	34-3
Total Nt	6.5	6.8	7.6	7.9	8.1	8.5	8.9	9•5	10.2	11.2
			LΣ	STE	BL	*				
Coastal \$	28.0	30.0	29.1	30.1	33.1	39.6	42.8	46.3	49.3	51.0
Other 🖇	-			-	0.4	0.9	1.2	1.1	0.7	0.6
Total Nt	4.9	<u></u> 5•7	<u>5•7</u>	6 . 1	7.1	9.1	10.8	12.7	14-3	15.7

* Forecasts

Source: HEC-BCSC - Investments in the coal and steel industry of the Community -July 1972 - Doc. 8393

electric function, where least on production keeps Italy in absolute terms in fourth place in the world had, in relative terms (together with Sweden). In first place, are, by contrast, located almost exclusively initial (and inplied with either internal aroung scrap or imported scrap);

d. the production of special steels has varied in percentage in relation to overall Italian production around fairly constant levels over the past twenty years (data from before 195) are not strictly comparable with those from the later period) and seems to have settled at the average percentages that also apply in F.R. Germany and France. However, while these two countries, carbon steels (in the special steel grades) predominate over alloy steels.

It would thus appear logical to kay down that, once the conditions that enable a research centre to be set up have been achieved, the latter should, in the case of Italy, orientate its activities so as to give preference to the following essential objectives :

- a. study of the behaviour of ores available on the world market and recommend the selection of materials most suitable, in terms of costs, method of transportation, preparation, storage, and stocking, for the operations and the production further along the production cycle;
- b. reduce to the lowest possible limit the coke consumption in the blast furnaces and the reduction load, replacing high-cost coal by lower-cost but suitable in terms of coking. An alternative and complementary method is to reduce coke consumption to the quantity needed merely to maintain permeability in the reduction column and for the final carbonisation required totally or in part by reducing gas mixtures, suitably prepared and injected, in the task of reducing iron oxides;
- c. bearing in mind that the maximum energy yield possible in typical conditions are of the order of 89% for the LD converter, 73-75% for the electric furnace, and 32-37% for the open-hearth furnace, it is obvious that for the converter there will be above all possibilities for automatic control and regulation, for the electric furnace there are still possibilities of improvement in the supply of power and materials, whilst the open-hearth furnace will disappear gradually as in the older

- 41 -

plants the advantages of the low degree of amortization are mullified;

d. so fur as carbon static are concerned, it is evident that control of the metallographic structure and of importies now more possible than in the past through either technological processes designed to obtain internalis with comptant properties or improved methods of research and control - has opened the way to the manufacture of steels with better and more uniform properties of resistance to various types of attack and stress.

For alloy steels, the basic research problem, under Italian conditions, is still that of replacing expensive alloying elements and those that are in scarce supply with other more convenient elements and, as much as possible, with micro-alloyed steels and/or those which have been suitably heat and mechanically treated.

There is particular interest in Italy in the problem of corrosion, either purely chemical or more complex; in addition to better knowledge of the specific role of additions and of alloy elements and of the results that can be derived from these in terms of new or improved materials, the trend is spreading of completing more traditional production lines with coating lines, using non-ferrous and, at times, non-metallic materials.

To summarize, it can be stated that in the modern iron and steel industry production cycles are operated by means of which materials acquire the most suitable properties for specific predetermined secondary working and end-uses, whilst iron and steel research does not itself make prototypes of typical manufactured products in those sectors that are most vulnerable to the competition of other materials.

- 15 -

Section 4

Although it does not come explicitly into the subject matter of the sessions of this Symposium, it is felt that is this paper at least some allusion should be made to the tracaiser of graduate resear ' workers. This will by no means exhaust the subject of the training of research personnel, but will be limited to some indications of the means of setting up the founding nucleus referred to in Section 1.

It is evident that when it is a question of proposing - as we are doing on the basis of our experience - the establishment of a research centre, which is rational and commensurate with the local conditions and possibilities, from the outset it is necessary to concern one's self with starting the basic training of those who, put into suitable technical and general surroundings, must gradually insert the research organization into a process of general modernization and innovation.

Thus if the industrial research worker requires a mentality different from that of the university investigator, the basic cultural training must of necessity be similar, and both must have a strong innovatory imagination : the former should be directed towards precise and concrete objectives whilst the latter should be freer and subject only to self-discipline.

At the present time, the university training of future metallurgists is undergoing, even in the European countries with the oldest tradition, a a stage of profound reorganization. The author of the present paper has been able to learn from experts in many countries the difficulties that university education are undergoing in this field.

The present system that applies in Italy and other countries about which detailed information is available may be summarised as follows. In the Italian universities, metallurgy has been treated primarily as coming in the field of "materials" in general education, such as engineering, industrial chemistry, or mining; only in the first decade of this century was there any separate first course.

Nowadays, following an unsuccessful attempt to set up a postuniversity metallurgical school, metallurgy and the science of metals are very diffused educationally.

The university student in Italy nowadays has a wide variety of choice . of materials for study; in the case of engineering it is possible to graduate in chemical or mechanical engineering with a metallurgy bias, but there is no degree in the metallurgical branch proper.

• .

In the USA and the UK there are university courses which cover solidstate physics and the physical chemistry of phases from the outset and introduce the student to metallurgy, allowing them to proceed after three to four years to a higher diploma in this discipline, with opportunities to proceed to higher levels with at least one year of study (master) or two years (doctor).

In the Federal Republic of Germany there are two levels of degree -Diplom-ingenieur after five years at university and Doktor-negenieur after a longer period of study, with possibilities for specializing in metallurgy (43).

The system in France is similar to that in Italy, except that there are the Grander Ecoles, with old traditions and considerable renown which ensure a certain degree of specialization.

The problem that has to be remoived for metallurgical degrees has two aspects, concerned with the employment of the young graduate and the. state of metallurgical development of the country.

If one considers the branches of metallurgy, it is possible to distinguish the following :

- a. extractive metallurgy (based on physical chemistry)
- b. process metallurgy (linked with engineering, heat technology, electro-technology, etc.)
- c. science of metals (linked with physical chemistry and solidstate physics).

It would appear somewhat doubtful whether it would be possible to have graduates equally versed in the three brunches; it would seem more reasonable to envisage graduates specializing in $a_* + b_*$ or $b_* + c_*$, that is to say, graduates in metallurgical processes and metallic materials.

The university will be able to supply experimental means for the study of equilibria, structures, plasticity, etc., but not for the study of processes; there is thus an opportunity for collaboration with industrial centres equipped with pilot plants.

For developed countries which annually absorb some hundred graduates into the metallurgical industry, there is a justification for graduate courses of this type, whereas in a less developed country a specialized degree of this kind does not seem to be appropriate. There is no need to disregard the axiom that specialized education requires teachers and

-

laboratories that have been specially prepared and, moreover, this must be justified with an adequate number of students.

For countries of this kind it would be more appropriate to have a general degree course (mechanical engineering, cleanistry, etc.) followed, however, by a cycle of specialization in metallurgy which can be obtained abroad in centres — already in operation, or by sending young men for training in foreign universities in order to take a degree in a sector of specific interest for the country, which wishes to proceed with all speed with a special type of operation. These are the most immediate solutions and easy to put into operation, in that they do not require the establishment of a course for the selection of teachers or the setting up of elaborately equipped laboratories.

