TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

Central repair workshops in developing countries

Cientrat itnctions

Compared with industrial cotterprises in developed combtrics. industrial conterprises in developing countrics concounter spocial difficultios in maintaining. servicing and repairing their mechanical cyuipment and flects of cars. Enterprises in indinutialized countrios have the alvaitage of being located relatively near the manufacturces of their mechanical cyuipenent and have a well-funcrioning trimsport system at their disposal. Thanks th the dense road and rail network and highly efficient postal and telephone systems, it is possible to order and receive pare parts within a very shore period. Orders placed by telephone or telepribter reach the producer withon minntes. and a well-organized enterprise coll dispatch the order on the day it is received. When ardering spare parts, the machine operitor can consult ant illoserated catalogue in which the spare parts are listed. Thus. he can yuickly find the order mumber of the damaged part and place his order.

The entreprencur in ant indanerislized country can also take advaitenge of the well-organzed repair service that equipment supplies gencrally provide on their costomers. Its well-trainced perwomid, operating special customer-service vehicles cyuipped with tool and spare parts relleder prompe assintincice whell called upeni. In addition. there are ypocislized workshops that can carry out heary and yoccalizal repair work.

In developung conntries, distances between the manuficturer and ilic purchaser of the machines are usually very great. There are gellerally very few mathine problicess in the comitry so that most of the machines and cquipheite must be supplied from producers

[^0]abroad. Thus. the transmission of orders to the producer depends on the means of communication available. The communication with the forcign producer can frequently be very time-consunning. Inquiris-which are quickly dealt with in industrialized countris-may take weeks in developing countries. Furchermore, operating instructions, data on mechanical equipment and spare part catalogues are not always available or printed in the lauguage of the country concerned. Obviously, trassations may casily lead to misundervandings. Regular customer services are still lacking in most devcloping countrics.

The delivery of spare parts can be delayed not only through the complicated commumication to the foreign supplicr bur also through the obstacles for obtaining the necessary import permits and custom clearance ett. is well as through the inefficient transport system within the comerry.

Special problems have arisen in developing countries because they have obtaincel from industrialized countries, to. large extent through bilateral assistance programmes, a varicty of machine makes, all of which differ consider, bly from one another in their servicing and maintenance requirements as well as their spare parts. It even happens that a machince has gone out of production and the spare parts required are no longer available.
The solution to these problems would be to make the consumer as independent of the mannfacturer as pessible with reopect to spare parts and repairs. The basic problem here is how to manufacture and repair the machine parts needed by small businesses when there is a lack of skilled workers and the necessary equipment. Owing to the lack of personnel and materials, industrial citterprises in developing countries are generally unable to maintain their own mechanical engineering shops. Small enterprises are also unable to provide fill-time employnent for skilled repair workers.
Some of these difficulties may be overcome by establishing celtral workshops, which, once equipped with skilled persomusl and adequate machinery, are able to
repair machinery thit has broken down .and even produce the reyuired collergency pare ports. Cemeral rep.ur hops are yectidized repuir shope servicing various industrios and ather cstablishments in , specitic regesm. The repair viope can be of grest we in regions where rhere is a relarively great concentration of indurtrič it particular. umill-sale indastrics that hase similar repair requiremerts.

The lecation of a central repair shop obvionsly depends on the lexation and density of the indestries it cervices and on whit mems of tranport mad communications are available. The customer, that is, the enterprises for which the repair shope are intended. thould be able to contact the repair wop yuickly: The proximity of all airport is another factor that may influence the choice of location. Auother importiont factor in determining the lacation of the contral repair shop is the avalability of a mains dectricity supply. Gencrating cquipnent belonging to the repair shop could. however, replace the mains dectricity supply: The supply of water is also a factor to be considered. When selicting the locition of the central repair shop. attention must finally be paid to the tramport facilitios to the closest loosing area.

The tasks of a central repair shop can be divided into three groups:
(a) Repair of machinery and equipneit and the production of certain spare parts;
(b) Training of apprentices, skilled workers, masters. unskilled workers through org.unized courses and demonstration of machinery:
(c) Carrying out work as subcontrictor.

The main finection of the central repair shopes is thus to repair machinery and copuipment of small enterprise and to manufacture replacement parts such as gear wheds and all other parts requiring turning and milluge operations that can be carricd out with the mechanical equipment available. In addition, various cmergeney sparc parts can be produced. In this way contral shops can carry ont repair work beyond the evelmical sopeor coonomic means of an individual enterprise. In particular, this concerns repair work requiring heavy repair equipunent and/or highly skilled labour. Thus. the central workshop can conomically use this heary equipment and employ the skilled labour.

The sccond important function of the central repuir shops is to traill skilled workers. A well-equipped central repair shop can casily prepare 20 to 30 apprentices per year for the skilled worker's examination. That means that with an apprenticeship of threc-and-one-half to four years the shop will alwiys, have \$0 to 1211 apprentices in training. A woll-equipped work hop is necossary for the first two years' training of mechanio. precision mechanics and toolmakers, blacksmiths, monor encelhanics, clectriciaas and perhaps also joiners. The number of apprentices is determined by the size of the

 logical developenem of a collome depoll int ila

Adsunced traming courso firr willad worhervleading
 aprentice tramine colvos. Short tr.mmes comere lion unkilled workers shond be held in ambunctom will
 force copable of carrying out work thir dow not reyure a craftumins akill. This will considerally redice the cost of repuir work.

The firther traming of workers fior yochillad worh unuse aloo be comsideral. The treminge of workers in spectal skills whe as autogemone .und clectric wolding. shichded are wedding. is in the meterest of the cemeral repair vops. becomse it will cusble smill ameprises eventually to hove repar work carricil out he.lly. This will then reduce the coutral repoir hopriv work lo.d.
 on the expected voliniti of rep.ier work. If the intlow of work is not contimmonsly ite correct propurtion to the size of the shop. adititoptal work of a ditheren type may be undertahern. For mot.mese, the momineture of
 They conld be prodeced an the prowes weilable, ned this would till the g.pss hetwoell repar wort. Care mons be tahell. however, wet tollow reppire work oll vital
 prosluction of comoliner gemes. K.p.ar worh .med the
 priority.

The ceiteral repur thop, thand hi cypuphed woth at
 .and working copatios inal of the mone wraghtithorwad

 most of the time, , med therefore represemt a bat in-

 mantiolly aperated machomery, vilue work sont to the contral repilt hope is we viricil ith dharacter.

The coutral repan shop will nead the fillowies hops and cquiphoint:
 and collomintap drilling inachincs: milling mad planing machine of vistoms was: prowling
 © ©hindrical grimdage vartice prombus. domble.

(b) Wadme dep dectris and .mengenom welding
 ment:
(1) Sminh What Month: forge. anvil and swage Whok:
(d) I mumith , bap - int he: malcipmerpow machinc. folding prow. ambowing and honding mach hinc. H.mpinge , whd wiring machinc. hydranlic prow":
(a) founcry plame machince bund swa. circular काw. capputer ber hos:
(f) Tinolrow a arriety of hamedeoperated dectric machine teoh and complete tool wets:
(9) Apprentice workhop-work bencher sud vices:
(ii) Char(wom- approprist cquipurnt.

Shomid the phanesl contral repuir shop be cxtended to methade velhicke repairs. the following shop and cymipment will be neded:
(1) Engine repair thap equipment required for repair of valvos, cylimden and pistons:
(b) Shop, for the repuir of electric umits-test stand for dvamo and starter:
(c) Buttery-charging wation battery-charging cquip ment:
(d) Chassis repair shop-pis, lifting sages. lubricating bays. brake testen. tire repair equipment. baiancing machincs:
(c) Cor-washing phat:
(f) Paint-apraying phome.

The showe-mentunad tive of equipment da nor cham to be complete. It is mitended to show what cquipurent a good repuir shop shomid have if it is to carry ant a wide ratge of repair work and camor exocth anticipute the t.sh, with which it will be confronted.

When ihe repuir hop is beving plamed. it muss be convored than wirticent materiak and reoh that are whenet to wear are avaitabk. Spectal emphasis must be placed on the suphly of techmical gass. Owing to the lareg momber of mishinco and cepuipment obtained from sarione commera. tools of both the metric and the Brishl woteme muse be wailable. This applice

Precatiom, hande be taken ng..inese fire, theft .and accident: ammary monallatione must be providad. Otfice pace mun be prowided for the techical management.

There is one doult har im mone developing comerria dere is a real dem.und fire central rep.ier workhlops. Mach has beon done in the fied of traming. copeciully: the tromme of appontice but there is ine agency

Neverthelo. the whblaneme of a central repar workhop ranco cotain prodsom. In man! regions
where busincomene are already operating relatively simple machiners: it is powible to find workers who are prepared to carry out repaiss on this machinery: but that cemipucent for doung so is primitive. Under these crommentanes. the repairs, which can be made in a courral repair shop in a few howrs, require many daw of habriems work. Thes workens lose their jobs when a central repuir shop is sstablished.

There is. on the wher hand. a danger that in a mookern cuterpriw like a central repair shop the administration mosy develop out of all proportion to the size and profitability of the cutcrprise, with the resolt that the cont of the jobs to be done will be high. The custoner will have to consider carefully whether the repairs may not be cheaper when carricd ont in the traditional way with hammer and chisel. ceoth if he has to wait longer.

Another question to be decided is wherher the central repair shop should be a governmental or private enterprise. Who is to provide the finds and administer th: cinterpris: Arc fiumds available from development aid or will the Governmem have to provide the money? If the enterprise is to be run privitcly, how can prices be controlled?

Mcution should finally be made of the mobile workshop. which has proved its valies all over the world and which shoridd be particularly mportant for devcloping commerics. Industrial enterprises in developing countrics are often spread over a wide area or are located far from the inchustrial and tramsport centres. Under thew o multioms, mobile workshops can significantly assist in.lividual establishments in carrying out repairs and even mainterance.

A mobile workshop is generally mounted on or in a mormal vehick, swh as a lorry or station wagon. or a vehicle with special features is used. The size and the cquipment obviously depend on the type and velume of the jobs to be carried out. The vehick should not only serve to transport the equipment but also to provide norking space for several craftsumen. The craftsomen, meluding the driver, should be trained in as many skills as possible.
The finctions of the mobile workshop are to diagnowe mechanical defects and to carry out the necessar! repairs onn the spor. The craftsmen decide whether they can make the repair with the equipment of the" particular workshop or whether a part must be brough ti) the central workshop. Straightforward repair wowt and the production of simple spare parts can usulll, be carricd out on the spot. la other coses the damag. part must be removed and brought to the cenn workskop to be repaired or remade. If the wh. machine is fomod in need of a general overhaul. gencrally must be sent to the central repair shop. I ihis purpose a thet of trimsport vehicles belongin! the central repair shops must be available on reque To determine how many of these vehicles are requ:
in a region and what their capacily shomlat be waten problematic. The repuirements c.m III mone cas be definitely determined first atter the clapse of an miti.l period of operation.
Central workshops. mobile workshops. Ir.mpert tacilaties for the central workshops as well in the upplies of material and spare parts for these repor shoph and lae shops within industrial enterprises must be reg.arded as necessary elements of a complete system for repar. The cstablishment of such a system requires ihorough planning with due regard to die preselit and future indestrial structmre and location and the resoures available.

Repair winksimps in Iniba

Rival Arias

The changes that have been taking place in Indian agriculture in recent gears are the result of a conscions policy of the Govermment to cocourage mechamad farming. Initially, the Ginvernment advanced a large number of loans to farmers for the purchawe of tractors and cquipuent, and the effect of this policy on farm productivity has been heartening. However. becanse of inadequate maintenance facilitis. much cosely cquipment has remained underntilized. For the farmer in a remote village, it is by no means casy to maky arrangements for the repair of his tractor. implein: nts and punpe etc. when they break down. The ncarest workshop, which itself is poorly organized and has the scantiest facilitics, is perhaps miles and miles away. and no quick and cconomical means of transport and communication are available. With the growth of mechanized farming, repair and maintenance, which nsed to be the domain of the village uistri (techuician skilled throngh experience alone), the blacksmith and the carpenter, is changing its character. With the cverincrasing mimber of tractors, implements, pumps. motors and the like, the need for better facilities for maintenance is beginning to be felt.

The increasing affluence of the village farmers and the conventional repairmen has led to the evolution of a new class of entreprenenrs, the once skilted mistri becoming the owner of a small workshop having o lathe or two in addition to a few other machines. Many such workshops have spring uab in areas where skilled craftsmen were concentrated; for example, Lndhiana in northern India, which wiss once famons for its artisans, has become a sizable industrial centre with numerons smaill factories manofacturing sewing mochines, bicycles and even machine tools, besides many oth:r consmuer goods. Many of the small workshops working is ancillaries to the larger manofacturing umits can provide the necessary mamename: facilities for farm machingery.

In the rural sector, the ned for proper repair and maimenance of farm and other equipment is, however.
hardly recogumal. owny to the firmers lach of

 ther awil mishomer Both gromp. are ouls How be-

 becater a som or a rehatice of olle tirmer or the woth-

 cer. remains whe dolle to improse the mumatimes facilitio for orators muphements, and the like.

 femble for cach firmer whe has own well-cymped mantename facilitio becans of ilue large momal investincort involecal.

In gencral. coch of we mey workslope rimb bey the wilk d eradeomen. Which now evise ill the nearest small zowns. ypecializes in a ypertic rate, e. g. aprooll with winte knowlelge of hurning may hive olle of more lathes anly: Similarly, the blackumeth ant vac carpenter have bie will of their reppetive irale ondy. Thus, having a tractor repared, for cemple, wipectially ditficuts became the farmer has nenher ile mesons of transpurtetion nor lice time to go from phace whace to colle 1 the: nccowery yars and to hrime them to . repair workvop.
 asd in small mebalworhing fichorios, it is crimiol io have a wo of pares handy if loneg downemen are on be avonded. This imphos socking of impert.int yporss. which involver tremenderin cont and womld be a mom meconomical malertaking for he individi.d farmer or the small indonerialive.

