

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

Distribution: LIMITED

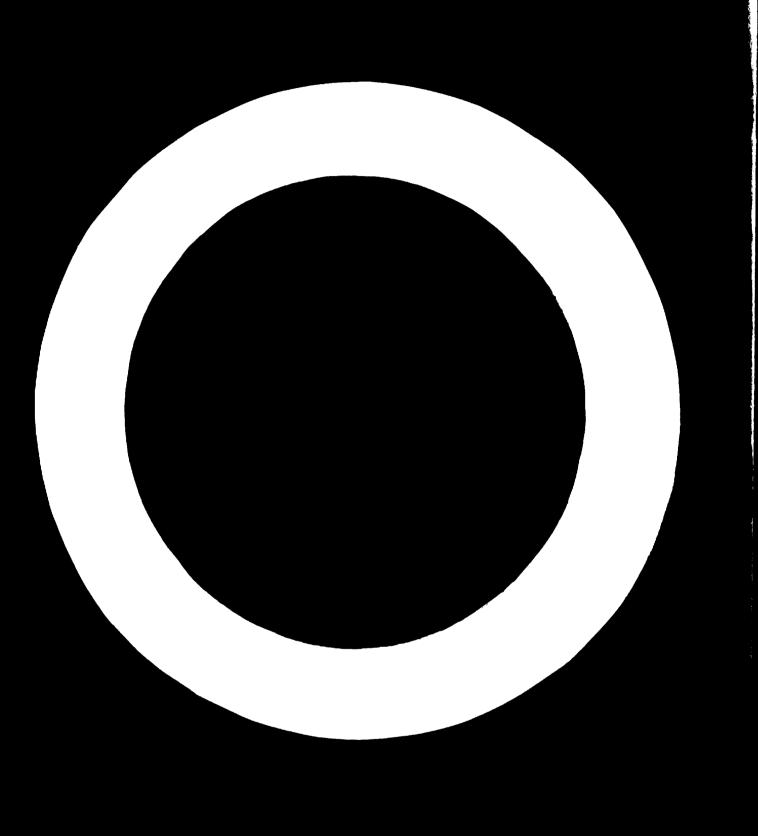
ID/WC.99/101 26 November 1971

Original: ENGLISH

United Nations Industrial Development Organization

Second Interregional Pertilizer Symposium Kiev, USSR, 21 September - 1 October 1971 New Delhi, India, 2 - 13 October 1971

Agenda item II/12


THE FERTILIZER INDUSTRY OF MEXICO

by

R. P. Peregrina Robles
Nexico

The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

INDEX.

- i. Historical Development of Industry.
- 11. Currect Development Problems of the Mexican Fertilizer Industry.
- III. Conclusions.

App endixes:

- 1.- Manufacturing Plants of Fertilizer in México.
- II. National Production of Fertilizers in México.
- III.-Imports of Fertilizers in México.
 - IV. Exports of Fertilizers by México.
- V. Apparent Consumption of Fertilizers in México.
- VI.-Cultivation Areas and Fertilizers Utilization.

1. HISTORICAL DEVELOPMENT OF INDUSTRY.

In the development of the Mexican Industry of Fertilizer we can distinguish 3 stages:

- The first (1943 to 1948) is characterized by the sole - intervention of the State, in a period in which the acquisition of technology did not pose many problems.
- The second (1958 to 1965), in which the intervention of the private initiative, together with capital and foreign technology is sought, being those the only means to acquire capital.
- The third stage (1965 to 1971) in which the process of - integration of the industry, under the state's direction is initiated.

Following we will analyze this process of development.

First Stage. In the year 1943 the State participation - - Corporation Guanos y Fertilizantes de México, S. A. is created, considered from the beginning as an industrial public service. By 1948 this corporation started the production of chemical - - synthetic fertilizers in Mexico, installing a plant of simple - superphosphate with capacity of 55,000 MTY. Concurrently, the - import and distribution of other chemical fertilizers, particularly nitrogen based, was started.

