

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

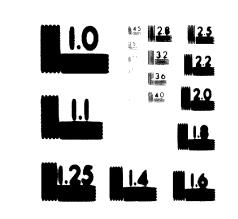
TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

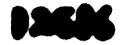

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2) 24 ×


HUMPHREY'S & GLASGOW LIMITED

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANISATION

(1, 1, 2, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 3, 3)

PRE-JEYR COMPT BRIDIER FOR THE PROMOTION OF PERIVILIENE AND

PERSOCREMITCAL INTERPORTER IN PARTEMAN

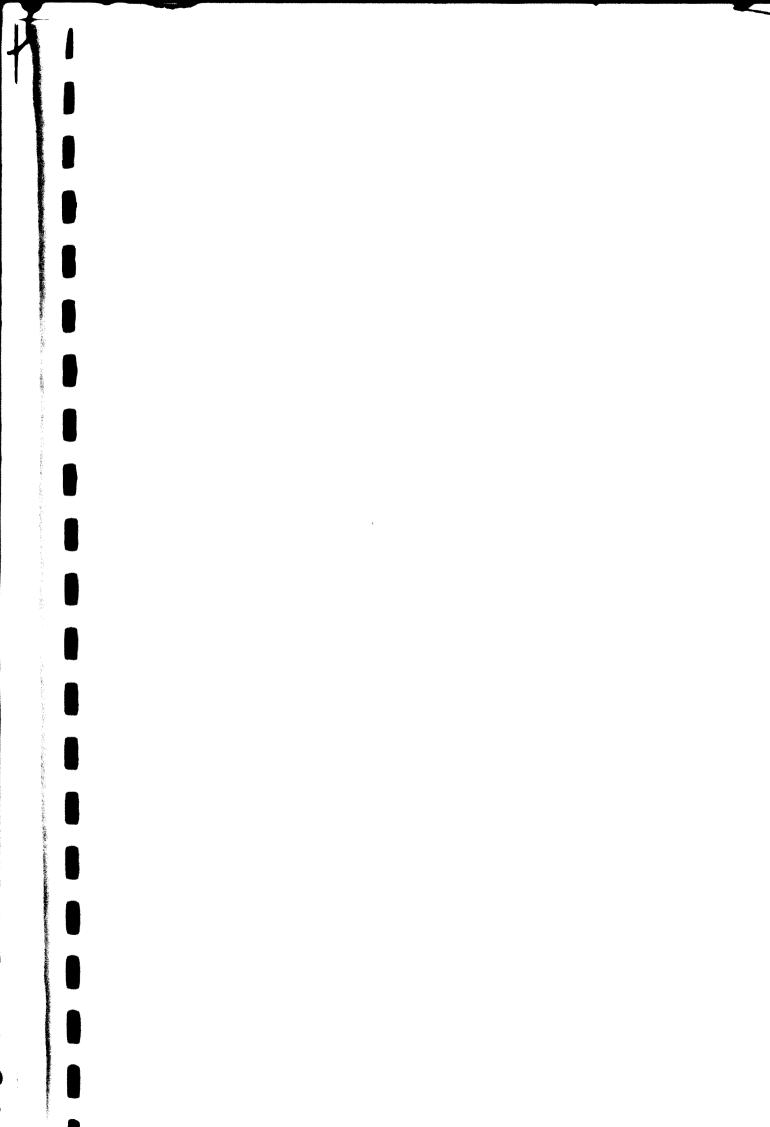
••••

for

THEY HAR TARE THE BURGAL MERICANIER OF AN ENAVIOR

HOLING IY

THE THEFT IS ANTON OF THE PROPERTY OF THE PROPERTY AND


HE THE PLANT AT CELTINGON IT DART PARTING

July (1970.

U.K.I.D.O., Poléorheus, Natheusplate 2, A-1010 VIENNA, AUSTRIA.

.....

Bunghreys & Glangow Ltd., 22, Carlisle Place, London, S.W.1. U.K.

			Volume IV Contents 1
UNIDO ' for Pa		Pre-Investment Studies for Fertiliser & Petrochemical Industries - Final Report	C.1 669 Jul y 197 0
		VOLUNE IV	
		THE UTILISATION OF BY-PRODUCT GYPSUM FROM TEP PLANTS AT CHITTAGONG IN EAST PAKISTAN CONTENTS	
Sectio	<u>n</u>		Page No.
	Summ	ary of Report	
Sectio	n l Intr	oduction and Acknowledgements	1.1 to 1.3
Sectio	n 2 Exis	ting T.S.P. Complex	
	2.1	Location of Plant	2.1
	2,2	Rew Materials	2.1
	2.3	Existing Plant and Facilities	
		2.3.1 General	2.1
		2.3.2 Gypsum Disposal Area	2.2
		2.3.3 Water	2,2
		2.3.4 Electrical Power	2.3
	2.4	Coment Factory	2.3
Sectio	n 3 Anel	ysis of Process Status	
	3.1	Licensors	3.1
	3.2	Process Experience	3.1 & 3.2
	3.3	General Experience	3.2
	3.4	Commont Quality	3.3 4 3.4

NIDO Vienna For Pakistan <u>Section</u> Section 4	Techr 4 1 4.2	Pre-Investment Studies for Fertiliser & Petrochemical Industries - Final Report	C.1669 July 1970
	4.1	-	Page Io
	4.1	-	Page Io
Section 4	4.1	-	
	•		
	4.2	General	4.1
		Process Description	4.1 & 4. 2
	4.3	Equipment Layout	4.2 4.3
	4.4	Effect of Power Failure	4 4
	4.5	Consumption of Feedstocks & Utilities	4.3 & 4.4
	4.6	Availability of Raw Naterials	4.4 to 4.6
	4.7	Project Construction Programme	4.6 æ 4.9
		Flow Diagram IV 4 1	47
		Flow Diagram IV 4.2	4.8
Section 5	Boond	maic Analysis of Project	
	5-1	General	5.1
	5.2	Capital Cost	5.1 to 5.3
	5.3	Unit Costs	5 3 to 5.5
		Table IV 5.1	5.4
		Table IV 5 2	5.5
		Table IV 5.3	5.5
	5 - 4	Impact of Project on Pakistan Beonomy	5.6
		Table IV 5.4	5 7
	5.5	Return to E.P. I.D.C.	5.6
		Table IV 5.5	5. 8
	5.6	Potential use of natural gas	5.9
	5 .7	Discussion	5.9 4 5.10
Section 6		Conclusions	
	6.1	Schene Recomended	6.1
	6.2	Technical Visbility	6,1
	6.3	Boonomic Viability	6.1
	6:4	General	6.1
Appendix I		Bi blio graphy	1 10 5

ł

Volume IV Summery

HUNDHANKS & GLAGGOW LTD.

UNIDO Vienna	Pre-Investment Studies f	or	Fertiliser	C.1669
for Pakistan	& Petrochemical Industries	-	Final Report	July 1970
			and the state of the second	

VOLUME IV

THE UTILIBATION OF BY-PRODUCT OYPSUM FROM THE PLANTS AT CHINTAGONG IN EAST PARTYAN

Summery of Report

The E.P.I.D.C. site at Chittagong, when completed, will comprise two streams for the production of TSP,via sulphuric and phosphoric acid,from aulphur and phosphate rock. The by-product gypsum has no sale as plasterboard, nor may it be converted to ammonium sulphate at Chittagong. As the disposal srea is very limited in size, the only alternative, if no other use can be found for the gypsum, is to transport it from the site, to be dumped, either at sea by barge, or on waste land.

A comment grinding and blending plant is in the final stages of construction, very near to the TSP site, to operate using imported comment clinker. Considerstion has therefore been given to the conversion of the gypsum to sulphuric acid and comment clinker using the Müller-Kühne process.

The two licensors for the process were contacted and gave adequate cost and operation data for a study to be prepared and costed. Hitachi-Zosen, who are currently constructing the sulphuric acid plant for the second TSP plant have prepared technical and cost data for their plant to convert gas from the Müller-Kühne process in sufficient quantity to produce 475 MTPD sulphuric acid (as 100% H₂SO₄).

Process flow diagrams and a layout have been prepared for the scheme. Cost comparisons have been made for the project considering it both as part of the overall Pakistan economy, and as part of E.P.I.D.C.'s investment programme. In the former case, s shadow rate of exchange, and in the latter, a return on investment have been calculated and presented for a higher and a lower sulphur price.

It is concluded that the scheme is technically viable. Economic viability is related to the forecasts of sulphur price during the life of the plant. The project would result in a reduction of the net outflow of foreign exchange even at the lowest assumed sulphur price (\$40/MT). The Rupse expenditure required to achieve this saving may, however, be considered excessive. A significant improvement in the economic position of the project would result if means could be found for achieving a reduction in the capital cost of the project, or if more of the required equipment could be produced in Pakistan.

		Volume IV 1.1
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
for Pakistan	& Petrechemical Industries - Final Report	July 1970

VOLUME IV

THE DESIGNATION OF BY-FROMING OVERLA FROM THE

T TOT TOT

1.1 Introduction

The present TSP complex of East Pakistan Industrial Development Obspection (E.P.I.D.C.) at Chittagong produces, as an end-product, Triple Super Phosphate (TSP) from imported sulphur and imported phosphate rock. There are two complete TSP units of capacities:

Plant I - 32,000 MTPA TSP

Plant II - 120,000 MTPA TSP

Then TSP unit includes Sulphuric Acid, Phespheric acid and TSP plante, tegether with associated off-site facilities.

One sulphuric acid plant of 100 MTPD capacity is currently operating, and a further plant of 400 MTPD capacity for the second TSP plant is under construction, and should be commissioned in mid 1971.

Two phosphoric acid plants will eventually be in operation, these are:

- (i) Buivalent to 10,670 MTPA P₂O₅, using the Derr-Oliver Single Tank Precess. (33,345 MTPA H₂SO₄).
- (ii) Equivalent to 40,000 MTPA P₂O₂, using the Missen hemi-hydrate/ di-hydrate process. (118,480 MTPA H₂SO₄).

The total sulphuric acid requirements are therefore 152,000 MTPA. On an annual operating life of 320 days, this amounts to 475 MTPD H_2SO_4 (as 100%).

As a hyproduct, gypeum is produced by the phesphoric acid plants. This may be discarded as a waste either out to sea, which will be costly, or merely dumped on one eide of the plant area. The latter will, of course, require a large amount of ground in an area where land is at a premium. The area at present allocated on the plant site for this purpose if tetally indequate on a long term basis.

•••		66W (T),	Volume IV 1.2
•	UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
	for Pakistan	& Petrochemical Industries - Final Report	July 1970

1.1 Introduction - continued

The objective of the study, therefore, is to determine how the by-product gypsum may best be used. It is clear that a decision will then have to be taken either to implement a scheme such as that proposed in this study, or to make alternative provision for disposal of the gypsum being produced continuously from the TSP fertilizer plant operations. As the rate of production of gypsum from both plants when at full capacity is approximately 850 tons per day the problem of disposal becomes quite serious.

Useful products from this gypsum are limited to about three:

(a) Production of Plasterboard

There is no sale at all in Tast Pakistan for this material.

(b) Production of Ammonium Sulphate Fertiliser

This is carried out by double decomposition of CaSO, and $(NH_4)_2$ CO₃ solution. The latter is produced by reaction of gaseous annonia and CO₂ gas in a packed tower. It requires an on-site annonia plant for the CO₂. Since this is not present at Chittagong, this will not be considered.

(c) Production of Sulphuric Acid and Cement Clinker

The third alternative is to make an SO_2 containing gas stream and Portland Cement Clinker using the well known Muller-Kuhne process. In this process, the gypsum is roasted with additives in a rotary kiln. The off-gas containing SO_2 is cleaned, the required oxygen is added as air, the mixed gas is then dried and passed to the existing sulphuric acid plant. The solid residue is unground Portland cement clinker, which will be passed to a cement grinding and blending plant.

The third of the alternatives is ideally suited for Chittagong. A coment grinding and blending plant is currently being constructed some 600 metres distant from the existing TSP plants. The existing sulphuric acid plant for TSP II may be modified at a cost of approximately Rs 4,310,000 to produce the full quantity of H_2SO_4 from the clean dry kiln gas. The plant would show large savings in foreign exchange in that sulphur and coment clinker imports would be markedly reduced.

Since the overall efficiency of the sulphur cycle is only about 90%, a proportion of the sulphuric acid would still have to be made from sulphur. This may be achieved by burning sulphur in the kiln along with oil (or gas.)

It is proposed that the sulphuric acid plant for TSP I (100 MTPD H_2SO_4) be left unmodified, and that the new plant be sized at 475 MTPD H_2SO_4 , thus satisfying the demand for H_2SO_4 on the site. In this way a standby or immediate increase in capacity of 100 MTPD H_2SO_4 is available.

,			Volume IV 1.3
	UNIDO Vienna	Pre-Investment Studies for Pertiliger	C.1669
	for Pakistan	& Petrochemical Industries - Final Report	July 1970

1.2 Acknowledgements

- And

ſ

ſ

ſ

ſ

[

F

Humphreys and Glasgew Limited wish to express their appreciation of the help and information given to them in their work on the project by:

The Government Project Representative in Rawalpindi; the U.N.I.D.O. Project Manager and Co-Project Manager, and U.N.I.D.O. Experts:

The Directors and Senior Recutive (Planning) of W.P.I.D.C. head office Dacoa, Inst Pakistan. The Manager, Head of Production and senior staff of the TSP Factory at Chittageng. The Manager of E.P.I.D.C. Branch Office in Chittageng, also the Deputy Director General of the Geological Survey of Pakistan - Instern Division, Dacoa.