It is urgent that the Ginernment emonages the serting up of comprellensive mailintemence workshops In the smill towas mon accowble to villuge nearhy: Enterprising privatce imdividuals amelor agric ulourad and
 itt which the most frequently reymed pare could be stocked. To encournge wich action the (owerminem conld:
(d) Make credit available on tivourable Ierins m imedividuals or co-rperimver to and le hem to purchase mochones for mintenances. Thase
 rechoncal and admumer.mise abolny.
(h) Provide at vobidized rates plow of land. woth ant asoured supply of prower and water. for

 vicility ${ }^{\prime \prime}$ accep complovilum in villope
workhop. Such cmphermern conld perlope be made , comditen of adminwon to the mistitutes.
 rection at the mbiusin.al raminge institutes it is alow dowroble to have course for traming mechanios in s.ans.י. ficll. Thin com obviate the
 mon in small work shop.
 me'il
Mobile work hop are cerremely unctil for servicing all cstonive area. Such workhops, which perhaps contant a lathe, a drilling machinc: o shaper. welding st, working t.alk and worhmenis mportant toois and instruments atc. .rre set up in epecially constructed trucks. The power for rumuing the machines is provided either by an indepondent diesel engine generating set or is when from the engine of the truck. In areas where there are no roads suitalke for motor volhicks, amimaldriven carts are used.
It will be ill the interes of compmios selling tractor and firm cyuipment to rum moble werishops is : regular part of their after-ales cervice. Thewe worktheps. operating from a central location, can cover an ara of aboet tul "ymare milos. The compmics can also store centrally fle necowry pares and maintemance minternalo.
In ladin, the geverminemtronn sulall .ndustrics strice institutes ($\mathbf{S I S N}$) in the vanious states have set up many village cetemsion centros and mubite worhshops. These comero .and mobile workshops provide repair and mantennone faclities for mechamized cquipment in remote villuges. Wen if there were a sutficient number (1) well-wquipped worh, hops in the nearest towns, they could but condenicity meet the manituanace needs of thes villages. Small-wale melustry in rural areas comsits montly if mamutiocturs of ayricultural implements. vonden .mad sted firmiemers toys: procosing of agricultural produce: f.abrication work cte. The maintenance facilition described oo far will werve the purpose of all such umin fairly well.

l'rhint anas

smallo-wale mdustric: in urban ares have special feature of their own. The now main types of small units are: , mollare monerics, which are feceder units,
 mandicturing a late caricte of combuncr and other gemols. Buth type if emit hive grown subtantially. wer the lint cheme sear.

Moxt umall mint hice mo eporite maintemance sctann. and mo ment ane there miny we be satficient
 quite modern and wphiticated ones-a are maineanined colice by the oprowes themetwo or at best by a few
fitereselectricians who have very litete knowledge of the machince, not to mention the repair and manntenance it requires. In .mey cisse. repuirs are made only when the machine broaks down. When production is urgent. the owner/maniger devotes comsiderable cffort to getting the mashinte repaired, but if prokluction is not urgent. the costly machines and cquipurint are normally left antirsly to the care of the fitters. It is quite conmmen to hisar that extremely costly and sophisticated equipment. imported by smali units only after overcoming conormons difticultics, is lying idfle or grossly underutilized becanse of pror or no facilities for maintename.

Fusilitics invilhin facturiss

Most facturies rely on their production opratives for manntemance of the machines. This is parth: truc of industries employing basic machine tools (luti.. shapers, millinge machines, grinders) in their productu. processes. Herc prodiction and maintenance interesnormally clash, and the owners/managers tend th fivour prodution at the expense of maintenance.
Factorics using special-purpose machines for prolucing consumer and other goonds do have some semblance of mantenance crews. but their finction is usually to repair as quickly as possible machines that have broken down. The quality of maintenance is generally ignored.
Wherever basic machine tools are employed in production processes, production is too frequently interruped in order to make the spare parts required for maintenance. But industries employing special-purpose machines for production seldom have maintenance machining facilitics of their own on accoumt of the large initial investment involved.

Ouside maintruance facilities

Small umits have their maintenance machining jobs done by outside factories in the vicinity or in the nearest small iadustries service institute. They employ their own maintenance personnel, however, as the skills required by a particuiar unit are seldom available from sutside.
The disodvantages of using outside maintellanc machining ficilities arc:
(a) It is usually difficult to get precision jobs domi satisfactorily by outside partics because th. operator making the spare part will have in. knowledge of its functional importance.
(b) Only small umits, which are gencrally iucticisu normally take on small maintenance machim: jobs. The poor service they provide call to toss of precious procilction time for the purchasing the service.
(c) The cost of odd jubs done by outside ss uniss would be generally exorbitant becaulthe non-repetitive nature of the jobs.

Whether it is beter to have the mannen.med moshiming facilitios within the industry or to purchase outside arrices will depend upon:
(14) The availability of facilitics in the vicinty:
(b) The cost of downtime of the prodaction cyuipmeilt. Industrics working at capacity may opt for their own facilities in spite of the heavy initial investment involved;
(c) The extent to which outside sources have the skills necessary to tmdertake jobs requiring quality and precision.
Since the machining facilities required for most mantenance jobs are highly capital-intensive, the developuent of specialized maintenance workshops (common facility centres) should be encouraged. As mentioned carlier, a specific problem in the setting up of outside facilitics for repair is to determine whether they should be private or public: The experience gained so tar in developing countrics like India shows that it is generally very difficult to maintain the coonomic viability of commercial workshops becatise of the uttectainty regarding the work load. Privately owned workshops that take on some regular mamufacturing activities in addition to the maintenance service they provide to other factorics find it casier to remain in businss. The viability of the workshops also depends on how efficiently they are plamed and managed. In

Government ugencios like will midnorio werse

 production-cimetraiming antro provide very unctul
 agencios howe ower the priwaty awned worhshop are:
(1) They have .ll the morimes .mad cympurent required for manten.ance jols.
(b) They do not lach trainal mad thilled peremond becinese the stability oftised by gevermmentel service comtimes to be attrictive for most prople.
(i) They gencrally ancometer fewor difitionturs in procuring warce .mad impurted materials and pare parts to heop incir machines amil cupupment in ruming order.
Nevertheless. the ethicicney of the servios they provide to small units is not whit it should he. This is mainly becouse the perwould in thew ngewes lack ilicentives to give gend wervice promptly.
The following tablo give the colluated cons fire a villuge block worhshop. a molink workshop for rural arces and an urban commmen ficiliny maintenance wop for smallowale induerric in madi..

Table 1

Initial cost of land, huildings and equipurent	$\begin{aligned} & \text { Esimumed } \\ & \text { cost ind } \\ & \text { CS dillars } \end{aligned}$	Atrsonel In addition to the owner/manager who	
Land, tuildings, power and water comexions ctc.	2,6x)	should ise a perwor with tecthuial backgromed and shoold be repomolile fir	
Centre lathe	5,1001	orkanizing and maintainiog she faclites.	
Drilling maachine	1,5(0)	purchasing. billing cud colle ction, trachls	
Widding quipment both gas and electric	1,(xn)	shorting , ned general admimisr.time fima-	
Beach grinder	4(1)	tims, the following statt is meded:	
Tasting cquipment for frel injection system	7,(100)		
Misccllancous facilitics (fitting bench and vice, tools etc.)	51×1		Souty salay in 1 s dillan
Conveyance (motorcyctc) for providing the necessary mobility to the mechaniss	5x1	operatic linhe, drill. grimder and welloug cquipınem	sum
Total cost	18,(ta)		
Wiorking capital Cost of stocking necessary spares for tractors, pumps, motors, diesel Ingines, and norwal materials required for maimenance		 TThe monher of welo mathans atio be	
		Onc generad-purpow helper	4×1
	2.10x1	lanslowe	2.1

Tithle 2
Reqlimments of typical moble workshof mor rerai arias in Inita

Plant and cauipuncrit	Estimaticd cost in CS dollars	Persomucl It is proposed that the mobile workshops be operated by SISI under the supervision of	
3- or 5-ton truck with special body	5,Mn*	extension officers specially trained for	
Centre lathe	5,600	maiutenance The salary of such personnel	
Drilling machinc	1,500	is not accounted for. Other personnel	
Welding equipment both gas and chetric	1,010	required are:	
Bench grinder	4(0)		
Shaper	610		Yeafly salary
Workbench, tools erc.	1,3010		in US dollars
Electric gencrating set diesel (optional)	2,000	Truck driver-cum-generating set operator	900
Heat-treatment furnace and forge	2,100	Machinist .	900
Totil cost	19,000	Tumer	900
		Welder/heat-treatment operator	900
Working capital		Fitter, forgeman	900
For special steels, spares and other material		Cencral-purpose worker	900
for maintenance, traveling, fucl oils and other charges.	2,000	Total cont	3,400

Talle 3
Requ inements of typleat common faclitity maintinance shop foh small industrees in ubban areas in India

Inifial cost of lava, buildings and cquipument	Extimuted cosi in US dillars	Personnel In addition to the owner/manager who should be a person with technical back-
Land and buildings	7,(110)	ground and who will be responsible for
Two centre lathes one for procision jobs and the other for general-purpose turning jobs	10,00)	the utilization of facilities, purchasing. billing, collection, recruitment and train-
Universal milling machine	8,100	ing of staft and general administration,
Surface grinder	6,100	
Shaper	1,210	necdsd:
Drilling machine-which can also work as a vertical boring machine	3,000	Yeurly salery in US dollame
Hench grinder	419	Two turners (\$\%0 each) 1,000
Welding cquipment both gas and electric	1,100	Onc machinist . 900
A heat-treament firmace and a small forge.	2, (n)	Onc welder/heat-trcatment operator 900
Miscellameous equipuent for fitting jobs (benches, vices, thols etc.)	1,000	One general purpose fitter/forgeman, with sone training in electrical jobs 900
Ofice cquipunent and furniture ets.	810	Onc die fitter 900
Other miscellameous initial expenditure	601	Two helpers for general-purpose jobs
Total cost	41,6M1	(\$601) each) 1,200
		Total cost $\quad \mathbf{6 , 6 0 0}$
Horking cipital		
For stocking the normal spares, tools and materials for maintioname jobs, dectricity, gas etc:	2, (W) ${ }_{\text {\% }}$	The exact number of persons however should depend upon the work load; it is most important to control closely the utilization of maintenance workers.

A compendium of industrial plant models

Introduction

Experts engaged in the task of scalning and screening specific project proposals for industrial planning are constantly in search of relevant reference data, especially data concerning the techne-economic characteristics of a great variety of midustrial plants or cstablishments. In a way, every expert has his own "compendium of plant models", partly noted in his mentory, partly stored on his shelves, partly to be recovered from his professional contacts cte.

These compendia, hedd as a personalized stock of knowledge and experience, are often no more than a hotchpotch of enginecring handbooks, partial blacprints of factorics, financial reports of corporations, scraps from trade journals, and even chit-chat. Despite its critical role in guiding each expert's work ind iudgement, one can seldom attach any rigorous concept of "norms" to such a personal compel dium. And, just as tantalizing as its conceptual loosencss is the fact that its coverage, in terms of various industrial branches and of national and regional environments responsible for differential characteristics of plant performance, is limited.

This article will address itself to the issuc of "personal compendia" of plant model, by reviewing in detail one example of such compendia. The tabular projection given by the compiler was the product of his research cffort, rather loosely controlled but sustained for many months on the strength of his personal interest The example thus represents a personal compendium that is quit: extensive in coverage.
The compiler of this particular compendium admis that the parameters characterizing most of the models are no more than a loose compound of the features of industrial firms he has observed in various localitios and his theoretical expectations based on the engineering handbook type of information, used for adjustment purposes. Although the compiler's own notes inchuded observations on individual cases such as "economially
feasible", "belicved to fall short of the munimum cconomical size" ate., these statemetts wire mot mecossarily based on a formal malysis of siven plant parimeters. It seems that the compilar himself thil now have an opportunity to examine his contire contrendinn in terms of proftability meder rasonable fintor price conditions.
This article offers a prolitability analysis of the data in the same compendium. It ines a simple and guick graphical incthod, which may be casily ypliced ou the plant or enterprise characteristios expresed by a limitad number of perantetes. While the method is astremely simple, it can guide the sards for compilation cerrors. accidental coses, misleoting obsorvations cte. and thos locate any scrious anhiguities mal biases in she avilatole information.

A cmtinuing concorn of UNID) int carrying ont its techuical issistance activitios for the developung courtrics has been to darify dot.o pernsining to platos and cutcerprises. The public tion of the Propiles of Mannfacturings Establishonents' con be memionod as ane such effort. The UNII) (profiles progranmine itself has cvolved with the broader ann of promoting and supporting co-ordinatad edd action int individhal developing coumries by uncarthing more and bater "micro-data" for industrial programming. The latest developments in the UNII () profiles programome will be briefly reviewed at the cold of this article.

Piersonal compinidilm: an i:xampite
A specialist in imdustrial lecation phamin!e recomly devised what he called a "ystem of tedmo-comome

[^1]
 which, athomgli browker in sope has the sume whjoc-
 oricutme and programming medestrial developineme. Itis colloctun wos much low ambiones in its sompe and
 low Hexible in ite urility a retierence data. It has wo fir coweren, (n) "model". or. more precieds. "ypecimens" of Yesonlas induntral cilterprises. A libulation "f' the "indicinors" of these modd in given in the amexes to the .rtick: A few charateristio of this t.ibulatinow may be moted.
lirst. mont of the imdivadual molds are based on ohervatioms of phants or eltarprises currently operating in Yugoshatia. There are a few exceptions. such is mo. the (integrited ail retimery) and no. w (thermal power platet). which inchede solne extrapolations based on techmological or congincering cerimates. Most modets reflect the wex i-political features of the Yugoslav comoms durms the vears of reference (the scond hatf of the lwan mority lexeri) is well an local pecoliaritios of the individual comses In trimslating actual cases into "moskl". the compiler attempted to mormalize the coimatos in cach cave by smoothing but random Whek or demoms wacpuibice to romporary Huctuations. The norm. lization wa performed mostly in a fore manner: wometime the compiler used statistical
 ance recond for clugincering morms (c. es. prodnction atjunted for mormal capacity utilizationi). A vaguely prewribed misture of angincering and coonomic contsiderations is characteristic of this rype of persomat compradiun.

Scoond. the sampline of reference plants was not swemationl linked to the charateristic of the Yugoslav papulation (e, g. tahing the quartiks quintike etc: of the size distribution of plats in cach hrank) wor to the trend and pattern of techmological variations at the world level. for wome imbletries, the compike mamag d to find a few comparalle cans represelnting different technologios, ind platt wise prodncing similar prodncts. but for other cons. he was madele to find the necossary dit.s. The compradium is thas highly incomplate in is covernge.
Itinally. He mmber of parametern from which ach model is comatricted is gnite small. For some rewom. the author laiked to indude dit.. on the value of raw materias. which maker it ditlicult to woblish the value added throus! the opration of ypecitic plats. The prametern miclated in the compendum arc as follow:

[^2](11) Fixad ind working copital expresed in terms of the US dollar cequivalent and based on the price level prevailing in Yugoslavia around IVoe. Note that a siguificant proportion of industrial cquipuent has beco dennesticall! produced and its price is comparable to the internatonal peice. The price of imported machinery includes customs dutios up to 30 per cent.
(i) Site requirements- measured in sytare metres and distinguished as between roofed and nonrootid sites.
(c) Labour requirements--broken down into higl ly: skilled (mainagers, professional engineers ctc.); willed (skilled workers, techmeal and administrative personnel): and tmskilled (workers with no formal cducation and training). No information pertaining to the average wage levels is given.
(d) Value and quantity of ompput given foe all the major prodeltes of a plant as total monetary value and weight (ustially metric tons) of amitial output.
(c) Electric power and industrial water consumption.
(f) Mayor raw materials identity and weight (metric tons) given to indicate the basic production in each plant.
(!) Transport requircments-classified as inputoutput ratio in terms of gross physical weight of the purchased raw materials and of the final products of a plant.

