TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

Decentralization and Project Evaluation Under Economies of Scale and Indivisibilities'

By THOMAS VIETORISZ

Intioduction

Some of the key uchniques of decentralization, particularly in free-enterprise and mixed economies but increasingly also in centrally planned economics, are based either directly or indirectly on the notion of market equilibrium. The twin assumptions of non-ronvexity and the absence of externalities play a fundamental role in establishing the important theorems of contemporary neoclassical economics concerning the existence, stability and attainment of such equilibria, the existence of a price system and its role in decentralized adjustment, and the welfare significance of the outcome of these adjustments. ${ }^{2}$

[^0]The objective of this paper is to inquire into the effect that non-convexities have on the practical possibilities of decentralization by means of a price system or by other related methods. Current economic theory offers little enlightenment in this respect even though significant nonconvexities are known to be present in most econonic systems, particularly in the technology and organization of production, and in the field of urban land use. As most market theorems break down under such conditions it is natural to inquire not only into the existence of substiture adjustment mechanisms but also into the puzzle of how the existing decentralized pricing and market systems are capable of operating despite their admitted inefficiencies.

EConomic equilibrium versus non-convexity

The essential features of economic equilibrium were put forward by the classic economists as an explanation of the

[^1]behaviour of actual markets under free cinterprise. Later, as the shortcomings of the market mechanism-monopoly elements. limited effective demand, unsatisfactory distribution of iltome and wealth. frustrated growth-becanc historically more important and theoretically more widely recognized, market cquilibrium was still held up as an ide.s that could be approximated in practice to a "workable" extent. Lat:ly, with the advent of mathematical ptogramming technicuss, it has become possible to isolate comomic equilibrium from the behaviour of actual markets. and either to replace actual market behaviour or to simulate it by electronic computer solutioms to planning models with varying degres of centralization or decentralization, In fact, coonomic cquilibrium can be adapted by ueams of computer solutions to models representing coonomic situltions that even ideally comperitive markets would be unable to ralize: for example, multi-period resource allocation models with imposed terminal conditions ${ }^{3}$ or with institutional limits set on the variation of prices. on resource utilization, or on activity scales.
The existence of such models and the possibility of solving them numerically do not imply that the cntire coonomic process can be or soon will be replaced by a single large centrally solved planning model. Decentralized decis-sion-making and, in the realm of management and planuing, the multi-level organization of decision systems are "ssential for reasons which include the following purely comomic considerations:
(1) Technical altertiatives are difficult to formulate over a sufficicutly wide range of factor prices for a model.
(2) It is inefficient to formulate in detail alternatives that will not be used; for this reason it is desirable that the compilation of information should alternate with analysis stage by stage. This process can be carried out most effectively neal the sources of technical information in individual firmis or individual sectors of the comonny.
(3) The structure of a large model camnot be intuitively grasped, and therefore its blind application is hazardous: this difficulty can be overcone by co-ordinating a wumber of smaller models.
(4) Plan formulation must take into account the modes of execution: this requires familiarity with technical detail available only near the operating levels.
(5) Plans have to be readjusted' to changing circumstances in the coursc of execution. Many of these changes show up at or near the operating level; thus planning capability at lower levels facilitates efficient adjustument to such changes. ${ }^{4}$

[^2]It has long been known that comomic cquilibrimm. whether embodied in the postulated operation of actual markets or in the adjustments of a wathematical programming model. has inherent limitations that camot be overcome by mimor modifications of the principles upon which a market cequilibrium operates. Once example is the probIem of fixed costs which lead to diminishing average costs as the scale of production increases. It is impossible to reconcile the requirencons of (a) efficicut resource allocation as embodied in marginal-cost pricing rules with (h) the need for covering the fixed costs incurred by the firm out of revenues obtained from product sales. The exact reconcoliation of these contlicting requirements is possible only when the average cost curves of individual firms are U-shaped, and then only at selected lattice points along the quantity axis: ${ }^{5}$ at in-betwectl quantities sither requirement (a) or (h) must be violated. Industry supply nay, however, be satisfactorily appreximated by a continuous function if the separation between lattice points is small in relation to total industry production, i.e., when there are a large number of small firms. This is the assumprion of the received theory of competitive supply.

The presence of fixed costs is a case of mathematical nonconvexity leading to coonomies of scale. ${ }^{6}$ Such con mies of scale can also occur in the absence of actual fixed cosss, depending on the shape of the production function. ${ }^{7}$ Other symificant cases of non-convexity are: ${ }^{\text {s }}$
Indivisibilities : the necessity of plamming in multiples of standardized production unis: zero-one decisions on transport investments, lydroelectric projects, ete.:
Pre-emption of land area: the fact that a given plot of ground (c.g., in a densely occupied zone) has to be assigned in a zero-one fashion to individual uses;?
Either or type constraints on feasible policy alternatives, prescribed sequencing of activitics, etc. ${ }^{10}$
A decentralized decision-making system based on linear decentralizing instruments (ntaster prices, administratively

[^3]determined planning prices, incentive systems with lincar structure) is imherently unable to guaranter attainment of an optimal cquilibrium position unless all souress of non-convexity-such as fixed costs and others-are either absent or rendered imoperative by special circumstances which occur in competitive supply. Therefore no decentralized decision criteria based on the notion of cconomic cquilibrium and involving correspondingly a lincar version of pricing or incentive systems--whether these be market prices, corrected opportonity costs, electronically computed shadow prices based on mathematical programming models, or administratively fixed prices in a planned cconomy ${ }^{11}$-can be relied upon in the presence of nonconvexities. The criteria may yield acceptable results, but they also can result in gross misallocations.

Two illustrations will indicate the kmds of market outcomes that are possible when lincar decentralizing instruments are used in the presence of non-convexitics. Chenery (1959) constructs a detailed numerical example of steel production and iron-ore mining with strong economies of scale in a developing country. The analysis reveals that either ane of these two activities is profitable only when the other is present. Thus a decentralized decision system based on profit (or social marginal product) misses an attractive joint investment opportunity. When neither of these activities is yet established the decentralized decision maker studying an activity in isolation will decide that it is unprofitable; thus neither of the two activities can precede the other and the profitable complex of the two activitics will never be attained. ${ }^{12}$ Koopmans and Beckman (1957) construct an example which shows non-convexities involved in the assignment of productive activities to particular locations that cannot be shared between activities. For example, in a urban arca a given block or plot of land cannot be used for both a large shopping centre and an industrial plant. Thus the present location of an activity will affect the costs of all other activities in stech a way that, with any locational pattern, incentives will exist for some producers to change their locations, and the possibility of a stable equilibrium price system is negated. ln many locational problems no assignments are required; for example, if locations have to be chosen for industries that can be located at several regional centres at large distances from each other, the lated requirentents at these centres will usually be very small in comparison with the available

[^4]industrial stes and thes several activitio may easily be located at the same centre. This kind of locatomal problem is gencrally convex menss coonomies of sale occur independently in the prodiction or tramport activities. A stable price system can be utilized in the usual way for the dethition of project evaluation criteria.

When signifiant non-convexitios are known to be uperating-important industrial procises whose optimal cales of operation are higher than the level of demand of a small country, important decisions concerning investment, in transport arteries, etc.-the only reliable method of takmg detailed decisions is a comprehensive atalysis of all alternatives witan the framework of a mathematical programming model in which non-convexities are explicitly. accounted for.

Integer programming is the amalytical tool of chotece in the formulation of such models. A wide varicty of all the non-convexities in the field of coonomic planning can be represented or approximated adequately by integer programming models. ${ }^{13}$ In these models, some or all variables are restricted to integer values instead of being allowed to vary in a contimoous fashion. Although exact solutions to such problems are often difficult to obtain (except for small problems), there are several methods which. in combination, can be employed to obtain good sub-optimal solutions as well as the upper bounds on the possibility of further intiprovement ; thus the exact solution values can be approximated subject to a knowi margin of error. ${ }^{14}$

All that has been said carlier about the essential role of decentralization in coonomic decision-making is equally valid for convex and non-convex systems. Even if they become amenable to rapid and exact muncrical solution. large integer programming models can never replace the entire cconomic process. Thus the fact that non-convexition can be adequately handled by cortain mathematical model ts insufficient; it is indispensable that at least an approximate inquiry be made into the possibilities of decentralization and multi-level decision-making in systems represerted by such models. This problem will be solved in two stages in the present article. First, a two-level linear decision model will be analysed graphically; next, fixed costs will be introduced, ntaking the model non-convex, and parallels will be drawn between decentralization possibilities in the litear and the nom-convex cases. The nom-convex decision model will then be used to explore the relationship between average and marginal costs and the degree of indivisibility in a system, and also to shed tew light on the relatomship between non-convexities and externalities.

The decomposition phincitpif in linear systi:ms

Some of the phemomena that accur in multi-level decision-making or planning systems can be analysed by

[^5]means of the decomposition principle developed originally for the solution of structured linear programming models. ${ }^{15}$ Figure I indicates schematically the relationship between a two-level planning organization and the structure of a corresponding decomposition model. In the model. non-zero technical coefficients appear only within the shaded blocks (figure $\mathrm{I}(b))$; these coefficients fall into two broad groups. First, there are the coefficients of the special resources of each sector. The special resources of each sector can have non-zero coefficients only in the activities of their own particular sector. Second, certain resources may have mon-zero coefficients in any sectoral activity; these are designated as connecting ressurces. In addition to the sectoral activities that form the columns of figure $\mathrm{l}(b)$ there is also a column designated as exogenous (first columm). While it is assumed that the scale at which each sectoral activity can be carried out is variable, the scale of the exogenous column is fixed. This column usually contains the given total supplies and demands of each resource. The problem is to find a programme (i.c., a combination of activity scales) which is consistent with the fixed resource supplies and demands, and which is in some sense efficient. Efficiency is defined in terms of maximizing the output or minimizing the input of a chosen connecting resource.

In such a structured model the consistency and efficiency oriented decisions concerning the connecting resources correspond to the upper level of a two-level decision-making

[^6]organization such as the company-wide policy committee of a multi-divisional corpration or the central cconomic policy body (cabinet, central planning board) of a country. The same kind of decisions concerning sectoral resources correspond to the divisional level of corporations or to the ministerial (or regional) level of entire ceonomies. The activitics of the model may represent lines of business, individual processes, or other individual technological alternatives within a division of a company or industrial branches, enterprises, or projects within a sector (or region) of an cconomy. A pregramme or collection of activity levels corresponds to a complete set of tentative decisions (or plans) for the entire system, subject to later confirmation and adjustment. The structure in tigure $\mathrm{I}(b)$ is anpular decomposable and represents the simplest possible relationship between the connecting and sectoral parts. ${ }^{16}$
Table 1 is a numerical example of a decomposition model. ${ }^{17}$ The model has two sectors, with two special resources in cach and two connecting resources, capital and labour. There are four possible activities in each sector; the scales of these activities are variable and are designated by $X_{1} \ldots X_{4}$ for sector $1, X_{5} \ldots X_{8}$ for sector 2 . All numerical data obey the following sign convention: outputs or supplies are positive, inputs or demands are negative. Thus the capital and labour coefficients of all activities are negative (inputs); there are, however, exogenous supplies of these two factors, amounting to 3 so units in the case of capital. and 2,000 units in the case of labour. Once the scales of all activities are chosen in formulating a trial programme, the Hows of all resources can be determined, and their balance verified. The difference between (a) all outputs and exogenous supplies of a resource (positive signs) and (b) all inputs and exogenous demands (negative signs) is defined as the surplus of the resource. If the surplus is zero, there is an exact balance; if positive, the resource is redundant; if negative, there is a bottleneck. In this problem, the criterion of the efficiency of a plan is econony in the use of capital; this is expressed by maximizing the surplus of capital. This formulation may be interpreted as follows: assuming that 350 units represent the limit of capital stock which can be built up by saving and foreign borrowing, the criterion of efficiency is to reduce as much as possible the need for this saving and borrowing by decreasing capital inputs. At the same time plan consistency requires that prescribed demands be met while keeping within available resource

[^7]supplies; these conditions can be simply expressed as the avoidance of resource bottlenceks. ${ }^{\text {is }}$
The model also determines the shadow prices of all rewources. The price of capital is chosen as the numeraire resource whose price is set to unity and in terms of which wher prices are expressed. The revenue (positive sign) or

[^8]cost (negative sign) of a resource can be determined once the shadow prices are given and the technical coefficients of an activity are multiplied by these shadow prices. The difference between revenues and costs is the profit for any activity (variables in top margin). The dual problem consists in choosing shadow prices Y 'so as to minimize profits π_{0} on the exogenous activity while profits on all other activities are climinated (sec annex).

The illustrative decomposition model of table I is simple

Table 1
Formulation of decomposition model

Feasible basic solutions ('complexes'), sector 1

A	X_{1} and X_{3}	$X_{1}=75.000 X_{3}=50.000$	$L=-1,237.5$	$K--97.5$
B	X_{2} and X_{3}	$X_{2}-85.715 Y_{3}-71.429$	$L=-1,071.4$	$K=-128.6$
C	X_{1} and X_{4}	$X_{1}=60.000 X_{4}=50.000$	$L=-1,100.0$	$K=-191.0$
D	X_{2} and X_{4}	$I_{2}=63.158 X_{4}=65.789$	$L=-934.2$	$K=-243.4$

Feasible basic solutions ('complexes'), sector 2

E	X_{5} and X_{7}	$I_{5}=53.571 X_{7}=35.714$	$L=-946.4$	$K=-89.3$
H	X_{6} and X_{7}	$I_{6}=75.000 X_{7}=62.500$	$L=-625.0$	$K=-225.0$
F	X_{5} and X_{8}	$I_{5}=25.000 X_{8}=30.000$	$L=-705.0$	$K=-115.0$
G	X_{6} and X_{8}	$I_{6}-25.000 X_{8}=37.500$	$L=-787.5$	$K=-137.5$

Fixed costs

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
Capital. . . .		-50	-15	0	-10	0	-10	-5
Labour . . .	0	-50	0	0	0	-50	0	0

emough to permit a graphical represelitation by means of an Edgeworth box diagram (figure II). In this digerant the total availabilitics of tha connecting resources (3 30 units of capital and 2,000 mints of labour) form the cdece of the box. Resources ined in cach sector are measured aloug the edges in opposite directions. Thus any point in the diagram is.a simultaneous representation of four variables capital and labour used by sector 1, and capital and labour used by: sctor 2.