In 1951, an industrial complex consisting of: a plant of -

22,000 MTY of anhydrous ammonia one of 70,000 MTY of sulphuric acid, and another of 75,000 MTY of ammonium sulphate was installed; in 1953 these facilities were expanded with the installation of a simple superphosphate plant with a capacity of 120,000 MTY, and in 1958, with the installation of an additional capacity of 55,000 MTY of ammonium sulphate.

In spite of these efforts, the national supply was insufficient, especially due to the introduction of new products in the market such as ammonium nitrate, urea and complex fertilizers.

Second Stage. In 1958, according to the policy of substituting imports and to the criterium of achieving a competitive market, the creation of corporations with private capital, in particular foreign private capital, is allowed, in order to participate in supplying fertilizers considered as petrochemical by-products, leaving to the State, through its parastatal corporation, Petro-leos Mexicanos, the manufacturing of basic petrochemical products.

In this stage, the creation of four corporations is particu-larly important: Fertilizantes de Monclova, S. A., Fertilizantes
del Bajio, S. A., Fertilizantes del Istmo, S. A. and industrias Químicas de México, S. A.

The criterium of availability of raw materials, regardless of their profitability determined the location of these plants. Thus, we have that, at the same time, two plants with reduced capacity of anhydrous ammonia from natural gas were installed, and one of

anhydrous ammonia from coking gas, with costs that reached more - than the double obtained by using natural gas. These plants - - implied the establishment of two urea plants, 2 of ammonium nitrate, two of complex formulas, and two of ammonium sulphate.

In general terms it can be said that both, ammonia plants and those of final products, were at the lowest possible level of -- their capacity. Similarly, the manufacturing of intermediate products such as nitric acid, sulphuric acid and phosphoric acid was branched into various plants with reduced capacity.

This policy implied an excessive and unnecessary effort in -terms of investment, since the possibilities of obtaining scale economies were lost, situation which resulted in high production
costs and market prices.

The paradox of this situation is that, in spite of everything, the national needs for fertilizers were not met, since, during - this period imports kept on increasing.

It should be pointed out that some characteristics of the policy of fertilizing a developing country, such as technical incapacity, lack of knowledge about the market for its products and insufficient working capital, make the State's intervention indispensable, in order to guide in the selection and financing, and insome cases, to apply products which require a minimum of technical training. In this period, the responsability of providing technical assistance was conferred to the private corporations, which --

resulted in disloyal commercial practices towards the farmers, who had the consume products which didn't fill their needs.

It has already been said that the location of these plants - was determined by the availability of raw materials, which are - far from the main markets. Thus, four factors which made impossible the efficient supply for the Mexican agriculture are added (high prices, high freight, defficient distribution and technical advise).

in spite of the high price paid by the national agriculture - due to the insufficient supply, the national industry was not - - abie to consolidate a profitable operation, since capital costs - were exaggeratedly high when scale economies were lost. In addition, since these were corporations with very little experience - on this field, they were not able to counter balance the high capital costs with an efficient organization of labor and of the -- supply of raw materials. The disloyal competence among the same corporations further burdened their financial situation.

Third Stage. The previous stage can be summarized, as basically being a problem of lack of efficiency in the supply of fertilizers, which very specially affected agricultural exports and did not allow for the improvement of productivity of the tradictional agricultural sector.

This situation forced a change in policy, directed towards -the nationalization of production and of distribution of fertilizers.

As first step, the merging of private corporations with the State participation firm Guanos v Fertilizantes de México, S. A.was posed, centralizing the production and distribution of fertilizers on the latter, with the exception of the production of -ammonia which remained under the control of Petroleos Mexicanos,
but whose distribution is handled by the first corporation.

This merging process (1965 to 1967) is conceived within a consequential process of integration. It was decided that this merging process would be entrusted to a state corporation, since at that time the fact of taking advantage of the existing facilities to the extent possible and of eliminating those which were considered obsolete, resulted in less capital costs. Similarly, this merging allowed to eliminate duplicity in administrative costs.

Starting on 1967, the construction of a series of plants - - - oriented towards the integration of industry was initiated. These plants were.

