TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

D03392

United Nations Industrial Development Organization

Diatr. LIMITRHD

In/10.96/11
30 Auguat 1.971
ORIGJNAL: BNOLISH

Expert Oroup Neeting on the Use of Plastics in the Building Industry
Vienna, 20-24 September 1971

PLASTIC POANS FOR HOUSINO 1 /
by

Werner T. Meynr
Chaiman of the Board
U. F. Chemical Corporation

Woodside, Hew York
U.S.A.

1 The views and opinions expreseed in this paper are those of the author and do not neoescarily reflect the views of the seoretariat of UNIDO. This document has been reproduoed without formal editing. 1d.71-7029

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

1...... . .
f WOOOSIOE, N Y. 113:7 57-20 58TH STREET . TEL. 212-651-0837
U.F.C.(© UREA-FORMALDEHYDE PIASTIC FOAMS FOR HOUSING
2.0 DISCUSSION 1
3.0 TECHNICAL DESCRITTION 3
3.1 UFC FOA: 3
3.2 UFC Coatiaf 4
4.0 COMMERCIAL AND EONOMIC DISCUSSION 4
5.0 SUMMARY 5

[^0]WOODSIDE, N, Y. 11377 37-20 58TH 5TREET - TEL. 212-651-0037

Urea-furmaldehyde chemicals for foam generation are manufactured by U. F. C. CHEMISCHE FABFIK FRANKENTHAL, Zuckerfabrik Strasee \#3, 671 Frankenthal/ pfalz, Ge.many, and affiliates in the U. S. A. and Canada under a proprietary process (UFC@ Foam).

UFC(Foam, an excellent theral and acoustical insulation, ds used in combination with UFC* Coating (a weather resistant paint) and with locally available construction materials to erect permanent, high quality housing. This can be achieved with local labor, and with significant savings in time and capital over normal construction methods.

The U. F. C. system can be licensed to interested parties for manufacture, use and sale; a total, proven system from raw materials through applications is available. We are willing and able to construct, on behalf of our clients, an integrated chemical manufacturing plant and train local staffs. In addition, afage for housing will be demonstrated, again through the training of local personnel.

2.0 DISCUSSION

Adequate shelter for people is a humanitarian, economic and political requiremert. Unfortunately, today's standard construction methods require large capital investments in manufacturing plants supplying components for mass housing. This includes cement or brick factories, steel, lumber, roofing materials, etc. These plants are normally located far from where the need for housing exists. Further, for mass production, precise measurements for structural parts are a necessity, and skilled labor for construction is required. Frequently, locally available products are not usable due to the type of constructinn employed.

SHK, a division of UFC-Chemische Pabrik Frankenthal, has developed a commercial system for masshousing using our products with local building materials.

After a license has been signed, our architectural staff will destgn or help to design the buildings to be constructed preferably using locally available conatruction materials (be they wood or steel; and conforming to local taste or radition.

UFC Foan's remarkably high thermal and acoustical properties coupled with its low weight (0.5 to 1.0 lbs. per cubic foot or $8-16 \mathrm{~kg} / \mathrm{cu} . \mathrm{m}$.) allow lighter foundations, columis and beams. The foam is noncombustible, mold resistant, insect repellant, unfriendy towards rodents, water resistant and stable vis-a-vis most solvents. Walls and roofs are designed so as to form $2^{\prime \prime}$ to $3^{\prime \prime}$ ($5.0-7.5 \mathrm{~cm}$) cavities between inner and outer skins. These cavities are filled with foam. Inner and outer skins again maximize local products; these way be wood, wallboard, metal, jute or even cardboard. These walls are then painted with UFC Coating which is weather-proof, has high abrasion resistance and adheres strongly to any clean surface. Mafntenance is minimal, and repairs, if any, can be made easily and inexpensively.

It should be noted that precise dimensions for the component parts are less critical with this system than for standard construction mehtods, because UFC Foam will fill any cavity irrespective of shape. Further, the load-bearing parts can be cut on site or shipped efficiently in bunded form.

Erection takes place rapidiy using semi-skilled labor with unskilled helpers. Foaming is accomplished with simple, precalibrated equipment requiring only UFC's patented gun, two air driven pumps, an afr compressor, hoses and the two-component liquid system (non-toxic, non-flammable water solutions). UFC Coating is supplied premixed and may be brushed, sprayed or rolled ou both inner and outct walls as well as the roof.

The resultant building, wen comared to standard construction practice, is lighter, earthquake and storm resistant, better insulated against temperature extremes (30% to 50% more insulation against heat and cold) and approximately 35% less expersive.

Both UFC Foam and UFC Coating are highly stable compounds; tests performed after over 12 years showed no significant deterioration of propertifes.

SHK has erected over 1000 dwellings ranging from Red Cross emergency housing at 8000 feet ($1,800 \mathrm{~m}$) elevation and $-20^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right)$ temperature, and vacation colonies in the subtropics to luxury villas. All were completed in 3 to 4 months. We have kept some of these structures under observation, and found the product to perform on specification after more than 10 years.

Attached are summary data sheets on UFC Foam and UPC Coating giving the major properties of these products.

3.0 TECHNTCAL DESCRIPTION

3.1 UFC Foam

This foam is generated from two water solutions. One solution is the urea-formaldehyde resin, the other the foaming agent. One volume of liquid yields over 30 volumes of foam.
U. F. CHEMICAL CORP. supplies the entire system to generate foam. The two solutions are normally supplied in 55 gellon set drums. One air-driven pump per drum feeds the product into the patented foaming gun. Pumps, gun, hoses, connectors, etc, sell for about $\$ 3,600.00$ in the U. S. A. including training. The only additional equipment required is a portable air compressor costing about $\$ 550.00$.

The foaming gun is a sturdy, simple design weighing about 11 ibs. (5 kg) and is handled by one man. It is pre-calibrated at the factory leaving the user to set 2 clearly marked dialis, plus an air valve when ready to foam. Maintenance requirementa are mor, assuming that this equipment will be kept clean and not exceseively abused. The cleaning medium is water, and a special tool kit, plus spare parts are normally supplied with each gun.

The resin itself is polymerized at atmospheric pressure in a specially designed reactor using a proprietary process. Water, electricity, thermal energy and cooling water are required for the reaction.

The basic raw materials for UFC Foan are urea and formaldehyde. Additional chemicals required are mostly standard or commodity products readily available in almost all parts of the world. That mall portion possibly not available locally can easily be imported.

The foaming agent requires a meparate ractor and the same utilities. Part of the raw materiais may have to be imported.

Resin and foaning agent manufacture are of the batch type and require 2 - 3 operators per shift. One of these men needs to be trained for 2 to 3 waks and should be able to monitor a simple reaction involving time, temperature and flow-rate controls.

The finished liquid products are stored in bulk (after simple quality control checks) or in drums. The shelf-life of the resin solution is limited, and depending on cilmatic conditicns, varies from 2 t.: 6 months. The foaning agent has in unlimited shelf-1ife.

Approximately 10,000 square feet ($1,000 \mathrm{~m}^{2}$) of manufacturing and storage space are required to produce the chemicals capable of generating $100,000,000$ square feet ($10,000,000 \mathrm{~m}^{2}$) of foam one inch thick (2.5 cm) per year. This is based on a three-shift operation (24 hours per day, 5 days per week).
U. F. C. Chemische Fabrik Frankenthal, and its affiliates have the skills required to design the plant caking local conditions into account, builc the equipment, train operators, helperect and start up the plant and demonstrate the products applications in practice. Follow-up techntcal service is also available.

3.2 UFC Coating

This product requires a special mixer easily run by 2 men per shift which can produce $15,000,000$ square feet ($1,500,000 \mathrm{sq.m}$.) per year per 3 shifts. This equipment will also fit into the above 10,000 square foot plant.

4.0 COMMERCIAL AND ECONOMIC DISCUSSION

The standard plant will be able to produce yearly the chemicals capable of gencrating $100,000,000$ square feet of foan one inch thick when operating 24 hours per day and 5 days per week. Consldering the 1:30 volume relationship between the liquid and foam, these chemicals amount yearly to 25,000 barrels (55 gallon) of resin and foaming agent each.

This same plant can be run one shift (8 hours) per day producing about one-third of the above quantities. Operating economice, except depreciation, are only slightly inferior to thres-shift operation.
This plant with all manufacturing equipment plus foaming equipmert and training is avallable from UFC Chemische Fabrik Frankenthal and affiliates. Total cost is $\$ 60,000-\$ 100,000$ excluding land, bulidings, utilities, and of course sale of the license. Recognizing that local buslness customs, laws and conditions vary widely, there is no fixed, rigid approach for the licensing of this system.

The simplest is an outright sale to each interested party of the complete package (as described above) including a paid-up patente and know-how license. Sualler or bigger plants ar also available. Specific terms can be negotiated, and inquiries are welcome.

Other business arrangements such as equity for know-how and patent license, running royalties, etc. can also be worked out, if mutually attractive.

In the U. S. A., the chemicals generating UFC Foam sell for $\$ 0.03$ to $\$ 0.04$ per square foot of foam one inch thick including a reasonable profit, but not includiug labor to install.
5.0 SUMMARI

Housing the world's increasing population requires, especially for the developing nations, that the best and most economical means be utilized to achfeve this objective.

UFC Chemische Fabrik Frankenthal and its affiliates can supply a total, time-tested integrated system of chemical manufacture, application and use which will give permanent housing to those who require this fundamental human need.

The same system, slightly modified, may also be used for other purposes. Agriculture, (converting semi-arid regions to cropproduction without irrigation), oil pollution, sewage disposal. packaging, paper, mine safety, and other applications are all outlets for UPC Foams.

Capital investments are very low; this is major advantege to the developing nations.

Technical and descriptive data are attached to familiarize the reader with the UFC system.

Interested parties are requested to commanicate with UPC Chemische Fabrik Frankenthal, Zackerfabrik Strase *3, 671 Frankenthal/ Pfaly, GERMANY, or with U. F. CBEMICAL CORF.. 37-20 58th Street, Woodside, New York 11377.

Portable Foaming Set-up (with tool-box, manual of operation)

Not shown: air compressor or pressure bottle

Typical Foaming Set-up
Showing resin drum with air-driden pump, and gun.
Not shown: Foaming agent drum with same pump.

Typical SHK designs
for individual homes

meaut filiche: $\quad 01.2 \mathrm{~m}^{2}$
wehnftiche mach OIN : $00.7 \mathrm{~m}^{2}$
dachform:
fiach - u.glebedech
menstruktion :
helz of stant
rismprels:
SCHAUMHAUS - KONSTRURTION GmbH

foamed-in-place insulation

thermal and acoustical

what UFC foam is

UFC FOAM is a superior insulation which on an installed-cost-per-unit effectiveness basis is less expensive than poured or matted insulation material.

its many attributes:

- thermal insuiation
- sound absorption
- low cost
- appilcation ease
- dimensional stability
- molsture resistance
- pest control
- non-fiammability

how UFC foam is applied

UFC-Foam is applied from a patented gun within which the foaming action takes place. There is no further expansion after the foam leaves the gun. Voids can bes completely filled without fear of subsequent pressure build-up. It can be applied in any temperature as easily as spreading shaving cream.

UFC-Foam can be used to fill existing voids through holes as small as one inch, can be applied between open frames-floor, wall or ceiling-or can be foamed through metal lath. Once in place it can be smonthed with a trowel and sheathed over immediately. A typical between-studs void is completely insulater in less than 2 minutes.

Where U.F.C. Joam has been used

Columbla Univeraity
St. Ciair Place, N.Y.C., N.Y.
Archliect: Brown, Guenther, Battaglia, Gaivin
Waiston Building
77 Water Street, N.Y.C. N.Y.
Archinect: Emery Roth \& Son
Gen'I contractor: Diesel Construction Co., inc.
Chanin Bullding
1411 Broadway, N.Y.C., N.Y.
Architect: Irwin S. Chanin
Gen'I contrector: Chanin Construction Corp.

air and sound insulation

The unique thermai and acoustical properties of UFC foam, and its ability to compietely fili odd-shaped crevices containing pipes, wires, ducts and fixtures, make it an ideai insulating materiai for pipe chase areas and other cavities adjoining iightweight walis or partitions.
Preventing the transmission of annoying or embarrassing sounds is effectively accomplished with UFC foam while providing efficient insuiation for hot and cold conduits.

U. F. CHEMICAL CORP.

properties

thermai conductlvity: K factor 0.20 at $70^{\circ} \mathrm{F}$ mean temperature and 0.18 at $35^{\circ} \mathrm{F}$ mean temperature
thermal resistancs: (R factor per inch of thickness): $5.5 @ 35^{\circ} \mathrm{F}$ mean (winter) $5.0 @ 75^{\circ} \mathrm{F}$ mean (summer)
sound absorption: 83 to 92% @ 2" nominai thickness

C.P.S.	400	800	1600	3200
$\%$	83	92	95	92

sound reslstance: UFC-Foam in walls improves sound transmission ratings 5-7 Decibels
dimensional stability: Unaffected by heat, cold or moisture
water resistance: Its permeability to vapors precludes accumulations of moisture, making moisture barriers unnecessary.
non-toxic: No protective masks are worn by applicators. Not toxic when ingested
lire behavior: ASTM D1692-Self Extinguishing
ASTM E136-Non Combustible ASTM E84-Flame Spread

Non Combustible 25
Smoke Density 0-5
Fuel Contributed 10
chemical stability: It is resistant to most solvents. Time does not change its chemical structure.

sound transmission curve

construction detalis
$13 / 6^{\prime \prime}$ P.S.S 16" O C
$3.4=\mathrm{D}$ M Lath
Uree Formaldehyad $F_{1 l}$
Send Plaster (1:2)
Plaater Thickness th
Total Partition Thickness $31 / \mathbf{s}^{\prime \prime}$
frequency c.p.s
Nota tha unusually high rasults for this thicknaas of lath and plaster partition in the range 550 to 4000 C P S Despite the 44 STC rating this partition may te very effective ageinst transmission

suggested specifications

(a.) Submit price for a Foam-InPiace Urea-Formaidehyde insulation for

specific location

(b.) The Urea-Formaldehyde Foam Insuiation shall be manufactured by U. F. Chemical Corporation, Woodside, New York and shall have the following propertles:

1. Thermal conductivity K-0.20 @ 75 F
2. Fire Behavior ASTM D 1692 SelfExtinguishing; ASTM E136 Non Combustible
3. Flame Spread ASTM E84 Non Combustible $\quad 25$ Smoke Density 0.5 Fuel Contributed 10
4. Water Repellant, Non Corrosive, Mold Resistant
5. Density: 0.6 Lbs. Cu. Ft.
6. Shrinkage: Linear 1.8\% Normal 3\% Max.
7. Sound Absorption Range: 8392\% @ 400-3200 CPS @ 2" Thickness
8. FHA Materials Release \#551A, April 14, 1969
9. Perm Rating: 32-38 Perms/In., @ 60\% Closed Cells
10. Toxicity Non-Toxic per Federal Hazardous Substances Act and complies with N.Y.C. Building Law.
(c.) Install Insulation by means of Licensed Applicators.
Use equipment specially designed for this particular Foam Appiication.

1. PRODUCT NAME

Foamed-in-place insulation

U.F.C. ${ }^{-}$-Foam

(Formulated in accordance with the patented Isoschaum process.)