Points A, B. C. and D in the diagrann represent four different compleves that can be formed from the activitio $X_{1} \ldots X_{1}$ of sector $1:$ points E, E, C. and H represent similar complexes formed from the activities of sector 2. Ench of these complexes contains two activities: two is the smallest number that permits the balances of the special resources in cach sector to be satisfied. ${ }^{19}$ Table i contains , list of the activity wales and the total capital and labour requirements of each of these complexes; the respective activity-sale variables are shown near each point in the graph. In figure II, the efficient complexes of each sector

[^9]haw been comected by a line. Pomt C represents minefficient complex in sector a since it has larger requirements of hooth capital and labour than point B; thus it will never be practial to use complex C. Correspondingly, point C: represents in incticient complex in sector 2.20

The points along a line comecting two complexes (e.g. A and B) represent weighted anernges of these two complexes. For example, the midpoint of the $1 B$ line represents .ll sverage complex which is tormed by ruming projects X_{1} and X_{3} of complex A at halt the sales shown in table a $\left(\begin{array}{lll}X_{1} & 375: & X_{2} \\ 25\end{array}\right)$; likewise romming projects X_{2} and X_{2} of complex B at half the sales shown for B in table 1 (X_{2} +2 X $5 \times$, X_{3} 35.715): and summing the corresponding project scales (only X_{2} requires summation: thus $X_{1} \quad 37 \cdot 5$. X2 $67.858 . X_{3} 37715$). It can be verified by simple algebra that the labour and capital inputs of the averaged complex fall exactly halfway between the labour and copital inputs of points A and B. In the present case, the weighting was $0 \cdot 5$ and $0 \cdot$. Points other than the midpoint
\therefore Ineflicion poims need not use mote capital and labour than any onc poin such as B or F : it is sufticien that the $\bar{\gamma}$ lie mortheast (for whor 1) or southwest (for sechor 2) of the line comecting such complexes in any sector.

Figure II
Linfaz decomponition modei
are obtained by using weights in diffierent proportions. The weights may vary from o to 1 and have to add up to unity. As long as this weighting rule is observed, the special resource balances of each sector will be satistied by the averaged complexes, even though the graph comeains only the explicit comnecting factors. Thes applies also to any other point that can be attained by starting with the points lying on the connecting line between complexes such as A and B and then disposing of (wasting, throwing away) some capital and/or labour.

The two curves in figure Il can be regarded as generalized iso-product functions for the two sectors describing the alternative combinations of the comecting factors (capital and labour) that can produce the given output of a sector. What is this "given output"? It camot be identified with any single product since all special sectoral resources are on an equal footing and none can be regarded as the prodict of a sector: it is thus convenient to think of sectoral output as the entire task of satisfying the special resource balances.
The horizontal and vertical extensions of the two sectoral curves to the co-ordinate axes correspond to connventional usage in ecomomies; they signify free disposal of redundant surpluses of the connecting factors.

Figure III provides a graphical illuer ition of alternative methods of fimding an aptimal solution to the mendel. Such a olution represcits a programme or plan (i.e. a at it activities with determined sales) which in buth fowible, in the sense that it satisfice all rexource balancen, med sfficient, int the sense that it maximizes the surplen of sapital (i.e., it minimizes capital requirements).
A feasible wolution is a programme or phan that satistios , ill resource balances but is not neceesorily optimal. Pounts B and T jointly represent such a plan. Pome B is on the iwnproduct line of sector 1 ; thus it is sure to satisty the balance of the special sectoral resources in this sector. Powint T is on the iso-product line of sector 2 and thus satisties the pectial resource balances of that wetor. The labour requirementes of the two points add up to 2,000 units and thus satisfy the labour balance. All of the resource balances are satistied and the plan is feasible. In order to determine whether it is also optimal, the capital requirements are identitied. In tigurc III they can be seen to leave a capital surplus exactly cqual to the vertical distance BT. It remains to be decided whether other feasible solutions exist that leave a larger capital surplus.

Note that point B is one of the complexse of sector t that

Figure III
Lineah deciomposition model: graphical somution
has been presented in table 1 while point T represents a weighted average of complexes E and F of sector 2 . This solution is labelled as "BEF" by reference to the sectoral complexes which form it. Table 2 (line 12) contains a list of the quantitative characteristics of this solution including labour and capital requirements in each sector, capital surplus, and the weights used for averaging in each sector. In sector 2 these weights are 0.926 and 0.074 . respectively, for points E and F; in sector 1 , the weight is 1.000 for point B since this complex appears by itself, withour being averaged with another complex.
In general a feasible solution can be obtained when one point is selected from the iso-product line of each sector,
attention being paid to joint labour requirements. When the two points fall on the same vertical line, the joint labour requirements add up to 2.000 units: when the point for sector I falls to the left of the point for sector 2 , the amount of redundant labour will be equal to the horizontal displacement between the two points (for example, when the combination $A E$ is chosen). Conversely, when the point for sector t falls to the right of the point for sector 2 , there will be a labour bottleneck (for example, combination BE). As it is gencrally inefficient to leave labour redundant, a convenient strategy for selecting feasible solutions in the course of optimization is to choose two points that lic on the intersection of a given vertical line with each of the two sectoral

Tahli' 2
Linear decomposition model: selfcted solltions

Weights for combining complexes in sector 1 .
"Weights for combining complexes in sector 2.
Price of labour (price of capital $=P_{\boldsymbol{h}} \cdots \hat{H}_{0}=1$).
Labour reguirencint (inherently negative) in sectors 1 and 2.

- (apital requirement (inherently negative) in sectors 1 and 2.
${ }^{1}$ Surplas of capital (to bee maximized).
* σ_{1} in the solution indicates a sorplus of unused labour
${ }^{1}$: The number in parentheses is the value of a_{1}.
isco-product functions. The vertical distance between the two points measures the capital surplus corresponding to the given feasible solution. The geometric determination of the optimum is now obvious: it consists in selecting the vertical line that maximizes the distance between the tuo sectoral iso-product functions. In the present case the optimum is attained at $A N$; point N is a weighted average of complexes E and F in sector 2. The solution, designated as $A E F$, will be found, quantitatively described, in the sixth line of table 2.

This geomotric method of finding a solution is not applicable to larger problems: Dantzig and Wolfe (1961) however, have provided a generally applicable method which can also be followed by means of the graphical presentation in figure $1 I I$ (sec also tables 2 and 3). Dantzig and Wolfe break down the over-all problem into two parts: a "master problem" and "scctoral sub-problems" corresponding to central and sectoral-level planning decisions. The master problem is formulated in erems of the connecting resources, in the present case labour and capital, and is pieced together by averaging known sectoral complexes.

The master problem represented in figure III, also determines prices for the connecting resources; in the present case, a price ratio for labour and capital. The sectoral subproblems, on the other hand, systematically find previously unknown sectoral complexes for inclusion in the master problem. The sectoral sub-problems do not appear explicitly in the graph of figure III, but compliance with their balances is guaranteed by the averaging rules discussed above. The starting point of the technique has to be one known basic feasible solution to the master problem; given such a starting point, ${ }^{21}$ the interaction of the two parts of the problem guarantess the attainment of the optimal solution in a fimite number of steps.

A hasic solution contains the smallest number of non-zero variables that is compatible with the number of equations. In the master problem we have four equations (see annex): one for balancing capital and labour requirements respectively, plus one in each sector for describing the averaging

[^10]

[^11]rules for complexes. There are two kinds of variabtes in the master problem : the weights to be applied to the individual complexes of each sector, and capital and labour surpluses that can also be interpreted as disposal activities. Generally, at keast foun ${ }^{22}$ of these variables must be non-zero. One will be the capital surplus of which is being maximized, and the oher three may be three sectoral complexes, or two complexes and the labour surplus (disposal) activity σ_{1}. In figure III, basic feasible solutions are obrained, as before, by selecting intersection points of a vertical line with the isoproduct curves, but with the additional restriction that the vertical line has to run through a vertex (a point for a single complex) in one of the sectors. ${ }^{28}$ Solutions BEF and AEF are

[^12]such basic solutions, but solution ABEF corresponding to the vertical line $V W$ is not, as it contains five nom-zero variables: capital surplus (the maximand), plus non-zero weights for each of the four complexes A and B in sector I, and E and F in sector 2 . A solution such as $A E H$, corresponding to the vertical line A, is also a basic feasible solution, even though it is off the iso-product line of sector 2 . since the point Λ can br obtained by averaging the two non-neighbouring complexes E and H. This point is, of course, not efficient since it could also be attained by starting with point N on the isu-product curve and then wasting some capital (corresponding to the distance $N S$). ${ }^{24}$
In the master problem, not only the starting solution, but all later solutions also have to be basic because only basic solutions determine a unique price ratio for labour and capital, a ratio which is needed in the sectoral sub-problems.

[^13]In a basic solution the price ratio is fixed by the slope of the averaging line segment that is intersected in one of the two sectors. If the solution is non-hasic, such as ABEF, the vertical line I'U' intersects line segments, generally of different slopes, in both sectors rather than passing through a vertex in one sector.

Let us now trace the course of optimization, using the Dantzig-Wolfe algorithm, by reference to figure III. Suppose the starting point is at the vertical line HI. This corresponds to a basic fasible solution (labelled " $A a_{i} H^{\prime}$ " in table 3) in which complex A in sector 1 and complex H in sector 2 appear with unit weights; thus two weighting variables are non-zero. In addition, there is some labour disposal and thus the labour surplus variable σ_{1} will also be non-zero; its value corresponds to the distance $A I$, which amomts to 13,5 units. The value of the maximand (the capital surplus variable σ_{0}) corresponds to the distance AI, or $27 \cdot \varsigma$ units.
We assume that at this point only complexas A and H are known. While there are only six efficient complexes in this problem, in larger problems the number of possible complexes increases in combination and thus at the heginnine of the oprimization there exists sery little information concerning alremative efficient sectoral compleves. The task of the sectoral sub-problems is to identify precisely previously unknown efficient sectoral complexes for inclusion in the master problem.
Looking at it another way, if all the efficient sectoral complexes were known from the very beginning, the optimal solution to the master problen would immediately give the optimal solution to the problem as a whole. However, as we are generally working with an incomplete list of complexes, we require a technique that will bring to light new complexes; specifically, we have to discover those complexes that are needed for the optimal solution of the over-all problem without having to enumerate all possible efficient sectoral complexes. We shall now indicate how the sectoral sub-problems are utilized to achieve this aim.

In the starting solution the price ratio between labour and capital is determined by the slope of the line segment $A l$, i.e., the price of labour is zero. The price of capital is unity by assumption. Using these relative prices, the sectoral subproblems maximize the combined value of the connecting resources. In the present problem the connecting resources appear as inputs; thus we are, in effect, minimizing their combined cost. At the same time, the sectoral subproblems must satisfy the balances of the special sectoral resources.

Although the special resource balances of the sectors are not explicitly shown in figure III, they are nevertheless allowed for by means of the averaging rules applicable to complexes. The straight lines connecting the points corresponding to the sectoral complexes represent weighred averages of complexes; as long as the complexes themselves satisfy the special sectoral resource balances, these weighted averages will also satisfy the special balances. Moreover, when we take one of the points corresponding to the comp-
lexes or their weighted averages and subsequently dispose of (throw away) some labour or capital, we are still certain to satisfy the same sectoral balances. Thus we can map out a feasihlereas for both sectors in the graph. These arcas consist of the iso-product lines plus all the points falling on the concave sides of these limes. Whenever a point is chosen within the feasible area of a given sector, the special sectoral resource balances are certain to be satisfied. In this way we can use the graph of the master problem to represent possible solutions to the sectoral problems.
The question arises if in maximizing the combined value (mimimizing the cost) of the comecting resources in the sub-problems, using the price ratio of the starting solution, we discover new complexes that are more efficient than the ones already known. In figure III, the combined value of the connecting resources is represented by budget lines whose slope equals the price ratio between labour and capital and whose intercept on the capital axis measures this combined value. ${ }^{25}$ The optimization in each sector is represented by a parallel shift of the budget line in such a way that the combined value of connecting resources is increased (combined cost is decreased) while maintaining at least one point of the budget line within the feasible area of the sector. In sector 1 this procedure leads to point A, which had already been known previonsly, bur in sector 2 the optimum corresponds to a new complex E whose exact capital and labour requirements are dislosed by the optimization process.
In what sense is complex E more efficient than previously known complexes: In the starting solution (figure III), H was the only known complex for sector 2 . The combined cost of the connectung resources for this complex can be read off by tracing a budget line with slope o to the capital axis of sector 2 : in figure III we read off 225 units at p_{02} (the same value will also be found in table 3 , in the line of solution o labelled ". $A a_{1} H$ ", under p_{2}). ${ }^{26}$ The combined
${ }^{25}$ The budget line corresponds to the equation
or: PL. (L) $\cdot \boldsymbol{P}_{\boldsymbol{K}} \cdot(\boldsymbol{K})(:)$,

$$
(K)-(Z) P_{L}(L)
$$

since $P_{K}=1$. On the graph the axes correspond to (K) and (L); thus (\because) is the intercept on the (K) axis.
${ }^{28}$ In the master problem p_{2} is a shadow price that corresponds to the equation describing the averaging rule for sector 2 (see annex). Whenever a complex is included in a basic solution, i.e., when its weight is nun-zero, the shadow profit for the column of this complex has to vanish. The mathematical reason for this is the wellknown rule of complementary slacks applicable to linear programming problems; in economic terms the solution enforces "perfect competition" between all complexes included in it. Consequently, the shadow price p_{2} and the combined value of the connecting resources have to add up to zero; i.e., the combined value equals p.
The above p_{2} can conveniently be interpreted as a "subcontracting fee". The master problem places all complexes of a sector in competition with each other for the privilge of performing the task of the sector, namely satisfying the balances of the special sectoral resources. Whichever complex or complexes can perform this task at the lowest "ibcontracting fee will be selected to do the job. At any stage, the successful complexes will jun break even; their combined cost for the connecting resources at the prevailing prices will just equal the subcontracting fee. The solution to the master
cost for complex E is, however, only slightly under yo units as read off in the graph at $-=02(89 \cdot 3$ units under $E=2$ in table 3). Consequently, the inclusion of complex E in the solution promises a combined cost improvement of $22 \cdot 50-89 \cdot 3 \quad 135 \cdot 7$ units, at the prevailing prices.
In order to advance from the starting solution we will want to include E in the next solution of the master prob1 cm . As the solution is to be basic, we will have to drop some other complex or the labour surpleis (disposal) activity. Table 3 indicates the three ways of dropping variables and the corresponding solutions; the capital surplus activity which is to be optimized is never dropped. If we drop complex A, we are left with no complex in sector 1 , and thus we have an infeasibility. If we drop o_{1}, we get solution AEH which yields an average complex for sector 2 at point I, a feasible solution. If we drop complex H, we get solution $A \sigma_{1} E$ which leads to point J for sector 1 , an infeasible point, implying a negative σ_{1}. (Numerical data describing each of these trial solutions will be found in table 2.) Thus we have only one feasible choice: solution $A E H$. This is labelled as solution 1 in table 3.