An undysis of comomic offitioncy

The omission of data indicative of commercial viability may have been intentiomal. but this is quite unfortunate if onte wishes to distinguish berween cconomically viable and non viable "models" under the given circunstances. Therefore, the amalyst made an effiort to guess the approximate value-added content of the production for cach case, using other sources of information relating to the cost of raw materials. Once this information s given, the compendium easily lemk iswlf to a synoptical malysis of the relative "ecomomic" positions of the plants included in it.
Figure I, a scatter diagram, shows the amount of oppial and labour comployed per dollars worth of net output (valate added) in cach plant (identified by the attached numeral). The two co-ordinates for the scaters irre:

Vertical axis-total valte of both fixed and working apital divided by net outpur:
Honizontal axis-total man-years of labour (emit: I/,IMNI) adjusted for skill composition divided by wet output.
The aljusted man-years represent unskilled labour cquivalent: i. e. highly skilled and skilled workers. respectively. were comined as five and three times the

Figure 1
Captal and labolk deh boliaris worth of octmet anit Istocont inis.

$\mathbf{K}=$ Capital; $\mathbf{L}=$ Labour; $\mathbf{V}=$ Value added
equivalent of unskilled workers. (The weights are related to the average wage and salary levels applicable to the different skill categories.)

The plotted points may be called "iso-income" ($=$ \$1) points, since they indicate different combinations of capital and labour required to carn one dollar of value added. These iso-income points are then intrasted with the aid of two sets of factor-price assumptions. The lower iso-cost line (line $\mathbf{A}-\mathrm{B}$) is drawn on the assumption that the average ye rly cost of financing
and maintaining the ongind invesment will not exceed 18 per cent of the total capial requiremens, and the wage for one man-year of unsilleci labour will be about $\$ 1,50$. The higher iwnext ime (line (D) assumes the cont of caphal to be 12 per comt per year and the yearly wage to be Somm. The wastmed figures are probably reawnable for Yososlay cmicrprises. Note that any point on these secost hes represents the combinaton of capital and labour at their given prices that a onc-dollar amoil budget can

 moblits cte
 the dagram mak ex pomille a yme: comparien of the

 aperating with ibe imput combinations repreventad by any prout below the inocont bite are dearly protitable. whike theos with the imput ombinations fonied in the area abote the jw-cont hatt are in difticultes. Plonts uperating withon the iow-ost belt are borderline coses, cither m.ange protit or loss depending on the actual miput puoc they happen to be pasing But they will not sutter losses provided that the wage rato for unwhlled hatour are no higher than Soke per ammen and the depreciation and interest charges tagether do not exoced 12 per celle per amom.

The diapram doarly revah that some of the "models" in the compendinm are vimply hal model, the plants are cither techmologically obolete or their magement is perr. ${ }^{3}$ There are even a fell cow (nen. and all) lying beyond the upper margin of the dhapram and mather fiw (now $2 x .6^{-7}$ and 6^{0}) bevomd the righthand
 cass are cether whect to crom in whotion or refer
 poer case are in fact motal by the . mother of the compendinn in hems "unceonomin" or "oholete" morks. But a dearer midionian of how par thow par cams afi would be of great hifp of thone wing suth a come pendinum.

The comomic analssin presented in figure I is cenally applathe to a comparions of the efficione of firms in diffent bronche of imdustry and of these within an! particular brand. Since the compendinm is mended explicitly to point out the ceviselte of altermative plant modet proshecting cither identical or cimbar products.

[^3]the dhatme patcore of fictor mput combination as hetweol the altermane model within ash industry :noup s.m well he ."Im import.nt object of study.

In thente 2. thom points represonting altermative model prodicing identical or smilar products are
 eso whid comot be compured with others in the coinperatium hase been omitted in figure 2. Hesey dots denote the mont efficient plants in eath of the differme mbuery gromps matentifed in the compendhum. Ior cample the brewery manstry has four . Iternatises: mos. 16 619 . The most etficient brewery phont (no. 19) is lacited below the iso-cost belt. The scond and third most efficiont plants (nos. 18 and 17) are located within the belt. The least efficient brewery (Ine. 10) is located abowe the belt and appears clearly unprotitabk:

Pioc afticicty and tedmial efficienc)

The relative etficiency of individual plants can be measured by their relative distance from the origin of the di: gr ram. However, the path connecting different models in cach group (such as 16-17-18-19; 4849 50 cte.) does not necesomily point towards the origin: its slope varics from group to group. If this path sould have a negative slope, one might be temped to asocinte it with the "production function" of the wiven industry or the so-called "iso-quant" showing alternative factor combinations to produce the same output. Such points may be considered to have equal nechmological efficiency, their relative efficiency varying only in terms of "price efficiency" i. c. the extent to which they are fit to given rehative factor prices (slope of the inocost lines).

Connexion lines with negative slopes occur in a few coses in fugure 2: two plastic articles plants, nos. 86 and 87: two bakerics, nos 7 and 9; two lime plants. nos. 59 and 61 ; and two dairy products firms, nos. 2 and 3 ; ctc. Of these coss, nos. 7 and 9 seem to have different product mixes (no. 7 produces biscuits and wafers at a relatively high price per kilogram of output, while mo. 9 produces bread and ralls, the average price per kilogram of which is only one fourth of that of the proslucts of 10.7) + Apart from this complication, there is a chance that cach of these pairs will be regarded as being indifierent in terms of "technological efficiency". Especially, locus $\mathbf{N} 6-87$ has a slope comparable to that of the iso-cost belts, so the efficiency of these two points may be considered comparable both technologually and comomically.

The relative profitability positions are rather obvious fir those points comected by lines ruming from northcant to south-west. But for the purpose of measuring

[^4]ligire:

$\mathbf{X}=$ Capital; $\mathbf{L}=$ Labour; $\mathbf{V}=$ Value added
relative profitability in terms of any quancitative index, both the general slope of the plant path for each group and the slope of the relevant iso-cost line should be taken into account. In fact, the precise way of measuring the relative profitability is to draw a family of parallel iso-cost lines going through every point to be compared. The relative distance of these paralle lines from the origin then readily gives the relative efficiency index for cach point. Such indexes can, of course, be established for points belonging to different industry groups as
well. For example, the economic ethiciency of plamt no. \% (thermal power plant), althuugh its iso-income point is located farther from the orgin than that of no. 19 (brewery piant), is quite comparable to the conomic efficiency of no. 19, if the prevaling relative factor price is represented by line A B. B .

Tchnolential dhanes and ecomomies of sald
The shope of the comexion line for cach gromp may be interpreted as mdicating the developnemt path
of techowes in that moturn the dingram rewals
 ns cmand in thin compenimum. has beon both lathour-
 are .a mumbe of ace 13 whide appal-hatour rotion

 are two forment phan (mon. 5. mid 20). of which the modem. lergerapatis! platit pross to the inferior in

 ductern in the rate wh marly 1 : ibut are almont conally chiction.
Onc Wonkl mote th.it an "mdentry gromp" in ole
 than whan would mormatly whan with the statistical
 of sate comomics beomes low ?htematic whon tirms cheseged in smilar line of activis! have difterent product mixo and proces mixes. Eximples are: no. 32 (chiphoard) .mil no. 33 (fibrehoard): no. 42

 material for bulding): 16.76 (tend for machines) and no. 78 (matcriah-handline cqupment), mo. 75 (hard-

 indentric, wheme math the ant phate have no problem int arming moder.te to horl protis. Some of these
 written oft the oreshat insotments. of they may he grancal ypeat whobla, in apen or hidden forms. In fact. the reveme of wome if the phans are not even large chenthencontrats. Ihis means that the plants

[^5]are using workers whose wages are substantially standard or whose wages are supplemented by varions subsidies mentioned above.
()n the one hand, some industrics in the compend: are represelted by rather incticient specinens, wan the most etficient one in ach group located .b, the ino-cost belt (almmina and ahmininm plants, no and 66: steclworks, nos. 71. 72 and 73; iron fonme now. 67. 6x. 69 and 70; Footwcar. nos. 25 and 26). the other hand. there are some "glanour" indue whene constitnent firms invariably do well (feedn nos. !2. 1.3 and 14: petrolentm refincries, nos, 42, 43, 4.5 and 46: ctc.).

To a certain extent, every economy is bound to in. some trombled or "sick" industrics along with in: modern and progressive indistries, especially when t pace of inchstrialization is accelerating and the structo. of demand radically changing. Sometimes official pres. control con be responsible for an apparent profitabil:disparity betweon industries. Sometimes a "new" b.s: indusery may be forced to kecp its product prices at : arbitrarily low leved for some rason, thus reccivme heany subsidics. A country's over-all trade policies. tix and subsidy schemes, employment policies etc. are moant to achicve efficiency in the cconomy as a whole, ber it is important constantly to review the impact of these policies on the individual plant or firm while these policies are being implemented.

Couchusious

Not all the data given in this compendium represem cconomically feasible plant models. Some models are obsolete and some are about to go bankrupt. The techuical parameters of these problematic models mas: still have some reference value if substantiated by a proper post-mortem analysis of the individual cascs. The uscfilness of the compendium would be greatly enhomed if the compiler appended to each model, whethet or not it is cconomic, information regarding manage rial competence, governmental intervention, capital vintuge. locational peculiarities etc.

Of course, there cannot be a single "best" was of producing, for example, ball-point pens. A procos proposed as a technologically optimum prototype mast still be combined with other related technical ind organizational requirements before an "enterprise" a real cconomic unit-can be based on it. A comble plant layout that has proved highly cconomic ater particular local conditions cannot be assumed to: wo under other local conditions. The difficuley of blishing progranming norms in terms of strist ministic, single-value parameters is well known. ment programming thus consists of an iterative of scarching and screcning a broad range of teche. and cconomic possibilities. This process can v
from all poswble sources and onc important worse is howshalge of ind istrial hirms in varions comerics

A person.il compendinm, tiken largely is i hothpotch of vaguly acreaned plant model. is wheme apowed to a sistematic examinatton and m.s thon vificr

 comaderations. The particular collection comsidered here happern to be lacking in the data necewary for .watoment of value added. As a result. extremely profioble cose howe been inchaded along with ntterly mprotit.ohle onns. with little indication of factors sccomenting for the xe g.p. This collection had originally leen intended for the programming of indistrial location alone, and thon the requirements of site, water and dectricity and phosical weights of output and input materials were the major concern of its author. However, the data on labour and cyupment. collected on the side happen to how that nearly one half of the compiled cass must le inprotitable models. Cireat care ought to be taken. therefore, in using the entire compendinm.

The malytical exercise condected on these data in this artick is inded a very simple one. requiring only . plansble set of asommptions regording wage rates and capital costs. But the method is quite expeditions in caluating the relative positions of different plants and cilterprises in terms of conomic efficicis: and thes prointing out what kind of additional information will be needed if one wishes to translate particular experience to accommodate the needs in different ceonomaic stithations.

The sope of personal compendia is suverely limited to whet each individual has cocountered in his profersional experience. On the one hand, conomists, cren it they are suppened to play an active role in investiment programming and promotion. sem to be of litthe hedp III dealing with plant-level problems, wor do they take the imitiative in sarching for specific investment opportmities. On the other hand, engineers m.in have far deeper knowledge of specific ways of doing thens in the industrics in which they are specializa... but they do not concern themedves mich with what goes on in other industries and show litte interest in the variation of marhet conditions from one place to another. As clowe co-opration between these two professions is cowential in indastrial programuing-particularly project development the concept of plant models ought to be evolved in such a way as to ficilitate mutual communication between them. An explicit presentation of personal knowledge in profiles, compendia, or other forms of programming data would certainly broaden the possibilities for such professional comperation.

The unido pmofiles prigiramme:

If personal compendia of plant models conld be compiled in comparable form, great wiving it the time

 imp.act.
 and promotion in a mmber of dechopmes comenco

 spocis spproather to data collecting vimalle to tem.il nocds and in traming the neconary ficlet stuly s.iff
It is impertam to note thint the prefitio (a)mplotion shonded te hamilled rather difticrenty from the coment tional consus tepe of antivical surves. The dephe of

 conterprise comvicared. mod this repuremont a.m be met onls with netive wiplor from the molowns whe , we themetry , the promery uxer ot she romblenge protiós. Idally, indenery protile it the plome on enterprixe lead Would be compilal by those whe .rre enderin: con-

UNIIX) a working jomily with the follostrial

 and fermalated be han amidelme tor the de velopment

 of which is to promone and corordmote productivity
 natiomet wat the multuational levis. The "protiles" component of the prodhecivity progedmme in the region 15 now intended to offer: (a) a we of tedmocoonomic guidelncs for cralnoting tictory \boldsymbol{p}^{2} rformance; (b) yarlstichs for comprormes ble texholowid .mel coonomic efficiency of different firms: and (1) ate evalthation whome to pinpoint utronge and weat peomets in ach firm. The vandard fermat fior vich protites as
 techoologests engincers ind acomentins expritual in
 profiles was held in (airo, 6-M1 duly 1970. di ding with three branches of imdusery: ymomes and waving of cotem. processing of vectable abl med fas, dad milling of gram. It is phaned to hohl a xamal work hop m 1971
to cover other indurrics such w coment. glas and coramics. fond-cimining printing cte.. and these workshope are wo be followed up by am ammal evaluation cwion for the fied stady teams in varions comeries.
(iovermment anthoritios heed an appropriate form of commonncation with the managenemt of individand colterprise in order to determince what meanores are necosary to promote development. The sope of intormation fowing throms the existing reporting sysem from cinterprises to contral planming anthorities varice from comitry to comers. In a state enterprise system, the current reporting may alreade cover information daborate enough to affect over-all budgetary control at the state level. In a private conterprise system. the reporting routince may be limited mostly to the consus type of statistical survers. In both cases. the existing reporting systems could be greaty improved to facilitate decisons regarding structural changes within an enterprix or a group of enterprises. such as new investment proposals, rehabilitation proposals, multinational trade and comperation agrecments cte. Adoption of the profiles approach to data gathering would facilitate the formutation of industrial developnent programones and policies.
In 1970, a joint UNIIX-Bulgarian working grouph condected an experinem with a view to improving the chuterprise profiles to be used by the Bulgarian planning authority emrusted with investment project appraisal. The experiment included: (a) ant examination of the comparability of basic conomic and accounting terminetogies betweon the NAS (Wevtern) and the MPS (Eastern Europran) sytems within the framework of

[^6]rolatisely simple, multi-industry type of enterprise profics such as those appearing iti the UNIDO Profiles; and (b) the compilation of "intra-firm input-output tables"-a new format for analytical presentation of copacity and performance data at detailed plant and subplant levels. The material balances and capacity specifications for individual deparments or units classified with roference to each industry's basic process flow dhart, the process-costing tecliniques framed according to the standard cycle of prodactive activities including fictory overhads etc.-these major topics or subprotiles for structural and performance diagnosis can be more or less readily incorporated in a single inputoutput table compiled for ach enterprise. It is hoped that the approach tested under this project will find practical applications in the various echelons of national industrial-developnent management, especially to facilitate transition from the detailed accounting and enginecring data of individual enterprises to diagnosis and programming at the sectoral level.