) Vienna	Pre-Investment Studies for Fertiliser	C.1669
Akistan	& Petrochemical Industries - Final Report	July 1970

STOTICE 2

LINTING THE COMPLEX

2.1 Location of Plant

The plant is located at Chittagong, East Pakistan, in the Patenga Industrial Estate area.

It is connected to the railway network of Pakistan Instern Railways and has its own jetty in Chittagong Port, adjacent to the plant, for the handling of raw materials and finished products.

The TSP complex is situated adjacent to other E.P.I.D.C. projects i.e. grain siles and steel mill. A cement grinding and blending plant is under construction approximately 600 metres from the TSP complex (see paragraph 2.4).

Pakistan Eastern Refinery is also located nearby.

2.2 Rev Materials

Sulphur and rock phosphate are the main raw materials for the TSP plants. Sulphur is imported by the Trading Corporation of Pakistan normally under cash-cum-bonus scheme, but sometimes under leans from various countries. Nock phosphate is imported from Jordan, although the plant design was based on the use of Norocco rock.

2.3 Misting Plant and Pacilities

2.3.1 <u>General</u>

TSP plant number I was completed in 1969, has operated for three or four weeks, but has had to shut down due to corresion troubles in the phosphoric acid section of the plant.

A small quantity of sulphuric soid is, however, being made (1000 tens at a time, this being the capacity of the storage tank) and sold to the storel mill and to private industry - e.g. tenneries.

TSP plant number I is expected to be back on stream later this year as seen as the requisitioned replacement parts are available.

TSP plant number II is at present under construction and is expected to be commissioned by mid 1971.

		Velume IV 2.2	
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669	
for Pakistan	& Petrochemical Industries - Final Report	July 1970	

2.3.2 Orpaum Dispesal Area

A gypeum disposal area of about $46,600 \text{ m}^2$ (11.5 acres) is available on the present site. This is large enough to accommodate the by-product gypeum from TSP plants I and II at full output (at 2m depth) for about 150 days only. This area is shown on plot plan drawing number 1669-151-1.

A spot analysis of the by-product gypsum from the TSP I plant goves

No data for fluorine.

This analysis is <u>not</u> representative eince the product has been washed by several rainfalls. (The rock was Jordan rock - $34.6\% P_2O_5$, 3.93 % F, 0.06% Cl).

2.3.3 Mater - (Tubevella)

At present, 8 tubewells are installed, of which two give saline water and are thus unusable. Wells at Chittageng are normally 350-400 ft. depth, and a single well can be expected to give 30,000 igph.

The capacity of the tube wells will now all be used when the two TSP plants are both in operation, but two more may be installed. After that a limit is reached on the river frontage.

hter - (River)

River water may be taken from the Karnephuli river during low water eince it is saline during high water periods. Mence settling and storage facilities are required.

	1000W LTD.	Volume IV 2.3	
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669	
for Pakistan	& Petrochemical Industries - Final Report	July 1970	

2.3.4 <u>Rectrical Power</u>

Power for the complex is provided by E.P.W.A.P.D.A. (Inst Pakistan Nater and Power Development Authority) but at present the supply is very unreliable - 3 or 4 breakdowns per day are not uncommon. It is understood that this is due largely to overloaded transmission lines. Plans are being considered, at long term, to install power generation equipment for the entire E.P.I.D.C. complex (including the TSP complex) E.P.W.A.P.D.A. will not permit installation of private power supply since they have considerable excess capacity. However, they are installing further loop lines to ensure reliability of supply.

An emergency power supply of 900 kith is being installed to deal with essential power requirements for the TSP plants i.e. for moving the digestors.

2.4 Cement Protory

Adjacent to the TSP factory site, E.P.I.D.C. are at present constructing a cement grinding and blending plant to produce cement for use in Test Pakistan.

The plant will ultimately be able to produce 300,000 tons per year of cement, but at the first stage will only be capable of producing half this capacity.

Cement clinker will initially be imported, but the plant is conveniently situated to take cement clinker from the cement clinker/sulphuric acid plant described in this study.

The cement plant has its own wharf up-stream of the TSP plant wharf, and is capable of taking vessels of up to about 10,000 tons.

The plant will have three storage siles, each of 5,000 tens capacity for cement clinker and three siles of the same size for cement product.

The first shipments of coment clinker to the new plant are expected in December 1970.

-		cow LTD.	Volume IV 3.1
	UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
	for Pakistan	& Petrochemical Industries - Final Report	July 1970

SECTION 3

ANALYSIS OF PROCESS STATUS

3.1 Licensors

Four manufacturing companies license know-how for their processes using byproduct gypsum.

These are:-

a) Osterreichische Stickstoffwerke, (0.S.W.) of Linz-Austria

0.S.W. license through four contractors:

M.W. Kellog Company, New York. Fried, Krupp GmbH Chemicanlagenbau, Essen. Vereinigte Osterreichische Eisen und Stahlwerke A.G. Linz Engineering and Industrial Corporation, S.A. Luxembourg.

b) V.E.B. Chemiewerk Coswig D.D.R.

The process is licensed through Simon Carves Chemical Engineering Limited.

c) Marchon Division, Albright & Wilson Ltd. (U.K.)

The process is licensed through the Power-Gas Corporation.

d) Polimex - Poland

N.B. The data used in this report have been supplied by O.S.W. and Coswig.

3.2 Process Experience (OSW & Coswig)

a) <u>0.3.W</u>.

The company has a cement/sulphuric acid plant at Linz in Austria. They have one kiln of approx 200 MTPD H_2SO_{\parallel} capacity, which was constructed in 1953 to produce sulphuric acid and cement from mixed anhydrite. O.S.W. have a phosphoric acid plant on the same site, so a mixture of anhydrite and byproduct gypsum is normally used.

Experimental work on byproduct gypsum is limited to runs of 7-10 days by the lack of feedstock, the phospheric acid capacity being inadequate to produce sufficient gypsum to satisfy the sulphuric acid need. A number of these tests have been carried out, and to date some 40,000 MT of byproduct gypsum have been processed.

Fried. Krupp have been awarded a contract in South Africa for a plant of 1000 short tons/day H_2SO4 from byproduct gypsum from Phalaborwa rock. This plant is in two stages, the first being 350 tons/day. A full seale test at Linz was successfully carried out on byproduct gypsum shipped from the South African site.

Velume IV 3.2

HUMPHREYS & GLASGOW LTD.

UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
for Pakistan	& Petrochemical Industries - Final Report	July 1970

3.2 Process Experience - continued

b) Convig D.D.R.

Obswig have four kilns with a total capacity of 800 MTPD H_SO_, built in 1938, and a further four kilns built in 1955 of 680 MTPD H_SO_ total. All kilns operate on mixed anhydrite. During the period March 1966 to December 1968, five full-scale experiments were carried out using byproduct gypsum in place of the natural anhydrite. As with 0.S.W., limitations of supply of the byproduct gypsum eventually terminated the individual test runs, but Coswig were satisfied with the experience gained during these runs. The cement quality improved after each run. (Data on the cement produced is given in Section 3.4).

3.3 General Experience

Both licensors have devoted much time and effort to minimising the effects of impurities, particularly P_2O_5 and F, on cement quality and the process. The effects of these are as follows:

P205

This will stabilize the dioalcium silicate phase in the coment clinker to the detriment of tricalcium silicate. Dicalcium silicate is slow setting whereas tricalcium silicate is fast, so the effect of P_2O_5 will be to reduce the early strength of the coment, which is the characteristic which determines the acceptability of the coment.

L

The presence of fluorine in the kiln can lever the melting points of the materials in the kiln and may cause ring formation. Any fluorine which does pass to the converter will shorten the life of the SO₂ exidation catalyst, but may be easily removed. In addition, the fluorine may cause the protective coating on the kiln brickwork to be ereded with consequent reduction in refractory life.

Licensers experience of P_2O_5 and F in the gypsum is:

- $\frac{Q_2 R_2 V_2}{F a \max imum of 2.0\% v/v}.$
- $\underline{\mathbf{Onavir}} \quad \mathbf{P}_{2}\mathbf{O}_{5} \text{ a maximum of } 2.0\% \text{ w/w.}$

F a maximum of 0.2% w/w.

It is generally expected that an increase in fluerine up to 0.3% in gypsum will be permissible since much of the fluerine is removed during drying and calcination.

				Volume IV
	19 ,			3.3
UNIDO Vienna for Pakistan &	Pre-Investment Stud Petrochemical Indus			C.1669 July 1970
3.3 <u>General Experience</u>	- continued			
	on impurities inclu	le:		
	a ₂ 0 & K ₂ 0) 1.5% in		0.7-0.85 in	rew mix)
(ii) Chlorine O		·		·
3.4 Cement Quality				
	produced will be ex ent to BS 12 or equ: STANDARD 1164).			
The average compes	ition of the coment	will be app	proximately	as follows: (%
010 510 ₂	Al ₂ ⁰ 3 Fe ₂ ⁰ 3	NgO	Alkali	so3
63 .85 21.08	5.79 8.86	2.47	1.40	2.7
It will, of course the feed gypsum an	, very within fine 1: d edditives.	imits due to	e the exect	omposition of
Tests carried out	by 0.8.W. at Lins is P ₂ 0 ₅ content of the		t the cement	quality is
aspertantes apost atte		2.0%	1.0% 0.10-0.15%	0.0% 0.10-0.15%
P ₂ O ₅ in clinker				~
P ₂ O ₅ in clinker Fin clinker Specific Surface		0-0.15%		
P.O. in clinker Fin clinker Specific Surface (Blaine, cm ² /g) Bending Strength (0.1	0-0.15%	3 000- 3200	
P ₂ O ₅ in clinker Fin clinker Specific Surface (Elaine, cm ² /g)	0.1	0-0.15%		60 70 85
P.O. in clinker Fin clinker Specific Surface (Blaine, cm ² /g) Bending Strength ((to DIN 1164) After 3 days 7 days	0.1([kg/m ²] rth (kg/m ²)	60 60	3 000-32 00	

P

		00W L70.	Volume IV 3.4	
*	UNIDO Vienna for Pakistan	Pre-Investment Studies for Fertiliser & Petrochemical Industries - Final Report	C.1669 July 1970	

3.4 Coment Quality - continued

Comparing the above with DIN 1164:

Strength class

Confreesive Strength (kg/on²)

	7 deve	28 days	
275	min 100	min 275	
375	min 175	min 375	

and NS 12 for Ordinary Portland Coment,

3 days	I dere	
min 154 kg/om ²	239 kg/cm ²	

it may be seen that the quality as regards compressive strength is adequats.

Similarly, Coswig have carried out determinations on coment produced during their test in 1967. Results of this are as follows: (Tested according to TGL 10573)

<u>} deve</u>	<u>7 dere</u>	<u>28 deve</u>	
202	365	507	
219	361	507	
202	343	524	
216	361	517	
250	375	582	
202	365	532	

A British Portland cament tested to the same Standard more

203	332	432
216	300	455

3.5 Conclusions Concerning Process Status

It would appear that the better experience, in terms of quantity of hyproduct gypsum processed is held by 0.5.W. They have carried out a number of test runs on their own byproduct gypsum, and also a full scale plant test on material from South Africa. Fried, Krupp have obtained a contract to build a unit in South Africa using the 0.8.W. process, and this should be operating well before the plant proposed for Chittagong. The benefit of the experience obtained at the Krupp plant would then be available via the licensor, 0.8.W.

	Volume IV 3.5	
UNIDO Vienna	Pro-Investment Studies for Fertiliser	C.1669
for Pakistan	& Petrochemical Industries - Final Report	July 1970

3.5 Conclusions Concerning Process Status - continued

Coswig, on the other hand have produced excellent quality coment during a relatively short plant run. They have eight kilns in operation against 0.3.W.'s single unit. They have, at present, better experience on minimising the effect of fluorine in the gypsum, although it is expected that 0.3.W. will at least match this.

It may therefore be seen that there is adequate experience and confidence that the scheme and process is viable. It is, however strengly recommended that reliable geological surveys are carried out to determine the svailability and analyses of suitable additives (clay & sand), and also that accurate analyses of byproduct gypsum be made.

The only real problem facing the project is that of fluorine disposal. This will be released during calcination and wet gas cleaning and will appear as a liquid effluent, roughly equivalent to the fluorine content of the gypsum.

The remainder of this report is concerned with analysis of the financial and engineering viability of the proposed scheme.

•		ogw 170,	Velume IV
Τ	UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
	for Pakistan	& Petrochemical Industries - Final Report	July 1970

STOTION 4

NECHTICAL PROJECT DATA

4.1 <u>General</u>

The following description applies in general detail to both the 0.5.W. and Coswig processes. Some differences do appear between the actual flow schemes, but both follow the same principles.

4.2 Process Description (See Flow Diagram Figs. IV.4.1 and IV.4.2).

The process for manufacture of sulphuric acid and cement clinker from gypsum is based on the well established Miller-Kühne process. Wet gypsum filter cake is dried and calcined prior to passing to the gypsum silo.