AEH determines a price ratio of 0.422 between labour and capital: this ratio equals the slope of the line connecting E and H. Budget lines with this slope yield new complexes in the coursc of the optimization in both scctoral subproblems: in sector 1 , the new complex is B, with a combined cost of connecting resources equal to $\left(\cdots z_{11}\right)=580 \cdot 7$; in sector 2 the new complex is F, with a combined cost of $\left(-z_{12}\right)=488.8$. The cost improventent relative to solution AEH can be determined by comparison with the combined cost of A in sector 1 which equals $580 \cdot 7$ (p_{11} in figure III; also in table 3), and the combined cost of cither E or H (these are equal) in sector 2 which equals 412.5 (p_{12} in figure III; also in table 3). The cost improvements are thus $39 \cdot 0$ and $76 \cdot 3$ units in sectors 1 and 2 , respectively.
Either of these now complexes can be included in the solution of the master problem to obtain an improvement in the maximand o_{0}; it is preferable, however, to include the one with the larger cost improvement, namely F. Once again a variable must be dropped in order to keep the solution basic; the three choices are indicated in the line of solution I in table 3 , and the resulting alternative solutions are numerically specified in table 2 . The only feasible chuice is $A E F$, which determines a price ratio of $0 \cdot 106$ (equal to the slope of the segment EF). At this price ratio the budget lines disclose no new complexes in the course of the sectoral optimizations, and thus the solution AEF turns out to be optimal.
If, at the stage of solution 1 , complex B had been included in the next solution rather than complex F, the path of optimization would have been slightly longer. In this case BEH turns out to be the next feasible solution; the
problem can be improved, however, as long as sectoral optimization disclones new complexes that can make a profit at the prevailing process and prevailing subcontracting fees. When this is no louger possible, an over-all optimum for the entire problem is attained.
price ration rewains 0.422 as in solution 1. At this price ratio. F is still presont with a potential improvement and is thus the uext complex to be included in the maver whetion. The next feasible solution is obtained by dropping $\Pi_{\text {; }}$ thu solution 4 is $B E F$, with a price ratio of o tor. At this price ratio point A appears as an improved point in sector 1 ; the next feasible solution, after dropping B, is .AEF, the optimal solution.
From the point of view of decentralization this analysis of the decomposition algorithm is significant in that it discloses the insufficiency of price-type control instruments in attaining an optirnal solution. As alrcady discussed by Clopper Almon ${ }^{27}$ the upper decision-making level ammot guarantec the balance of comecting resources mercly by setting the prices of these resources, in a solution such as AEF the price ratio EF will not !?urnontec that scctor 1 will choose to produce exactly with the weighted average N of complexes E and F. Faced with the price ratio EF this sector may produce at any point along the segmont EF, as all points along this scgment are cqually optimal at the stated price ratio; it makes no difference which poiut is taken when dealing with sector 2 alone. If the central planning office wants to ensure an adequate balance of the connecting resources, it has to prescribe a weighting of complexes E and F in sector 2 , or a quantitative allocation of labour and capital to this sector. At the salle time. sector i can be adequately regulated by the price rationalone. since at the given price ratio it has a unique copuilibrium position at A.

An interesting feature of the practical applatation of control instruments in this situation is that the upper decision-making level will find it worth while to use horh price and quantity-type control instruments, even though their joint use will be redundant in sector 2.
"They (the Central Trade Office) announce in quantitative terms their feasible plant. They tell each plant manager how much of each traded commodity he must produce and how much he is allowed to purchase . . . They also announce the prices and direct that trade be conducted at these prices. They may also insernet the manapers that, subject to their meeting the quamitative geals . . . they should also maximize profiss. Such a rule is intended as a guide to avoid possible uaste in the event that S (the quartitative goal) is not precisely achieved for one reason or another. It is important to note that they cannot tell the managers simply to maximize profits fomitting production goals, S) for if they did, Central Trade would almost certainly have difficulty with its constraints." 28
At the level of activitics within a sector, c.g., the project level, this insufficiency of pricc-type coutrol instruments is translated into the insufficiency of the usual price-type project evaluation criteria, and calls attention to the fact that there is an inescapable minimemer of quaniunive comrol that

[^14]

Yamb being wound onto ring hobbins in a cotton-textrik mill at
Khartiom, Sudan

A textile planis as Caricuan, I'mezzela
 This does not me.m that multi-level plaming is uschers: on the contrary. it reinfories the nead for such plaming as it indicates that a decentralized market mechamism without a central decisio:i-making level will encounter the same indeterminacies that characterize the multi-level phaming system with pure price-type co-ordination. At the same time multi-level planming is preferable to pure central planing, is it resolts in an conomy of intormation How. It should be noted that the master problem in the decomposition algorithon requires mo information on special sectoral resources or on particular sectoral projects or activities; this intormation is dealt with indirectly by delineating teasible regions for each sector on the basi, of weraging known sectoral complexes.
The decomposition algorithon of Dintzig and Wolfe in not the only onc that can be utilized for co-ordinating the master programme with the sectoral sub-programmes. Kornai and Liptak (1965) have proposed a multi-level planting system it which the information How is the reverse of that in a Dantzig-Wolfe system. In a DantzigWolte decomposition the master programume signals price to the sectoral sub-problems and the latter signal combined utilizations of intercomencting resources by particular contplexes to the master programme: in other words, price How downward and yuantities fow upward (except for the yuantitative implewenting objectives fixed by the master programme for the sectors it which averaging is required). In the Kormai-Liptak decomposition the mister programmepasses allogations of the comecting resources to the individual sectors: the sectors, in turn, signal their uwin sector.al Shadow prices for these resources to the master programme. Without going into the details of the Kornai-Liptak decomposition it can be seen (fighre III) that sectoral resource allocations of labour can be represented by a vertical line cutting the two iso-prodact curves; at any (basic or non-basic) solution separate shadow prices can be determined for each sector. For an averaged complex, the Wadow price coincides with the sope of the averaging segment; for a single complex (which appears with unit weight) the shadow price is distinct for increased and for decreased allocations. For non-aprinnal solutions the compariwoll of shadow prices for the two sectors will show an antambiguous difference; for example, for the basic solution HLI: the shadow price of labour, both in the upward and the downward direction, is greater in sector 1 than in wetor 2 . This inclicates the need for increased labour alloation to sector 1 . at the expense of sector 2. Conversely, fion the basic solution $^{1} \sigma_{1} h$, at unambiguous price differens. exists in the oppowite sense, indicating the need fin increaned h.bour allocation to ector 1 at the experne of vector 2. . .
 X will tied , stadew price at X that is smalker thom the

[^15]Shatow price at .t ther decreased !abour allocation to secter 1. and larger than the shadew price at . t for increased labour allocation to sector 1 , then indicating a stable cquilibrimu:

Tili hacamposition principlat in non-convix system.
We shall now use the dingrammatic method developed for lincear decompositions to indicate the changes that are intraduced by mon-convexitios, as represented by the case of tixed costs. The principal change concerns the applionbility of iterative corrections to such systems in order tu improwe the efficiency of existing feasible solutions, is these tend to break down in the presence of unomeconvexitio. Onc has the intuitive ferhig that the presence of small nonconvexities cannot have a protomally disturbing intlucinci on the behaviour of largely convex systems, as common observation indicates that markets are often able to operate with reasonable cticiency deppite the pervasive presence of fixed costs. econemies of sale, alld other non-convexities. But what is "stuall": What swtems are "largely convex": The diagramuatic methed ofters some bases for judgement on these points and neggess guidelines tor workable if not perfect decentralization.

Figure IV indicates the first step in constructing a decomposition diagram with tixed costs included to reprewent non-con vexities. The fixed costs are expressed in term of tabour and copital requirements (see table 1). For ead complex such as. A, B, etc. the fixed costs af the component propects (activitios) are added up. In figure IV, these additions are performed by mans of pectors (arrows) which represent the labour and apital requirements of individeal activities. In this fashion, point A is carried into point A^{\prime}. point B into point B^{\prime}, and woon. While points A, B, \ldots in the diagrams have been reterred to as vertices, we shall reter tol points. $\boldsymbol{f}^{\prime}, H^{\prime}$. . . . upices in order to distinguish clarly between the two points.

Gencrally, apices camot be avoraged in a lincar fashion. because averaging apex . \mathbf{f}^{\prime} and \boldsymbol{B}^{\prime}. for example, require" the joint use of projects. X_{1}, X_{2}, and X_{3}, while apex A allows only for the fixed cost of X_{1} and X_{3}, and apex B^{\prime} only for X_{2} and X_{3}. Thus when two complexes are to be used jointly and all the fixed costs have been incurred, the variable costs can be averaged linearly ${ }^{30}$ In figure V these operations have been performed; for example, at A^{\prime} the vector \bar{T}_{2} has been added, while at B^{\prime} the vector \bar{N}_{1} has been added; the cond-points of these two vectors call now be connected by a straight line. It is significant that the slope of this correct arevereme lime tor spices A^{\prime} and B^{\prime} is the same as

[^16]

Fipure II

the sope of the vertex-eo-vertex average. This is due to the fact that A. B, and the end-points of the correct averaging line form a parallelogram, because the sume three vecturs have becn added both to A, and to B, thongh in a different sequence. Thas the correct averaging line retteen marginal rates of substitution between labour and capital, while an apes-ro-apex comerting lime does not.
Two important qualifications to the foregoing procedure have to be noted
(a) While points C and G represent inefficient complexes) in a linear system, it is by no means a forcgone conclusion that they will also be inefficient in a non-convex system comprising fixed costs. If, for example, the fixed costs associated with C were unusually small, it could casily happen that the correct averaging line involving C will pass in part on the infeasible side of the correct averaging lines for the other complexes, and will thus yichd preferred points, in this range (see figure VIII and footnote 30).
(b) In a linear system, averages of neighbouring vertices arc always superior to averages of noi-ncighbouring vertices. In a non-convex system with fixed costs this is nor necessarily so; for example, the correct averages between

Apex. A^{\prime} and B^{\prime} and between apex B^{\prime} and D^{\prime} mosprove inferior in certain ranges to the correct averuge of apex .f and D^{\prime} if the fixed cose aswociated with vertex B.re unusually high.
Do the apices and the correct averagmel line sppearing in figure V jointly form in-product hase for the two setors? In answering this question it should be noted that free labour and capital disponoll is permitted at all times: than any point in the diagran represconting a legitim.to apex on average will dominate all pomis derived from it by such disposal activitics. Therefore B^{\prime} will dominate all $j^{\text {minten om }}$ the correct averiging line between A^{\prime}. .nd B^{\prime} that are to the northeast of B^{\prime} : and likewise for A^{\prime}. As a revolt, the cutire line comecting the end-pointes of vectors $\overline{B_{1}}$ added to B and \bar{x}_{2} added $t \mathrm{t} . \mathrm{A}^{\prime}$ will disoppar and will be rephed by a step function between . \mathbf{t}^{\prime} and B^{\prime} (figure VI). Applying the same considerations of dominance to other aren of the diagram, we obtain the ine-product lince of fligure VI which have a much simpler contiguration than the apices and correct averaging lines of figure V . This simplification of the diagram is not a special feature of the numerical example under study but a general phenomenon which is due

ligurn l

Wo the fact that the correct averaging lines have promomed dipe at the apices where ome fixed cost is in all cases elimimated. As a ressult the straight line segments representing virriable cose are generally trumeated near the apies and III wome caw (as between f^{\prime} and B^{\prime}) completely climmanted inf fivour of simple tep fimetions.

What can be wad about the nom-comese decomposition problem represented by the iso-product lines of figure VI: In general when the lines are correctly drawn and all the upico corresponding to feasible basic whlutions of the wetoral problems are known, it is imposible to find a solution to the master problem without taking into consideration .ll the detaiked information represented by the opecific sectroll resomre balances and wectoral activitics. A knowledge of the capital and labour requirements at these apices, together with correct sweraging procedurse, is sufficicut to gnarminte an exact whetion to the master problem. The averaging procedure in the present case can be based on a listing of activities inchaded in cach complex together with their fixed capital and labour requirements: when two or inore complexes are seraged. it is them necessary merely to dheck oft all activition that are wicluded and to add up
their fixed costs. Formally, the master problem becontes an integer programming problen in which the averaging of the variable cosse of the complexes is conditional on incurring all the requisite fixed costs (sec amex).
In practical applications, the shortconing of this procedure in tuofold. First, it is difficult to solve a large integer programming master problem; second and more importmit. the availability of information concerning the requisite apices camnor be taken for granted, because the number of such apices increases in combination with the siec of the problem. The virtue of the Dantzig-Wolfe ugorithm is precisely that it generates new complexes as they are needed, thereby shortcutting the enumeration of etticient complexes. The question is, call a similar procedure be developed for the nem-cimuex case: No such proxedure is presently awailable and the difficultes of cuolving one are grait.
First the meaming of proce in the master problem as in integer programming problems in general now becomes ambiguous. In figure vil the over-all optimm happens to be at the vertical line passing through B^{\prime}, as can be verfied geometrically or by means of a simple conumeration of

Figurcill
Decomponition: ino-pmonturi ines derivat
alternatives. What is the proper price ratio between labour and capital characterizing this optimum? Is it the slope of the iso-product line at J ? This slope corresponds to the averaging of variable costs, i.c., to the slope of the line EF; it is thus a marginal cost ratio. Or is the proper price ratio the slope of the apex-to-apex connecting line, $E^{\prime} F^{\prime}$? In the present case the two slopes are not greatly different, but with only a small change in some of the fixed costs the optimum can be shifted to a vertical line such as $M N$. Here we have three possible price ratios: the two above-mentioned, and the zero price corresponding to labour disposal.

