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Decentralization and Project 

Evaluation Under Economies of 

Scale and Indivisibilities 
By THOMAS VIETORISZ 

INTRODUCTION 

Some of the key techniques of decentralization, par- 
ticularly in free-enterprise and mixed economies but in- 
creasingly also in centrally planned economies, are based 
either directly or indirectly on the notion of market equi- 
librium. The twin assumptions of non-Konvexity and the 
absence of externalities play a fundamental role in establishing 
the important theorems of contemporary neoclassical 
economics concerning the existence, stability and attain- 
ment of such equilibria, the existence of a price system and 
its role in decentralized adjustment, and the welfare signi- 
ficance of the outcome of these adjustments.2 

1 The fir« version of this paper was presented as Discussion Paper 
No. CID/IPE/B.-iS, United Nations Inter-regional Symposium on 
Industria! Project Evaluation, Prague, Chechoslovakia, 11-29 
October 1965, under the title "Project Evaluation in the Presence of 
Economies of Scale and Indivisibilities". The revised version in- 
cluded here was presented to the Econometric Society Meetings, 
New York, in December 1965. 

' Koopmans (1957), page 25. writes (see bibliography at end of 
this treatise for this and other references cited herein) : "The prin- 
cipal reason for making a convexity assumption lies not in its 
degree of realism but in the present state of our knowledge. When 
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The objective of this paper is to inquire into the effect 
that non-convexities have on the practical possibilities of 
decentralization by means of a price system or by other 
related methods. Current economic theory offers little 
enlightenment in this respect even though significant non- 
convexities are known to be present in most economic 
systems, particularly in the technology and organization of 
production, and in the field of urban land use. As most 
market theorems break down und r such conditions it is 
natural to inquire not only into the existence of substitute 
adjustment mechanisms but also into the puzzle of how the 
existing decentralized pricing and market systems are 
capable of operating despite their admitted inefficiencies. 

ECONOMIC EQUILIBRIUM VERSUS NON-CONVEXITY 

The essential features of economic equilibrium were put 
forward by the classic economists as an explanation of the 

one examines the main contents of received theory of resource 
allocation and competitive markets it is found that its propositions 
depend essentially on convexity assumptions with regard to both 
production possibilities and preference structures." 

Convexity assumptions also play a crucial role in the convergence 
of the characteristics of the gradient method, one of the algorithms 
available for solving resource allocation problems formulated in 
terms of mathematical programming models, and commonly held 
to reflect the essential features of the adjustment mechanism of the 
market. Arrow and Hurwicz (i960), page 87. give the following 
summary of these problems (note: concave functions yield convex 
point sets): ". . . the absence of concavity conditions on the func- 
tions involved has two consequences for the characterization of 
maxima (constrained or unconstrained): the first-order conditions 
do not completely distinguish maxima from other stationary points, 
and in any case do not in any way distinguish global from merely 
local maxima ... no variation of the gradient method, which is 
based on moving uphill as measured by solely local variations, can 
be expected to ensure arrival at the highest of several peaks; at best, 
only convergence to a local maximum can be expected." The role 
of externalities in economic equilibria has recently been investigated 
in depth by Whinston (196a). On centralization versus decentral- 
ization, the role of the price system, and welfare implications, see 
also Arrow (1951). Tinbcrgcn (1954). Arrow, Hurwicz and L'zawa 
(1958), Marschak (I9S9). Hurwicz (i960 a, b), Tinbcrgcn (1962). 
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Y behaviour of actual markets under tree enterprise. Later, as 
; the shortcomings of the market mechanism—monopoly 

? elements, limited effective demand, unsatisfactory distribu- 
tion of income and wealth, frustrated growth—became 
historically more important and theoretically more widely 
recognized, market equilibrium was still held up as an idea 
that could be approximated in practice to a "workable"' 
extent. Lat.ly, with the advent of mathematical program- 
ming technique«,, it has become possible to isolate economic 
equilibrium from the behaviour of actual markets, and 
either to replace actual market behaviour or to simulate it 
by electronic computer solutions to planning models with 
varying degrees of centralization or decentralization. In 
tact, economic equilibrium can be adapted by means of 
computer solutions to models representing economic situa- 
tions that even ideally competitive markets would be un- 
able to realize; for example, multi-period resource alloca- 
tion models with imposed terminal conditions3 or with 
institutional limits set on the variation of prices, on re- 
source utilization, or on activity scales. 

The existence of such models and the possibility of solv- 
ing them numerically do not imply that the entire eco- 
nomic process can be or soon will be replaced by a single 
large centrally solved planning model. Decentralized decis- 
sion-making and, in the realm of management and plan- 
ning, the multi-level organization of decision systems are 
essential for reasons which include the following purely 
economic considerations : 

(i) Technical alternatives arc difficult to formulate over a 
sufficiently wide range of factor prices for a model. 

(2) It is inefficient to formulate in detail alternatives that 
will not be used; for this reason it is desirable that the com- 
pilation of information should alternate with analysis stage 
by stage. This process can be carried out most effectively 
neai the sources of technical information in individual firms 
or individual sectors of the economy. 

(3) The structure of a large model cannot be intuitively 
grasped, and therefore its blind application is hazardous'; 
this difficulty can be overcome by co-ordinating a number 
of smaller models. 

(4) Plan formulation must take into account the modes of 
execution: this requires familiarity with technical detail 
available only near the operating levels. 

(5) Plans have to be readjusted' to changing circum- 
stances in the course of execution. Many of these changes 
show up at or near the operating level; thus planning 
capability at lower levels facilitates efficient adjustment to 
such changes.4 

aThc so-called "dynamic invisib'e hand" theorem (Dorfnian 
•wniudson and Solow) (19S8). page .119. that extends the principle' 
ot social efficiency ot perfectly competitive markets troni a static to 
a dynamic context guarantees only that such a system, once locked 
on an erikicnt growth path, will stay on it; it cam«« direct the 
system toward a growth path that satisfies cxogcnouslv determined 
terminal social objectives. 

•' Uoppcr Almon (in Dantzig. 1<A?, pages 462-40»;), and Vietorisz 
(19M) discuss some ot these points in relation to multi-level manage- 
ment and planning organizations. 
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It has long been known that economic equilibrium, 
whether embodied in the postulated operation of actual 
markets or in the adjustments of a mathematical program- 
ming model, has inherent limitations that cannot be over- 
come by minor modifications of the principles upon which 
a market equilibrium operates. One example is the prob- 
lem ot fixed costs which lead to diminishing average costs 
as the scale of production increases. It is impossible to recon- 
cile the requirements of (,1) efficient resource allocation as 
embodied 111 marginal-cost pricing rules with (/>) the need 
tor covering the fixed costs incurred by the firm out of 
revenues obtained from product sales. The i:\,ut reconcilia- 
tion of these conflicting requirements is possible only when 
the average cost curves of individual firms are U-shaped, 
and then only at selected lattice points along the quanti tv 
axis;* at in-between quantities either requirement (a) or 
(/») must be violated. Industry supply may, however, be 
satisfactorily approximated by a continuous function if the 
separation between lattice points is small in relation to 
total industry production, i.e., when there arc a large num- 
ber of small firms. This is the assumption of the received 
theory of competitive supply. 

The presence of fixed costs is a case of mathematical non- 
convexity leading to economies »if scale.« Such economics 
of scale can also occur in the absence of actual fixed costs, 
depending on the shape of the production function.' Other 
significant cases of non-convexity are;8 

Indivisibilities: the necessity of planning in multiples of 
standardized production units: zero-one decisions on 
transport investments, hydroelectric projects, etc. ; 

Pre-emption of land area: the fact that a given plot of 
ground (e.g., in a densely occupied zone) has to be 
assigned in a zero-one fashion to individual uses;» 

Either or type constraints on feasible policy alternatives, 
prescribed sequencing of activities, etc.10 

A decentralized decision-making system based on linear 
decentralizing instruments (master prices, administratively 

•' When the average cost curves have horizontal minimum ranges 
the lattice points broaden to equilibrium ranges of finite width. 

«A point set .V is convex if the following holds: if XttS and 
A,*oand ¿U    , then (Z.A.A,)«*. where i    ,  Applied to 
an available technology consisting of a collection of projects this 
concept of"convexity means that any waXhhd average of technically 
feasible individual projects will also be technically feasible. Note that 
where economies ot scale are present convexity breaks down. For 
example, if the actual capital input requirements of a prore« com- 
prise a.frw» input plus an input proportional to scale, then two half- 
siud projects us.ng this process will actually use more capital than 
«if/N/ifl« ¡project .i.e., the average of two half-sized projects (with 
equal -veights) will underestimate capital requirements and will 
thus describe an infeasible technology! 

the form:""0 0,V'lU' "ft• art' tXprC,Sld by an inPUt 'UI,ction of 

, . (yy)    {x.xy. 
where y and y are mputs corresponding to scales .v and .v; the barred 
quantities are constants: and t ,s a constant exponent in the range 

fc Vietorisz (itjt'j). 

" Koopmans and Ucrkman (1957). 
J"l)antzig 11960;. 



determined planning prices, incentive systems with linear 
structure) is inherently unable to guarantee attainment of 
an optimal equilibrium position unless all sources of non- 
convexity—such as fixed costs and others—are either 
absent or rendered inoperative by special circumstances 
which occur in competitive supply. Therefore no decentra- 
lized decision criteria based on the notion of economic 
equilibrium and involving correspondingly a linear version 
of pricing or incentive systems—whether these be market 
prices, corrected opportunity costs, electronically com- 
puted shadow prices based on mathematical programming 
models, or administratively fixed prices in a planned 
economy"—can be relied upon in the presence of non- 
convexities. The criteria may yield acceptable results, but 
they also can result in gross misallocations. 

Two illustrations will indicate the kinds of market out- 
comes that are possible when linear decentralizing instru- 
ments arc used in the presence of non-convexities. Chenery 
(1959) constructs a detailed numerical example of steel 
production and iron-ore mining with strong economies of 
scale in a developing country. The analysis reveals that 
either one of these two activities is profitable only when 
the other is present. Thus a decentralized decision system 
based on profit (or social marginal product) misses an attrac- 
tive joint investment opportunity. When neither of these 
activities is yet established the decentralized decision maker 
studying an activity in isolation will decide that it is un- 
profitable ; thus neither of the two activities can precede 
the other and the profitable complex of the two activities 
will never be attained.12 Koopmans and Heckman (1957) 
construct an example which shows non-convexities in- 
volved in the assignment of productive activities to par- 
ticular locations that cannot be shared between activities. 
For example, in a urban area a given block or plot of land 
cannot be used for both a large shopping centre and an in- 
dustrial plant. Thus the present location of an activity will 
affect the costs of all other activities in such a way that, 
with any locational pattern, incentives will exist for some 
producers to change their locations, and the possibility of a 
stable equilibrium price system is negated. In many loca- 
tional problems no assignments are required; for example, 
if locations have to be chosen tor industries that can be 
located at several regional centres at large distances from 
each other, the land requirements at these centres will 
usually be very small in comparison with the available 

11 K ornai and Liptak (1962) discuss different kinds of profit- 
ability indexes used as decentralizing instruments in a centrally 
planned economy. 

12 There have been numerous qualitative discussions of the inter- 
relations between industries in the course of economic development 
due tn economics of scale and externalities. Economies of scale 
create technical interrelations such as discussed by Chenery (1959). 
they also lead to complementarity bctw< en industries producing 
consumer goods. External economies arise in education, labour 
training arid activities aimed at securing technical progress; in 
social-overhead investments (transport, energy, communications); 
in housing and urban facilities; in government and other public 
services. Sec for example Roscnstcin-Rodan (1943, 1961), Hirsch- 
man (195**). 

industrial sites and thus several activities may easily be 
located at the same centre. This kind oflocation.il problem 
is generally convex unless economies of scile occur in- 
dependently in the production or transport activities. A 
stable price system can be utilized in the 11sn.1l way for the 
definition of project evaluation criteria. 

When significant non-convexities .ire known to be 
operating—important industrial processes whose optimal 
scales of operation are higher than the level of demand of .1 
small country, important decisions concerning investments 
111 transport arteries, etc.—the only reliable method of tak- 
ing detailed decisions is a comprehensive analysis of all 
alternatives wiuin the framework of a 111athe111atic.il pro- 
gramming model in which non-convexities are explicitly 
accounted for. 

Integer programming is the analytical tool of choice iu 
the formulation of such models. A wide variety of all the 
non-convexities in the field of economic planning can be 
represented or approximated adequately by integer pro- 
gramming models.13 In these models, some or all variables 
are restricted to integer values instead of being allowed to 
vary in a continuous fashion. Although exact solutions to 
such problems are often difficult to obtain (except for small 
problems), there are several methods which, in combina- 
tion, can be employed to obtain good sub-optimal solu- 
tions as well as the upper bounds on the possibility of 
further improvement; thus the exact solution values can be 
approximated subject to a known margin of error.14 

All that has been said earlier about the essential role of 
decentralization in economic decision-making is equally 
valid for convex and non-convex systems. Even if they 
become amenable to rapid and exact numerical solution, 
large integer programming models can never replace the 
entire economic process. Thus the fact that non-convexities 
can be adequately handled by certain mathematical models 
is insufficient; it is indispensable that at least an approximate 
inquiry be made into the possibilities of decentralization 
and multi-level decision-making in systems represented by 
such models. This problem will be solved in two stages in 
the present article. First, a two-level liiimr decision model 
will be analysed graphically; next, fixed costs will be intro- 
duced, making the model non-convex, and parallels will be 
drawn between decentralization possibilities in the linear 
and the non-convex cases. The non-convex decision model 
will then be used to explore the relationship between 
average and marginal costs and the degree of indivisibility 
in a system, and also M shed new light on the relationship 
between non-convexities aiid externalities. 