The additives, coke, clay, sand (to provide carbon, aluminium, iron, and silica) are individually crushed as required, then dried and milled before passing to their respective allos by ganged batch weighers, and passed to the New Meal Mixer where therough blending takes place. The mixed meal is then passed to the Raw Meal Silos prior to being fed to the Cement Kiln. The kiln is inclined at a small angle to the horizontal, thus assisting the passage of material through it. As the meal passes through the kiln, it contacts hot gases from the combustion of eil and sulphur

A series of reactions take place; the net results being:

4 $0aso_4 + 2c$ _____ $0as + 30aso_4 + 2co_2$ 1 $0as + 30aso_4$ _____ $40ao + 4so_2$ 2 $0ao + Al_2o_3 + sio_2 + Fe_2o_3$ _____ Portland Coment Clinker 3

Reaction 1 begins at approximately 700° C; the product calcium sulphide is an intermediate product only. Reaction 2 begins at approximately 900° C. At temperatures up to 1400°C, the CaO reacts with SiO₂, Al₂O₃, and Fe₂O₃ producing cement clinker. The clinker leaves the kiln at the firing (lower) end, and is cooled by soondary air fed to the kiln in the Clinker Cooler.

The SO, containing gas passes from the upper end of the kiln to the first stage of gas cleaning, in which the bulk of the dust is removed by cyclones, then by dry electrostatic precipitation, and returned to the kiln. The gas is then washed by water or very dilute sulphuric acid (approx. 1%) to remove fluerine and to coel the gas. The gas then passes through a further set of electrostatic precipitators, and then to the existing modified sulphuric acid plant.

	400W LTD.	Velume IV 4.2	
UNIDO Vienna.	Pre-Investment Studies for Fertiliser	C.1669	
for Pakistan	& Petrochemical Industries - Final Report	July 1970	

4.2 Process Description - continued

The gas is dried using the existing Drying Tower, and beested by a new gas blower through a new Heat Exchanger in the medified Beiler System. A stream of dry air from a new Drying Tower is added and the mixture passed to the first bed of the existing converter. A further stream of air and gas is added after each of the first two beds, the gas then being cooled in an existing air-cooled Heat Exchanger, before passing to the fourth bed of catalyst. The gas is then split into two parts, one passing through a feed-water economiser, the other through a feed gas preheater.

The mixed gas is then put to an Absorbing Tower and finally to atmosphere via a new Demister.

The existing Sulphur Furnace is oil fired to give sufficient steam for use at present. A new Heat Exchanger is positioned in the flue gas stream to act as a Start-up Heater for the Converter.

4.3 <u>Euipment Layout</u> (See Site Plan 1669-L51-1)

The equipment has been laid out with the following objects in mind.

- 1. To minimise modifications to the existing plant, keep cross-connection distances to a minimum, and take advantage of the existing readways.
- 2. To allow future extension of at least 100% on capacity.

Gypsum will be transported as a damp filter cake to the gypsum storage. From there, it is dried and calcined, and then passed to the gypsum siles. The additives are individually reclaimed, dried, milled and put to their respective silos prior to blending.

Cement clinker is stored under a simple roof at the firing end of the kiln and then transported by conveyor to the existing cement grinding/blending plant.

Kiln off-gas passes to the purification plant where it is deducted and washed. Separated dust is returned to the kiln, whereas the acid washings are discarded.

Provision for future extension has been made by allowing for possible installation of third and fourth kilns alongside the first two. The SO₂ containing gas would be purified in a parallel plant to that for the first and second kilns, and then passed to a new contact plant for conversion and absorption. This plant could be installed in the area marked "Sulphurio acid plant extension".

	Velume IV 4.3	
UNIDO Vienna	Pre-Investment Studies for Portiliser	C.1669

A Petrochemical Industries - Final Report

July 1970

4.3 <u>Duipment Levent</u> - continued

for Pakistan

Should it be required to add sulphuric acid capacity as a sulphur burning unit, then again adequate space is available within the same area.

The proposed railway line serving the TSP plant bagging and leading area, as shown on the site plan drawing given to HAC Limited, will require relecation. This could probably be arranged as indicated in site plan drawing 1669-L51-1.

4.4 Mfect of Power Failure

An unfortunate feature of the Chittageng site is the frequency of power failures. It is only necessary to ensure that the kiln retation is maintained during these periods, although efforts must, of course, be made to improve the power supply situation. A simple diesel drive will be adequate for kiln safety.

4.5 Consumption of Fredetooks and Utilities

The consumptions are based on the production of 475 MTPD sulphuric acid (as 100% H280,), of which it is assumed that 45 HTPD will be produced from elemental sulphur burnt in the kiln.

(1) Predstocks

(1)	Panda to cita	Per HP 1.80, (1005)
	Byproduct gypsum (as Ca80, 2H20)	1.75 1
	Clay	0.224 MT
	Coice	0.082 MT
	and	0.018 MT
	Bulphur	0.032 NT
(2)	<u>Itilitic</u>	
	Beatria Pewer	210 kih
	Geeling Water (32°0-45°C)	100 H ₃
	Puel 011 (Net OV. 9,900 Hebl/kg)	0.37 MT
(3)	Toronote.	
	Cement Clinker	0.85 11
(4)	Etluente.	
	Acid Water (from wet ghe clowing)	0,2 M ³

		Volume IV 4.4
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
for Pakistan	& Petrochemical Industries - Final Report	July 1970

4.5 <u>Consumption of Fredstocks and Utilities</u> - continued

(5) Feedstock Analyses

The consumptions in Section 4.5(1) above have been calculated on the following compositions (% wt dry)

	<u>Cypaus</u>	Sand	Clay	Coke
S1 0 ₂	0.10	91 .66	67.67	6.90
A1203	0.10	3.56	24.41	4.40
Fe ₂ 0	0.10	1.68	7.07	2.00
CaO	41.40	0.60	0.43	1.30
MgO	0.12	0.10	0,00	0.40
S0 _n	56.6 0	0.10	0,00	0,00
c	0.00	0.00	0.00	85.00
Remainder	1.58	2.30	0.42	0.00
F & P ₂ 0 ₅	See Section 3.	3.		

Variation on the above analyses will, of course. alter the actual quantities of each constituent, but not the viability of the scheme.

4.6 Availability of Raw Materials

Bronnauct Gyneum

This is produced by the phoepheric acid plants at Chittageng. It will exist as a wet filter cake containing approximately 40% total H_2O (both fixed and free).

Sulabur

This will be imported as at present.

Colce

This will have to be imported. Come fines containing not more than 95 w/w volatiles will be adequate.

Clar

1_

Indications are that this will be available in Hast Pakistan, in the locality of Chittagong. On the basis of the analysis in Section 4.5 (5), about 650,000 MT will be required for 20 years operation. The actual quantity will, of course, depend upon the analysis.

	100W (10.	Volume IV 45	
UNIDO Vienns	Pre-Investment Studies for Fertiliser	c.16 6 9	
for P akistan	& Petrochemical Industries - Final Report	J uly 197 0	

4.6 Availability of Raw Materials - continued

Sand

Again indications are that this will be available in East Pakistan, in the locality of Chittagong. On the basis of the analysis in Section 4.5(5), about 60,000 MT will be required for 20 years operation. The actual quantity will, of course, depend upon the analysis.

During the H&G engineers' visit to East Pakistan, contact was made with the Geological Survey of Pakistan - Eastern Division, in Dacca seeking information on the availability (reserves) and analysis of sand and clay in the locality and neighbouring areas of Chittagong.

In a letter Ref No. 4643/P&I-IX(14)/70 dated 9th May 1970 they replied as follows, - quote:

"A scrutiny of various reports of the Chittagong town and the adjacent areas indicates that there are fairly large deposits of clays and sands in the proximity of Chittagong town.

The most promising deposit of clay is known as Girujan clay. Its thickness is about 1150 feet. It is exposed all along the Eastern slope of the Chittagong anticline.

Unconformably underlying the Girunjan Clsy is the Tipam Sandstone with an approximate thickness of 1530 feet. This bed is composed of massive and bedded yellowish brown fine to medium grained sandstones with irregular shale interbeddings. Sand is being quarried from this bed for use by various parties in Chittagong town.

The Girujan Clay and Tipam Sandstone formations will certainly meet the desired reserves of 250,000 tons and 500,000 tons respectively at any one spot selected by you for mining near Chittagong town.

Two chemical analyses carried out by the Geological Survey Dacca, of the Clay samples collected from the site of the Cement Factory which was to be built in Chittagong by the East Pakistan Industrial Development Corporation are as follows:-

	⁵¹⁰ 2	R203	Fe ₂ 03	CaCo	MgC0_3
Sample No. 65	68. 00	22 .8 0	-	2.13	1.80
Sample No. 66	59.48	24 .8 0	4.60	3.92	2.20

In case you need any additional information please let us know and we shall endeavour to supply you the same.

Yours faithfully,

(S. Tayyab Ali Deputy Director General) Geological Survey of Pakistan, Eastern Division, DACCA. "

- end of quote".

		Volume IV 4.6	
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1 669	
for Pakistan	& Petrochemical Industries - Final Report	July 1970	

4.6 Availability of Raw Materials - continued

It is recommended that if the project is to proceed, a survey be carried out in the locality of Chittagong with the object of determining ava lability and analyses of these raw materials. It would then be possible to carry out more accurate estimates of the requirements.

Fuel

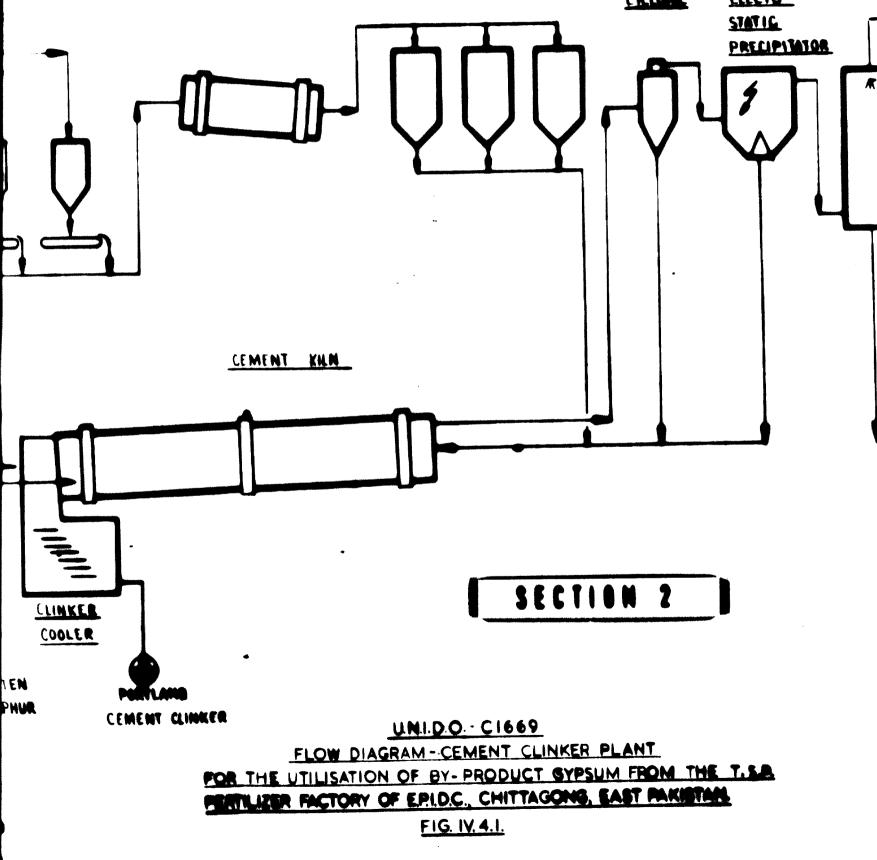
Fuel oil for combustion in the kilns is currently available in adequate quantity from the E.P.I.D.C. refinery at Chittagong.