On the other hand, the more developed countries are already offering collaboration by means of national or para-national organizations in terms of finishing courses for technical cadres from developing countries. In this connexion, so far as Italy is concerned, one must recall the work of the Istituto per la Ricostruzione Industriale (IRI), which announces finishing courses annually, including the iron and steel sector.(18)

It should be pointed out that in the industrially advanced countries an international finishing course or an iron and steel technological school, to which the best teachers of the region would gravitate, with adequate equipment, could be useful in producing young technologists who could be introduced into the industry with a profound and up-to-date training (an example of this type is the Centre d'Etudes Supérieures de la Sidérurgie - CESSID, established in France at Metz).

Section 5

The Centro Sperimentals Metallurgico is a limited company set up on 18 March 1963. Its capital at 31 December 1972 was distributed as follows : Soc. Finanziaria Siderurgica Finsider (IEI Group) 75%, Fiat 10%, Acciaierie e Ferriere Palch 5%, Snam Progetti (ENI Group) 5%, Soc. Finanziaria Meccanica Finmeccanica (IEI Group) 2.5%, Nazionale Cogne (EGAM Group) 2.5%.

Building of the administrative and research complex at Castel Romano began on 15 June 1966, and research work began in the new laboratories in the first half of 1968.

The writing of this paper thus coincides with our first five-year period of operation, and we are at the end of the period that has been taken as the running-in period for an organization of this type.

What have been the events in the short history of CSM that can be of interest to those outside and can be considered to be of value to those about to carry out a similar organizational exercise ?

So far as financing is concerned, attention should be drawn to the linking of steel-producing and steel-consuming companies.* In the case of CSM this has resulted in a beneficial coincidence of interest which has been of advantage in the establishment and in the work of the Centre. Specialists, possibilities, and innevations in production processes have been brought into close contact those belonging to the largest and most advanced steel-user sectors (heavy engineering, automobile industry, petrochemicals).

The choice of the headquarters - one of the first problems posed by the multiplicity of associated companies - was made largely in the light of two criteria : the location of the Centre in the most central position in relation to the areas where it was likely to be operating, and a site for it close to the decision-making centres of the industries concerned and of the organizations responsible for research policy.

It was considered that the sentre of gravity of the Italian iron and steel industry (in terms of pig iron and steel) was located in 1966 in central Italy, with a tendency to move even further southwards (Fig. 8), and so there was no practical alternative to Rome. Specifically, CSM was located 23 km south-east of the sity, in a zone designated by the General Control Plan (Piano Regolatore Generale) for light industries and industrial

^{*} The steel producers associated with CSM produced in 1972 99.9% of Italy'n pig iron and ferroalloy sutput, 68.7% of the total steel output, and 63.6% of the special steels.

research laboratories (Fig. 9). Another initial problem was the professional training of the young research workers at COM. In the first place the associated companies made available a certain number of research workers already working in their laboratories, and from Finsider in particular a nucleus from the pre-existing Finsider Iron and Steel Institute in Genoa moved to Rome.

To make up the complement of graduate research workers, some 35 well qualified young men have been recruited, oy means of a scholarship competition, unually biennial; they are sent for training to Italian and foreign laboratories (in Belgium, France, F.E. Germany, UK, Switserland, and the USA). Since 1968 15 further graduates have been taken on at the Castel Romano laboratories, following an internal course, lasting on average 18 months, consisting of lectures, training, and gradual integration into the research activity.

As far as possible for those on foreign scholarships and in all cases for those on internal courses, the training is orientated towards specific subjects, which constitute current or likely research projects.

For qualified technicians a scheme for pre-selection and final selection has been set up and operated in association with IFAP (Istituto Formazione Addestramento Professionale del Gruppo IRI), which has led to the nomination of 40 technicians (16 chemists, 10 electrical and electronics technicians, 9 mechanical engineers, and 6 metallurgical and mineralogical technicians), who have attended a twelve-months course, divided into three stages - general metallurgy, specialization, works or laboratory practice).

An inter-works metallurgical experimental complex, large in size and therefore suitably structured, must meet certain requirements in terms of function and flexibility, imposed by the dynamic which distinguishes, on a time scale, the work of applied research. The various groups of buildings, in which the groups are distributed, must be connected, but there must be wide open spaces to provide for subsequent expansion.

To realise a centre based on these premises, it is necessary to tackle not insubstantial planning and constructional problems, which in our case were more critical because of the need to reconcile the general character of the area chosen for CSM, located as it is in an impressive corner of the Pontine countryside, with that of a necessarily functional style of architecture.

From the assessment of this factor and that of necessity there arose

· 11 -

the need to have recourse to a plan that involved the use of a number of groups, each dedicated to a particular speciality.

To a study carried out by a Firm of architects from New York (Haines, Lundberg and Daehler), well known for a number of important research centres of a similar size) was added in October 1953 the duty of general and functional plaining. To translate the functional innerses so obtained into architectonic solutions that were valid in the special local conditions, the assistance was sought of a qualified group of Italian engineers and architects (Donato, Matteoli, Fireddi, Dierbini, Valeri). Finally, the execution of the project, the budgeting, the programming, and the management of the construction were entrusted to Docietà Italiana Impianti (IT), a member of the Finainer Group.

Co-ordination of the different activities, checking of the conformity of the project to the real requirements, and finally the equipping of the Centre were carried out by an internal working group (the Technical -Services and the heads of the various research groups).

This collaboration led to the choice of buildings, layouts, and materials.

The arrangement of the various buildings on the ground and in relation to the sum, the plane of the laboratories and offices and the layout of the services were worked out rationally (Figs. 10 - 12).

The latoratories are centred in two buildings, each with four working floors, the last being used for services, with horizontal ducting for the main networks and vertical for the secondary ones. Heavy equipment and apparatus that is sensitive to vibration could thus be installed on the ground floors or basements (Figs. 13 and 14).

For the construction a steal network structure was adopted, with, for safety reasons, reinforced concrete blocks at intervals for staircases and to support elevators and housts.

Por the facing, the following materials were adopted : patinating steel (Cu-P-Cr) for the columns and stainless steel (Cr-Ni-Mo) in the panels and fasteners.

The plan of the laboratories consists (Fig. 14) of a corridor that is asymptetrical with respect to the axis of the building; the laboratories are arranged on one side of the corridor, equipped with all services, whilst on the other side are disposed offices or laboratories for which normal air circulation is adequate, without the need for extraction hoods (Figs. 13 - 15).

To decide upon the areas required, a maximum depth of about 7 m was decided upon for the laboratories and 4.50 m for the offices, for which a normal occupation by two people was assumed. The longitudinal axis was worked out to be about 3.50 m (the sum of dimensions of benches, the space occupied by one person per bench, and the walkways).

On the basis of these criteria, a constant unit module of of 1.20 m was established.