THE DECOMPOSITION PRINCIPLE IN LINEAR SYSTEMS 

Some  of the  phenomena  that  occur in   multi-level 
decision-making or planning systems can be analysed by 

13 Pantzig (n/>o), Vietorisz (lyfy). 
'* Recent surveys of integer programming will be found 111 

Balinski (196.1) and Ik-ale (M/'S). (iomory (i<y>3) summarizes the 
relationship between lar¿»e and non-convex linear programming 
models; Gotnory (190.1) gives an appraisal of nmnâvd continuous 
solutions and a new algorithm. 



means ot the decomposition principle developed originally for 
the solution of structured linear programming models.15 

Figure I indicates schematically the relationship between 
a two-level planning organization and the structure of 
a corresponding decomposition model. In the model, 
non-zero technical coefficients appear only within the 
shaded blocks (figure 1(b)) ; these coefficients fall into two 
broad groups. First, there are the coefficients of the special 
resources of each sector. The special resources of each sector 
can have non-zero coefficients only in the activities of their 
own particular sector. Second, certain resources may have 
non-zero coefficients in any sectoral activity; these are 
designated as connecting resources. In addition to the sectoral 
activities that form the columns of figure 1(b) there is also a 
column designated as exogenous (first column). While it is 
assumed that the scale at which each sectoral activity can 
be carried out is variable, the scale of the exogenous 
column is fixed. This column usually contains the given 
total supplies and demands of each resource. The problem 
is to find a programme (i.e., a combination of activity 
scales) which is consistent with the fixed resource supplies 
and demands, and which is in some sense efficient. Efficiency 
is defined in terms of maximizing the output or minimizing 
the input of a chosen connecting resource. 

lai  TWO UVil  MANNING MOANUATION 
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MODELS 

In such a structured model the consistency and efficiency 
oriented decisions concerning the connecting resources cor- 
respond to the upper level of a two-level decision-making 

n Dantzig and Wolfe (n/u); also Dantzig (1963), Goniory (1963) 
Komai and Liptak (1 </>.<.). 

organization such as the company-wide policy committee 
of a multi-divisional corporation or the central economic 
policy body (cabinet, central planning board) of a country. 
The same kind of decisions concerning sectoral resources 
correspond to the divisional level ot corporations or to the 
ministerial (or regional) level ot entire economies. The 
activities of the model may represent lines of business, 
individual processes, or other individual technological 
alternatives within a division of a company or industrial 
branches, enterprises, or projects within a sector (or region) 
of an economy. A programme or collection of activity levels 
corresponds to a complete set ot tentative decisions (or 
plans) for the entire system, subject to later confirmation 
and adjustment. The structure in figure I(íJ) is angular de- 
composable and represents the simplest possible relationship 
between the connecting and sectoral parts.l* 

Table 1 is a numerical example of a decomposition 
model.17 The model has two sectors, with two special 
resources in each and two connecting resources, capital and 
labour. There are four possible activities in each sector; the 
scales of these activities are variable and are designated by 
A'i... Xi for sector i, A'5 ... Xg for sector 2. All numerical 
data obey the following sign convention: outputs or supplies 
are positive, inputs or demands are negative. Thus the 
capital and labour coefficients of all activities are negative 
(inputs); there are, however, exogenous supplies of these 
two factors, amounting to 350 units in the case of capital, 
and 2,000 units in the case of labour. Once the scales of all 
activities are chosen in formulating a trial programme, 
the flows ot all resources can be determined, and their 
balance verified. The difference between (ii) all outputs and 
exogenous supplies of a resource (positive signs) and (i>) all 
inputs and exogenous demands (negative signs) is defined 
as the surplus of the resource. If the surplus is zen», there is 
an exact balance; if positive, the resource is redundant; if 
negative, there is a bottleneck. In this problem, the criterion 
of the efficiency of a plan is economy in the use of capital ; 
this is expressed by maximizing the surplus of capital. This 
formulation may be interpreted as follows : assuming that 
3 50 units represent the limit of capital stock which can be 
built u!) by saving and foreign borrowing, the criterion of 
efficiency is to reduce as much as possible the need for this 
saving and borrowing by decreasing capital inputs. At the 
same time plan consistency requires that prescribed de- 
mands be met while keeping within available resource 

u Entire economies described by input-output models tend to 
approximate the slightly more complex block-triangular structure. 
The mathematical properties of such systems have been analysed by 
Dantzig (iy'O)- Multi-level decision or planning systems may also 
be described by models in which the connecting and sectoral 
resources do not form mutually exclusive classes but in which 
resources subject to upper-level decision are defined by the aggre- 
gation of sectoral resources. The logic of this kind of system has 
been dcscrilted qualitatively (UNECAFE, 1961), but has never been 
subjected to exact analysis. 

17 The coefficients of this model have been based (with some 
necessary changes and additions) on a small illustrative model used 
by Chencry (195*), table 2. Fixed-cost coefficients have been added; 
they are not used in the linear version of the model. 



supplies; these conditions can be simply expressed as the 
avoidance of resource bottlenecks." 

The model also determines the shadow prices of all re- 
sources. The price of capital is chosen as the numeraire re- 
source whose price is set to unity and in terms of which 
other prices arc expressed. The revenue (positive sign) or 

18 An interpretation of the system of tabic i in ordinary algebraic 
equations is given in the annex. 

cost (negative sign) ot a resource can be determined once 
the shadow prices are given and the technical coefficients of 
an activity are multiplied by these shadow prices. The dif- 
ference between revenues and costs is the profit for any 
activity (variables in top margin). The dual problem con- 
sists in choosing shadow prices V so as to minimize profits 
rr0 on the exogenous activity while profits on all other 
activities are eliminated (see annex). 

The illustrative decomposition model ot table I is simple 

Tabic i 
FORMULATION OF DéCOMPOSITION MODEL 
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surpluses Profits 

Exo- 
genous 

Min!      0 
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0 

*5 
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Labour 0 ^ ox 

\ 0 * o2 
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I 0 4 °i 
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L 
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L 

L 

L 

L 

L 

L 
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enough to permit a graphical representation by means or au 
Edgeworth box diagram (figure II). In this diagram the 
total availabilities ot the connecting resources (3 so units or 
capital and ¿,000 units of" labour) torni the edges ot" the 
box. Resources used in each sector are measured along the 
edges in opposite directions. Thus any point in the diagram 
is a simultaneous representation of four variables: capital and 
labour used by sector 1, and capital and labour used bv 
sector 2. 

Points A. B, C, and D in the diagram represent four 
different complexes that can be formed from the activities 
\'i ... A'1 i>t sector 1; points 1% /-, C, and H represent 
similar complexes formed from the activities of sector z. 
Each ot these complexes contains two activities: two is the 
smallest number that permits the balances of the special 
resources in each sector to be satisfied.19 Table 1 contains a 
list of the activity scales and the total capital and labour re- 
quirements ot each of these complexes; the respective 
activity-scale variables are shown near each point in the 
graph. I11 figure II, the efficient complexes of each sector 

"* These complexes are extreme-point (vertex) solutions or" the 
sub-problems of sector« 1 and 1. These sub-problems are defined 
algebraically in the annex and are discussed later in the text. 

have been connected by a line. Point C represents 111 in- 
efficient complex in sector 1 since it has larger requirements 
of Iwth capital and labour than point 8; thus it will never be 
practical to use complex C. Correspondingly, point (Ì 
represents an inefficient complex in sector 2.-0 

The points along a line connecting two complexes (e.g., 
A and B) represent weighted averages ot these two com- 
plexes. For example, the midpoint of the AB line represents 
an average complex which is tormed by running projects 
.\"i and A'3 of complex A at half the scales shown in table i 
(Ai 37• _s ; X>> 25); likewise running projects X2and A'3 of 
complex fl at half the scales shown for B in tabic 1 (X-> 
42 -HsS, A'3 35715); and summing the corresponding 
project scales (only A-.> requires summation; thus A'j 375, 
A'j 67 858, X3 37 71s)- h can be verified by simple 
algebra that the labour and capital inputs of the averaged 
complex fall exactly halfway between the labour and 
capital inputs of points A and B. In the present case, the 
weighting was 05 and 05. Points other than the midpoint 

-" Inefficient points need not use more capital and labour than any 
one point such as fl or /•'; it is sufficient that they lie northeast (for 
sector 1) or southwest (tor sector 2.) of the line connecting such 
complexes in any sector. 
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arc obtained by using weights in dirk-rent proportions. The 
weights may vary from o to i and have to add up to unity. 
As long as this weighting rule is observed, the special re- 
source balances of each sector will be satisfied by the aver- 
aged complexes, even though the graph contains only the 
explicit connecting factors. This applies also to any other 
point that can be attained by starting with the points lying 
on the connecting line between complexes such as A and B 
and then disposing of (wasting, throwing away) some 
capital and/or labour. 

The two curves in figure II can be regarded as generalized 
iso-product functions for the two sectors describing the 
alternative combinations of the connecting factors (capital 
and labour) that can produce the given output of a sector. 
What is this "given output"? It cannot be identified with 
any single product since all special sectoral resources are on 
an equal footing and none can be regarded as the product or 
a sector; it is thus convenient to think of sectoral output as 
the entire task of satisfying the special resource balances. 

The horizontal and vertical extensions of the two 
sectoral curves to the co-ordinate axes correspond to con- 
ventional usage in economies; they signify free disposal ot 
redundant surpluses of the connecting factors. 

Figure III provides .1 graphical illustr.ition ot alternative 
methods ot tinding an optimal solution to the unnici. Sudi .1 
solution represents a programme or plan (i.e.. .1 set ot 
activities with determined scales) which is both legible, in 
the sense that it satisfies all resource balances, and efficient, in 
the sense that it maximizes the surplus ot capital (i.e., it 
minimizes capital requirements). 

A feasible solution is a programme or plan that satisfies all 
resource balances but is not necessarily optimal. Points B 
and T jointly represent such a plan. Point B is on the iso- 
product line of sector 1 ; thus it is sure to satisfy the balances 
»if the special sectoral resources in this sector. Point 7 is on 
the iso-product line of sector 1 and thus satisfies the special 
resource balances ofthat sector. The labour requirements ot 
the two points add up to 2,000 units and thus satisfy the 
labour balance. All of the resource balances are satisfied and 
the plan is feasible. In order to determine whether it is also 
optimal, the capital requirements are identified. In figure 
III they can be seen to leave a capital surplus exactly equal 
to the vertical distance BT. It remains to be decided 
whether other feasible solutions exist that leave a larger 
capital surplus. 

Note that point B is one of the complexes ot sector 1 that 
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has been presented in tibie I while point T represents a 
weighted average of complexes £ and F of sector 2. This 
solution is labelled as "BEF" by reference to the sectoral 
complexes which form it. Table 2 (line 12) contains a list 
of the quantitative characteristics of this solution including 
labour and capital requirements in each sector, capital 
surplus, and the weights used for averaging in each sector. 
In sector 2 then- weights arc o 926 and 0-074, respectively, 
tor points E and F ; in sector 1. the weight is 1 000 for point 
B since this complex appears by itself, without being 
averaged with another complex. 

In general a feasible solution can be obtained when one 
point is selected from the iso-product line of each sector. 

attention being paid to joint labour requirements. When 
the two points fall on the same vertical line, the joint labour 
requirements add up to 2,000 units; when the point for 
sector 1 falls to the left of the point for sector 2, the amount 
of redundant labour will be equal to the horizontal dis- 
placement between the two points (for example, when the 
combination AE is chosen). Conversely, when the point for 
sector 1 falls to the right of the point for sector 2, there will 
be a labour bottleneck (for example, combination BE). As 
it is generally inefficient to leave labour redundant, a con- 
venient strategy for selecting feasible solutions in the course 
ot optimization is to choose two points that lie on the inter- 
section or a given vertical line with each of the two sectoral 
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«• Capital requirement (inherently negative) in sectors 1 and 2. 
' Surplus of capital (to be maximized). 
k' 01 in the solution indicates a surplus of unused labour 
11 The number in parentheses is the value of a\. 

iso-product functions. The vertical distance between the 
two points measures the capital surplus corresponding to 
the given feasible solution. The geometric determination of 
the optimum is now obvious: it consists in selecting the 
vertical line that maximizes the distance between the two 
sectoral iso-product functions. In the present can- the opti- 
mum is attained at AX; point .V is a weighted average of 
complexes E and F in sector 2. The solution, designated as 
AEF, will be found, quantitatively described, in the sixth 
line of table 2. 

This geometric method of finding a solution is not 
applicable to larger problems: Dantzig and Wolfe (1961) 
however, have provided a generally applicable method 
which can also be followed by means of the graphical 
presentation in figure HI (sec also tables 2 and 3). Dantzig 
and Wolfe break down the over-all problem into two parts : 
a "master problem" and "sectoral sub-problems" corres- 
ponding to central and sectoral-level planning decisions. 
The master problem is formulated in terms of the connect- 
ing resources, in the present case labour and capital, and is 
pieced together by averaging known sectoral complexes. 