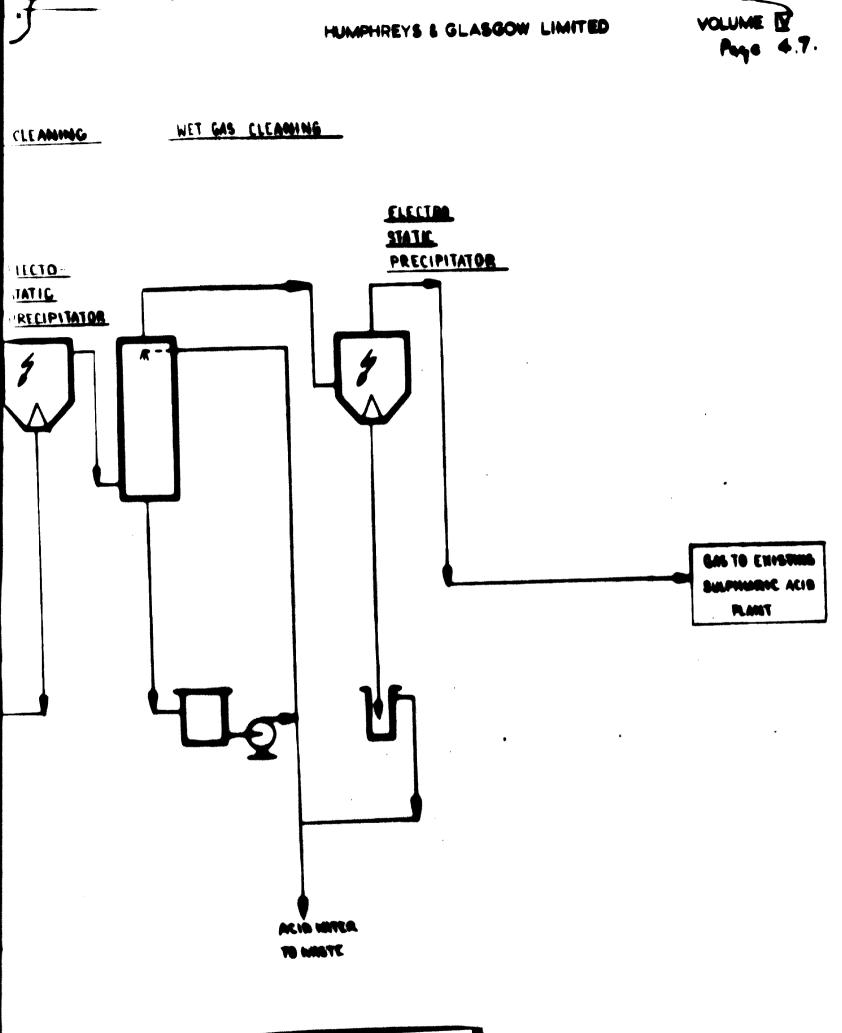
There are a number of schemes for pipelining natural gas into Chittagong and it is quite probable that such a line will be in operation at about the time of start-up of the project for conversion of gypsum to sulphuric acid. The anticipated costs of natural gas are :-

Rs 42.4 / 1000 Nm³ plus Rs 14.1 / 1000 Nm³ duty

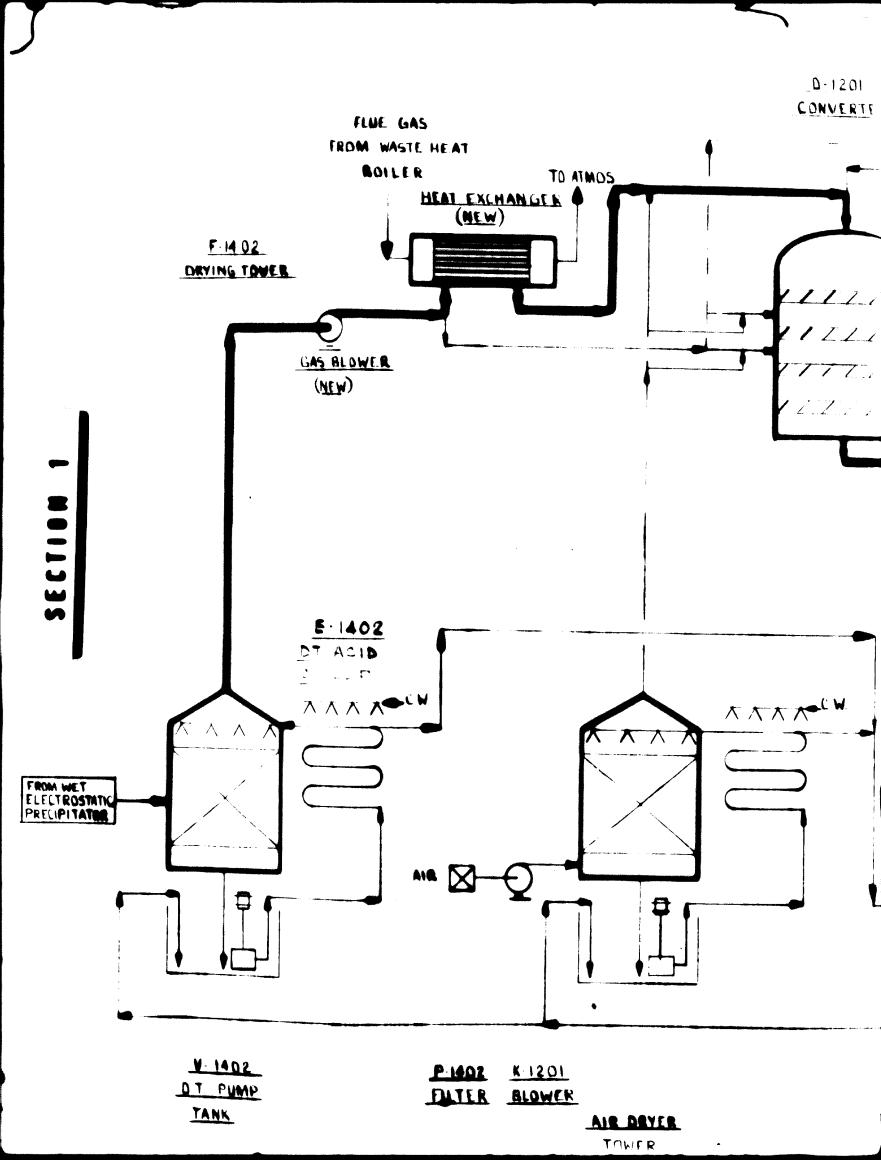

(Basis : delivered site at Chittagong)

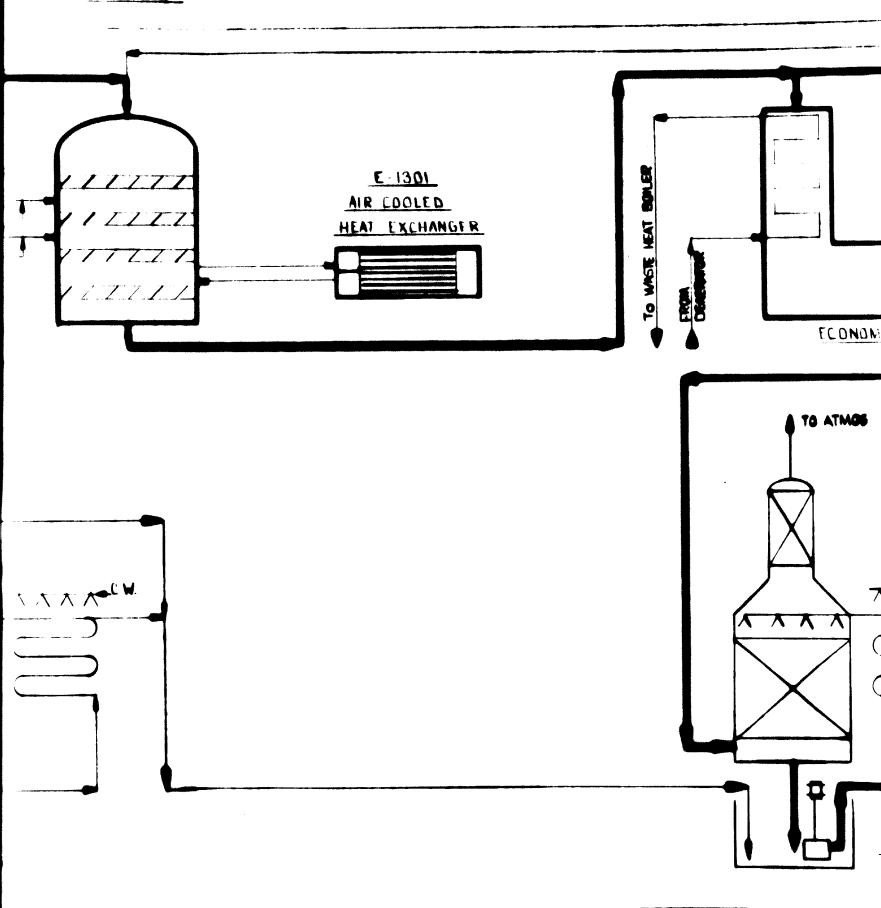
4.7 Project Construction Programme


It is estimated that the project will take 30 months to implement from the date of eignature of a contract for the supply of the plant until initial start-up. The commissioning programme will require an additional six months. A bar chart programme is attached on page 4.9.


RAM MOTERIALS SHOLD WEIGHERS RAW

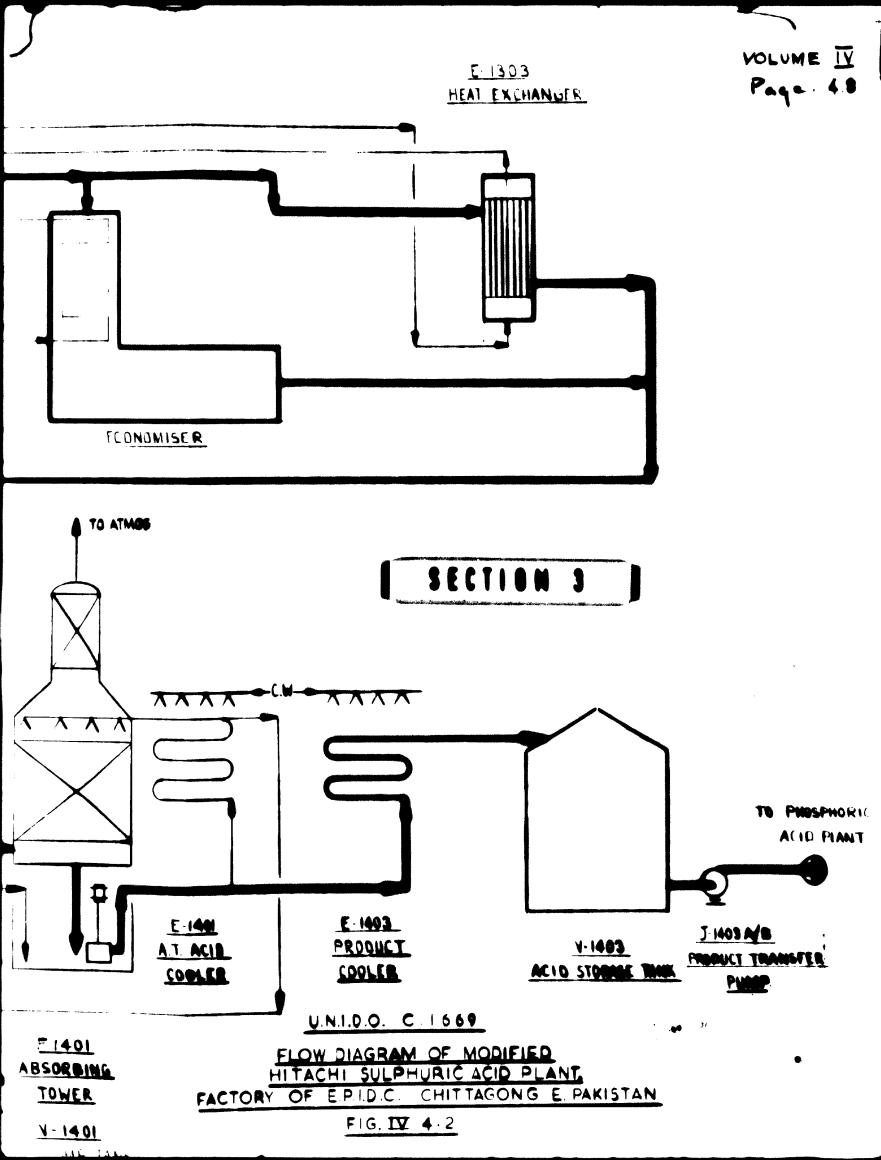
SAND CLAY COME GYPSIM





SECTION 3

<u>T.S.P.</u> N.


D-1201 CONVERTER

ELADI ABSORDING TOWER

N- 1401

) Vienna Pakistan	Pre-Investment & Petrochemical In	Studies for Fert dustries - Find	iliser al Report	C.1669 July, 1970
	e loning. er .	8			
	kise lo kover -	× ±			5 I I I
		ĸ			
	t Design, g and com Plant Han	5			
		88			
	5 3 2 4	ମ୍ ଝ			
	ir so ta	2			612
	<u> </u>		B	C. L.	
PROGRAM	ode and	15 16			
ROBCT P	s al Eff				
14					
PRELIMINARY	celow consti re a furthe six months on achieved	=			
RELIM	<u>ីខ្លុំដ</u> ីទ	0			
머니	The Programe indicated belo Procurement and Erection. Plant Start-up will require Overall Programe thirty size Erection Programe based on	60			
	indicated d Erection will requ me thirty				
		u			
	The Programs 1 Procurement and Plant Start-up Overall Progra Brection Progra				
llo te s	The Program Program Plant 3(Overall Brection				
	า ถ่าว่า		L		
					CONSTRUCTION
Ł		Moc		Procura	

1

L		ow 170.	Volume IV Pere 5-1
	UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
•	for Pakistan	4 Petrochemical Industries - Final Report	July 1970
-			

GRION

ECONOMIC ANALYSIS OF PROJECT

5.1 General

The economic analysis of the project may be considered in two ways:-

- (i) from the viewpoint of the Pakistan economy as a whole, the objective of the project being to eliminate foreign exchange expenditure on sulphur and cement clinker. Ruppe costs per U.S. \$ saved have, therefore, been calculated.
- (ii) from the viewpoint of EPIDC. EPIDC's objective should be to obtain a reasonable return on their investment.

As will be seen later in this section, the long term sulphur price is an important factor in the analysis. The price of sulphur at Chittagong was quoted by EPIDC staff in April 1970 as Rs535/NT, which is equivalent to \$57.8/NT (caf). Current (July 1970) price in the Gulf of Mexico is down to about \$27/NT, which would correspond to about \$45/NT (caf Chittagong). The problem of predicting long term prices is a very complex one and UNIDO have commissioned a study on this subject by the British Sulphur Corporation, but this is not yet released. A lower level of \$40/NT was selected for study. The figure, with which the analysis is concerned, should be the mean level over the assumed life of the project 1974-1988. During this period, the price of sulphur is likely to undergo a number of fluctutations, as it has over the last 15 years, and limite of \$40/NT and about \$60/NT (caf Chittagong) seem realistic, with a probability of the average price being near to the lower figure.