Guadalajara, Jal.

Sulphuric Acid 150,000 MTY.

Ammonium Sulphate 120,000 MTY.

Simple-superphosphate 120,000 MTY.

Mixed fertilizers. 20 MTH.

Camargo, Chih.

Urea 75,000 MTY.

Minatitlån, Ver.

Urea. 247,500 MTY.

Cuautitlán, Méx.

Sulphuric Acid

198,000 MTY.

Cosoleacaque, Ver.

(Petróleos Mexicanos)

Ammon ia

330,000 MTY.

Coatzacoalcos, Ver.

(Fertilizantes Fosfatados Mexicanos).

Sulphuric Acid

1.089,000 MTY.

Phosphoric Acid (54%)

550,000 MTY.

Triple-Superphosphate.

250,000 MTY.

Appendix I shows which corporations produce fertilizers in - México, the products they manufacture, the year when they started their production as well as their capacity and technology.

These projects, of which a 90% are currently operating, can - be analyzed in two secondary groups: those oriented towards the - fulfillment of need of regional nature such as Guadalajara, Camar go and Cuautitlán; and those which, besides being oriented towards the whole of the national market, nave been designed and located to carry out large scale export operations, such as Minatitlán and Coatzacoalcos.

Appendixes II, III, IV and V show one of the results of the integration policy, as production increased at an accumulative rate of 16% and imports were reduced to insignificant levels, as com
pared to national consumption, with the exception of anhydrous -ammonia.

YEAR	NPK	PRODU	C T I O N Ammonia	Index
	(1)	MUEA	(2)	moex
1960	295,106	100	19,423	100
1965	695,140	235	175,187	902
1970	1.235,454	419	497,801	2.563
YEAR	A) DA	I M P	0 R T S	
	NPK (1)	Index	Ammori i a	Index
1960	116,422	100	(2) 68,452	100
1965	152,571	131	111,460	163
1970	25,805	22	74,245	108

YEAR	APPARENT N P K	CONSUMPTION INDEX
1960	(3) 17 3, 365	100
1965	347,282	200
1970	524,030	302

- (1) Tons of gross product excluding ammonia
- (2) Tons of gross product
- (3) Tons of nutrient including ammonia for direct application.

This production increase is accompanied by considerable - - increase in the productivity of human resources and capital, which coordinated with new distribution systems, in which exaggerated - intermediate costs have been eliminated to the extent possible, - have allowed substantial reductions in prices as one can see in - the following comparative table (Paasche Indexes).

Comparative Table of Price Indexes.

YEAR	NPK Fertilizers Price index	Price index received by Mexican Agriculture	(Base 1960 equal lindex ratio (1) (2)	ual to 100) Price indexes of investments received by agriculture.
1960	100.0	100.0	1.00	100.0
1961	104.7	109.2	0.95	100.6
1962	111.6	114.2	0.99	101.3
1963	94.8	119.5	0.78	108.4
1964	103.0	124.8	0.83	104.9
1965	103.8	124.2	0.84	108.0
1966	104.0	123.8	0.83	107.5
1967	96 .1	127.8	0.71	108.7
1968	93.4	129.3	0.66	108.2
1969	95.0	129.4 (1)	0.69	117.7 (1)
1970	85.8	139.6 (1)	0.62	119.2 (1)

(1) Preliminary.

A good part of this reduction in prices has been achieved due to the substantial improvements in the productiveness in fertilizers production on one hand, and on the other, due to the increasing cooperation among a series of official institutions such as:

State Fertilization Committees, financing institutions specificatly dedicated to agricultural credit, Agricultural Research Centers and institutions, and farmers unions and associations. This cooperation has allowed to cape with the three previously mentioned problems at market levels: effective technical assistance, financing

and distributing channels designed to prevent the raise in prices due to unjustified profits at the retail ends.

We consider that this task is still beginning, but, neverthe less, it is producing good results and it is one of the main concerns of the federal Government.