The repetition of this module determined the location of the external and internal columns of the building and of its various services. This sodular arrangement made possible the standardisation of the constructional elements and also the possibility of their being prefabricated, with the intrinsic advantages of this form of construction ; reduction in costs, high and constant quality, speedy delivery, and easy adaptability of the laboratories to other uses.

The last-named factor is very important in the case of partitions, since it is possible by adding or removing these to achieve a dynamic plan.

A more detailed description of the technical equipment is given in three appendices (I: General equipment; II: Centralized control equipment; III: Pilot plants).

- 25 -

Coction 6

At 31 December 1977 there were working at the Castel Homann complex 530 people, of whom 66% were employed directly or indirectly in research and development activities and 14% in managemial, administrative, and ancillary functions. Of the research personnel, (2.5% represented those in charge of various levels of research groups, 25.3% were graduate research workers, 22.2% were technologists, and 47% were technical and operating assistants.

To illustrate the internal organization of CSM it will be sufficient to explain that the research groups - which are characterized either by common basic or instrumental disciplines or by common interests in certain parts of the iron and steel making cycle or by certain typical products (e.g. the chemical metallurgy group and the steel-making group, respectively) - are co-ordinated by assistant directors who are responsible for a given arm of research - primary metallurgy, steel-making - refractories plastic working, materials, general technologies) or for an ancillary activity (industrialization, technological forecasting).

Attention should be drawn to the fact that the Centre carries out for its company members research projects that can cover one or more companics and that, for multi-company projects, an advisory technical committee, consisting of qualified representatives of the companies, works with the CSM management to identify the most promising and uneful lines of research. For every project mixed (company \pm CSM) working groups periodically follow the development of the project, recommending where necessary changes, additions, modifications, standstills, and final clogure.

At 31 December 1972 CSM had in progress 118 research projects, divided as follows (according to the operating assistant director's office) :

Primary metallury (coals, ores, tlast furnace and reduction,	
foundry, and physical chemistry)	28
Secondary metallurgy (steel-making, refractories, heat	
technology, plastic working)	22
Materiale (heat-treatment steels, weldable steels, cold-	
working steels, corresion-resistant steels, physical metallurgy)	61
Technology (plant and equipment, instrumentation, analytical	
chemistry	7

Of these, 48 were general-interest projects and 70 were companysponsored (single or multiple companies).

Among the co-called ancillary activities, particular attention has been paid to the subject of documentation. It is well known that every day the numbers of papers that appear in the technical journals throughout the world is large and growing (for metallurgy alone in 1972 some 50,000 are estimated to have been published) so that it is becoming increasingly difficult to index these in such a way that they can be easily and quickly referred to. The existence of indexes or of abstracts and the classification of publications according to the more traditional systems does not completely solve the problem. For this reason, in an attempt to establish a coherent international method of metallurgical documentation and effective methods of retrieval, CSM has published a metallurgical thesaurus containing some 1600 key-words, and has worked out using a computer a memory system for the characteristic terms contained in the different articles and their more complex combinations. (4)

Using the abstracts of The Iron and Steel Institute (London) since 1965 some 60,000 bibliographical references have been collected. The CSN system enables the research worker to obtain titles and summaries of those articles relating to his specific subject; the answer can be obtained in less than an hour and usually achieves a high level of relevance.

To summarize and complete this information, the following technical survey of CSM containing essential data as at 31 December 1972 has teen prepared :

Land area	527,000 m ²
Covered area	18,000 m ²
Floor areas	
Laboratories	12,700 m ²
Pilot plants	5,500 m ²
Services	6 ,100 m²
Management, administration, documentation, computer centre, etc.	8,150 m ²
Water supply, with well up to 100 m deep	200 m ³ /day
Water cleaning plant capabity	$1,000 \text{ m}^3/\text{day}$
Electricity supply	
Input voltage	150,000 V
Working voltage	180/220 V
Capacity	1,500 kW

- 27 -

Average annual consumptions

Drinking water	70,000	m
Industrial water	30,000	m ²
Electrical power for light of	400,000	kwł
Electrical power for unives and heating 4,6	00 0,000	kwb
Library		
No. of books	26,000	
Collection of journals	1,200	
No. of journals received	650	
CSM Technical-scientific publications	520	
CSM research reports etc.	1,600	
CSM patente in Italy	5C	

At this point it may be of interest to give some details of the operating and investment costs in one year (1972) which may be considered to be adequately representative of the current situation.

The situation regarding invastments, expressed in UdC (1 UdC = 625 Italian line), is as follows :

Investment costs at 31 December 1972

ı,

		Udg 🗴 1000	\$
8.	Land	1,600	6.2
b.	Buildings (including oivil engineering)	16,000	61.6
8.	Equipment and instrumentation :		
	For laboratories	(5,000)	(19.2)
	For pilot plants	(2,530)	(9.7)
		7,530	28.9
đ.	Auxiliary technical equipment (office machinery, furniture, vehicles)	870	3.3
	Totals	26,000	100
	* v. <i>Are</i> with	x0,000	***

The operating costs, divided into a small number of essential groups, are as follows :

Sum	mary operating balance 1972		
a .	Labour costs (5,000 for research and development)	6,240	65
b.	Materials and energy	960	10
с.	Depreciation and taxes	2,400	25
	Totals	9,600	100

In order to permit some comparison with similar structures in other countries, the figures given above can be converted to unit values. The following relationships can be derived for personnel :

Graduate research worker	Technologist	Technical assistant	Others
1	0.37	1.85	0.64

The investment and operating costs related to the whole USM personnel, only to those concerned with research, and only to graduate research workers, give the following values (in 1000 UdC):

Init conte

	UNIT COSTS		
	Investment	Operating	
Entire CSN personnel (530)	49.0	18.1	
Research workers alone	57.0	21.0	
Graduate research workers alone	224.1	81.7	

Section 7

and

In a congress such as this one, which is interregional in nature, it may be of especial interest to give some information about CSM's participation in the research projects carried out with the financial support of the Commission of the European Communities, Brussels.

As is well known, Article 55 of the ECSC Treaty, which has since come within the competence of the European Community, lays down that the Community encourages the carrying out of technological research of interest to the iron and steel industry by means of a special fund. From the community has been into force of the Treaty until the present day the Community has made available (after nuitable investigation for every single project) funds that amounted on 31 December 1972 to more than 61 million UMC. The lesser part (24%) was to support research activities or ancillary aspects of permanent or long-term researches of general interest (AIRBO, ASELT, International Flame Research, blast-furnace gas injection, etc.). The major part (76%) was to support research programmes based on specific agreements between the Community and the company or companies.

It is interesting that, in the nearly twenty years of this activity, these research contracts have increasingly become collective ones; it has passed from an initial period, when it was difficult to identify projects objectively and co-operatively, to the present stage, when most projects are large ones, requiring a distribution of dution and specializations. From a statistical point of view the agreements reached in the period in question can be divided according to dense of collaboration :

				1955-1965	1966-1969	1970-1972
Agreement	with	1.	furm.	A. (. O¥	44.0%	30.0%
**	**	2	LITUR	245 . 2%	20.0%	15.0%
81	#1	3	firms	11.3%	3.5%	15.0%
•	н	A	Cirms	12.0%	32.57	40 .0 %
Number of	a gree	e n te	ents	19	29	40

From a growing belief in the value of this type of collaboration there arose in 1968 the Association Européenne pour la Promotion de la Recherche Technique en Sidérurgie (AERES), which is starting a systematic study of all the objective possibilities for Community research and on their feasibility.