5.2 Capital Cost

Capital cost estimates for the gypsum conversion plant have been obtained from Fried. Krupp Chemicanlagenbau (0.S.W. process) and Simon Carves (Coswig Process). After adjustment to a comparable basis, these figures are in agreement within the accuracy of such budget estimates and so the mean price was used.

The cost of modifying the sulphuric acid plant supplied with TSP II, to take the kiln gas and produce 475 NTPD of acid was guoted by Hitachi.

		DOW 170.	Volume IV Page 5-2
•••	UNIDO Vienna	Pro-Investment Studies for Fertiliser	C.1 669
	for Pakistan	& Petrochemical Industries - Final Report	July 1 9 70

5.2 <u>Capital Costs</u> - continued

These cost data have been assembled to give a total estimated cost for the development as follows;-

	Foreign Exchange (Re Million)	Local (<u>Re Million</u>)
Equipment, spares, freight and insurance, escalation	48.3	-
Engineering and fees, supervision of construction and commissioning	11.3	-
Construction, civils, local supply services, freight, escalation	•	18.5
Import Duty		10.8
	59.6	29.3
Start up and Consultancy costs	4.3	4.4
Interest on F.E. loan during construction	6.7	-
TOTALS	70.6	33.7
OVERALL TOTAL	104	
Working Capital	2.	5

No allowance has been made for the production lost during connection of the new plant into the existing units. It would be possible to import phosphoric acid to keep the two TSP plants running during this period. In practice, the change-over period should be relatively short as the new plant facilities would be built alongside the running units and ready for connecting in.

The capital cost figures quoted above cover all direct expenditure associated with the modification of the plant for use of by-product gypsum and for production of cement clinker and its cenveyance to the clinker grinding plant now under construction. The work covered is as fellows:

- 1. Construction of plant for the production of SO₂ containing gas stream and community from byproduct gypsum.
- 2. Nodification of the sulphuric acid plant (now being erected for TSP II) to use the SO₂- containing gases and produce 142,500 MTPA sulphuric acid.

		DOW 1.79.	Volume IV Page 5-3
	Vienna akistan	Pre-Investment Studies for Fertiliser & Petrochemical Industries - Final Report	c. 1669 July 1970
.2	Capital Co	sts - cántinued	
		sion of gypsum and other raw material stores and ities.	handling
		ities for conveying cement clinker to cement climet (now under construction).	ker grinding
	5. Provi	sion of interconnecting pipework, services etc.	
	6. New o	coling tower facility for 2000 m ³ /hr cooling wate	r.
	7. Facil	ity for disposal of acid effluent from purification	ion plant.
		ag capital covers the provision of raw material in apacity of cement clinker.	ventories and
5 .3	Unit Cost	Ł	
	In c onsi de	pring the two alternátive cases, i.e. for the Pak	istan economy

In considering the two alternative cases, i.e. for the Pakistan economy and for EPIDC, the following unit costs have been used as listed in Table IV 5.1. In the cost analysis all cost figures have been assumed constant at 1970 levels.

UNIDO Vienna Pre-Investment Studies for Pertiliser C.166 for Pakistan & Petrochemical Industries - Final Report July, 197 5.3 Unit Casts - continued Table IV.5.1 - Unit Costs Por Fakistan Roomony Sulphur Re 275.5/MT (odf) \$57.8/MT Sulphur Re 190.9/MT (odf) \$57.8/MT Fuel Oil Re 80 /MT (delivered site) Cose Re 129 /MT (odf) Clinker Re 68 /MT (delivered site) Clay Re 18 /AT (delivered site) Clay Re 18 /AT (delivered site) Sand Re 18 /AT (delivered site) Cose Re 0.13/kbh Cooling Water Re 0.030/m ² (airoulated) Cypeus Disposal Re 5.0/MT (delivered site) Sulphur Re 570/MT (delivered site) Sulphur Re 570/MT (delivered site) Cose Re 0.13/kbh Cooling Water Re 5.0/MT (delivered site) Cose Re 0.13/kbh Cooling Water Re 50/MT (delivered site) Cose Re 50/MT (delivered site) Re 1011 Re 80/MT (delivered site) Cose Re 250/MT (delivered site) Re 16/MT (delivered site) Clinker Re 16/MT (delivered site) Clay Re 16/MT (delivered site) Re 0.030/m ² (circulated) Clay Re 16/MT (delivered site) Re 0.030/m ² (circulated) Clay Re 16/MT (delivered site) Clay Re 16/MT (delivered site) Re 0.030/m ² (circulated) Clay Re 16/MT (delivered site) Re 0.030/m ² (circulated) Clay Re 16/MT (delivered site) Re 0.030/m ² (circulated) Re 5.0/MT wet gypeum	l		M .		Volume IV Page 5-4
5.3 Unit Carts - continued Table IV.5.1 - Unit Costs Por Pakistan Boonomy Sulphur Re 190.9/MT (odf) \$57.8/MT Sulphur Re 190.9/MT (odf) \$67.8/MT Sulphur Re 190.9/MT (odf) \$67.8/MT Ruel 011 Re 80 /MT (delivered site) Cose Re 129 /MT (odf) Clinker Re 68 /MT (delivered site) Clay Re 18 /MT (delivered site) Sand Re 18 /MT (delivered site) Power Re 0.13/MM Cooling Mater Re 5.0/MT wet gyptum (by barge to see) For BID: Sulphur Re 570/MT (delivered site) Sulphur Re 570/MT (delivered site) Come Re 68/MT (delivered site) Sulphur Re 570/MT (delivered site) Come Re 66/MT (delivered site) Come Re 66/MT (delivered site) Come Re 66/MT (delivered site) Come Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Sand Re 18/MT (delivered site) Re 0.13/MM Cooling Mater Re 0.030/m ² (diroulated) Power Re 0.13/MM	1	UNIDO Vienna	Pre-Investment Stud		C.1669
Table IV.5.1 - Unit Costs For Fakistan Rossomy Sulphur Ne 275.5/MT (odf) \$57.8/MT Sulphur Ne 275.5/MT (odf) \$57.8/MT Number of the subscript of the su		for Pakistan	& Fellouiemical links		
Table IV.5.1 - Unit Costs For Fakistan Rossomy Sulphur Ne 275.5/MT (odf) \$57.8/MT Sulphur Ne 275.5/MT (odf) \$57.8/MT Number of the subscript of the su					
Table IV.5.1 - Unit Costs For Fakistan Bognomy Sulphur Ne 275.5/MT (odf) \$57.8/MT Sulphur Ne 190.9/MT (odf) \$40.0/MT Fuel Oil Ne 80 /MT (delivered site) Ooke Ne 129 /MT (odf) Olimber Ne 68 /MT (delivered site) Olary Ne 18 /MT (delivered site) Sand Re 18 /MT (delivered site) Power Re 0.13/Mh Cooling Mater Re 0.030/m ³ (circulated) Gypsum Disposal Re 5.0/MT wet gypsum (by barge to sea) Net 04livered site) Puel Oil Re 770/MT (delivered site) Sulphur Re 700/MT (delivered site) Sulphur Re 700/MT (delivered site) Sulphur Re 700/MT (delivered site) Olary Ne 80/MT (delivered site) Olary Ne 18/MT (delivered site) Olary Ne 88/MT (delivered site) Band Ne 18/MT (delivered site) Olary Ne 18/MT (delivered site) Olary Ne 18/MT (delivered site) Olary Ne 0.3/Mh Ceoling Mater Ne 0.30/m ² (ciroulated)	il	5.3 Unit Costs - con	tinued		
Sulphur No 275.5/NT (okf) \$57.8/NT Sulphur No 190.9/NT (okf) \$40.0/NT Puel 011 No 80 /NT (delivered site) Colme No 129 /NT (okf) Colme No 129 /NT (okf) Clinker No 68 /NT (delivered site) Clay No 18 /NT (delivered site) Sand No 18 /NT (delivered site) Sand No 13/NN Cooling Water No 0.13/NN Cooling Water No 0.030/m ³ (circulated) Oypeum Disposal No 5.0/NT wet gypsum (by barge to see) No 11 Poser No 50/NT (delivered site) Sulphur No 570/NT (delivered site) Sulphur No 570/NT (delivered site) Sulphur No 80/NT (delivered site) Null Colmo Null No 101 Null Ro 10/NT (delivered site) Sulphur No 250/NT (delivered site) Null Colmo Null Ro 68/NT (delivered site) Sulphur No 250/NT (delivered site) Null Ro 68/NT (delivered site) Colmo Ro 68/NT (delivered site)		Table IV.5.1 - U	nit Costs		
Sulphur No 275.5/NT (okf) \$57.8/NT Sulphur No 190.9/NT (okf) \$40.0/NT Puel 011 No 80 /NT (delivered site) Colme No 129 /NT (okf) Colme No 129 /NT (okf) Clinker No 68 /NT (delivered site) Clay No 18 /NT (delivered site) Sand No 18 /NT (delivered site) Sand No 13/NN Cooling Water No 0.13/NN Cooling Water No 0.030/m ³ (circulated) Oypeum Disposal No 5.0/NT wet gypsum (by barge to see) No 11 Poser No 50/NT (delivered site) Sulphur No 570/NT (delivered site) Sulphur No 570/NT (delivered site) Sulphur No 80/NT (delivered site) Null Colmo Null No 101 Null Ro 10/NT (delivered site) Sulphur No 250/NT (delivered site) Null Colmo Null Ro 68/NT (delivered site) Sulphur No 250/NT (delivered site) Null Ro 68/NT (delivered site) Colmo Ro 68/NT (delivered site)		For Pakistan Eog	<u>ngay</u>		
Sulphur No 190.9/MT (okf) \$40.0/MT Puel 011 No 80 /MT (delivered site) Cobe No 129 /MT (okf) Clinker No 68 /MT (delivered site) Clay No 18 /MT (delivered site) Sand No 18 /MT (delivered site) Power No 0.13/kWh Cooling Water No 0.30/m ³ (circulated) Oppeum Disposal No 500/m ³ (circulated) Oppeum Disposal No 570/MT (delivered site) Sulphur No 570/MT (delivered site) Sulphur No 570/MT (delivered site) Disposal No 770/MT (delivered site) Sulphur No 570/MT (delivered site) Cobe Re 58/MT (delivered site) <td></td> <td>Sulphur</td> <td></td> <td>Re 275.5/MT (ohf) \$57</td> <td>.8/MT</td>		Sulphur		Re 275.5/MT (ohf) \$57	.8/MT
Collection of the second secon	N	-		Rs 190.9/MT (odf) \$40).0/MT
Clinker Re 68 /MT (delivered site) Clay Re 18 /MT (delivered site) Sand Re 18 /MT (delivered site) Power Re 0.13/kWh Cooling Water Re 0.030/m ³ (circulated) Dypeum Disposal Re 5.0/MT wet gypeum (by barge to see.) Por FPIDC Sulphur Re 575/MT (delivered site) Sulphur Re 575/MT (delivered site) Puel 011 Re 80/MT (delivered site) Puel 011 Re 80/MT (delivered site) Cohe Re 250/MT (delivered site) Clinker Re 68/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Cohe Re 250/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Cohe Re 0.13/kWh Ceoling Water Re 0.030/m ³ (circulated) Dypeum Disposal Re 5.0/MT wet gypeum		Fuel 011		Re 80 /MT (delivered	i site)
Clay Rs 18 /MT (delivered site) Sand Rs 18 /MT (delivered site) Power Rs 0.13/kWh Cooling Water Rs 0.030/m ³ (dirculated) Gypeum Disposal Rs 5.0/MT wet gypeum (by barge to sea) Por BFIDC Sulphur Rs 575/MT (delivered site) Sulphur Rs 570/MT (delivered site) Ruel 011 Re 80/MT (delivered site) Ruel 011 Re 80/MT (delivered site) Colse Re 250/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Sand Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 18/MT (delivered site) Clay Re 0.13/kWh Ceoling Water Re 0.13/kWh	Į	Coise			
Sand Rs 18 /MT (delivered site) Power Rs 0.13/kWh Cooling Water Rs 0.030/m ³ (circulated) Oypeun Disposal Rs 5.0/MT wet gypeum (by barge to sea.) Rs 5.0/MT wet gypeum Por EPIDC Sulphur Rs 70/MT (delivered site) Sulphur Rs 70/MT (delivered site) Puel 011 Rs 80/MT (delivered site) Colse Rs 250/MT (delivered site) Clinker Rs 68/MT (delivered site) Clay Rs 18/MT (delivered site) Power Rs 0.13/kWh Ceoling Water Rs 0.030/m ³ (circulated) Grower Rs 0.030/m ³ (circulated) Power Rs 0.030/m ³ (circulated)	•				
Power Rs 0.13/kWh Cooling Water Rs 0.030/m ³ (circulated) Oypeum Disposal Rs 5.0/MT wet gypeum (by barge to sea) Per EFIDC Sulphur Rs 575/MT (delivered site) Sulphur Rs 770/MT (delivered site) Puel 011 Rs 80/MT (delivered site) Puel 011 Rs 80/MT (delivered site) Celles Rs 250/MT (delivered site) Clinher Re 68/MT (delivered site) Clinher Re 68/MT (delivered site) Clay Re 18/MT (delivered site) Sand Re 18/MT (delivered site) Re 0.13/kMh Ceoling Water Re 0.13/kMh	J	-			
Cooling Water Rs 0.030/m ³ (circulated) Oypeum Disposal Rs 5.0/MT wet gypeum (by barge to see) Per EPIDC Sulphur Re 575/MT (delivered site) Sulphur Re 370/MT (delivered site) Puel 011 Re 80/MT (delivered site) Puel 011 Re 80/MT (delivered site) Come Re 250/MT (delivered site) Clinher Re 68/MT (delivered site) Clinher Re 68/MT (delivered site) Clay Re 18/MT (delivered site) Sand Re 18/MT (delivered site) Power Re 0.13/kWh Ceoling Water Re 0.030/m ³ (circulated) Grypeum Disposal Re 5.0/MT wet gypeum	:				
Oypeum Disposal Rs 5.0/MT wet gypeum (by barge to sea) For FFIDC For FFIDC Sulphur Ns Sulphur Ns 575/MT (delivered site) Sulphur Ns 970/MT (delivered site) Fuel Oil Ns 80/MT (delivered site) Cohe Rs 250/MT (delivered site) Cohe Rs 250/MT (delivered site) Clay Ns 18/MT (delivered site) Sand Ns 18/MT (delivered site) Power Ns 0.13/kWh Ceoling Water Ns 0.030/m ³ (circulated) Gypeum Disposal Ns 5.0/MT wet gypeum			Water		ated)
For SPIDC Sulphur Ns 535/NT (delivered site) Sulphur Ns 770/NT (delivered site) Puel 011 Ns 80/NT (delivered site) Colme Ns 250/NT (delivered site) Clinker Ns 68/NT (delivered site) Clay Ns 18/NT (delivered site) Sand Ns 18/NT (delivered site) Power Ns 0.13/kWh Ceoling Water Ns 0.030/m ³ (circulated) Gypsum Disposal Ns 5.0/NT wet gypsum		-		Rs 5.0/MT wet gypeu	
SulphurNs 535/NT (delivered site)SulphurNs 370/NT (delivered site)Puel 011Ns 80/NT (delivered site)ColmeNs 250/NT (delivered site)ColmerNs 68/NT (delivered site)ClinkerNs 68/NT (delivered site)ClayNs 18/NT (delivered site)SandNs 18/NT (delivered site)PowerNs 0.13/kWhCeoling WaterNs 0.030/m ³ (diroulated)Gypsum DisposalNs 5.0/MT wet gypsum		(by barg	p to sea)		
SulphurNs 370/NT (delivered site)Puel 011Ns 80/NT (delivered site)CoheNs 250/NT (delivered site)ChapNs 68/NT (delivered site)ClayNs 18/NT (delivered site)SandNs 18/NT (delivered site)PowerNs 18/NT (delivered site)PowerNs 0.13/kWhCeoling WaterNs 0.030/m ³ (circulated)Gypsum DiepoenlNs 5.0/MT wet gypsum		Por PPIDC			
SulphurNs 370/MT (delivered site)Fuel 011Ns 80/MT (delivered site)ComeNs 250/MT (delivered site)ClinherNs 68/MT (delivered site)ClayNs 18/MT (delivered site)SandNs 18/MT (delivered site)PowerNs 0.13/kWhCeoling WaterNs 0.030/m ³ (circulated)Gypsum DieposalNs 5.0/MT wet gypsum		Sulphur		No 535/MT (delivered	site)
Come Ns 250/NT (delivered site) Clinker Ns 68/NT (delivered site) Clay Ns 18/NT (delivered site) Sand Ns 18/NT (delivered site) Power Ns 18/NT (delivered site) Power Ns 0.13/kWh Cooling Water Ns 0.030/m ³ (oiroulated) Oypeun Diepoeal Ns 5.0/NT wet gypeun		-		Rs 370/MT (delivered	site)
Clinker No 68/NT (delivered site) Clay No 18/NT (delivered site) Sand No 18/NT (delivered site) Power No 0.13/kWh Cooling Water No 0.030/m ³ (circulated) Oypewn Disposal No 5.0/NT wet gypsum	-	Fuel 011	1		
Clay Ns 18/NT (delivered site) Sand Ns 18/NT (delivered site) Power Ns 0.13/kWh Cooling Water Ns 0.030/m ³ (circulated) Oypsum Disposal Ns 5.0/NT wet gypsum					
Sand Ns 18/NT (delivered site) Power Ns 0.13/kWh Ceoling Water Ns 0.030/m ³ (circulated) Oypeum Disposal Ns 5.0/NT wet gypsum	-				
Power Ns 0.13/kWh Cooling Water Rs 0.030/m ³ (circulated) Oypeum Disposal Rs 5.0/MT wet gypeum		-			
Cooling Water Rs 0.030/m ³ (circulated) Gypeum Disposal Rs 5.0/MT wet gypeum					
Gypeum Dieposal Re 5.0/MT wet gypeum			Water		ated)
	-				
(by barge to sea)		••			