11. CURRENT DEVELOPMENT PROBLEMS OF THE MEXICAN FERTILIZER INDUSTRY.

Considering consumption trends and taking as reference point the evaluation of the fertilizing possibilities with which it is economically feasible (apendix VI) we have set ourselves the following objetive: fertilize during the present decade, an equivalent to the whole of the surface cultivated under irrigation, and a -- fourth of the seasonal soil which, by 1980, can reach 8.4 million hectares.

Presently, the surface potentially susceptible to fertilization reaches 5 million hectares, of which, around 4 million hectares are fertilized at very reduced application levels (131 Kg. of nutrient per fertilized hectare), but which are equivalent to 34.9 Kg. of nutrient per hectare of the total cultivated surface in -- 1970.

At present levels of fertilization, this implies a demand for 1.100,000 TM of nutrients for 1980. If this same rate of growth in the consumption per hectare continues, the demand level mentioned for 1980, would appear towards 1977. In this way, besides the fact that we are being seriously pressed on to increase pre--

sent export levels, the Mexican industry would be forced to supply around 1.400,000 MTY of nutrients.

We know that in order to reach these objectives we have to face two serious problems: the first, being of internal nature, implies carrying out completly the integration of the industry in
order to achieve an optimum utilization of the comparative advantages available to our country in terms of natural resources. The
second problem, being of external nature, comes from the difficult
conditions of an international market in which disloyal commercial
practices are common, as well as of a market with highly monopo-lized technology by the developed countries.

The lack financial resources has prevented us from forming a research program regarding the development of new natural resources, as well as the development of adequate technologies for our supply of resources. Nevertheless, and in spite of the great 11 mitation of resources, the corporation Guanos y Fertilizantes de México, S. A., together with the University of Guanajuato, have developed a process to benefit alunite ores (K2 SO4 AL2 (SO4)3 4 Al (OH)3) by means of a process by which, on one hand, a fert1 lizing mixture of potassium sulphate and ammonium sulphate - - - (15-0-17) is obtained together with aluminum sulphate on the other hand, for Mexico this process implies the development of a source of potassium of its own, mineral which currently is being imported. In addition, the above mentioned corporation has completed a process to produce urea with low contents of biuret, and that, just as the process of alunite, is being tried at a pilot plant.

It is evident that, at any level, be it internal or external, the main limiting factor for the development of the fertilizer in dustry is the lack of capital, and very particularly, in the form of technology, whose high cost in many cases prevents the production of fertilizers with direct procedures, or with new processes in which fertilizers are obtained as co-products in the manufacturing of artificial fibers and/or explosives, procedures in which a substantial economy could be expected in relation to capital -- costs per unit of product.

in México, as in many other developing countries, construction and erection costs for fertilizers' plants can be a 30% higher than in other developed countries, in addition to technology costes. —— All this aggravates the lack of capital situation, which we consider to be insurmountable for the current decade, since as it has been seen, our need of nutrients for agriculture is increasing at a very high rate.

iii. CONCLUSIONS.

The determination of the ineffectiveness of the policy of substitution of imports is not new when it is judged in terms of its - impact on the weifare of economy as a whole. The case of the fertilizer industry in México is one of the many examples which are so numerous in underdeveloped countries. Nevertheless, in spite of all, it has been the only way which, for the last 30 years, has been open to our countries.

In the long run, and considering the effects of this policy only on the fertilizer industry, the most transcendent effect has

been the inheritance of a series of plants, inefficient in scale, and which have represented a capital cost much higher that what is consider necessary. The role of the State in the solution of these problems has been definitive, making us determine the need of an economical policy in accordance with the objectives that the community has set. Planning is one of these elements of economical policy which are being used, and we except better results from its application.

Nevertheless, our efforts can be counteracted by the adverse commercial policies of the developed countries in relation to -- technology, capital, and market for final products.

" Monsanto "

Amp. 1958

APPENDIX I

Caanos y Fertilizantes de México, S.A.