Second, we have to ask what the role of such a price ratio is going to be. Will it be used, as in the linear decomposition problem, in a search for new efficient complexes? If so the sectoral sub-problems become integer programming problems involving the minimization of combined costs (as in the linear case), but with allowance for fixed costs of the individual projects. In the present illustrative case (figure VII) such sectoral optimizations performed at the proper price ratios will identify all apices that participate in defining the iso-product lines; however, this cannot be generally guaranteed, because apices can also occur
in local indentations of the iso-product lines that are not optimal under anty price ratio. In figure VIII, for example. the fixed costs of sector 1 have been changed and apex (") now occurs within a lecal indentation of the iso-product line. ${ }^{31}$ Regardless of the price ratio for the optimization performed within sector 1 , apex C^{\prime} will never becoone the uptimum. If the price ratio between labour and capital is

[^17]

Figure 1\%

higher than the slope of the line $B^{\prime} D^{\prime}$, apex D^{\prime} will be optimal, but if it is lower, apex B^{\prime} will be optimal. Thus the sectoral optimization can identify apices only if they lie in the convex hull of the sectoral iso-product lines.
Alternately, the role of the price ratio may be to sustain an optimum, as in the linear case; if so, the local marginal price is the proper one to use, but under the assumption of profit maximization for cach sector, such a price will sustain the optimum only in a most unstable way as the slightest change in the price ratio will generally precipitate a cimmulative movement away from the optimum. The concept of price characterizing convex systems is obviously not capable of ready superficial exiconsion to non-convex systems.
Although no available procedure smoranters the iterative derivation of the exact optinumen while shortcutting the counuration of efficient complexes. we may still make comsiderable headway toward the practical objectives set out at the begiuning of this section by looking for suitab!! गproximations.
Figures VII and IX have been drawn to indicate two possible approximations to the derivation of an exact oprimumin in such non-convex decomposition problems.

4pproxination I (apex-to-apex comencting line)

In figure VII the apex-to-apex connecting lines are shown in relation to the correct iso-product lines. The apex-"r-apex connectings lines yield a linear approximation to the noncinvex master problen, while maintaining the non-convex nature of the sectoral problems. The linearized master problem in effect assumes perfect divisibhlity of the sectoral complexes, and thus ignores the all-or-nothing character of fixed cost incurrence in a given sectoral activity. An approximate over-all solution can be obtained in an iterative fashion by determining successive price ratios from the basic solutions of the lincarized master problem; these price ratios are then applied to sectoral integer programiming problems m an attempt to identify new efficient apices (sectoral complexes), if such are available. These new apicos if foumd, are included in the lincarized master problem and the procedure is iterated. This procedure has the virtue of gencrating new complexes only as needed, similarly to the linear decomposition problem (sce annex). The key characteristics of approximation are:
(a) It will always yeld cither an exact or an owerestimate of the correct optimal value of the objective function. The

correct optimum in figure VII, as verifiable graphically or by simple algebra, is a capital surplus of 79.9 units that occur at $B^{\prime} J$. (By comparison, the distance between the sectoral iso-product curves at a line passing through A^{\prime} is only 77.5 units.) The approximation, on the other hand, will yield the overestimate of $86 \cdot 3$ units where the capital surplus is estimated as the vertical distance between B^{\prime} and the $E^{\prime} F^{\prime}$ apex-to-apex connecting line. The reason for the overestimate is that the approximation ignores the indentation occurring between E^{\prime} and F^{\prime}; i.c., it does not take into account the fact that three rather than two fixed costs have to be incurred when complexes A^{\prime} and F^{\prime} are correctly averaged. Note that the indentation will be ignored even when it contains an apex, as at C^{\prime} in figure VIll, because this apex will never be identified. Note also that while in the present case the approximation attains its optimal valuc at the same combination of complexes as the correct optinum, this cannot be generally expected.
(b) Integer programming within the sectoral problems is essential for excluding the possibility of an underestimate. It might be thought that an economy of computation would result if the sectoral integer programming
problems were replaced by their lincarized versions excluding fixed costs; this would identify new mertices inom which the corresponding apice's could be derived by the addition of fixed costs. Such apices, however, would not necessarily lie within the correct iso-product line; they might be dominated by other apices and could lead to an underestimate.
(c) The approximation will be good to the extent that non-convexities are weak, i.e., to the extent that local indentations are small in comparison with changes of the objective function corresponding to difficrent basic solutions of the linearized master problem; in other words, to the extent that the apex-to-apex connecting line stays close to the true iso-product line. Closeness is measured in reference to a feasible area which is convex in the large and has only small local non-convexitics. Note that the graphical representation permits an intuitive appraisal of the relative roles played by convexity-in-the-large versus non-convexity-in-the-small.
(d) Such a situation is likely to arise when fixed costs are small in relation to the changes of variable cost over the averaging ranges, or when the fixed costs of many common
activities are shared among neighbouring complexes that differ only slightly in activity composition.
(e) Another important situation of this kind arises when fixed costs in a sector are incurred stepwise, i.e., when projects with given fixed costs are limited to a maximum scale, beyond which the fixed cost has to be duplicated. This reduces the size of the abrupt increase in correct averaged costs near the apices and brings the iso-product line within a fraction of the distance from the apex-to-apex connecting line that prevails when fixed costs have to be incurred in a single step (see annex).
(f) The computation will be efficient to the extent that the sectoral integer programming problems are small or have a special structure that renders them easy to deal with. Approximate solutions to these sectoral optimizations are acceptable provided they are dital feasible, i.e., that they constitute overestimates of the sectoral optima. Algorithms employing cutting planes satisfy this requirement and may thus be terminated after a reasonable number of steps. The approximate sectoral solutions are then available for subsequent iterations of the master problem. As such algorithms show rapid progress initially and often slow down
critically near the optimum, the possibility of using the results of runs of limited length might be valuable.

Approximation 2 (manderuped apices)

In figure IX the unaveraged apices are shown in relation to the correct iso-product line. An approximation to the iso-product line can be picced together from these apices by adding vertical and horizontal extensions corresponding to free labour and capital disposal activities. In other words, whereas in approximation i we formed apex-to-apex connecting lines which gave the appearance that the apices could be averaged in a straight linear fashion, the approximation 2 discards the tool of averaging altogether and simply disposes of labour and capital not required by one apex or another in a given solution. As a result, solutions are restricted to one complex in each sector. The characteristics of this approximation are the following:
(a) It always yields an underestimate of the potimal value of the objective function, for two reasons: first, because it ignores the possibility of legitimate averaging; and second, because it gencrally operates with an incomplete list of apices if the problem is large. In the present case the

Fijure IX
Decomposition: unaveraced apties comparbd to iso-product ines
optimum occurs using complexes A^{1} and $F 1$, and yiclds an cstimate of 77.5 as against a correct optimum of 79.9 units.
(b) The master problem is now an integer programming problem which does not yicld useful prices for defining ectoral objective functions.
(c) Individual apices may be generated in any convenient way; c.g., by means of simultnneously undertaking the first kind of approximation (apex-to-apex connccting lines), or by lincarizing the sectoral problems.
(d) Approximation 2 is good whenever non-convexitics are large in relation to changes in the objective function corresponding to widely separated solutions; in other words, when the sectors are characterized by a few major indivisibilitics. The reasons for this are that in the case of large nen-convexities not much is lost by refraining from averaging and the number of apices contributing to the correct iso-product line in any sector is necessarily smaller. Thus the apices are relatively easier to identify on the basis of empirical considerations which are likely to be well known to planners familiar with the sector, and therefore the possibility of missing significant apices is greatly reduced.
(e) The computation will be efficient to the extent that the master integer programming problem is of manageable size. If an approximation is required for the master problem, it should be the primal-feasible kind in order to conserve the character of an underestimate.

In sum, the two approximations are complementary. Taken together, they yield both an upper and a lower bound on the value of the optimal solution; in addition, cach tends to be close in cases with opposite claracteristics. The first approximation tends to be close when the feasible area within a sector is convex in the large and has only umall local non-convexities, while the second approximation tends to be close when a sector is characterized by a few major indivisibilities. It is noteworthy that present practical methods of coping with non-convexities in coonomics tend to run in the direction of these two approximations. Thus in the case of small non-convexitics, an attempt is made to define some reasonable average cost and price that will take into account the presence of fixed costs, while in the case of major indivisibilities the operation of the price system is invoked only after quantitative decisions have been taken in regard to these indivisibilities 'on other than pricing criteria.

The decentralized decision-making process, using these :wo approximations jointly to simultancously obtain the ipper and lower bounds of the optimal solution, operates in the following fashion. The startin! point is a feasible basic olution to the linearized master problem; in the present cxample, this can be provided by a single complex in cach sector, rogether with the labour-disposal activity. The upper decision-making level calculates the prices corresponding to this initial solution and transfers them to the ecctors. The sectors regard these prices as parameters and uptinize their integer progranming problems at the given
prices; then they pass the combined fixed and variable labour and capital requirenients of their optimal solutions to the upper level. The upper level checks these factor requirements against the current shadow prices of the linearized master problem including the sectoral "subcontracting fees" (sce footnote 26). If no profits occur, approximation I has terminated and the current solution of the linearized master problenı furnishes an operestimate of the correct non-convex optimum, otherwise the profitable complexes are included in the linearized master problem and a new trial solution is computed. As long as profits are present, however, there can be no assurance that the current solution is an overestimate. The upper decisionmaking level may solve in the course of every iteration an integer programming problem, constructed from the currently available sectoral complexes on the principles of approximation 2 . If undertaken, this computatiou furnishes at every stage an underestimate of the correct non-convex optimum, but it is not necessary to perform the computation until approximation 1 terminates, because the stage-by-stage results are not required for later operations.

An important feature of these stage-by-stage underestimates is that each of the corresponding solutions is feasible, and if the iterative process is broken off at that stage the solution will yield a decision (plan) which can be translated into practice with a known payoff. This is not true of the stage-by-stage solutions of approximation 1 ; if one of these solutions is translated into practice there is no way of predicting, from the information available to the upper decision-making levd, what the actual payoff will be. In other words, if the upper decision-making level instructs the sectors to utilize given sectoral complexes with prescribed weights corresponding to a particular solution to the master problem, the resulting payoff is uncertain. This uncertainty carries over even into the optimal solution obtained by approximation $ו$. It is known that the latter solution gives an overestimate of the payoff, but when translated into practice there is no assurance that it will yield an actual payoff that is superior to the underestimate provided by approximation 2.

In view of this situation it is useful to introduce the correct averaging procedure as an auxiliary feature of the decentralization mechanisn. As indicated in more detail in the annex, the correct averaging procedure requires slightly more infornation than approximations 1 and 2. In addition to the combined factor inputs at the apices, it requires a list of fixed costs incurred at cach apex so that all fixed costs characterizing both (or several) apices may be included in the correct average. Given this additional information the decentralization mechanism can be strengthened in the following ways:
(a) As regards approximation 1, given any feasible solution to the linearized master problem, the actual payoff of this solution in the non-convex system can now be calculated. Moreover, this payoff is a firm underestinate of the optimal payoff in the non-convex system. Thus a solution obtained at any stage of approximation 1 can be
translated into practice with a known payoff; in particular. the optimal solution for approximation 1 will now offer both an upper and a lower bound on the optimal poyoff of the mon-convex system.
(h) As regards approximation 2, given a list of apices obtained through the iterations of approximation 1 or otherwise, a master integer pregramming problem can now be formulated which will allow is solution 10 be found with a closer approach to the optimal payoff of the non-convex system. Where previonsly only the str:aght combination of maveraged complexes has been perminted. averaging now becones possible. The solution will still be an underestimate since the list of apices is generally incomplete.

Tife mole de prices in non-conyex twoleleyfl ifecision systems

Whichever way the approximate solution to the nonconvex problem is identified, the yestion remains how the upper decision-making leved cin put such a solution into sffect and what role a price system might pay under such circumstances.
Marpimal-rast pricing of thr colnectin! resourcis is consistent with uptimal resource allocation. It has already beon shown that the slopes of the correct averaging lines (figure V) reprewent marginal rates of substitution between labour and capital. The same interpretation can also be extended to the horizontal and vertical line segonents that are used for diminating inefficient stretches from the iso-prodnct line (compare figures V and VI). Horizomeal line segmenes represent labour dispesal; i.e., over these segments it is more efficient to use a single complex in a sector than to average two complexes, even though the use of a single complex contails the presence of some mused labennr. Vertical line segments are similarly obtainced by replacing an incfficient averaging of complexes by a single complex: in this case, the capital saving shows up as a met gain that is available only at a single point along the continnum of labour allocatioms. Thus the marginal rate of substitution in these two cases is zero and infinity, respectively. With this extension the slope of the iso-prodinet line can be imeterpeted as a marginal rate of substitution at every point where such a slope is defined.
At a lecal optimum (and thus necessarily at the global optinnmen as well) the relationship between the marginal rates of substitution of any two combecting resources for any two sectors is a straight extension of the neo-classical efficiency colnditions, from the usual smeoth iso-prodict finctions to the present angular olves. ${ }^{32}$ If the upper

[^18]decision-making level sets the price ratios of comnceting resources to the margimal rates of substrution prevailing at the global optimumatil there will be mo incentive for further marginal resonrec reallocations from the point ol rieve of ine system as a mole

The indenerminacy of decentralization amd control by modes of purely pricc-rype instrumernts that has hecon oliserved in linear systoms will be present to an aben stronger degree whell the oprimizarion of sectoral payoffis under margimal-ciss pricing is applied to nen-cinomes systems. By sectoral payoff we mean the value of the connecting resources, in the present case. the cost (negative value) of labour and capital. Though, in a linear system a given price ratio will generally sutain an optimnin in the sense that at this price ratio no movement away from the optimum will ippear advantageons to any of the scctors (even though this optimum will not be attained withent the intervention of quantitative controls). in a non-convex system a set of marginal-cost prices will not sustain even the optomum in any stable sense. In a linear system the sectoral payoff are maximized at the margimal-cost prices correcpending to the over-all system optimmm. In a nenconvex system, on the other hand. marginal-cost pricing at the system optimnin will in solncsectors lead only to stationary ranges or points in the payoff, ${ }^{34}$ such as the stationary range along the points of ehe straight-line wegments $X /{ }^{\circ}$ of the iso-prodnct curve of cector 2 passing through I (figure VII). Note that at the labour price set by the slope of this seguent the payoff of sector - at f is actually at a mimimum; alternate mimima oncour along the entire stretch XY of the straight-line segment. Movement away from I, cither w E^{\prime} or \vec{F}^{\prime}, wonld improve the payoff of scetor 2. Marginal-cost pricing of the connceting resources can be said to sustain the global optiminm $b^{\prime} \mathrm{l}_{\text {only }}$ in the limited sense that at such prices sector 2 will be indiffierent to small local movements along the iso-prodice curve. However, given the ability of the sector to consider longer-range adjustments on E^{\prime} or $f^{\prime \prime}$ (which is certainly a reasonable supposition in the case of ewo-level planining or decision systems). marginal-cost pricing alone will no longer suffice wistain cven the global optimum of the system.