.

¥		DW LTD.	Volume IV Page 5-5
)	UNIDO Vienna	Pre-Investment Studies for Fertiliser	C. 1 669
	for Pakistan	& Petrochemical Industries - Final Report	July 1970

5.3 Unit Costs - continued

Table IV.5.2

1_

.

National Basis (i.e. no taxes)

Runse costs - extra to costs for production of sulphuric acid from sulphur

.

		Rs/HT H2804
Cooling Water	80 m ³ /MT H ₂ SO ₄	2.40
Clay	0.224MT/MT H2SO4	4.03
Sand	0.018 MT/MT H2504	0.32
Process Labour	(Extra 50 men)	2.30
Naiatenance	(3.0% PA of investment)	16.09
Insurance	(0. % PA of investment)	1.61
		26.75
	= 26.75 x 142,500	
	= 26.75 x 142,500 = <u>Re3.81 x 10⁶/mer</u>	

Table IV.5.3

ooling Water	80 m ³ /NT H ₂ 804	2.40
Ň	0.224 NT/NT H2504	4.03
be	0.018 WT/WT H2904	0.32
	0.062 WT/WT H2504	20.50
rocess Labour	(Batra 50 mm)	2.30
in tenence	(3.0% PA of investment)	16.09
	(0.3% PA of investment)	1.61
XIEF	195 km/HT H2504	25.35
el	0.37 NT/NT H2504	29.60
		102.20
	= 102.20 x 142,500	

- Bal4.56 x 10⁶/mer

	IOW LTD.	Volume IV Page 5-6
UNIDO Vienna.	Pre-Investment Studies for Fertiliser	C.1669
for Pakistan	4 Petrochemical Industries - Final Report	July 1970

5.4 Impact of Project on Pakistan Economy

In table IV.5.4, foreign exchange and rupee costs of the project are calculated over a 15 year project life. In this table, all duties, taxes etc., payable in Pakistan, are excluded. Not foreign exchange savings are compared with rupee costs. A foreign exchange loan over 10 years is charged with interest at 8% and is repayable in equal installments. Table IV.5.2 lists the costs of raw materials and utilities and items included under the heading "Rupee costs - extra to costs for production of sulphuric acid from sulphur."

Thus, in the table IV.5.4, the new project is considered as an extension to existing facilities. The two cases of sulphur price of \$57.8/MT and \$40/MT are considered and the annual ratio of rupees expended/\$ saved is calculated. This ratio has also been estimated by taking the sum of the net present worths of the annual figures for rupees expended and \$ saved. A discount rate of 10% p.a. was used. The resulting two ratio figures of 6.53 (sulphur at \$57.8) and 10.57 (sulphur at \$40) are considered to give the most reliable assessment of the project from the viewpoint of the Pakistan economy. The conclusion drawn is that the project is acceptable at the higher level of sulphur cost, but not at the lower level.

Finally, the ratio was again calculated on a basis frequently adopted in Pakistan. This ratio is based on foreign exchange savings and rupee costs for a single year of operation. Not foreign exchange saved is calculated after allowing for 1 year's loan repayment and interest on the initial loan at amean level of 5%. Rupee costs include all normal running costs, 10% annual depreciation but no interest on the rupee element. On this basis, the ratios are:-

Rupees expended / saved	7.18	(sulphur	at	\$57.8/W T)
	13.07	(sulphur	at	\$57.8/NT) \$40/NT)

5.5 Return to PIDC

ļ

3

In table IV.5.5, the project is considered from the point of view of **IPIDC.** The table includes savings in expenditure and costs, all in rupees. The Foreign Exchange loan repayable at ∂_{0} over 10 years is included and the annual cash flow for EPIDC is calculated. Table IV.5.3 lists the cost of raw materials and utilities and items included under the heading "Rupee cost - extra costs for production of sulphuric acid from sulphur".

The DCF rate of return on EPIDC's rupes investment has been calculated. A project lifs of 15 years is again assumed. The DCF rate of return for EPIDC is 22% (sulphur at \$57.8/NT) but falls to 5% with sulphur at \$40/MT. Similarly, at a sulphur price of about \$34/MT, the return to EPIDC becomes zero.

	 -	 -

Distance, Dist

Compa	
William .	

Balpturio Asia 140,000 MPA (as 1006 1,00,) Separt Glister 101,100 MPA

SECTION 1

		_	_	_		-				-	-
ENGINE AND AND (U.C.BOLLAND)					-						-
CAPEDAL REPAIRIER: 405				-				-1,10			-1,48
Manager of		-4,6	-1,47	4.0	-4.40	47	4.11	4,47	4,6	4,8	4,#
7,8, facto - entre la casta for prediptéen of Subjectio Acid from Religion - 6008 (46	-	4,8	-4.8	-4,22	4,8	4,8	-4,8	-4,22	-4,12
Inter and an and the second											
Bulginer Case (A) (UT, B/R					-				-		
Outro (B) (No/NE			• 1 ,70	•1,15	e%,30	e1,15		e1.16	et,%		4.16 14
Örnant Glatter et \$44.38 AB		4.87	in.19	44 . 95	•1.15	et, 13	+1.7B	+1.75	et,15	41,95	•1.75
(S.S.SHARE)											
Tage (A)		-4,40	•1,10	•1.22	-1.01	e1,15	-1,65	4,0	46,91	4,8	4,35
Case (B)		-1,67		4 ,#		•••	•1,10	•1,82	-1.35	e1,45	+1.97
But Present Worth of Full Meridge	-	4	-1.87	-1.65	-1.85	-1,00	***	•1.5	-	+1,01	+1,00
discounting at 115 p.c.	Nan 8 #	-1,67	4,5		4,65	-	-	-	-	4,8	4,67
iditi initi (mittes) - buties embatet											
Paol GL No.00/12		-4,91	•		-			-4,62			
Power In.C. 15/18		-1,01	-1.41	-8.61	-8.61	-1.41	-8.61	-8,61	-1.61	-1.61	-1.61
Other Repe Costs - entre to costs for prototic Subplurie Acid free Subplur (Suble 19,5.8.)	a of	-1.91	-8,81	-8,81	-8.61	-8,81	-8,81	-8,61	-6,61	-5,41	-3.81
CAPTEAL COMMEN (conclusing charges on Maties, Tenes of	m,i										
Ingresiation 405		4,0	-	-4.49	-4.89	-	4.0	-4.69	-4,8)	4,8)	-4,89
Interest of		-1,65	-1,65	-1,47	-1,00	-4,10		-	-	4,17	-4,9
Sevinge (Oppose Dispessie)		6 ,13	-1,91	-1.91	•1.91	+1,91	•1,91	•1.91	+1,91	+1,91	+1,91
Vortilag Capitoni		-4.0	•	•	•	•	•	-	•	٠	•
Net Reper Costs		-11,10	-11.07	-16.69	-16.19	-16.52	-16.54	-6,6	-18.47	-16,79	-18.40
link Prezent Unrich of link Report Fonto Giocompiles at 115 peter		-11.19	-16,19	-11.45	-19.69	-1.00	4,0	-1,48	4.6	-4.47	-4,14
Yearly lable of lapsa expended per \$ sout	A and	B _b b _b		9-91	6,37	7.89	7.48	6.97	6,4	5.14	5.34
		R _a da				% ,#	4,4	•	•••	4,19	7.97
lable of the Preside Souths of Repose	fine A	٠	•	•	•	•	•	•	٠	•	-
expected per & cavel	-	•	•	•	٠	•	٠	•	•	•	•

U	-		
		 	,

٠

.