This Community activity have gained new impetus from the entry of the new members. COM has supported it wholeheartedly and has thereby been enabled to enter rapidly into a circle with specialized capabilities and to compare its proposals and experience, at a high international level, with those of the other countries.

It would be presumptuous to close this report with indications to which a general validity needs to be given. The experience of CSM is too short, and the conditions under which it was set up and as operating are those peculiar to a certain type of iron and steel industry and to a certain type of growth; moreover, in general terms, the industrial and economic development of Italy has shown in recent years evolutionary and involutionary tendencies that are not to be encountered elsewhere.

In spite of these reservations, however, it is possible to emphasise certain aspects which are closer to those of a developing country :

a. The initiation in Italy of co-operative industrial research. Nhilst there were already in italy laboratory and research centres at company level, it was with CSM that inter-company (and, in our case, inter-sector) discussion on research began. This has precedents enough but, in Europe at least, it has represented the concluding phase of a consistent policy of public intervertion in research, of active participation by university research in industrial problems, of a general tendency - throughout professional, ocientific, and technical associations, their

- 31 -

meetings and product some - to a fairly open exchange of information and experience. The other control were set up in countries with an older readition of industrialization in a close network that formed gradually when and viduals and remearch courties had already given numerous convincing proofs of their indispensability for the development of the sector. In Italy the rapid growth has not allowed the development of the iron and steel industry to be the result, albeit slow, of the achievement of remearch; CAN was immediately confronted with technological partmans that are repidly changing and by foreign centres of capability that were well qualified and against which they had to measure themselves.

- b. The lack of a tradition of university education of established worth in the sector obliged COM to acquire from abroad basic indispensable knowledge in both physical chemistry of the processes and research on materials. Lacking a precise frame of reference for the directions to be studied, we soon found the need to look ahead and had quickly to acquire advanced research techniques at the same time as we learned about their applications to specific problems.
- C. The introduction of a research organization, which had no company responsibility, into the industrial patchwork, is always a delicate operation. It becomes especially delicate when it is a matter of an industry, such as iron and steel, which is, in the western European countries at any rate, edding a "moiontific" dimension to the existing base, which was largely founded or empiricism and respect for technological tradition.
- d. However, a combination of abilities and aquipment, already strong in absolute terms but the more so when related to the local situation, was a natural source of attraction to the member companies and also for the solution of specific and contingent problems.

It is necessary that the co-operative research centre should work in close contact with the concrete problems of production and so it is an indispensable condition for its development that it should obtain the complete trust of the better qualified operators, but it is at the same line obvious that the centre should operate in the course of its activities a judicious

- : : -

choice between short-, medium-, and long-term counitments. Also, if contingent circumstations lead it to assume a role which, within limits, replaces that of company laboratories or basic remearch laboratories, it may need to pursue with tenacity and realism the fundamental aim of ensuring for the industry a mechanics that is capable of producing innovations that are useful to it, continually improving the competitive position of the sector in which it operates.

۰.

It is clear that for both developing countries and those, like Italy, which have already passed through the first stage of industrialization, resources and technologists are not available in sufficient quantity to cover, even in relatively narrow sectors, the whole field of possible innovatory contributions. This means that it is necessary to select priorities and it is of value to establish international and interregional collaboration to which the contributions of individual members can be mutually integrated or exchanged, cancelling out or reducing in this way the debit side of the technological balance of payments.

Section 8

The definition of the functions of a research centre - this is the essence of the five-year exparience of CSM that the author of this paper is bringing to the Symposium - is the basic appect of the planning of such a centre. It is said - and rightly so - that industrial research is itself an industry with a high ungree of risk (and often highly capitalintensive). It should, however, be added that the rick is not only that which is inherent in the production process that is optimized with timely and valuable innovations but also that which can result from missing the opportunity to create a consumer market for the innovations.

Between the moment of creativity and innovation, which is the task and responsibility of the production organization, there is a broad zone of time, or work, and of costs, which correspond to the creation of the prototype in which the meeting-clash of the iwe organizations and the two mentalities can come about.

In highly industrialized countries this intermediate area, this "no man's land" is gradually filled with systems that are different but, in general, efficient. In the developing countries and those with a centralized economy it is usually the political authority which - having laid down the development objectives in advance - generally ends up as arbitrator in the case of disagreement.

Those countries which have already gone through the first stage of industrial acvelopment or those with a mixed economy must, however, on each occasion work out their model of conduct and optimize it in terms of the local situation, seen with courageous realism in a wide perspective which, without disregarding the data relating to the present, project it into the future that it is desired to attair.

The author wishes to thank Professore E. Hugony, Ing. M. Gervasoni, and Ing. C. Mellere for their valuable collaboration in the collection of data and basic information.

APUPEDIX 1 : GENERAL FLAND

1. Conditioning Plant

A contralized installation; primary materials, generated in two contral equipments in the service building, are :

- water cooled to 5.5% (from a cooling centre with a capacity of 3 million refrigeration units per hour)
- raturated steam at 10.5 atm (from thermal centre with a capacity of 8,200 kg of sitcam per hour).

These liquids are distributed to the different buildings, where they are used either direct from the central conditioners or, if required for process use, through mains that are steam delivery/condensate return or cooled water/water at 12.4°C respectively. The flows to each building pre basically controlled by the buildings themselves.

.. <u>Electricity Flant</u>

Power comes from the national grid by means of a 7.5 km 150 kV line. It is transformed at the CSM sub-station by two transformers of 150/6 kV, 10000 kVA each, which can work in parallel.

From a metal-clad panel located in the sub-station itself, which can be equipped with 14 outlets, the medium-voltage (6 kV) power is distributed at the different buildings of the Centre.

There are 6000/380 V transformer rooms in the buildings for electric

Building	Number	Individual capacit kVA	y Total capacity kVA
Laboratory A	2	500	1,000
Laboratory B	2	500	1,000
Management	2	500	1,000
Technical services	2	750	1,500
Pilot plant	2	500	1,000
	* .L	25 0	250
Pilot plant	2	500	1,000
Ð	1	250	250
TOTAL			7,000

• For pilot plant A there is additionally available a direct supply at 5 κV (for about 5,000 kVA), used for running large motors (e.g. for the rolling mill) and for the electric furnaces.

The services building is also supplied by a t-kV line for running the synchronous motors of the cooling group (c. 1,000 kVA).

3. Water Plant

The water supply to the Controlis from these wells, from which can be continuously drawn 10 mc/h, the maximum yield of the water table below.

Since this yield is inadequate to neets the demands of the Centre, a recovery plant has been installed to recover all the discharged water (black, acid, industrial) : all the treated water is used for industrial purposes. The recovery plant can treat in total 1250 mc/day.

There are three distribution networks :

- drinking water with 400 mc reservoir and electric autoclave delivery pumps totalling 36 mc/h, plus an emergency motor pump;
- industrial water with 1.000 mc reservoir and autoclave delivery pumps for a total of 200 mc/h, with an emergency motor pump;
- water for fire-fighting purposes with 500 mc reservoir and both electric and motor pumps for 150 mc/h.