The master problem represented in figure III, also de- 
termines prices for the connecting resources; in the present 
case, a price ratio for labour and capital. The sectoral sub- 
problems, on the other hand, systematically find previously 
unknown sectoral complexes for inclusion in the master 
problem. The sectoral sub-problems do not appear ex- 
plicitly in the graph of figure HI, but compliance with their 
balances is guaranteed by the averaging rules discussed 
above. The starting point of the technique has to be one 
known basic feasible solution to the master problem; given 
such a starting point,21 the interaction of the two parts of 
the problem guarantees the attainment of the optimal solu- 
tion in a finite number of steps. 

A basic solution contains the smallest number of non-zero 
variables that is compatible with the number of equations. 
In the master problem wc have four equation» (see annex): 
one for balancing capital and labour requirements respec- 
tively, plus one in 1.ch sector for describing the averaging 

21 If no basic feasible solution is known that would be suitable as 
a srarting point, it is possible to construct one by algebraic tech- 
niques (Dantzig and Wolfe (1961) ). 
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rules for complexes. There are two kinds of variables in the 
master problem : the weights to be applied to the individual 
complexes of each sector, and capital and labour surpluses 
that can also be interpreted as disposal activities. Generally, 
at least fout*2 of these variables must be non-zero. One will 
be the capital surplus o0 which is being maximized, and the 
other three may be three sectoral complexes, or two com- 

plexes and the labour surplus (disposal) activity o\. In 
figure III, basic feasible solutions are obtained, as before, by 
selecting intersection points of a vertical line with the iso- 
product curves, but with the additional restriction that the 
vertical line has to run through a vertex (a point for a single 
complex) in one of the sectors." Solutions BEF and AEF are 

"The number of variables including »lacks (surpluses) in a 
linear programming problem exceeds the number of equations; the 
difference is known as the number of degrees offreedom of the system. 
A corresponding number of variables can be fixed arbitrarily, and 
the values of the remaining variables are then determined by solving 
the system of simultaneous equations. If the preset variables are 
assigned the value of aero, we get a basic solution. By coincidence, 
the solution value of one or more of the variables that have not 
been pre-set may also turn out to be zero; in this case the number of 
non-zero variables will be lew than the number of equations. Such 
a solution is termed "degenerate". 

n Degenerate solutions arc obtained when, »y coincidente, com- 
plexes in both sectors fall on the same vertical Une. 

such basic solutions, but solution ABEF corresponding to 
the vertical line FW is not, as it contains five non-zero 
variables: capital surplus (the maximand), plus noiwcro 
weights for each of the four complexes A and B in sector i, 
and E and E in sector i. A solution such as AEH, corres- 
ponding to the vertical line A, is also a basic feasible solu- 
tion, even though it is off the iso-product line of sector 2, 

since the point A can be obtained by averaging the two 
non-neighbouring complexes E and H. This point is, of 
course, not efficient since it could also be attained by 
starting with point N on the iso-product curve and then 
wasting some capital (corresponding to the distance /VA).24 

In the master problem, not only the starting solution, but 
all later solutions also have to be basic because only basic 
solutions determine a unique price ratio for labour and 
capital, a ratio which is needed in the sectoral sub-problems. 

u Bask solutions need not be feasible. If the solution value of any 
variable (a weight or a slack) turns out to be negative, the solution 
is inieaúblc. In figure IV, basic but infeasiblc solutions arc obtained 
if the vertical line is made to intersect not the line segment connect- 
ing two vertices but the continuation of such a line segment beyond 
one of the vertices. This represents an impermissible weighting of 
the two complexes wkh one weight negative and the other exceed- 
ing unity. See for example point P corresponding to the averaging 
ofcomplexcs A and * in solution ABH (tabic l, line 8). 
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In a basic solution the price ratio is fixed by the slope of the 
averaging line segment that is intersected in one of the two 
sectors. If the solution is non-basic, such as ABEF, the 
vertical line I'll'intersects line segments, generally of dif- 
ferent slopes, in both sectors rather than passing through a 
vertex in (ine sector. 

Let us now trace the course of optimization, using the 
Dantzig-Wolfe algorithm, by reference to figure III. Sup- 
pose the starting point is at the vertical line HI. This cor- 
responds to a basic feasible solution (labelled "AoiH" in 
table 3) in which complex A in sector 1 and complex H in 
sector 2 appear with unit weights; thus two weighting 
variables arc non-zero. In addition, there is some labour 
disposal and thus the labour surplus variable o\ will als»» be 
non-zero; its value corresponds to the distance AI, which 
amounts to r3 y -5 units. The value of the maximand (the 
capital surplus variable o0) corresponds to the distance Ai 
or 27-5 units. 

We assume that at this point only complexes A and H are 
known. While there are only six efficient complexes in this 
problem, in larger problems the number of possible com- 
plexes increases in combination and thus at the beoinnino of 
the optimization there exists very little information concerning 
alternative efficient sectoral complexes. The task of the sectoral 
sub-problems is to identify precisely previously unknown 
efficient sectoral complexes for inclusion in the master 
problem. 

Looking at it another way, if all the efficient sectoral 
complexes were known from the very beginning, the 
optimal solution to the master problem would immediately 
give the optimal solution to the problem as a whole. How- 
ever, as we are generally working with an incomplete list of 
complexes, we require a technique that will bring to light 
new complexes; specifically, we have to discover those 
complexes that arc needed for the optimal solution of the 
over-all problem without having to enumerate all possible 
efficient sectoral complexes. We shall now indicate how the 
sectoral sub-problems are utilized to achieve this aim. 

In the starting solution the price ratio between labour and 
capital is determined by the slope of the line segment AI, 
i.e., the price of labour is zero. The price of capital is unity 
by assumption. Using these relative prices, the sectoral sub- 
problems maximize the combined value of the connecting re- 
sources. In the present problem the connecting resources 
appear as inputs; thus we are, in effect, minimizing their 
combined cost. At the same time, the sectoral sub- 
problems must satisfy the balances of the special sectoral 
resources. 

Although the special resource balances of the sectors are 
not explicitly shown in figure III, they are nevertheless 
allowed for by means of the averaging rules applicable to 
complexes. The straight lines connecting the points corres- 
ponding to the sectoral complexes represent weighted 
averages of complexes; as long as the complexes themselves 
satisfy the special sectoral resource balances, these weighted 
averages will also satisfy the special balances. Moreover, 
when we take one of the points corresponding to the comp- 
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lexes or their weighted averages and subsequently dispose of 
(throw away) some labour or capital, we are still certain to 
satisfy the same sectoral balances. Thus we can map out 
tijeasihlereas for both sectors in the graph. These areas consist 
or the iso-product lines plus ill the points falling on the con- 
cave sides ot these lines. Whenever a point is chosen within 
the feasible area of a given sector, the special sectoral 
resource balances are certain to be satisfied. In this wav we 
can use the graph of the master problem to represent pos- 
sible solutions to the sectoral problems. 

The question arises if in maximizing the combined 
value (minimizing the cost) of the connecting resources in 
the sub-problems, using the price ratio of the starting solu- 
tion, we discover new complexes that are more efficient 
than the ones already known. In figure III, the combined 
value of the connecting resources is represented by budoet 
lines whose slope equals the price ratio between labour and 
capital and whose intercept on the capital axis measures this 
combined value.25 The optimization in each sector is rep- 
resented by a parallel shift of the budget line in such a way 
that the combined value of connecting resources is in- 
creased (combined cost is decreased) while maintaining at 
least one point of the budget line within the feasible area of 
the sector. In sector 1 this procedure leads to point/1, which 
had already been known previously, but in sector 2 the 
optimum corresponds to a new complex E whose exact 
capita] and labour requirements are disclosed by the optimi- 
zation process. 

In what sense is complex £ more efficient than previously- 
known complexes? In the starting solution (figure III), H 
was the only known complex for sector 2. The combined 
cost of the connecting resources for this complex can be 
read off by tracing a budget line with slope o to the capital 
axis of sector 2 : in figure III we read ofF22<: units at pm (the 
same value will also be found in table 3, in the line of 
solution o labelled  'AoiH', under />2).-« The combined 

" The budget line corresponds to the equation 
PL. (    /•) • PK. (   K)     (    ;). 

or: 

(   K) -   (   Z)   PL.(   L), 
since P«    1. Un the graph the axes 1 orrespond to (    K) and (   L) ; 
thus (    c) is the intercept on the (   K) axis. 

M In the master problem pt is a shadow price that correspondí to 
the equation describing the averaging rule for sector 2 (see annex). 
Whenever a complex is included in a basic solution, i.e., when its 
weight is non-iero, the shadow profit for the column of this com- 
plex has to vanish. The mathematical reason for this is the well- 
known rule of complementary slacks applicable to linear program- 
ming problems; in economic terms thé solution enforces "perfect 
competition" between all complexes included in it. Consequently, 
the shadow price />2 and the combined value of the connecting 
resources have to add up to zero; i.e., the combined value equals 

V- 
The above p2 can conveniently be interpreted as a "subcontract- 

ing fee". The master problem places all complexes of a sector in 
competition with each other for the privilege of performing the 
task of the sector, namely satisfying the balances of the special 
sectoral resources. Whichever complex or complexes can perform 
this task at the lowest «iibcontracting fee will be selected to do the 
job. At any stage, the successful complexes will just break even; their 
combined cost for the connecting resources at the prevailing prices 
will just equal the subcontracting fee. The solution to the matter 



cost tor complex £ is, however, »inly slightly under 90 
units as read off in the graph it zty> (89-3 units under Co 
in table 3). Consequently, the inclusion of complex £ in the 
solution promises a combined cost improvement of 
zi-$o   89-3    135-7 units, at the prevailing prices. 

In order to advance from the starting solution we will 
want to include fin the next solution of the master prob- 
lem. As the solution is to be basic, we will have to drop 
sonic other complex or the labour surplus (disposal) activity. 
Tabic 3 indicates the three ways of dropping variables and 
the corresponding solutions; the capital surplus activity 
which is to be optimized is never dropped. If we drop 
complex A, we are left with no complex in sector 1, and 
thus we have an infeasibility. If we drop oit we get solution 
A EH which yields an average complex for sector 2 at point 
A, a feasible solution. If we drop complex H, we get solu- 
tion Ao\E which leads to point J for sector 1, an infcasiblc 
point, implying a negative a¡. (Numerical data describing 
each of these trial solutions will be found in table 2.) Thus 
we have only one feasible choice: solution AEH. This is 
labelled as solution 1 in table 3. 

AEH determines a price ratio of 0.4:2 between labour 
and capital : this ratio equals the slope of the line connecting 
£ and H. Budget lines with this slope yield new complexes 
in the course of the optimization in both sectoral sub- 
problem»: in sector 1, the new complex is B, with a com- 
bined cost of connecting resources equal to ( ¿n) 580-7; 
in sector 2 the new complex is F, with a combined cost of 
( -¿i2) = 488-8. The cost improvement relative to solu- 
tion AEH can be determined by comparison with the com- 
bined cost of A in sector 1 which equals 5807 (pu in figure 
III; also in tabic 3), and the combined cost of cither E or H 
(these are equal) in sector 2 which equals 412-3 (pn in 
figure HI; also in tabic 3). The cost improvements arc thus 
390 and 763 units in sectors 1 and 2, respectively. 

Either of these new complexes can be included in the 
solution of the master problem to obtain an improvement 
in the maximand 00; it is preferable, however, to include 
the one with the larger cost improvement, namely F. Once 
again a variable must be dropped in order to keep the 
solution bask; the three choice» are indicated in the line of 
solution 1 in table 3, and the resulting alternative solutions 
are numerically specified in table 2. The only feasible choice 
hAEF, which determines a price ratio of 0-106 (equal to the 
slope of the segment EF). At this price ratio the budget lines 
disclose no new complexes in the course of the sectoral 
optimizations, and thus the solution AEF turn» out to be 
optimal. 

If, at the suge of solution 1, complex B had been in- 
cluded m the next solution rather than complex F, the path 
of optimization would have been slightly longer. In this 
case BEH turns out to be the next feasible solution ; the 

price ratio remains 0-422 as in solution 1. At this price ratio. 
F is still present with a potential improvement and is thus 
the next complex to be included in the master solution. The 
next feasible solution is obtained bv dropping //, thus 
solution 4 is BEF. with a price ratio of o-106. At this price 
ratio point A appears as an improved point in sector 1 ; the 
next feasible solution, after dropping B. is AEF, the optimal 
solution. 

From the point of view of decentralization this analysis 
of the decomposition algorithm is significant in that it dis- 
closes the insufficiency of price-type control instruments in 
attaining an optinal solution. As already discussed by 
Clopper Almon2? the upper decision-making level cannot 
guarantee the balance of connecting resources merely by 
setting the prices of these resources, in .1 solution such as 
AEF the price ratio EF will not guarantee that sector 1 will 
choose to produce exactly with the weighted average .V of 
complexes £ and F. Faced with the price ratio EF this 
sector may produce at any point along the segment EF, as 
all points along this segment are equally optimal at the 
stated price ratio; it makes no difference which point is 
taken when dealing with sector 2 alone. If the central 
planning office wants to ensure an adequate balance of the 
connecting resources, it has to prescribe a weighting of 
complexes £ and F in sector 2, or a quantitative allocation 
of labour and capital to this sector. At the same time, 
sector 1 can be adequately regulated by the price ratio alone, 
since at the given price ratio it has a unique equilibrium 
position at A. 

