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Decentralization and Project

Evaluation Under Economies of
Scale and Indivisibilities

By THOMAS VIETORISZ

INTRODUCTION

Some of the key techniques of decentralization, par-
ticularly in free-cnterprise and mixed economies but in-
creasingly also in centrally planned economies, are based
cither directly or indirectly on the notion of market equi-
librium. The twin assumptions of non-convexity and the
absence of externalities play a fundamental role in establishing
the important thcorems of contemporary neoclassical
cconomics concerning the existence, stability and attain-
ment of such equilibria, the existence of a price system and
its role in decentralized adjustment, and the welfare signi-
ficance of the outcome of these adjustments.2

1 The first version of this paper was presented as Discussion Paper
No. CID/IPE/B.28, United Nations Inter-regional Symposium on
Industriai Project Evaluation, Prague, Czechoslovakia, 11-29
October 1965, under the title **Project Evaluation in the Presence of
Economies of Scale and Indivisibilities”. The revised version in-
cluded here was presented to the Econometric Society Meetings,
New York, in December 196s.

1 Koopmans (1957), page 25, writes (se bibliography at end of
this treatise for this and other references cited hercin): “The prin-
cipal reason for making a convexity assumption lics not in its
degree of realism but in the present state of our knowledge. When
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The objective ot this paper is to inquire into the effect
that non-convexitics have on the practical possibilities of
decentralization by means of a price system or by other
related methods. Current economic theory offers little
enlightenment in this respect even though significant non-
convexities are known to be present in most economic
systems, particularly in the technology and organization of
production, and in the ficld of urban land use. As most
market thcorems break down under such conditions it is
natural to inquire not only into the existence of substitute
adjustment mechanisms but also into the puzzle of how the
existing decentralized pricing and market svstems are
capable of operating despite their admitted inefficiencies.

ECONOMIC EQUILIBRIUM VERSUS NON-CONVEXITY

The essential features of economic equilibrium were put
forward by the classic economists as an explanation of the

one examines the main contents of received theory of resource
allocation and competitive markets it is found that its propositions
depend essentially on convexity asumptions with regard to both
production possibilities and preference structures.”

Convexity assumptions also play a crucial role in the convergence
of the characteristics of the gradient method, one of the algorithms
available for solving resource allocation problems formulated in
terms of mathematical programming models, and commonly held
to reflect the essential features of the adjustment mechanism of the
market. Arrow and Hurwicz (1960), page 87, give the following
summary of these problems (note: concave functions yield convex
point sets): *. . . the absence of concavity conditions on the func-
tions involved has two consequences for the characterization of
maxima (constrained or unconstrained): the first-order conditions
do not completely distinguish maxima from other stationary points,
and in any case do not in any way distinguish global from merely
local maxima . . . no variation of the gradient method, which is
based on moving uphill as measured by solely local variations, can
be expected to ensure arrival at the highest of several peaks; at best,
only convergence to a local maximum can be expected.” The role
of externalities in economic equilibria has recently been investigated
in depth by Whinston (1962). On centralization versus decentral-
ization, the rolc of the price system, and welfarc implications, sec
also Arrow (195¢), Tinbergen (1954), Arrow, Hurwicz and U'zawa
(19$8), Marschak (1959), Hurwicz (1960 a, b), Tinbergen (1962).
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¥ behaviour of actual markets under free enterprise, Later, as It has long been known that cconomic cquilibrium,
v the shortcomings of the market mechanism—wonopoly whether embodicd in the postulated operation of actual
\ clements, limited effective demand, unsatisfactory distribu- markets or in the adjustments of 1 wachematical program-
tion of income and wealth, frustrated growth—became ming model, has inherent limitations that cannot be over-
historically more important and theoretically more widely come by minor modifications of the principles upon which
recognized, market cquilibrium was still held up as n idea a market equilibrium operates, One example is the prob-
that could be approximated in practice to a “workable” lem of fixed costs which lead to dininishing average costs
extent. Lately, with the advent of mathematical ptogram- as the scale of production increascs. It is nnpossible to recon-
ming techniques. it has become possible to isolate cconomic cile the requirements of () efficient resource allocation as
equilibrium fromt the behaviour of actual mackets, and cmbodied in marginal-cost pricing rules with (b) the need
cither to replace actual market behaviour or to simulate it for covering the fixed costs incurred by the firm out of
by clectronic computer solutions to planning models with revenues obtained from product sales. The exaer recanerlia-
varving degrees of centralization or decentralization. In tion of these conflicting requirements is possible only when
fact, economic equilibrium can be adapted by wicans of the average cost curves of individual firms are U-shaped,
computer solutions to models representing econontic situa- and then only at selected lattice poines along the quantity
tions that even ideally competitive markets would be un- axis:® at in-between quantities cither requirement (a) or
able to realize: for example, multi-period resource alloca- (h) must be violated. Industry supply may, however, be
tion models with imposed terminal conditions® or with satistactorily approximated by a continuous function if the
mstitutional limits st on the variation of prices, on re- separation between lattice points is small in relation to
source utilization, or on activity scalcs. total industry production, i.c., when there are a large num-

The existence of such models and the possibility of solv- ber of small firms. This is the asssmption of the received
ing them numcrically do not imply that the entire cco- theory of competitive supply.
nomic process can be or soon will be replaced by a single The presence of fixed costs is acase of mathematical non-
large centrally solved planning model. Decentralized decis- convexity leading to cconomies of scale.8 Such ccon»mics
sion-making and, in the realm of management and plan- of scale can also occur in the absence of actual fixed costs,
ning, the multi-level organization of decision systems are depending on the shape of the production function.? Other
essential for reasons which include the tollowing purely significant cases of non-convexity are:8
cconomic considerations : Indivisibilitics: the necessity of plamning in multiples of

(1) Technical aleernatives are difficult to formulate over 2 standardized production units: zero-one decisions on
sufficiently wide range of factor prices for a model. transport investments, hydroelectric projects, etc..;

(2) Itis inefficient to formulate in detail alecrnatives that Pre-emption af land arca: the face that a given plot of
will not be used;; for this reason it is desirable that the com- ground (c.g., in a densely occupied zone) has to be
pilation of infarmation should aleernate with analysis stage assigned in a zero-one fashion to individual uses:?
by stage. This process can be carried out most cffectively Either/or type constraints on feasible policy alternatives,
near the sources of technical information in individual firne prescribed sequencing of activitics, etc. 10
or individual sectors of the cconomy. A decentralized decision-making system based on linear

