TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

Workshop an Finoncial Planning of Industrial Projects
Karochi, Pokistan
5-30 August 1968

Document number:

Distr
RLSTTAICTED
ID/T.G.5/4
September 1967
ORIGINAT: EUGITSH

WORKSHOP ON FINAUCILI PLANNIITG OF INDUSTETAL FROJTCTS
Dar es Salaam, Tanzania
16 Ootober-25 NंJvember 1967

$$
\operatorname{si} 3901
$$

ITBM MRSUS ROUTTY
by

Chase Nanhattan Bank, New York

The opinions expressed in tiis raper are tinnse of the author and do not nocessarily reflect the views of the United Nations Industria? Developnent Organization.

67-21235

$$
0
$$

Perhaps the firat question we should face in oonsilering the dabt vB. equity problem is how and wizy the problem axises. Basioally, a oompeny will face this problem whenever it entioipates that its proposed uses of funds will at any time exoeed its internally generated souraes of funds. There may even be oooasions when the company may wieh to obtain outside finanoing although its intemaliy generated sources are adequate.
Δ oompany that foresees greater uses of funds than sources whioh are available internally mast reach a decision as to what type of external financing it will ohcose. This artiole will attempt to define the is, ohoice, and to provide a general Pramework for reabhing deoisions.

There are four general issues which must be considered in the external financing deoision. Eaoh will be discussed at some length. It is a traditional maxim that a business should seek to maximize its eamings consistent with a reasonable degree of risk. The decision areas we are about to disouss will show how the various forms of external finanoing fit into the merim.

I. EARIINAS

In order to see what the effecte on earnings are of each of the two basio types of anpital, etreight equity and straight debt, let us oonsider the following example.
Compang \& presentiy has oarnings before interest and taxos of $346,028,000$. It pays $81,123,000$ interest on ite exiating debt oapital. The oompany asoertaing that it neode $\$ 30,000,000$ of new dapital for pusposes of expansion. The oompany sould obtain the $\$ 30,000,000$ in atraight debt form (sold at par), and pay interest at the rate of 4.25%. The finel maturity of this debt would be in 20 years. On the otber hand the oompany could ploat an equity iesue of 400,000 mares of oommon stook whose net proceeds to the oompany would be $\$ 75$ per share. Outstanding are 6,585,000 shares of ocmon atook. Table No. 1 shows how the two basio types of ofternal financing affeot the level of earninge por share. It is ascumed that the level of earninge before interest and taxes after the injeotion of now oapital will be $52,328,000$.

If we were to look at a mubes of number of possikie earninge levols after the same injnotion of $\$ 30,000,000$ of neis capital, we kould get a pioture somewhat like that displayed in Chart lio. 1.

From Chart and f'aiole No. 1 it appears that from ar. earnines point of view dobt is euperfor to equitir. Lovever, we should not forget that with debt there are not only interest charges but elso required piincipal zepayments. Principal repayments must oome from undistributed earnings. As such, prinoijal repaynents have on opportinity cost sinco the samings necessary to repay the bond holders could have been reinvestej in the corpany.

So, if we loois at the earnings of the sompany that are really aveilable to the common stook after that portion of the earnings which is comintied to prinoipal reparment is deducted, we see that the uncommitted earnines per share is greater with common then with debt. Please see Graph and Tables ivo. 2. Here we assume that the anrual sinizing fund requirement on the company's existing doit copital is $\$ 2,250,000$. Now, if the oompany issues $\$ 30,000,000$ of bonds repayable over 20 years the annual additional sinking fund requirement would be 31,500,000. The total ainking requirementa with the new bond ietae will be $\$ 3, \$ 750,000$. Chart and table No. 2 show the affects on unoomitted eainines per share of the two basic types of external oapita].

He oan make two points to sumarize the effect on earnings of the devt ve. equity deoisions

1. If we look at earnings par share alone it would appear that debt is a more fevoraiole route.
2. Eowever, if we onncentrate on that portion of the earnings that oculd aotually find its way into the otookholder's pookst, we oonclude that, everything else being the same, oomion equity is a more fevorable route.
II. RISK

In deoiding the debt vs. equity problem we must not consider earnings to the exolusion of risk.

There are two basio forms of risk: The risk of cash inadequacy, and the risk of oash insolvenoy. The risk of cash inadequaoy is the risk that the oompany might
not have enough casil to cover buth remured cash rutfiows and those cash outflows which management decires to preserve. The latter cetegory of outflows might include dividends, canital expenditures, and su fortil.
The sacond form of risk is tie rish of cash insolvoncy; that is, the riak that a compeny might not heve ennugh casi to mest its iegal obligationa. The risk of cash insolvency is claarly the mere dirs from of resk, and is the riak usually associated with the debt va. equity decision. As a company coquires debt in its capitalization, it bince itself through the debi indenture to ereoified, cartain, cesh outfiows. The risk of cash incolvency is the possibility that the unsertain cash inflows of the future may not be adaquate to meet the certain cash outflows c : the future.
Of oourse, the debt va. equity decieion is not simply a question of ristr va. no riak. Even without debt in ite oapital structure, a company has scme fired oash outflows. The debt ve. equity deoision, as it focuses upon risk, involves a choioc of more or leas risk, not a choice of risk or no risk. Eowover, for any given amount of debt there are certain measures wilich oan be taken to minimize the acoompanying risk.