Thus in non-convex systems where the sectoral values of the comecting resources are to be maximized monder marginal cost pricing there is a constant tendency for sonle sectors to abandon the position required for the system

[^19]optimum. and this tendency has to be comnteracted by specific quantitative controls such as fixed resource allocations. The practical consequences of the introduction of such quantitative controls are not greatly different from the effects of such concrols in lincor systems; in this regard mon-convexitics merely reintorce the control requirements already manifest in lincar systems.

In norr-comerex anlti-hereldecisiou systems with maxienizativa of sectoral pareffis under margiaal-rost pricies for the cramectice
 eromomies linkiag the sectors. The tendency of some sectors to abandon the position required for system optinntin is due to the possibility of improving sectoral payoffs with large readjustments at current marginal-cost prices. But the improvement for the sector would be obtained at the expense of the deterioration of the system as a whole. because the factor reallocations required for the readjustment of the sector in question would leave other sectors with a loss greater than the gain of the first sector. Murginalcost pricing furnishes a reliable measure of system-11ide reperausrions anly for differential reedjinstments nour a local opeimnes. not for the longer-range readjustunents considered here. Thus in the course of swch longer-range, non-marginal readjustments of a sector, external cconomices or discomomies of the technical varicty will conce into play: it is as though the sector originated un-priced services or disservices that affect the efficiency of system-wide rewource allocation. The guestion arises as to what the exact nature of these un-priced services or disservices is. Similar yucstions have puzzled generations of comomists concerned with the amalysis of externalities. ${ }^{35}$

A key to the problem is furnished by the cutting-plance technique of solving integer progranming probkens (sec annex). When new lincar constraints of the proper kind are introdiced into linear programming problems whose variables are restricted to integer values, the resulteing colarged linear progranmining problem will yield ant optimal solution identical to the integer solution of the original problem. The enlarged problem is convex, and all constraints, including the newly defined constraines, have proper shadow prices in the optimal solution. The "resources" corresponding to the newly defined constratim, unpriced in the original problem, are the missing serrices and disservices linking differem sectors. ${ }^{30}$ In gencral there is mo

[^20]unique way of defining new constr.mes: it this the " minving resomrese" do not have a detinite identity of their own .nnd are just shadowy rettections of the underlying monconvexity of the system. No wonder they have persistently claded being detimed by ceomomists. The search has been all the more frustrating becouse in some essentially convex wistems exhibiting technical externalities, the ein-pricid resources responsible for the latter are relatively casy wo identify (lighthouses iss whips, sparks trom railrond congines is. lumber trats, smoke misance, ete.)
Decisions iarolvine the incurreme of pixed costs call ercerally ant be deccomralised 'ry a price system atal ine mavianization of
 cost incurrence activitics, ceven though assosiated with individual secters, carry over from the latter into the nenconvex master problem involving the correct iveraging of a complete list of known feasible basic solutions (compare annex, tables 2 and 3); thus the correct averaging of complexes requires information on sectural fixed cons. activity by activity. In other words, while the sectors in . lincar system are free to choose all aspects of their own technology under a set of centrally amounced prices for the comecting resources and are subject to quantitative controls only in regard to a selection from among their alternate optima, in non-convex systems the optimal allocation of resources is contingent on reterring all detailed tixed-cost incurrence decisions to the planming centre.

An appronimutte decentralization is. however, peosible following the primeiples of approximation 1 . There it wa shown (see also annex) that a lincarized master problem that handles individual compleies as though they were perfectly divisible will yield a wet of prices which will guide the systent to a satisfactory sub-optimal solution, provided that the deviation of the apex-to-apex connecting lines from the correct iso-prodict lines is within tolerable error limits. The latter is more likely to be the case when fixed costs can be incurred stepwise in the individual activitic, rather than requiring all-or-mothing decisions (see annex, figure I). Under such an approximation the individual sectors are again free to choose their own technology including the assormenter of fixed costs whe incerred, but thin gain in decentralization is achicved at the expense of some blurring of the optimal resource allocation for the system as a whoke. If, however, the size of the steps by which fixed costs are incurred becomes progressively smaller, the approximation in the limit approaches an exact solutionfinding procedure for the case of perfect divisibility, and a verage factor costs defined by the apex-ti)-apex connecting line become trie marginal costs. The same result als, obeains when in the long run fixed coses can be proportionally adjusted to required capacitics that are continnonsly

[^21]variable: the stitation is then an exact analogne of the well-known textbook case of a long-rim envelope line derived from the capacity points of lincar short-rm totalcost curves with fixed costs, wach of which has a smaller Wope than the envelope (see annex, figure $1 /$) 38 With amall but fimite fixed cost steps, the apex-to-apex comeneting line will yield exate estimates of resonere requirements at a momber of lattice points along the line if at these points all fixed-cost increments already incurred are operating at capacity. ${ }^{39}$ At such lattice points. if any exist, the amome of fixed costs actually incurred will be indistinguishable from a perfect long-rmonanstment with contimuons variability, Such lattice points are most likely. to occur in practice when only one of the complexes to be averaged has fixed coses. 11
If the decentralization al fixed-ast incurronce decisions is altogether ahandoned, marvinal-cost pricing o! the connectime resources will permit the decontralization of other sectoral decisions. If the upper decision-making level provides a list of fixed conts to be incorred in the sectors, the activities whose fixed costs have not beon incorred will be imactivated. The other activities will now jointly define a linerr twolevel decomposition problem whose solntion implies marginal-cost pricing of the connecting resources. Such a decision strategy is often snitable, c.g., for plant location problems where after the selection of active plants the remaining production-and-transport problem is convex and leads to a well-defined system of shadow prices. The central selection of active plants can be undertaken by witable approximations such as those described in the action ont the decomposition principle in non-convex ustems.

In this case the decision process is divided into two stages. Durimg the first stage information is interchanged between the upper and lower decision-making levels; as a result a programme emerges that represents a target decision (plan) for all levels of the system. In stage two this plan is to be implemented. Following the annonncement of active plants by the centre, and rednetion of capital and labonr availabilitics by the fixed amomes already committed. firther implementation can follow the trial-and-crror udinstments of a linear decomposition system, held within reasonable bonnds by the quantitative controls that are

[^22]always needed in linear systems for the weighting of alternate cctorel optima in some of the sectors at the given prices.
 10) margimal-cost pricing. to the extent that the decentralization of fived-cost incurrence decisions is of practical concerm. In this contest "average-cost" pricing of the connecting resonres is takell to mean prices that correspend to the slopes of the apex-to-apex connecting lines.
ln many practical problems of multi-level decisionmaking, c.g., in national ecomomic plaming, the decentralization of fixed-rost incurrence decisions is of the ntmost importance. In national planning large mmbers of investments have to be identified by class of comomic activity, time period and location, and it is desirable that the central plaming level be relieved of all but the most essential of these decisions. Average-cost pricing of the comnecting resomeces (as defined above) by the upper decision-making level will permit trial-and-crror adjustments in the course of plan implementation that follow the principles of upproximation 1 . These adjustments, like the ones of a linear system, have to be held within reasonable bonuds by ynantitative controls which prescribe the weighting of given sectoral complexes, even thongh, in contrast to the linear case, this may lead to a reduction of some sectoral payoffs.

In this, as in the previons case, the decision process will generally have ou be divided in two stages. The first stage is required in order that the degrec of error of resource allocation, inherent in the decentralization of fixed-cost incurrence decisions, may be judged. If this error is tolerable, the second stage can follow with its trial-and-error adjustments in the comirse of plan implementation.
More gencrally the first stage permits a judgement concerning which fixed costs are to be contrally prescribed and which are to be left for decentralized decision making. It is entirely prosible to prescribe or to suppress one gronp of fixed coses while another group is left open for decentralized decisions. In this case the prices of the comenecting resomrecs will be "average-cose" prices as before, but with certain fixed costs (those that have been prescribed) omitted from the complexes, and with certain complexes (those that contain activities with suppresed fixed costs) omitted altogether from consideration. As in approximation 1, the actors will maximize their payoff, taking into consideration only those fixed costs whose incurrence has been left open. Resource availabilities are again reduced by the fixed costs already committed. At cuery stage of plan implementation the trial-and-error adjustment is kept within bounds by quimtitative controls.
In a two-level decision system, where sectoral decisions aciur as a mit, the question of pricing for individual activities can be left open. Given the non-convexity of fixed-cost incurrence oprerating within as well as berveen sectors, there will be evternalitics (and corresponding mopriced "missing resources") at the sectoral level as well as at the level of the system as a whole; therefore, no simple
pricing prescriptions can be expected. In considering intraectoral pricing rules, the possibility of further decentralization minst be kept prescit: moreover, on practical groumds the setting of prices to cover arereege costs approximately at planod ontput levels is to be strongly favoured.

Concilusion

The investigation of the properties of two-level decision systems with angular decomposable structure made non-convex by the inchusion of fixed costs yiclds some preliminary insights into the stricture of mere general non-convex cconomic systems. Thes it is apparent that nonconvexity usially will give rise to externalitics, but the
convers cannot be asserted. Mercover, an comomic system such as that of a present-day predominantly privatecolterprise industrial ccomome can operate with a reanonable degree of efficiency in spite of its pervisive clements of nom-convexity, provided that (a) highly indivinible decisions are subject to some kind of rational centralized deliberation indepondent of the marker, and (h) smaller irregularitios are adjusted by a price sestem that in based on average cost near the highest efficient sale of operation. It is cqually clear that these preconditions are only imperfectly satisfied in practice and that a properly functioning decentralizei planning sitcon can commbute sul)stantially to coping with the problems of efficicut resource allocation.

ANNEX

Notationa

The whema given in table 1 (text), following Tucker (10xi3), is asuccinct joint representation of two systems of linear eqnations. Onc untem aries by forming the inner preducts of the vector

$$
x:\left|x_{11}, \ldots, x_{y}\right|
$$

wath the rows of the matrix A, the matrix of numerical coetficients in table 1 (text), and setting cach inner product equal to the corresponding components of

$$
\sigma\left|\begin{array}{l}
\sigma_{0} \\
\cdot \\
\cdot \\
\cdot \\
\sigma_{. M}
\end{array}\right|
$$

This leads to a wistem of M - linear equations in the N vari.bles $\mathrm{X}_{\text {; }}$:

$$
\begin{aligned}
& \sigma_{0} \quad a_{01} \mathrm{~N}_{11} \quad \ldots \quad a_{0} \mathrm{~N}_{\mathrm{y}}
\end{aligned}
$$

The second system arise by forming the immer products of

$$
\gamma \quad\left|\begin{array}{c}
v_{0} \\
\cdot \\
v_{M}
\end{array}\right|
$$

with the columms of A, and setting each equal to the correspending component of

$$
L=\left|\quad L_{1}, \ldots, \quad L_{n}\right|
$$

[^23]This yelds a witem of X, bucar cquation in tice varnible $r_{i}:$

$$
\begin{array}{cccc}
L_{11} & a_{M 1} X_{11} & \ldots & \left.a_{M 0}\right\rangle_{M} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
I_{X} & a_{1 . X} Y_{0} & \ldots & \left.a_{M . X}\right\rangle_{M}
\end{array}
$$

In table 1 (text), the negatuve variables L_{j} have hean replaced by positive variables π_{j}. Tincker (1003.3. pages 8 g) how how the wstems of linear copations given in the whema, in homogeneous form an be cmployed in non-homogeneoms form bertime . .ia and y_{n} equal to mity to treat dalal linear programumes. Here or becomes the maximand of the primal problem and I_{11} lecomes, the minimand of the dual problem, with all wher variabes required to be nom-negative. When we rephace the $I_{i j}$ variable, by π_{j} variables, the mimimand becomos π_{1}, ind the ohler π_{j} variables are required to be non-positive. In the coomomice interpretation of the problem, the L_{j} are loses whike the $I_{j} \pi_{j}$ are profits; the X_{j} are activity sales, the 1 ; vadow price of rewurces, and the of mused reoource surphase.

A full algebraic expansion of the problem smmanizal in t.ible a (text) in given in the table on page so.