(3) The structure of a large model cannot be intuitively decentralizing instruments (master prices, administratively

grasped, and therefore its blind application is hazardous:
this difficulty can be overcome by co-ordinating « number

of smaller modcls. . . . the lattice points broaden to equilibrinm ranges of finite width,
(4) Plan formulation must take into account the modes of “A point st S is convex if the following holds: if X.e$ and

execution: this requires familiarity with technical detail Azoand ZA 1 then (ZAN)eS, where i 1, .., . Applied 1o
available onlv near the operating levels, an available technology comsisting of a collection of projects this

. ' . . concept of convexity means that an weighted average of technically
(5) Plans have to be readjusted  to changing circum- teasible individual projects will also th tccfmimlly fcfsiblc. Note tlla)t
stances in the course of exccution. Many of these changes where cconomiies of scale are present convexity breaks down. For
show up at or near the operating level; thus planning example, if the actual capital mput requirements of a process com-
capability at lower levels facilitates efficient adjustiment to prise 3. fived input plus an input proportional to scalc, then fwo half-
p Yy : ! J sized projects using this process wil actually use more capital than
such changcs.4 one full sizc project:i.c., the average of two halt=sized projects (with
cqual weighes) will underestimate capital requirements and will
thus desenibe an infeasible technology.

* When the average cost curves have horizontal minimum ranges,

3 The so—called “dynanne invisib'e hand™ theorem (Dortiman,
Samuclson and Solow) (1958), page 319, that extends the principle
of social eliciency of perfectly competitive markets trom a static to ¥y xy
A dynamic context guarantees only that such a system, onee locked where yand y are inpis url;l{'s' ondin to sales ¥ and x; the baned |
on n ctficient growth path, will SEy O it t cannot direct the quantitics are constants: and Il:\ a mﬁwtaﬁt exponent in the range
system toward a growth path that satistics exogenously determined o</ : ' ' po g
termimal social objectives. SR

7 Economies of scale often are expressed by an input function of
the form:

) . . . * Victorisz (1y6y).
* Clopper Almon (in Nantzig, 1963, pages 462-465), and Victorisz reronsz Qo)
ppe [ pag

(1963) discuss some of these points in relation to multi-level manage- * Koopmans and Beckman (1957).
ment and planning organizations. 1 Dantzig (1960,
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determined planning prices, incentive systems with lincar
structure) is mherently unable to guarantee attamment ot
an optimal equilibrium position unless all sourezs of non-
convexity—such as fixed costs and others—are cither
absent or rendered inoperative by special circumstances
which occur in competitive supply. Therctore no decentra-
hized decision criteria based on the notion of cconomic
cquilibrium and involvimg correspondingly a lincar version
of pricing or incentive systems—whether these be marker
prices. corrected opportunity costs, electronically com-
puted shadow prices based on mathematical programming
models, or admiistratively fixed prices in a planned
cconomy!—-can be relied upon in the presence of non-
convexities. The criteria may yicld acceptable results, but
they also can result in gross misallocations.

Two illustrations will indicate the kinds of market out-
comes that are possible when lincar decentralizing instro-
ments are used in the presence of non-convexities, Chenery
(1959) constructs a detailed nunicrical example at stecl
production and iron-ore mining with strang cconomies ot
scale in a developing country. The analysis reveals tha
cither ance of these two activities is profitable only when
the other is present. Thus a decentralized decision system
based on profit (or social marginal product) misses an atrac-
tive joint investment opportunity. When ncither af these
activities is yet established the decentralized decision maker
studying an activity n tsolation will decide that it is un-
profitable; thus ncither of the two activities can precede
the other and the profitable complex of the twa activities
will never be attained.12 Koopmans and Beckman (1957)
construct an cxample which shows non-convexities in-
volved in the assignment of productive activitics to par-
ticular locations that cannot be shared between activities.
For example, in a urban arca a given block or plot of land
cannot be used for both a large shopping centre and an in-
dustrial plant. Thus the present location of an activity will
affect the costs of all other activities in such a way that,
with any locatianal pattern, incentives will exist for some
producers to change their locations, and the possibility of a
stable equilibrium price system is negated. In many loca-
tional problems no assignments are required; for example,
if locations have to be chosen for industries that can be
located at several regional centres at large distances from
cach other, the land requirements at these centres will
usually be very small in comparison with the available

1 Kornai and Liptak (1962) discuss different kinds of profit-
ability indexes nsed as decentralizing instruments in a centrally
planned economy.

12 There have been numcerous qualitative discussions of the inter-
relations between industries in the course of cconomiic development
duc to cconomies of scale and externalitics. Economices of scale
create technical interrelations such as discussed by Chenery (1959).
they also lcad to complementarity between industries producing
consumer goods. External cconomies anse in cducation, labour
training and activities aimed at securing technical progress; in
social-overhead investments (transport, energy, communications);
in housing and urban facilitics; in government and other public
services, See for example Rosenstein-Rodan (1943, 1961), Hirsch-
man (19s8).

industrial sites and thus several activities may easily be
located at the same centre. This kind of locanonal problem
15 generally convex umless cconomies of saale occur in-
dependently in the production or transport activities. A
stable price system can be utilized in the usnal way tor the
detmition of project evaluation criteria.

When  significant non-convexities are known to be
operating—important industrial processes whose optinmal
scales of operation are higher than the level of demand ot a
small country. important decisions concerning investments
m transport arteries, cte.—the only reliable method of tak-
ing detailed decisions 1s 4 comprehensive analysis ot all
alternatives witam the framework of a mathematical pro-
gramming model i which non-convexities are explicitly
accounted for.

Integer programming is the analytical tool of choice in
the formulation of such models. A wide variety of all the
non-convexities in the ficld of cconomic planning can be
represented or approximated adequately by integer pro-
gramming modcls.’3 In these models, some or all variables
are restricted ta integer values instead of being allowed to
vary in a continnous fashion. Although exact salutions to
such problems are often difficult to obtain (except tor small
problems), there are several methods which, in combina-
tion, can be employed to obtain good sub-optimal solu-
tons as well as the upper bounds on the possibility o
further iimprovement; thus the exact solution values can be
approximated subject to a known margin of error. 14

All that has been said carlier abont the essential role of
decentralization in cconomic decision-making s ¢qually
valid for convex and non-canvex systems. Even it they
become amenable to rapid and exact nunierical solution,
large integer pragramming models can never replace the
entire economiic process. Thus the tact that non-convexitics
can be adequately handled by certain mathematical modek
ts insufficient; it is indispensable that at least an approximate
inquiry be madc into the possibilities of decentralization
and multi-level decision-making in systems represented by
such models. This problem will be solved in two stages
the present article. First, a two-level fincar decision model
will be analysed graphically; next, fixed costs will be intro-
duced, nraking the model non-convex, and paraliels will be
drawn between decentralization possibilities in the livcar
and the nan=canvex cases, The nan-convex decision model
will then be used to explore the relationship between
average and marginal costs ard the degree of indivisibility
in a system, and also 1o shed new light on the relatonshep
between non-canvexities and externalitics.