2. MANUFACTURER

U. F. Chemical Corp.

37-20 58th Street
Woodside, N.Y. 11377
Phone: (212) 651.0837

3. PRODUCT DESCRIPTION

Basic Uses: Thermal and acous. tic insulation. For application into floors. walls, partitions, pipe chasea and other building cavities.

For use in houses, apartments, office buildings, manufacturing and commercial facilities, laboratories, sound sturios, ships and other construction. Can be used for remedial work in occupied buildings as well as in new construction.

Limitations: The material should not be used where it will be subject to temperatures in excess of $210^{\circ} \mathrm{F}$ for prolonged periods. In exposed
applications it requires a protective surface to prevent mechanical dam. age.
Compoaition e Material: U.F.C.Foam is a modified urea-formaldehyde resin. It is cold-setting and forms a low-density, non-combustible resilient plastic foam. The material has the ability to flow into odd-shaped spaces, around wires, piping, etc. Setting takes place 10 to 60 seconds after it leaves the applicator gun. The material can be trowelled before setting.
There is no further expansion of the material after it leaves the applicator gun. Voids can be completely filled without danger of subsequent pressure build-up.

4. TECHNICAL DATA

Thermal Conductioly: k-factor (ASTM C-177) nominally 0.2 at $70^{\circ} \mathrm{F}$ and 0.18 at $35^{\circ} \mathrm{F}$ mean temperature.

Sound Absorption: In a $11 / \%$ inch metal stud and plaster wall it improves the sound transmission class (STC) from 37 to 44 . In dry

wall construction it reduces sound transmission from 5 to 7 decibels.

Structure \& Denaity: The structure is a microscopic sized cell ag. glomeration interspersed with microscopic capillaries which are irreg. ular and discontinuous.
The slandard density of U.F.C. Foam is $0.6 \mathrm{lbs} . / \mathrm{cu}$. ft., although the density can be varied from 0.6 to 1.0 lbs./cu. ft. When fresh it weighs 2.5 lbs./cu. ft. at the standard density. It has 60% closed and 40% open cells.

Volumetric Scability: Temper. ature or humidity variations will not cause U.F.C.Foam to change volume or exert pressure.

Normal shrinkage during the dry-ing-out period is 1.8% to 3% linear. Rapid or forced drying may cause shrinkage in excese of 3%; slow drying will hold the shrinkage to 1.8% or less. No shrinkage will occur if the material is foamed into an air-tight cavity and then sealed in.

Resilience: U.F.C. Foam is a resilient material with a very high vibration resistance. The foam will not support a load.

Moilure Effect: U.F.C.Foam will not hydrolyze. Moisture absorption in wet cavity wall over 24 hour period, 2% by weight (U.S. Teating Co. report No. 43336). Water tranemission, 32 -38 perms IASTM E 96-B) (American Standards Testing Bureau Inc. Report No. 13982.)

Firs Behaviour: Non-combuatible per ASTM El36-65. Will not ignite up to $1,202^{\circ}$ F. (U.L. File MH 8952). Factory Mutual approval for sandwich construction $1 / 2$ inch sheot rock, $21 / 2$ inch U.F.C.Foam. No sprinkler sys. tem required.
Approved by the Board of Standarda and Appeale for une in New York City under Calendar Number 487.70.SM.

Tunnel ten (American Standards Teoting Bureau) ASTM E-84-61 with

foam exposed, flamespread 25. Smoke density 0.5 , fuel contributed 10.

Gee Evolution: When subjected to a flame or radiant heat of $1,300^{\circ} \mathrm{F}$ the material decomposes releasing water vapors, 18% oxygen, 2% carbon dioxide, 2% carbon monoxide and amines. No toxic vapors are produced.

Toxicicy: The material is nontoxic per Federal Hazardous Sub. stances Act and complies with NYC Building Law.

Pest Resiatance: The de-oiling effect of U.F.C. Foam makes it a hostile environment for rodents, and insects.

The material is completely resistant to the common Mucor, Aspergilli and Alternaria types of mold. In addi. tion, the foam is mildly bactericidal.

Approvals : FHA Materials Re. lease \#551 A, April 14, 1969.

5. INSTALLATION

Preparatory Work: No prepara. tory work required. In existing structures the foan can be applied through an opening as small as one inch in diameter.

Methods: U.F.C.Foam is applied from a patented gun, within which
the foaming takes place. There is no further expansion after the foam leaves the gun. Working pressure of the gun is 65 to $85 \mathrm{lbs} . / \mathrm{sq}$. in.

Application can be made at any temperature, provided the components can be brought to the foaming apparatus at $50.70^{\circ} \mathrm{F}$. The foam can be applied through open frames or through metal lath. Once in place it can be smoothed over with a trowel and sheathed over immediately. A typical between-studs void is completely insulated in less than two minutes. The cured foum can be removed and replaced by hand.

Cure Stages: Initial setting takes place 10.60 seconds after the foam leaves the applicator gun. Additional curing takes place in 2.4 hours, during which the foam acquires resil. ience. Drying takes 1.2 days; longer if in closed cavities or in very cold weather.

6. AVAILABILITY AND COSTS

Availability: U.F.C.Foam is installed by approved insulation contractors. Contact U. F. Chemical Corp., 37-20 58th Street, Woodside, N.Y. 11377, phone (212) 651.0837
for the name of the nearest approved installer.

Coses: Individual job costs will be quoted by the contractor.

7. Guarantee

The stability of the material is guaranteed for ten years.

8. MAINTENANCE

No maintenance is required after application.

9. TECHNICAL SERVICES

Information or assistance on apecial or unusual applications is available from the manufacturer, U. F. Chemical Corp.

10. FILING SYSTEMS

Sweet's Architectural Catalog File Sweet's Industrial Catalog File. Additional product information available on requeat.

Tosodaume

THERMAL a ACOUETIC INEULATIDN

37-20 - Setn stanet mOODSIOE, N.Y. 11877

TECRICAL PAPE 1

Condenation has been a problem for the deaignar and builder becauae most of the indulation materiale aither accumalata condanaation due to their inorganic nature, or bacause they form barriers where eccumulations of water are posible.

ISOSCHAUM has some very intereating charactariatice when reectins with moisture. These will be presented hers to help the daeigner and ueer obtein optimum reaulta.

ISOSCRAUM is e porous urea-formaldehyde reain with 60% cloeed celle, interaparsed with microecopic capillarise into which no water in the liquid form can penetrata. To obtain a cleer picture of ite behaviour, 2 " thick epecimene were preparad and etored in air et a constant moisture content. The moleture ebeorption was determined et intervale of 24 houra. Denaity wes 0.82 and $0.44 \mathrm{lbs} / \mathrm{cu}$. ft. reapectively, Ae can be saan from fis. 1 to 3 , the absorption is minime1. It reaches ite equilibrium aftar 1 . 4 daye. Thie procese is raveraible, $1, e^{\prime}$, the foam will give off ite moleture at the eame rate at which it has absorbed it when the relative humidity of the ourrounding air is restored to norman

Fig. 4 shows the reaults of taste whare complete abmersion was initiatad. As cen be seen the penetration is very tlow. The higher danaity material submerged in color coded weter showed a penetration of $1 / 8$ " efter 24 hours where the head of the weter wae 2 ".

It can be seen from this that ohould ISOSCHAUM eccidentelly come in contact with weter in the liquid otete it bacomes setureted very slowly. Furtharmore, the foam containe amall amounte of phosphoric acid which paseivates metellic ourfaces by forming a protective coating of iron eulphate.

Pis. 5 showe the moisture absorption of Iscscmand when in contact with wet eand. The apecimens were 0.8 ", and hera again the absoxption is minimal thus precluding any dangar in secevty wall inctallation.

With the knowledge from thase testu and our formuls for computation of the thickness of ISOSCHALM for provention of condensation as shown in our apecification booklet " Properties of Isoschaum " one cen deaign appropriate comblnatione that will not allow condensation without resorting to molature barriers which are aubject to mechanical fellure.

Figures 6 and 7 show the pentry of a sen-going vessel during the verious stages of insulation. Figure 6 clearly show the gridwork of furring stripe fastened to the bulkhesd end burlap stretched over it. The foam was "shot" through the burlap with

in woter $\left(20^{\circ} \mathrm{C}\right.$)) absorption of porous uree resin immersed

Time in doy: Sheet 2

$$
\begin{aligned}
& \text { Sheet } 2 \\
& \text { Moisture obsorption of oorous urea resin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Moisture obsorption ol porous urea resin } \\
& \text { on wel sond }
\end{aligned}
$$ a special nosele, thus filling all cracke end irreguler voids. Figure 7 shows the decorative panels being instelled. Ho moisture berriers are being exployed, and for that matter neither heve they bean used on eny of the 400 other ship inauletions done with ISOSCHAOM.

Fis. 6
Fig. 7

Pigure 8 shows another installation of ISOSCHAOM in severe moisture conditions, again without moisture berrier. This is a tile roof placed on a wooden gridwork of studs. Burlap wan stapled to the lower edge of the studs and the resulting cavity filled with ISOSCHAUM. This is a common type of roof in central Europe and thia method of insulation has shown to be cheap and effactive. No accumulations of moisture have been reported during the past ten years. This method of insulation has certain advantages, such as protecting the roof structure from stressen created by thermal expenaion and contraction. It also permits storage in the attic, which would not be posaible if the insulation were between the joists.

Fig. 8

Another very advantageous application ia in pipe chasea, where hot and cold water as well as chilled water for central air conditioning systems are together. There the pipes need not be insulated one by one, rather the whole cavity in filled in one ahot through one or two openings under the moulding. Here again tests have shown thac no moisture barriers are required. Figure 9 ahows a typical pipe chase insulation with a fire hydrant opening on every floor.

Fig. 9

Socahnune

THERMAL A ACDUPTID INEULATION

37-20 58TM 8 TREET WOODSIDE, N. Y. 11377
tecimical paps 2
mosils moti trailes acoositc and Theral IMSULATION

Mobile home trailers can be easily and economically inaulated aga_nst noise, heat and cold with ISOSCHAUM. This offars the mobila home owner maximum comfort.

A two inch thick layer of ISOSCHAUM absorbs 83 to 92% of airborne sound in the 400 to 3200 cps range. This same thickneas also hes an insulation value of $R-10$, which means that the heating and air conditioning bille will be much lower.

All cables and wires are anclosed in this foam, therefore thare will not be any rattles and short circuits. Condensation and moisture problems are also eliminated because of ISOSCHAUM's water repellent nature.

The above illustrations show the FLEETCRAPT MOSILE HOME production Ine in Sestele, Wash. The procedure not only looks, but is indeed simple: One man aprays the foam, another one trowale it mouth and aecond crew fastens the outside skin. There is no furcher axpansion of the foam, therefore no waiting time between operations. A very inportant asing is the storege space: ISOSCHAUM comes in two liquide that are expanded when needed.

The FLEETCRAFT MORLLE HOME MAMUFACTURING CORPANY hes not only improved their product, but done a in an invisible way: The cuatomer can not see, but he surely can feal the diffarence in corafort, quietness and reduced fuel blle. And when he wants to trede or sell his moblls home he cen be aura that there won't be any dry rot, vermin in the insulation or insulation that hea eaged to the bottom.

```
Technical data:
Density: 0.6 lbs./cu.ft.
Closed cells: 60\%
Malting point: \(428^{\circ} \mathrm{F}\)
Max. ohrinkage: \(1.8 \%\)
Expaneion: 0\%
Toxicity: none
Moisture absorption © \(100 \%\) 谓: \(0.05 \%\) by vol. in 4 daye
Vibration resistance: ne deformeion after 35,000 automobile miles.
structurel etrenght: week, resilient miterial suiteble only for cevity filling.
Setting time: 40 to 60 eeconde
Drying time: 2 to 14 daye
Fire reting: self extinguishing ASTM 1692 D
K-Factor: 0.20 © 75 meen
Sound abeorption: 2" thickness 83-92\% 400-3,200 cpe.
```


specially-formulated resin injected in wall cavities creates a hostile environment
denying rats a habitat

ONE OF the nagging problema plaguing contractors engaged in renovation and new construction of slum areas is the pesky rat-rodent man has tried to exterminate for centuries.

Past methods, which tried to eradicate rate hidden in bulldinga have had little success. Even if rate are temporarily eliminated from buildings to be renovated, they return after the job is done. Koeping the rodents out of newly-constructed buildings has also met with little success. The dual attraction of large quantities of food remnants and a warm, eecure habitat attracts rate en masse.

The only solution is to create a hostile environment which will permanently deny rats a habitat. A new material "Isoechaum-R," from Isonchaum Corp. is deaigned to create this hostile setting.
The product, a specially-formulated resin is a variation of the company's commercial cold-setting plastic foam, used an inaulation for

MECHANIC FILLS cinder block cores through one inch openinge. Foam denies rodents habltat and is bacterial static snd insecticidal. Roaches and ants avoid it. Equipment consista of compressor, which suppilies propellant and prossurizes the two matorial tanke. specially. formulated foaming agent, "isouchoum- \mathbf{R} ", consists of resin and air combined in apetented mixing device (hanging on side of operator). Agent exits from hose ss liquid insuistion and acoustic foam-which hardens in sbout one minute. Oun can be activated by puahine lover down for on, and up for off. Intermittiont use is possible since no plugsing of gull will oceur. There is only one reguisting device which is an air noedie va ve. This roguiatee the denally of the foam by edmitting more air for a lighter toam; lese alr for a donser toam.
heat and cold, acouatical insulation and fire retardation.

'Rat-proofing' a building

Fritz Kramer, Iaoachaum Corporation'a president tells how a building is "rat-proofed" using "Iso-schaum-R."
"Our liquid foam," Kramer aays, "ia injected into wall cavities through one-inch openings. Fluid pressure fills the wall cavity. The foam flows into all cracks and crev-ices-setting in 40-60 seconds without further expansion."

Krame adds that when the foam hardens, it envelops and entraps rodents. It also makes the habitat inaccessible to other rodents.

What tests show

Dr. Ross M. Grey of Columbia University backs up Kramer's claims for "Isoschaum-R." Grey is chairman of the Institute of Comparative Medicine, Columbia College of Physiciana and Surgeons. He says: "In testa where com-
pressed air is replaced with nitrogen gas, 'I soschaum-R' kills the animals within 90 seconds."

He adda, "The foam presents a hostile environment to rats for two reasons: 1) The formaldehyde gas entrained in the closed cells of "Iso-schaum- $R^{\prime \prime}$ is in high concentration and rats will not attempt to burrow through it; 2) the substitution of nitrogen causes quick asphyxlation of the animals."

Grey says he set up a test to see whether a rat would burrow through the foam to get at food encased in it. "The rat," he saya, "knew that food was behind the foam but did not attempt to reach it for four days-although he did not get any food during this time."

'Has great possibillties'

Dr. Grey concluded his report on "Isoschaum-R" and ita possible uae in construction saying:
"In my opinion, the use of this foam as a tool for rodent control has great possibilitiea.

INSULATION foam is Injected into plpe chase (below) showing close-up of easily operated apparatus. The "Isoschaum" foam flows into and around all odd-shaped crevices filled witt. pipe wires, fixtures. It seals air and sound infiltration, cracks and voids. Right: Close-up of foam as it fills plpe chase.