The UNIDO profiles programme, which was originally no more than a publication of general-purpose source books. is thus being given the broader mission of improving the organization and utilization of microdata on industrial activities. This is not the place for reporting in detail on those latest developments connected with the UNIDO profiles. A full progress report and technical matetials of general reference valuc will be published in due course in future issurs of cither this Bulletin (II)/SER. A) or the profiles scries (II)/SER, E). Mranwhile, interected readers may wish to weite for further infornnation to: Industrial Policiss and Pro gramming Division, United Nations Industrial Deve lopment Organization. '2. O. Box 77, A-1011 Viewa, Austria.

ANNEXES

ANNEX 1
LIST OF I(x PLANT MODELS IN THF EXAMPLE CONSIDERED

Plist no. ISKa Type of plimi
1201 Shughterhous
2212 Diny
3 2012 lairy
4202 Dar!
$5 \quad 203 \quad$ Irun-juice plant
203 Irait-juice plant
216. Hiscuin and wafer factory

2 2r, Bakery
2n6) Industrial bakery
217 Sugar plant
207 Sugar plant
312 Soybean oil plant with animal feed factory
214) Fecd-mixing plan
214) Fed factory

212 Wine cellar
213 Brewery
213 Brwery
213 Brewery
213 Brewary
$20 \quad 214$ Soft drinks plant
$21 \quad 231 \quad$ Cotton-spinuing mill
22 231 Cotton-spinning mill
$\begin{array}{lll}23 & 232 & \text { Coton knitwear factory } \\ 24 & 231 & \text { Wcaving and finishing n }\end{array}$
$25 \quad 231 \quad$ Wraving and finishing mill
$\begin{array}{lll}25 & 241 \quad \text { Fowwar factury } \\ 26 & 241 / 30) \text { Leother and rubler footwear }\end{array}$
$27 \quad 243 \quad$ Wearing appard factory
$28 \quad 251$ Plywod factory
29 251 Sawmill
30261 Furniture factory
32 261 Meral furniture factory
32271 Chiphoard factory
$33 \quad 271$ Fibreboard factory
$34 \quad 271 \quad$ Pulp and paper mill
$3 \quad 272 \quad$ Pulp and paper mill
$37 \quad 201 \quad$ Paper prodicos plant
$\begin{array}{lll}37 & 291 & \text { Leather tanncry } \\ 38 & 201 & \text { Leather tauncry }\end{array}$
39. 311 Integrated petrochenical works
$\begin{array}{lll}40 & 311 & \text { Petrolhemical works } \\ 41 & 311 \quad \text { Ferrilizer plant }\end{array}$
41311 Fertilizer plant
42321 Benzene plant
$\begin{array}{lll}43 & 321 & \text { Peroleum retinery } \\ 44 & 321 & \text { Petroleum refinery }\end{array}$
45321 Petrokem refinery
46 321. Integrated petroleum refinery
47 324 Coke plant
48331 Brickworks
$49 \quad 331 \quad$ Brick and tile tactory
$51 \quad 331$ Tile factory
51 332 - Glasworks
52332 (Glassworks
$\begin{array}{lll}53 & 334 & \text { Porland coment factory }\end{array}$
543.4 Portland cement factory

Ammal ciphatity
3x.10nit
ghenkil of milk processed
low,onn I of milk procesod
3n,on"I of milk processed
I. (WM)I
3.9n空
2.(WH)

K, 3MIt
15, (KNO t
20.0101t of sugar

Ho,Mht t of sugar
6, 11, MO t of soybeans processed
33,01:1:
(6), (MA) t
3),(10x) hl

50,0Mohl
lon),000hl
500, (Kno hi
l, (Mn), (MOOLI
|mo, (x) hil
20,100) spindles
22,(00) spindles
2101
$1,301 \mathrm{c}$
600,010) pairs
1,5(0),(4) pairs
3,310 t or approximately 10 million m^{2}
$4,010 \mathrm{~m}^{3}$
$15,000 \mathrm{~m}^{3}$
12,00 units or approximately 5,000 t
$6,0101 t$
7,0MOt
$13,000 t$
33,000t
150,0MIt
6, (NIIT
6(0)t
$1,2010 t$
$21,(10) t$ of ethylene and 20,000 t of other products
201,omet
470,000 t
$115,0 \mathrm{MN}) \mathrm{t}$
$301,100)$ t of crude oll to be procesed
$5 \mathrm{~m}, \mathrm{im}$ (t of crude oil to be processed
2, (M), MMO t of crudr oil to be processed
3,(un),000t of crude nil to be processed
(60),(M1) t

10 million units or $20,1001 t$
$25,0 \times 1$ to 30, grot or 15 million units
43 billion units or 45,000 t
11,000 :
27,(MM) t
110, (MW):
$220,000 \mathrm{t}$

[^7]| | (1.) ISIC | Typr if plunt | |
| :---: | :---: | :---: | :---: |
| צה | 334 | Portand cement factory | |
| 56 | 334 | Portand coment factory | $3.30,1 \mathrm{Mm} 1$ |
| 37 | 339 | Structural clay prodinct factory | |
| 58 | 33) | Plaster plant | on,(Mn) ills grimules |
| S' | 334 | Hydrated lime plant | $27.1 \mathrm{Bn} \mathrm{t}$ |
| 61 | 339 | Lime plant | 27, (1\%1) |
| 61 | 339 | Lime plant | 33,nMIt |
| 62 | 339 | Pretabricated concrete building material | |
| 6.3 | 339 | Masonry with a concrete product manufaturing un | H, (nx) dwelling |
| 64 | 339 | Building clements (insulating materials) | , 25 axit |
| 65 | 342 | Alunina plant | line, |
| 66 | 342 | Almmina and aluminium plant | 2 m, Mmit of alumind and |
| 67 | 341 | Foumdry | |
| $6 \times$ | 341 | Foundry | 6, ${ }^{\text {ancte }}$ of iron to be procesed |
| 6) | 341 | Foundry | G, 4 nt of iron to be processed |
| 711 | 341 | Foundry | 12,, nut of tron to be processed |
| 71 | 341 | Steclworks | a, innt of tron to be procosed |
| 72 | 341 | Integrated stedworks | |
| 73 | 341 | Steelworks | 2 million t in trmis of crude ster |
| 74 | 330 | Forged steel products | t mimion t in terms af cruck stee |
| 73 | 350 | Hardware factory | 6, ${ }^{\text {annt }}$ |
| 76 | 350 | Tools for machines and other special ueel products | 251: |
| 77 | 330 | Machine tool plant | 2,0\%)t |
| 78 | 350 | Materials-handling equipnewt factory | 1,600t |
| 79 | 380 | Metal container factory | lumut |
| *) | 300/370 | Houxhold appliance factory | 7510, |
| 1 | 370 | Transformer plamt | |
| ${ }^{2}$ | 33 | Car parts plant | Up to 18, ${ }^{\text {amt }}$ |
| 43 | 344 | Car ervice shop | 5, inl services |
| M | 384 | Car repair shop | li, min cars |
| 85 | 384 | Car service and repair shop | atull cars |
| * | 39) | Plastics factory | 331t |
| 17 | 399 | Plastic atticles plant | limbt |
| * | 400 | Plumbers' workshop | 20 ,utw working hours |
| 49 | 400 | Building contractors | 1, MM dwalling umits |
| $9)$ | 511 | Hydroelectric power plant | mio |
| 91 | 511 | Hydrodectric power plant | mi MVy |
| 92 | 511 | Hydroelectric power plant | 2m M W |
| 93 | 511 | Thermal power plant | 45 MW |
| 94 | 511 | Thermal power plant | 125 MW |
| 95 | 511 | Thermal power plant | 210) MW |
| \% | 511 | Thermal power plant | Sul Mw |
| 97 | 83 | Architectural design agency | 2,00m working hour |
| 98 | 84 | Laundry | 2mit |
| 99 | 854 | Laundry | Sult |
| 100 | 8.4 | Industrial laundry | 2,461t |

INIDICATORS OF CHARACTERISTICS

Mant Min (ISIC'):		$\begin{gathered} 1 \\ \text { Slaughter } \\ (201) \end{gathered}$	$\begin{gathered} 2 \\ \text { Dairy } \\ (202) \end{gathered}$	$\begin{gathered} 3 \\ \text { Dairy } \\ (202) \end{gathered}$		$\underset{(203)}{5}$
Cupital						
Equipment ($\mathrm{K}_{\text {c }}$)	(US \$ million)	1.51	0.45	0.93	1.46	0.61
Building and land improvements ($K_{\text {s }}$)		1.52	0.29	0.50	0.72	0.41
Total working capital ($\mathrm{K}_{\mathbf{w}}$)		1.00	0.09	0.16	0.26	0.17
Total capital requircment (K)		4.03	0.83	1.59	2.44	1,19
Site						
Rooled sites ($\mathbf{S}_{\mathbf{r}}$)	(000 m²)	27.0	4.5	8.6	15.0	6.9
of which for production (Srp)		15.0	3.1	6.3	11.6	3.7
Total sites (\mathbf{S})		i20.0	6.0	20.0	30.0	15.0
Employment						
Managers and hishly skilled (L. 1)	(man-ycars)	60	14	20	23	17
skilled (L 2)		320	70	70	137	81
Unskilled (L 3)		260	36	35	60	23
Total employment (L)		640	120	125	220	120
Total skill adj: (L*)		1,520	316	343	59	340
Areduction						
Quantity (\mathbf{Q}_{8})	(000t/year)	38	3	10	13	1.5
Value of production ($\mathbf{Q}_{\mathbf{i}}$)	(m illion/year)	23.7	1.6	26	8.0	0.72
Ex. value atded ($\mathbf{V}^{\boldsymbol{*}}$)		3.4	0.48	0.77	2.5	0.16
Mein naw matr rials						
M. (1)	(000t/year)	30	nomer	38000	1000\%	5
Blerticity amd water						
Electricity (E).	(million kW/h/year)	2.8	0.3	0.4	1.2	03
Water (W)	(100 m3/year)	324	208	350	1,500	20.
of which: drinking water ($W_{\text {d }}$)	$\left(\mathrm{m}^{3 / \mathrm{d}}\right)$	1,0\%)	56	1,000	yeno	1,200
Tranguei requiremems						
Input materials (T_{m})	(000t/ycar)	44	23	46	136	8
Products shipmem ($\mathrm{T}_{\boldsymbol{q}}$)	(athers)	35	3	11	16	2
Rutios						
Capial/oupth fatio (K/Qs)		0.2	0.5	0.6	0.3	
	(10it)	2.4	3.7	7.5	6. 6.7	1.7 3.1
Mullings and land improvement cont per m^{2} of roofed site (K_{3} / S_{5})	$\left(1 / m^{2}\right)$	6	64	\% ${ }^{3}$	$4{ }_{4}$	(1)
Percounuse compowition L!	(\%)	9	12	16	11	14
L2...........	(\%)	50	58	36	6	67
Electivity cansumpion per ton of outpill ($/ \mathbf{/} / \mathbf{Q}_{2}$)	(6 /)	677	357	268	58	46
	($\mathbf{W} / \mathrm{h} / \mathrm{t}$)	7	43	43	79	213
Water comsumption per ton of output $\left(W / C_{1}\right)$	$(\mathrm{m} / \mathrm{t})$	79 9	88	4	79	213
Main raw material per tom of output $\left(M_{1} / \mathbf{C L}_{1}\right)$	(m / t) (t)	1.43	89 7.14	53	99	173
	(t/)	1.43	7.14	3.80	7.24	3.33
	(ka/5)	4	20	21	19	14

 Add. I, Sakr Nut: 34 XVII. 9

* ©Molitro.
-

OF 100 PLANT MOIELS

$\begin{gathered} 6 \\ \begin{array}{c} 6 \text { ficers } \\ (2013) \end{array} \end{gathered}$	$\begin{gathered} 7 \\ \text { Bakery } \\ (206) \end{gathered}$	$\begin{gathered} \text { Hukery } \\ (2016) \end{gathered}$	$\begin{gathered} 9 \\ B_{14 k r y}(206) \end{gathered}$	$\begin{gathered} 10 \\ \text { Supar } \\ (207) \end{gathered}$	$\begin{gathered} 11 \\ \text { sugar } \\ (207) \end{gathered}$	$\begin{gathered} 12 \\ 0 i f \\ (312) \end{gathered}$	$\begin{gathered} 13 \\ \text { ficd } \\ 12(09) \end{gathered}$	$\begin{gathered} 14 \\ F_{i+1} \\ (2(v) \end{gathered}$	$\begin{gathered} 15 \\ \\| i \mathrm{imb} \\ 2121 \end{gathered}$
0.42	0.27	0.33	0.54	5.40	(109)				
1.22	0.14	0.19	0.20	2.69	10.99	1.66	11.32	0.610	0.13
0.10	0.03	0.02	0.08	1.108	$3.8 \times$	0.86	0.34	0.44	0.17
0.74	0.44	0.54	0.18 0.12	1.08 9.17	2.34	0,80	0.18	0.30	0.04
		0.54	0.82	9.17	17.21		0.84	1.34	0.34
3.3	2.9	4.7	3.1	15.2	20.1				
1.8	1.6	2.7	2.8	15.2 5.4	20.1 9.8	6.0	3.5	4.8	8.0
8.0	6.0	6.0	7.1	245.0	30.8	3.0 500	2.8	3.8	8.10
						50.0	6.0	8.8	15,0
7	8	14	2	50	83				
15	8	76	5	240	377	20)	10	12	3
10	16	20	43	60	377 120	140	25	33	15
60	110	110	9	600	120	50	15	25	7
158	314	318	23	1.030 1.0		210	50.	70	25
				1,030	1,666	570	14)	184	67
3.5	2	8	14	3	40				
084	1.3	09	18.	3.8	11.6		30.	61,	3.
0.9	071	0.3	$0 \cdot 8$	2.4	11.6	7.6 1.5	2.2 0.5	4.2	055
					4.8	1.5	0.58	1.1	0.23
5	2	6	11	150	300	60	22		
-	-	-	-	-	-	-	9	23	4
03	04	04	0.3	58	10.2				
1700	8	13	14	1.610	2230	1,50.6	1.3	2.1	${ }_{4} 1.12$
1,700	4	4	11	310	65	200	3	4	5
6	3	10	12	200	36	85			
4	2	8	14	35	71	36	30	65	5
09	0.3	0.3	0.3	1.6	1.3	0.4	0.4	03	
6.9	23	10	5.7	15.4	19.0	7.9	6.4	8.6	0.6 5.1
611	4	4	65	177	103	14	97		
12	1	13	2	14	14	4	20	17	12
数		14	33	69	65	67	50	47	60
20	500	120	131	167	290	137	72	70	184
100	138	44	39	168	255	104	43	35	7
\%	3	1.6	1	47	56	27	0.04	0,04	13
1.42	0.99	0.77	0.8	4.35	7.5	1.6	0.7	0.7	13
12	4	18	10	41	38	19	30	30	14