THE DECOMPOSITION PRINCIPLE IN LINEAR SYSTEMS

Some of the phenomena that accur in multi-level
decision-making or planning systems can be analysed by

1 Dantzig (1960), Vicrorisz (1964).

1 Recem surveys of integer programming will be found
Balinski (1965) and Beale (1905). Gomory (1963) sunnmarizes _lh('
relationship between large and non-convex linear programming
models; Gomory (196s; gives an appraisal of ronnded contmuons
solutions and a new algorithm.
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means of the decomposition principle developed originally for
the solution of structured linear programming models.1?
Figure I indicates schematically the relationship between
a two-level planning organization and the structure of
a corresponding  decomposition model. In the model,
non-zero technical coefficients appear only within the
shaded blocks (figure 1(h)); these coeficients fall into two
broad groups. First, there are the coefficients of the special
resources of cach sector. The special resources of each sector
can have non-zero coefficients only in the activities of their
own particular scctor. Second, certain resources may have
non-zero cocfhicients in any sectoral activity; these are
designated as connecting resources. In addition to the sectoral
activities that form the columns of figure I(h) there is also a
column designated as exogenous (first column). While it is
assumed that the scale at which each sectoral activity can
be carricd out is variable, the scale of the cxogenous
column is fixed. This column usually contains the given
total supplies and demands of each resource. The problem
is to find a programme (i.c., a combination of activity
scales) which is consistent with the fixed resource supplies
and demands, and which is in some sense efficient. Efficiency
isdefined in terms of maximizing the output or minimizing
the input of a chosen connecting resource.

(@) TWO.LEVEL PLANNING ORGANIZATION

Contvel
planning
ofice
1 B |
Planning Plenning Manning
office for office for office fer
sector | sactor 2 secter 3

(b) SPECIAL STRUCTURE OFf OECOMPOSITION MOODEL

Exogenous Sector | Sector 2 Sector

B e
Lo
‘“.T.“T““.'."-- : 5%::'“‘“..::‘,3

In such a structured model the consistency and efficiency
oriented decisions concerning the connecting resources cor-
respond to the upper level of a two-level decision-making

1 Dantzig and Wolte (1961); also Dantzig (1963}, Gomory (1963)
Kornai and Liptak (1905).
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organization such as the company-wide policy commiteec
of a multi-divisional corg.oration or the central economic
policy body (cabinet. central planning board) of a country.
The same kind of decisions concerning sectoral resources
correspond to the divisional level of corporations or to the
ministerial (or regional) level of entire economies. The
activitics of the model may represent lines of business,
individual processes, or other individual technological
alternatives within a division ot a company or industrial
branches, enterprises, or projects within a sector (or region)
of an cconomy. A programme or collection of activity levels
corresponds to a complete set of tentative decisions (or
plans) for the entire system, subject to later confirmation
and adjustment. The structure in tigure 1(b) is angular de-
composable and represents the simplest possible relationship
between the connecting and sectoral parts. 19

Table 1 is a numerical example of a decomposition
model.!? The model has two sectors, with two special
resources in cach and two connecting resources, capital and
labour. There are four possible activities in cach sector; the
scales of these activities are variable and are designated by
Xi... Xsforsector 1, Xs. . . Xg for sector 2. All numerical
data obey the following sign convention: outputs or supplics
are positive, inputs or demands are negative. Thus the
capital and labour cocfficients of all activitics are negative
(inputs); there are, however, exogenous supplies of these
two factors, amounting to 350 units in the case of capital,
and 2,000 units in the case of labour. Once the scales of all
activitics are chosen in formulating a trial programme,
the fHows of all resources can be determined, and their
balance veritied. The difference between (a) all outputs and
exogenous supplies of a resource (positive signs) and (b) all
inputs and exogenous demands (negative signs) is defined
as the surplus of the resource. If the surplus is zero, there s
an exact balance; if positive, the resource is redundant; it
negative, there is a bottleneck. In this problem, the criterion
of the cfficiency of a plan is economy in the use of capital;
this is expressed by maximnizing the surplus of capital. This
tormulation may be interpreted as follows: assuming that
350 units represent the limit of capital stock which can be
built up by saving and foreign borrowing, the criterion of
efficiency is to reduce as much as possible the need for this
saving and borrowing by decrcasing capital inputs. At the
same time plan consistency requircs that prescribed de-
mands be met while keeping within available resource

16 Entirc cconomies described by input-output models tend to
approximate the dightly more complex block-triangular structure.
The mathematical properties of such systems have been analysed by
Dantzig (1903). Multi-level decision or planning systems may also
be described by models in which the connecting and sectoral
resources do not form mutually cxclusive classes but in which
resources subject to upper-level decision are defined by the aggre-
gation of sectoral resources. The logic of this kind of system has
been described qualitatively (UNECAFE, 1961), but has never been
subjected to exact analysis.

7 The coeticients of this model have been based (with some
necessary changes and additions) on a stall illustrative model used
by Chenery (1958), table 2. Fixed-cost coeflicients have been added
they are not used in the linear version of the model.




supplies; thesc conditions can be simply expressed as the
avoidance of resonrce bottlenecks. 18

The model also determines the shadow prices of all re-
sources. The price of capital is chosen as the numeraire re-
source whose price is set to unity and in terms of which
other prices are expressed. The revenue (positive sign) or

18 An interpretation of the system of table 1 in ordinary algebraic
cquations is given in the annex.

cost (negative sign) of a resource can be determined once
the shadow prices are given and the technical coefficients of
an activity arc multiplied by these shadow prices. The dif-
ference between revenues and costs is the profit for any
activity (variables in top margin). The dual problem con-
sists in choosing shadow prices Y so as to minimize profits
mp on the exogenous activity while protits on all other
activities are climinated (sec annex).