"Ita possible use in the area of rat control is evidenced by the fact that the foam will: 1) Quickly asphyxiate rats caught in the foam; 2) eliminate living and neating space; 3) provide a barrier through which rats will not attempt to penetrate. Such a barrier system, if further teated might be of great value in new construction."

Acoustical, thermal insulator

Kramer predlcts that "Iso-schaum-R" will find wide acceptance once contractora are exposed to the product.
"This is because," Kramer says, "contractors not only get a ratproofing material but an axcellent acouatical and thermal insulator as well."

Kramer saya that aa an acoustical insulator the product absorba $83-92 \%$ of airborne sound in the frequency range of $400-3200 \mathrm{cps}$ at a thickness of less than two inches. Aa a thermal insulator, it has a K-factor of 0.2.

TECHCAR PAYE 3

The Torrey Cenyon disaster again underlined the need for new methoda and materisls to control oil pollution. The huge quantities discherged by the Torrey Cenyon made the use of detergents impracticel as well as undesirable, since the emulaificstion of ofla worsens the situation, rather than improve it. According to suthoritative opinion the beat way to clsen up oil slicks is to soak it up with atrow. Thia binda the oil rendering it harmleas.

While this method is in ita effecte excellent, it is obvious thet where large quantities of oil ere apilled it becomes problem of logistics and eveilebility. It slso cen become quite coatly, because usually atraw is not commodit: readily obtainable st the beachea or on board ahip, or for thet matter in harbor.

Chamieche Fabrik Frankenthal, Garmany, our affiliate, under the direction of Dipl. Ing. Heins Baumann, its director of \& $\mathrm{E} D$, hat been able to develop a low cost aynthatic foam that absorbs and holde more oil than strew end costaconsiderably leas.

The min characteristics of this foam are that it can absorb selectively oil from 30 to 50 times ita own weight without taking up any watar.

The foam can be manufactured in-aitu (on board ahip or in tha harbor) when it is needed from two aquaoue aolutione with a vary aimple and inexpenaive apparetus. A short time after the foam has been produced it can do its intended job.

Ita remarkable sbility to ebsorb oil is baeed partly on ita callular structure which is shown on the front page in e $1: 40$ photomicrogram. The eynthetic reain takea only 1% of the volume, the remainder being air bubblea which ere interconnected with e network of microcapillarise. These are so amall end offer auch reaistance to weter that conaiderable pressure is raquired to introduca water into the foam. However, ofl heving amch lower aurfece tension can easily penetrate into the cepilleriea and celle.

Another very importent charectariatic of the foem is that it is reailient and will release the oll under preaaure, i.e. oil in the foam can be expressed for recovery. Ons cen forace come very interesting possibilities in the chipping of ofly aubatences.

011 slicka can be surrounded with this foam end sincs a lerge part of it protrudes from the weter, used as ewick for burning off the oil. It can eleo be left drifting - it will not herm squatic life. Becterial ection will eventually decompoee it. The foam itaelf is stable and biologicelly hermless to living tissue.

Our new method and materiel for absorbing oily eubstances (patenta pending) offere low cost oil pollution control, great veraatility, case of applicetion and complete eafaty.

Fine Fluff
 To Soak Up Dil Tested

The Germans have dis. vered that a building inlation material used in the trin of a fine, white fluff will to compietely soak up oil ills from water, and the oduct is heing promoted for ch use for the first time in is country.
The State Water Control fard staff, with last year's ills from ships on the York yer fresh to mind, got word out the use of the product d obtained a sample of it cently from a distribulor re. The staff reported keen erest in the possibilities.

Tests Emcouragioy
Tests in its laboratory pred the fluff soaked up ery drop of oil rapidly from water surface, and none of water. The biackened fluft. ich still thoated, could then scooped off, keaving the ter clean as a whistle. The teria! burns. It is a type n^{\prime} Te a formaldehyde plastic, uitted into walls as a spray. It hasn't been tried on a real II in this country, C. E. oley, director of the board's

Kithmone むimes. Plispatch

Oil Spill 'Fluff' Tested

Continued From First Page pollution abatement division, was told.
But no easy way has been developed previously to clean up a big spill, satisfactorily. Detergents are used to break up an oil mass.
The American Oil Co., at whose Yorktown refinery the spilts from suppliers' unjoading thips were reported, las recorted to the use of a floating boom system to encircle a ship. It then usee a dispersant on the oil.
This sinks it, Cooley said.
A beauty of the Insulating product, which is inert, la that It would avoid any harmful effect on marine life, such as detergents could have, sald Eari R. Sutherland, the hoard's Richmond arca representative.
There is no chemical action thvolved, but only the physical action of absorption through
the countless small capillaries of the nuff, they sald. The difference in the surace tensions of oll and water accounts for the complete separation of the two, they added.
The oll can be squeezed out of the product afterwards.
The Germans came upon the behavior of the material, after the Torrey Canyon disaster, which sent tons of oil onto Britain's beaches when that tanker
broke up off the coast, Cooley said. The incident came about the time of last year's first spils on the York.
The insulating material could be used to clean up oil spills on the highways to avoid hazards, Cooley said. He saw no reason why some petroleum products couldn't be reclaimed completely by pressing out the fluff if they are costly enough to justify the cost of that atep.

CAPILARDOMIN.

IEGMCA, DATA:

Color: whiteDensitw: 0.5 1be./cu.ft. +157Connincerer vian dry: restilentAIr celle ear 1000 ce: $5,000,000$Seructure: Imeiliae with
meroscopic caplileries
ph vilue: $6.5 \pm .5$
Combuetiblistri mon burning
Ahh; 53
Meltine sotime 428°
041 abeorption as a poudar 1 -3
aicron: $12.32 \mathrm{ml} / \mathrm{m}$

CLEAN SWEEP ON OIL SPILLSI CAPILLARDIAMIN®

oucts like a blotter

absorbs up to 40 lbs. of oil per cubic foot


``` attroc 1 mbdelfant) (al
```



```
to-houncll
```



```
Capillardiamin
```


Mrere ithe.
W: t t.id
Capillardiamın

If

inuterinl, withete

(1) Cheme al (orp)	In the Gull Comse oren
	Rittmer trapument Co
Werodste.N: 11 亿7.	220 Hencrixk Ave
(21.) finl 0831	PO Box $3 \cdot 5$
	Gretiou, 1 a $7(x) r^{3} 3$
	(504) 36.7 .580

To fecilitate the celculation of installed ineuletion resistence for heating end cooling lond determinetion, the table below gives the values of most commonly used building meterials (Ashras guide 1966): Where the manfacturere give reaietance valuee, these should be used.

ciscaptian	$\begin{aligned} & \text { nempen } \\ & \text { nilatimese } \end{aligned}$	$\begin{aligned} & \text { Orrectios } \\ & \text { mant Hiow } \end{aligned}$	maxigma
SURFACES: (FILMS)			
Outside (15 MPH wind)	-	Horz.	. 11
Inside	-	Hors. a up	81
Inside	-	Down	. 2
Inside (reflective foil)	-	Up	1.12
Inside (reflective foll)	-	Hors.	1.71
Inside (reflactive foil)	-	Down	$4{ }^{4}$
coard-panels-sheathing:			
Wood siding-beveled and lapped	1/2	Horz.	21
Asbestos Siding	K	Harz.	. 17
Woods--fir, pine, suft woode	2	All	4
Plywoods	1/2	All	18
Sheathing (lmpres, or costed)	${ }^{2} 12$	All	20
	$1 / 2$	All	1.21
Drywall	$1 / 2$	Horz \& up	4
Plaster board and plaster	3/6	Horz.	0
Composition wallboard	-	Horz. a up	100
Carpot and rubber pad	-	Down	1.21
Tilo-vinyl, asphalt, etc.	-	Down	88
MASONRY MATERIALS			
Concrete	1	Hors.	\boldsymbol{n}
Concrate block-3 core	4	Hors.	.11
Concrete block-3 core	8	Hors.	1.11
Concrete block-lightwsight Filling cores of concrete	8	Horz.	20
block add		Horz.	. 7
Face brick	4	Hors.	. 11
Stone, sand	1	Horr.	4
Built-up roofing	\%	Up	38
INSULATIOM:			
Wood Pulp Cellulose	1	All	277048
Cotton Blanket	1	All	
Mineral Wool blanket or bett	1	All	2.12 to 2.78
Mineral Wool loose fill	1	All	2 Et to 3.85
Vermiculite	1	Horz. up	20
Polystyrene	1	All	278
Polyutrehane	1	All	88
Pre-formed root insulation	1	Up	270
Root dack slabs	1	Up	10nt 6 20s

ISOSCRAOM n-value per inch $=5.5 @ 35^{\circ}$ mean (winter realstance) ISOBCHNM R-value per inch $=5.0$ a $75^{\circ} \frac{1}{1}$ mean (oumer realstesce)

The oun of R-vilues of a given, completed otructurel eection, divided into 1 , gives the U-factor, i.e.. the heat Elow in BIW/hr., through one equare foot per 1^{o} y cemperature differential.

When ISOSCHALM is used for inoulation, no molature barriers ene required, provided the materiele on the warm alde of ISOSCHAOM are lese parmable than the ones on the cold side, and no conatant freesing conditione exist, such at in cold storase.

SPECTETCAETON FOR SOUSD AND THERYAL IHSULATICN

apecify atructure Insulation shall be__ Inches thick
ISOSCBAUM ures-formidehyde, pour-in-place, resilient, sound and thermel
insulation foam ae manfactured by \qquad
and inatalled by iicensed applicator:

nam

Addrese

with the following characteristics:
Denaity: 0.6 1bs.cu.ft.
Non burning (ASTM D 1692 - 59T), non meltinc, non toxic,
Perm Rating: 50 - 100 perms/in., @ 60% closed celle,
K-factor: 0.18 @ $35^{\circ} \mathrm{F}$ mean, 0.20 a $75^{\circ} \mathrm{F}$ mean,
8hrinkage: 1ineax 1-1.8\% norma1, 3\% maximum,
Sound abeorption range: 83-92\% © $400-3,200 \mathrm{cpa}$ a $\mathbf{z r}^{2}$ thicknees, Hater repellent, non corroaive, mold reaistant FHA matariala release 551, May 17, 1967.

Project: \qquad

Architect and/or anginear

Remrite mad aditional Indtruetions

ISOSCHAUM is an excellent heat and noise barrier. It can solve a combination of heat and noise problems as shown in the illustration.

Noise and heat were penetrating into the apartment located above the boiler room. In order to shut out both ISOSCHAUM was foamed into a cavity created between the concrete surface and metal lath sus. pended from $3^{\prime \prime}$ stick-clips.

In order to allow proper bonding, the stick-clips were fastened the day before. The distance between the stick-clips is 2 - 3 feet. The metal lath was covered with ISOSCHAUM approximately $1 / 4^{\prime \prime}$ by spraying. No further treatment was required.

The foam was applied directly with a special trowel-nozzle. Aa the foam came out it penetrated through the metal lath and was trowelled smooth in one operation.

Cavity wall construction has become a popular building method in commercial construction

One of the big problems of this type of construction is the problem of insulation and water penetration. Inorganic insulation materials have the tendency to absorb and retain moisture

ISOSCHAUM pour-in-place insulation foam solves both problems as well as others.

The foam is poured, without exerting pressure, into the cavity before it is closed up. The foaming hose is dropped to the bottom of the cavity and withdrawn as the foam rises. As soon as the cavity is filled it can be closed. There is no need for moisture barriers as can be seen from the data published in our technical paper \#1 Furthermore, the foam seals all cracks and crevices, thus creating an effective seal against air invasion.

An experienced two man crew can install up to 20,000 board feet per day. This "igh rate of application as well as the comparatively low cost of the material itself, make it very attractive from the cost point of view.

ISOSCHAUM'S high R - value (11 for 2 inches in the winter and 10 in summer), as well as its absolute water resistance offer the builder a superior product at low cost.

SOUND TRANSMISSION TEST OF PLASTER WALL FILLED WITH ISOSCHAUM. (*)

(*) With the permission of the Metal Lath Association.

Plaster-Plastic Study
 Ideal partitions are made with materials that have
 back plaster method on this foam-metal lath base. The

light weight, structural strength, moisture and thermal resistance; that serve as sound and fire barriers, and, of course, hove a reasonable price tag.

To date, no single material with all these qualities has been developed. The trend appears to be toward the use if combinations of materials - each of which is inherently irong in one or more of these ideal wall properties.
Posstive steps have been taken by the Metal Lath Asociction to develop a compatible group of meterials which, as a total assembly. will give desirable results of easonable cost. Steel studs, metal lath and gypsum foster have long been known for their strength-to weight ctio and iisir unequaled record for performance in prtual buiding fires. For exterior work, substitution of portand cennent for gypsum plaster cari fulfill the moisure resistance requirement.

In the area of air-borne sound transmission contral, the nonolithic nature of metal lath and plaster hos given dequate results in both field and laboratory. However, nodern noise producing conveniences lgarbage disosals, electric shavers, oir conditioners, mass media) oupled with the increasing population density, results a situation where upgrading of partitions and wolls as ound barriers has become a prime necessity. The most ractical and effective solution developed by the lothing rid plastering industry is the use of resilient attachments etween the steel studs and one or both metal loth and laster membranes. With proper installation of resilient lips, a sound transmission class gain of seven to ten ecibels may be obtained.

Another approach, although not entirely new, is to ompletaly fill the partition cavity with a soft soundbsorbent material, the theory being that the sound wave assing through will be absorbed and converted to armless heat energy. Testing of various light weight Her moterials proved the absorption theory to be corct. A urea formaldehyde fill material has been tested, ith results that are favorable and especially compatle with lath assemblies.

Urea formoldehyde is a cold setting feam which is pamed in-place with o portable mechanical unit. Erecon of steel studs and ottochment of metal lath is done the normal manner. The foam is then "'shot through"' le lath, filling the stud cavity completely. Construction a test panel showed the feasibility of using the double.
foam is resilient enough to let plaster keys form, but also stable enough to allow the double back coat to be applied without affecting the scratch coat or keys. (Results of the sound transmission test are illustrated in the accomponying graph.)

Moisture content of freshly foamed urea formaldehyde is 1.8 lbs . 'cu. ft.-a factor which has some effect on the setting property of gypsum plaster. The use of the material in curtain wall construction" may have good possibilities. Because of this moisture condition, a slow cure is induced on the portlond cement stucco face, thereby virtually eliminating the problem of shrinkage cracks. Other advantoges in exterior work are; a thermal insulation-K-factor of .20, a moisture borrier, and fire resistonce-since the foam does not support combustion -its melting point is 428 degrees F.

- Refer to MEIAL LATH NEWS, Vol. 30, No. 3, Foll, 1966 Mmetath Shutwall, pages 6 and 7.

37-20 5日TH STREET . TEL. 212-65!-0037 WOODSIDE, N. Y. 113%
THERMA: A ACOUSTIC INSULATION

TECIINICAi PAPER \#8

SOUNDPROOFING OF GARBAGL Silifilu

Garbage shafts are usually metal-iined vertical ducts where high noise levels from falling garbage are generated. This situation can become (and usually is) a nuisance to tenants in rooms adjoining the garbage shaft. An effective noise barrier can be easily and inexpensively installed with the U. F. C. FOAM SYSTEM. This system lends itself to new construction as well as For remedial woik in already occupied buildings.