An interesting feature of the practical application of 
control instruments in this situation is that the upper 
decision-making level will find it worth while to use both 
price and quantity-type control instruments, even though 
their joint use will be redundant in sector 2. 

"They (the Central Trade Office) announce in quanti- 
tative terms their feasible plan. They tell each plant 
manager how much of each traded commodity he must 
produce and how much he is allowed to purchase . . . 
They also announce the prices and direct that trade be 
conducted at these prices.  They may also instruct tin- 
managers that, subject to their meeting the quantitative goals... 
they should also maximize profits. Such a rule is intended as 

a guide to avoid possible waste in the event that S (the quanti- 
tative goal) is not precisely achieved for one reason or another. 

It is important to note that they cannot tell the managers 
simply to maximize profits (omitting production goals, 
S) for if they did, Central Trade would almost certainly 
have difficulty with its constraints."21 

At the level of activities within a sector, e.g., the project 
level, this insufficiency of price-type control instruments is 
translated into the insufficiency of the usual price-type 
project evaluation criteria, and calls attention to the fact 
that there is an inescapable minimum of quantitative control that 

problem can be improved, however, as long as sectoral optimization 
discloses new complexes that can make a profit at the prevailing 
process and prevailing subcontracting fees. When this is no longer 
possible, an over-all optimum for the entire problem is attained. 

27 In Dantzig (1963), pages 462-465. 
''" Almon in Dantzig (1963), pages 464-465 (emphasis added). 
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*'-* ''' '''' fxerciseJ even in highly Jctcutmlizui linein systems.-9 

This does not mem that multi-level planning is useless; on 

the eontrary. it reinforces the need for such planning as it 

indicates that a decentralized market mechanism without a 

central decision-making level will encounter the same 111- 

deterininacies that characterize the multi-level planning 

system with pure price-type co-ordination. At the same 

time multi-level planning is preferable to pure central 

planning, as it results in an economy of information How. 

It should be noted that the master problem in the decom- 

position algorithm requires no information on special 

sectoral resources or on particular sectoral projects or 

activities; this information is dealt with indirectly bv 

delineating feasible regions for each sector on the basis of 

averaging known sectoral complexes. 

The decomposition algorithm of Dantzig and Wolfe is 

not the only one that can be utilized for co-ordinating the 

master  programme  with   the sectoral sub-programmes. 

Kornai and Liptak  (1965)  have proposed a  multi-level 

planning system in which the information How is the re- 

verse of that in a Dantzig-Wolfe system. In a Pantzig- 

Wolte decomposition the master programme signals prices 

to the sectoral sub-problems and the latter signal combined 

utilizations ot interconnecting resources by particular com- 

plexes to the master programme; in other words, prices 

How downward and quantities How upward (except for the 

quantitative implementing objectives fixed by the master 

programme tor the sectors in which averaging is required). 

In the Korn.ii-Liptak decomposition the master programme 

passes allocations of the connecting resources to the indi- 

vidual sectors; the sectors, in turn, signal their own sectoral 

shadow prices tor these resources to the master programme. 

Without  going   into  the   details  of the  Komai-Liptak 

decomposition it can be seen (figure III) that sectoral re- 

source allocations of labour can be represented bv a vertical 

line cutting the two iso-product curves; at any (basic or 

non-basic) solution separate shadow  prices can be deter- 

mined  tor each  sector.   For an averaged complex,  the 

shadow price coincides with the slope of the averaging seg- 

ment; tor a single complex (which appears  with unit 

weight) the shadow price is distinct for increased and for 

decreased allocations. For tion-opthiutl solutions the compari- 

son ot shadow prices for the two sectors will show an un- 

ambiguous difference; for example, for the basic solution 

Ml the shadow price of labour, both in the upward and 

the downward direction, is greater in sector  1  than in 

sector 2. This indicates the need for increased labour allo- 

cation to sector 1 at the expense of sector :. Conversely, for 

the basic solution A<J]H. an unambiguous price difiéreme 

exists in the opposite sense, indicating the need for increased 

labour allocation to sector 1 at the expense of sector 1. A< 

the cimimi (solution Alii) the vertical cut through .1 .nut 

\ will yield a shadow  price at \ that is smaller than the 

'-'" I he räum- .»1 indifference in the solutions ot some sectors .it 
silted connecting-resource prices is eliminated in •m<tlv ,,1111 , • 
s\stinis which III.IX 1101 luve linear boundan segments. ( )nK ,11 
Mich s\stems \M|| prices .done Mirine to achieve decentralization 

shadow price at A tor decreased labour allocation to sector 

1. and larger than the shadow price at .-I for increased labour 

allocation to sector 1. thus indicating a stable equilibrium. 

Till.  I>M (IMPOSITION PHINt It'll   IN  NON-CONVI;X SYSTI MS 

We shall now use the diagrammatic method developed 

tor linear decompositions to indicate the changes that are 

introduced by non-convexities, as represented bv the case 

ot fixed costs. The principal change concerns the applica- 

bility or iterative corrections to such systems in order to 

improve the efficiency of existing feasible solutions, as 

these tend M break down in the presence of non-convexities. 

One has the intuitive feeling that the presence of small tioti- 

convexities cannot have a profoundly disturbing iiiHueiuv 

on the behaviour of largely convex systems, as common 

observation indicates that markets are often able to operate 

with reasonable efficiency despite the pervasive presence of 

fixed costs, economies ot scale, and other non-convexities. 

Hut what is "small"? What systems are "largely convex'" 

The diagrammatic method otters some bases for judgement 

on these points and suggests guidelines for workable if not 
perfect decentralization. 

Figure IV indicates the first step in constructing 1 

decomposition diagram with fixed costs included to repre- 

sent non-convexities. The fixed costs are expressed in ternis 

of labour and capital requirements (see table 1). For each 

complex such as A, B, etc. the fixed costs of the component 

projects (activities) are added up. In figure IV. these addi- 

tions are performed by means ot vectors (arrows) which 

represent the labour and capital requirements of individual 

activities. In this fashion, point A is carried into point A', 

point fl into point fl', and so on. While points. 4, B, . . . in 

the diagrams have been referred to as vertices, we shall 

refer to points A', B' is ápices in order to distinguish 
clearly between the two points. 

(¿cm-rally, apices cannot be averaged in a linear fashion, 

because averaging apex A' and B', for example, requires 

the joint use of projects A',, .\,, and .V3, while apex A' 

allows only tor the fixed cost of A, and A'3. and apex B 

only tor X¿ and A';J. Thus when two complexes are to be 

used jointly and all the fixed costs have been incurred, the 

variable costs can be averaged linearly.30 In figure V these 

operations have been performed; for example, at .4' the 

vector .V2 has been added, while at B' the vector x\ has been 

added; the end-points of these two vectors can now be 

connected by a straight line. It is significant that the slope of 

this correct averaging line for apices A' and B' is the same as 

"" It tixi-it osts .ilso compuse requirements ot special sectoral 
1.-s.nines these requirements cm he translated into equivalent 
labour and capital requirements calculated at the marginal labour 
and capital requirements needed tor producing the specified amounts 
ot sectoral resources, on the assumption that all of these sectoral 
resources will 111 tact be ¡induced m the optimal progr.1n1111es.md that 
tin corresponding Used costs will thus be incurred in anv event 
Mm assumption ,„.,y , ,„ be valid; and there might be some choice 

m the selection ot activities tor producing these fixed-cost compon- 
ents. We shall abstract troni all of these secondary complications m 
the course of the present discussion. 
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the slope of the vertex-to-vertex average. This is due to 
the fact that A, ft, and the end-points of the correa 
averaging line forni a parallelogram, because the same three 
vectors have been added both to A, and to B, though in a 
different sequence. Thus the correct averaging line reflects 
marginal rates of substitution between labour and capital, 
while an apex-to-apex connecting line does not. 

Two important qualifications to the foregoing procedure 
have to be noted 

(a) While points C and G represent inefficient complexes 
in a linear system, it is by no means a foregone conclusion 
that they will also be inefficient in a non-convex system 
comprising fixed costs. If, tor example, the fixed costs 
associated with C were unusually small, it could easily 
happen that the correct averaging line involving C will pass 
in part on the in/easible side of the correct averaging lines 
for the other complexes, and will thus yield preferred points 
in this range (sec figure VIII and footnote 30). 

(b) In a linear system, averages of neighbouring vertices 
are always superior to averages of non-neighbouring verti- 
ces. In a non-convex system with fixed costs this is not 
necessarily so; for example, the correct averages between 

Apex .4' and ft' and between apex W and ¡) inav prove in- 
ferior in certain ranges to the cor. cet average of apex A' 
and D' if the fixed costs associated with vertex ft are un- 
usually high. 

Do the apices and the correct averaging lines appearing in 
figure V jointly form iso-product lines for the two sectors* 
In answering this question it should be noted that free 
labour and capital disposal is permitted at all tunes; thus 
any point in the diagram representing a legitimate apex 01 
average will dominate all points derived from it by such 
disposal activities. Therefore ft' will dominate all points on 
the correct averaging line between A ' and ft' that are to the 
northeast of ft'; and likewise for A'. As a result, the entire 
line connecting the end-points of vectors V| added to ft 
and .V2 added to A' will disappear and will be replaced by a 
step function between A' and ft' (figure VI). Applying the 
same considerations of dominance to other areas of the 
diagram, we obtain the iso-product lines of figure VI which 
have a much simpler configuration than the apices and 
correct averaging lines of figure V. This simplification of 
the diagram is not a special feature of the numerical ex- 
ample under study but a general phenomenon which is due 

y i 



i 
i 

1 
1 

! 
$i trrrm i 

i—,—t.  4 
1 
4_.    .. 

1 
1 1 

> 
i          i 
1          !          '• 

:                     1 
 -I 1 \  »—— 

i 

i 
1 
1 f%\ 

 f. . 

í -Ki 

  

    f—          •» —       •     . - 4-- 

t 
1 

jar 

E 

UHU ̂  
l i     I 

-- 

1 

I— 
i      t >' 

i_u,,.. 
i--4- - • ,    • 

—i—i— 
i 

;    4- - 
X, 

\ 
\ 
\  r 

- — - 

ML E' 

\¡ . ^  
vir  i 

 1  
¡ 

_i i J !     l^ X 1 \L \   '   !     i -—LU-1-4  

 4  — 

 u . _¡   I   : » FS t ligi' — —i 

i     ,     ; 

— • - 

«£T~^——l 1 |  
1 
i i 

-SE 

: 
 J-    H    --f      -     -    4- +  — 

«i Kil Xi 
~     4 1 »r YJvi 

f 

. .LU 
i             : 

A 1 
1 

i 

i 

:TOR 

I..}.,..^ 
•-U 

1 
1 

-4-4 

1 

i 1.  : I..-4  i -  i          1   -_   -i- 
1 
1   ! i 

—^ <    \    ' 1 i 
1 

1 

i 

1 
i 
i 

1 1 ï ,.1: I ' j — 

I i Hun I 

l>K (IMPOSI i ION: WIHA(.IN(. m ( oMHiixiN iNimini ( ID 

to tin- tact that the correct averaging lines have pronounced 

dips at the apices where one fixed cost is in all eases elimi- 

nateli. As a result the straight line segments representing 

variable costs are generally truncated near the apices and 

in some cases (as between .-1' and B') completely eliminated 
m favour of simple step functions. 

What can be said about the non-convex dei (imposition 

problem represented by the iso-produet lines of'figure VI? 

In general when the lines are correctly drawn and all the 

apices corresponding to feasible basic solutions of the sec- 

toral problems are known, it is impossible to find a solution 

to the master problem without taking into consideration 

all the detailed information represented by the specific sec- 

toral resourie balances and sectoral activities. A knowledge 

of the capital and labour requirements at these apices, 

together with correct averaging procedures, is sufficient to 

guarantee an exact solution to the master problem. The 

averaging procedure in the present case can be based on a 

listing of activities included in each complex together with 

their fixed capital and labour requirements; when two or 

inore complexes are averaged, it is then necessary merely 

to check off'all activities that are included and to add up 

their fixed costs. Formally, the master problem becomes an 

integer programming problem in which the averaging of 

the variable costs of the complexes is conditional on in- 

curring all the rei|iiisite fixed costs (see annex). 

In practical applications, the shortcoming of this pro- 

cedure is twofold. First, it is difficult to solve a large integer 

programming master problem; second and more im- 

portant, the availability of information concerning the 

requisite apices cannot be taken for granted, because the 

number of such apices increases in combination with the 

MA- of the problem. The virtue of the Dantzig-Wolfe 

algorithm is precisely that it generates new complexes as 

they are needed, thereby shortcutting the enumeration of 

efficient complexes. The question is, can a similar procedure 

be developed for the non-convex case? No such prix-dure 

is presently available and the difficulties of evolving one are 
great. 

First, the meaning of prices in the master problem as in 

integer programming problems in general now becomes 
ambiguous. In fip„n. V'H tnc owr_a|| 0ptnmmi happens to 

be at the vertical line passing through B\ as can be verficd 

geometrically or by means of a simple enumeration of 
40 
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alternatives. What is the proper price ratio between labour 
and capital characterizing this optimum ? Is it the slope of the 
iso-product line at JÌ Tl'is slope corresponds to the averag- 
ing of variable costs, i.e., to the slope of the line Eh'; it is 
thus a matginal cost ratio. Or is the proper price ratio the 
slope of the apex-to-apex connecting line, £'F'? In the 
present case the two slopes are not greatly different, but 
with only a small change in some of the fixed costs the 
optimum can be shifted to a vertical line such as MN. Here 
we have three possible price ratios: the two above-mention- 
ed, and the zero price corresponding to labour disposal. 