The illustrative decomposition model of table 1 is simple

Table 1
FORMULATION OF DECOMPOSITION MODEL

Exo- Sector 1 Sector 2
genous : -
Resource Min! 0 0 0 0 0 0 0 0
> > b > > b2 P2 b
surpluses Profits + 7y my 72 73 T4 s 76 Ty e
Capital: Max! oo -~ | _350| 1.1 _-1.25_—3_ =2.5_-1.0 -25_=6_ -30]* %o(-1)
Labour  Ogo, - | 2000/-125 75 -60_ 7.0 -150 50 40 -110]* %
‘ 0gay - -50 1 1 -5 -2 *,
sectorl - Jogo, - | -s0 -2 1 1 * %,
Ocos = | 28| — T TTTTTT TN s e
Sector2  l g og - | 25 2 =5 1 1 |* %
* * * * * * * * * Shadow
Yo Y Y2 Y5 Xe Xs o\ Xp Xy prices
Activity
=1 scales
Feasible basic solutions (‘‘complexes’’), sector 1
1 X, and \, \, = 75.000 Y, = 5u.000 L--1,2375 K- -97.§5
B X;and \; X, - 85.715 \; = 71.429 L=-1,071.4 K - -128.6
C X, and\, \, = 60.000 X, = 50.000 L = -1,100.0 A = -191.0
D \;and \, \,-63.158 \, - 65.789 L= =-934.2 A--243.4
Feasible basic solutions (‘‘complexes’’), sector 2
£ Xgand \, \s = 53.571 X, = 35.714 L= -946.4 K- -893
H \g and \- ¢ = 75.000 X; = 62.500 L- -625.0 K = -225.0
F Xgand \, s = 25.000 X, = 30.000 L= -=705.0 K - -115.0
G Vg and \, \¢ - 25.000 X4 = 37.500 L= -7875 K - -137.8
Fixed costs
\, AP X; X, s Xe A D) Xs
Capital. ..... =30 -5 -18 0 -10 0 -10 -5
Labour...... 0 -5 0 0 0 -50 0 0
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cnough to pernut a graphical representation by means of an
Edgeworth box diagram (figure 11). In this diagram the
total avaihbilities of the connecting resources (350 units of
capital and 2,000 units of labour) form the edges of the
box. Resources wsed in cach sector are measured aloug the
cdges in opposite directions. Thus any poime in the diagram
is asimaltancous representation of four variables: capital and
labour used by sector 1, and capital and labour used by
sector 2,

Points 4, B, C. and D in the diagram represent tour
ditferent complexes that can be formed trom the activities
Ni.o Xy of sector 1 pomes E, F, G, and H represerie
similar complexes formed trom the activities of sector 2.
Each of these complexes contains two activities: two is the
smallest number that permits the balances of the special
resources in cach sector to be satisfied. ' Table 1 contains a
list ot the activity scales and the total capital and labour re-
quircments ot cach of these complexes; the respective
activity-scale variables are shown near cach point in the
graph. In figure 1L, the effiient complexes of cach sector

1* These complexes are extreme-point (vertex) solutions of b

sub-problems of secrors 1 and 2. These sub-problems are detined
algebraically i the annex and are discussed later in the texa.

have been connected by a line. Pome € represents an in-
ctficient complex in sector 1 sinee it has larger requirements
of hoth capital and labour than point B; thus it will never be
practical to use complex C. Correspondingly, poine G;
represents an inetheient complex in sector 2,20

The points along a line comecting two complexes (c.g..
A and B) represent weighted averages ot these ewo com-
plexes. For example, the midpoint of the AB line represents
aiaverage complex which is tormed by running projects
Xiand X3 of complex A at halt the scales shown in table 1
(N1 3750 Xe 25); likewise running projects Xeand Xq of
complex B at halt the scales shown tor B in table 1 (X2
42858 X3 35-715): and summing the corresponding
project scales (omly X requires summation; thus Xy 375,
Xo- 67:858, Xa 37715). It can be veritied by simple
algebra that the labour and capital inputs ot the averaged
complex tall exactly haltway between the labour and
capital inputs of points 4 and B. In the present case, the
weighting was o-5 and o-5. Points other than the midpoine

# luetficienm poinns need not wse more capital and labour than any
onie poim such as B or F: it is suthcien that hey lic portheast (for
sector 1) or southwest (for swearor 2) of the line connecting such
complexes in any secror.

g 2980 100 900 ) - < . .
Y
200 1=e { 5o
;‘i‘"‘r A‘.
” T
Xy |
o\
200 - "o
0, % Xg Xy !
» by
"o " 200
Xy
0 f2 1y 280
e
uf\ % ———T— e
0 > L I | | L] i P
. 00 1900 ™ 2000

Figuee 11
LINEAR DECOMPOSITION MODES
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are obtained by using weights in different proportions. The
weights may vary from o to 1 and have to add up to umity.
As long as this weighting rule is obscrved, the special re-
source balances of cach sector will be satisticd by the aver-
aged complexes, even though the graph contains only the
explicit connecting factors. This applies also to any other
point that can be attained by starting with the points lying
on the connecting line between complexes such as A and B
and then disposing of (wasting, throwing away) some
capital and/or labour.

The two curves in figure 1 can be regarded as generalized
iso-product functions for the two sectors describing the
alternative combinations of the connecting factors (capital
and labour) that can produce the given output of a sector.
What is this “‘given output”? It camnot be identificd with
any single product since all special sectoral resources are on

an cqual footing and none can be regarded as the prodnct ot

a sector ; it i thus convenient to think of sectoral output as

the entire task of satisfying the special resource balances.
The horizontal and vertical extensions of the two

sectoral curves to the co-ordinate axes correspond to con-

ventional usage in economies; they signity free disposal of

redundant surpluses of the connecting factors.

Figure 1 provides a graphical illustration ot alternative
nicthods of tinding an optimal solution to the model. Such a
solution represents a programme or plan (e 4wt of
activities with determined scales) which is both feasible, in
the sense that it satisties all resource balances, and efficient, in
the sense that it maximizes the surplus of capital (1e., it
minimizes capital requirements).

A feasible solution is a programme or plan that satsties all
resource balances but is not necessarily optimal. Points B
and T jointly represent such a plan. Pome B is on the iso-
product line of sector 1; thus it is sure to satisty the balances
of the special sectoral resources in this sector. Poine Tis on
the iso-product line of sector 2 and thus satisties the special
resource balances ot that sector. The labour requirements o
the two points add up to 2,000 units and thus satisfy the
labour balance. All of the resource balances are satistied and
the plan is feasible. In order to determine whether itis also
optimal, the capital requirements are identitied. In tigure
1Ml they can be seen to leave a capital surplus exactly equal
to the vertical distance BT. It remains to be decided
whether other feasible solutions exist that leave a larger
capital surplus.