U. F. C. FOAM is pumped into the hollow space between the Iining and the wall of the incinerator shaft through oneinch holes. It does not require bracing since the foam does not expand once it leaves the applicator hose. Pumping pressure is below 35 psi . It sets within one minute after foaming. U. F. C. FOAM is an excellent thermal insulator (K-factor is 0.2) and an effective sound barrier (sound absorption coefficient: 83\% e $400 \mathrm{cps} ; 93 \% 1600 \mathrm{cps}$ at a thickness of 2 inches). Continuous service temperature $210^{\circ} \mathrm{F}$.

37-20 - 58TH STREET - WOODSIDE, N. Y. 11377 - Telephone 212-651-0837
THERMAL \& ACOUSTIC NSULATION

LECHNTCAI PAPER HO (RTVCFD!

PRPE CHASE INSUIATION MADE:
EASY WTRH UFC-IOAM

Insulating pipes in a pipe chase is expensive, time consuming and inconvenient.

The UFC ${ }^{H \prime \prime}{ }^{\prime \prime}$ FOMM insulation system offers several advantages to the arohitect, the builder, the home owner, and the tenant.

UFC "K" is a liquid foam which can be injected from a hose into cavities through one-inch holes. It does not expand once it leaves the hose; therefore, no bracing is required. After one minute, the foam sets and hardens. It is highly resistant to pests, molds, chemicals, heat, and cold. No moisture barriers are required where temperam tures do not go below $32^{\circ} \mathrm{F}$. The maximum constant hightemperature exposure for UFC "K" is $210^{\circ} \mathrm{F}$.

UFC-FOAM can be appli: 1 in wi tor and summer becanse it is a cold-setting process--independent of ambient temperature. The applicator gun discharges the foam at a rate of $2 . j$ ctim, which mechas that a chast $b " h i g h, \quad$ g" deep, and 12" wide can be Ensulated in less than 2 minutes' foaming time, irrespective of the number of pipes in it or their configuration.

Kepairs are easy to erfect becaluse the foam can be removed by hane' and replaced afterwards.
 mean temperatua) as well as a high seond absorption coefficient. LHC prevents sound traveling from one bathroom to another by affectively preventing sound transmission through vertical pipe ehases.

UFG-FUAM can do an excellent soundprooting job on drainage pipes, where hieh noise levels are often generated from down-rushing water. This can be eliminated in the design stage by placing the sewer lines in a pipe chase and foaming it with UEG-FOAM or as a remedial joh by encasing the offending pipe in shect rock or similar rigid enclosure and then foaming it. (sound absorption coefficient is 83% (400 cps ; 43% 空 1600 eps at a thickness of 2 inches).

TECHNICAL PAPER \#11

FLPX 1 CORES
ro mathematically arrive at the potential thermal resistance value for an $8^{\prime \prime}$ thick Flexicore section covered with typical asphalt built-up roofing and cores foamed with U.F. C. Foam we submit the following for your consideration.

Taking a section of Flexicore $G^{\prime \prime}$ long x normal width of $24^{\prime \prime}$ being 1 sq. ft. (144 sq. in.) 108 sq . in. ($6 \times 6 \times 3=108$) are over voids varying in height from 0 to $6^{\prime \prime}$. The balance of the surface area (30 sq . in.) ($144-108=36$) being 8^{\prime} of concrete and roof coating only.

The average thickness of U. F. C. Foam in a $6^{\prime \prime}$ circle would be 4.7'. Computed by: 28.27 (area of $6^{\prime \prime}$ circle) x $6^{\prime \prime}$ (length of single core in 1 sq . ft. section $=170$ cubic inches. 170:36 (sq. surface measure of core $=4.71 \mathrm{x} 5=\mathrm{R}$ of 23.5 .

REFERENCE	ITEM	DESIGNATION	R VALUES
Manufacturer	(a)	4.7" U.F.C. Foam ($\mathrm{R}=5$. per in	in.) = 23.5
fila	(b)	2 " Concrete	$=.32$
FHA	(c)	Buiit up rovi	$=.33$
FIIA	(d)	Inside air film	$=.68$
FHIA	(e)	Outside air film	$=.17$
Manufacturer	(f)	Fiexicore with built-up roof	$f=2.00$
Manufacturer	(g)	1.2' roof board (Urethane)	$=8.33$
Manufacturer	(h)	2" Roof board (Styrene)	$=8.33$
FHA	(i)	$8^{\prime \prime}$ concrete	$=1.72$

Then:
In one sq. ft. of surface ($144 \mathrm{sq} . \mathrm{in}$.)

$c+d+e+1=2.90$	36 rarts $-2.9=104.4$
$a+b+c+d+e=25$.	108 parts $-25=\frac{2700.0}{2804.4}$

2804: $144=19.46$ average R value

Recognizing that mathematical and actual results are not always parallel, it is suggested we take a 20 per cent adjustnent factor. 80% of $19.46=15.57$.

By adding Irethane ("item g ") or Styrene ("item h") under huilt-up roof, we have $13.57+8.33=23.90 \mathrm{R}$ value which is a U of . 0418 .

The result of extremely high insulation value with roof boards of a practical thickness make this seem to be most desirable system. Performance and economics are both attractive.

PACIORY MUTUAL RESEARCH CORPORATION

IISI SOSTON-PROVIDENCE TURNPME, NORWOOD, MASS. 02062

U.F.C. POAM, TYPE K
 CORE INSULATION

from

U.P. CHEMICAL CORPOATION
33-69 55TH STREET

WOODS IDE, NEW YORK 11377

1 INTRODUCTION

1.1 U.F. Chemical Corporation submitted their U.F.C. Foan, Typa K, core insulation ($21 / 2 \mathrm{in}$. thickaess) faced on both aides with $1 / 2$ in. thick paper-faced standard gypsum wallboard for posaible Factory Mutual approval as a wall asaembly of low fire hazard, not requiring automatic aprinkiar protaction of iteslf.
1.2 Fire tests in the PM Construicion Materiale Caiorimetsr and an addtifon fire test to evaluate the possibility of a vertical apreading fira within the core show that the construction meete the Factory Mutual Approval standerde for Class I Building Materials.
1.3 The tests also served to qualify for approval constructions in which the foam is enclused on both sides with paper or vinyl facsd atandard. Gpaum wilboard of thickness greater than $1 / 2 \mathrm{in}$., or enclosed on both aidas by concrete or masonry.

II DESCRIPTION

2.1 The U.F.C. Foam, Type K, core material is a foam-in-place urasformaldehyde base plastic. The foaning agent is an aqueous detergant mixture cixpanded by air.

III CALORIMETER TEST APPARATUS AND PANEL

3.1 The first fire hazard test was conducted using the FM Construction Materials Calorimeter. See attached re-print for description.

$$
19.12 .73
$$

factory mutual meseanch conporation

3.2 The submitted teat panel ($41 / 2 \mathrm{ft} . \times 5 \mathrm{ft}$.) consisted of a $21 / 2 \mathrm{in}$. thickness of U.F.C. Foam, Type K , sandwiched between $1 / 2 \mathrm{in}$. thick paper-.faced atandard type gypaum wallboard. (Metal atuda, 16 in. o.c., were contalred in the core parallel to the $41 / 2 \mathrm{ft}$. dimention.) The exposure side of the test panel contained a wallboard joint which was covered with a gypaum joint compound. The joint was parallel to the 5 ft . dimenaion, and 12 in . fron the exposure edge. When in place, a 4 ft . x 4 ft . area of the test panel was subjected to the direct action of the fire exposure.

IV YEST

4.1 The preheat air was adjusted to $100^{\circ} \mathrm{F}$.
4.2 With the refractory cover in place, the exposure fire was turned on and maintained at a fixed rate until thermocouples imbedded in the brick Iining of the calorimeter reached $300^{\circ} \%$. At that time, the exposure fire was cut off and the calorimeter allowed to cool until the imbedded thermocouples reached $175^{\circ} \mathrm{F}$.
4.3 During the calorimeter cooling, the teat panel wae placed in position and the edges sealed with ashestos cement to prevent the eacape of gasea from the calorimeter chamber. This is the atandard preheat procedure.
4.4 The exposure fire was then turned on and maintained at fixed rate throughout the test. From the flue, a time-temperature curve was obtained representing the combined heat contribution of the ample and the exposure.

v. EVALUATION

5.1 The noncombustible refractory cover was placed on top of the furnace and sealed.
5.2 Again, following the standard preheat procedure for the calorimeter, the standard expoaure fire was turned on. At the temperature recorder, the time-temperature chart was pre-ploted with the curve for the test panel to be evaluated. Then by adding metered fuei from a eeparate aource through auxiliary burners, the curve obtained with the teat panel was duplicatad.
5.3 The various auxiliary fuel rates uead were recorded and plotted. With thia data and the heat value of the evaluating fuel, heat contribution rates of the test panel ware computed to arrive at fire Hazard Clasaification.
5.4 The maximum one minute Fuel Contribution Rate FCR was recorded as $116 \mathrm{Btu} / \mathrm{sq}$. ft./min. The total fuel contributed by the assembly during the 10 minnte test was $300 \mathrm{Btu} / \mathrm{sq}$. ft. These values are converted to fire Hazard Classification in accordance with the FM Standard for Class I Building Materials as shown on Page 3.

VERTICAL WALL TEST

6.1 A $4 \mathrm{ft} \times 8 \mathrm{ft}$. panel of the same construction as the Calorimater panel wes supported on the floor on its 4 ft . edge. A 6 in . $x 8 \mathrm{in}$. opening was cut into the center face of the wallboard 6 in . from the floor level. Three thermocouples were placed at 12 in . 36 in ., and 60 in . disciances from the top of the opening. (The top of the panel was unsealed.)
6.2 An acetylene torch was inserted into the opening and this exposure wat maintained for ore hour in an attempt to induce vertical fire spread.

VII ResULTS
7.1 Calorimeter Tasta

The Fire Hazard Clasaification indices of the test panel and those of the maximum allowable by the Pactory itutual Approval Standard are shown below:

FIRE HAZARD CLASSIFICATION

Plame Spread Index Puel Contributed Index

2 1/2 in. U.F.C. Foam, Type K, faced on both sides with $1 / 2 \mathrm{in}$. paperfaced standard gypaum wallboard 15

Factory Mutual Approvii Standard 25100

7.2 Vertical Hall Test

Only minor flame spiead was observed in the imediate area of the expooure. No vertical flame apread resulted. Najor dasage (decomposition) to the core insulation was limited to an approximete 2 ft . distance above the exposure. Maximum thermocouple readinge recorded were:

The rmocouple 1.	12 in . above opening	$1700^{\circ} \mathrm{y}$
Thermocouple 2	36 in . above opening	$100^{\circ} \mathrm{F}$
Thermocouple 3	60 in . above opening	$90^{\circ} \mathrm{y}$

VIII CONCLUSIONS

Fire tests show that the U.F. Chemieal Corporation's U.F.C. Noam, Type K, faced on both uides with minimum $1 / 2 \mathrm{in}$. thick paper-facad standard gypum willboard ts a construction assembly of low fire hacard. The sesembly conforms to the Factory Mutual Standard for Class I Building Materials and is not expected to contribute significantly to an interior fire. The assabiy does not, of itself, require automatic sprinkler protection. Approvel is also extended to
constructions in which the foam is enclosed on both ides with paper or vinyl faced standard gym sum wallboard of thick ss greater than $1 / 2 \mathrm{in}$., or enclosed on both sides by concrete and masonry.

The manufacturer shall periodically furnish samples of the product for purposes of reexamination to insure continuation of product acceptability.

Approval is effective when the Manufacturer's Agreement is aligned and returned to Factory Mutual.

BJC/bre
Notebook No. : 280

Tests and Report By:
$\frac{\text { S. Caeladerencer Callahan, }}{\substack{\text { Bet. } \\ \text { Project Engineer }}}$

Report Approved By:

Wrosensonci W. F. Marconi Chief Materials Engineer
U. S. OEPARTMENT OF HOUSING AND UREAN OEVELOPMENT
FEDERAL HOUSING ADMINISTRATION

A. Attics

Foam is pumper betweea the j0ists. If a vapor barrior is used, foam is purped directiy on $1 t$. A apor barrier mast used between the foam and aivy waterial sia winch it may be appliod if such material or its inish is adversely affectod by moisture released by the foam in drying.

B. Uncorered Exterior Walls

1. Pump loan between studs with the extorior sheathing as bacoing.
2. Ventilata area while foam is being applied by leaving doors and windows open.
3. Apply vapor barrier $2 s$ soon as possible after foaming.
4. Apply interinc finish matarial in the usual manner.

c. Covered Exterior walls

1. Drill a $1^{\prime \prime}$ hole in cavity between studs, Including areas above and below window openings, above doors, and elsmonere to asgure filling ontire space between studs.
2. Dreill one 1/2" hole, or two 1/4" holes, at the top of each openting or space.
3. Pump foam trrough the $1^{\text {ii }}$ hole until it comes out of the top bole or holes.
D. Carit. Walls
4. Pump foam into the rarity as mil reaches successive 8 ft . to 10 ft . hoights. Drop application hoze into cavity and pull back slowly as foam fille cavity. Ropeat at intervals of 3 ft. to 5 ft . horizontally as nacessary around the perimoter.

IMSTALATHON:
Foamed in place by authorized agent of the producer using their recoumended matorials and applicators.

[^1]4:77-70-8M
APPIICANT-U. F. Chemical Corporation, owner.

APPEARANCES-

For Apmigatu: H. M. Colc, V. Mor fopoulos and C. H. Stillmoi.
ACTION IF DOAND-Material approved in accordance with tive report aull recommendation of Conimitite on Test. ThF VOTE-
Afirmative: Chairman Galvin, Vice Clazirnıan Beeker. Conmaistimer Kllin, Coummissioner Mladigan and
Commis inuer Nolan
Negative:
THE RESOI.UTION-
Witeneas. Ile remart of a Commitice on Trat reads: 487.:0.SM-H. M. Cole fint U. F. Clempical Conpmation. Now Yort, fitel ins approval of the material kmmun m_{s} U. F.C. Finan Insulation ammer the provisions of C? 2 - 100.2 Buibling C.ank of the City of New York. PROPOSFD C'SE: Nomcombustible insulation.
DESCRIPTION: The material is hacically urea forpulydebyde that is spray apotied to the eurface that is to le insulated. The exart Infmulation is of a proprictary nature and thereEnec. the Phari! luis placey the forimula in a seated civelope anil depneitenl it in the thoardis asac.
INSPECTION AND TFST: Tle applicant bas summitted Ereport ai teat conducted by Amerixan Stamdinds Testive Brarcan. Ine. dhowting that the material is nom-rnmbuatible

 C177), whithin ASTM limitr.
WRCOMMENDITION: On the hosis of ile test, the Compalite oul Test reenminemals the apperwal of the maicrial
 City unter the provisimas of (26-10r. 2 Tanihling Code of the Cisy of New York. as a nomermobumi inse insulation on combition that this material shall mot be ennsideed and shalh not be used in lies of required fircproming and that the inculation be aderasinely pomectet so the salisfaction of the Comminsioner. Parl comahure in which the materis) ta marketed shatl be lalieled "Approved to lie Tincril of Stantarda aud Anpeals for whe in Nicw York City mider Cilrmdar Number 4R7.70-5 (${ }^{\prime \prime}$ ".