						_		_	_			
7			8							-		
		-4,40		-					•	•	•	•
3	-4.91	-	-	4.5	4,0	4.	٠	•	•	•	•	2
a		-							-	-		S .
-												\$
4	46,5	4,9	d,))	4,8		4,0	4,4	4,0		•		
6	-1.16	-	-1,15	***	-	-	-	-	et,15	et alla	-	{ * •••• •
5	-1.15	44,75	-	e4,95	-1,15	4,1	e1,15	-	•••	****	*1.75	}
												2
								-	•••	-	-	ş
н 									-			} .
												tend Gult
25	•••••	••••	••••									1000 5.01
5	40,07	••••	4,0	4,8				-				
												2
22	-4,82	-4,8	-4,88		-			-		ر بار ال ال		
51	-1.61	-8,61	-8.61	-6,61	-6.61	-	-	-6.61	-6.61	-6,61	-8,61	į
м		-8,81				-	-4.41	-6,61	-6.01	-6.01	-8,61	5
						••••						}
									_	_	-	
		4.0							•	-	-	
			-			4.0			-		-	2
	11.91	+1.91										5
-	•	•				•						2
70	-16, 52	-16,51	-6.9	-	-	-8,0	-10,17	-6.9				•
29	-1.8	4,0	-1,42	4.66	-	4.0	-	-4.65	-4,65	-4.6		10466 (01,75
37	7.89	1.48	6.07	6,47	5	5.8	6 ,#		2,07	8,0		
6 5	16,19			•••			5,00	1.0		5.0		
	•	•	•	•	•	٠	٠	•	•	•	6,00	
	•	•	•	•		•	•	•	٠	•		
	-	-	-	-	-							

SECTION 2

ł

STATES A SEASON LINES

SAME R.S.L. MINDL CARL FLOW IN AND ANALYSIS

B.P.J.B.G. M

ILLIN NPERS

|

Capacity

Balghuris Asid 948,500 MBPA (as 9885 1,88,) Commt Clinker 191,125 MBPA

SECTION 1

									-	*
CAPSON ASPASSINE - (P.B.) 455	-7,65	-1,6	-1.45	-7,45	-9,45	-7,65	-1,45	-1,45	-7.66	-7.66
300000t - (P.L.) (\$	-1,45	-1.48	-4,52	-1.65	-1.89	-4,68	-4,45	-1.60	-1,4	-4,%
GONER COORDE (entre to ease for 5,55, free Subject Subjec 24,5,5,)	-7,88	-14.55		-14.55	-14.55	-4.5	-14.55	-11.55	-4.5	-4.55
mires simulation (seems present appl.)	-86.7	•	•	•	•	•	•	•	•	- '
										ļ
Bulgton (A) Bulgton at \$\$7,0/12 (Bas\$55 at also)	•**•*								48,48	-45.46
(B) Belgiur et (H0/HE (Ba-SH) et also)	•	-	-	-	-	-	-	-	-16.54	-6.8
Gaussi Glisbor et Ro,40/12	4,2								40,01	4,8
Gypour Disposed	4,8	•1,91	+1,91	+1,81	+1,31	-1,01		-1.01	+1.91	+1.51
Verting Applied	-4,00	•	-	•	•	•	•	•	•	•
SUBAL CARE FLOW (SHERE +) CARE (A)	-10.41	4.8	4.49	-	4,8	48	4.8	40	-10,46	•11.05
	-46,60	- 4 , P 1	46			4.6	4,4		4.8	-

STATISTICS & GARDEL LAND

ABLE TY & S. ANTINI MAL POOL FOR ANTING

B-P-I-D-G. MI

197									8	
? .66	-7,46	-1,6	-1,15	-4.6	-146	•	•	•	٠	•
3.39	-4,68	-4,6	-1.69	-44	4.6	•	•	•	•	•
4.5	-4,55	-14.55	-14.55	-14,65	-11,55	-1.5	-	-11.65	-1.6	-11.65
-	•	•	•	•	٠	•	•	•	•	٠
5.48		-	-	-	-		•			
							-			
							-		et, M	-
-							•		•	
.22	47	•	48	-	-	-	-			41,17
	4.5									

SECTION 2

٠

UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669			
for Pakistan	& Petrochemical Industries - Final Report	July 1970			

5.6 Potential Use of Natural Gas

As indicated in Section 4.6, it is anticipated that natural gas will become available by pipeline at Chittagong. This is a cheaper fuel supply than the fuel oil assumed in the analysis of Sections 5.4 and 5.5. The use of natural gas in place of fuel oil would reduce the annual fuel costs by about Rs 1.2×10^6 (duty-free basis).

This reduction in rupee cost would reduce the ratio of rupes expended per \$ saved to 6.0 (sulphur at 57.8/MT) and 9.7(sulphur at \$40/MT). The D.C F. rate of return to E.P.1.D.C is also calculated to be improved by about 2%.

Thus the use of natural gas has a beneficial effect on the overall economics of the process.

5.7 <u>Discussion</u>

The overall economic viability of the project must be viewed as marginal. Apart from the question of sulphur price forecasts, the major problem lies in the fact that the estimated capital cost of the project is high in relation to foreign exchange saved. If means can be found of reducing the project cost (both foreign exchange and Rupes elements) by 15 to 20%, the economic position of the project would be markedly improved. This is true for both the National and E.P.I.D.C. basis. An alternative improvement from the National viewpoint would be an increase in proportion of the plant manufactured in Pakistan with corresponding reduction in the foreign exchange element of capital cost.

This project assessment has been concerned only with the effect on the Pakistan economy and EPIDC financial position of the extension. The detailed analysis of the viability of the complete site including both TSP plants and cement grinding plant will be possible when the units which are now under construction have been commissioned and operating performance is known. If these projects prove highly profitable then the lower DCF return on the gypsum conversion scheme may appear acceptable in view of the foreign exchange saving obtained.

Finally, attention should be focussed on a number of aspects of this project, which will require special consideration:

i) The construction of the new facilities must be undertaken while the existing plants are in operation. The contractor for the extensions will need to give special attention to the problems of connecting the new plant into existing equipment and to scheduling his work.

WUNTHMEVS & GLASSOW LTD. Volume IV UNIDO Vienna Pre-Investment Studies for Fertilizer C.1669					
UNIDO Vienna	Pre-Investment Studies for Fertilizer	C.1 669			
for Pakistan	& Petrochemical Industries - Final Report	July 1970			

5.7 Discussion - continued

L

- 11) Coke supplies are not available in Pakistan and the necessary authorisations for its import will be required. Coke specification must be prepared in collaboration with the process licensor.
- iii) The supply to the plant of sand and clay available in East Pakistan must be assured and specifications prepared.
- iv) In view of the small extent of full-scale operating experience of the use of byproduct gypsum it is important that proper trials are carried out using the raw materials which will be used at Chittagong. If inadequate supplies of byproduct gypsum are available at Chittagong, then the tests could be made using gypsum produced from the same phosphate rock in a similar design of phosphoric acid plant. Samples of local clay and sand should be made available for testing and these tests must include analysis of cement properties.
- v) The long term supply of phosphate rock of the grade used for test purposes must be assured. Phosphate rock type is known to influence design and operating conditions for the plant.

	OW (79,	Volume IV 6.1
UNIDO Vienna	Pre-Investment Studies for Fertiliser	C.1669
for Pakistan	& Petrochemical Industries - Final Report	July 1970

SECTION 6

CONCLUSIONS

6.1 Scheme Recommended

In view of the requirements for sulphuric acid and cement clinker, and the availability of by-product gypsum at Chittagong, it is recommended that the Müller-Kühne process is used for manufacture of sulphuric acid and cement clinker from by-product gypsum.

6.2 Technical Viability

The process has been operating for short periods with considerable success in both Austria and East Germany, the runs being terminated by lack of feedstock only. A contract has been placed for a plant in South Africa of comparable capacity to that for Chittagong. By the time that the Chittagong plant would be started, considerable operating experience would have been obtained from the South African plant. The quality of cement produced from the process meets all specifications for a normal Portland cement. The use of the Nissan phosphoric acid process enables the P_2O_5 content of the blended gypsum to be below a level where it has adverse effects on the setting time of the cement. Calcination of the gypsum removes sufficient fluorine to reduce its content to an acceptable level.

6.3 Economic Viability

Economic viability has been assessed on both a National and E.P.I.D.C. basis. This assessment indicates that the viability of the scheme is very sensitive to sulphur prices. The E.P.I.D.C. price (\$57.8/MT-C & F) appears to be high in view of the present trend towards lower price. An alternative price of \$40/MT C & F, at the lower end of the range of probable future price, has also been considered. The project shows a net foreign exchange saving at both sulphur price levels. At the higher price level, Rupee expenditure per \$ saved 6.53 is reasonable. There is also a DCF rate of return of 22% to E.P.I.D.C. on the project at the higher level.

At the lower price of sulphur, however, the much higher rupee cost per dollar saved is likely to be unacceptable and DCF return on E.P.I.D.C's investment over the 15 year period is only 5%. The return to EPIDC falls to zero at a sulphur price of \$34/MT.

6.4 General

It is recommended that means of reducing the capital cost of the project - both foreign exchange and Rupee - be investigated.

In any complex project of this type the skills of management and operating staff during construction, commissioning and subsequent operation are very important. They could be critical to the economic strength of this project. Emphasis must be laid on the importance of adequate training for management and operating personnel on comparable existing plant.

			Appendix 1 Page 1
	DO Vienna Pakistan	Pre-Investment Studies for Fertiliser & Petrochemical Industries - Final Report	C .166 9 July 197 0
		APPENDIX I	
		DIBLIGGAPHY	
<u>La</u>	erence		
1.	General Surv	NDP Project Manager ey of the Existing Situation in the Petrochemica ndustries, and	l end
	A Review of Pakistan	the Raw Materials Availabilities and their Price	s in May, 1967
2.	General Surv	ki: UNDP Project Chemical Engineer ay of Existing Situation in regard to the Manufa fibres in Pakistan.	
3.		NDP Project Manager y Study of Complex Fertilisers with Particular r	March, 1968 oference March, 1968
4.	A Review of	ki: UNDP Project Chamical Ingineer the Industrial Chemical Complex Study for Inst P ed Pattern for a Petrochemical Complex.	ekisten April, 196
5.	General Surv	UNTA Expert ey of Existing Situation and Proposal for the Pl nd Processing Industries in Pakistan to 1985.	Betics
6.	A Study of F	ki: UNDP Project Chemical Engineer wedstocks and Processes in the Petrechemical Ind w of the Pesition in Pakistan.	-
7.	Nethedology Production o	: UNDP Expert and General Survey of the long-term forecast for f Plastics and Synthetic Fibres and background e ustry in Pakistan Ebonemy.	
8.	Von Peters	FAO Consultant Arketing in Pakistan.	Pebruary, 196
9.		FAO Agricultural Gredit Specialist Discussion of Gredit Problems connected with Fe	October, 196 rtiliners