Note that point Bis onc of the complexes of sector 1 that
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LINEAR DECOMPOSITION MODEL: GRAPHICAL SOLUTION




has been presented in table 1 while point T represents a
waighted average of complexes E and F of sector 2. This
solution is labelled as “BEF” by reference to the sectoral
complexes which form it. Table 2 (line 12) contains a list
of the quantitative characteristics of this solution including
labour and capital requirements i cach sector, capital
surplus, and the weights used for averaging in cach scctor.
In sector 2 these weights are 0:926 and 0-074, respectively,
for points E and F: in scctor 1, the weight is 1-000 for point
B since this complex appears by itself, without being
averaged with another complex.

In general a feasible solution can be obtained when one
point is sclected from the iso-product line of cach sector,

attention being paid to joint labour requirements. When
the two points fall on the same vertical line, the joint labour
requircments add up to 2,000 umits; when the point for
sector 1 falls to the left of the point for scctor 2, the amount
of redundant labour will be equal to the horizontal dis-
placement between the two points (for example, when the
combination 4E is chosen). Conversely, when the point for
sector 1 falls to the right of the point for sector 2, there will
be a labour bottleneck (for example, combination BE). As
it is generally incfficient to leave labour redundant, a con-
venient strategy for selecting feasible solutions in the course
of optimization is to choose two points that lic on the inter-
section of a given vertical line with cach of the two sectoral

Table 2
LINEAR DECOMPOSITION MODEL: SELFCTED SOLUTIONS

Arerage Average Price of
Solution Feasible A Apatt (1) A" Aogh (2 labour® - Ly 14 Ky Kot ag- 350 - K|+ Ko!

Aoy HE | .. ves 1 (137:)0 1 1 — H o 1237°5 623 97°s 2240 278
AnER ... no 1 (1839 J 1 —_ E 0 1237°§ 4604 97 %93 1632
o EHE | no (no point in sector 1: inteasible)

A4EH.. .. .. ves 1 — 4 428 —g72 . 422 1237°§ 762 97 1669 8¢6
AFH ... ... no 1 — A4 1719 =719 M 1037 12375 7020 97-$ 3§89 216°6
AEF .. .... ves I — 4 238 762 N 106 1237°§ 762 975 10K 143°60
EFH ... ... no (no paint in scctor 1: infeasible)

ABH . no 1°828 ‘N28 P ] — H 187 1378 624 T1'7 2240 $3°3
A4BE ... ... no 107 1107 Q 1 - E IR 10836 94004 13109 %93 1288
BEH .. . ... ves 1 — B ‘048 —0$$ R ‘422 1071°4 9286 1286 96+8 124'6
BFH .. .... no 1 - B 3798 - 2:79¢ S 1378 1071°4 9286 12860 192§ 4139
BEF....... ves 1 —_ B ‘926 -—-07, T “1060 107144 Y286 1286 91-2 130°2
ABF ... ... no 1'346 0346 U T - F 18T 1206°0 7040 K67 1150 148°3

* Weights for combining complexes in sector 1.
" Weights for combining complexes in sector 2.
" Price of labour (price of capital= Py~ Yo= 1).
“ Labour requirement (inherently negative) in sectors 1 and 2.

1so-product functions. The vertical distance between the
twe points measures the capital surplus corresponding to
the given feasible solution. The geometric determination of
the optimum is now obvious: it consists in sclecting the
vertical line that maximizes the distance between the two
sectoral iso-product functions. In the present case the opti-
mun is attained at AN’ point N is a weighted average of
complexes E and Fin sector 2. The solution, designated as
AEF, will be found, quantitatively described, in the sixth
linc of table 2.

This geometric method of finding a solution is not
applicable to larger problems: Dantzig and Wolfe (1961)
however, have provided a generally applicable method
which can also be followed by means of the graphical
presentation in figure 111 (sec also tables 2 and 3). Dantzig
and Wolte break down the over-all problem into two parts:
a "master problem” and “scctoral sub-problems” corres-
ponding to central and sectoral-level planning decisions,
The master problem is formulated in terms of the connect-
ing resources, in the present case labour and capital, and is
picced together by averaging known sectoral complexes.

¢ Capital requirement (inherently negative) in sectors 1 and 2.
! Surplus of capital (to be maximized).

¥y in the soluton indicates a sarplus of unused labour

' The number in parentheses is the value of ay.

The master problem represented in figure 1, also de-
termines prices for the connecting resources; in the present
case, a price ratio for labour and capital. The sectoral sub-
problems, on the other hand, systematically find previously
unknown sectoral complexes for inclusion in the master
problem. The sectoral sub-problems do not appear ex-
plicitly in the graph of figure 111, but compliance with their
balances is guaranteed by the averaging rules discussed
above, The starting point of the technique has to be onc
known basic feasible solution to the master problem; given
such a starting point,2! the interaction of the two parts of
the problem guarantecs the attainment of the optimal solu-
tion in a fimite numbser of steps.

A basic so:ution contains the smallest number of non-zero
variables that is compatible with the number of equations,
In the master problem we have four equations (see annex):
one for balancing capital and labour requirements respec-
tively, plus one in cach sector for describing the averaging

4 If no basic feasiblc solution is known that would be suitable as
a starting point, it is possible 10 construct one

by algebraic tech-
niques (Dantzig and Wolfe (1961) ).




Table 3

LINEAR DECOMPOSITION MODEL: SOLUTION PATH

Number ot . - » . Variabls Nele s | ariabte frerage Feas-
Solwticn Nolut:on P =4 Frea P2 s P12 ‘n tion out Solutin thle
0 o M 97.% 97.5 0 -
225.0 89.3 13%.7 F \ Yo lIE -
'"l””“ \ \
for (HE i
t VA 619.7 $80.7 39.0 R
488.3 412.3 76.3 F \ AEHF -
tEHF ¥
1ENF \ \
2 tEH 228.7 228.7 0 -
189.6  189.6 0 - } il
Alternate path if complex ““B’’ is chosen as incoming variable in solution 1 sbove
1 {tEH  (As sbove) R \ YEHR R \
1EHR P
tEMR Y
3 REH 580.7 580.7 0 -
448.8 412.8 76.3 ¥ v BEHF -
BEHF N
RERF T \
4 BEF 189.6 189.6 0 -
242.2 228.7 13.8 1 \ BEF 4 v \
BEFA {
BEF 4 Q
5 1FKF  (As above) OoPT
T

® ‘‘Subcontracting fee’’ —s revenue.
b Optimal combined factor cost (z - (),
¢ Profit on optimal complex at current prices.