				-16-					
Technology	" Chemico Construction Corp."	Lonza Lemnus	Toyo Eoatsu	" Monsanto "	" Dorr Oliver"	Chemico Construction Corp.	" Dorr Oliver "	"Chemico Construction Corp."	" Chemico Construction Corp."
Start up	1969	1963 4mp. 1969	1968	19 62 1968	1965	1966	1971	1951	Orig. 1951
Capacity MT 'yr	000,09	Orig. 56,000 Act. 75,000	75,000	Orig. 50,000 Act. 65,000	17,00	50,000 81,000	75,000	22,000	130,000
Product	Amrnonium sulphate	Urea	Urea	Salphuric acid	Phosphoric acid (P_2O_5)	Ammonium sulphate	Diammonium phosphate	Anhydrous ammonia	Sulphuric acid
Location	Eajío		Camargo	Coatzacoalcos				Cuautitlán	

	Anımonium sulphate	150,000	Orig.1951 Amp. 1966	" Chemico Construction Corp."	
	Simple super- phosphate	120,000	1953	Mexican technology	
	Bulk blending	000*09	1961	Mexican	
Ecatepec	Sulphuric acid	35,000	1957	"Lurgi"	
			1964	' Monsanto ''	
	Simple super- phosphate	25,000	1965	Mexican	
	Bulk blending	40,000	1965	Mexican	
Guadalajara	Sulphuric acid	150,000	1968	Monsanto T	-17-
	Ammonium sulphate	120,000	1068	Struther Wells	
	Simple super- phosphate	120,000	1968	" Saint Gobian "	
	Bulk blending		Former plant 1950 New plant 1968	Mexican	
Ainatitlán	Sulphuric acid	110,000	Orig. 1962 Amp. 1966	" Moneanto	
	Nitric acid	109,000	Orig. 1961 Amp. 1966	" Dupont"	

	Phosphoric acid (P ₂ O ₅)	41,000	Orig. 1962 Amp. 1966	1962	" Dorr Oliver "
	Ammonium	110,000	Orig. Amp.	1961 1966	" Prilling "
	Ures	55,000		1962	" Toyo Koatsu"
	Urea	247,500		1971	" Snam Progetti "
	Complex fertilizers	140,000	Orig. Amp.	19 62 1966	· PEC ··
Monclova	Anhydrous ammonia(dis- mantled)	32,000		1961	Societe Chemique de la Grande Paroise y Societé L'Air Liqui- de.
	Nitric soid	55,000		1959	Societe Belge de L'Azote
	Phosphoric acid (P_2O_5)	18,000		1965	" Pechiney-Saint Gobian "
	Ammonium nitrate	68,000	•	1959	" Saint-Gobian "
	Complex	38,000		1963	" The A.J. Sackett
San Luis Potosf	Simple super- phosphate	55,000		1947	Mexican

_	1	هـ
_	•	_

	Bulk blending	5,000	1950	Mexican
Torreón	Ammonium sulphate	100,000	1966	"Chemico Construction
Fertilizantes Fosfatados Mexicanos	tados Mexicanos			
Coatzacoalcos	Sulphuric acid	1,089,000	1969	"Wellman Lord"
	Phosphoric acid (54% P ₂ O ₅)	550,000	1969	" Prayon "
	Triple super- phosphate	250,000	1969	" Dorr Oliver "
Petróleos Mexicanos	81			
Camargo	Ammonia	132,000	1961	" Chemico "
Cosolescaque	Ammonia	000*99	1965	Tumus
Cosolescaque	Ammonia	330,000	1968	" Lemus "
Salamanca	Ammonta	90,750	1962	'. Lemus '
Industrias Químicas de México, S.A.	de México, S.A.			
Guadalajara	Ammonium sulphste	30,000	1961	Process with own technology
	Ammo aium eu lpha te	30,000	1958	Process with own technology

Cogue	
priceme de	
anta Me	
Comp	

Ammonium sulphate

• 000

Obtained as by- product

Obtained as by-product

Nueva Roeita

Ammolum sulphate

۴,000

NATIONAL PRODUCTION OF FERTILIZERS IN MEXICO (Metric Tons of gross Product)