ANNEX 2 (amtinut)

MANTV: (Isf:)		$\begin{gathered} 16 \\ \text { In } 16+(\mathrm{Cr})^{\prime} \\ (21.1) \end{gathered}$	$\begin{gathered} 17 \\ \text { Brcurry } \\ (213) \end{gathered}$	$\begin{gathered} 18 \\ \text { Br' } 1+\mathrm{Cry} \\ (213) \end{gathered}$	$\begin{gathered} 19 \\ \text { Hrewry } \\ (21.3) \end{gathered}$	Sofi Driuk (214)
Capital						
Equipunat ($\mathrm{K}_{\text {e }}$)	(US S million)	$0 . \%$	1.11	3.78	5,62	0.81
Building and land improvements (K)		0.48	0.54	3.04	4.20	0.72
Total working copital (K_{u})		0.16	0.22	1.06)	1.76	0.411
Toral capital requirement (K)		1.60	1.87	7.82	11.58	1.93
Sili						
Romed sites (S_{t})	(000) $\mathrm{m}^{\mathbf{2}}$)	11.0	12.1	20.1	32.9	4.9
of which for production ($S_{\text {cp }}$)		5.0	5.8	13.3	25.3	2.9
Total sites (\$)		25.0	32.1	66.8	98.9	9.9
Employmstr						
Managers and highly skilled (L. 1)	(man-years)	11	15	34	48	7
skilled (L 2) .		74	85	300	317	4
Unskilled (L 3)		15	30	96	145	73
Total cmployment (L)		100	130	420	510	134
Total skill alij: (L*)		292	360	1,156	1,336	270
Production						
Quantity (Q_{1})	(0xht/year)	5	10	50	100	13
Valne of production (Q)	(Smillion/year)	0.54	1.1	3.3	108	3.5
Est. value added (V^{*})		0.28	0.55	2.7	3.8	1.8
Main rup untrrids						
M (1)	* (IMOt/year)	1	2.5	9	17	2
(2)		-	-	05	1	$-$
Electricity and mithy						
Electricity (E)	(million kWli/year)	0.6	1.1	3.6	90	1.0
Water (W)	(000 $\mathrm{m}^{3} / \mathrm{ycar}$)	250	400	850	1,320	80
of which: drinking water (W_{d})	($\mathrm{m}^{3 / d a y \text {) }}$	140	200	300	500	40
Trimeporl requiremeuts						
Input materials (T_{m})	(000t/year)	8	11	65	123	35
Produtts shipnent (\mathbf{T}_{4})		12	18	101	199	44
Rutios						
Capital/output ratio (K/Qs)		30	1.7	13	1.1	0.6
Equipnent per person ($\mathrm{K}_{\mathrm{s}} / \mathrm{L}$)	(\$100)	9.6	8.6	90	11.0	6.0
Huildings and land improvement cost per $\mathrm{m}^{\mathbf{2}}$ of roofed site ($\mathrm{K}_{\mathbf{x}} \mathbf{S}_{\mathrm{r}}$)	(S/m2)	44	45	46	42	177
Percontage composition L. 1	(", ${ }^{(1)}$	11	12	8	9	5
L2.........	(\%)	74	65	71	62	40
Average valtie per ton ($\mathrm{Q}_{\mathbf{s}} / \mathrm{Q}_{\mathbf{t}}$)	(\$/t)	108	108	106	100	23
Electricity consumption per ton of output (E/Q)	(kWh/t)	130	110	72	90	63
Water consumption per ton of output ($\mathbf{W} / \mathbf{Q}_{\mathbf{4}}$)	$\left(\mathrm{m}^{3 / 1}\right)$	50	10 40	17	13	6 5
Main raw materials per ton of output $\left(M_{11} / \mathbf{Q}_{1}\right)$	(t/t)	0.23	0.25	0.2	0.2	0.1
Total transport per $\$$ of output $\left(T_{m+q} / Q_{s}\right)$	$(\mathrm{kg} / \mathrm{S})$	38	27	31	30	22

[^8]| $\underset{\substack{21 \\ \text { spimine } \\ 231!}}{ }$
 (231) | $\underset{\substack{22 \\ \text { Spimbine }}}{231)^{2}}$
 (231) | $\stackrel{23}{\text { Kininuedr }}$ (232) | $\begin{gathered} 24 \\ \text { "adring } \\ (211)^{24} \end{gathered}$ | Firotireat (24) | | $\begin{gathered} \text { n } \\ \text { Chut } \\ 2+1) \end{gathered}$ | | | Itimitut
 (200) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.04 | 2.24 | 0.41 | 0.45 | 11.37 | 1.25 | 118 | | | |
| 0.67 | 1.52 | 0.11 | 0.34 | 10.31 | 10,88 | 153 | 11.th | 11.14 | 18.104 |
| 0.53 | 0.71 | 0.3 \% | 0.36 | 0.3 .3 | 0, 0.81 | 1.52 | 11. W | O.W | 1.15 |
| 3.24 | 4.47 | 0.91 | 1.65 | 1.26 | 2.94 | 6.15 | (1.4) | 114 1191 | 10.31 |
| 12.0 | 22.5 | 2.3 | 4.5 | 5.2 | 11.5 | 23.4 | 4.11 | | |
| 9.5 | 19.7 | 1.7 | 6.1 | 2.7 | 6.2 | + 12.9 | 2.2 | 6.1 1.1 | 21.5 |
| 40.0 | 500 | 10.0 | 32.10 | 10.0 | 15.1 | \$1.0 | 11,0 | W... | 14.5 15.0 |
| 30 | 80 | 25 | 61 | 65 | (1) | 46 | 11 | 21 | 55 |
| 330 | 870 | 290 | 300 | 17% | 370 | 4,13) | 131 | 1411 | \% |
| 49 | 50 | 10 | 100 | Ins | 41 | (6) | 4 | 614 | 13, |
| 400 | 100) | 325 | 501 | 47 | 96 | 4.53 | 220 | 281 | 571 |
| 1.180 | 3,000 | 1005 | 1.420 | 1,0\% | 2,460 | 14,321) | 641 | 5 w | 1.5m |
| 3 | 1 | 0.2 | 1 | 0.3 | 0.75 | 3 | \% | 11 | |
| 3.0 | 40 | 10 | 3.1 | 1.7 | 4.2 | 3.3 | 4.4 | 114 | 1.5 |
| 1.1 | 14 | 0.4 | 1.1 | 05 | 1.1 | 4.9 | 4,16 | 0.24 | 45 |
| 3 | 2 | 0.2 | 02 | 03 | 1.3 | 2.5 | 10 | W* | 5 |
| 6.1 | 7a | 0.1 | 1.4 | 0.3 | 0.8 | 2.2 | 106 | 0.5 | 111 |
| 0 | 2 m | d | 32 | 8.1 | 17.4 | 91 | if | m' | 0 |
| 15 | 40 | 15 | 31 | 31 | 4 | Ivi | 11 | (11) | 4 |
| 6 | 4 | 0.3 | 5 | 0.9 | 2 | H | 15 | 15 | 12 |
| 3 | 1 | 0.2 | , | 0.4 | 1 | 3 | , | 11 | 4 |
| 1.1 | 1.1 | 09 | 05 | 0.7 | 0.7 | 0.2 | 1.9 | 1.1 | 13 |
| 3.1 | 23 | 1.3 | 1.9 | 1.4 | 1.3 | 4.2 | 2.2 | 6.1 | 1.1 |
| 56 | 6 | 49 | 39 | 60 | 7 | 4 | 76 | 4 | 48 |
| 8 | 8 | H | 12 | 15 | 21 | 11 | 11 | 4 | 10 |
| 82 | 07 | *9 | 68 | 41 | w | \% | 64 | 64 | w |
| 1,031 | 1,300 | 6143 | 2613 | 3,617 | 3,47 | 7,976 | 17 | 4 | W |
| 2,118 | 6.500 | 1,20 | 1,133 | 1,180 | 1.674 | 676 | | 4 | 20* |
| 28 | 242 | 476 | 43 | 27 | 21 | 27 | 5 | In | 11 |
| 1.2 | 1.5 | 1.5 | 0.2 | 0.9 | 2.11 | 0.4 | 3.3 | 1 | 1.4 |
| 3 | 1 | 0.5 | 2 | 0.8 | 0.7 | 0.4 | 41 | 52 | 12 |

ANNIX こ

はハいい。		$\begin{gathered} 31 \\ I \text { :mmmit } \\ 1601) \end{gathered}$	$\begin{gathered} 12 \\ \text { (hiphomel } \\ 12 \% 1) \end{gathered}$	3 l：herchordel 1271	$\begin{aligned} & 34 \\ & \text { Pulp and } \\ & \text { paper } \\ & 12711 \end{aligned}$	
Capind						
Iquiphent（ $\mathrm{K}_{\text {c }}$	（U）S million）	11.15	19.6	1.76	12.1	23.4
Building and lind mprovemmen（K）		11.56	0.21	1.58	3.2	7.1.
Total warking captal（ $\mathbf{K w}_{\text {w }}$		1.12	$0.10 \times$	0.16	1.2	3.2
Toal capital regurement（K）		2.33	11.94	2.51	17.2	33．6．
Sifi						
Ronted sites（ $\mathbf{S}_{\text {I }}$	（16m mis）	7.6	3.4	8.8	14.5	52.5
of which for production（ $\mathbf{S}_{\text {rp }}$ ）．．．．		3.6	2.0	7.3	8.0	24.2
Trual stter（s）．．．．．．．．．．．．．．．．．		12.0	7.1	21.0	134.5	540.11
Emphomem						
Manugers and highly killed（i）．	（man－ytars）	41	16	26	． 60	170
skilled（L 2）		290	50	8	250	500
Unskilled（1．3）		270	34	28	201	280
Total emphymen（L）		610	100	140	510	950
Trasl skill adi：（ ${ }^{*}$ ）．		1，340	264	416	1，250	2，630
Arehution						
Qumity（ $\mathrm{Q}_{\text {i }}$ ）．．．．．．．．．．．．．．．．	（ilint／ycar）	5.4	7	12	30	106
Value of prodution（ $\mathrm{Q}_{\mathbf{n}}$ ）．．．．．．．．．．	（ milliou／yen）	36	0.72	1.2	5.4	200
Ex．value added（V）．．．．．．．．．．．．		1.5	0.27	0.38	2.3	8.6
Main ruer meterials						
$\mathbf{M}_{\mathbf{H}}(\mathbf{l})$ ，，．．．．．．．．．．．．．．．．．．．．	（uytiyoar）	5	9	16	16F	43 r
（2）		\％	1	16	16	4 r
Elivinity and wilhr						
	（million 1 Whiyear）	1.8	23	7.2	41.4	
Whater（V）．．．．．．．．．．．．．．．．．．．．．．	（100mtyear）	3	63	400	100.000	somom
of whwh：drining water（ $\mathrm{W}_{\text {d }}$ ）．．．	（ms／dxy	60	8	10	21	80
Tumopur requircureus						
liput materiah（ \mathbf{T}_{m} ）	（4017）year）		14	3	200	
Problists shipinew（ T_{4} ）．．．．．．．．．．．．．		6	7	12	20 3	171
Aumb						
Cupialimupet rath（K／Qe）		0.7	1.3	21		
Lupponiz pr permen（ K ／）．．．．．	（ 5 （14）	1.1	6.6	12.6	24.1	24.7
Huillings and land improvamem cost 	（6／mi）	1.1 74	6.6 39	12.6 65	28.1	24.6 14
Pexcontape componition L1 1	（\％）	7	39	65	21	134 18
L2． $2 . \ldots \ldots \ldots$	（\％）	4	16	19	11	18
Averase value per tom（ \mathbf{Q} / \mathbf{G} ）	（4）	6iv）	109	101	181	189
Aktricity comsumption per ton of out－ pun（： \mathbf{L} ）	（Wh／t）	309	16% 40	100	181	189 $* 1792$
Wher commanpiont per ton of output （W／C）	（6）	3	3%	53	1，379	＊1，92
Min raw muctial per ton of output	$\left(m^{2} / 1\right)$	3	10	43	383	472
	（ti）	0.9	1.4	1.3	5.3	4．
	（ky／5）	4	29	40	49	46

	$\begin{gathered} 37 \\ \operatorname{Tann} \cdot \mathrm{r} \\ (291) \end{gathered}$	$\begin{gathered} 38 \\ \text { Timucr } \\ (291) \end{gathered}$		$\begin{gathered} \text { din } \\ \text { Pine } \\ \text { dicticical } \\ (111) \end{gathered}$	$\begin{gathered} +1 \\ \text { 1, wilisw } \\ \text { (.3! }) \end{gathered}$	$\begin{gathered} \text { H } \\ \text { Rovictic } \\ \text { (2, } \end{gathered}$		131	
1.13	11.17	11.70	38.4	161.3	33.6	6.18			
0.56	0.19	11.36	8.10	31.2	5.6	(10.47	+1.4*	8	16.9
0.96	0.23	1.113	3.2	30.8	3.2	1.24	0.0.4	\% 0 \%	1.3
2.55	0.59	2.19	49.6		42.4	8.24	51.64	10.811 10.108	
4.7	3.6	3.9	19.11	742.7					
3.5	1.9	2.3	8.10	392.11	40.0	0.6	(a1.0)	${ }^{6} 5.50$	Iman 0
7.8	11.6	10.4	1.60.0	1,412.7	900.0	1.3 1.4	21.10 251.10	25,01	41.0 Nilu)
28	8	32	170	662	19)	18	91		
84	60	176	580	1,770	570	30	280	. 30	771
120	12	100	100	620	14)	12	81	1.31	211
232	80	318	850	3,052	90)	60	450	1.100	1.110
513	232	788	2,690	9,240	2,800	192	1,370	1,7611	3,2(t)
5.5	0.6	,	40	415	450	115	274		
3.6	0.45	6.5	18.4	164.7	22.6	9.7	7.8	13.8	5.46
1.2	0.11	1.6	6.1	54.3	7.5	4.5	3.6	6.4	26.0
6.5	1	7	60	$\begin{aligned} & 641 \\ & 114 \end{aligned}$	100^{104}	240	301	500	2.00
06	0.2	20	448	430	24	11.1	7.8	18.0	61.0
6	36	225	2500	14,400	5,100	(181)	40	660	1.650
12	8	36	40	550	41	If	45	60	110
7	2	7	123	1,260	249	252	310		2.015
6	1	2	41	448	450	231	280	450	1.850)
0.7	1.3	0.3	2.7	1.4	1.9	6, 8	0.7		
44	2.1	23	45.2	52.9	37.3	10.1	10.0	13.9	15.4
118	4	92	421	42	117	726	11	15	
12	10	10	20	22	21	30	2)	18	17
36	7	37	68	58	63	30	62	60	64
655	737	5,969	460	401	50	92	29	29	${ }^{20}$
105	300	1,804	1,370	1,04	542	106	23	37	31
1.2	60	205	63	35	11	1.7	1	1	1
1.2	1.8	6.1	1.5	1.74	222	2.29	1.1	1.03	1.12
3	6	1	9	10	30	50	75	69	6