4. Cas Flant (LFC)

The gas needed for use in the CSN pilot plants is distributed from a central storage plant. The storage capacity is 50 mo, with a maximum delivery rate of 300 Nm²/h.

5. Compressed Air

The compressed necessary for the isboratories and pilot plants is supplied by two compressors, each with a capacity of 350 Hm^3/h at a pressure of 8 atm.

6. Other General Equipment

CSM is equipped with the following general services :

- a standard telephone system
- an emergency telephone system
- a radio system for staff location
- a central electrical timekeeping system.

APPENDIX II : CENTRAL CONTHOL PLANT

The central control plant is located in the CCM services building.

It can be considered as a co-orditated complex of several supervisory and alarm control equipments, by means of which it it possible to control and oversee all the general equipment in the Centre, operating from a single synoptic board, surmounted by a general alarm board on a supervisory system.

The general synoptic board comprises 14 panels, as follows :

- -4 panels for the 150/6 kV substation and 6 kV distribution system
- 3 panels for the cooling plant (one for each cooling group)
- 3 panels for the the thermal station
- 2 panels for the water plant and water treatment and circulation system
- 1 panel for the combustible gas plant
- 1 panel for the compressed-air plant.

At the centre of the general synoptic board there is a Selectographic equipment, which enables all the conditioning plant in the Centre to be controlled and supervised at a distance, by visualization, as required, of photograms of the technological layout of these plants.

For the <u>supervisory alarm board</u>, any unusual functioning of every plant or equipment in the Centre is reported optico-acoustically, which causes the operator to intervene, either by means of the general synoptic board or at the equipment itself. The equipment can supervise 216 units.

Five years ' operation of the Centre has shown that the centralised equipment described above is a complex which enables all the general plant at CSN to be controlled and operated by a single person.

APPENDIX 111 : PILOP PLANIS

The pilot plants are located into two industrial buildings, constructed in metal and located a convenient derivate from the laboratories, to which they are linked by a preumatic line for the rapid transfer of specimens for analysis.

These buildings are equal in height but vary in size and internal arrangements.

The first is 21.60 m broad, with a covered area of about 2,000 m². It is divided into twelve longitudinal bays, each 7.80 m, and is served by an overhead travelling crane of 15 t. It can be considered to be divided, throughout its whole length, into two parts, one 14.60 m wide for the installation of high equipment and the other 7 m wide for intermediate structures of heights varying between 4 and 8 m.

The second is 24 m wide, with a covered area of 2,200 m². It is served by a 5 t overhead orane. Throughout its length this building can be divided into two perimeter zones, each 7 m wide, by means of moveable partitions. This enables the maximum flexibility to be obtained for setting up very diverse types of plant.

Each building is provided with main services (drinking and industrial water, gas, compressed air, electricity), running horizontally along the two sides, with modular officates every 7.20 m. Figure 16 shows a diagrammatic section though one of these buildings.

Between the two huldings there is an open space of some 5000 m² which is used for stocking of raw materials and for subsidiary plant (stores, ore-preparation plant, gas producers, etc).

This open space is closed at its southern end by a bridge joining the tops of the two buildings, and in which are located the offices and services for those operating the pilot plants and the electrical control cabins for these plants.

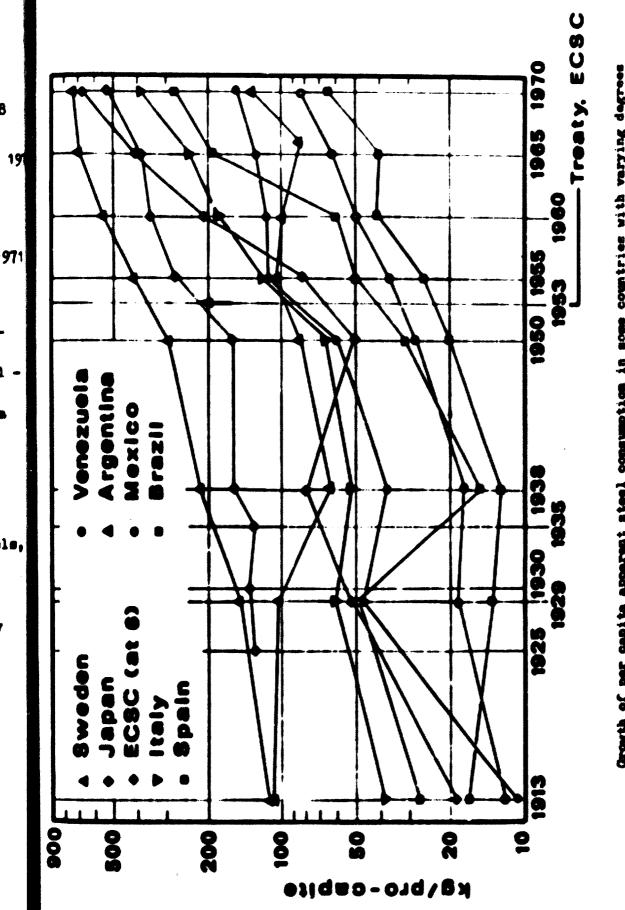
At the present time these buildings are 90% occupied. The different equipment installed includes :

- equipment for crushing, handling and coreening of iron ore and coal.
- ' two closed-cycle equipments for one granding
 - equipment for forming and routing of pellets
 - two rotary kilns for drying and reacting of ones or pallets
 - experimental plant for treatment of iron ores in special reducing atmospheres

- - -

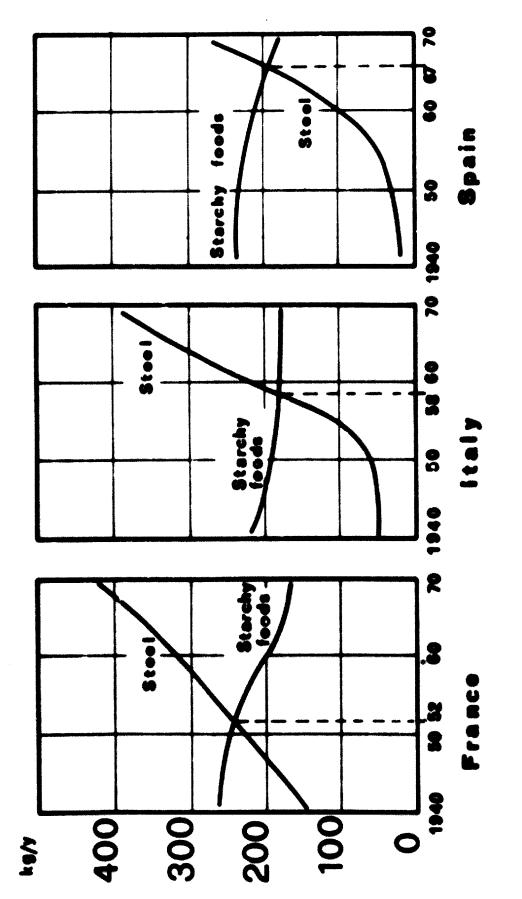
- equipment for classification of coal and coal
- plant for experimental fluidised-bed production of semi-coke
- rotary furnace for hot testing of coke
- two plants for agliomeration ter s of ores-
- vertical kilns for roasting and reduction tests on agglomerates
- a small experimental foundry with sand proparation plant
- a 3.5 t electric arc furnace
- two induction furnaces of 500 and 1500 kg
- a vacuum degassing apparatus
- a group of vacuum induction furnaces for casts of 50-100 kg
- various heat-treatment furnaces with quenching tanks
- a 290 mm double duo rolling mill
- a 450 mm three-high rolling mill
- welding equipment of various types for studying the weldability of steels
- a machine for compression tests (500 t) on metal structures
- a press for tests on drawing, extrusion, etc. (250 t)
- a 4000 t machine for tensile testing of large welded structures (under construction)