1. The company can attempt to roduce the annual lavel of contractual cash outilows by extending the maturity of the loan.
2. Or, just the revirse, the company can seak to shorten the repayment period in crder to avoid the uncertainty associated with future cash inficws.
3. The company could attempt to weaken the restrictive covanants in the indenture.
It is clear that one of the principal decision areas a oumprny's management mast consider in the debt vB. equity decision is that of the relationchip of riak and earnings. If management is to follow the maxim of maximizing earnings consistant with a reasonable degree of risk, it must at the same point decide what is a reasonable and proper ciegree of risk for it to assums. How management selects the appropriate level of risk is cur next topic.
A company has two choices in seleoting what is a reasonable and prcper level of mit It may consider the opinion of outeide experte, for example: rating agencies, lendir
institutions, and other similar comporations' prastices. On the other hand, the compeny may make its own inleperdent appraisel of the level of risk it can sustain. In ohoosing the former metiod the companj relies exolustvely on the capital market to evaluate its itsk. By reijving on the capital maricet, the
 reacoicile leves. in oxjorazi evaiuation will usuclly actarmino low mach risk a

That any companj has a cortain level of dejt which it carnot safely exceed is thooretically clear. Of conrs wh are assuming a certain future. Howaver, in the faoe of an uncertain future, it is a comple: tisk to deternins the amount of ciebt the company could service.

If a company decides to rely upon externel cuthoritios to selsot its leval of debt it may follow any one of the following petise.

1. Eoriow as much as vosiibie so long as the inteast, rate does not exceed X percint. $O r$, borrow es much as posijble so long as the company ke.jus a certain rating.
The bcrrower probably feols that the lender will err on the side of conservatism in evaluating his risk. However, the risk for the jender is not the same as the risk to the boirower. To the lender an indivioual loan is only part of a portfolio. The risk to the borrower is a risk of its very existenoe.
2. Do what oomparable companies do in seleoting their debt levels. Of course, it is obvious that the canperable oompanies might not have amployed a deliberate and rational policy in seleoting their debt levels.
3. Bnploy some arbitrary ruie suoh as "borrow up to X peroent of total capitalization".

A detailed analysis of the cash inflows and cash outflows of the oompany if required in order to determino the reasonable and proper level of debt the oompany could service. There is no doubt that this job could beet be done by people familiar with the entire financial soineme of the oompany. One author has proposed a framework for determining the mexdmum amount of dobt a oompany could have without the mike of cash insolvenoy and cash inadequasy.

The cetermination begins by iaking "wat are the chances of running out of oash in the Auture, and how are these chances afsecjed by the addition of X dollars of interest and sinking fund payments?". The company then calculates from the perspective of histroion. fact what the most adverse ret of cash inflows and cash outflows during times of recossion would be. The oompany then oonstructs a maximum adverse nct cask flow. If thig maximum adrerse net ca.sh flow is positive, then this ariount is the amount of Inoremental cask charges which the firm could assume without the threat of cash insoivency.

So far, we have explored the relationshif of aarnings and risk. Taat iz, we have outlined the issues which must be considered in arriving at an optimal coubination of the two. We have sean how tha twe basic forms of external financirig affect the earnings that accrue to the company's equity base. We have seen how the element of risk can be approached, and most importantly, we have seen how risk and earnings are sc closely and compiexly inter-related.

However, the earnings-risk area is not the only decision area which should be considered by the company when dociding the debt vs. equity queztion. The question of cost cannot be avoided; and theoretically each form of capital has its cost.

$$
\text { III. } \cos T
$$

Cost of ospital is such a complex and disputed subject that we are limited in this article to outlining only some of the present thinking in this area. One of the least disputed areas in cost of capital is the cost of straicht debt capital. When a company deoides to go the debt route, it is in effeot using tomorrow's retained earnings today. Now, the oost associated with striaght debt is simply what the company has to pay for the use of debt, namely the interest cost. The before tax cost of debt oapital, k_{i}, is the effective interest cost of the debt to the borrower. For example, if a company borrowe $\$ 100$ for one year and pays six dollare in interest the effective cost of the debt is 6%.

Calculating the cost of equity capital is much more amplex, and there is considerable diaagreement an to the appropriate method. Basioally, hovever, when wo discuss the cost of striaght equity capital, k_{0}, we are nct thinding of a cost

In the accounting sense. What we are tiduking qiocut is a basis for setting the rate of return that would be required to justify the use of additional equity funds. In one word, we are concerned about dilution or esrnings per share. Let us examine one theory of the cost of equity capitai. Theory A has the following variables:
E Total earnings before the new issue.
$\mathrm{E}_{\mathrm{b}} \quad$ Total earnings after the issue.
$\mathrm{E}_{\mathrm{a}}^{\mathrm{a}} \quad$ Total merket value of common shares before the issue.
$\mathrm{B}_{\mathrm{a}} \quad$ Total market value of common shares after the issue.