Till: liniah dicomporition phobitm

The master problom (extremal sub-problem) and one of the two secteral sh-prohlems, following the decomposition methed of Dantzig and Wolfe (1961), are given in table I (below), agam using Tucker's condensed schema. The interpretation agrees with the discussion above, except for a slight meditication in the casc of the sectoral sub-problem. Here the maximinad $=1$ is a weighted sverage of the two cop rows with ηk and $P L$ employed as comstant weights; in particular p_{k} is always set to mity. The resource surpluses characterizing the two top rows will be negative (as capital and labour are not prodnced and as there are noe exogenoms ectoral supplies) and are nor subject to the nen-negativity constraints applicable to the other resource surplases. The constimt weights P_{k} and P_{L} are set in the course of each iteration to the last solution values of the same variables in the master problem. The sub-problem for the second sector (now shown) am be derived from the original problem by andoge:

Primal prohlion:										
Max!	00	300	$1 \cdot 1 \cdot N_{1}$	1-25M2	$3 \cdot 0 .{ }_{3}$	T. N_{1}	.$_{5}$	$2 \cdot 5 \cdot \mathrm{~K}_{\mathrm{H}}$	0.6.1-	3.0.is
Subject to	σ_{1}	2000	$12 \cdot 5 \cdot{ }_{1}$	$7.5 \mathrm{~N}_{2}$		$7 \cdot 0 \mathrm{~N}_{1}$	150. ${ }_{5}$	ro.N	$4 \mathrm{ONF}_{-}$	$110 .{ }^{\text {\% }}$
	O_{2}	so	.$_{1}$	X_{2}	O. 5. N_{3}	O- X_{1}				
	σ_{3}	S0		O-S S_{2}	\mathbf{X}_{3}	- X_{4}				
	σ_{4}	-5					.$_{5}$.$_{6}$	O.X.K	
	0_{5}	± 5					$0 \cdot 2.20$	$0 \cdot 5 \mathrm{X}_{8}$	N_{i}	V_{*}
.lind	0	0.1							
	.$_{j}$	0, j ${ }^{\text {s }}$							

Dinal prohliow:							
Min!	π	351	2000 Y	so 1\%	50 Y_{3}	$\therefore \mathrm{Y}_{1}$	251%
Subject to	π	$1 \cdot 1$	$12.5 \mathrm{H}_{1}$	19			
	π	$1 \cdot 2$	$7.5 \mathrm{~F}_{1}$	Y:	-2.913		
	$\pi 3$	$0 \cdot 1$	noti	$0 \cdot 5 \%$	Y_{1}		
	π	- 5	coki	ory	$>_{3}$		
	π_{5}	$1 \cdot 0$	1s.oti			14	$0 \cdot 2 \mathrm{Y}_{3}$
	$\pi 8$	± 5	roti			F_{4}	0.5%
	π	$0 \cdot 1$	+o\%			ONY\%	\hat{S}_{5}
	$\pi 8$	10	110\%i				i_{5}

Inepending on Repk, diffierent optima to the ectoral vil)problems will be attained. ${ }^{\text {D }}$ The prosible optima inclade, for the present problem, vertices A, B, and D for sector 1 , and vertion E, E, and H for sector 2. Designate the total capital and labour requirements of any of these optima by $\quad K_{w}, L_{w}$, where ${ }^{w}$ is the index of a vertex. The requiremeints, sppese in mo.: master problem (table $1(a))$.
In the master problem $\lambda_{f}, \ldots, \lambda_{H}$ are variable weighte to bo attached to each of the sectoral vertex whations. These weighes have to add up of unity for convex combinations of vertices, is expressed by the constrainss of the third and fourth row. Note that the new resource surplas variables σ_{g} and σ_{10} corresponding to these constraints are arrificial: i.e., they are introduced onl! formally, since they are required to be exactly zero in the aptimal solution. The other two resource surphases are the same as encountered in the original problen .und refer to capital and labour. respectively. The capital surplus is maximized. The variable of the dual problem are the shadow prices p_{k}, p_{1}, μ_{1}, p, associated with copital, labour, and the two convexity constraints. Thic shadow price fir capital is identical with the variable Fin in the original problem and is wet cqual to unity: the shadow price for labour is identical to Y_{1}. The shadow prices p_{1} and p_{2} cann be imterpreted as "subcontracting fees" as discossed in finotnote an of the text. The variables π_{f}, \ldots, π_{H} are profits at shadow prices. associated with the use of each vertex (complex of activities). The dual minimand π_{0} can be interpreted as the net valuation of exogenously given supplies and demands at shadow prices, where the (1) entries in the exogenous collumen stand for the net evingenous demands of sectoral resources.

[^24]In the sbove formulation, all vertex whations (efficicint combplexes) are included in the master problem. If, in fact, all of these were present from the very hegiming, the solution to the master problem would at once sied the over-all aptimum. The algorthen operates, however, with only a partial list of such vertices whech imitially detine only a sugle fasisible starting solution. At .ll!s stage of the algorithin the current optimum to the mater problem siedd a set of shadow pricos. At these prices. .ll vertices with positive $A_{\text {, }}$ weights have zere profits, while other vertice
 III aptimum.

In order to test whether the current aptimum to the master problem is also an aver-all optimmom, all attempt is made to find a liew vertex that will show a pueitive profit at current shadow prices. Since p_{1} and p_{2} are given, a profitable new vertex ${ }^{\prime}$ most have the highest posible alyetraic value for the expression

$$
\left(p_{\mathrm{K}}, K_{w} \quad p_{t}, L_{w}\right)
$$

where $p K$ and p. are alse given. The sectoral sub-problems select the vertex which maximizes the above expression in each sector. If the algebraic suln of p_{1} or p and this maximum is pusitien for a wector, vertex $"$ is profitable and the current optimumen to the master problem is not an over-all optimum. The new vertex is then included in the list of known vertices, and the optimization for the master problem is repeated. lo the colletrary case the over.ll optimum his beco attained."

Titr noin-cianvix dicimpinitioin phoblem

In the prescince of fixed costs the original problem has to be expanded as shown in table a. The fixed costs of each activity \boldsymbol{X}_{j} showi in table 1 (text) are introduced as the capital and labour inputs associated with new actuvities $\boldsymbol{X} \boldsymbol{j}$. The levels of these new activities are tied to the level of each corresponding ariginal activity X_{j} by means of proportionality constraints that fores the

[^25]
(b) SECTORAL SUB-PROBLEM FOR SECTOR I

level of each x^{*} to cqual or exceed a constant fraction a of activity \boldsymbol{X}. The new activities may be interpected as the fraction of fixed costs actually incurred. Of course the only levels of $X_{j}{ }^{*}$ that make economic sense are 0 and 1 ; thus we impose the constraint that $X_{j}{ }^{*}$ has to be an integer, thereby converting the problem into one of integer programming. ${ }^{\text {d }}$ The constant fraction a is chosen small enough so that it will noe drive the value of ans: $X_{j}{ }^{*}$ above unity. With these provisions we have the following chain of interactions between the variables: X_{j} cannot exceed o unless $X_{j}{ }^{*}$ rises to at least $a X_{j}$; once $X_{j}{ }^{*}$ rises above zero, however, the integrality condition takes over and drives it all the way to

[^26]unity. Thus $\boldsymbol{X}_{\boldsymbol{j}}$ cannot exceed o unless the correspunding fixed cost is incurred in its entirets.
The new variables introduced in table 2 incluck, besides the $X_{j}{ }^{*}$, also profits $\pi_{j}{ }^{*}$ on these activitios. New "resources" als, appear corresponding to the proportionality constraints linking the linear production activities with the new fixed-cost activities: the non-negative "resource surpluse"" in thexe rows are designated as $\sigma_{j}{ }^{*}$ and the shadow prices as $\gamma_{j}{ }^{*}$, where the subscript corresponds to the production activity whose fixed cont give, rixto the proportionality constraint in question.
It should be noted that the primal-dual representation of the integer programming problem in table 2 is incomplete, as the possibility of simultancously satisfying both primal and dual constraints-while assuring integer valuey for the fixed-cost
lithe ?

:...rable, depende on the introduction of curting phathere The cutthey planew appear is addition.al coneraint rows that .re mplied In the conerames of the problem when integrality requrements are impened. In the abence of weh extrit constraines no prim.alfeashle integer wherion generall! exise that would alow witife the dial comstraints. All Finder whimua presomed fier integer proprammines problew.ins in this paper mest be inerpretod with this. reserration in mind.
Hew dex the presence of fixd cont , iffect the moster prohlem of the purely linear cone: Given on hat of the cupted and habour mput requircment (exdluding fixed cosse) of all feasible bavic : lutions to the sectoral vit-problems. we alow need the fixed ant of .ll wetural activite and a pecification of the individual acheites that are aperative in each whation on the hist. On the has of ths information we can formulate a maser problem for the integer programming cose as shown in table 3. Ath fiscatcont entivitiov X_{j}^{*}.are ceplicitly included in the revised master protk m. and proportionality constraints are added connecting the level of a complex with the soald of cald fixed cost activit! reymired for ruming that comples. When compleses are aner-

[^27]X_{i}^{*} Ieyuired for aly of the complexes above zero, and the in"eqrality consermes fir these s.ariables will foree them further up) (w) minty: Nete that a knowledge of the combined variable and fixed mput requiremome for cach connceting resouree (capital and l. bourr) wow iated with , complex in not cmongh for deriving the "wer-all optimmon: it is alo necesoary to have correct .lveraging ruke lat the present we the fisedecost incurene rules have the atfict of such correct acriging rules.
In table 3 小 in the limear master problen, cach complex is represented be its ngeregate rarialle capial and labour requirements that appear in the first two rows. The levet of operation of coth complex in a variatle λ_{2}, that com be interpreted, as in the lincar case, is . weighe. Weighted averuges of complexes are formed by reyming that these mon-ncgative weights add np to mite: thes is cexprened by the last two rows: these agree with the linear case. Note that in the linear case only the vertex solutions were included. 1.c., only eftictent feasible basic solutions participated in the master programme. In making the transition from the line ar to the ne neimesex cane, due to reasons cited in the text, the pesmhiltey camot be excluded that previously inetficient feasible hasic solumens may contribute a segment to the new production possbility froviticr. Therefore the complete list of temsible bisic solutions ha, to apperi in the master problem. Fixedcons activitios are added with their usual activity tevels X_{j}^{*} and profit leveh π^{*}. The proporionality constraints again give rise to new "reource" whane vel duses and shadow prices are designated by $\sigma_{\mu_{i}, 1}$ and $\rho \mu, i$, repectively, where w is the index of the a mplex and i in the inder of the respective fixed-cost activit!.

The integer programming version of the naster problem, when operating on a partial known list of complexes, will yied an underestimatic of the correct optimum.

Approximations

The two approximations described in the text have a reduced need for information. They operate on the combined fixed plus variable factor inputs of a complex withour recourse to further information on the fixed costs of activities that make up the complex.
Table 4 lises these combined factor inputs for the apices A^{\prime}, \ldots, H^{\prime}, while tables s and 6 formulate the approximation methods. Table sa shows the linearized master problem of approximation I while table $s(b)$ shows one of the corresponding sectoral inteper pregrammiugs sub-problems. Table 6 formulates approximation 2.
In the master problem of approximation 1 (table $s(a)$) the capital and labour inputs of the individual complexes correspond to the sum of fixed and variable requirements, as can be verified by reference to table 4. The averaging weights are subject to the usual convexity postulate (rows 3 and 4); the fixed-cost activitics used for correct averaging (see table 3) are omitted. Note, how-
ever, that the factor inputs of a given complex in table 3 do min contain the fixed factor requirements, whereas in table s(a) the y do: i.e., complex B in table 3 has capital and labour inputs of $12 N \cdot 6$ and $1,071 \cdot 4$, respectively, while complex B in table $s(a)$ h.in corresponding inputs of $14 \mathrm{~N} \cdot 6$ and $1,121 \cdot 4$. The effict of the difference is that the model of table s(a) permits the line:ar combination of apices, i.e., it assumes perfect divisibility of the fixed costs included in cach complex : contrariwise, the model of table 3 . while giving the same combined factor inputs as table s(a) for cach apex (due to the operation of the proper fixed-cost activitues whenever any enc apex is used), in addition enforces the full incurrence of additional fixed cost when complexes are used in combination.

Similarly to the lencar master problem of table :(a) the limearized master problem of approximation I starts out with just one faiible basic solution and generates additional apkes as required. The prices for labour and capital, pk and ph, calculated from the model of table $\mathbf{s (a)}$ in each iteration, arc inserted, as int the linear case, into the sectoral sub-problems (compare tables $1(b)$ and $s(b)$). In table $s(b)$, however, this sub-problem is an integer programming problem. The solution to each sub-problem will be an apex

Table +
Variarif, hixid, and combined factor inputa hor compilixis

Sechar 1			Sothr:		
Complex	C.apilal	I.atherr	Complex	Ciupind	I.thoner
. ${ }^{\prime}$	$\begin{aligned} & 97 \cdot 5 \\ & 45 \end{aligned}$	$\begin{gathered} 1,2,37 \cdot 5 \\ 0 \end{gathered}$	I'	$\begin{aligned} & \mathrm{N} 9 \cdot \\ & 20 \end{aligned}$	$\begin{gathered} 946 \cdot 4 \\ 0 \end{gathered}$
\boldsymbol{B}	142.5 $12 \mathrm{~N} \cdot 6$ 20	$\begin{gathered} 12,37.5 \\ 1,071.4 \\ \text { so } \end{gathered}$	17'	$\begin{gathered} 109 \cdot 3 \\ 225 \cdot 0 \\ 10 \end{gathered}$	$\begin{aligned} & 946 \cdot 4 \\ & 025 \cdot 0 \\ & 50 \end{aligned}$
(')	$\begin{gathered} 14 x \cdot 0 \\ 191.0 \\ 30 \end{gathered}$	$\begin{gathered} 1,121 \cdot 4 \\ 1,100 \cdot 0 \\ 0 \end{gathered}$	1	$\begin{gathered} 2350 \\ 1150 \\ 15 \end{gathered}$	$\begin{gathered} 67.5 \cdot 0 \\ 705 \cdot 0 \\ 0 \end{gathered}$
$)^{\prime}$	$\begin{aligned} & 2.1 .0 \\ & 243.4 \end{aligned}$	$\begin{gathered} 1.100 \cdot 0 \\ 934: 2 \\ 50 \end{gathered}$	(;'	$\begin{gathered} 130.0 \\ 137.4 \\ 9 \end{gathered}$	$\begin{gathered} 705 \cdot 0 \\ 7 \times 7.5 \\ 50 \end{gathered}$
	24*.4	984.2		142'5	N37.5

contained in the convex hull of the nom-tonvex production possibility function for each sector. When these apices are included in the master problem their combined factor cose may or may nor be less than the current suh-courractine fie p, for the wetor (see the discussion of the linear case), i.e., either leaving or mot leaving a positive pr fit. As long as there is a profit, the solution to the master problen muse be changed by entering any proftabk activity into the base: when profies no longer appear, the over-all "primum the the approsimation has been attained. Since some fixed costs that should have been included in combined complexes max have been suppressed by the linear averaging procedure of the master problem, the optimal solution to this approximation, if not an exact optimum to the integer programming problem, in an overestimate.
Table 6 represents approximation 2. The rows of this table are identical with the top two rown of table $s(a)$: however, while in table $s(a)$ the λ were contimuous variables, in tuble 6 they become 0.1 variables.