Bibliography


Italian sources

- 1. Banca d'Italia, L'economia italiana 1931-36, Vol. II, Rome, 1937
- 2. ASSIDER (Associazione industrie siderurgiche italiane), Il futuro siderurgico italiano - Milan, 1964
- 3. ASSIDER, Analisi statistica dei communi pro-capite di tipiche classi di prodotti siderurgici in alcuni paesi produttori, Nilan, 1966
- 4. Palazzi et al., Contributo sperimentale al repreimento automatico della documentazione siderurgica - Metall. it., LIX, 2, pp. 132-148, 1967
- 5. Prumento e Turolla, I baricentri siderurgici italiani fra il 1949 è il 1971 - Riv. intern. scienze conomiche e comm., XV, 3, 1968
- 6. ASSIDER, La siderurgia nel mondo Milan, 1969
- 7. PAO UN, Pood balance sheets 1960-69 Rome, 1966; 1970
- 8. Peco, L'acier face aux théories économiques Milan, 1971
- 9. Antonioli, Alcune considerazioni sull'insegnamento della metallurgia -Metall. it., LXII, pp. 93-102, 1971
- 10. Convegno INI-FAST sui progetti di ricerca industriale, Rome, dic. 1971 -Ricerca 70, I, pp. 21-35, 1972
- 11. Confederazione generale dell'industria italiana, La spesa della industria privata per la ricerca scientifica 1970-72 - Rome, 1972
- 12. ASSIDER, l'industria siderurgica italiana nel 1971 (parte speciale) -Milan, 1972
- 13. Spinedi, Considerazioni sulla didattica e sulla ricerca metallurgica -Netall. it.. LXIV, pp. 307-316, 1972
- 14. 3" Nostra europea della metallurgia; Tavola rotonda internazionale sull'insegnamento universitari della metallurgia - Turin, 26 Sept. 1972
- 15. ASSIDER, La siderurgia italiana negli ultima 25 anni Milan, 1972
- 16. ASSIDER, L'industria siderurgica italiana nel 1972 Milan, 1973
- 17. IRI (Istituto per la ricostruzione industriale), La ricerca in Italia e nel Gruppo IRI - Rome, 1973
- 18. IRI, Programma di cooperazione tecnica Rome, January 1973
- 19. An., La bilancia italiana dei pagamenti tecnologici affoga l'ago nel rosao - Ricerca 70, I, <u>2/3</u>, 1972

Poreign Bources


- An., Steinkohlenfürderung, Eisenerz-, Gusseisen-, Stahl-, St.u. Eisen, LXXV, <u>5/7</u>, 1955
- 21. UN, Tendences et problêmes à long terme de la sidérurgie europeenne -ST/RCE/STEEL/1, Jenêve, 1959

- 22. ISCE, Annuario Siderurgia 1960 Luxembourg, 1968
- 23. UN, La commerce mondial de Macia et la demande d'upier dans les pays en voie de développement - New York, 1962
- 24. UH, Le marché mondial du mineral de fer ST/ECE/STEEL/24, New York, 1968
- 25. OECD, L. technologie dans l'industrie aidérurgique Doc. 25284, 1969
- 25. IISI, TV Annual conference, Oct. 1970, Report of Proceedings Brussels, 19
- 27. UN, La marché de Hacier en 1970 New York, 1971
- 28. 1375, Annuario Energie 1960-1971 Luxembourg, 1972
- 29. AA, Weldlurgheal education + Proc. ICSTIS, ISIJ, II, 1971
- 30. 107, 5011. trimestr. de statistique de l'acier pour l'Europe XXII, 4, 1971
- 31. 3N, Unll. mensuel statistique SSVI, 12, 1972
- 32. DJ, The steel market in 1971 New York, 1972
- 33. National Science Foundation, Research and development in industry 1970 -NSP 72-309, Washington, 1972
- 34. UN, Techniques et recherche appropriées pour le développement industriel -Law York, 1972
- 35. EEC, Obiettivi e mezzi per una política comune della ricerca scientifica e dello sviluppo tecnologico - Bull. EEC, suppl. 6, Brussels, 1972
- 36. EBC, Gli investimenti nelle industrie del carbone e dell'acciaio della Committà - Doc. No. 33 903, Luxembourg, July 1972
- 37. ISCE, Annuario Siderurgia Luxembourg, 1972
- 38. UN, Monthly Bulletin of Statistics New York, 1972
- 39. CECA, V⁴ Relazione generale sulla attività della Comunità 1971 Bruseels, February 1972
- 40. Wittmann and Thouvenot, La mutation de la sidérurgie vers une nouvelle géographie de l'acier Masson, Paris 1972
- 41. National Science Foundation, An analysis of federal R and D founding by finition - WSF 72-313, Washington, 1972
- 42. ISCE, Statistiche bimestrali per l'energia Laxembourg, 1, 1973
- 43. Birks and Schmalzried, Metallurgical education in Western Germany -Metallurgist, V, 3, pp. 126/128, 1973
- 44. Eurostat, Siderurgia: statistica bimestrale Luxembourg, 1, 1973
- 45. Chambre syndicale de la sidérurgie française, Bulletin de la presse Strangere sur les questions économiques - No. 1051, 26 February 1973

Growth of per capits apparent steel consumption in some countries with varying degrees of industrialization between 1913 and 1970 [21, 22, 37, 44]

Pic. 1

in the second second

Compution of steel and starchy (farineceous) foods in France. Italy. and Spain between 1940 and 1370 [3, 7, 27, 32]