A aromon affidavis by a respensible aficer of the unanufacturer, familiar with the materials. procences and rontrols of the prohnct mannfartured. shall ise sired aumuiaily with this Roard. certifying that such matcrials promeseses and contmbs are welion maintained as were in efleet at whe time of thi: approval. Failure 10 motify the Theint of clanze of ownerstiph change of cillursth or in suluatit the anmal illdavit will be ciluse for revocation of apuroval.
(Sgd) Socomon Srisicirit,
Stuant Lowatmel
Asst Engr.,
Commintee on Test.
Resolised, that the Board of Standards and Appale deas herety approve unl: material in accordance with the abow report.
 Prtmal far Bulboin Na 5L, Vol. LV.

P. 6071
R. 114158

Docember 7. 1970

U.F.C. FDAM IMSULATIOM - FIPE ENDVAWCE TESTS

INTRODUCTION:

Pursment to ASTB Proposal PPR No. 6095670 dated Jme 29, 1970, and the raply therato communicated by. The Comalas loner, AYC Department of Bulldings, 100 Cold Streat. Mew York, M. Y. 10038 on duly 16, 1970, Mr. Fritz Kramer of U.F. Chemical Corporation, 37-20 58th Strmat, Woodelda. N. Y. 11377 raquested that - flre endurence testing progrem ben carried out "to show that the flre roilstive roting of the [swject tiraproofed] columin] wlli net be adversely affected" by the application of U.F.C. form thermel insulation therton (Pof. dTO:IEMiap - 7/16/70). For that purpose, a set of stael col umis saplee ware preparad in aceordance with ASTH Ell9-61. On Soptenter 23, 1970, Universal Fire Bar, Inc., 607 south 8 all Street. Arilington, Va. 22202 eproyed four (4) IOWF49 and two (2) i4nF228 colvens with tireprooting insulation proviouly approved by the NYC Department of Bulldings as per UL File 0R3183, G90485a9 tests. On October 22, 1970, U.F.C. foam Insul at lon was eppllod botween steel cladeling and the cursd firoproofing layor on o Iowfal column. After a six meak total curling parlod and on Movaxber 3. 1970, a fl re ondurance tret wee combected as par ASTM Ell9-6I. The results of this test was alaborated in our heport Mo. lalal dated Novamear 11. 1970.

A stendard 14 MF 220 colum was formed o November 3, 1970, as per the schematic draing attectud io this recort. Difter : three week curing periad and on noventer 23, 1970, a fire endurance teat wes condweted ea por ASTM Ell9-61. The tests were witnessed by the following partles:
H. M. Cole, R.A.
R. J. Friochalm
M. Kopp, R.A.
F. Kramer

1. Minkln, P.E.
V. Mprfopoulos, Eng.Sc.D.

Consuiting Arehitrect
Mational Oppan Osmpery Ski drone, Dwons morrill
U.F. Chemical Corporetion

NYC Dopartment of Bull dlinge
Anserican Stenderts Testing Bureew, Ine.

DESCRIPTION OF THE EXPERIMENTAL SAMPLE:

The standard 14 WF228 colum mad was unlformily covered with a 1 5/8" layer of Universal FIrm Bar fireprooling. The material was apray appilad and had an average

P. 16071
R. 114150
Decmior 7, 1870
Pege 2

wat censity of $30.0 \mathrm{ib} / \mathrm{tr}^{3}$. The averace amen-drled cansity of the 1 ireprooting was detervilaed to te $21.3 \mathrm{lb} / \mathrm{ft}^{3}$. The U.F.C. foem wee appllod botween ow-shaped motal cladding inod the fireprooting, se per the oftected schemotic druwing of the samplo. The averace thlatmese of the foem vee $17 / 0^{m}$ and fircproofing was epplled In the beck sealling the foem ond clading entrailtice. The cladding wes afteathed to the colmin baso and emp oy mans of motal angles.

Two levels of four (4) thermpeouples ware met to sontincemily record the ateal
 of the clad sepelman wee Incerpereted to the france ficor. The semple wee motographod bofore and durlmy the four mowr fire cadwrace twet. After the complotion of the oxperlmant, the coflum wes ommaned and shotegrephod. The tret racults

TEST MESUTS:

The furnee tim femparture eurve we wall within the Ilalts allemed by ASTM Ell9-fl. Twe lovals of tewr thermectiples were providad to mateme the colluin temperatures curlas thle atrily. The "tep level" rocerding thermecouples more
 4, 6. 8, and 14. The leeatione of theee thermecouples and the rocerdiny of the tamerstures ostalmod curling the teat are show on the chart appended to this repert. The following table sumarize tio date obtalned add cempores them vith provions niste and numis:

T18	$\therefore \because$						SImyto M1 Tenp:					
	$8-2$	U-1	L-L	Y4	L-4	4	14	44	1	$\underline{4}$	14	Y/
	129	137	102	125	-	-	140	150	19	150	-	
$0_{0} 0$ an	128	137 215	198	210	-	-	200	248	23	210	-	
0	23	293	217	267	-	-	510	30	218	240	-	
0	35	415	237	23	-	-	410	450	23	3	-	
0	980	10	30	524	-	-	40	60	510	6		
0	478	537	282	308	-	-	510	50	3	3		
10	703	778	522	64	\cdots	-	70	\cdots	470	-	39	1010
10	808	980	670	00	925	938	13	110	719		500	

[^2]P. 16071
R. 114158

Decenter 7, 1970
Page 3

Aceorting to ASTM EII9-8i regul raments, fal lure occurs when the averege thermee cople tumparature, ot any lewl, nectues $1000^{\circ} \mathrm{F}$ or when single thormacoupis taperature raaches 12000°. Conecquantiy. the sumple tested wee found to eempiy with the cited specificatione. The tomereture mesurnmants reconded in this oxperiment ware mad to calcul ete the oxpected columi follure timenich was coterdinad by the "tep Iovil" thermaconle readinge to be 4.1 hrs. The Ilinited tamereture wee recebed by Mo. 2 thermacoule which began to racerd somormally high treporminras after 3.6 hr . of empenure to the furnace enviromment. Visual cbseruetions complied during the seat haw en follows:

TEST TINE
6 Macter
10 Winter
35 Minctes

REMavs

Flaming storted throuch claciling jolnts. Cladiling buekled sowroly of the elges, seme buraling of foem centinced. Last visible raments of foem disintegrete.

After the matal cladiling was ramoved, there was no sign of measive fom cotocted. The flroproofing wes discolored belind the wintal eladding, hewower, Indiceting that semp carton realtue hee been proserved undor the matel shiold. The flroproofing material was soft end showed no visible signs of cracking with the axception of the area near thermocouplo Mo. 2.

On the basis of our teating progron reaulte, we subult that there is no indicetion whatsoever that the fom Interfares in min cetrimental way with the rated performance of the firaproofed collman In amestion. In fact, there ere indlcetione that U.F.C. fom has bemefliclal influence on the fire resistance of the firapresfed colums bofore the insulation is consumed.

Raspectfully scomitted,
MEBRICN STANLANDS TESTING BUREAU, INC.
Y. Morlopoubos lawe Technical di rector

VM: awe

Ampritan ©tandar̀̀ ©

U.F.C. FOM INSULATION TOXICITY TESTS

(RE: U.S. STEEL BUILDING FIREPROOFED COLUNNS; N.B. 67/67)

INTRODUCTION:

On July 2, 1970, Mr. Fritz Kramer of U.F. Chemical Corp., 37-20 58th Streot, Woodside, N. Y. 11377 requested that inhalation toxicity tests be conducted to ascertain the rating of U.F.C. Foam Insulation as per NYC Bullding Law (c26-504. 10 and the Federal Hazardous Substances Act 5191(t)(2). Comparison tests with piywood materlal were also conducted.

LABORATORY PROCEDURE AND RESULTS:

To determine the degree of hazard in rats as per applicable specifications, the test materlals were burned and the combustion products therefrom were administered to animeis. Ten normal, healthy, albino rats of the Carworth CFE strain, welghing 200 to 300 grams and equally divided as to sex, were used In this experimant. Samples of the respective test materials yleiding 300 PPM of tumes ware burned over direct, high-Intensity tame in e glass receptacle. The rats ware piaced into the inhalation chamber and exposed to these fumes for six hours. At the end of the exposure pe lod, the animals were returned to their Individual cages and observed for fourteen (14) days for any untoward effects. Throughout the observation perlod, the animals were maintalned on their regular diet of Lab Blox and water ad libitum.

Twenty-four (24) hours following exposure to test materials, in the mamer described, two (2) of the experimental rats died due to U.F.C. Fomm exposure and four (4) of the animals exposed to plywood fumes likewlse died. The remeining animals survived the fourteen-day observation period, ate wall, showed a normal increase in body weight and behavad as normal laboratory secilmated anlmals. The following table summarlzes the experlmental dete recorded in thls study:

NUMBER OF RATS

TEST PMATERIAL.	EXPOSED	$\frac{\text { DEAO }}{2}$
U.F.C. FOAm Insuiation	10	
Plywood	10	4

Ampriran ©tandarda ©

On the basis of our laboratory findings regarding Inhalation toxicity tests, we submit that U.F.C. Foam Insulation is non-toxic according to the speciflcations of the Federal Substances Act, Section 191(1)(2), 1961. Furthermore, the II.F.C. Foam Insulation appears to be comparatively less toxic than plywood and thereby fully complles with the requirements of the NYC Buliding Law and Section C26-504.10 therein.

Respectfuliy submitted,
AMERICAN STANDAROS TESTING BUREAU, INC.

R. A. Turner, Ph.D. IW
Consulting Toxicologist

Approved by

RAT:ma

Amprian Gtandaris ©egting Murpan, Ins.

PROJECT No.	CO71
Repont No.	11157

Date Docember 4. 1970

from U. F. Chemleal Corporation
Order Numbers
Address
Matertal
37-20 58th Street Moedside, N. Y. 11377
U.F.C. Foem Insul ation

On Noventear 24, 1970, Mr. Frita Krumer of U.F. Chemical Corporation reacestod thermal conductivity determinatloms (K-factor) on semple of U.F.C. Fomm. Test specimans, measuring $12^{\circ} \times 12^{\prime \prime} \times 1^{\prime \prime}$ and corrosponding to a domelty of $0.7103 / 4 t^{3}$, ware dell verad to ASTB on the game deto.

The sample was prapared for tast by cutting it Into a cl rcular dise of about $\mathrm{B}^{\prime \prime}$ In diametor. The spacing wed. -mintulned by three spacer blocks sat of engles of 120° acout the sample. The K-Factor determinations mere made in a el rewiar. flat, juarind not-piate apparatio an per ceptloned specliflcations. When a steady state was ustablished, the following coservilions and resulte were obtalneds

Upon removing the sapis frem the teat epperetus, there was not discernitic aior cianja, shrinka.je or other pmyslat change.

Analynes by: Tented by: Witnessed by:

We hereby certity that the above is a true repon of the recoulta of sealymes and trets as ande od the sampless ladicated.

hmbican Sthmanids testine bunenc, isc.

By:

m

Dave June 3, 1970
From U. F. Chemical Corp.
Order Numbers P. O. FFK:ANS - 5/8/70
Addrees 37-20 58th Strent Woodside, N. Y. 11377
Matertal U. F. C. Foem

Applicable Specification ASTM E96
On May 8, 1970, Mr. Fritz Kramer, President, U. F. Chemlcal Corp., requested Water Vopor Transmission (WVT) determinetions on certaln plastic foam samples submitted to this laboratory. Sald specimens were designated as U.F.C. Foam and measured $15^{\prime \prime} \times 13^{\prime \prime} \times 1-1 / 2^{\prime \prime}$

The required laboratory measurements were conducted as per captioned specifications and sccording to Procedure B thereln at $73.4^{\circ} \mathrm{F}$. The humidity conditions emp loyed were 50% RH outslde the cup and 100S RH Inside the cuD. Recorded date In WVT units were then convert to Permeance units (perms) by mpans of established computation methods recommended by ASHRAE. The following table summerlzes our findings over an 18-day period obtained on four (4) specimens:

DETEPMINATION			WVT $\left(g / m^{2} / 24-h r\right)$	PERMS
After A.fter	24 hrs	Average	262.8	37.7
	72 hrs	- Average	258.1	37.2
		Low	236.1	34.0
		- High	261.0	37.6
Attor	144 hrs	- Average	254.5	36.7
	144 hrs	- Low	230.6	33.2
		- High	261.7	37.7
		- Average	245.2	35.3
After	432 hrs	- Average	220.3	32.1
		- High	259.0	37.3

Several oermeance values for insulating materlals are tabulated below for comparison ourd

MATERIAL	PEPMS (ASTM E96-B)
U.F.C. Fown (Unprotected)	$32-38$
Mineral Wool	116
Gypsum Wall Board, Plain 3/8"	50
Hardboard, $1 / 8^{\prime \prime}$	11
Conerote $(1: 2: 4 \mathrm{Mix})$	3.2

We beroly certify thet the ebove is a true ropert of
Analyces by:
Tested by:
Wienesced by: VM
Coplea Report to:
Subecribed and sworn to on
VM: ma

PROJECT Ne. 6071
Reper Mo. 14099A
Dowe August 25. 1970

Addrese 37-20 50th Struet Noodelto, W. Y. 11317
 Macoastal
 U.F.C. Poem Imsulation

 fire hazard teats te ceactusted to ascortain the II re hecerd retlog of U.F.C.
 and 0.7 italen it comelty wore suppliad by the monufacturer. After a gave (7) day conditionlag perided at $70^{\circ} \mathrm{F}$ and 30-40\% M1, stenderd twote were portormed and witmeased by MrC Departinent of Bulldinge' reprecentetives, arenltrectwal and englnaorlag Intependent comeultents as woll be indintry reprowntatives.

Fire hazard trets more perfermad on U.F.C. fom specinen supperted by a wiro

 tory deeorvitlome and celloreflome ter the applleable standerds

PAN STETAO
25

Nis ocumaterion
10
gonemaras
0-5

The materlal wee found to the sali-axtinguishing.

Analymen by : anced by: whenemed by:

N, dK m

Coples Report to: inbertbed and owoint: oo a

M:we

 melomed.

Ampritan Gtandarda ©egting Murpau, Inr.

PROJECT Ma.

Din June 23, 1970
From U. F. Chemical Corp.
Onder Membert P. O. FK-Verbal 6/18/70

Addrum 37-20 50th Street moonside, N. Y. 11377
Macertal
II. F. C. Foom

Applicuble Sppellicution ASTM E 136

On June 18, 1970, Mr. Fritz Kramer, President, U. F. Chemleal Corp., raquented noncombustibility doterminations on ceptloned plastlc fomm sumplos as per ASTM El30-65. Four (4) standard test specimans $\left(1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 2^{\prime \prime}\right)$ were preoared from the sumples proviously supplled (REF. ASTB R. 13982). The required laboratory measuremmets as per raforensed standard were recorded undor a constant furnece temperature of $1302^{\circ} \pm 2^{\circ} \mathrm{F}$. The following table summerizos data thus obtalned.