ł

for Pakistan A Petrochemical Industries - Final Report July 197 10. J.G. Vermaat: PAO Tean Leader (a) Preliminary Braluation of the Prespects of Complex and Compound Complex and Compound Pertilisers in Pakistan. January, 196 (b) Prejection of Pertiliser Mutrients Requirements of West Pakistan for the Period 1970-1965. Pobruary, 196 (c) Pertiliser Use Petential in Bast Pakistan. March, 196 11. Intelle Institute, Prankfurt/Maine Report for UNIDO Market Burvey of Petrochemical Products in Pakistan. January, 196 12. Investment Advisory Contre of Pakistans Government of Pakistan Burvey of Plastics Processing Omposity in Pakistan. 13. A. Amenias PAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakistan. 14. T. Janakievskis UNDP Project Chemical Bagineer A Budy of Arconatics and Derivatives with a review of the position in Pakistan Site PAO Sector finding Hission on Petrochemical Industries 15. L. Kochstkovs UNDP Expert Bonomical Survey of Disting Bission on Petrochemical Industries in the BOATS Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Badredys PAO Consultant Methods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and Bast Pakistan). 15. Janes UNDP Preject Manager (Sources Burvey of World Preduction, Consumption, International Trade and Pertilisor Reports. 16. September, 196			Appendix 1 Page 2
 (a) Preliminary Braluation of the Prospects of Complex and Compound Complex and Compound Pertilisers in Pakistan. January, 196 (b) Prejection of Pertiliser Nutrients Requirements of Nest Pakistan for the Period 1970-1965. Pobruary, 196 (c) Pertiliser Use Petential in East Pakistan. Naroh, 196 (d) Pertiliser Use Petential in East Pakistan. Naroh, 196 (e) Pertiliser Use Petential in East Pakistan. Naroh, 196 (e) Pertiliser Use Petential in East Pakistan. Naroh, 196 (f) Pertiliser Use Petential in East Pakistan. January, 196 (e) Pertiliser Use Petential in East Pakistan. January, 196 (f) Petential Processing Copecity in Pakistan. January, 196 12. Investment Advisory Centre of Pakistan: Government of Pakistan Survey of Plastice Processing Copecity in Pakistan. Naroh, 196 13. A. Amania: FAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakistan. Nay, 196 14. T. Janakievski: UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the pesition in Pakistan. Nay, 196 14. T. Janakievski: UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the pesition in Pakistan. Nay, 196 15. L. Kochatkovs UNDP Expert Bonomical Burvey of Existing Situation in the World's Petrechemical Industry and Analysis of West Pakistan Petrochemical Dedustrice in the ECAPE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys FAO Consultant Nethods of Soil Analysis (Soil Pertility and Boil Testing Institute of West and East Pakistan). June, 196 18. C. Janio UNDP Project Number General Survey of World Preduction, Consumption, International Trade and Pertilisers Requirements. September, 196 19. Zinder International Ltd./Technocorets Ltds Report to Government of 			C.1669 July 1970
 (a) Preliminary Braluation of the Prospects of Complex and Compound Complex and Compound Pertilisers in Pakistan. January, 196 (b) Prejection of Pertiliser Rutrients Requirements of Nest Pakistan for the Period 1970-1965. Pobruary, 196 (c) Pertiliser Use Petential in East Pakistan. Naroh, 196 11. Intells Institute, Prankfurt/Mains Report for UNIDO Market Burvay of Petrochemical Products in Pakistan. January, 196 12. Investment Advisory Centre of Pakistans Government of Pakistan Burvay of Plastice Processing Capacity in Pakistan. January, 196 13. A. Amanias PAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakistan. May, 196 14. T. Janakievskis UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the position in Pakistan. Nay, 196 15. L. Kochstkovs UNDP Expert Bonomical Burvey of Elisting Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Deport of the AJDC Pact-finding Mission on Petrochemical Industries in the ECAFE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys FAO Consultant Methods of Soil Analysis (Soil Pertility and Boil Testing Institute of West and Bast Pakistan). June, 196 18. C. Janis UNDP Project Manager Concerni Burvey of World Preduction, Consumption, International Trade and Pertilisors Requirements. September, 196 19. Zinder International Ltd./Technocorate Lids Report to Government of 	10.	J.G. Vermaat: PAO Tean Londer	
 (b) Projection of Pertiliser Mutrients Requirements of West Pakistan for the Period 1970-1985. (c) Pertiliser Use Petential in East Pakistan. Barch, 196 (c) Pertiliser Use Petential in East Pakistan. Barch, 196 11. Batalle Institute, Frankfurt/Mains Report for UNIBO Barket Survey of Petrochemical Products in Pakistan. 12. Investment Advisory Centre of Pakistans Government of Pakistan Survey of Plastics Processing Opposity in Pakistan. 13. A. Ananias FAO Agricultural Credit Specialist Credit and Fertilizer Promotion in Pakistan. 14. T. Janakievskis UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the pesition in Pakistan. 15. L. Kochstkovs UNDP Expert Bonomical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Industries in the ECAPE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys FAO Consultant Hethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and Endredys FAO Consultant Hethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and Endredys Phylotian, Consumption, International Trade and Pertilisers Requirements. 19. Zinder International Ltd./Techneorgis Ltds Emport to Government of 		(a) Preliminary Braluation of the Prespects of Complex and	
Pebruary, 196 (c) Pertiliser Use Petential in East Pakisten. March, 196 11. Batalls Institute, Frankfurt/Mains Report for UNIBO Market Survey of Petrochemical Products in Pakisten. January, 196 12. Investment Advisory Centre of Pakisten: Gevernment of Pakisten Survey of Plastics Processing Opposity in Pakisten. 13. A. Anamias FAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakisten. 13. A. Anamias FAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakisten. 14. T. Janakievskis UNDP Project Chemical Engineer A Budy of Aromatics and Derivatives with a review of the position in Pakisten. 15. L. Kochstkovs UNDP Expert Bonomical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakisten Petrochemical Industries in the BCAFE Region. Report to Asian Industrial Development Obuncil. 17. Dr. Andrew S. de Endredys FAO Consultant Methods of Soil Analysis (Soil Pertility and Boil Testing Institute of West and East Pakisten). 18. C. Jenics UNDP Project Manager General Survey of World Production, Consumption, International Trade and Pertilisors Requirements. 19. Zinder International Ltd./Technoorgis Ldds Expert to Gevernment of		(b) Projection of Fertiliser Mutrients Requirements of West	•••
 March, 196 11. Batalle Institute, Frankfurt/Mains Report for UNIDO Market Burvay of Petrochemical Products in Pakistan. January, 196 12. Drestment Advisory Centre of Pakistan: Gevernment of Pakistan Burvay of Plastics Processing Opporty in Pakistan. 13. A. Ananias FAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakistan. Nay, 196 14. T. Janakievski: UNDP Project Chemical Bagineer A Study of Aromatics and Derivatives with a review of the pesition in Pakistan. 15. L. Kochstkovs UNDP Expert Bonomical Survay of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Report of the AJDC Pact-finding Mission on Petrochemical Industries in the ECAFE Begion. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys PAO Consultant Methods of Soil Analysis (Soil Pertility and Soil Testing Institute of West Bund Bast Pakistan). June, 196 18. C. Jenics UNDP Project Manager General Survay of World Production, Consumption, International Trade and Pertilisers Requirements. September, 196 19. Zinder International Ltd./Technocomate Ltds Report to Gevernment of 			Pebruary, 196
 Market Burvey of Petrochemical Products in Pakistan. January, 196 12. Drestment Advisory Centre of Pakistan: Government of Pakistan Burvey of Plastics Processing Capacity in Pakistan. 13. A. Ananias FAO Agricultural Credit Specialist Credit and Pertilizer Promotion in Pakistan. Nay, 196 14. T. Janakievski: UNDP Project Chemical Bagineer A Study of Aromatics and Derivatives with a review of the position in Pakistan. 15. L. Kochstove UNDP Expert Bonomical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Neport of the AJDC Pact-finding Hission on Petrochemical Industries in the BCAFE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys FAO Consultant Methods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and East Pakistan). June, 196 18. C. Jenics UNDP Project Manager General Survey of World Preduction, Concumption, International Trade and Pertilizers Requirements. September, 196 19. Zinder International Ltd./Technocemate Ltd. Technocemate Ltd. 	•••		March, 1966
 Burvey of Plastics Processing Oppacity in Pakistan. 13. A. Ananias PAO Agricultural Credit Specialist Credit and Fertilizer Promotion in Pakistan. May, 196 14. T. Janakievskis UNDP Project Chemical Buginser A Budy of Aromatics and Derivatives with a review of the position in Pakistan. 15. L. Kochstkovs UNDP Expert Bonomical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Omplex. 16. Deport of the AJDC Pact-finding Mission on Petrochemical Industries in the SCAFS Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredys FAO Consultant Methods of Scil Analysis (Scil Pertility and Scil Testing Institute of West and Enst Pakistan). June, 196 18. C. Jenics UNDP Project Namager General Survey of World Production, Consumption, International Trade and Pertilizers Requirements. September, 196 19. Zinder International Ltd./Technocersts Ltds Expert to Government of 	***		January, 1969
 Gredit and Fertilizer Promotion in Pakistan. May, 196 14. T. Janakievski: UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the position in Pakistan. 15. L. Kochstkov: UNDP Expert Economical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Report of the AJDC Fect-finding Mission on Petrochemical Industries in the ECAFE Degion. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredy: FAO Consultant Nethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and East Pakistan). June, 196 18. C. Jenic: UNDP Project Manager Concers! Survey of World Production, Consumption, International Trade and Pertilisers Requirements. September, 196 19. Zinder International Ltd./Technocorate Ltds Report to Covernment of 	12.		ten
 14. T. Janakievski: UNDP Project Chemical Engineer A Study of Aromatics and Derivatives with a review of the position in Pakistan. 15. L. Kochstkov: UNDP Expert Bonomical Survey of Existing Situation in the World's Petrochemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Report of the AJDC Pact-finding Mission on Petrochemical Industries in the BCAFE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredy: FAO Consultant Methods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and Enst Pakistan). June, 196 18. C. Jenic: UNDP Project Namager General Survey of World Production, Consumption, International Trade and Pertilisers Requirements. September, 196 	13.		Mar. 10(
 Bonomical Survey of Bristing Situation in the World's Petrechemical Industry and Analysis of West Pakistan Petrochemical Complex. 16. Report of the AJDC Fact-finding Mission on Petrochemical Industries in the BCAFE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredy: FAC Consultant Nethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and Enst Pakistan). June, 196 18. C. Jenic: UNDP Project Manager Conceal Survey of World Production, Concumption, International Trade and Pertilisors Requirements. September, 196 19. Zinder International Ltd./Technocrats Ltd: Report to Covernment of 	14.	A Study of Aromatics and Derivatives with a review of the pe	••••
in the BCAFE Region. Report to Asian Industrial Development Council. 17. Dr. Andrew S. de Endredy: FAO Consultant Nethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and East Pakistan). June, 196 18. C. Jenic: UNDP Project Namager Ceneral Survey of World Production, Consumption, International Trade and Pertilisors Requirements. September, 196 19. Zinder International Ltd./Technocrats Ltd: Report to Covernment of	15.	Bonomical Survey of Existing Situation in the World's Petre	ohemioal •
Nethods of Soil Analysis (Soil Pertility and Soil Testing Institute of West and That Pakistan). June, 196 18. C. Jenics UNDP Project Namager General Survey of World Production, Consumption, International Trade and Pertilisors Requirements. September, 196 19. Zinder International Ltd./Technocrats Ltd: Report to Government of	16.		
18. C. Jenics UNDP Project Namager General Survey of World Production, Consumption, International Trade and Pertilisors Requirements. September, 196 19. Zinder International Ltd./Technocrats Ltd. Report to Government of	17.	Nothods of Soil Analysis (Soil Pertility and Soil Testing In	
September, 196 19. Zinder International Ltd./Technocrats Ltd. Report to Government of	18.	Coneral Survey of World Production, Concumption, Internation	• • •
19. Zinder International Ltd./Technocrats Ltd: Report to Government of Pakistan. A Proliminary Fuel Study for Pakistan.			September, 1966
	19.	Zinder International Ltd./Technocrats Ltd: Report to Govern Pakistan. A Proliminary Puol Study for Pakistan.	ment of 1966

+

			Appendix I Page 3
		O Vienna Pro-Investment Studies for Fertilis Pakistan & Petrochemical Industries - Final Rep	
		Location and Investment in Nitregenous Fertilizer Pro Pakistan (Rotner Report). B.R. Rotner Harvard Unive	
	21.	Fertilizer Policy in Mast Pakistan. Minutes of the Director of Agriculture Mast Pakistan Government.	Necting. March, 1969
		Dr. J.G. Vermaat: FAO Team Leader Technical Reports on Fertilizer Trials (Inst Pakistan	n) - Various Reports.
	23.	Two Reports ISSO: Isso Pakistan Fertilizer Co. Ltd.	
		(a) Crop Responses to Various Phosphatic Fertilizer,	, West Pakistan. November, 1966
		(b) West Pakistan Fertilizer Consumption Ferecast.	November, 1988
	24.	Soil Pertility Investigations in Pakistan. Dr. J.G. Vermaat: PAD Team Leader	November, 1966 F.A.O. 1964
	25.	Soil Fertility Investigations in the Peshawar Region. Von Peter FAO Consultant	F.A. 0. 1964
	2 6 .	The Fertiliser Programme of the Government of Must Pe Planning & Dovelopment Dept. Must Pakistan Government	
	27.	Fertilizer Requirements for East Pakistan (1970-1980) Dr. J.G. Vermaat: FAO Team Leader).
	28.	West Pakistan Chemical Fertilizer Handling and Market U.S. Agency for International Development - Pakistan.	
,	29.	The Demand for Fertiliser in West Pakistan, <u>YPADC</u> . West Pakistan Agricultural Development Corporation.	December, 1968
•	30.	The Manufacture of Fertilisers in That Pakistan (3 ve	elumes)
		Vol. I Survey of Demand Vol. II Manufacture of Mitrogeneus Fertiliser.	See Ref. 31.
		Chemcon Report to Industrial Managements Ltd.	August, 196

		IGOW (.TD.	Appendix I Page 4
	0 Vienna Pakistan	Pre-Invastment Studies for Fertiliser & Petrechemical Industries - Final Report	C . 1669 Ju ly 1970
,			
31. 1	New Issue of	: (3 0)	
٩	Vol. I and :	II only.	
	of Elemental	l Technical Braluation of Orerecto Shipmont and U Phospherous for Pertiliser Production. Tennes Published Report.	
			January, 1968
		Extension in the Distribution of Fortilisors. maat. FAO Team Leader	
34.	Seminar on 1	Petroleum. Petroleum Institute of Pakisten.	September, 1968
-	-	l Polysthylene Plant for That Pakistan. Mitsub is Ast Pakistan Industrial Development Corporation.	bhi. December, 1960
		y and Feasibility Study for Karachi Petrechemics	Al Complex
	(FAUJI). E Foundation.	BICUP & Chemical Consultants (Pakistan) Ltd. Repo	ort to Fouji
		al Investment in S.E. Asia - French Institute of F. Vaches Institut Franceis du Petrels.	
			May , 1968
		of Petrochemical Industry in Pakistan. Library. Messrs. Imhausen. Report to Pakistan (Jovernment 1964
		of Fertilizer Industry in Pakistan. Husen. Report to Pakistan Government.	
40.	PVC & PVA F	ibre - BPIDC/Bunitome. Report to B. Pakistan Ind	i . Devt.Gerp.
			0 0teber, 196 6
		Report-Manufacture of Acrylic Pibre Iren - Pakis nsultants (Pak) Ltd. Report to W. Pakietan Indl.	
42.	Pertiliser '	Triale in Farmers' Fields by A. Wahnab T.I. Japan	riment of
-		West Pakistan Government.	November, 1965
43.	That Pakist	nn Narket Burvey - 1980 Pakisten Pertiliser Compo	
			August, 1968

+

ļ

		Appendix I Prop 5
. –	O Vienna Pre-Investment Studies for Fertiliser Pakistan & Petrochemical Industries - Final Repert	C.1669 July 1970
44.	Proposal of Possibility Pattern of Petrochemical Complex In Pakistan. Vol III. T. Janakievski. UNIDO Project Chemica	
		June, 1969
454.	Investment Study. That Pakistan Petrochemical Complex based Ons. Austrian Petrochemical Consultants. Report to That Pak Ind. Devt. Corp.	
		September, 1969
453.	Amepsis of Document 45.	
51.	West Pakistan. Comments on the fortiliser programme during five year plan. Dr. N. Neumann UNIBO Project Manager	
		Mgust, 1969
52.	The Consumption and production of fortilisers in That Pakis during the fourth five year plan. Dr. J.G. Vernaat PAC To	
		September, 1969
54.	Paper presented in Teheran on the fertiliser industry in Pa (including pesticides) Expert from Pakistan Government.	aicie ten
		Oc tober, 1969

SOME FIGURES OF THIS DOCUMENT ARE TOO LARGE FOR MICROFICHING AND WILL NOT **BE PHOTOGRAPHED**.

84.10.19 AD.86.07 ILL5.5+10