APPENDIX II

YEAR	AMMONDUM SULPHATE	CREA	AMMONIUM NITRATE	SIMPLESUPER- PHOSPHATE	Triplesuper- Phosphate	COMPLEX	AMMONIA
1950	2,642			11.428			
1951	33,753			18.481			
1952	37.3			46, 255			16.36
1953	66,210			63.483			171 '67
1954	63,242			61.133			15, (6)
1955	70,232			74.47			17.460
1956	87.700			77.138			70. 20.
1957	49,287						617.07
1050	725 111						21,058
1969	143 641			680.07			21,428
1647	760.047		10.70	44.514			21,594
000	1 47 . 186		53, 825	94.095			19, 123
1961	152,519		52,335	110,694			38.072
1962	157,260	17	3.076	117,044	15.166	5. 322	100.020
1963	159,031	38,938	122,733	124,355	45,369	60, 424	150,527
1961	166,954	81,748	127,278	136,969	40. 423	81,953	175,950
1965	180	122,30	94,319	145,189	33,857	120.074	175,187
1966	29,930	104,077	146,788	170,611	47.809	129,505	194,372
1967	41,224	96,369	162,707	176,376	44,572	140,521	181,843
1968	785	118,355	•	204,459	51,307	141,325	215,836
201	5.63	161,503	160,032	237, 108	175,371	165,431	418.778
1970	387,996	158,578	127,655	174,877	198,588	165,760	497,801

-21-

APPARENT CONSUMPTION OF FERTILIZERS IN MEXICO.

(METRIC TONS OF MUTRIENT) .

INCREMENT	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
POTASS IUM K20	22 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
INCAEMENT	
PHOS PHORUS	23.02.22.23.23.23.23.23.23.23.23.23.23.23.23
INCREMENT	
M TROCEM	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
YEAR	20000000000000000000000000000000000000

EXPORTS OF FERTILIZERS BY HEXICO.

(METRIC TONS OF GROSS PRODUCT) .

COMPLEX	15.667 2.250 2.405 1.910 5.681
TRIPLE SUPER- PHOSPMATE	150 59.585 145,692
APPENIUM NITRATE	15.58 88 4
73 87	20.5. 20.5.
ALPHON I UM SUL PHATE	% % %
YEAR	3222323232

IMPORTS OF FERTILIZERS IN MEXICO.

(METRIC TONS OF GAOSS PRODUCT).

ANHYDROUS	663	868	• •	တ် တ	`- `(ထ် -	ťω	من		52,	۷, ۵	0	. i
COMPLEX	79	15	~œ	96.	5,7	6,37 2,48	8	5,62	8. 8.	8. 47 6. 84			15,001	•
TRIPLE SUPER PHOSPHATE											m	14,184	0 1	•
AMMONIUM NITRATE	7,465	7,832	10.904	25,583	T CO	4	. W	12,085	9,628	30,346	27,327	4,261	000	2,000
UREA	1.0	2	334 69-	3,24	6,46	OD O	2,62	5,45	5:77	5,92	5.79	6,35	30	9
AMMONIUM SULPHATE	80		5,913	187	33	1.0	デン	4,24	89.9	.57	3. FB	6, 19	4 4 4	
YEAR	LA	\sim	1953	100	ろら	S	2	SO SO	9	9 4	Q	٠ ٠	ው ‹‹	~

CULTIVATION AMEAS AND FEITH IZERS UTILIZATION.

MGION	CULTIVABLE SURFACE	MEIGATION	TEMPORAL AREA.	FERTILIZABLE AREA.	FERTILIZED	THEOR	THEORETICAL CAPACITY (TONS, OF NUTRIENT).	SACITY (ENT).	
	ž.	¥.	HAS.	HAS.	HAS.	z	205	420 820	
NORTHWEST	1,552,209	1,343,909	208,300	1,454,309	1,067,510	163,108	35,421	3,132	
NO N	1,245,465	850,116	375,339	1,023,456	412,100	100,098	47,504	8,290	
WEST	1,861,389	122,776	1,688,613	1,167,738	161,191	155,724	\$4,501	6,110	
CENTER	2,342,990	319,706	2,043,182	1,783,411	403,419	199,45	112,189	49,100	
NA O	4,062,892	545,547	3,497,345	1,572,440	652,992	204, 168	123,184	48,025	-25-
SOUTH	3,414,675	100,30	3,314,286	2,330,609	250,017	236, 289	166,911	92,163	•
TOTAL:	14,529,610	3,422,445	11,127,065	9,331,983	3,600,229	1,058,843	549,710 206,820	206,820	

⁽¹⁾ In function of the cultivation area and medium treatments by unit.