SAMPLE	TEMP. RISE, ${ }^{\circ} \mathrm{F}$	FLAMING PERIOO, SEC.	WEICHI LOSS, 8
1049A	26	14	89.7
10498	23	12	09.6
1049C	31	17	90.0
10490	20	12	89.5

On the basis of the shove reaults, we subalt that the plastlc foam in question is noncombustible and In compllance with ASTM EIS6.

Analyses by:
Tested by:
Witnesed by:
Coples Report to
Subecribed and sworn to on
Val:ma

We horiby contify that the chove is a ure rume el
 matioctel.

am enos

180-KOTE LTD. 10X 2
 WEBDSPORT, HEH TOLE 11316
 TELEPEOME: 315-834-9718

U. T. C.O COATEMG

(COAREE OR TITE GRAULATIOH)
I. I. C. COATHG io ane coat finieh for imeide and outelde eurfoces. The ceaciog ie waterproef, flexible, opaque, brachee, hae leag ilfe.
colon: White (other colora en raquest and eddicional coet)

GBABACTEACRICS

0. F. C. COATING 10 a meture of plastie co-polyeere ia aqueous auspanion wish exceptionel washer resisteace and admealon. Ite tlexibility and cevering power will withatand
 eguinet 0 . P. light. Excellent abraeton reelecence. Adheres well, Zeaiehat to shoch and aronion Mom-teric. Prevente reaciag. Odoilee, when cured. Generally applleabla om peraus ot nou-fotoue meterisl. Eapecially meeful for the following:

CEMRET
MOOD
6LAES

stone	COHCRET
PLAster	sutcts
pnetuact	FOLIETTA

ACRELIC	MTLON
PVC	ALDMYMUA
POLEETMYLEME	BTEEL

U. Y. C.e COATING may be applied by brueh, epreader or Low pressure epray sun.

ML11 nat ren ot drip.

RENCIAB TEIS

Outaide walle.
inasle Walle.

Decerative serfaces.

R1093R138

Eesily washed and touched up.
Watarprees.
Cosing permite the wall to bresthe while abstrate dries.
Ilastic, absorbs expanaion and contractione mp to $3 / 64^{\circ}$.
Coatint is permeable to vapor. Thia preverte eondencation and blisterint of costing due to cecumulation of meteture. W11 mot affect platica cuch as polystyeane, polyurathane, ete.

APRLICATION

1. Stif wall before mae.
2. Mid 108 water to liget coating whare two ceatiage required or for eprey sum appileation.

PBRMMEIOM of SUPRMATB

1. Clean curface from oll, greace, old palat.
2. Spackle and 8111 cracke sed jointe.
 1:10 with wator and apras or brueh on).

DRIMC

1. 15 misuces ofter basceost.
2. 1-2 houte efter firat ceat.
3. Conpletely fry and nurad in 18-24 houre.

APLYIMG

a. Brueh on: 3/64" (1.0ma)
b. Iromel on: 3/64" (1,0na)
c. Spray on: $1 / 32^{\prime \prime}(0,6 \mathrm{~mm})$ Thin out with appres. 108 recor.

Use 5/8" oxifice epray gua -- lew pronsure (15 lbe.feq. i.t.. 20 cle eompreaser)

MorgallhITx:
5-15 ninutec.

GTORAGE: 6 months in cloaed coatainer. GROTECT YROM ERORT On partially used containers, cover aurface with vater andor close.

Clganinc: Can be washed off ruge and tools, before it ie dry
ADDITIVES: Pigmenta, glan fibere, colored glaen duat es aead can be edded prior to epplication or epriakled on while coating etill tacky.

COVERAGE Spray on: 1/32"-1.5 1bs.faq. Jd.

$$
\begin{aligned}
& \text { Arush on } \\
& \text { trowl on } 3 / 64^{\prime \prime}-2.25 \text { 1bs./eq. yd. } \\
& \text { Roll on }
\end{aligned}
$$

DIETRIJUTED ET:

> UFC Foam ... the superior foamed in-place thermal and acouetical Inculation

Use UFC Fosm snywhere. It's equally practr:al for large sress or spol spplications. It can be applied through one-inch openings in floors, ceilings, wsils, parlitions, pipe chases and other building cavities
houses

apartments	sound studios
offices	stores
factories	ships

NON-COMBUSTIBLE

OW THERMAL
CONDUCTIVITY
REDUCED SOUND TRANSMISSION

LOW COST

EASY TO APPLY

NON-TOXIC

CHEMICALLY STABLE
water repellent

PEST PROOF

NO MAINTENANCE

U. F. Chemical Corp 37-20 50th Stroel Woodside, N.Y 11377 Phone: (212) 651-0837

DIMENSIONALLY STABLE unaffected by heat or cold - no pressure bulld-up or setting
Certified under ASTM E-136. Risted at 25 for flame spread, 10 for tual contribution, 0.5 for smoke release under ASTM E-84 and ASTM E-113. Factory Mutual approved for sandwich construction without sprinkler system

K factor of 0.20 at $75^{\circ} \mathrm{F}$ and 0.18 at $35^{\circ} \mathrm{F}$-resistance factor of 5.0 al $75^{\circ} \mathrm{F}$ and 5.5 at $35^{\circ} \mathrm{F}$

83\% to 92\% at a nominal thickness of two inches lessens sound transmission through dry walls by 5 to 7 decitols
less expensive on an installed price/performance basis than poured or matted insulation
no preparatory work required-patented gun "shoots" foam into wall cavities as easily as applying shaving lather-typical between-studs vaid can be filled in less than two minutes
no toxic vapors produced, even when subjected to heat and Hame - no protective masks required for applicators
modified urea formaldenyde resin formulated in accordance with the patented isoschaum process guaranteed for 10 years
moisture absorption In wet cavity wall over $\mathbf{2 4}$-hour period measured at 2\%
roem is hoetile environment for most rodents and inecots
stable under all normal environmental conditions

weet of the Pockice

Brekke Entorprises, Inc.
1320 Thdeheven Posd E.
Tecome, Weah. 89424
Phone: (200) 822-5511

UFC Foam thermal and acoustical Insulation is non combustible This unique product has been certified as non-combustible when tested in accordance with ASTM E-136, and New York City's Board of Standards a ald Appeals has approved it under Calendar Number 487 70SM

In other tests under ASTM E-84 and ASTM E-119, UFC Foam had ratings of 25 for flame spread, 10 for fuel contribution, and $0-5$ for smoke release These lests coricluded, "the material is self-extinguishing after removal of the ignition flame and quite inactive over a surface burning test period extended to 30 minutes. " UFC Foam enhances the fire rating of the structure tested, and Factory Mutual has approved UFC Foam for sandwich consiruction with $1 / 2$-inch wall board and $21 / 2$-inch of UFC Foam without requiring a sprinkler 5 sistem.

Specify UFC Foam Insulation on your next building project! It's non-combustible and has numerous exclusive benefits that will improve thermal and acoustical performance, make your job easier and increase customer satisfaction.

UFC Foam Insulation passes trial by fire

blanketing a building in inculating fom

insulating contractor for New York office building shows expanding uses for insulating foam

APPLIUATOR INSULATES pipe chase area by inFecting foem into all odd-thaped crevicee filled with pipe, wirs and fixtures. The foem analed air and sound infittration. as well as crecke and voids. Thermol Consuftents was the insulation contractor. Diesel Construction Compeny was the eererel.

LITTLE DID Thermal Consultent's Don Toy know that when he got the insulation contracts for exterior apandrel panels of a $\mathbf{2 7}$-atory office building that he'd end up blanketing almont the entire structure in foam.

Thermal Consultants is an insulation contractor specializing in urethane and other foam systems. It also provides engineering consulting services. The contract was on Walaton Company's new headquarters building in New York City.

Thermal chose a hot new insulating and soundproofing product for the job called UFC foam. Manufactured by U.F. Chemical Corp., this foem product is designed to resist both heat and sound. It contains three elements-urea formaldehyde, foaming agent and air. The three components are fed through a hose into a gun, where they are pressurised, then formulated. It is applied at any tomperature as easily as spreading ahaving cream.

Ody ane cembect. At the outer, Thermal had only one contract for the Walaton building. It called for inaulation of 150,000 board feen of exterior spandrel panels. Armed with $40-55$ gallon drum seat, UFC's patented foam gun, Gray Company's specially adapted vertical pieton purmpa, a gaccline air compreseor, hoees and a "bay of tricks", Toy's four-man crew tackled the job in carneat.

Thermal developed a white, nom-burning neting which was ueed extansively on the job. Called
"Cavnet", this netting is used to create a cavity to contain the foam (unlike urethane, UFC foam has weak adherence). It also acts as reinforcement.

By this method, Thermal sealed all leaks on each floor and provided a thermal barrier with a total U factor of .00 maximum. The foam insulated and prevented moisture from entering through the exterior wall.

Was foet its rodmanag. "The job should have ended there, but it didn't," Toy says. "The general contractor on the job, Diesel Conatruction Company, saw what foam could do on the exterior wall. He was impreseed by our rapid installation, so he found other pleces to use it. And since we also provide enginecring services, we were able to advise him an the feacibility of other installations.
"Diesel firm acked us if we could inatall a thermal barrien ia the machine roour. Since the uneven contours of the wall lent itself to foam inatallation, we were eagor."

Toy saya his men manled 10,000 square feet of spece in the unachine room using $\mathbf{2 5 , 0 0 0}$ board feet of foam. They uned the special net on this job also while momolithically insulatine the wall with foam.

As a side offict, the foam in the machise room will dampen the acise of the machisery and thus let laen moive cucape into the street.
"The mext problem Dievel called our attention to was the high hat lighting ia the ceiling. Diesel correctly acoumed that the high hats would be a

PHOTO ON LEFT shows a apecially-developed white. non-burning netting which was used axtensively on Walaton a Compar. y 's headquarters building. On the right. UFC foam is injected into the cavity created by the netting. The "Cavnat" netting conteins foam and acts as a rainforcement.
source of thermal leakage.
"To solve this problem, we did something that, as far as I know, has never been done before. We spiraled the foam around the fixtures in a turban manner. This method was developed by our foreman, Robert Brady."

Changed apecification. "Solving that problem led to something else," Toy says. "Next was the ceiling, which is hung over a vast outdool open mall. Air conditioning duct work and piping as well as domestic hot and cold water and sanitary lines in the ceiling had to be separated from outdoor temperatures. Fiber glass was specified. But Diesel was wary of the multiple number of open joints that were impossible to seal.
"Diesel gave us the green light to use foam. We iayed it down monolithically, totally blanketing the ceiling area leaving a very efficient thermal barrier.

Ready to leave. Toy says he was "ready to pack up" after insulating the high hats. But Diesel told him to "hold his horses". The general needed insulation in the mezzanine area. The architect's specifications called for thermal insulation to be placed vertically to separate an exterior hung ceiling area from an interior hung ceiling area. But the specs didn't pinpoint the type of insulation.

Diesel opted for foam and Toy got another job. He created a cavity of about two inches with the netting material hung in a vertical position be-
tween the underside of the above floor and the bung ceiling line. The foam was then injected into the created cavity space; it formed an absolutely monolithic thermal partition.

Tellet reem nelve. The owner, Mel Kaufman of Kaufman Realty, was responsible for Thermal's final UFC foam job on the building. He was concerned about the toilet rooms that were adjacent to tenant areas. They didn't want tenants to be annoyed by toilet room noises.

The solution agreed upon was insulation of the pipe chase area. Thermal injected the foam into all odd-shaped crevices filled with pipe, wires and fixtures. It sealed air and sound infiltration, cracks and voids.

Blanketing the upper structure of the building in coam did not entirely solve the problems. The ground floor slab which is almost entirely exposed to the weather also had to be protected.

Thermal did this by applyins a $y^{\prime \prime}$ thick spray coat of polyurethane (manufactured by Diamond Shamrock) to the underside of the \mathbf{Q} decking concrete floor form. This provided a monolithic thermal and vapor barrier. It also sealed the slab from water leakaze.

Toy says the Walston job is "just the beginning". He says :hat for $1970-71$ his firm is under contract to do work on many of the major office buildings under construction in New York City.

- \square^{-1}

JOS OF TMET
MONTH

Foamed-in Place Insulation-New Sound Stopper

> A large new New York apartment building got the silent treatment via foamed-in-place insulation (urea formaldehyde). The product proved to be an economical way to sound proof a thin-wall designed building

- A large new New York apartment building got the ailent treatment via foamed-in-place insulation (urea formaldehyde). The product proved to be economical way to coundproof a thin-wall designed building.

By utilizing a special foam-type material, an insulation contractor was able to efficiently and cconomically soundproof and insulate a high rise apartment building in New York City.

The 26 -floor apartment ilding, St. Clair Place, deaigned to house ay members of Cokmbia Uaiversity, required high-performance somodproofing. Thermal Consu'tants, Inc., New York, N.Y., which specializes in urethane and other foam syatems, relected a new and fastdeveloping insulation and soundproofing product for the job-uree formaldehyde.

This foamed-in-place material with the strange counding name is actually quite simple to work whe

Dealaned to resist moisture and sound, the sysstem is made of three elements-urea formaldehyde, a fouming ageat and air. The three components are fed through a hove into a gun, where they are presesurised, then formulated. The material is releaed from the gun, coming out like a formy
shaving cream. (For another similar application, see October ${ }^{68}$ RSI).

President of Thermal Consultents Donald Toy, who had worked with UFM systems before, was confident that this process was ideal for such a project. "We first had to prove to the owner-archltects that the foam would be effective, however," said Toy. "We foamed sample walls and pipe spaces, uaing the product in an on-the-job tout. It worked. Upon inspecting the walls, the donigers of the building noted that the walls were completely filled, without voids or pocket.

Based on lab teats now in existence, the architects, Brown, Gunther, Battiglia and Galvin, wanted to achieve a sound transmiscion factor of at least 54. The construction consisted of a $21 / 2$-inch metal stud place 16 inches on center, with approximately $25 /$-inch layers of sheet rock on each side.

The materisl, Toy explained, when pumped in via hove, flows around pipes, conduits, medicise cabinets and hampers that are built into the walls and, in some locations, even around ductwork.

By uaing the foam, Toy observes, the inculation and sound-proofing could be doae with minimum interference between the working tradee. "The wall installers, for example, can so ahoed

Denold Toy, preationt of Thermel Cemaniterts, epeelallises in foom lebe.
and install the partitions without waiting for the insulators. We only have to provide smail holes to inject the gun. They are patched up by the wall operator when they are doing their finishing work -spackling, taping, etc."

Using U. F. C. Corp.'s foam, Thermal had the material-contained in drums-delivered to each floor. Basically, the job called for two sets of drums on each level. This provided a capability for each set-up of foaming 8000 to 10,000 board feet.

The material-the resin and agent-came in 55 -gallon drums. The company used two mechanics per floor (although Toy claims it could be accomplished with just one man).

On a typical day, the nechanics would first set up the equipment, adjusting, cleaning and setting. They did about one floor per day.

The wall space in which the foam was released was 16 by 8 feet, $21 / 2$ inches deep. The process takes only a few minutes. Because it is preexpanded, Toy explains, there is no risk of the walls being blown out.

The equipment used on the job consisted of vertical valve pumps (Grayco), a gasoline air compressor, hosing and a special foam gun (with mixer). Spare parts and tools and a bucket of water to rinse hands and parts (everything is water soluble) were the only tools nceded on the job.