Stipwist inc:umbinct or hixfo conts

In figure 1 a section of figure VII (text) corresponding to complexes $1 i$ and t has been redrawn on a slightly enlarged sale, on the assumptoon that the fixed cosss of the individual activities making up the two complexes can be meurred in several step. The data are identical to those in table 1 (text) except for the following dhanges. Activity X_{7} incurs fixed costs in units of expenditure of ($2 \cdot 0$) for capital and labour, respectively: these fixed costs yield a capacity of up to x units of X_{i}. Activity X_{x} sminilarly incurs fixed coses in units of $(1 \cdot 0)$ with a correspondeng copacity of up on o unien of $\boldsymbol{X}_{\mathrm{s}}$. Activity \boldsymbol{X}_{5} which occurs in both complexes is assumed to incur its fixed conss all at once, in order to sumplify the graph.

As usial point t represene the capital and labour inpues of a comples excluding fixed coses: the coses have to be added on eparately to obtain the corresponding apex $E^{\prime \prime}$. The addition of \bar{x}_{5} is represonted by a vertical arrow; ; ${ }_{5}$ is not added on all at once but in five steps. The sale of X_{i} im complex E is 35.714 (sec tatle 1 in text) while in complex l it is o, thus when complexes
E and I are correctly weraged with the weight of complex ℓ virsing from o to 1 , the scale of activity X_{i} increases from o to 35714. Since cach unt of fixed coses yideds a capacity of x units, ns the scale of $X_{\text {; }}$ increases along the \mathcal{E} - E connecting lime the first sep of \bar{x}_{7} is incurred at 11 ' (arrow of 2 unis pointing vertically, downward), and yold a maximum capacity corresponding to point is thereafter another fixed-cost step has on be incurred that will yeeld cipacity up to ce, etc: : the final step of fixed costs is mourred atter is and vields a maximum capacity corresponding (1) point is. Up to this point the cumulative cupacity' las reached 40 units which is beyond the $35 \cdot 714$ units required for apex $E^{\prime} ;$ at E^{\prime}, however, the cumulative fixed cost incurred is already (10.0) umis. Similarly the fixed cost of activity X_{B} is incurred in steps; the first of these is shown as an arrow of unit lengeth pointing vertically downward from I': this viedds a maximum capacity corresponding to point h; thereaffer another step is meurred, with maximum capacity at $f 2$, ctc. When the fixed-cost expenditures for X_{B} are added to the step function reselting from the sage-by-stage incurrence of the fixed cosse of X_{7}, the shape of the revulting total expenditure curve is quite jagged. Some parts of this curve are, however, dominated by other parts and have to be replaced by horizomal lines representing labour disposal; the back triangles in the ploe represent the parts of the curve that are cur awas. The final iso-product line runs along the tops of these triangles.

While drawing such in iso-produce line to scale requires some care, the fundanental concept is simple and corresponds to the textbonk cose of linear tutal cost curves with capacity limits that are proportional to fixed costs (shown for reference in figure $1(b)$). In the latter case the capacity limits occur at points γ, which fall along a straight lin. OI; in figure $1(a)$ likewise capacity limits for $X_{;}$tall along a straight lime connecting points W, c_{1}, e_{2}, \ldots, is and for X_{8} along a straight line $1 ; / f_{1}, / 2, / 4, I_{4}, F^{\prime}$. The apex-to-apex comnecting line $E^{\prime} F^{\prime \prime}$ in the present case is considerably clower to the sectoral iso-product line than when fixed costs have co be incorred in a single step. Fon reference the iso-product line for the latter case is added: see line $E^{\prime} X Y F^{\prime}$. W'ith perfect divisibility the ise-product line becomes the sum of two straight limes, $I F^{\prime}$ and

(b) SECTORAL SUB-PROBLEM FOR SECTOR I

W' (each of which is the analogue of line OY in figure $l(b)$); this cummed line is $E^{\prime} F^{\prime \prime}$.
For an aglebraic formulation of the above problem replace each a occurring in the column of a given X_{j} in table 2 by $1 / C_{j}$ and reduce the fixed-cost vector in the top two rows of the corresponding $X_{j}{ }^{*}$ to the vector representing a single fixed-cost incurrence step, where C_{f} is the capacity limit corresponding to such a step. With this emendation the $X_{j}{ }^{*}$ become integer variables that can take on optimal values exceeding unity. The
proportiomality constraints now become

$$
X_{j} / C_{j} \leqslant X^{*} .
$$

These constraints, together with the integrality requirement for $X_{j}{ }^{*}$, will lead to the incurrence of all additional fixed-cost step whenever X_{j} exceeds $C_{1}, 2 C_{i}, \ldots$, , etc. In table 3 an a corresponding to $X_{j}{ }^{*}$ and assciated with complex w is replaced by $S_{j, w} / C_{j}$, where $S_{f, w}$ is the scale of activity X_{j} when complex in is utilized at unit λ weighr; fixed costs in the columns of the $X_{j}{ }^{\bullet}$ variables are reduced the same way as in table 2.

$\begin{array}{ll} \text { Capital } & \text { Max! } \sigma_{0}= \\ \text { Labour } & O: \sigma_{1}= \end{array}$	Min! π_{0}	Sector 1 0 0 0 π_{A} \geqslant \geqslant $=$ $=$ π_{C} 	$\begin{array}{cc} O & O \\ \geqslant & \geqslant \\ \pi_{D} & \pi_{E} \\ = & = \end{array}$	$\begin{aligned} & \text { Se } \\ & \hline O \\ & \geqslant \\ & \pi F \\ & = \end{aligned}$	$\begin{gathered} \text { ctor } 2 \\ \geqslant \\ \geqslant \\ \begin{array}{c} 0 \\ 0 \end{array} \\ = \end{gathered}$	$\begin{gathered} O \\ \geqslant \\ \pi_{H} \end{gathered}$	
	$\begin{array}{r} 350 \\ 2000 \end{array}$	$\begin{array}{rrr} -142.5 & -148.6 & -221 \\ -1237.5 & -1121.4 & -1100 \\ \hline \end{array}$	$-248.4-109.3$ $-984.2-946.4$	-130 -705	-142.5 -8.37.5	-235 -675	${ }^{*} P_{K} \equiv y_{0}(=1)$
	$\begin{gathered} X_{0} \\ (=1) \end{gathered}$			λ_{F}		λ_{H}	
	Exog enous	$0,1$ Averaging weights for complexes					

Figurc I
Stepwise incumance of fixed costs

Arrow, K. J., "An Extension of the Basic Theorems of Chasic.al Welfare Economics". in Neyman. J. (ed.), Procectinge of the Scound Berkelly Sympesiunn in Mathematical Statistics and Prohahilify. University of California Press, Berkeley, 1951, Pp. 507-531. Be- and L. Hurwic:. "Decentralization and Computation in Resource Allocation", in Pfouss, R. W. (ed.), Essays in LionComiss and Lamometrics, University of North Carolina Prow. Chapel Hill. weo.
Proprammeng, St.mford Universits Prest, Stanford, (C.alif, uess, 29 pp .
Balinsky, M. L., "Integer Programming-Metheds, User, Computation", Recont Mathematial Adrances in Opcrations: Resciarih and the Management Scinaces, Univeroity of Michigan Summer Cimference, Ann Arbor, Mich., 9-zo August ioes, ito pp.
Beak, E. M. L., A Mcthod af Soleime Lincar Programiming Problems "Phen Some, lint met all of the loariall/ss Must Take Integral Ialies, Statistical Tcchnigues Rescarch Group, Princeton, March $195 x$.

- "A Survey of Integer Programming", Opirations Rescardl Quartitly, Vol. 16, No. 2 (1965), pp. 219-22R.
Bohr, K. A., "Investment Criteria for Manufacturing Induserics in Underdeveloped Countries". Rericw of Ecouomiss and Statistics, May 1954.
Chenery, H. B., "The Application of Investment Criterio", Quartroty Journal of Ecomemics, No. 266 (February 1953).
Ecomonic "Iuchopment Policics and Programmes", United Nations Economic Bulk ciin for Latill America, Vol. 3, No. 1 (March 195(), Pp. 51-77.
--- "The Interdependence of Investment Decisions", in Abramovitz, M. at al.. The Allocation of Ecomomic Rcsourcos, Stanford University Press, Stanford, Calif., 1959.
Dantrig, G. B., "On the Significance of Solving Limear Programming with Some Integer Variables', Ecrmontericu, Vol. 2%, No. 1 (January 19tro), pp. 30-44.
- Lincar Programiming aud Extrussious, Princeton University Press, Princeton, N.J., 1963, 62s Pp.
Programs", Eoluomectica, Vol. 29, No. 4 (October Lisear Programs", Ecoulmetrica, Vol. 29, No. 4 (October 1961),
pp. 767-778.
Dorfman, R., P. A. Samicison and R. Solow, Lincar Programminge and Economic Analyvis, McGraw-Hill, Ncw York, 1958, 527 Pp.
Eckstein, O., "Investment Criteria for Economic Development and the Theory of Intertemporal Welfare Economics", Quarterly lourual of Economiss, Vol. 71, No. 1 (February 1957), pp. 36-8s.
Galenson, W. and H. Leibenstin, "Investment Criteria, Productivity and Economic Development", Qumbrly Jownal of Eronomics, Vol. 69, No. 3 (August 195s), pp. 343-370.
Gomory, R. E., "An All-Integer Programming Algorithm", in Mush, J. F. and G. L. Thompron (eds.), Industricel Schechuliug, Prentice Hall, New York, 1963, pp. 193-206. (First isuued as 1.B.M. Research Center Report, RC-189, January 1960a.) ation, Santa Monithm for the Mixed Integer Problem, Rand Corporation, Santa Monica, Calif., Am-2 s97, 7 July 1960 b.
"Large and Non-Convex Prohlem, in Lincar Program-

 Sociciy, Val. Is (1002).

and W. J. B.anmol. "Intecer Prengrimming and l'ricing",

Hurwice, L., "(inditions tor I:comomic Efticictay of Centralized and I becentralized heructure"., in (irmominn, Ci. (c.d.). I Ithe and

 Allocation Processes", in Arrow. K. J., S. Karlin .nnd P. Suppes, Mathematial Methods in the Social scicmow, Stanford University Press, Stanford, Calif., 19pob, Chap. 3, Pp. 27-40.
Kompmans, T. C., Throc Esays on the Stati of Eionomic Scimice, McGraw-Hill, Now York, 1957, 231 Pp.
Location of Ece Beckmann, "Assignment Problems and the Location of Economic Activitics", Eiollimitrica, Vol. 25 (JanUary 1957), pp. 33-76.
Kornai, J. and T. Liptak, "A Mathematical Investigation of Some Economic Effects of Profit-Sharing in Socialist Firms", Eromometrica, Vol. 30, No. 1 (Janilary lgot2), pp. 140-161.

Littk, I. M. D., A Critique of II IIfari Licommics, Clarcondon Press, Oxford, 1950.
Marschak, T., "Centralization and Decentralization in Economic Organizations", Ecomometrica, Vol. 27, No. 3 (July 1990), Pp. 190-430.
Rosenstein-Rodan, P., "Problenss of Industrialization of Eastern and South-Eastern Europe", Ecomornic Jourtul, Vol. 43, Nos, 210 and 211 (Jume, September 1943).
-- "Notes on the Theory of the 'Big Push'", in Ellis, H. S. (cd.), Eionomic Druclopment for Latin Amirria, Proccedings of Conference, International Economic Association, St. Martins Press, New York, 1961, pp. 57-81.
"Determining the Need for and Planning the Use of External Resources", in Sicucr, Tirchuology and Developmeme, U.S. Papers prepared for U.N. Scientific and Technical Conference, U.S. Government Printing Office, Washington, II.C.,
1962, Pp. 68-*o.
Tinbergen, J., Contralization and Dercutralization in Ecomumic Policy, North Holland Publishing Co., Amsterdam, 1954, No pp .
-_ "Planning in Stages", Reprint from Statiockonomisk Tidsskrijt, No. I (1962), pp. 1-20.
Tucker, A. W., "Combinatorial Theory Underlying Lincar Programs", in Graves, R. L and P. Wolfe (eds.), Recent Advances in Mathemetical Programming, McGraw-Hill, New York, 1963, pp. 1-16.

United Nations, Mamal in Lamomic Derehopmeme Progcts, Ncw York, 195x, U.N. Publication, Sales No. SX.it.G.g.
——Department of Economic and Social Affairs, Division of Industrial Development, "Evaluation of Projects in Predominantly Private Enterprise Economies", selected procedures based on casc studies, United Nations, N.Y., Industrialization and Productivity, Bulletin No. 5, 7-34. 190.
-- Economic Commision for Asia and the Far Eint, Firmmlating Industrial Derelopment Programmes, United Natoons, Bangkok Developutent Programming Serios, No. 2, 1exir, ${ }^{137} \mathrm{Pp}$.
Vietorisz, T., "\$ector Studios in Ecomomic Development Planning by Mcins of Proces Analysis Models", in Manne, A. S. and H. M. Markuwitz (eds.). Stuidics in Process Analysis, Cowles

Foundation Monograph Nis. in, Wileo. Niw York, use3, Chap. 17, pp. $401+415$.
--.- "Industrial Inevelopment Planning Madels with Ecomomies of Scake and Indivisibilitios", Papres. Respiomal Soirma Association, Vol. 12 (1904). (Lund Congrew, 1063.)
--- and A. S. Manne, "Chemial Procewes, Plant Locition, and Economes of Scale". in Mame, A. S. and H. M. Marki)witz (cds), Studic. in Process Amalysis, Cowles Foundaton Monograph No. in. Wiky. Now York, ung, Chap. G. Pp. 136 5x.
Whanstom, A., Prici Courdmation in Decomralized Systoms, Ph.I). dissertation, Carnegic Instutute of Technology, Graduate School of Industrial Administration, shoz: isoud is Ottice of Naval Rescarch, Research Mcmorandum N(o, m).

Acrial vielt of railicay yard supplying a coal picr at . Norbilk.
I irginia, I.S..A.