P.c. 2

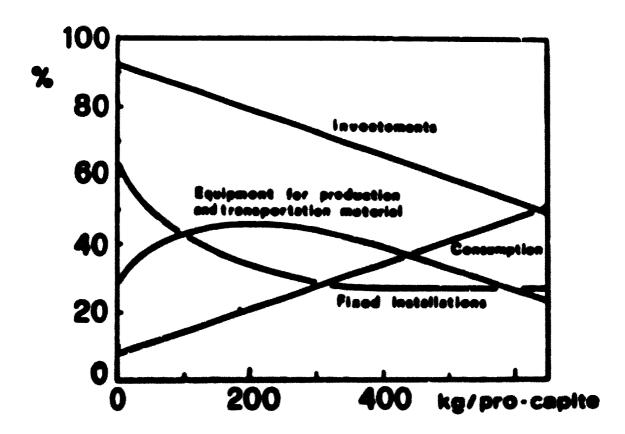
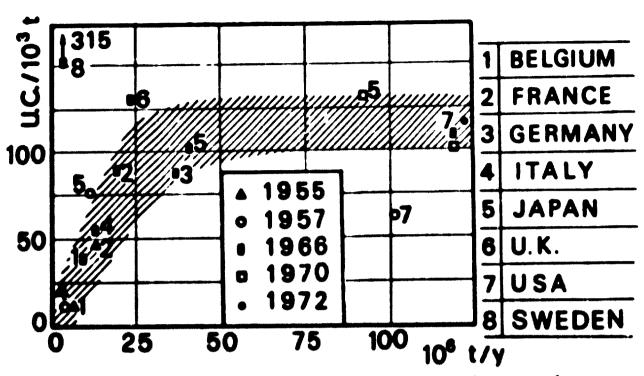
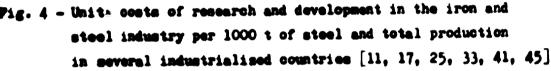
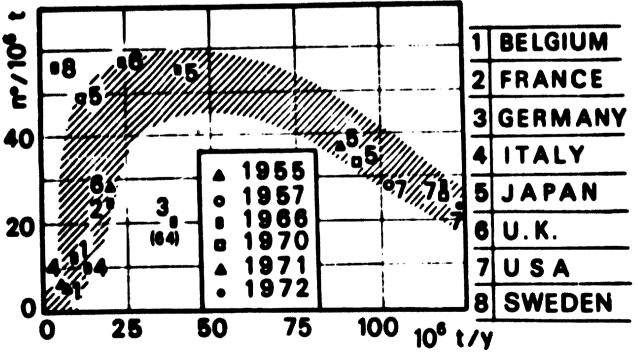





Fig. 3 - Development of main types of steel concumption in relation to the progressive increase in unit steel consumption

- 44 -

Pig. 5 - Number of graduate research workers in the iron and steel industry per 10⁶t of steel and total production in several industrialised countries [11, 17, 25, 33, 41, 45]

[

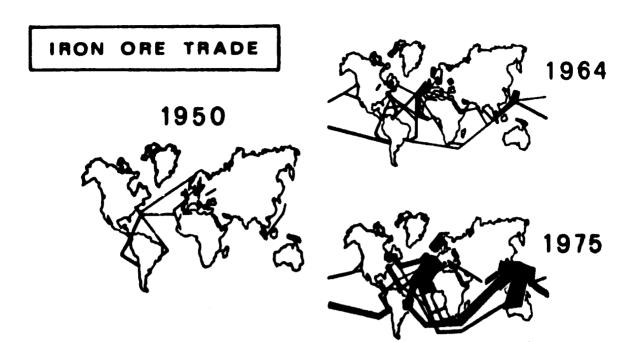


Fig. 6 - Increase in iron-ore trade from exporting countries to iron and steel user countries [26]

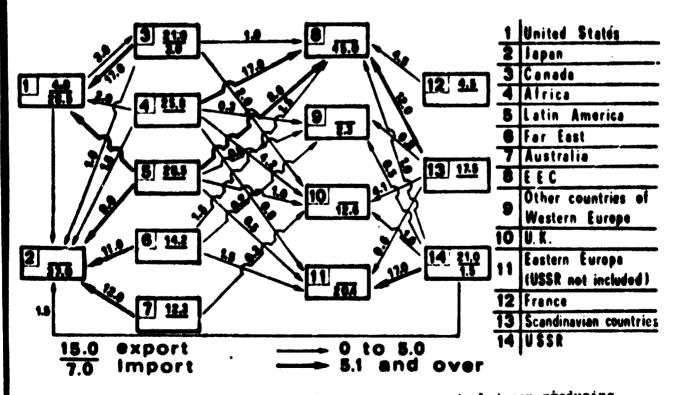
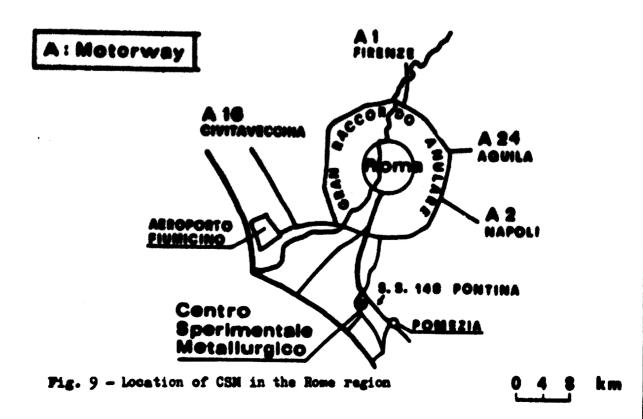
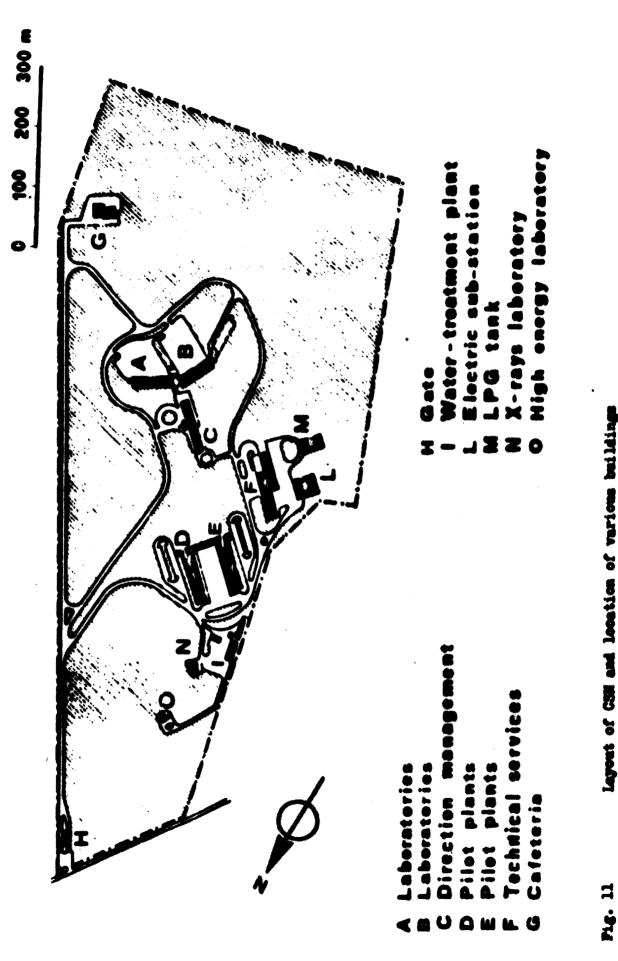
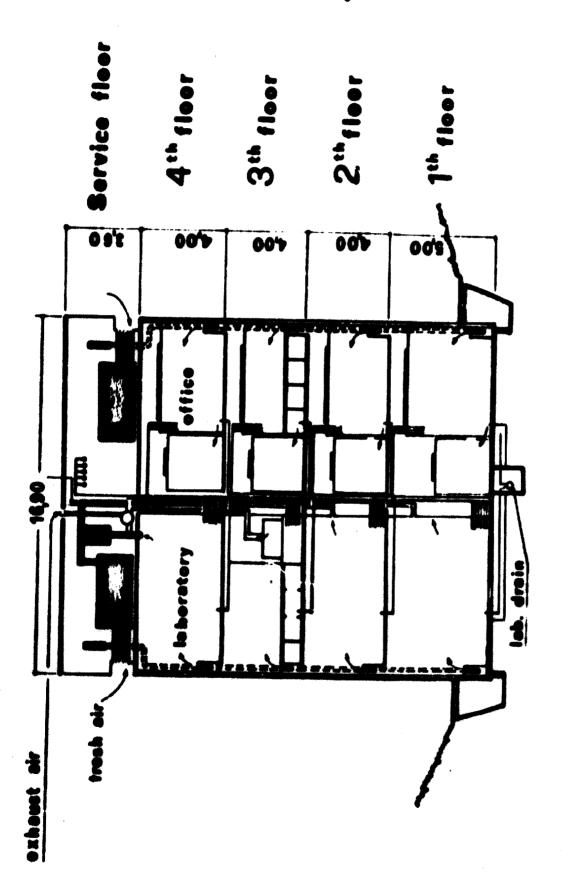
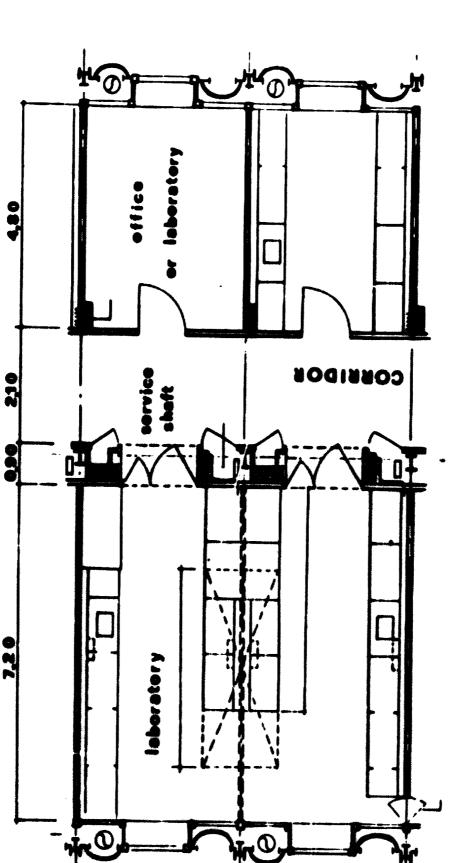