Specifically, Thermal Consultants foamed the following areas in the apartment complex:

Apartment wall partitions.
Pipe spaces.
Partitions dividing apartments from the public and incinerator rooms.

Masonry cavity walls of mechanical equipment openings.

Sealed openings of pipe penetrations through the floors.

Besides soundproofing, this also served as thermal protection among pipe and equipment areas.

Thermal Consultants, a unique contracting company which also provides engineering services, is doing other important work with urea formaldohyde in New York City. The process is being used, for example, in the Columbia Presbyterian hos-pital-three 35 -story buildings. Declares Toy, who has been in the insulation business for over 10 years:
"There are fantastic and unlimited possibilities with this material. There are so many jobs calling for foam. Other products, because of the structural design, are not applicable. Architects and engineers are beginning to recognize that foams will be playing a key role for now and the coming years."

Toy is particularly enthusiastic about foam applications involving wall partitions. "I see a marriage of foam and metal partition. This material is ideal for filling tight spaces and fulfilling the soundproofing requirements," he said.

CONTRIBUTORS-

Insulation Contractors:
Thermal Consultants, Inc.
New York, N.Y.
Material Supplier
U. F. C. Corp.

Woodside, New York, N.Y.

PROBLEM

Installation and Insulation For a New Heating-Cooling System in Existing Building

SOLUTION

Foamed-in-Place Insulation

- MIETAS AND ducta in place, ready to recolve in. culation and plateding

To inatall a new heating and cooling aystem in an existlny 5-story bullding (Publlc Works Buildlng-State of California, Sacramento) it was necesaary to provide insulation to protect the "poke throughs" involved.
Approxlmately 32 riser locations on each floor went from the basement to the 5th floor. The concrete floor wras cored out and the plpe and ducts were installed and tested.
Lathing and plastering contractors Thomas F. Scollan Company then framed a channel and metal lath column from floor to ceiling around the riser.
Northern Californie Insulation, Inc., then gun-applied UFC Foam in-place insulation, foamed through the metal lath and into the risers to insulate the hot air ducts and chilled water pipes.

Since excess foam is easily removed by bruahlng, it was then possible to apply gypsum plaster over the metal lath in the normal manner.

ADVANTAGES

The method greatly improves the lnsulation value making the system more economical to operate

Up-Drafts are avoided and permanent fire blocking is provided wlthin the riser
Sound control is provlded in the plumbing cavity
Openings and odd dimensions are easily filled
The backlng provided by the foam improvea plaster keying and hastens application (in event of portland cement plaster the curing process would be reduced, thus reducing shrlnkage fracturing)

UFC-Foam is a franchised application process, attracting interest from many wall and ceiling contractors and is manufactured under the trade name "Isochaum". Information from U. F. Chemical Corporation, 37-20 58th Street, Woodside, New York 11377.

O OPERATOR "GUNE" foamed-in-plece inoulation through motal lath to till cavity complotely

- IWEULRTIOK COMPLIETE and motal lath rady for plesterine

Al. TH. Chemical Bark.
 GELLULAN PLABTICE TECHNQLOEY, MATEMIALE, MAOMINERY

AD COAPACTD 8OTIS.

Fis. 1. Laft: Wetar aeapa into lowar atarta. Right : Water is caught In plastic fom (4), thua raduciag sempaga (6) avd allowing seeda (2), plente (3) to drew on ratained moietura ad added plant mutriante (5).

PLASTB0LL ia nevly devaloped mothod and materiel to looaan compactad ao11 and anhance ite ability to retain moletura.

Plants need molaturs, mutriante, light, warmet and air in ordar to Erow.

The nead of increased food production hae focused the attantion of the egronomiat on the 20 called "merginal" lands, auch ae cemideaerts and exheuctad solle.

It ia well known that many desert soile ara rich in nutriante and perait luah vagetation if irrigeted. Such a cace is tha Imperial Valley in California, whara $1,000,000$ acres deaert producs come of the fineat vegetable and friut cropa bacauca irrigation water is being piped in over long distancas. The productive limit of the Vallay is sat by the emount of water allocated. In a eituation like this, two poasibilitias ara open to increace production.

1) Incracee the water aupply - thic can not be cacily accompliahed. 2) "stratch" the aveilabie weter eupply by reducins evaporation and seepage.

Past30IL, an organic, biologically compatibla opan callad foam developed by Chealeche Fabrik Praskenthel, can do that at a racsomble coat. The fom is proluced on the field by eimple apparatue from two liquide and compraced air asd applied directly in the desired thicknesa on the ground.

Water retention tests have ahow PLAstionl to be very effective water storege modium:

In tha arabien desert plastsoil was covered by an layex of cand and then irrigated until it held 10 timea ite own welght of yatar. After 10 daya, during which the temersture reachod 118° F Ia the ahodow, the foem etill ritained 40% of ite moisture whercas the ground exound it wes bone dry.

In saudi-Arebic 200 citrua trees ware planted in foan and another 200 without it. The fom leyer in tha tree holea was $2^{\prime \prime}$ thick. All trees planted in PLASTs0IL survived, whereae only so\% of the control group did.

Another cerioua problem in modern agriculture ie compection of the soil due to heavy equipment traffic during ceeding and herveating operatione. Peat moss, which has been thue far the medium used mat widely is becoming ecarca and axpenalve. Eera agaln Plaatcoll can replace at lower metarial as wall ae application coat.

Fig. 2, Salad grown in PLASTSOIL. The roota abedded in the foam are claarly visible.

Fig. 3, Gerenium 21 daye eftar implentetion

Fig. 4, Grase grown in fonm. Grase seade germinate in the dark, thareficre they were covared with and.

The varioua epplications of PLaS 280IL can be described here only in ehort outlines:

MPRSEYR une it as arowing medium by disging long channele whare the trees are raised, When needed for tranaplatation, the trae that has to be removed is diply pulled out with the surrounding foam. Mo digging is necceccary. Tranaplantation of bushes ie made easier by first depositing layer of foam into the hole where the buch is plantad. Thie gives the roote good water reeervolt.
 layer of foam on the strile ground end then seeded and covered with dirt. This way quick and etroms growth ie aamurad.

HORTHCUTURISTS reise flowers in foam and than cut out blocke in which the flowers sre growing for shipmant. Peat woee hat been eucceaafully replaced by PLASteOIL in varioua garden coll mixes.

MTME SHAG MONFATMS which have been bare and devoid of vagetetion for over 50 years have been succaafully planted with treee and bushes. The slopea ware cut in horisontal channela into which trees end buehes were plented. The second vegetativa period produced enough organic matter from fallen leaves that now grasee end weede ere growing very well too.

IN BYDROPCNIC GADPFIS fom has reduced the need for frequent irrigations end the tricky task of belancing the nutrient colutions.

IN VIMEYARDS the foam has succeeded in etebilieins the temperature verietione and prevented may froat damgea. Dark pigmenta aded to the foam ebsorb and atora heat, and then give it off alowly. White foam will raies the temperature of the air $3 "$ above the ground 60 to 80\%.
 used the foam in lieu of horia manure at a wrap around the bark to reduce tranapiration thue preaarving the molature in the tree for growth putposas.

As can be acen, PLAETROLI hae many useful applicatione. Io low cost makes it a very attractive meterial for the agronomite addied with labor and meteriala aupply problem.

[^3]Plestoponics - a new method of cullivation for arid soifs.
By Heinz Baumann, chief engineer, Frankenthal/Pfolz. X)
In the following tines we will describe patiol results from experiments with foom plastics which permit soils in orid districts
10 be planted or replanted. Plants con also grow in faam plastics if they are hydrophific and contain nutrient salts and trace elements. This method is called plastoponics, ard the foum itself plastsoil. In this discussion we will deliberately not deal with such things as "woter", "nutrient salts", "trace glements", and pH . Speciolists will know the bibliography. In the introduction we will thorcughly discuss the problem of huriger, for the knowledge of this scourge af mankind has been and will be the gurding principle of our work.
in 1/96' T. K. Malthus' derlured that the fulute of mankind was discouraging. He said that mankind would be increasing in geometric pragression ($1,2,4, \ldots$), wher as the produc'ion of food would increaso only in arithmetic progression ($1,2,3, \ldots$). This theory is wrang, as we hnow now, and yet we are still confrontad with the same proble , and the question is now, as "1 was then: "What can we sur obout the fulure development of mankind?" According to estimations af the competent Ulnited Nations bodies world poputation wili iticrease 11 , the next iwo yeurs by 100 million (anly about 65 per cent. of the world population ore dealt with statisticoliyl. Consequently, world population would have doubled in fourty years. The totol orable soil, by now ubout 9 million ho*. would have to provide food for about 6,000 millian people in the year 2000.

- I ho is uldut ?is ocres

Arrong other reasons Malthus's prophecy did not come true because chemical research succeeded in loying the foundotinns of ational manuling, which, later on, by the technical synthosis of ammenia by Hober ${ }^{3}$ and Basch ${ }^{4}$ praved to be a salution of the difficultios. An unqualifigd belief in ecience which - as in is often thought - con find its way out of nearly hopeless sifuations, may be o goud thing, but it hos nat been proved yet in the least. For althaugh the conditions are given plant protection could nol be improved so for that this would lead to a higher food production. In the German foderal Republic, tor exomple, we have to reckon with a yearty loss of crop amounting to 3,000 to 4.000 miltion DM. In the whole world these losses tctal abcut 37,000 millian DM (estimated), this is 95 , DM per ha of the total arable soil. Even when brought it the crop is still in danger. The corn weevil alone destroys 50 milion tons"* of corn a year, a quantity which

- imerric ton

W.culd suifice to supply the present population of Africa for one year with bread cereols.
A. I. Vittaneni actuocates the view that, by intensifying agricultural production on the present acreage and by expanding it (there are still inormaus possibalities on inany continents), agriculture could provide food for not less than 20 million people, provided that there will be no internecine war.
In the last twenty years the percentage of people suffering from hunger rose from 38 per cent. 10 more than 60 per cent. The food ond Agricultural Organizotion of the United Nations (FAO) nated an increase in the production of food, yet it cannot keep up with the demand of mankind, which is increasing rapidy. From 1945 onwards the production of food decreased ir. Asio by 15 to 20 per rent., and the production of rice in the same period by 13 per cant. Two thirds of mankindsuffer from hunger, thousarats starve evsiry year. This is a monstrous number which we can hordly imagine in our latitudas. Hisegr has no influence on the increare of munkind the birth-rate is higher than the beath-rate, and no balance is establisted under the infivence of hunger. A long-stunding, permonent irritation by hunger can bring obout unforeseen reactions eve:i of u poilical hind with the peoples exposed ta it. This donger has 10 be banished for now and for the future. ${ }^{3}$
It serisy in prove historically that many slates perisited becouse of the lad of agricultural acreage. Mankind is invalved in a permanent struggle ta fulfil its most primitive needs -- the need of tood. That is why man tried to penatrate the mysteries al nalure. Luaking back in history we see the continuous struggle f r existence of past generations and af aur own. The first reenrded ideas of the essenticil conditions and processes of life come to us fram the year 300 B.C.; it was supposed then thut plonis were to a large extent incutive and that they only hod to tronsport substances which were provided for them by the sali already in orgonic form.
Ti,is theary was prodaminunt up to the 17 th century. But the fallowing experiment wos the impulse to a further development of the theory at vegetchle nutrition.'
A willow, 5 pounds". of we he, was plosted in 200 pounds of sil and simply walered (w, ihout any admixitura). In the

course of 5 yeors its weight increased by 164 pounds, whereas the weight af the soil docreased by only $\mathbf{1 2 5} \mathbf{~ e m s}$. This result could not be explained, yet it was a refutation of Aristotle's theary.
An ilotiori" and a frenchmane found out thal the substances which the plants take in fram the soil are changed chemically betore they cun form a component part of the tissue. Only much later it wor demanstrated by a great number of experiments that the air plays a great part in the formation of organic substances in plants. ${ }^{6}$
There is a eppot af an experiment in 1699 accarding to which plonts can be grown in aqueous solutions without soil. ${ }^{13}$ In the 18th century we gat to know of the assimilation af carbon oxide and the respiration of plants. ${ }^{1 t}$
Shortly oiterwords twa Frenchmen ${ }^{1 s, 4}$ explained the formation of organic vegetable substance, on explanation which came very neor to the present theory.
But noly Liebig': finally fourid out the real process. He wrote: "Men ond animals depend far their nourishmert and mainlainance on vegstable organisms, that is an organic compounds. Plank, howevar, drow their nourishment exelusively from inorganir nature"."
i860 is the yenr where, far the first time, plants were cultivated without natural soil in salt salutions. 17,18 In 1929 Gerrickels reperted oa extensive outdoar experiments which were corried out with the oim af using water eultures for the production if fin! ? 1 , puibistheci ihe theory cif hydroponics as opposed to geoponics (soil cultures)." While he went on with his ox. periments, there were several water cultures operating in Europe. The results of the one in the Russion Flodo institutasis. ware incde use of alreody in the Russian polor expedition in 1937. Beside that there were Polish projects South of Lwowes and Hunginian unss in the Carpathians. ${ }^{24}$ Both were raising early vegetables ond arnamental plonts. In Germany the first water culture wos aprnod in 1238 in Steinheim Westf"s
ltoring penelates the processes of "noture mon wanted to make use of them. White the theory of fertilizers was making prociess, they were looking ior mer, ns to impiove the soll in order to find "substitute soils". One of the many praposed ways to impruve the soit is from i94is: using foomed sriups of carbamide resin.2" Flokes of this foom were to be ploughod into the soi' together with fertiliaters such os dung, humes, peat, green monure etc.
fonm essiri, especially funmed usea formaldehyde resins, were used to a certain axtent for decoration purposes in flowershops dung the lest years. Cut ficiwers are put inte this foam resin, which providas a hald for them. The foam resin con be colcured a shoire and is used largoly as a substitule for moss.e7

In $1953^{\text {it }}$ wos lested for the first time whether a plant can grow for a longer period in foamed weo formaldehycto resin without the adding of nutrient salts. This experiment made it quite clear that the roots of plants cannot, in a chent peried, decomposs the combined nirrogen from the foam resin and witilize it for vegetallon.m Further experiments proved thot focm resin can be used in hydroponics instead of inorganic or organic substances thot had been used up to that lima. ${ }^{\mathbf{0}, \mathrm{se}}$
The toam resin is all porous; its weight is 5 to $8 \mathrm{~kg} / \mathrm{m}^{3}$. Its basic materials guarantee that the chemicol composition is parfect. And since there ore mobila units which parmit foam resins to be produced at any place required, foam resins occupy a vary important position now. It was proposed sherefore to cover agricultural sail with foam to improve wegetalion ond to prevent the development of weeds, fungi and insects. There con be added ferlilizers, insecticides, weed killers, colorents or pigments to the foam resins in the course of production. ${ }^{3}, 3$
From 1957 onwords, since the first tests, the foom resins have bear changed ta a large extent as for os their chemicol and biulogical qualities ore concerned. Today we have a muturial which can replace nalurol soil ond which, by way of hydroculture, brings up a new era in the cultivation af plants. It is self-evident that no plant will grow in tram resin without water. Water is essential, for it is not only o means af solution and of transport, but also o nutritional material. Beyond that it hos to fulfil other physiological tasks, for oxample swelling the colloids. Without water no plont will grow, life would not be possible without it.
The foam conlains o high percentage of alr, which is also very important for the growth of a plont, Ench animal and each plant must respirate. If the surface of the soil is silted up or if by o too high percontage of water the soill does not hold encugh air the ports of the plont in the soil will suffer from lack of oxygen. In this case the micro- ond macro-organisms, which are of great value for the plants, will be rivals becouse they thamselves nead oxygen.
Since trace elonients ond nutrient solts con be added to the foam resin the proposition to use them for the reconquest of arid soils "was nat so much out of the way."
A loyer of feam resin, put into arid soil, will serve the plant as o reservoir of water and air and will provide the reota with the necessary substances (picture 11. The natural soil above the foam layer is manured and ploughed aj usual afier the firm vegetational period.s But plants con also been grown from seed in foam resin; they ore wotered without nutrient solution. For all that it $: 5$ necessary to introduce a new definition: Plastoponics - cultivation of plants in hydrophilic feam plastics containing nutient salts and troce elements; or' - the cultivation of plonts in arid soils with the aid of foom plastics. The foom plastics far plastopanics ore called PLASTSOIL.
Open-oir experiments were preceded by tests and hat house experiments.
40 contoiners of the Mischerling type were fillod with sand and divided into four groups of ten pots. The sand used in these test series did nat show bocterial growth when in liquid culture-medium, ond no germs developed when on solid cul-pure-medium. There were no orgonic substances (humus). According to these results the sond wos sterile and could be ued for the following experiments regarding the nutrilian of plants. ${ }^{\text {en }}$ The sand did nat contain ony moisture. In each of tha pols a hundred grains of ye, which had not been treated chemically, wore planted at equal distances. The averoce weight of 100 groins was 3 to 4 gms . The pots were placed in o hot house at a temperature of 20 to 25 centiorodes, relative otmospheric humidity 60 to 65 per cent., duration of the experiment: 23 days.