[^0]: ${ }^{1}$ The first version of this paper was presented as Discussion Paper No. CID/IPE/B.28, United Nations Inter-regional Symposium on Industriai Project Evaluation, Prague, Czechoslovakia, ti-29 October 1965, under the title "Project Evaluation in the Presence of Economies of Scale and Indivisibilitics". The revised version included here was presented to the Econometric Society Meetings, New York, in December 1965.

 1 Koopmans (1957), page 25, writes (see bibliography at end of this treatise for this and other references cited herein): "The principal reason for making a convexity assumption lies not in its degree of realism but in the present state of our knowledge. When

 Da. Thomas Vietonisz is Professor of Economics and Director of the Center for Ecomomic Plawning of The New School for Social Research, New York, United Seates, and has been associated with the United Nations as a regional expert in industrial development progranming with the Exonomic Commission for Latin America (ECLA). His contributions to carlier Bulletin isswes include a "Preliminary Bibliography for Industrial Development Programming", published in Nos. s and 6 of the Bullecin, and "Programming Deta Summary for the Chemical Industry", publisted in Bullecin No. 10. Professor Vietorisz has also prepared studies for several United Nations meetings, including the Inter-regional Conference on the Development of Petrochemical Industries in Developing Countries held in Tehran, Iran, in November 1964, and the Interregional Symposium on Industrial Project Evaluation held in Prague, Czechoslovakia, in October 1969.

[^1]: one examines the main contents of received theory of resource allocation and competitive markets it is found that its propositions depend essentially on convexity assumptions with regard to both production possibilities and preference structures."

 Convexity assumptions also play a crucial role in the convergence of the characteristics of the gradient method, one of the algorithms available for solving resource allocation problems formulated in terms of mathematical programming models, and commonly held to reflect the essential features of the adjustment mechanism of the market. Arrow and Hurwicz (1960), page 87, give the following summary of these problems (note: concave functions yield convex point sets) :". . the absence of concavity conditions on the functions involved has two consequences for the characterization of maxima (constrained or unconstrained): the first-order conditions do not completely distinguish maxima from other stationary points, and in any case do not in any way distinguish global from merely local inaxima . . . no variation of the gradient method, which is based on moving uphill as measured by solely local variations, can be expected to ensure arrival at the highest of several peaks; at best, only convergence to a local maximum can be expected." The role of externalities in economic equilibria has recently been investigated in depth by Whinston (1962). On centralization versus decentralization, the role of the price system, and welfare implications, see also Arrow (195t), Tinbergen (1954). Arrow, Hurwicz and C'zawa (1958), Marschak (1959), Hurwicz (1960 a, b), Tinbergen (1962).

[^2]: ${ }^{3}$ The soca!led "dyname invisibe hand" theorem (l)oriman, Samulsom and Solow) (1958), page 319, that extends the principle of secial efficiency of perfictly competitive markets from a static to a dynanitic context guarmines only that such a system, onfe leched on .ll efficient growth path, will stay on it; if canmot direct the system toward a growth path that satistics exogenously determined terminal serial obicetives.

 4 (Copper Almon (in I 1,mtzig. 1963, pages 4n2-4(os), and Vietorisz (1ons,) discuss some of these points in relution to multi-level manage-
 ment and planning organiz.tions.

[^3]: : When the average cost curves have horizontal minimum ranges. the latice points broaden to cquilibrimen ranges of finite width.
 ${ }_{\lambda} \geqslant 0$ point set S is convex if the following holds: if $X, E S$ and $\lambda_{i} \geqslant 0$ and $\Sigma_{i} \lambda_{1} 1$ then $\left(\Sigma_{i} \lambda_{1} X_{i}\right)$ eS, wherc i, $, \ldots, n$. Applied to an aviilable technology consisting of a collection of projects this concept of convexity means that any weighted alereape of technically feasible individual projects will also be technically feasible. Note tlat where ecomomies of scale are present convexity breaks down. For eximple, if the actual capital mput requirements of a process comprise a fixed input plus an input proportional to scale, then two halfsiscd projects using this process will actually use more capital than ime fill size project;i.e., the average of two half-sized projects (with equal weigh(s) will underestimate copital requirements and will thus describe an infeasible technology.

 - Ecomomics of sale often are expressed by an input function of
 form: the form:
 $\left.\begin{array}{ll}(y, y) \quad(x, x\end{array}\right)$,
 where γ and γ are inpurs corresponding to wales x and x; the barred cuantites are constimts. and f is a constant exponent in the range $0 \leqslant 1 \leqslant 1$.
 *Victorisz (15世4).
 "Koopmans and Beckman (1957).

[^4]: ${ }^{11}$ Kornai and Liptak (1962) discuss different kinds of profitability indexes used as decentralizing instruments in a centrally planned economy.
 ${ }^{12}$ There have been numerous qualitative discussions of the interrelations between industries in the course of econonic developinent due to economies of scale and externalities. Economics of scale create technical interrelations such as discussed by Chenery (1959), they also lead to complementarity betwien industrics producing consumer goods. External economies arise in education, labour training and activities aimed at securing technical progress; in social-overhead investments (transport, energy, communications): in housing and urban facilitics: in govermment and other public services. Sec for exanple Roselnstein-Rodan (1943, 1961). Hirshman (1958).

[^5]: ${ }^{13}$ D)antzig (10(10), Viclorisz (19/44).
 ${ }^{14}$ Recenn surveys of integer programming will be found in Balinski (10605) and Beale (19015). Gomory (int3) summarize ilue relationship between lar and mon-convex linear programming models; (iomory (1ges) gives an appraical of romeded comtinuons olutions and a new algorithon.

[^6]: ${ }^{13}$ Dantziy and Wolfe (19(1)); also Dantzig (1963), Gomory (1963) Kornai and Liptak (190)s).

[^7]: ${ }^{16}$ Entritc cconomies described by input-output models tend to approximate the slightly more complex block-triangular structure. The mathematical properties of such systems have been analysed by Dantzig (19(3). Multi-level decision or planning systems may also be described by models in which the connecting and sectoral resources do not form mutually exclusive classes but in which resources subject to upper-level decision are defined by the aggregation of sectoral resources. The logic of tinis kind of system has been descriled qualitatively (UNECAFE, 1961), but has never been subjected to exact analysis.
 1: The coefficients of this model have been based (with some necessary changes and additions) on a suall illustrative model used by Chenery (1958), table 2. Fixed-cost coefficients have been added; they are not used in the linear version of the model.

[^8]: 18 An interpretation of the system of table 1 in ordinary algebraic equations is given in the amex.

[^9]: 1: These complexes are extreme-point (vertex) wolutions of ibe sub-problems of seciors 1 and 2. These sub-problems are defined algebraically in the anex and are discussed later in the text.

[^10]: ${ }^{21}$ If no basic feasible solution is known that would be suitable as a siarting point, it is possible to construct one by algebraic techniques (Dantzig and Wolfe (1961)).

[^11]: - "Sultcontracting fee"-- revenue.
 b Optimal combined factor cost ($z \cdot 0$).
 c Profit on optimal complex at current prices.

[^12]: ${ }^{23}$ The number of variables including slacks (surpluses) in a linear programming problem excceda the number of equations; the difference is known as the number of degrees of freedom of the syxem. A corresponding number of variables can be fixed arbitrarily, and the values of the remaining variables are then determined by solving the system of simultaneous equations. If the preset variables are asmigned the value of zero, we get a basic solution. By coincidence, the solution value of one or more of the variables that have not been pre-set may also turn oux to be zero; in this case the number of now-zero variables will be less than the number of equations. Such a wolution is termed "degencrate".
 ${ }^{20}$ Degenerate soluxions are obtained when, by coincidence, complexes in both sectors fall on the same vertical line.

[^13]: ${ }^{24}$ Batic soluxions need not be feasible. If the solution value of any variable (a weight or a slack) turns ont to be negative, the solution is infeasible. In figure IV, basic but infeasible solutions are obtained if the vertical line is made to intersect not the line segment connecting two vertices but the continuation of such a line segment beyond one of the vertices. This represents an impermissible weighting of the two complexes with one weight negative and the other exceeding unity. See for example point P corresponding to the averaging of complexes A and B in soluxion ABH (table 2, line \%).

[^14]: ${ }^{27}$ In Dantzig (19913), pages 462-46s.
 ${ }^{24}$ Almon in Dantzig (196,3), pages 464-f69 (emphasis added).

[^15]:

 uth witems will price alobe sutfice to sheve decentralization

[^16]:
 libour mad capital requirememe shablated at olice marginal labour
 "I seteral resources on the .ssumption that all ot these sectorat
 the correpponding tivad cost, will thus be incurred in an! event This assumption may in be vilad, mid there might be some choice m the selection of actutiov for producong ilice fixed-cost componcont. W. shall absime from all at the se scondary complications an the course of the prexent dixilusions.

[^17]: ${ }^{31}$ Fixed costs within sector, have been changed an follows: $\bar{x}_{1}=0,0 ; x_{2} 0,0, \bar{x}_{\mathbf{g}}=100,100: \bar{x}_{4} \quad 20,20$. These fixed cots carry the poinis A, B, C, and D into $A, H^{\prime}, C^{\prime}$, and D, ar shown in tigure VIII. The correct averaging line for all binary combinations of complexes are shown: these are de outed by ah, ar, $a d, b c, b d$, and $c d$. The sectoral iso-product function is made up of a vertical stretch above D' (capital disposal toggether with use of complex D); line id (the correct averaging line for complexes $($ " and D^{\prime}); the line seginent between points C^{\prime} and I' (use of complex C^{\prime} together with labour disposal) : the line seginent between point, U 'and I' ipart of the correct averaging line bd); the line segnent between points 1 and \boldsymbol{B}^{\prime} (use of complex \boldsymbol{B}^{\prime} ungether with capital disposal) ; the line ab (correct averaging line for complexes A' and B^{\prime}); and the horizontal stretch to the right of A^{\prime} (use of complex A together with labour disposal). The correct averaging lines ac, ad, and be lic enirely above the iso-product functions, an do parte of $b d$. The line connecting points H^{\prime} and D 'is me a correct averaging line.

[^18]: ${ }^{32}$ I. M. I). Little (1950), page 127, summarizes the rekevant condetion thus: ". . . the ration of the marginal products of any two factorn of production mus be the same for every gond in the production of which they both co-operate". Replace the ratio of marginal piodunts by the corresponding marginal rates of substiturion and consider a differential reallocation of labour from sectore 2 to sector 1. Then the marginal rate of subsitution oll/at in sector 1 call bu interpreted as the corresponding decreas in the use (increas in the
 surplus) of capital and conversly in sector surplus) of capital and converwly in sector 2. Maxinization of the

[^19]: surptur of capital requires MRS, < MRS, when laberor allocaxion to *etor 1 is slightly kess than that at the optimal solution and $1 R S_{1}>M R S_{2}$ when labour allecation (o) ector 1 is slightly greater than that at the optimal solution. In these formulas MRS is takent as inhercontly negative. It can readily be verified by reference to tigure VII that the global optimunn at B^{\prime} J and the aleernate kocal optima near $M N$ satisfy these conditions.
 2a The marginal rate of subsitution will be undefined at the optinum fior some of tive scrtors, e.g., in figure VII a point B^{\prime} for werter I. Hy coincidence it might happen that the sanke condixion halds fir a resource in all sectors; inl this case more than owe price ratio is comsistent with the optimum.
 ${ }^{24}$ Arrow and Hurwicz (19fo), pages $x=-90$.

[^20]: 3. For a recent review, we Whinston (1906).
 ${ }^{3}$ The cocfficients of the new constraints are derived from the coeficients of the original constraints in such a way that zero coefficient in the original constraints imply zero coefficients in the now constraints. Thus the new consuraints will kave unaffected the sectoral partitioning of a matrix such as that of table 5 or table 6 in the amnex. How can we then assert that the new constraints create externalities hinking different sectors? Even though the new constraines do not poascss copficients interlinking the sectors, the deriluttion of the new constraints depends an the coefficients of the comuectitite resoweres which of course do link all sectors. In Comory's fractional method the new constraints depend on the non-integer solution of the (progressively resericted) original problem while is his allinteger alforithm (1960) the maintenance of dual feasibility in the course of his lambda-transformations depends on the coefficients of
[^21]: the objective function and, due to the paratmunt importance of degeneracy and lexicographic eriteria, on the cocfficients of the ocher connecting resources as well.
 ${ }^{32}$ Comnory and Baumol (19,to).

[^22]: an These case are computible with perfect competition that would prevail in the undecomposed system is at whole, without any weed for upper or lower decision-making levels. Here all decisions are decentralized to ibe individual activity within a sector; this artivity an composite of the production and fixed-cost-incurrence activities, with all rewource coeficients corresponding too operation at capacity level (we model of table s. amex). This is a limiting case of romperitive wipply will U-shaped werrage cost curves: with lincar tobal "ons up to capacity, the left leg of the "U" is a hyperbola, the right leg w vertical, ind the level of minimum average cosss is determined bevides viriable costs) by average fixed costs at capacity operation.
 as Fived cons, common oo both complexes, that are incurred in a engle wep at the sales of there complexes, need not meer this cequirement.
 " lincep for tixed conts of the kiad specitied in the previoos
 doomot:

[^23]: ${ }^{\text {a }}$ Quoted, excepl lor a change io notaniom, Ironn Tucker (1063), page, 1-2.

[^24]: "The optoma may be exereme-pinte (vertex) or hamongoncous solitions (llonteng and Wolfe, bet). Honnogeneons whations indicate that the Illaximnand of the sub-problem may be expanded without limit: in wher words, the apecitic' ectoral resourci colistrailts do note preclude such atl expansiow. If such it ituation occurred in the full proble"I. It would indicate that the prol :me was unbounded: but the whutions to the sectural sub-problenins are also subject to the consetaints on the combecting rewurces, and this homogeweous wectral wlutions are perminsible (1)antrig. and Wollic, 11eel, papes 773 -774). None vuch acturs in the presem probkint

[^25]: "For details including homogeneous sectoral solutions and ant alyebraic exposition applicable to 1 sectors, we V) antzig and Wolfe (1961).

[^26]: d Whik values exceeding I will be excluded by the opcimization process itself, the convergence of some integer prongramming algorithms is inlproved by an explicit upper bound.

[^27]: - Gimors developed the tiry smexovin meihed of detimmg cullmy flate A smple derisition af anming plane for the former algorithme is