rules for complexes. There are two kinds of variables in the
master problem : the weights to be applied to the individual
complexes of cach sector, and capital and labour surpluses
that can also be intcrpreted as disposal activities. Generally,
at least fom*? of these variables must be non-zcro. One will
be the capital surplus og which is being maximized, and the
other three may be three sectoral complexes, or two com-
plexes and the labour surplus (disposal) activity ¢y, In
figure 111, basic feasible solutions arc obtained, as before, by
sclecting intersection points of a vertical line with the iso-
product curves, but with the additional restriction that the
vertical line has to run through a vertex (a point for a single
complex) in one of the sectors.? Solutions BEF and AEF are

B The number of variablkes including slacks (surpluses) in a
linear programming problem excceds the number of equations; the
difference is known as the number of degrees of freedom of the system.
A corresponding number of variables can be fixed arbitrarily, and
the values of the remaining variables are then determined by solving
the system of simultancous equations. If the preset variables are
assigned the value of zero, we get a basic solution. By coincidence,
the solution value of one or more of the variables that have mot
been pre-set may also tum out to he zero; in this case the number of
non-zero variables will be less than the number of equations. Such
a solution is termed “‘degencrate”.

 Degenerate solutions arc obtained when, by coincidence, com-
plexes in both sectors fall on the same vertical linc.

such basic solutions, but solution ABEF - corresponding to
the vertical line VI —is not, as it contains five non-zcro
variables: capital surplus (the maximand), plus non-zcro
weights for cach of the four complexes 4 and B in sector 1,
and E and F in scctor 2. A solution such as AEH, corres-
ponding to the vertical line A4, is also a basic feasible solu-
tion, even though it is off the iso-product line of sector 2,
since the point A can be obtained by averaging the two
non-neighbouring complexes E and H. This point is, of
course, not efficient since it could also be attained by
starting with point N on the iso-product curve and then
wasting some capital (corresponding to the distance NA).24

In the master problem, not only the starting solution, but
all later solutions also have to be basic because only basic
solutions determine a unique price ratio for labour and
capital, a ratio which is needed in the sectoral sub-problems.

# Basic solutions need not be feasible. If the solution value of any
variable (2 weight or a slack) turns out to be negative, the solution
is infeasible. In figure 1V, basic but infeasible solutions are obtained
if the vertical line is made to intersect not the line segiment connect-
ing two vertices but the continuation of such a line kgment beyond
one of the vertices. This represents an impcrmissible weighting of
the two complexes with one weight negative and the other exceed-
ng unity. Sec for example point P corresponding to the averaging
o(’complcm A and B in solwtion ABH (table 2, linc 8).
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In a basic solution the price ratio is fixed by the slope of the
averaging line segment that is intersected n one of the two
sectors. If the solution 1s non-basic, such as ABEF, the
vertical line 1'H” intersects line segments, generally of dif-
ferent slopes, in both scctors rather than passing through a
vertex in one sector.

Let us now trace the course of optimization, using the
Dantzig-Wolfe algorithm, by reference to figure L. Sup-
pose the starting point is at the vertical line HI. This cor-
responds to a basic feasible solution (labelled “Ao;H” in
table 3) in which complex A in sector 1 and complex H in
sector 2 appear with unit weights; thus two weighting
variables arc non-zero. In addition, there is some labour
disposal and thus the labour surplus variable oy will also be
non-zero; its value corresponds to the distance A1, which
amounts to 13,5 units. The value of the maximand (the
capital surplus variable ay) corresponds to the distance Al
or 27-§ units,

We assume that at this point only complexes A and H are
known. While there are only six cfficient complexes in this
problem, in larger problems the number of possible com-
plexes increases in combination and thus ar the beginning of
the optimization there exists very little information concerning
alternative efficient sectoral complexes. The task of the sectoral
sub-problems is to identify preciscly previously unknown
efficient scctoral complexes for inclusion in the master
problem.

Looking at it another way, if all the cfficient sectoral
complexes were known from the very beginning, the
optimal solution to the master problem would immediately
give the optimal solution to the problem as a whole. How-
ever, as we are generally working with an incomplete list of
complexes, we require a technique that will bring to light
new complexes; specifically, we have to discover those
complexes that are needed for the optimal solution of the
over-all problem without having to ecnumerate all possible
cfficient sectoral complexes. We shall now indicate how the
sectoral sub-problems are utilized to achieve this aim.

In the starting solution the price ratio between labour and
capital is determined by the slope of the line segment Al
i.c., the price of labour is zero. The price of capital is unity
by assumption. Using these relative prices, the sectoral sub-
problems maximize the combined value of the connecting re-
sources. In the present problem the connecting resources
appear as inputs; thus we are, in eflect, minimizing their
combined cost. At the same time, the sectoral sub-
problems must satisfy the balances of the special sectoral
resources.

Although the special resource balances of the sectors are
not explicitly shown in figure Ill, they are nevertheless
allowed for by means of the averaging rules applicable to
complexes. The straight lines connectirg the points corres-
ponding to the sectoral complexes represent weighted
averages of complexcs; as long as the complexes themselves
satisfy the special sectoral resource balances, these weighted
averages will also satisfy the special balances. Moreover,
when we take one of the points corresponding to the comp-
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lexes or their weighted averages and subsequently dispose of
(throw away) some labour or capital, we are still cerrain to
satisfy the same sectoral balances. Thus we can map out
a feasiblereas for both sectors in the graph. These arcas consist
of the iso-product lines phusall the points falling on the con-
cave sides of these lines. Whenever a point is chosen within
the feasible area of a given sector, the special sectoral
resource balances are certain to be satisfied. In this way we
can use the graph of the master problem to represent pos-
sible solutions to the sectoral problems.

The question arises it in maximizing the combined
value (minimizing the cost) of the connecting resources in
the sub-problems, using the price ratio of the starting solu-
tion, we discover new complexes that are more efficient
than the ones already known. In figure 1, the combined
value of the connecting resources is represented by budger
lines whose slope equals the price ratio between labour and
capital and whose intercept on the capital axis mcasures this
combined value.28 The optimization in cach sector is rep-
resented by a parallel shift of the budget line in such a way
that the combined value of connecting resources s in-
creased (combined cost is decreased) while maintaining at
least one point of the budget line within the feasible arca of
the sector. In sector 1 this procedure leads to point A, which
had alrcady been known previously, but in sector 2 the
optimum corresponds to a new complex E whose exact
capital and labour requirements are disclosed by the optimi-
zation process.