CULTIVATION AREAS AND FERTILIZERS UTILIZATION.

								.1				
NO SECOND	- E	REAL CAPACITY (Tons. of nutrient)	ACITY Strient)		SALES 1970 (Tons. of nutrient)	1970 whient)	8 2	QUANTITY IN KG/HA.	Z	G/HA.		
	z	\$5	K 20	Z	& S	× 20	IRRIG. TEMP.	₹.	IRRIG.	F205 IRRIG.TEMP.	IR K	K20 IRRIG. TE MP.
NORTHWEST	140,323	30,910	2,635	157,479	14,397	17.6	131		∞		•	
							(111)		2	~	Û	~
NORTH	72,969	33,158	5,153	58,523	18,395	1,201	8		33		-	1.6
							(300) (300)		(53)	_	(E)	<u> </u>
WEST	104,30	41,836	4,236	51,577	22,269	2,111	K	\$	೫	6	2.7	1.7
							(104) (8	68	(53)	(31)	$\widehat{\mathbf{Z}}$	-20 E
CELTER	128,594	71,843	30,890	45,445	26,319	5,213	&		62		0	
							8) (EOU)	(3)	<u>8</u>	\$	(36)	(20)
S S S	74,071		42,605 16,624	648'29	27,454	4,334	£ £	47	æ	ឧ	•	'n
							(109) (60)		(53)	(38)	(22)	(15)
зоитн	133,095	133,095 92,095	53,065	24,386	12,551	8,805	8		39			
٠							(23)		(52)		(62)	•
TOTAL:	653,953	653,953 311,907 112,603	112,603	405,311	121,385 22,635	22,635						

⁽²⁾ Conditioned by the socioeconomic factors and present fisic and technical conditions.

⁽³⁾ Quantities in parenthesis indicate incommended quantities and without it, real quantities in 1970.

The agricultural research in Mexico was the most important factor in the development of the fertiliser industry. In fact since the first results of the recommended fert lizer were known he use and production of fertilizer increased very rapidly, as important responses were obtained in crop yields, i.e. corn, wheat, cotton, sugar cane and others.

To illustrate it the data is presented as follows:

nicon in real quantities in 1970

Year	<u> </u>	46	_P ₂ 0 ₅ _		<u>K₂0</u>	
1950	8,511	100	2,380	100	•	-
1960	132,421	1,555	34,214	1,441	6,730	400
1970	391,014	4,594	112,805	4,715	20,211	1,326

A presentation in graphs is made of the average responses of crops in Mexico, for the application of N, P_2O_5 and K_2O at three different levels. It is shown that 70 per cent of soils in which N is applied at more than 35 kg. per hectare show increases in yield, whereas yield increases were shown in only 50 per cent of the soils to which P_2O_5 was applied and only 4 per cent in the case of K_2O_5 .

Actually about 50 per cent of the agricultural area under irrigation or in good moisture condition is fertilised at a lower rate than 35 kg. N per hectare.

It is expected that for 1980, in order to cover most of the areas with fertilizers a requirement of 1,058,843 metric tons of N; 559,710 tons of P_2O_5 and about 25,000 tons of K_2O will be needed.

One of the main problems in the use of fertilizers was due to the fact that the Agricultural Extension Service has been too small to cover adequately the large agricultural areas of the Mexican country. Therefore not all the farmers had knowledge of the benefits and profits of the fertilizer use, time and ways of application, etc. Fortunately, the recent reorganization of this service will cover in the future the deficiencies mentioned above.

74. 0. 4