Second, we have to ask what the role of such a price ratio 
is going to be. Will it be used, as in the linear decomposi- 
tion problem, in a search for new efficient complexes? If so 
the sectoral sub-problems become integer programming 
problems involving the minimization of combined costs 
(as in the linear case), but with allowance for fixed costs of 
the individual projects. In the present illustrative case 
(figure VII) such sectoral optimizations performed at 
the proper price ratios will identify all apices that partici- 
pate in defining the iso-product lines; however, this can- 
not be generally guaranteed, because apices can also occur 

in local indentations of the iso-product lines that are not 
optimal under any price ratio. In figure VIII, for example, 
the fixed costs »if sector i have been changed and apex (" 
now occurs within a local indentation of the iso-product 
line." Regardless of the price ratio for the optimization 
performed within sector i, apex C will never become the 
optimum, if the price ratio between labour and capital is 

*' Fixed costs within sector i have betti changed as follows ; 
*i o, o; (i o, o; Sj loo, loo; x* io, ao. These fixed 
costs carry the points A, 8, (1, and O into A', H', ('.', and I), as 
shown in figure VIII. The correct averaging lines for all binary 
combinations of complexes are shown: these are dc toted by <if>, *, 
•*<, de. M, and cd. The sectoral iso-product function is made up of a 
vertical stretch above D' (capital disposal together with use of 
complex D')\ line cd (the correct averaging line for complexes (." 
and D'); the line segment between points C and I ' (use of complex 
C together with labour disposal): the line segment between points 
U and I' (part of the correct averaging line hd); the line segment 
between points I ' and fl' (use of complex H' together with capital 
disposal): the line ii<> (correct averaging line for complexes A' and 
fl'); and the horizontal stretch to the right of A (use of complex A 
together with labour disposal). Tht correct averaging lines ut, ad, 
and be lie entirely above the istv-product functions, as do parts of 
hd. The line connecting points H' and I)' is m<l a correct averaging 
line. 

41 
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higher than the slope of the line 8'D', apex D' will be 
optimal, but if it is lower, apex B' will be optimal. Thus the 
sectoral optimization can identify apices only if they lie in 
the convex hull of the sectoral iso-product lines. 

Alternately, the role of the price ratio may be to sustain 
an optimum, as in the linear case; if so, the local marginal 
price is the proper one to use, but under the assumption of 
proht maximization for each sector, such a price will sustain 
the optimum only in a most unstable way as the slightest 
change in the price ratio will generally precipitate a cumula- 
tive movement away from the optimum. The concept of 
price characterizing convex systems is obviously not cap- 
able of ready superficial extension to non-convex systems. 

Although no available procedure giutrantees the iterative 
derivatimi of the exact optimum while shortcutting the 
enumeration of efficient complexes, we may still make 
considerable headway toward the practical objectives set 
out .it the beginning of this section by looking for suitab!. 
approximations. 

Figures VH and IX have been drawn to indicate two 
possible approximations to the derivation of an exact 
optimum in such non-convex decomposition problems. 

Approximation I (apex-to-apex connecting line) 

In figure VII the apex-to-apcx connecting lines are 
shown in relation to the correct iso-product lines. The apex- 
to-apex connecting lints yield a linear approximation to the non- 
convex master prohlem while maintaining the non-convex 
nature of the sectoral problems. The linearized master 
problem in effect assumes perfect divisibility of the sectoral 
complexes, and thus ignores the all-or-nothing character of 
fixed cost incurrence in a given sectoral activity.  An 
approximate over-all  solution  can  be obtained in  an 
iterative fashion  by determining successive price ratios 
from the basic solutions of the linearized master problem 
then- priceratios are then applied to sectoral integer program- 
ming problems in an attempt to identify new efficient 
apices (sector ,1 complexes), if such are available. These new 
apices if found, are included in the linearized master 
problem and the procedure is iterated. This procedure has 
the virtue of generating new complexes only as needed, 
similarly to the linear decomposition problem (see annex). 
I he key characteristic« of approximation arc: 

M It will always veld either an exact or an overestimate 
of the correct optimal value of the objective function. The 
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correct optimum in figure VII, as verifiable graphically or 
by simple algebra, is a capital surplus of 79 9 units that 
occur at B'J. (By comparison, the distance between the 
sectoral iso-product curves at a line passing through A' is 
only 77-5 units.) The approximation, on the other hand, 
will yield the overestimate of 86 3 units where the capital 
surplus is estimated as the vertical distance between B' and 
the E'F apex-to-apex connecting line. The reason for the 
overestimate is that the approximation ignores the indent- 
ation occurring between E' and F'; i.e., it docs not take 
into account the fact that three rather than two fixed costs 
have to be incurred when complexes A' and F are cor- 
rectly averaged. Note that the indentation will be ignored 
even when it contains an apex, as at C in figure VIII, 
because this apex will never be identified. Note also that 
while in the present case the approximation attains its 
optimal value at the same combination of complexes as the 
correct optimum, this cannot be generally expected. 

(b) Integer programming within the sectoral problems 
is essential for excluding the possibility of an under- 
estimate. It might be thought that an economy of computa- 
tion would result if the sectoral integer programming 

problems were replaced by their linearized versions 
excluding fixed costs; this would identify new vertices i ioni 
which the corresponding apices could be derived by the 
addition of fixed costs. Such apices, however, would not 
necessarily lie within the correct iso-product line; they 
might be dominated by other apices and could lead to an 
underestimate. 

(f) The approximation will be good to the extent that 
non-convexities arc weak, i.e., to the extent that local 
indentations are small in comparison with changes of the 
objective function corresponding to different basic solu- 
tions of the linearized master problem; in other words, to 
the extent that the apex-to-apex connecting line stays close 
to the true iso-product line. Closeness is measured in 
reference to a feasible area which is convex in the large and 
has only small local non-convexities. Note that the graph- 
ical representation permits an intuitive appraisal of the 
relative roles played by convcxity-in-thc-largc versus 
non-con vcxity-in-thc-sniall. 

(if) Such a situation is likely to arise when fixed costs are 
small in relation to the changes of variable cost over the 
averaging ranges, or when the fixed costs of many common 

4.1 



activities arc shared among neighbouring complexes that 
differ only slightly in activity composition. 

(<•) Another important situation of this kind arises when 
fixed costs in a sector are incurred stepwise, i.e., when 
projects with given fixed costs are limited to a maximum 
scale, beyond which the fixed cost has to be duplicated. 
This reduces the size of the abrupt increase in correct 
averaged costs near the apices and brings the iso-product 
line within a fraction of the distance from the apex-to-apcx 
connecting line that prevails when fixed costs have to be 
incurred in a single step (see annex). 

(0 The computation will be efficient to the extent that the 
sectoral integer programming problems are small or have 
a special structure that renders them easy to deal with. 
Approximate solutions to these sectoral optimizations are 
acceptable provided they are dual feasible, i.e., that they 
constitute overestimates of the sectoral optima. Algorithms 
employing cutting planes satisfy this requirement and may 
thus be terminated after a reasonable number of steps. The 
approximate sectoral solutions are then available for sub- 
sequent iterations of the master problem. As such algor- 
ithms show rapid progress initially and often slow down 

critically near the optimum, the possibility of using the 
results of runs of limited length might be valuable. 

Approximation j [unavetaged apices) 
In figure IX the unaveraged apices are shown in relation 

to the correct iso-pn»duct line. An approximation to the 
iso-product line can be pieced together from these apices 
by adding vertical and horizontal extensions corresponding 
to free labour and capital disposal activities. In other words, 
whereas in approximation i we formed apex-to-apex con- 
necting lines which gave the appearance that the apices 
could be averaged in a straight linear fashion, the approxi- 
mation 2 discards the tool of averaging altogether and 
simply disposes of labour and capital not required by one 
apex or another in a given solution. As a result, solutions 
are restricted to one complex in each sector. The character- 
istics of this approximation arc the following: 

(a) It always yields an underestimate of the potinial value 
or the objective function, for two reasons: first, because it 
ignores the possibility of legitimate averaging; and second, 
because it generally operates with an incomplete list of 
apices if the problem is large. In the present case the 
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optimum occurs using complexes A1 and F\ and yields 
an estimate of 77-5 as against a correct optimum of 79-9 
units. 

(b) The master problem is now an integer programming 
problem which does not yield useful prices for defining 
sectoral objective functions. 

{() Individual apices may be generated in any convenient 
way; e.g., by means of simultaneously undertaking the first 
kind of approximation (apex-to-apex connecting lines), 
or by linearizing the sectoral problems. 

(d) Approximation 2 is good whenever non-convexities 
•ire large in relation to changes in the objective function 
corresponding to widely separated solutions; in other 
words, when the sectors arc characterized by a few major 
indivisibilities. The reasons for this are that in the case of 
large non-convexities not much is lost by refraining from 
averaging and the number of apices contributing to the 
correct iso-product line in any sector is necessarily smaller. 
Thus the apices are relatively easier to identify on the basis 
of empirical considerations which arc likely to be well 
known to planners familiar with the sector, and therefore 
the possibility of missing significant apices is greatly 
reduced. 

(<•) The computation will be efficient to the extent that 
the master integer programming problem is of manage- 
able size. If an approximation is required for the master 
problem, it should be the primal-feasible kind in order to 
conserve the character of an underestimate. 

In sum, the two approximations are complementary. 
Taken together, they yield both an upper and a lower 
bound on the value of the optimal solution ; in addition, 
each tends to be close in cases with opposite characteristics. 
The first approximation tends to be close when the feasible 
area within a sector is convex in the large and has only 
small local non-convcxitics, while the second approxima- 
tion tends to be close when a sector is characterized by a 
tew major indivisibilities. It is noteworthy that present 
practical methods of coping with non-convexities in 
economics tend to run in the direction of the«.' two 
approximations. Thus in the case of small non-convexities, 
an attempt is made to define some reasonable average cost 
and price that will take into account the presence of fixed 
costs, while in the case of major indivisibilities the oper- 
ation of the price system is invoked only after quantitative 
decisions have been taken in regard to these indivisibilities 
HI other than pricing criteria. 

The decentralized decision-making process, using these 
two approximations jointly to simultaneously obtain the 
upper and lower bounds of the optimal solution, operates 
111 the following fashion. The starting point is a feasible basic 
solution to the linearized master problem; in the present 
example, this can be provided by a single complex in each 
sector, together with the labour-disposal activity. The 
upper decision-making level calculates the prices corres- 
ponding to this initial solution and transfers them to the 
sectors. The sectors regard these prices as parameters and 
optimize their integer programming problems at the given 

prices; then they pass the combined fixed and variable 
labour and capital requirements of their optimal solutions 
to the upper level. The upper level checks these factor 
requirements against the current shadow prices of the 
linearized master problem including the sectoral "sub- 
contracting fees" (see footnote 26). If no profits occur, 
approximation 1 has terminated and the current solution 
of the linearized master problem furnishes an ¡wrestimatc 
of the correct non-convex optimum, otherwise the profit- 
able complexes are included in the linearized master 
problem and a new trial solution is computed. As long as 
profits are present, however, there can be no assurance that 
the current solution is an overestimate. The upper decision- 
making level may solve in the course of every iteration an 
integer programming problem, constructed from the 
currently available sectoral complexes on the principles of 
approximation 2. If undertaken, this computation furnishes 
at every stage an underestimate of the correct non-convex 
optimum, but it is not necessary to perform the computa- 
tion until approximation 1 terminates, because the stage- 
by-stage results are not required for later operations. 

An important feature of these stagc-by-stagc under- 
estimates is that each of the corresponding solutions is 
feasible, and if the iterative process is broken off at that 
suge the solution will yield a decision (plan) which can be 
translated into practice with a known payoff. This is not 
true of the stage-by-stagc solutions of approximation 1 ; if 
one of these solutions is translated into practice there is no 
way of predicting, from the information available to the 
upper decision-making level, what the actual payoff will 
be. In other words, if the upper decision-making level 
instructs the sectors to utilize given sectoral complexes 
with prescribed weights corresponding to a particular 
solution to the master problem, the resulting payoff is 
uncertain. This uncertainty carries over even into the 
optimal solution obtained by approximation 1. It is known 
that the latter solution gives an overestimate of the payoff, 
but when translated into practice there is no assurance that 
it will yield an actual payoff that is superior to the under- 
estimate provided by approximation 2. 

In view of this situation it is useful to introduce the 
correct averaging procedure as an auxiliary feature of the 
decentralization mechanism. As indicated in more detail in 
the annex, the correct averaging procedure requires 
slightly more information than approximations 1 and 2. 
In addition to the combined factor inputs at the apices, it 
requires a list of fixed costs incurred at each apex so that all 
fixed costs characterizing both (or several) apices may be 
included in the correct average. Given this additional in- 
formation the decentralization mechanism can be strength- 
ened in the following ways : 

(a) As regards approximation 1, given any feasible 
solution to the linearized master problem, the actual payoff 
of this solution in the non-convex system can now be 
calculated. Moreover, this payoff is a firm underestimate 
of the optima] payoff in the non-convex system. Thus a 
solution obtained at any stage of approximation 1 can be 
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translated into practice with a known payoff; in particular, 
the optimal solution tor approximation i will now offer 
both an upper and a lower bound on the optimal payoff or 
the non-convex system. 