[^4]Ten M-contoiners were filled to the top with thoroughly glowad sond, ond the groins of rye were plented 1 to 1.5 emee

- 1 cm av 0.3937 indr
under the surtace. Each pot wos watered with 3 liter*e" of water from a wotaring con (pictures 2-5).
exa f liver: m / h pinls
2nd series.
Ten pols ware tilled with sand ond a layer of foom resin, 2 cm thick and cantaining no fortilizers, was put in 2 cm rader the surfoce. The grains were plonted in the upper layer of sand / ctures 6-9).
3rd series.
The ten pots were tilled like in the 2nd saries, but the foam layer was sprinkled with 0.4 gme. of Makamos before beime covered with sond. The fertilizer was dissolvad after wotering ond could be taken in by the plente. (picturen 10-13)
4th series.
The ten pols were lilled like in the 2nd serles, but 04 gms . HAKAPHOS ware foamed in during the production ond thens regularly and thinly distributed in the whole foom loyer. (pictures 14-17)
The pols of the series 2, 3, and 4 ware, in controst to the 1 st series, watered with only $\mathbf{C O} \mathrm{cm}^{2}$ of water per pot frem a watering can.
The average loss of moisture was replaced each day by the quantit; measurad in the chrecking peks.
At the end of the experiment the plonts were pulled out 隹e sond and foom wos washed off the roots with weterl, counted, weighed, incinerated, ond analyzed. The results were as foliows:
Table 1

experiment	number of plonts that had taken root by the	tolal waight of the plonts, washed out a. still moint,
1	end of the experiment 891	in grome 312
2	302	2195
3	875	271.3
4	739	197.5

The results ware compared with epen-ground plonts of $21 /$ months (toble 2 , line 5)
The plants of the respective series were photographed three times, twice after alight days and ence ofter seven doys.
In the first series most of the vortices had orown out of the soil offer the first wokl. The growth of the plonte wes reivier and good. Then there came the vertices of the third saries.
After the second woak we could pernersily note a good growth. By the end of the oxperiments the sacond suriea, tret enpeciolly the third series hod reoched the same stoge as the plonts of the first group. The verticee of the plents of che flute seriee were of a yellowish white by the and of the experiments. The radicction of the difficrent series wus phologrophed end coive pared wlih open-ground plonts. (Picture 18)
These experimants lurnishad valuoble information on manwring and on the combinotion of the beake meteriale, so thet a lorger experimental field (sand, of 2 cm thickness and thoroughty glowed, wes put on a concrele dete and ceverel wine o form loyer of 2 cm thidnness) could be planled wecessfully during throe years with veriow ufility ond ernementel placins

Ind with trees, omong them flowering and non-flowering kinds. We sowed the soeds in the foarn, planted them out Into foom again, and ploted them back from open ground into foam. Other plants wers allowed to yrow from seed to flower. The flowered several times (pictures 19-23 and toble 3).
Plostoponics con be used for the following purposes: conquest of virgin soil, stepping af steppe formetion, provention of arosion 5i, afforestation (not oniy in southern countries), plonting af dunes for consolidation, sowing of early megetablese. open-air planting of improved vinses, growing af flowers.
Aftor these lavourable results open-air experiments were madn in Saudi Arobia an a lorger scalan,a.
In a sand area of $100 \times 10 \mathrm{~m}^{*} 35 \mathrm{~cm}$ of the soil were removed by a coferpillor-traciar, a foam layer of 5 cm thickness was
$\because 1 \mathrm{~mm} 39.27$ inchas
put in and covered agoin with this sond. Under the pressure of the sand and the tractor the feam was pressed to o thickness of 3 cm . Then it was watered, the foom layer retained 6,5 liter a water per m^{2}. Atter having been axposed to the sun for three wenks of temperatures if 45 centigrades in the shadow the foom held sitll 2,6 liters of water, the parts compreased by the tractor about 1 is $1 / . .4$.
Fity per cent. of the hundred lemon-trees, planted in the usual method, diend off. Of o paralial series of 200 trees, planted in foam rasin, oll plants got on well.42,a
Experiments made in South Africa were pasitive, os wall. The experiments are being corried on and will be extended to Wast Africa in the naxt moths. They will bring final results. Alreody now we con soy that the method has avery chence of being introduced becouse of its low coss, now that is is possible to produce foom resin of the ploce where it is recpuirad, so that this highly voluminous material need not be transported. Institutes in Germony and in other countries are amanining the resulis thot hove been reached and holp to lay and deepen the foundetions that will be of decisive importonce for the internetional epplicotion of this now agricultural mathod.

Toble 2	$\begin{gathered} 1 \\ 90.81 \end{gathered}$
nitrogen \%	0.17
nitrogen \%	1.6
total phosphoric acid $\mathrm{PrO}_{6} \%$	0.054
Pros \%	0.592
$\mathrm{K}=0 \%$	0.29
K.O \%	3.0

Toble 3
Inder of plonts growing in foom resin.

2	$\underset{3}{\text { results }}$	4	5
81.14	89.68	80.90	87.92
0.24	0.22	0.26	0.40
203	2.13	2.32	3.30
0.081	0.000	0.084	0.005
0.605	0.772	0.752	0.00
0.11	0.21	0.20	0.35
0.91	2.02	1.77	2.87

Natice
\times Scientific and fechnical manager af Schoum-Chemie und Chemische Fabrik Fronkenthal, Frotz.

1) Thomos Robert Malthus (1766-1834), professor in Hailoybury, England; political economist.
2) T. R. Malthus: "Essoy on the principle of Population" 178.
3) Frizz Hober (1860-1934), profossor in Korlsruhe, Germony; chemist, Nobel Prize 1918.
4) Corl Bosch (1874-1940), managing director of I. G. Fartenindustrio AG, Nobal Prize 1931.
5) Arturi I. Vittanan, professor in Halsinki, biochomist, Nobel Prize 1945.
6) Aristofle (384-322 8.C.), Greek philosopher.
7) Johenn Boptist y. Helmont (1577-1644), Dutch physician ond chemist (introduced gas as the third state of eceragemeal.
8) Marcelle Molpighi (1628-94), anatomist.
9) Edme Mariotte (1620-84), physicis! and cotholic priest, inquired into the osmotic pressure of plenta, found the bival epel in the eye and Boyle's Law indepedent of Boyle.
10) Stephon Holee (1677-1761), English scientist, one of the founders of plant physiology.
11) John Woodword (1655-1728), piofessor at Grosham College, London; phisicion.
12) Jan ingenhousz (7730-99), Dutch scientist. (It is estimoted (1945) that evary yeer 150,000 to 200000 million fons* of corten

[^5]dioxide of the air are changed by on assimilation precess into carbohytroves and the like with on eneroy ceatem of
$3 \times 10^{\text {al }}$ cal.)
13) Theodore de Saussure (1767-1845), scientist
14) René-Joachim-Henri Dutrochet (1776-1847), physicion and scientist.
15) Jusius Freiherr v. Liebig (1803-73), proiessor in Ciessen and Munict, chemist, founder of the firsl Germon laboratory for insifuetional purposes, investigations in fulminic acid, aldehydes, acetone, alcoholic farmentation elc., infroduced artificia! manure and meat-axtract.
16) J. v. Lebig: "Die Chemie und ihre Anwendung oul Agricultur und Physiologie" (1040).
17) Witheim Knop (1817-1901), profess 3 r of agricuitural chemistry ond direcior of the agricultural experimental station Leip-zig-Mrickern.
18) Julius Sochs (1832-97), professor of botany in Benn Poppeledorf.
19) William F. Gerride, prifessor at the university of Berkelen Cclifornia. (In the Second "'orld Wor some Amaricon unith ware supplied with fresin vegetables produced by his method. The most famous hydroponics station was on the Ascension Istands, mointained by the Air Force. There was no-vegetation, no soil on the iste, only lava rocka)
20) In add" "on to hydroponics and geoponics the Swiss Robent Vatrer coined the expression of "chemocullure". In thls case the soit is replaced by orgonic substances such as peat, moss ett. The word hydraculture should be reploced by "grovel culture" io doscribe the method; it wos coined by V. L. Pjatakowa. The beds ore muda fram sterile inorganic subsionces such as pumice gravel, cinder:. quartz atc.
21) D. N. Prjonischnikow, after caliad "Russian Liabig" in the bibliography.
22) Vera Pacalakowa, biologist, direcior of the project.
23) W. Piotrowszky, professor, director of the project.
24) Poul Roszier, professar in Gattingen (suparvising the project), fomous for his publication on the soilless methed of pland cultivation.
25) F. Höning. (The onthuria cultivated withoul soil wan a prize at the Federal Garden Show for their outstanding quality.)
20) F. Döhler: "Bodenvarbesserungsmittel" (Means for soil amaliaration). DBP 83994
27) FLORACEL ol Chemische Fabrik Frankenthal, Pfolz.

2a) H. Boumann: "Kunshorzschaumstoff tir die ardelose PAonzenkultur, Gartenwwif $57 / 1957$ Nr. 16, P. 8.
27) H. Bowmann, H. Schmidt, F. Graf: "Irdgerschich for den ardaiosen H. Will, experimental station of BAS'F in Umburger-
30) Among athars the experimental series of H. Schmidt, F. Mappes and H. Will, experimental staico of aAsf in umburgorhot, ond of \mathbf{P}. Müller in Etruille.
31) Withelm Bover, Essen, wos the first to construet a machine which mode it possible to produce foam from its two components synthetic rasin and fooming agent at any place required. This procedure is of international importance for insulating, ond it was brough on the market under the name al ISOSCHAUM. Its bosic matorials are of a different kind than those described here.
32) R. Gaih, F. Gral, V. Huppert, B. Wurzechmitt: "Verfaiven awr Bahandlung landwirtschatlicher Kulturbeden und zur For. derung das Pflanzemwachslums". DSP 1024 594.
33) In cooperation with the AGRIA workx, MAckmühl, Hubertus Sctmidi doveloped a mabile spraying unit to cover the soll surfoce with foom resin.
34) H. Boumonn: "Schoumstoffe zur Gewinnung von Neulond", Mastwerarbeiter 11/1960, p. 19; Der Tropentondwirt 1/1\%1; Entwicklungsiander 5/1961.
$35)$ H. Boumonn: "Feuchtholitung der Böden mit Hilte oberfectionakiver Staffe", lecture, III. Internationalor Kongress for grenzflochenaktive Stoffe, Cologne 1960.
36) The onciyses ware mode by Or. Fritz Knorr (Bayrische Landeggowerbeanstalt, Nuremberg).
37) According to American statistics the lose af soil by arosion in the 27 million ha threatened by sand. In the Foderel lapublic 100 , one thind of the cultivated areo in the distrist of Stade was covered by blown sond. In tower gexemy 250,000 Margen suffer from sand drift, because the fioids ond the excessively droined sail connot keep the humue, As a eonsequence crops decreasiod remarkobly.
30) Because of the shontoge of lobour the iarge fruit and vegwable gardenings are dependant on women. It is easier to prick out plonts from foam resin. there is no preporotory work as with peat.
39) The sir included in the foom resin protects small roots from frost so that the plant can casier survive the change frem the hot house to open ground.
40) H. Boumonn: "Verfahrer zur Bodenverbesserung for don Pflonzenwuchs", Patent Soudi Arabla, (El-Beled from Jem. I, 1W1)

1) Ch. v. Tresckow is órecling the experiments.
2) H. Soumann: "Proktische Ergebnisse der Neulandgewinnung mit Schoum", locture af the generol meeting of the Onselischoft Deulncher Chemiker, Aochan, Sept. 1\%/1.
3) E. Baum. "Auffors! ung von Wuston", Chemikerreitung 86/1\%2.
"In future "arid sail" will be said for "soil in arid territorime".

Petroses.

1. Model of applised loom resin; left: (1) watar cozes awoy into cooper loyers; right: (2) seed grain in from resin; (My) reed grain that has taken voots; (4) moisture seaps into the foom ratin and is hald there; (5) trace alenents and numient sem ere conlained in the foam resin; (4) only when the foam is sotureted with weter the rest can cose away.
2, 6. 10. and 14: grains of rye, eight days offer planting.
3.7.11, and 15: groine of rye, 16 days offer plonting.

4, 8, 12, ond 16: grains of rye, 23 days after plonting.
S, 9. 13, and 17: radication of the respective series.
18. Plants of rye that hove been grown 24 months on open ground.
19. Grass grown from seed on waternd foom resin. Beside the mork "V3" the loyer of foom resin con be sean,
20. A shool of gerorivm, 21 days after planting into foom rasin. (A cross section through the focm hoyer shows thet the roots of the sheot hove alreody grown deep into the foem resin.)
21. This picture shows how the roots have grown through the foom resin. (ifise plont was pulted out and leres pivies af foam were taken off.)
22. Lottuce in foom resin. (hodicotion and siza do not differ from plands plonted of the seme tivas in seil.)
23. Bulbous plants also grow in toam resin. The picture shows deffodith in bleom.

9
 12
 -
 73

[^0]: －v

[^1]: * Revised

[^2]:

[^3]: PLASTSOIL is an Intomaticasily Rogistered mede neme of Comische Fabrik Mrapkoathal, Goymeny, end V.F. Obmiteal Corporation, $37-20$ 58th street, Wooderde, I. I., M.Y. 11377

[^4]: - 1gran $=15.422$ groins
 let series.

[^5]: - metiric tons