ANNEX 2 (cminntid)

M..fiv Ni: asir.)		Prurilimen refilury (.321)	$\begin{gathered} 17 \\ \text { Cinkine } \\ (329) \end{gathered}$	$+4$ Brick: (311)	49 Bricks (331)	$\begin{gathered} 51 \\ \text { Tili } \\ 1331 \end{gathered}$
Capint						
Eyupilithe ($K_{\text {c }}$)	(US S milliom)	35.2	11.8	0.32	01.48	1.1
Bailding and land muprovements (K,		3.2	4.3	0.28	0.411	1.7
Total working copital ($\mathrm{K}_{\text {N }}$)		6.4	1.4	0.03	0.105	1.3
Total capital requirement (K)		+4.6	17.9	0.63	0.93	3.7
Sitr'						
Roroted sites ($\mathbf{S}_{\text {r }}$)	(CW1 ml^{2})	150.0	35.1	5.1	6.5	9.2
of which for production ($S_{\text {p }}$)		70.0	31.0	4.5	5.7	8.2
Total sites (S) .		1.50m, 10	160.1	15.0	11.0	21.0
Managers and highly skilled (L I)	(man-ycars)	310	56	10	10	33
Skilled (L 2)		1,120	116	72	71	127
Unskilled (L 3)		270	68	78	30	21
Total cmployment (L)		1,700	240	160	110	180
Total skill adj : (L*)		5,180	6\%	344	29)	566
Production!						
Quantity (Q_{1})	(000 t/year)	4,900	600	21	26	45
Value of production ($\mathbf{Q}_{\mathbf{b}}$)	(\$ million/year)	185.6	15.5	0.18	0.28	2.2
Est. value added (${ }^{*}$)		85.7	3.8	0.13	0.20	1.6
Main raw materials						
	(010t/ycar)	5,00)	800	29	37	105
(2) $\ldots \ldots$.		,	-	$\underline{\square}$	-	0
Electricity and Winct						
Electricity (E)	(million kWh/year)	140	10.0	0.7	1.1	20
Water (W)	(000 m ${ }^{3}$ /year)	3.950	450	12	15	21
of which: drinking water $\left(W_{d}\right)$....	($\mathrm{m}^{3} / \mathrm{day}$)	1,700	72	10	8	12
Transpert requircmews						
Input materials (T_{m})	(fin) t/ycar)	3,025	802	43	64	112
Products shipinent (T_{4})		4615	639	21	28	46
Ratios						
Capital/output ratio (K/Qs)		0.2	1.2	3.4	3.3	1.7
Equipment per prson ($\mathbf{K}_{\mathrm{t}} / \mathbf{L}$)	(SOM)	20.7	49.3	2.0	4.4	8.9
Buildings and land improvement cost per m^{2} of roofed site (K_{3} / S_{r})	(\$/m ${ }^{2}$)	21	122	54	62	188
Percemage composition L 1	(*)	18	24	6	9	18
12	(\%)	66	48	45	64	71
Average value per ton $\left(\mathbf{Q}_{8} / \mathbf{Q}_{\mathbf{1}}\right)$	(S/t)	38	26	9	11	51
Electricity consumption per ton of output (E/Q)	(Wh/t)	29	17	38		
Water comsumption per ton of output ($\mathbf{W} / \mathbf{Q}_{\mathbf{t}}$)	($\mathrm{m}^{3} / \mathrm{t}$)	1	17	3	40	4
Main raw materials pet ton of output $\left(M_{11} / Q_{1}\right)$		1	8	1	0.6	0.4
Total transport per $\$$ of output	(t/t)	1.02	1.3	1.25	1.4	2.1
$\left(\mathrm{T}_{\mathrm{m}+\mathrm{q}} / \mathrm{Q}_{\mathbf{s}}\right)$.	($\mathrm{kg} / 3$)	52	90	350	39	71

(0MO m ${ }^{3}$.

$\begin{aligned} & 51 \\ & \text { Gluss } \\ & \text { (132) } \end{aligned}$	$\begin{aligned} & 52 \\ & \text { Class } \\ & \text { (332) } \end{aligned}$	$\begin{gathered} 53 \\ \text { Comen } \\ (3,4) \end{gathered}$			$\begin{gathered} 5, \\ \text { Cime" } \\ 1 .!41 \end{gathered}$			$\begin{gathered} 59 \\ \lim \\ (194 \end{gathered}$	
			-						
1.02	1.72	2.64	3.6	6.30	11.32				
0.57	0.84	1.76	2.41	3.01	11.32	11.11	11.34	11.41	11.31
0.15	0.27	0.28	0.48	11.64	1.81 1.61	11.12	11.24	11.20	11.16
1.74	2.83	4.68	6.56	9.94	1.60	11.14	11.16	11.16	11.10
1.74	2.8	4.68	6.5	9.95	19.72	1.26	10.64	0.66	0.52
13.0	17.2	14.5	18.0	33.0	H.11	31	15		
5.9	7.2	8.0	11.0	15.0	18.0	1.7		1.1	0.4
50.0	50.0	120.0	160.0	2010.0	250,0	9.9	11.9 4.6	10.8 30	0.3
50	30	19	24	30	75	13			
190	210	207	220	3 H	350	119	${ }_{6}^{8}$	6	11
100	40	34	56	70	100	102	63	47	75
340	280	260	300	40	525	65 100	13	22	55
920	820	750	836	1,120	1,525	140	84 242	75 193	1411
10	25	100	210	300	80				
1.2	3.2	1.6	3.1	48	12.0	O易)	06	25.4	25
0.72	1.8	0.71	1.4	2.2	5.4		0.25	$\begin{aligned} & 0.71 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.23 \end{aligned}$
13	18	160	320	430	1,100	50	12	3	37
-	14	-	-			IN		3	3
1.6	1.3	12.0	11.0	30.0	00.0	2.1	10	1.1	075
4	130	6	110	416	29.	40	1	7	1.2
4	34	20	30	45	60	4	7	6	
18	70	270	400	610	1,110	75			
11	26	105	210	300	80	77	36	26	26
1.4	0.9	30	2.1	2.1	1.6	1.6	1.8	1.7	
3.0	6.1	10.2	12.3	15.8	21.6	3.9	4.0	5.3	2.2
4	49	121	133	91	155	199	160	182	
15	11	7	8	8	14	7	10	18	7
56	73	80	73	75	67	37	75	63	54
125	127	16	16	16	15	11	14	16	11
160	32	120	106	100	100	28	40	44	30
4	3	0.6	0.6	1.4	0.4	0.5	01	0.3	0.1
1.3	0.7	1.6	1.6	1.4	1.4	0.7	1.3	1.3	1.5
23	30	208	21	190	159	199	174	167	241

NNIX '

			Bunding chements (3.30)			
Cam						
Ifuprom k	(USS milhom)	11.3	11.22	0.51	1.6	\therefore
Buidung and lied improvements \mathbf{K},		1.16	1.30	0.17	0.3	
Fond worhme capaid (K_{0} :		11.16	11.15	0.44	1.2	1
		11.5%	0.57	1.12	3.1	2
Stir						
	(in) ma^{2})	10.9	4.15	3.6	18.1	30
of which tor prodution (s_{4}) . . .		0.6	2.5	2.5.	10.0	13.4
Forat sita (S)		3.1	8.5	20.0	54.3	120.1
Emphyma:						
Mangers md highly skilled (L 1)	(man-years)	*	12	24	50	511
skilled (1 2)		70	118	2010	381	351
Unskilled (3)		22	45	51	72	(\%)
Tor.l cmployment (L)		101	175	275	503	500
Total skill adi: (\mathbf{L}^{*})		272	459	771	1,465	1,4m)
Prumation						
Qumity (0)	(Hin)tyeat)	30	40	50	114	100
Value of prodertion ($\mathrm{Q}_{\text {s }}$)	(S million/year)	0.41	0.44	3.1	5.0	7.2
Est. value added (\mathbf{V}^{*})		0.28	0.18	1.3	2.1	2.1
Mail raw mutrids						
M_{1} (1)	(im) t/year)	45	33	18	113	225
(2)		-	7	18	-	30
Eliutricity and whitr						
Elatricity (E)	(million kWh/ycar)	0.9	0.1	0.5	2.5	43.0
Water (W)	(000) $\mathrm{m}^{3} / \mathrm{ycar}$)	1	10	13	9	1,4m
of which: drinking water (\mathbf{W}_{d})	($\mathrm{m}^{3 / \text { day }}$)	5	10	15	23	75
Thinspert mequirements						
Input materias (T_{m})	(omi) t/year	66	42	50	117	362
Predhets shipment (T_{4})		31	41	50	113	17
Katios						
Capialoutput ratio (K/(4)		1.4	1.3	0.4	0.6	4.0
Equipuent pr person ($\mathrm{K}_{\mathrm{c}} / \mathrm{L}$)	(\$000)	3.6	1.2	1.9	3.2	41.0
Buidmgs and land mprovetnent cost por \boldsymbol{m}^{2} of ronted site (K / S,)	$\left(3 / m^{2}\right)$	168	76	47	15	183
Percentage compoxition L 1	(\%)	8	7	9	10	11
Avater	(\%)	70	67	73	$\%$	70
Average value per ton ($Q_{s} /\left(Q_{1}\right)$	(s/r)	14	11	62	4	72
Electricits combumption per ton of output (I O,	(kWh/t)	14 30	11 2	9	2	40
Water comsumption per 1011 of output (W) O	$\left(m^{3} / \mathrm{t}\right)$	003	2 0.3	9	28	40
Main raw materal, per ton of output $\left.\left(\mathbf{M}_{1}\right) \mathbf{Q}_{\mathbf{1}}\right)$		0.0.	0.3 0.9	0.3	0	14
Total trimspart per S of output......	(t/)	1.5	0.9	0.4	1.0	25
($\mathrm{m}_{\mathrm{m}}^{\text {q }}$ (3)	(hg/5)	238	189	32	40	4

($4 \mathrm{ml} \mathrm{m}^{3}$

66 Ilumin 1 and d.(mmimin! (342)	67 Foundry (341)	68 Foundry (341)	$\stackrel{69}{\text { Fowndry }}$ (.3+1)	$\begin{gathered} 70 \\ \text { Finuwir } \\ 1.3411 \end{gathered}$	7 Siciturork: (.141)		Stichererks (4) 1	$\begin{gathered} 7 \\ \operatorname{cosem} \\ i \neq 1 \end{gathered}$	Ihindion, (in)
117.8	0.78	1.24	1.14	1.60	(6)9				
15.8	11.41	0.44	1.60	0.76	73.4	$3+9.7$	112.\%	1183	2.14
12.4	0.64	0.68	0.96	1.101	32.4	116.6	111.5	11.2	11.9
146.0	1.82	2.36	2.61	3.36	32.8.1	$\begin{array}{r} 61,01 \\ \mathbf{5 2 6}, 3 \end{array}$	$\begin{array}{r} 44.6 \\ 330.10 \end{array}$	11.3	11×4
170.0	4.5	3.7	6.0	8.11	350.01	550.11			
150.0	3.0	2.5	4.0	6.11	150,0	210.0	36.0 50.5	2.5	74
561., 0	8.0	7.0	10.0	15.0	2,510,0	3,0xn,0	1,106, 0	1.4 4.5	5.4
200	50	40	70	35	601	(1)	44		
450	333	250	450	125	4.000	6,4m0	1\%1	25	75
250	47	90	180	101	460	6,401	1.\%1	11	201
910	430	380	700	260	5,(M)	g, (M)	3, 501	(6)	158
2.100	1,2\%	1,040	1,890	650	15,40	24 +10	71,4\%4	4*	1.tw
100	3	3	10	18	745				
44.0	1.7	2.6	3.3	3.8	164.0	332.0	253,6	1.2	11
12.8	0.3	0.4	0.5	0.6	27.6	30.9	42.7	0.2	1.4
$\begin{aligned} & 480 \\ & 175 \end{aligned}$	3	6	12	20	1,375	2,6m	6, 115	5.5	6
1,700	24	12.0	3.1	5.8	330	750			
2100	18	40	12	145	31,001	65,100)	109, imi	10	4
103	43	50	103	40	1,000	1,610	W5	25	5
660	8	9	18	33	2,620	5,410			
120	3	3	11	21	981	1, H (1)	4.392	5	6
3.3	1.1	0.9	0.8	0.9	1.9	16	1.3	1.2	
130.8	1.8	3.3	1.3	6.2	40.0	43.7	53.9	4.4	4.1
93	99	119	100	98	210	212	400	115	
20	12	10	10	13	12	11	24	13	15
50	7	6	64	48	80	80	55	53	58
440	64	50	316	211	220	229	63	276	631
1,000	905	2400	25	32	469	517	119	7\%6	103
21	7	8	7	8	42	45	25	2	6
4.5	1.07	1.12	1.14	1.11	1.84	1.80	1.5	1.31	1.23
18	7	6	9	14	22	22	57	9	4

ANNEX 2 (comimucil)