Fig. 7 - Quantitative diagram of iron-ore movements between producing countries or regions and iron and steel industry countries or regions [24]

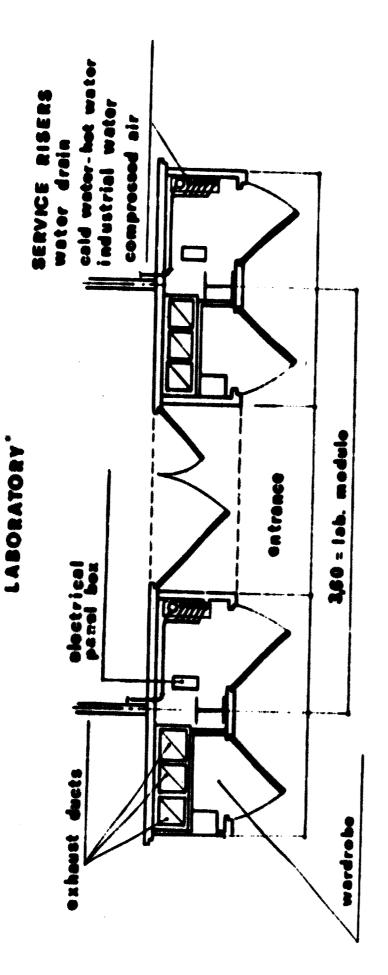


Fig. 8 - Location in Italy of iron and steel works belonging to CSN member companies and relative baricentres for the production of iron and steel, 1966-1971 [5]

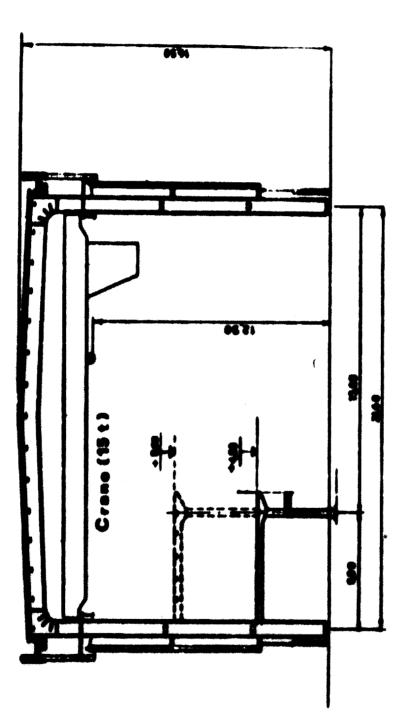





Fig. 10 - The Centro Sperimentale Metallurgico : main nucleus (laboratories, managements and administration offices, documentation and computer centres) and pilot plants

CMM laboratories : typical section


PLC. 12

O


CMM laboratories : typical plan

Pig. -13

Detail of entrence area to a laboratory with services plant Pig. 14

CM pilot plants : typical section

1

PLE. 13

TR.

Distr. LIMITED ID/WG.146/112 Corr.1

4 October 1973

ENGLISH ONLY

United Nations Industrial Development Organization

Third Interregional Symposium on the Iron and Steel Industry Brasilia, Brasil, 14 - 21 October 1973

Agenda item 8

CO-OPERATIVE RESEARCH IN ITALY A COUNTRY WITH A RECENTLY DEVELOPED STEEL INDUSTRY; TECHNICAL AND ORGANIZATIONAL PROBLEMS AND POSSIBILITIES FOR INTERNATIONAL COLLABORATION

by

Oscar Masi Centro Sperimentale Metallurgico Italy

Corrigendum 1

Page 8, table at foot of	page Line 2 should read :			
	1952-1954 79.2 80.4 86.4 87.7			
Page 11, table	line 1 should read :			
	1929-1931 «0.1 0.3 0.8 1.8			
Page 25, line 3	Should read : " a maximum depth of about 7.20 m".			
line 4	Should read : " and 4.80 m for the offices"			
line 6	Should read : " to be about 3.60 m"			
Page 27	In table at foot of page, the total floor areas should be shown as totalling $32,450 \text{ m}^2$ (omitted in original). The water cleaning plant capacity should be corrected to $1250 \text{ m}^3/\text{day}$, the working voltage to $380/220 \text{ V}$, and the electricity supply capacity to 3420 kH .			
Page 29	The items in the table at the end of Section 6 should be as follows :			
	For each employee (530)			
	For each research worker (456)			
	For each graduate research worker (116)			

In the table, the following correction should be made to the fourth item :

Technical	٦	2	750	1500
services		2	100	200

The figure for total capacity should therefore be amended to 7200 kVA.

- 2 -