Theory A simply states that in order not to dilute the present shareholders interest, an isaue of new equity mast promise a rate of return to the ne:r total group of shareholders (oxdsting sharehclders plus now shareholders resulting from the equity issue) at least equal to the present rate of return to the existing shareholdors. Using the symbols, theory A recquires that:

In other words E / P (where P represents the price per share and E represents the earnings per share over the price per share is the least return acceptable without dilution. We can say that: $k_{0}=E / P_{p}$. It is difficult to see how k_{0} so defined is a cost. As a step in clarifying this we might say that k_{e} is a rate of return a company must earn on the projects financed with the new equity issue in order not to dilute the exdsting shareholders' interest.

A second theory, Theory B, also takes into account the company's expected growth pattern. It assumes that a company's total market price, V, is the discounted aggregate etream of ell future dividends. Moreover the theory assumes that thoee earnings not paid out as dividends will be reinvested and grow at an annual rate g. g can also be defined as being equals br where b is the fraction of the earnings retained and r is the rate of return on reinvested earnings. $g=b r i s$ then the rate at which the dividend stream (assumed proportional to the earnings stresm) is
expected to grow. Theory B then states that $k_{e}=\frac{D}{V}+g$. The letter D stands for dividend.
$\frac{\mathrm{V}}{\mathrm{V}}=$ the rate at which the market has discourted the stream of dividend return. $=$ $\frac{D}{V}$ may then be considered to be the minimum rate the compeny must earn on its new new equity moner if there is going to be no dilution of equity. Theory B, in addition, says that g must be added to $\frac{D}{V}$ to give a true picture of the rate that the company must earn on the new money. The factor g, covers the situation when a cornpany is experiencing growtin, that is, an increase in return on reinvested eamings. When a company is in a growth situation the present stocicholders expect the company to earn more and more on the reinvested retained earnings.
k_{1} as we have defined it is a before tax cost. However, k_{θ} since we have considera it on an earnings per share and divided basis is an after tax cost. To make the two comparable it is necessary to put both on a before tax or after tax basis. We have so far delved somewhat into the theory of the cost of equity capital. If we assume that we are eble to obtain theornticelly satisfactory costs of straight equity and straight debt capital, k_{0} and k_{i}, we can approach a blended "cost of capital" which is the general cost to the company of its capital. The blended cost of capital is simply the weighted cost of the two simple costs, k_{e} and k_{i}.

$$
k_{0}=w_{i} \times k_{i}+w_{0} \times k_{e}
$$

where w_{i} is the fraction of debt alreedy in the company's capitalization and w_{0} is the fraction of equity already in the company's capitalization.

The weighted cost of capital is not in steslf too good an aid in deciding the debt vs. equity question. However, the theory behind it does deflne the cost decision area. In actual practice k_{0} works out to be substantially larger than k_{i}, so that debt is usually consiciered cheaper financing than equity.

Ci course the irclination to secuie e new financine via tie deb: route inasmuchas delt is iess costiv must be tempered with the cartion that loading on further or new debt will increase the risks involved. To sumarize whet we have covered so far, let us saj that since errrings, rirk, and ccst are so ciosely incerrelated we cannot soive the deit vs. equity problem merely by considering oze of these decision areas in isolation. We can evaluata each area individually, but we must then have a method to meich each one and throug: some exceedingly complex process to erank out a resillt-answer.

IV. FURNAED PLunNIIS

There remains yet cne more decision area to be explored. This area is the nontechnicai area of forward planning. In a very roal sense the dett indenture covenants restrict managements forward planning. In essence, these corenants circumscribe some of managements control. The lender thus has received a degres of control over the management of the company's operations. The ker question is "is management willing to oferate under some specific degree of restrictior?" So, in addition to earnings, risk, and cost we shouid add control as a decision area. The area of control is more physoological and less measurable then the other areas, but it must be considered in any evaluation. It goes almost without saying that in this article we heve lookad at the debt we. equity problem primarily from an insider's point of view. When we talked about management we aesumed that managenent is responsible for the shareholder's intereste Yet it is certain that outsiders, mainly the lender, will view it quite differently.
/...

Table 1

(Doller Plgures in Thousands)

	1965 Ca and bar	Structure	```1967 Lamings Assumine, $30 Mill Equeviton Plnanced by```
	Bonds		Common Stk.
Earnings before interest and taxes Interest on debt	\$46,028		\$52,328
	$1,123$	$2,398$	$2,123$
	\$44,905	\$49,930	451,205
U.S. federal income tax © 48\%	21,554	23,966	24,578
Net profit after tixes Preferred dividends	4-3,351	\%25,964	\$26,627
	700	700	700
Net carninge on cormon stock Number of common sheres outstanding (in thoua ands)	122,651	\$25,264	\$25,927
	6,585	6eseme	6,985
Earninge per share	\$ 3.44	* 3.84	\$ 3.71
Chart 1 reforence point		(3)	(1)

Table 2

(Dollar FYgures in Thousards)

$74.09 \cdot 30$