In what sense is complex Emore cfficient than previously
known complexes? In the starting solution (figure 1), H
was the only known complex for sector 2. The combined
cost of the connectng resources for this complex can be
rcad off by tracing a budget line with slope o to the capital
axis of sector 2: in figure HI we read off 22 units at pog (the
same value will also be found in table 3. in the line of
solution o labelled 40, H”, uinder p2).2% The combined

% The budget line corresponds 10 the equation
Po( L)y -Px.( Ky ( 2

( K- (2) P( L,
since Px = 1. On the graph the axes correspond to (- K)and (- L);
thus (- ) is the intercept on the ( - K) axis.

# In the master problem py is a shadow price that corresponds to
the equation describing the averaging rule for sector 2 (see annex).
Whenever a complex is included in a basic solution, i.c., when its
weight is nun-zero, the shadow profit for the column of this com-
Ekx has to vanish. The mathematical reason for this is the well-

nown rule of complementary slacks agrlicable to lincar program-
ming problems; in economic terms the solution enforces “perfect
coinpetition” between all complexes included in it. Consequently,
the shadow price p; and the combined valuc of the connecti
resources have to add up to zero; i.c., the combined value eq::ﬁ
“pa.

The above p2 can conveniently be interpreted as a “‘subcontract-
ing fee”". The master problem places all complexes of a sector in
competition with cach other for the privilege of performing the
task of the sector, namely satisfying the balances of the special
sectoral resources. Whichever complex or complexes can perform
this task at the lowust «ubeontracting fee will be selected to do the
Job. Atany stage, the successful complexes will Jjust break even; their
combined cost for the connecting resources at the prevailing prices
will just equal the subcontracting fee. The solution to the master

or:




cost for complex E is, however, only slightly under go
units as read off in the graph at - zq2 (89-3 units under 2o
in table 3). Consequently, the inclusion of complex E in the
solution  promises a combined cost improvement of
22:50 -89°3 -~ 135°7 units, at the prevailing prices.

In order to advance from the starting solution we will
want to include E in the next solution of the master prob-
lem. As the solution is to be basic, we will have to drop
some other complex or the labour surpltis (disposal) activity.
Table 3 indicates the three ways of dropping variables and
the corresponding solutions: the capital surplus activity
which is to be optimized is never dropped. If we drop
complex A, we are left with no complex in sector 1, and
thus we have an infeasibility. If we drop a3, we get solution
AEH which yiclds an average complex for sector 2 at point
A, a feasible solution. If we drop complex H, we get solu-
tion Aoy E which leads to point ] for sector 1, an infeasible
point, implying a negative a). (Numerical data describing
cach of these trial solutions will be found in table 2.) Thus
we have only onc feasible choice: solution AEH. This is
labelled as solution 1 in rablc 3.

AEH determines a price ratio of 0.422 between labour
and capital: this ratio cquals the slope of the line connecting
E and H. Budget lincs with this slope yield new complexes
in the course of the optimization in both sectoral sub-
problems: in sector 1, the new complex is B, with a com-
bincd cost of connecting resources equal to (-zy) - s80-7:
in sector 2 the new complex is F, with a combined cost of
(—212)=488:8. The cost improvement relative to solu-
tion AEH can be determined by comparison with the com-
bined cost of A in sector 1 which cquals 5807 (py in figure
llI; also in table 3), and the combined cost of cither E or H
(these are equal) in scctor 2 which equals 412:5 (pyz in
figure 11; abso in table 3). The cost improvements are thus
39-0and 76-3 unitsin sectors 1 and 2, respectively.

Either of these new complexes can be included in the
solution of the master problem to obtain an improvement
in the maximand aq; it is preferable, however, to include
the one with the larger cost improvement, namely F. Once
again a variable must be dropped in order to keep the
solution basic; the three choices are indicated in the line of
solution 1 in table 3, and the resulting alternative solutions
are numerically specified in table 2. The only feasible chuice
is AEF, which determines a price ratio of 0-106 (equal to the
slope of the segment EF). At this price ratio the budget lines
disclose no new complexes in the course of the sectoral
optimizations, and thus the solution AEF turns out to be
optimal.

If, at the stage of solution 1, complex B had been in-
cluded in the next solution rather than complex F, the path
of optimization would have been slightly longer. In this
case BEH wns out to be the next feasible solution; the

problem can be improved, however, as long as sectoral optimization
discloses new complexes that can make a profic at the prevailing
process and prevailing subcontracting fecs. When this is no louger
possible, an over-all optimum for the entire problem is attained.

Price ratio reniaims 0-422 as i solution 1. A this price ratio,
Fis still present with a potential improvement and is thus
the next complex to be included in the master solution, The
next feasible solution i obtained by dropping 11 thus
solution 4 is BEF, with a price ratio of o 106, At this price
ratio point A appears as an improved pomt in sector 1; the
next feasible solution, after dropping B, is AEF, the optimal
solution.

From the point of view of decentralization this analysis
of the decomposition algorithm is significant in that it dis-
closes the insufficiency of price=type control instruments in
attaining an optirial solution. As alrcady discussed by
Clopper Almon?27 the upper decision-making level camnot
guarantee the balance of connecting resources merely by
setting the prices of these resources, i 4 solution such as
AEF the price ratio EF will nor gnarantee that sector 1 will
choose to produce exactly with the weighted average N of
complexes E and F. Faced with the price ratio EF this
sector may produce at any point along the segment EF, as
all points along this scgment are cqually optimal at the
stated price ratio; it makes no difference which point i
taken when dealing with sector 2 alone. If the central
planning office wants to ensure an adequate balance of the
connecting resources, it has to preseribe a weighting of
complexes E and F in sector 2, or a quantitative allocation
of labour and capital to this scctor. At the same timie,
scctor 1 can be adequately regulated by the price ratio alone,
since at the given price ratio it has a unique equilibrium
position at A.

An intercsting feature of the practical application of
control instruments in this situation i that the upper
decision-making level will tind it worth while to use both
price and quantity-type control instruments, cven though
their joint use will be redundant in sector 2.