Ciprind						
Equipucint ($\mathbf{K}_{\mathbf{c}}$)	(US\$ million)	0. 06	11.94	0.28	1.52	1.14
Building and land improvenents (K) .		0.27	0.58	0.24	0.62	0.76,
Total working capital ($K_{\text {w }}$)		0.59	1.16)	0.36	0.92	12.8\%
Total capital requircment (K)		1.82	2.52	0.88	3.16	2.64
Sint						
Rowids sites (S_{r})	(001) m^{2})	1.2	9.3	3.0	3.4	5.1
of which for production ($S_{\text {tp }}$)		0.8	6.5	2.0	2.7	3.1
Toral sites (S)		3.0	20.3	6.0	6.0	10.0
Employmith						
Managers and highly skilled (L 1)	(man-years)	130	110	50	65	75
Skilled (L 2)		270	210	230	590	555
Unskilled (L. 3)		70	50	20	245	70
Total employment (L)		470	370	300	900	700
Total skill adi: (L^{*})		1,530	1,230	960	2,340	2.110
Procluition						
Quantity (\mathbf{Q}_{1})	(000) $/$ year)	0.2	2	1.5	9	7
Value of production ($\mathbf{Q}_{\mathbf{b}}$)	(S million/year)	1.7	3.2	1.2	4.3	5,2
Est, value added ($\mathbf{V}^{\boldsymbol{*}}$)		0.7	1.3	0.5	1.8	1.9
Maiu raw meterials						
$\mathbf{M}_{1}(1)$	(000t/year)	0.2	0.9	1	12	8
		-	2	$\underline{-}$	$\underline{12}$	-
Electricity and watr						
Electricity (E)	(millionkWh/year)	2.4	0.8	1.1	1.8	1.0
Water (W)	(000 m3/year)	20	26	9	40	20
of which: drinking water (W)	($\mathrm{m}^{3} /$ day $)$	47	48	30	90	65
Trumsport repuirements						
Input materials (T_{m})	(000t/ycar)	1	4	2	16	10
Products shipment ($\mathbf{T}_{\mathbf{q}}$)	(0.3	3	2	12	7
Ratios						
Capitil/output ratio (K/Qs)		1.1	0.8	0.7	0.7	0.5
Equipment per person ($\mathrm{K}_{\mathrm{r}} / \mathrm{L}$)	(\$000)	2.0	2.5	0.9	1.7	1.5
Huildings and land improvement cost per m^{2} of roofed site (K_{8} / S_{r})	(\$/m)	221	6	80	181	149
Percentage composition L 1	(\%)	28	30	17	118	14
L2 $2 \ldots \ldots \ldots$.	(\%)	37	57	76	66	79
Average value per ton ($\left.Q_{3} / Q_{0}\right) \ldots \ldots$.	(\$/t)	7,709	1,756	827	400	776
Electricity consumption per ton of output ($\mathbf{E} / \mathbf{Q}_{\mathbf{2}}$)	($\mathrm{WWh} / \mathrm{t}$)	10,009	44	73	400	149
Water consumption per ton of output (W/Q)	($\left.\mathrm{m}^{3} / \mathrm{t}\right)$	10,99 91	44	733	200	149
Main raw materials per ton of output $\left(M_{1} / Q_{1}\right)$	(m / t) (t / t)	91	15	6	4	3
Total tramsport per S of output	(t/)	1.14	0.50	0.80	1.33	1.1
($\mathrm{T}_{\mathrm{m}+\mathrm{q}} / \mathrm{Q}_{\mathbf{1}}$) \ldots	(kg / s)	1	2	4	6	3

* ombars.
h omo units.
100 GW .
$1000 \mathrm{~m}^{3}$.

ANNEX 2 (chmmad)

$\begin{aligned} & \text { MLSI Ni } \\ & \text { ANAC: } \end{aligned}$			4 Hidro pult (511)			
Cipinal						
Equipment ($\mathrm{K}_{\text {c }}$)	(US\$ milhon)	5.20	111.21	6. 60	15.20	21
Hoilding and land mprevomems (K_{5})		16.41	123.20	2.41	3,20)	1
Total working coputs (K_{*})		1.12	211.16	0.64	1.20	1
Total apial requirment (K)		21.72	234.56	9.44	19.60)	27.
Site						
Kontid vies (s)		83.9	93.0	16.0	17.0	4
of which tiof production (\$9)		3.9	4.3	3.5	3.7	4.1
Total sites (\$)		1300	150.1	61.0	62.0	49.3
Emplozment						
Managers and highly skilled (L. 1)	(man-ycars)	15	If	36	35	42
Skilled (L 2) .		33	48	102	115	78
Unskilled (t 3)		12	19	22	30	12
Toal employment (L)		(1)	85	150	19	132
Tual skill adi: (${ }^{*}$)		186	253	458	550	456
Mratuation						
Qumity (0)	(tide)/year)	11,2*	1.3.3	0.2	$0.6{ }^{\text {k }}$	$1 *$
Value of prodintion (\mathbf{Q}_{5})	(\$ million/year)	1.3	8.0	2.8	7.2	12.0
Eat. value added (V*)		0.81	3.1	1.8	4.6	7.6
Main rate multrials						
$\mathbf{M}_{\mathbf{t}} \text { (1) } \ldots .$ (2)	(in) 1 /year)	140 MW 2	2,50,00\%	123	285	220
Eletrictity amd wathr						
Electricity (\mathbf{F})	(milliom kWhycat)	1.2	6.0	20.0	400	68.0
Water (W)		14, ¢M\% 2	2,50,00\%	1,501	41	63
of which: drinkimg water (\mathbf{W}_{3})	($\mathrm{m}^{3 / \mathrm{day} \text {) }}$	5	6	13	15	12
Tromeport requiraments						
liput materials (T_{m})	(antol/year)	\cdots	-	175	285	220
Products shipment $\left(T_{4}\right) \ldots \ldots .$.		-	-	43	70.	22
Rutios						
Capital/ouput ratio (K/Qs)				3.4	2.7	2.3
Equipuent per person ($\mathbf{K}_{\mathbf{e}} / \mathbf{L}$)	(SMu)	88.7	131.8	42.7	8.4	163.6
Buildings and hand improvenent cost per m^{2} of roofed site $\left(K, S_{t}\right)$	($5 / \mathrm{m}^{2}$)	195	244	150	188	163.0 431
Percentage compowition L. 1. .	(*)	25	21	17	19	32
L22........	(\%)	55	57	68	64	59
 Electicity consumpion per ton of output (E)	(S1)	6,46)	5,330		12,040	12,0\%
	(kWht	6,(m)	4,000	14,733 105,36	12,00	12,000
Water constmuption per ton of outut (\mathbf{W} / Q)	(myt)	\%,1000	4,600 166,667	105,263 7804	66,666	68,000
Main raw matrials per tou of output (M_{1} / \mathbf{Q}_{1})	(t)	7m,0m	166,667 166,667	7,894 689	141,667	$\begin{array}{r}6.3 \\ \hline 20\end{array}$
Total transport per $\$$ of output$\left(T_{m+q} /\left(Q_{s}\right)\right.$	(r)	AM, (10)	166,667	658	475	220
	(kg S	\cdots	-	78	49	18

[^9]

NOTES ON TIIE HW PLANT MOJELS

1'Mint 1

A meditum-azal indestrind hanghterhouse constructed for bisic operation omly (cexdides waste processing) Onc-Shift operation

(Nor protitable)

Mant?

A small-capacit! dary plant with low degree of automation

(Protisable)

P/ant !

A medium-vized, sonti-automated dairy plant producing pasteurized milk and various kinds of cheese, butter and powdered milk
M_{t} (1): Milk (38, (MWI,1MMI)
(Protitable)

Mon +

A large-scale automated dairy collecting and processing milk and produchig all kinds of dairy products Contimious operation on three shifts

(Highly profitable)
Mant 5
A small-capacity, semi-mechanized plant produeing both natural and concentrated fruit juice Continuous operation with seasonal fluctuations in employment M_{1} (1): Fruits (5.1MM t)
(Not profitable)

Plawn 6

A part of a multi-product firm producing soda water and carbonated juice as well as natural and concentrated frut juice
Contintous opration with seasonal fluctuations in employment
$\mathbf{M}_{\mathbf{t}}(\mathbf{I})$: Fruits ($\mathbf{5}, \mathrm{MM} \mathrm{H}_{\mathrm{t}}$)
(Protitable)

Paint 7

A small. labour-intensive (mainly female workers) bakery plant of local significance
Two-shift operation
M_{1} (1): Flour, sugar, salt (2.370 t)
(Highly profitable)

Planis 8

A small. scmi-mochanized plant supplying bread and rolls for a small town
Two-shift operation
M_{1} (1): Flour (6. +IM1t)
(Profitable)

Plimi."
A large-scale bakery with modern equipment
Two-shift operation
$\mathbf{M}_{\mathbf{t}}$ (I): Flour and salt (II.(MOH t)
(Highly protitable)
Plant 10
A relatively small-scale sugar retinery
Amual output of $\mathbf{3 4 . 5 0} \mathbf{0} \boldsymbol{t}$ consists of:

Sugar	20,0
Molasses	6,1M
Bagasse	8.514

Threc-shift operation for low days during the harvest pcriod: two-shift operation in off-scason M_{t} (1): Sugar bect (150.0M0 t)
(Profttable)

Plant II

A medium-sized sugar refinery with a processing caparity of $3.0 \mathrm{mO} \mathrm{t} /$ day of sugar beet Annual output consists of:

Sugar	$40,0 \mathrm{nn}$ t
Molasses	10,000 t
Dry and crude cossettes	$\mathbf{4 0 , 0 0 0}$ t

Contimuoss operation on two shifts
M_{1} (1): Sugar beet (300,000 t)
(Profitable)

Plant 12

A medium-sized plant with its own refinery
Oıtput consists of soy oil and animal feed
Continuous operation for about $\mathbf{3 0 0}$ days a year
M_{4} (1): Oilsced ($60,000 \mathrm{t}$)
(Highly profitable)

Plaint 13

A meditm-sized, partly mechanized feed-meal mixing plant
Basic raw materials are flour-mill by-product cercals (maize, barley and oats), proteins of vegeteble and animal origin, and various minerals, vieamins. antibiotics and other additives
Two-shift operation
M_{4} (1): Cercals ($22,0 \mathrm{mO}$ t)
(2): Proteins, minerals and vitamins $(9,000$)
(Highly profitable)
Plant 14
An automated feed-meal plant
Principal raw matcrials:

Cereals	$39,000 t$
Proteins	$17,000 t$
Mincrals, vitamins etc.	$6,000:$
Two-shift operation	
M_{i} (1): Cerrals $(\mathbf{3 9 , 0 0 1}$ t)	
(2): Protems, minerals, vitamins $(\mathbf{2 3 , 0 0 0}$)	
Highly profitable)	

: 15
protly utechanized winc-cellar for basic grape pro-- withg

Hhre-shift operation during the harvest scason; therwise, onc-shift operation
$H_{t}(1)$: Gripes ($4,(100)$ t)
Highly profitable)
Int 16

- umall. semi-mechanized brewery
(imtinnous operation with seasonal fuctuations
$M_{1}(1)$: Barley (1,150 t)
(Not profitable)
Hhem 17
A wimi-mechanized brewery, small yet economic Contintous operation with seasonal fuctuation in sutpur M_{1} (1): Barley (2,500 t) (Profitable)

1HinII 18
A brewery of an cconomic size with an annual capacity of 510,000 hectolitres
Water consumption is reduced through partial renculation
Two-shift operation
$\mathrm{M}_{1}(1)$: Barley (9,000 t)
(2): Hops (500 t)
(Profitable)
Mant 19
A large brewery with an annual capacity of $1, \mathrm{mmom}$ hectolitres
Two-shift operation
M_{1} (1): Barley (17,000 t)
(2): Hops (1,000 t)
(Highly profitable)
Mam 20
A wof drinks plant with an annual capacity of ten,000 lectolitres
Two-shift operation with reasonal Ahetuations
$M_{i}(1)$: Sugar (1,800 t) and carbon dioxide
(IIighly profitable)
\% 1 w 21
I fully-automated, small (20,000 spindles) cottompinning mill
Two-shift operation
M_{1} (1): Cotton (3,300 t)
(Not profitable)
Hm 22
In automated cotton-spinning mill with 22,000 apindles
Two-shift operation
M_{1} (1): Cotton (1,800 t)
Vot profitable)

Plat' 2.1
A small comem kmewor phant cmploving lon-ling female labour
Two-hiff aperation

(Nor profitable)
Plint 2t
A small wasing mill, comploying mowh fimale labome Two-shift operstion
M_{1} (I): Man-made yarn (2M1)
(Profitable)
Mant 25
A footwear factory with an ambal capoctit of that, wn pairs
Two-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Upper and whe kather (2mot)
(Not profitable)
Pabir 26
A large kather and rubber fintwear fectery with an anmual capacity of 1,5 , wnw , wil pairs
Onewhifi operation
$\mathrm{M}_{1}(1)$: Leather, rubber and others (1, Wint)
(Not profitabli)
Plant 27
A wearing appard factory hocted in a large town and omploying monty skillod libume
Two-shifí operation
M_{1} (1): Fabrics (2.50t)
(Not profitable)

P新 20

A relatively small-wale plywind plam
Uses buch logs ($10,1010 \mathrm{~m}^{3}$ pre anmum)
Two-shift oprration
$\mathrm{M}_{\mathbf{1}}(1)$: Hech logs (10,6nt m $\left.\mathrm{m}^{2}\right)$
(Not profitable)
Mun 29
A small-cale sav mill for beed heys
One-shift operation
$\mathrm{M}_{\mathbf{1}}$ (1): Hech logs (3), (W) m)
(Not profitable)
Plan 30
A wooden firniture factory produing a limited tage of goods
One-shifi operation
$M_{1}(1)$: Wood and others ($5,10 \mathrm{M}_{\mathrm{t}}$)
(Not profitable)
Plam 11
A medium-sized motal fumiture factory prodicing a limited ange of goods
Two-shift oprration
M_{1} (1): Steclstrip and rubing, and aluminiun scotion (5,M以1)
(Profitable)

```
1:
```



```
    Sut Mond
Ph: ;
```



```
    Sitpmothol
Mint it
A pulp ond paper mill prodecing ardmary paper on the
```



```
        linhlos.
        Hode conferme wowl tor pulp. the plant uso
```



```
        and themeal prentets as monlary raw matcriak
```



```
    (Not putitubl)
```


Mint 39

A mechum-szed pulp and paper mill
 towe. colophony ctc.)
Continnow cperation for $\mathbf{3 0}$ days

(imitith

A roltivet lage fictory suplying paper products for whand abl ofice us
Two-shifi aqcration
M_{1} (I): Plper, cartheard. ghe ($6,5 \mathrm{tit}$ t)
(Provitably)
Mam :
A shall lather tancty wing mainly focal materiak and pronlucing we kather. th leather and slecked lather
Twi-shuli xpratem
M_{1} (1): Vegotable taming wbances (1, MOHt) and linu
(Not prolitable)

Ham Is

A fully mochanat tamory. pecoalizing in upper kother. plir hother and hing kather for footwear mompfaturn
Twembit apratem
M_{1} (1): She amd hides ($6,7 \mathrm{~m} 1$)
(lighly protichbs)
Han 19
A modern but mall-tapacity petrochemical plant producing ethy/a soment) and polycthyenc.