(b) As regards approximation 2, given a list .if" apice«, 
obtained through the iterations of approximation 1 or 
otherwise, a master integer programming problem can 
now be formulated which will allow a solution to be 
found with a closer approach to the optimal payoff of the 
non-convex system. Where previously only the straight 
combination of unaveraged complexes has been permitted, 
averaging now becomes possible. The solution will still be 
an HHíArestimate since the list of apices is generally 
incomplete. 

TlIF «OIF OF PRICES IN  NON-CONVEX  TWO-LFVFL »FUSION 

SYSTEMS 

Whichever way the approximate solution to the non- 
convex problem is identified, the question remains how 
the upper decision-making level can put such a solution 
into effect and what role a price system might pay under 
such circumstances. 

Marginal-cost pricing of the comiectino resources is consistan 
with optimal mourn allocation. It has already been shown 
that the slopes of the correct averaging lines (figure V) 
represent marginal rates of substitution between labour 
and capital. The same interpretation can also be extended 
to the horizontal and vertical line segments that aro used for 
eliminating inefficient stretches from the iso-prodnct line 
(compare figures V and  VI). Horizontal  line segments 
represent labour disposal; i.e., over then- segments it is 
more efficient to use a single complex in a sector than to 
average two complexes, even though the use of a single 
complex  entails  the  presence of some  unused  labour. 
Vertical line segments are similarly obtained by replacing 
an inefficient averaging of complexes by a single complex: 
in this case, the capital saving shows up as a net gain that is 
available «wily at a single point along the continuum of 
labour allocations. Thus the marginal rate of substitution 
in these two cases is zero and infinity, respectively. With 
this extension the slope of the iso-product line can be 
interpreted as a marginal   rate of substitution at every 
point where such a slope is defined. 

At a local optimum (and thus necessarily at the global 
optimum as well) the relationship between the marginal 
rates of substitution of any two connecting resources for 
any two sectors is a straight extension of the neo-classical 
efficiency conditions, from the usual smooth iso-product 
functions  to the  present  angular ones.92  If the upper 

« I. M. I>. Little (i<jso), page i¿7, »umiliarne» the relevant ad- 
dition thus: ... th.- ratio of the martial products »! any two factors 
.* production must be tin- sanie tot every good in the production of 
which they tx*h co-operate". Replace the ratio of marginal prod- 
ucts by the corresponding marginal rate» of substitution and con- 
sider a differential reallocation of labour frinii sector 1 to sector 1 
Then the marginal rate of substitutum <Ut ë in sector 1 can be 
interpreted as the corresponding decrease in the use («crease in the 
surplus) <»t capital and conversely in sector 2. Maximisation of the 

a* 

decision-making level sets the price ratios of connecting 
resources to the marginal rates of substitution prevailing at 
the global optimum.*» there will be no incentive for 
further marginal resource reallocations from the point «>/ 
i'iVir i>/ the system as <> whole. 

The indeterminacy of decentralization and control hy means 
of purely price-type instruments that has been observed in linear 
systems will be present to an even stronger deoree when the 
optimisation of sectoral payoffs under imroinal-cost pricino is 
applied to non-convex systems. Hy sectoral payoff we mean 
the value of the connecting resources, in the present case, 
the cist (negative value) of labour and capital. Though, in a 
linear system a given price ratio will generally sustain an 
optimum in the sense that at this price ratio no movement 
away from the optimum will appear advantageous to any 
of the sectors (even though this optimum will not be 
attained without the intervention of quantitative controls), 
in a non-convex system a set of marginal-cost prices will 
not sustain .ven the optimum in any stable sense. In a 
linear system the sectoral payoffs are maximized at the 
marginal-tost prices corresponding to the over-all system 
optimum. In a non-convex system, on the other hand, 
marginal-cost pricing at the system optimum will in some 
sectors lead only to stationary ranges or points in the 
payoff,»4 such as the stationary range along the points of 
the straight-line segments \/> of the iso-product curve of 
scct.iT 2 passing through J (figure VII). Note that at the 
labour price set by the slope of this segment the payoff of 
sector 2 at J is actually at a minimum; alternate minima 
occur along the entire stretch  XV of the straight-line 
segment.  Movement away from J, either to iï or / ', 
would  improve  the payoff of sector 2.  Marginal-cost 
pricing of the connecting resources can be said to sustain 
the global optimum B'J only in the limited sense that at 
such prices sector 2 will be indifferent to small local move- 
ments along the iso-product curve. However, given the 
ability of the sector to consider longer-range adjustments 
to F or F (which is certainly a reasonable supposition in 
the  case   of two-level   planning  or  decision   systems), 
marginal-cost pricing alone will no longer suffice to sustain 
even the global optimum of the system. 

Thus in non-convex systems where the sectoral values of 
the connecting resources are to be maximized under 
marginal cost pricing there is a constant tendency for some 
sectors to abandon the position required for the system 

o ?,     . p t uTT 'viWS|- mSi whtn hb*• '«<**"<« 
ïf»T J»« 1 V. u" th?." ,h* M ,hc Wm»l **•*»» -»«d 
A     A L   

Whon ¥*m »**•«'«" '«> «mor 1 is slightly greater 
than that at th, optimal solut,«,. |„ these formulas MRS is taken as 
inherc-ntlv negative.  It can readily be mined by reference to 

optima near MN satisfy these conditions. 
»The marginal rate rf substitution w.ll be undefined at the 

L«tTn* """•U* fhc *Ctor*' **'in 6Vm V» * I»»»« * for 
h£k¿* COmfKk"n":i

,t •"'*•" "'PI*" »hat the same contorni 
holds »or a resource m ,11 sectors; in this case marc than .we price- 
ratio is consistent with the optimum r 

w Arrow and Hurwkz (i960), pages fW-uo. 



optimum, and this tendency has to be- counteracted by 

specific quantitative controls suchas fixed resource agna- 

tions. The practical consequences of the introduction or' 

such quantitative controls are not greatly different from the 

effects of such controls in linear systems; in this regard 

non-convexities merely reinforce the control require- 

ments already manifest in linear systems. 

in non-convex multi-level decision systems with maximization 

of sectoral payoffs under marginal-tost pricing for the connectino 

resources, there will always he external economies and dis- 

economies linking the sectors. The tendency of some sectors 

to abandon the position required for system optimum is 

due to the possibility of improving sectoral payoffs with 

large readjustments at current marginal-cost prices. But 

the improvement for the sector would be obtained at the 

expense of the deterioration of the system as a whole, 

because the tactor reallocations required for the readjust- 

ment of the sector in question would leave other sectors 

with a loss greater than the gain of the first sector. Marginal- 

cost pricing furnishes a reliahle measure of system-wide reper- 

cussions only for differential readjustments mar a local optimum, 

not for the longer-range readjustments considered here. 

Thus in the course of such longer-range, non-marginal 

readjustments of a sector, external economies or dis- 

camomics of the technical variety will come into play: it 

is as though the sector originated un-priced services or 

disservices that affect the efficiency of system-wide re- 

source allocation. The question arises as to what the exact 

nature of these un-priced services or disservices is. Similar 

questions have puzzled generations of economists con- 

cerned with the analysis of externalities.3* 

A key to the problem is furnished by the cutting-plane 

technique of solving integer programming problems (see 

annex). When new linear constraints of the proper kind 

are introduced into linear programming problems whosc 

variables are restricted to integer values, the resulting 

enlarged linear programming problem will yield an 

optimal solution identical to the integer solution of the 

original problem. The enlarged problem is convex, and 

all constraints, including the newly defined constraints, 

have proper shadow prices in the optimal solution. The 

"résonnes" corresponding to the newly defined constraint, un- 

priced in the original problem, are the missing services and 

disservices linking different sectors.3* In general there is no 

Ji For a recent review, tee Whinston (1962). 

*• The coefficients of the new constraint« arc derived from the 
coefficients of the original constraints in such a way that «ero co- 
efficient in the original constraints imply zero coefficient« in the new 
constraints. Thus the new constraints will leave unaffected the 
sectoral partitioning of a matrix such as that of table 5 or table 6 in 
the annex. How can we then ajiett that the new constraints create 
external«!« Unking diffèrent sectors? Even though the new con- 
straints do not possess coeguients interlinking the sectors, the deriva- 
tion of the new constraints depends on the .efficients of the connectitix 
tesemnts which of course do link all sectors. In Gomory's fractional 
method the new constraints depend on the non-integer solution of 
the (progressively restricted) original problem while in his all- 
integer algorithm (içtto) the maintenance of dual feasibility in the 
course of his lambda-transformations depends on the coefficients of 

unique way of defining new constraints;:l" thus thc'missiug 

resources" do not have a definite identity of their own and 

are just shadowy reflections of the underlying non- 

convexity of the system. No wonder they have persistently 

eluded being defined by economists. The search has been 

all the more frustrating because in sonic essentially convex 

systems exhibiting technical externalities, the un-priced 

resources responsible for the latter are relatively easy to 

identify (lighthouses vs. ships, sparks from railroad engines 

i-.«. lumber tracts, smoke nuisance, etc.) 

Decisions involving the incurrence of fixed costs can oenerally 

not he decentralized <>y ,1 price system ami the maximization of 

sectoral payoffs, except in an approximate fashion. The fixed- 

cost incurrence activities, even though associated with 

individual sectors, carry over from the latter into the non- 

convex master problem involving the correct averaging of 

a complete list of known feasible basic solutions (compare 

annex, tables 1 and j); thus the correct averaging of 

complexes requires information on sectoral fixed costs, 

activity by activity. In other words, while the sectors in .1 

linear system are free to choose all aspects of their own 

technology under a set of centrally announced prices for 

the connecting resources and are subject to quantitative 

controls only in regard to a selection from among their 

alternate optima, in non-convex systems the optimal 

allocation of resources is contingent on referring all 

detailed fixed-cost incurrence decisions to the planning 
centre. 

An approximate decentralization is. however, possible 

following the principles of approximation 1. There it was 

shown (see also annex) that a lineari/ed master problem 

that handles individual complexes as though they were 

perfectly divisible will yield a set of prices which will guide 

the system to a satisfactory sub-optimal solution, provided 

that the deviation of the apcx-to-apex connecting lines 

from the correct iso-product lines is within tolerable error 

limits. The latter is more likely to be the case when fixed 

Ciwts can be incurred stepwise in the individual activities 

rather than requiring all-or-nothing decisions (see annex, 

figure I). Under such an approximation the individual 

sectors are again free to choose- their own technology 

including the assortment of fixed costs to he incurred, but this 

gain in decentralization is achieved at the expense of some 

blurring of the optimal resource allocation for the system 

as a whole. If, however, the size of the steps by which fixed 

owts are incurred becomes progressively smaller, the 

approximation in the limit approaches an exact solution- 

finding procedure for the case of perfect divisibility, and 

average factor costs defined by the apex-to-apex connect- 

ing line become true marginal costs. The same result also 

obtains when in the Itwig run fixed costs can be proportion- 

ally adjusted to required capacities that are continuously 

the objective function and, due to the paramount importance of 
degeneracy and lexicographic criteria, on the coefficients of the 
other connecting resources as well. 

37 Gotnory and Baumöl (1900). 
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variable:  the situation is then an exact analogue of the 
well-known textbook case of a long-run envelope line 
derived from the capacity points of linear short-run total- 
cost curves with fixed costs, each of which has a smaller 
-lope than the envelope (see annex, figure I/>).3* With 
small but finite fixed cost steps, the apex-to-apex connect- 
ing line will yield exact estimates of resource requirements 
at a number of lattice points along the line if at these 
points   all   fixed-cost   increments   already   incurred   are 
operating at capacity.»» At such lattice points, if any exist, 
the amount of fixed costs actually incurred will be in- 
distinguishable from a perfect long-run adjustment with 
continuous variability. Such lattice points are most likely 
to occur in practice when only one of the complexes to be 
averaged has fixed costs.4" 

// the decentralization of fixed-cost incurrence decisions is 
altogether abandoned, maroiual-cost pricino of the connecting 
resources   will permit  the  decentralization  of other  sectoral 
decisions. If the upper decision-making level provides a list 
of fixed costs to be incurred in the sectors, the activities 
whose fixed costs have not been incurred will be inacti- 
vated. The other activities will now jointly define a linear 
two-level decomposition problem whose solution implies 
marginal-cost pricing of the connecting resources. Such a 
decision strategy is often suitable, e.g., for plant location 
problems where    after the selection of active plants    the 
remaining production-and-transport problem  is convex 
and leads to a well-defined system of shadow prices. The 
central selection of active plants can be undertaken by 
suitable approximations such as those described   in  the 
section  on  the decomposition  principle in  non-convex 
systems. 

In this case the decision process is divided into two stages. 
During the first stage information is interchanged between 
the upper and lower decision-making levels; as a result a 
programme emerges that represents a target decision (plan) 
tor all levels of the system. In stage two this plan is to be 
implemented. Following the announcement of active 
plants by the centre, and reduction of capital and labour 
availabilities by the fixed amounts alreadv committed, 
further implementation can follow the trial-and-error 
adjustments of a linear decomposition system, held within 
reasonable bounds by the c|iiantitative controls that are 

These eases are compatible with perfect competition that would 
prevail in the „»decomposedsystem as a whole, without any need tor 
upper or lower decision-making levels. Here all decisions are 
decentralized to the individual activity within a sector; this activity 
is a composite o» the production and rixcd-cost-ineurrencc activities 
with all resource coefficients corresponding to operation at capacity 
level (see m.vdel ot table ,. annex). This is a limiting ease' of'com- 
petitive supply WIIh U-shaped average cost curves; with linear total 
¡osts up ,o capacity the left leg of the "U" is a hyperbola, the right 
leg is vertical and the level of .„immuni average costs is determined 
•lusuies variable costs) by average fixed costs at capacity operation. 

^ Fixed costs common to both complexes, that are incurred in . 
Single step at the scales of these complexes, need not meet this 
requirement. 

'" 1 xcept for fixed costs of the kind specified in the previous 

4s- 

always needed in linear systems for the weighting of 
alternate ector.-.I optima in some of the sectors at the given 
prices. 

" Averaoe-cost" pricing of the connecting resources is preferable 
10 waroinal-cost pricino. to the extent that the decentrali ¿atún of 
fxed-cost incurrence decisions is of practical concern. In this 
context "average-cost" pricing of the connecting resources 
is taken to mean prices that correspond to the slopes of the 
apex-to-apex connecting lines. 

In  many   practical  problems of multi-level  decision- 
making, e.g., in national economic planning, the decentral- 
ization ot fixed-cost incurrence decisions is of the utmost 
importance. In national planning large numbers of invest- 
ments have to be identified by class of economic activitv. 
time period and location, and it is desirable that the central 
planning level be relieved of all but the most essential of 
these decisions.  Average-cost pricing of the connecting 
resources (as defined above) by the upper decision-making 
level will permit tnal-and-error adjustments in the course 
ot  plan  implementation   that follow   the   principles   of 
approximation  i. These adjustments, like the ones of a 
linear system, have to be held within reasonable bounds by 
cjuantitative  controls   which prescritte  the   weighting   of 
given sectoral complexes, even though, in contrast to the 
linear case, this may lead to a reduction of some sectoral 
payoffs. 

In this, as in the previous case, the decision prexess will 
generally have to be- divided in two stages. The first stage is 
required in order that the degree of error of resource 
allocation, inherent in the decentralization of fixed-cost 
incurrence decisions, may be judged. If this error is toler- 
able, the second stage can follow with its trial-and-crror 
adjustments in the course of plan implementation. 

More generally the first stage permits a judgement con- 
cerning which fixed costs are to be centrally prescribed 
and which are to be left for decentralized decision making. 
It is entirely possible to prescribe or to suppress one group 
or fixed costs while another group is left open for decentral- 
ized decisions. In this case the prices of the connecting 
resources will be 'average-cost" prices as before, but with 
certain fixed costs (those that have been prescribed) omit- 
ted from the complexes, and with certain complexes (those 
that contain activities with suppressed fixed costs) omitted 
altogether from consideration. As in approximation i. the 
sectors will maximize their payoffs, taking into considera- 
tion only those fixed costs whose incurrence has been left 
open. Resource availabilities are again reduced by the fixed 
costs already committed. At every stage of plan implemen- 
tation the trial-and-error adjustment is kept within bounds 
by cjuantitative controls. 

In a two-level decision system, where sectoral decisions 
occur as a unit, the question of pricing for individual 
activities can be left open. Given the non-convexity of 
hxed-cost incurrence operating within as well as between 
sectors, there will be externalities (and corresponding un- 
priced missing resources") at the sectoral level as well as at 
the level of the system as a whole; therefore, no simple 



pricing prescriptions can be expected. In considering intra- 

scctoral pricing rules, the possibility of further decentral- 
ization must be kept present; moreover, on practical 
grounds the setting of prices to cover average costs 
approximately at planned output levels is to be strongly 
favoured. 

CONCLUSION 

The investigation of the properties of two-level decision 
systems with angular decomposable structure made 
non-convex by the inclusion of fixed costs yields some 
preliminary insights into the structure of more generd 
non-convex economic systems. Thus it is apparent that non- 

convexity usually will give rise to externalities, but the 

converse cannot be asserted. Moreover, an economic 
system such as that of a present-day predominantly private- 
enterprise industrial economy can operate with a reasonable 
degree of efficiency in spite of its pervasive elements of 

non-convexity, provided that (,,) highlv indivisible decis- 
ions are subject to some kind of rational centralized 
deliberation independent of the market, and (b) smaller 
irregularities are adjusted by a price system that is based on 

average costs near the highest efficient scale of operation. 
It is equally clear that these preconditions are only im- 
perfectly satisfied in practice and that a properlv function- 
ing decentralized planning system can contribute sub- 
stantially to coping with the problems of efficient resource 
allocation. 

ANNEX 

NOTATION" 

The schema given in table i (text), following Tucker (i<Ai), is 
.1 succinct joint representation of two systems of linear equations. 
One system arises by forming the inner products of the vector 

V     l-V, AM 

with the rows of the matrix .-1. the matrix of numerical coeffici- 
ents in table i (text), and setting each inner product equal to the 
corresponding components of 

"n 

<*M 

This leads to a ssstcm of M   » linear equations in the .V variables 
A;: 

T«     iiim-V»    ...    oo.v-Yv 

This yields a sssteni of V    / linear equations in tin  variables 
V,: 

Í-0        <I«H|T||      . . .      ilMoV.tf 

'v       "o.vYo • • •      ''.W.V'.W- 

In table i (text), the negative variables l¡ luve krn replaced 
by positive variables TT¡. Tucker (lyftj. pages X <>) shows how the 
systems of linear equations given in the schema in homogeneous 
form can be employed in non-homogeneous form hv setting \0 

and Vo equal to units to treat dual linear programmes. Here un 

becomes the maxiniand of the primal problem and /.,, becomes 
the minimand of the dual problem, with all other variables 
required to be non-negative. When we replace the /., variables 
by itj variables, the minimand becomes irH .md the other nj vari- 
ables are required to be non-positive. In the economic interpre- 
tation of the problem, the L¡ are losses while the /.; nj are 
profits; the .V; are activity scales, the i j shadow prices of re- 
sources, and the o/ unused resource surpluses. 

A lull algebraic expansion of the problem summarized in table i 
(text) is given in the table on page so. 

If 

ff.M    d.vn-Vo    ...    «.w.v-Yv- 

The second system arises by forming the inner products of 

y» 

with the columns of A, and setting each equal to the correspond- 
ing component of 

•¿----I   Ut  -¿.vi- 

^Quoted, except l'or a change m notation, Iront Tucker (1963), pages 

Tilt  IINI.AR I>1 COM l'osi HON CHOHII M 

The nwur pwblnn (extremal sub-problem) and one of the two 
su turai sib-probliws, following the decomposition method of 
Dantzig and Wolfe (iy6i), arc given in table 1 (below), again 
using Tucker's condensed schema. The interpretation agrees with 
the discussion above, except for a slight modification in the can- of 
the sectoral sub-problem. Here the maximand C] is .1 weighted 
average of the two top rows with pa and />/, employed as con- 
stant weights; m particular pK is always set to unity. The resource 
surpluses characterizing the two top rows will be negative (as 
capital and labour are not produced and as there are no exogenous 
sectoral supplies) and are not subject to the non-negativity con- 
straints applicable to the other resource surpluses. The constant 
weights pu and pi, are set 111 the course of each iteration to the 
last solution values of the same variables in the master problem. 
The sub-problem for the second sector (not shown) can be 
derived from the original problem by analogy. 
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frimai problem. 

Max! "0 J SO II.Vl      fi S Va 3-o.Vs 7-J.Vi v5 -¡•S.V« oft.Vr 3-üA'H 

Subject to o\ 2000     1 J-S.X'i    7S Va ft-o.Vj 7-o,\'| is-o.X's so.V« 4-0X7 I i 'O.VH 

f-i 50 \'l .V» osX's o-X, 

<*3 so 0-2 s V¿ \:i V, 

<>\ 25 Si •Ve O-H.V; 

o& 2 5 0-2X5 o-S-V« V; \H 

.llkl at > 0, I      1, 

0./       1, 

. . . , S 

..., s 

Dual probi an : 

Min! TO 3 so :ooo   Vi so Va   so v3 1S   V,    . :s   V, 
Subject to *i 

rr-i 
i-l 

'•-s 

12-jVl 

7-5 Vi 
Va 
Va    o- -SV3 

fs OM <VOVI o- ?V2 V:, 
"4 -'S ?oV| o- :V2 V3 

"5 ¡•o 'S oVj >4 o-iV4 

"» -'S VoV'i v4 osVs 
JT7 0-6 4-oVj 0'S\", • >5 
"8 PO IPOV'I V3 

.nul ? 
^ 

0,1       1, 

0,1      1, 

..., s 
. . . , H 

I Vpcnding on />/,/>*. different optima to the sectoral sub- 
problems will be att lined.b The possible optima include, for the 
present problem, vertices A, H, and /) for sector i, and vertices 
/;', /-', and H for sector 2. IX-signatc the total capital and labour 
requirements of any of these optinu by K„, /.„, where ic is 
the index of a vertex. The requirements appear in n. master 
problem (table ¡(a)). 

In the master problem ÁA, . . . , \H are variable weights to be 
attached to each of the sectoral vertex solutions. Then- weights 
have to add up to unity for convex combinations of vertices, as 
expressed by the constraints of the third and fourth row. Note 
that the new resource surplus variables tt% and tri« corresponding 
to these constraints are artigliai, i.e., they are introduced onl\ 
formally, since they are required to be exactly zero in the optimal 
solution. The other two resource surpluses are the same as en- 
countered in the original problem and refer to capital and labour, 
respectively. The capital surplus is maximized. The variables of 
the dual problem are the shadow prices pu, />/,, />|, />.» associated 
with capital, labour, and the two convexity constraints. Hie 
shadow price for capital is identical with the variable V« in the 
original problem and is set equal to unity; the shadow price for 
labour is identical to V|. The shadow prices p\ and />a can be 
interpreted as "subcontracting fees" as discussed in footnote i(i of 
the text. The variables n¿ rrM are profits at shadow prices, 
associated with the use of each vertex (complex of activities). The 
dual minimaud nn can be interpreted as the net valuation of 
exogenously given supplies and demands at shadow prices, where 
the ( i) entries in the exogenous column stand for the net 
exogenous demands of sectoral resources. 

*' the «puma may hi' extreme-point (vertex) or homogeneous solutions 
(l)ant/ig and Wolfe, lyfti). Homogeneous volutions indicate that the 
nuxinuiiil of the sub-problem may be expanded without limit; in other 
word», the ipceifie sectoral resource constraints do not preclude such an 
expansion. It" such a ituatinn occurred in the lull problem, it would 
indicate that the prol nt was unbounded ; but the solutions to the sectoral 
sub-problems an- also subject to the constraints on the connecting re- 
sources, and thus homogeneous sectoral solutions are permissible (l)antzig 
and Wolle, lyoï. pages 77J 774). None such occurs in the present problem 

In the above formulation, all vertex solutions (efficient com- 
plexes) are included in the master problem. If, in fact, all of these 
were present from the very beginning, the solution to the master 
problem would at once yield the over-all optimum. The algor- 
ithm operates, however, with only a partial list of such vertices 
which initially define only a single feasible starting solution. At 
aii> stage of the algotithm the current optimum to the master 
problem yield a set of shadow prices. At these prices, all vertices 
with positive A„ weights have zero profits, while other vertices 
have negative profits; no positive profits can occur at am such 
an optimum. 

In order to test whether the current optimum to the master 
problem is also an over-all optimum, an attempt is made to find 
a new vertex that will show a positive profit at current shadow 
prices. Since p\ and />a are given, a profitable new vertex tv must 
have the highest possible algebraic value for the expression 

( /'*•*•'«• /'/.•'-«•)• 

where pu and /»/, are also given. The sectoral sub-problems select 
the vertex which maximizes the above expression in each sector. 
If the algebraic sum of pt or p-> and this maximum is positiw for a 
sector, vertex iv is profitable and the current optimum to the 
master problem is not an over-all optimum. The new vertex is 
then included in the list of known vertices, and the optimization 
for the master problem is repeated, hi the contrary case the over- 
all optimum has been attained.'' 

lilt NON-CONVEX DECOMPOSITION PROBLEM 

lu the presence of fixed costs the original problem has to be 
expanded as shown in table i. The fixed costs of each activity Xy 
shown in table i (text) are introduced as the capital and labour 
inputs associated with new activities Ay*. The levels of these new 
activities are tied to the level of each corresponding original 
activity Xy by means of proportionality constraints that force the 

' For details including homogeneous sectoral solutions and an algebraic 
exposition applicable to « sectors, see Dantzig and Wolfe (lv6i). 
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Tabic i 

l>ANT/H,-WoiFh DECOMPOSITION  Ml TIIOD  FOR   IINIAR  SVslFM 

( a) MASTER PROBLEM 

Sector 1 

Max! o0 = 

0 ^ ax -. 