Cintmions operation

(Now protis.小le)
IMant +1
A petroshemic.l plame prodicing a number .. utivo of cthylene propylane and C_{4}-fractio th the undiation of all by-prodects. but withour an dietrolysis licilitio
 +15.mmit are timstace products for sale. an : is
 and 13 Wh of other chemical products
Combumons oprration for 3.3 diys a year

(2): Chlorine and other chemicals (114, tunn)
(Irotitable)
Ilaty +1
A midium-sized. fully automated plant problicing mirrogen fertilizer
Continnous operation on three shifts
M_{4} (I): Natural gas ($1010,\left(\mathrm{MO},\left(000 \mathrm{~m}^{3}\right.\right.$)
(2): Superphosphate. potassium salt. line cte. (70,0, 1)
(Irotitable)
Plum 42
A benzene plant using reformed gasokne supplied by a nearby refinery
Hy-products are low-octane gasolene for refineries and waste gases used as fied for the plant's own operation Contmuous operation for $\mathbf{3 0}$ days a year
\mathbf{M}_{1} (1): Gasolene (240,040 t)
(Highly profitable)

Pame 43

A small-capacity petrokum refinery
Facilities molude atmospheric distillation and simple vacuum distillation for bitumen production
Continuous operation on three shifts for 300 davs a year
M_{t} (1): Crude oil (30,000t)
(Highly profitable)
Paint 4
A small-capacity petrokeum refinery
Facilities include atmospheric and vacuum distill. an and a gasolenc reforming plant for bitumen duction
Threc-shift operation for $\mathbf{3 0 0}$ days a yen
M_{1} (1): Crude oil ($\mathbf{5 0 0 , 0 0 0}$ t)
(Highly profitable)
Platit 45
A mokern petrokum refinery
Includes amuspheric distillation facilities with cracking and catalytic gasolene reforming in: times
ner-shift operation for 330 days a yoar
\therefore (1): Crude oil (2.1Mn),(MNOt)
liglily profitable)

- 16

Hes-capacity petrolenm refinery with a wide whaction programme including primary and seconwiprocessing
wilitics include atmospheric distillation, catalytic racking, catalytic gawolenc reformation for bitumen and high-octane gasolene
Itrec-shift operation for 330 days a year
M_{I} (1): Crude oil (5,(MN),(KNO t)
Highly profitable)

ilnint 4^{7}

A highly automated independent coking plant
Anntal output consists of $570,000 \mathrm{t}$ of metallurgical coke and $30,(\mathrm{MO}) \mathrm{t}$ of small coke for foundrics and consumers. By-products are: tar, benzene, and others (approximately $38,0 \times 0$ t) and waste gases (about 120 million m^{3})
Threc-shift operation for $\mathbf{3 3 0}$ days a year
$\mathrm{M}_{\mathrm{t}}(1)$: Mctallurgical coal ($\left.\mathrm{BO},(\mathrm{OO}) \mathrm{t}\right)$
(Profitable)

M1111 48

A small brickwork plant with a rotating furmace
About 9,000 t of low-caloric coal are required annually for fuel
Three-shift operation for $\mathbf{3 0 0}$ days a year
M_{t} (1): Clay ($25,000 \mathrm{~m}^{3}$)
(Not profitable)
Mamt 49
A roofing-tile and brick factory with a tunnel furnace liring with heavy fuel oil
Continuous opcration on threc shifts for 300 days a year
(Not profitable)
Ham 50
modern, medium-sized roofing-tile factory
I uid requirement: $5,000 \mathrm{t}$ of heavy fuel oil a year
Threc-shift operation for $\mathbf{3 3 0}$ days a year
$\mathrm{M}_{\mathrm{i}}(1)$: Clay ($37,000 \mathrm{~m}^{3}$)
Profitable)
nt 51
ory small bollow-glass factory
Continuous operation for $\mathbf{3 3 0}$ days a year
$\mathrm{M}_{\mathrm{t}}(1)$: Siliceous sand, stone and cullet $(13,500 \mathrm{t})$
Not profitable)
him 52
I small platc-glass plant
Continuous operation for $\mathbf{3 3 0}$ days a year
$M_{t}(1)$: Siliccous sand $\left.(14,000) t\right)$
(2): Culket. limestonc $(18,500$ t)

Profitable)

Mums 53. it. 5 amd in
Virmonsizad Portland comont pham,

 platt it i20.onnt: plant is fulhmt:

(Plant 53 umproftable: plants it. 35 .mod 5 prolitalis)
Plunt if
An aconstic and licat-insulating struetural chay prodicis plant
 Continuons operation oa three shifs
M, (1): Clay (50,0MOt)
(2): Cement (1 N .1 MNO t$)$
(Profitable)
Plame 58
A medinm-sized plaster plant with no secondary processing facilitics
Fuel requirement: 4.5m t of coal a year Continuous operation for $\mathbf{3 N}$ days a year $\mathbf{M}_{\mathbf{t}}$ (I): Ciypsum (32., Mmit)
(Profitable)

Plant 59

A modern hydrated lime plant producing both quichlime and slacked lime ready for use
Fuel requirement: 8, (H0) t of heavy fuch oil a year Continuous operation for 3.4) days a year $\mathbf{M}_{\mathbf{t}}$ (1): Limestonc (3.3, MWIt)
(Profitable)

Plamt 60

A medium-sized lime plant with a vaft linckiln having au annual capacity of 27 ,onnt of yuickline Continuons operation on three shifts for Mill diys a year
$\mathrm{M}_{\mathrm{t}}(1)$: Limestone (37,(Mn)t)
(Not profitable)
Plant 61
A highly mechanized line plant with a rotary hiln Fuel requirement: $10, \mathrm{ann}_{\mathrm{t}} \mathrm{t}$ of coal Threcshift operation for 3 MO days a yor M_{1} (1): Limestonc ($\mathbf{(4 , 1 \text { MNOt }) ~}$
(Not profitable)

Plant 6.?

A profabricated concrete building block factory producing manly blocks of a simple shape
One-shift operation

(2): Others (1,7mot)
(Not profitable)

Plant 63

A masonry with a small-capacity umi prodicing cone rete products. including concrete blocks of a comples shape

Onc-hift operation

 (Protitable)

Phan' of

A plant producing board, for partition walls and for thermic and acoustic insulation
Two-shift operation
M_{1} (I): Cement. wood. partide board ctc. (115.mmt) (Profitable)

Phati 65
A small alumina plant located in the vicinity of a local bauxite mine
Capital investment figure does not include investment in mincs and transport facilitios; it does include investment in a small thermal power plant
Continuous operation for 33) days a ycar
M_{1} (1): Hansite (225.0M1t)
(2): Alkaline additices $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{NaOH}(15.000$ t)
(3): Low caloric coal ($15,000 \mathrm{t}$)
(Not profitable)

Plail' 66

An integrated alumina and aluminium plant
Continuous operation for $\mathbf{3 3 0}$ days a year.
$\mathrm{M}_{\mathbf{t}}$ (1): Bauxite (451.(1010t)
(2): Alkaline additives $(30,000$ t $)$
(3): Coal (145,000 t)
(Not profitable)

Phail 67

A foundry producing tempered castings of $0.1-5 \mathrm{~kg}$ to order
Two-shift operation
$\mathbf{M}_{\mathrm{t}}(1)$: Gray and scrap iron (2.850 t)
(Not profitable)

Plait 68

A modern foundry cquipped with medium-sized electric furnaces producing sted castings of $1-200 \mathrm{~kg}$ Two-shift operation
M_{t} (1) Gray and scrap iron (5,600t)
(Not profitable)

Plant 69

A foundry atached to a machine factory producing machine castings of $1-250 \mathrm{~kg}$
Two-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Gray and scrap iron (1,200t)
(Not profitable)

Plant 70

An independent foundry producing castings of $1-50 \mathrm{~kg}$ Two-shift oprration
$\mathrm{M}_{4}(1)$: Gray and scrap iron (20,000 t)
(Not protitable)

Mhint -1
An integrated sted plant prolucing pig iron, crude , and rolling mill products (final products); the anm production of $745 . \mathrm{MW}$ t represents the rolling m . products only

- Fixed capital includes a coking plant, a power plan:i and an oxygen plant
Threc-shift operation
M_{1} (1): Iron ore $\left.(60)_{0}{ }_{0} \mathrm{FC}\right) \quad(1,300,0 \mathrm{MO} / \mathrm{t})$
(2): Limestone
(250,000t)
(3) : Scrap iron
(4): Metallurgical coke
$(75,0 \mathrm{MOt})$
$(500,0000)$
(Not profitable)
Pluit 72
A small yet fully integrated steel mill producing sted shects and plates as its final output
Threc-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Iron ore $\left.(6)^{\circ} \mathrm{Fe}\right)$
$(\mathbf{2 , 6 0 0 , 0 0 0} t)$
(2): Limestone
(3): Metallurgical coal
$(900,000 t)$

(Not profitable)

Plait 73
A sted mill producing crude steel $(2,800,000 t)$ and pig iron ($1,300,000$ t); has no secondary processing facilitics, such as roll mill, and no coking plant
Fuel requircment: $1,952,000 \mathrm{t}$ of coke and $362,010 \mathrm{t}$ of fuel oil for blast furnace
Three-shift operation
$\begin{array}{lr}M_{1}(1) \text { : Iron ore } & (6,000,000 \text { t) } \\ \text { (2): Scrap iron } & (500,000 \text { t) }\end{array}$
(Not profitable)

Plailt 74

A small. forged-steel plant producing forged-sted products ranging from 5 to' 120 kg in weighe and used in machine tool factories
Two-shift operation
$\mathrm{M}_{1}(1)$: Rolled steel (5,500t)
(Not profitable)

Plant 75

A small, automated hardware plant producing screws, mails, rivets, bolts, nuts etc.
Two-shift operation
$M_{t}(1)$: Drawn steel $(6,300 t)$
(Profitable)

Plait 76

A machine tool and special steel products plant
Two-shift operation
M_{1} (1): Special steel ($\mathbf{2 5 0}$ t)
(Not profitable)

Plant 77

A machine tool plant with an annual production about 1,450 units of woodworking tools
Has no foundry; castings are done by other indeoc dent foundries
(.).-hift operation
1): Sted, sheet metal
coritable)

- 8
hint producing materials-handling equipnent
forshift operation
H: (1): Rolled sted and castings (1,200 t)
(2): Timber
vor profitable)
nut ${ }^{-9}$
pritially automated, metal drum manufacturing plant
I wo-shift operation
$\mathrm{M}_{1}(1)$: Sheet metal (12,000 t)
(Protitable)

Mam 80

A sumi-mechanized, houschold gas stove plant; has no chamelling facilitics
Partial two-shift operation
$M_{1}(1)$: Sectional steel and sheet metal (8,000 t) (Profitable)

Mhat 81

A modem, fully mechanized plant producing transformers
Produces both small ($20-60 \mathrm{~kg}$ per unit) and large ($400-300,000 \mathrm{~kg}$ per unit) power transformers
lnvestment figure represents an initial phase of a multi-stage project and is thercfore about 20 per cont higher than the normal case
Iwo-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Copper goods and transformer shects $(10,500$ t $)$
(2): Wites and transformer oil $(\mathbf{6 , 0 0 0}$ t)
(Profitable)

Ilam 82

In automotive parts plant producing radiators, axles, gear wheds and various cast parts for cars
serial production possible but without assembly dine operation

Two-shift operation

$M_{t}(1)$: Steel sheet metal ($\mathbf{5 , 5 0 0} t$)
(2): Scrap iron $\quad(1,800 t)$

Highly profitable)
m 83
pecialized scrvice shop for passenger cars
Not profitable)
IIIt 84
car repair shop specializing in body work
One-shift operation
$M_{t}(1)$: Spare parts (94 t)
vot profitable)

Plati 85
A car repair and service shop
Onc-shift operation
$M_{1}(1)$ Spare parts (1 ox t)
(Prolitable)
Plant iso
A plant producing plastic articles
Two-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Thermosetting plastics (450 t)
(Profitable)

Plailt 87

A plant producing large plastic articles
Threc-shift operation
$\mathrm{M}_{\mathrm{t}}(1)$: Plastics ($\mathbf{8 6 0} \mathrm{t}$)
(Profitable)

Plam 88

A semi-industrial enterprise engaged in the installation of water supply, gas and central heating facilitios Two-shift operation (Not profitable)

Plant 89

A construction firm specializing in industrial buildings Sensonal operation on 1-2 shifts (Not profitable)

Plati 90
A small hydroelectric power plant
Turbine operations for 300 days a year (Not profitable)

Plait 91
A hydroelectric power plant with a storage basin of 37 million mn^{3} of water
(Not profitable)
Plame 92
A hydroelectric power plant with a storage basin of 540 million m^{3} of water
Continuous operation with 7,000 hours of peak-load operations
(Profitable)

Plami 93

A small steam power plant with threc generator units Continuous operation at various outpits of clectric power
$M_{1}(1):$ Coal $(125,000 t)$
(Not ;rofitable)

Plant 94

A medium-sized stcam power plant with one large generator
$\mathrm{M}_{\mathrm{t}}(1)$: $\left.\mathrm{Coal}, 285, \mathrm{MON} \mathrm{t}\right)$
(Profitable)

Plant 95
A thermal power plam with one gencrator
Operation for 5 , inn hours a year $\mathrm{M}_{\mathbf{1}}$ (1): Heary fucl oil (220, (MW)) (Highly protiable)

Plumin 96
A modern dhermal power plame with wo generators Operation for 5. (kn) hours a year M_{1} (1): Havy ficel oil (5tb, minot) (Highly profitable)
Platif 9 ?
An architectural design firm specialized in industrial building designs (Not profitable)

Plunt 98
A small laundry plant Two-shift operation (Not profitable)
Plaill 99
4 medium-sized laundry with its own boiler plant te, generate steam Two-shift operation (Profitable)
Platir 100
An industrial laundry plane serving hospitals, hotels and other institutional customers
Two-shift operation (Profitable)

[^0]: * This artiole is hased oft cwo hoh haround papers presented IO Itc Svupesimin ofe Maintonnte and Reptir in Devoloping Countrics lidel in Hilishorg. Federal Republic of Cicmany. in Nowember 1971: "(cotirat mantename and repair shops",
 Manuidethrers: and "Matitennoce mat repar in sthall-scole
 liminale, Okhlu. Now tilli

[^1]:
 tively. Val Ill of blis verics, contammy a collectam of dhea from a different group of wantrich, will be publinded sum

[^2]:

 kindly aptoed whe twe of hie peremol compendium hir this ariicle.

[^3]: " "ivermphnment" at labur is hil a vert surpring

 des thet ravil in .me thetille mprovement in the relative pexilions of thene problemath models.

[^4]: 4 Also, No. 42 (benzene plant) should be w isolated from Nos. 43-4t (petroletent retineries).

[^5]:

 limes as large wh the
 carms a 3.7 per wat of is products. Sminin:
 ally larger apmots.
 No. 72 (imegratci : \quad there wamples, the larger plans are ts

[^6]: - The Huhgarim comititpart was compersed of technical saff fron the sate Mamiay Combinte of the Proptes Republic of thugaria and a few stac modestial colcrprixs.

[^7]: United Nations. Ittomutional Stamiar:' Indistrial Classification of All Ecmounic Activities, St/STAT/SER. 7/4/Rev. 1/Add. 1.

[^8]: bomms.

[^9]: *onciWh.
 ' (f) mi.
 mont hours.
 "per hour.