O - a9 -= 

3S0 

2000 

-1 

-1 

-LA 

-A, 
-L, -Lr 

* * *           *           *           * 

(-1) 
A* AB         AD        Ae        \F 

Exog- 
enous 

Averaging weight« for complexes 

-/\H 

-LH 

(bi SECTORAL SUB-PROBLEM FOR SECTOR 1 

Min! O 0 O () 
> > > 

_i 
"0 ff| ^2 ff3 "4 

* P* •   >u (    D Capital 

l'L     > 1 

Pi 

Labour 

Max!x,    /ff¿ o 
o 

-so 
-so 

-1.1 

-12.S 

1 

0 

-1.25    -.3 

-7.5     -6.0 

1 

-.25 

-.5 

1 

Pie 

PL 
? Constants    < 

Capital 

Labour 

•Vi •ti        A4 

Production activities 

level of each \j* to equal or exceed a constant fraction a of 
activity X). The new activities may be interpreted as the fraction 
of fixed costs actually incurred. Of course the only levels of X}* 
that make economic sense arc o and 1 ; thus we impose the con- 
straint that Xf has to be an integer, thereby converting the 
problem into one of integer programming.^ The constant fraction 
a is chosen small enough so that it will not drive the value of any 
Xy* above unity. With these provisions we have the following 
chain of interactions between the variables: A) cannot exceed 0 
unless Xf* rises to at least aXy, once Xf rises above icro, however, 
the integrality condition takes over and drives it all the way to 

"J**»* Vil»*» «reeding 1 will be excluded by the optimitation process 
itself, the convergence of tome integer programming algorithm! is im- 
proved by an explicit upper bound. 

unity. Thus Xf cannot exceed o unless the corresponding fixed 
cost is incurred in its entirety. 

The new variables introduced in tabic ì include, besides the 
.Y/#, also profits nf on these activities. New "resources" also 
appear corresponding to the proportionality constraints linking 

the linear production activities with the new fixed-cost activities: 
the non-negative "resource surpluses" m these rows are desig- 
nated as of and the shadow prices as V;#, where the subscript 
corresponds to the production activity whose fixed cost gives risi- 
lo the proportionality constraint in question. 

It should be noted that the primal-dual representation of the 
integer programming problem in table 2 is incomplete, as the 
possibility of simultaneously satisfying both primal and dual 
constraints—while  assuring  integer   values for  the fixed-cost 
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Exog- 
enous 

Min' 

í.lMi .' 

hiRMllAllliN   Ol   Old IMPOSI I ION   MODU   «il M  HXII) <os|s 

Max1 
•'„ ISO -1.1   -l.JS    -.3 -2.S -3.0 -S. -IS. (l -i. -2.S    -.6 - t. -10. 0    - 10. -5. •M 1) Capital 

il 
"i 2000 -12.5   -7.S   -.6    _;. 0 -so.     0 11 -IS. -S.    -4. -11. 0 ->0. 0 0 • », Labour 

il -SO 1         1        -S.     -.2 
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Exog- Production 
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Fixed cost Production 
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v..nablis depends on tlK'iiitr(iiUu'tionot"ri/H!HV>;i/,mc-.».i' The cut- 
ting planes appear ,ts adilition.il constraint rows that arc implied 
by the constraints of the problem when integrality requirements 
are imposed. In the absence of such extra constraints no primal- 
teasible iiiuver solution generally exists that would also satisfy the 
dual constraints. All liuhet seliemata present, d lot integer prooram- 
»n»X problems in this paper must be interpreted with this reservation in 
•iiiml. 

How does the presence of fixed costs affect the master problem 
"» the purely linear caser (¡¡ven a list of the capital and labour 
input requirements (excluding fixed costs) of all feasible basic 
•Mutions to the sectoral sub-problems, we also need the fixed 
o sts of all sectoral activités and a specification of the individual 
activities that are operative in each solution on the list. On the 
basis of this information we can formulate a master problem for 
the integer programming case as shown in table y All fixed-cost 
n tivities A,* are explicitly included in the revised master prob- 
lem, and proportionality constraints are added connecting the 
level ot a complex with the scale of each fixed cost activity 
required for running that complex. When complexes are aver- 
aged, ..ccordinglv. these constraints will force the scales of all the 

(...mors developed the first siuvcsslul method ol defining entting 
p.aiicv A simple^derivation ot cutting planes tor the former algorithm is 
«ell as lor an all-intcgcr algorithm will he found ». (iomorv (iota 1„ 
Npentu methods lor dealing with mixed integer problems were developed 
I's   He., e (i.iSS). (.„mors  (i.*o a), and others   lo,., onerai suives  of 
avallatile solution and approximatiim tcchiik|ties 
see lítale (HjtiO and llalmslo (!.,(.,). 

lor integer programmi!,. 

A,* required tor any of the complexes above zero, and the in- 
tegrality constraints for these variables will force them further up 
to unity. Note that a knowledge of the eoiiihiiud variable and fixed 
input requirements for each connecting resource (capital and 
labour) associated with a complex is not'ctiough for deriving the 
«ver-all optimum: it is also necessary to have correct averaging 
rules. I;, the present case the fixed-cost incurrence rules have- the 
effect ot such correct averaging rules. 

In table 3 as in the linear master problem, each complex is 
represented bv its aggregate variable capital and labour require- 
ments that appear in the first two rows. The level of operation of 
each complex is a variable A„ that can be interpreted, as in the 
linear case, as a weight.  Weighted averages of complexes are 
formed by requiring that these non-negative weights add up to 
unity: this is expressed by the last two rows; these agree with the 
linear case. Note that in the linear caw only the vertex solutions 
were included, i.e.. only efficient feasible basic solutions partici- 
pated in the master programme. In making the transition from 
the linear to the inn-convex case, due to reasons cited in the text, 
the  possibility   cannot be excluded  that previously inefficient 
feasible basic solutions may  contribute a segment to the new 
production possibility frontier. Therefore the complete list of 
feasible basic solutions ha, to appear in the master problem. Fixed- 
cost activities are added with their usual activity levels X,* and 
profit levels rr¡*. The proporuonalitv constraints again give rise to 
new     resources" whose suHuscs and shadow prices are desig- 
nated by o>, , and />„,,, respectively, where w is the index of the 
c-mplex and , is the index of the respective fixed-cost activity. 
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Tbc integer programming version of the master problem, when 
operating on a /wfw/ known list of complexes, will vicld an 
underestimate of the correct optimum. 

APPROXIMATIONS 

The two approximations described in the text have a reduced 
need for information. They operate on the combined fixed plus 
variable factor inputs of a complex without recourse to further 
information on the fixed costs of activities that make up the 
complex. 

Table 4 lists these combined factor inputs for the apices A'  
H', while tables 5 and 6 formulate the approximation methods! 
Table 5a shows the linearized master problem of approximation 1 
while tabic 5(6) shows one of the corresponding sectoral tuteur 
programming sub-problems. Table 6 formulates approbation 2. 

In the master problem of approximation 1 (table s(a)) the capital 
and labour inputs of the individual complexes correspond to the 

sum of fixed and variable requirements, as can be verified by 
reference to table 4. The averaging weights are subject to the 
usual convexity postulate (rows j and 4); the fixed-cost activities 
used for correct averaging (see able 3) are omitted. Note, how- 

ever, that the factor inputs of a given complex in table j do not 

contain the fixed factor requirements, whereas in table <>(a) they do : 
i.e., complex B in table 3 has capital and labour inputs of 1¡>x t, 

and •-1.071-4, respectively, while complex B in table $(a) has 
corresponding inputs of i4K-6and 1,121-4. The erlitt of this 
difference is that the model of table i(a) permits the linear com- 
bination of apices, i.e.. it assumes perfect divisibility of the fixed 
costs included in each complex; contrariwise, the model of table ), 
while giving the same combined tactor inputs as table ¡(a) for each 
apex (due to the operation of the proper fixed-tost activities 
whenever any m- apex is used), m addition enforces the full 
incurrence of additional fixed costs when complexes are used in 
combination. 

Similarly to the linear master problem of table ;(*) the linéarisa 
master problem of approximation 1 starts out with just one feas- 
ible basic solution and generates additional apices is required. The 
prices for labour and capital. pK and pL, calculated from the 
model of table $(a) m each iteration, are inserted, as m the linear 
case, into the sectoral sub-problems (compare tables i(h) and 5(A)). 
In table $(h), however, this sub-problem 1 s an integer programming 
problem. The solution to each sub-problem will be an apex 

J 3 
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contained m the- «mvex hull of ,hc- non-convex production 
ptwibihty function for e..ch sector. When then- apices are in- 
cluded in the master problem their combined factor cost mav or 
may not bo less than the current sub-fomrMtwo /«-,- p, for the sector 
see the discussion ol the linear case), i.e., either leaving or not 

leaving a positive pr ,f„. As long as there .s a profit, the solution 
to the master problem must be- changed bv entering am profitable 
activus into the base when profits no longer appear, the over-all 
optimum to the approximation has been attained. Since some fixed 
costs that should have been included in combined complexes n,.n 
have Ken suppressed by the linear averaging pr.xedure of the 
master problem, the optimal solution to this approximation  if 
not an exact optimum to the integer programming problem  .s 
an overestimate. 

Table 6 represents approximation 2. The rows of this table are 
identical with the top two rows of table 5(a); however, while m 
table s(.i) the X were continuous variables, in table 6 thev become 
o. 1 variables. 

STIFWISI  INdiRRF.NCt. OF HXKU I OSTS 

In figure I a section of figure VII (text) corresponding to com- 
plexes /; and / has been redrawn on a slightlv enlarged «ale on 
the assumption that the fixed costs of the individual activities 
making up the two complexes can bo incurred m several steps 
I he data are identical to thon- in table . (text) except for the 
following changes. Activity .V7 incurs fixed costs j„ „nits o(l.x. 
pend.ture of ( 20) for capital and labour, respect,velv; these 
fixed costs yield a capacity of up to K units of Y7. Activus V„ 
similarly incurs fixed costs in units of ( , -o) with a correspond- 
ing capacity of up to ft units of .Y„. Activitv Xs which occurs m 
both complexes is assumed to incur Us fixed costs all at once, in 
order to simplify the graph. 

As usual point /: represents the capital and labour inputs of , 
complex excluding fixed costs; the costs have to be added on 
separateis to obtain the corresponding apex /:'. The addition of 
v5 is représentai by a vertical arrow; A7 .snot added on all at once 
but 11, five steps. The scale of Y7 ,n complex /: is 35714 (see 
table , m text) while in complex / it ,s o; thus when complexes 
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h and / are correctls averaged with the weight of complex /• 
varying »rom o to ., «he scale of activity X, increases fron, o to 
35-7.4- Since each unit of fixed costs yields a capacity of 8 units 
as the «ale of .Y7 increases along the /•-£ connecting line the first' 
step of v7 is incurred at II' (arrow of 2 units pointing vertically 
downward), and v.clds a maximum capacity corrospond.ng to 
point „ ; thereafter another fixed-cost step has to be- incurred that 
will yiod capacuy up to ,2, etc.; the final step of fixed costs is 
mcurred after c, and uelds a maximum capacity corresponding 
to point .5 Up ,0 this point the cumulative capacity has reached 
40 units winch ,s beyond the 357.4 "nits required for apex F  at 
¿ . however, the cumulative  fixed  cost  incurred  ,s  already 
(    .o-o) umts Similarly the fixed cost of activity A, ls .„curred 
•n steps; the firs, of these ,s shown as an arrow of uni, length 
pointing vertically downward from T: th.s yields a maximum 
capacity corrospond.ng ,0 p„nt /,; thereafter another »top is 
incurred, with maximum capacity at /2, etc. When the fixed-cost 
cxpenduures »or .V8 are added to the step function resulting fron, 
he stage-bs-stage incurrence of the fixed costs of .V7, the shape- of 

the resulting tota expenditure curve ,s quitejagged. Some parts 
o< this curve are however, donnnated by other parts and haie to 
be replaced bs horizontal lines representing labour disposal; the 
back triangles ,n the plot represen, ,he parts of ,he curve ,ha, are 

!r."nXsy ,S"-Pr^»« Ime runs along »he tops of these 

While elrawmg such an ,so-produc, l.ne ,0 «ale requires some 
j art   the fundamental concept ,s simple and corresponds ,0 the 

xtbook case- o Imcar total cost curves with capacity limits that 
re proportional to fixed costs (shown for reference in figure I(M) 

I" the- latter case the capacuy limits occur a, points y< which f I 
aUg a straight l,n. OV; ,„ figure lW likewise capacity limits for 
AT fall along a straight line connecting points W, <-,, r, 
and tor \8a onga straight hue I ', ,,,/,,/a. /,,/,.Thc ^ ^ J 
;on„eet.„g llIK. kl, m the ^ ^ ^ ^^ I* 

the sectoral ,so-product li„, than when fixed costs have to be 

I"' m. a 7/lC stt?ih» «*•cc the isevproduc, line for the 
attor ease ,s added: see l.ne -.VVF. With perfect divisibil.tv the 
-product line becomes ,he sum of two sLght |,„„. ITZ 
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HF (each of which is the analogue of line Oi in figure fa»); this 
summed line is FF. 

For an agkbraic formulation of the above problem replace 
each a occurring in the column of a given Xj in tabic 2 by i/Q 
and reduce the fixt-d-cost vector in the top two rows of the 
corrcponding Xf> to the vector representing a single fixed-cost 
incurrence step, where Ç, it the capacity limit corresponding to 
such a step. With this emendation the Xf become integer 
variables that can take on optimal values exceeding unity. The 

proportionality constraints now become 
x,ic,*x,\ 

These constraints, together with the integrality requirement for 
X)*, will lead to the incurrence of an additional fixed-cost step 
whenever Xj exceeds Cu iC\ etc. In table 3 an a correspond- 
ing to Xj* and associated with complex w is replaced by S¡iW¡C¡, 
where Sf<w is the scale of activity Xj when complex w is utilized 
at unit A weight; fixed costs in the columns of the- X}* variables 
are reduced the same way as in table 2. 
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