“They (the Central Trade Officc) amnounce in quanti-
tative terms their feasible plan. They tell cach plant
manager how much of cach traded commodity he must
produce and how much he is allowed to purchase . . .
They also announce the prices and dircet that trade be
conducted at these prices. They may also instruet the
managers that, subject 1o their mecting the quantitative goals . ..
they should also maximize profits. Such a rule is intended as
a guide to avoid possible waste in the event that S (the quanti-
tative goal) is not precisely achieved for one reason or another.
It is important to note that they cannot tell the managers
simply to maximize profits (omitting production goals,
§) for if they did, Central Trade would almost certainly
have difficulty with its constraints.”’28
At the level of activitics within a sector, c.g., the project

level, this insufficiency of price-type control instruments is
translated into the insufficiency of the usual price-type
project evaluation criteria, and calls attention to the face
that there is an inescapable minimmum of quantitative control that

27 [n Dantzig (1963), pages 462-465.
2x Almon in Dantzig (1963), pages 464-465 {(cmphasis added).
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Yarn being wound onto ring hobbins in a cotton-textile mill at
Khartoum, Sudan
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A rextile plant at Caricuao, Venezuela
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as to be exercised even in highly decentralized lincar sysioms. 9
This does not mean that multi-level planning 1s useless; on
the contrary. it reinforees the need for such planning as it
indicates that a4 decentraized market mechanism without a
central decision-making level will encounter the same in-
determinacies that characterize the multi-level plainning
systeme with pare price-type co-ordination. At the sane
time muld-level planning s preferable o pure central
planning, as it results in an cconomy of information fow .
It should be noted that the waster problem in the decom-
position algorithm requires no - information on special
sectoral resources or on particular sectoral projects or
activities; this intormation is dealt with indircctly by

delineating teasible regions for cach sector on the basis of

averaging knowi sectoral complexes.,

The decomposition algorithm of Dantzig and Wolfe is
not the only one that can be utilized for co-ordinating the
master - progranume with the sectoral sub-programmes.
Kormai and Liptak (1965) have proposed a multi-level
plamting system i which the information flow is the re-
verse of that in & Dantzig-Wolfe system. In a Dantzig-
Wolte decomposition the master programme signals prices
to the sectoral sub-problems and the latter signal combined
utilizations of interconnecting resources by particular con-
plexes to the master programme: in other words, prices
How downward and quantitics flow upward (except tor the
quatitative implenenting objectives tixed by the master
programme for the sectors in which averaging is required).
In the Komai-Liptak decomposition the master programme
passes allocations of the connecting resources o the indi-
vidual sectors: the seetors, in turn, signal their own sectoral
shadow prices for these resources to the master programme.
Without going into the details of the Korui-Liptak
decomposition it can be seen (figure HIY that sectoral re-
source allocations o labour can be represented by a vertical
line cutting the two iso-product curves; at any (basic or
non-basic) solution separate shadow prices can be deter-
mined for cach sector. For an averaged complex, the
shadow price coincides with the slope of the averaging sey-
ment; for a single complex (which appears with unit
weight) the shadow price is distinet for increased and for
decreased allocations. For nan-aptimal solutions the compan-
son of shadow: prices for the two sectors will show an un-
ambiguous difterence; for example, for the basic solution
BEF the shadow price of labour, both in the upward and
the downward direction, is greater in sector 1 than in
sector 2. This indicates the need for increased labour allo-
cation tosector 1at the expense of sector 2. Conversely, for
the basic solution Aoy H, an anambiguous price differenco
exists 1 the opposite sense, indicating the need For increased
labour allocadion o sector 1 at the expeme of sector 2. 4-
the opiimmm (solution AEF) the vertical cot through 1 and
N wilk yield 1 shadow price at N that is smalter than the

# The range o mdiference i ahe solutions of wome sectors at
stated connecting-resettree prives v elnmnated el o
swtems which may wor have hinear boundary segments, Onhy i
such sstenis will prices alone suffice to achieve decentralizaton

N

shadow price at A tor decreased Labour allocation to sector
1. and larger than the shadow price at A tor increased labour
allocation to sector 1, this indicating a stable cquilibrion;.

T NECAMPQSITION PRINCIPLE AN NON=CONVEX SYSTEMS

We shall now use the diagrammatic method developed
tor fincar decompositions to indicate the changes that are
introduced by non-convexities, as represented by the case
ot tixed costs. The principat change concerns dhe applica-
bility of iterative corrections to such systems in order to
improve the cficiency of existing teasible solutions, as
these tend to break down in the presence of won-convexities,
One has the intuitive fechig that the presence of small non-
convexities cannot have a profoundly disturbing influence
on the behaviour of largely convex systems, as common
observation indicates that markets are often able to operate
with reasonable cfficiency despite the pervasive presence of
tixed coses, cconomies ot scale, and other non-convexities.
But what is “siall”? What systemis are “largely convex's
The diagramuatic method offers some bases tor judgement
on these points and suggests guidelines tor workable it not
pertect decentralization.

Figure 1V ndicates the it step i constructing
decompaosition diagram with fixed costs included to repre-
sent non-convexities. The tixed costs are expressed in ternns
ot labour and capital requirements (see table 1). For cach
complex such as A, B, cte. the tixed costs of the component
projects (activities) are added up. I figure 1V, these addi-
tions are pertormed by means of vectors (arrows) which
represent the libaur and capital requirements of individual
activities. I chis tashion, poine A is carried into poine 4.
point Binto point B, .and wo on. While points A4, B, . . . in
the diagrams have been referred to as vertices, we shall
reter to points AL B . asapices in order to distinguish
clearty between the ewo points,

Generally, apices camnot be averaged i a linear fashion,
because averagig apex A" and B, for example, requires
the joint use of projects Xy, Xz, and Xs, while apex A’
allows only for the fixed cost of Xy and X3, and apex B’
only tor Xz and X3 Thus when two complexes are to be
used jointy and all the fixed costs have been incurred, the
variable costs can be averaged lincarly 30 In tigure V these
operations have been pertormed; for cxample, at 4’ the
vector Xz has been added, while ae B? the vector % has been
added: the end-points of these ewo vectors can now be
connected by a straight fine. It is significant that the slope of
this correct averaging line for apices 4" and B’ s the same as

S xed costs b compine requireinents ot special sectoral
tources these requirements e be tramslated into cquivalent
bibour and capital requirements cabenlaced at 1he marginal labour
and capatal requirenients needed for producing the specitied smomts
ol sectoral resources, on the sumption that all of these sectoral
resources willin fact be produced in the optimal progranmcesand thar
the corresponding fised costs will thus be incurred in any event
This asumption may s ot be valid; and there nughe be same choice
m the selection of activiaes for producing these tixed-cost compon-

ents. We shall absiract trom all of these secondary complications
the course of the present diseuwion,




I—q.__ o o —

R i L1

|
s Sl SR 4 _4;__ SN S +_‘ - t 4}_ " » \ e .+7.__{
2” JOTE 4. ,___,#,,, e de T ———— __L . ,._:!,,,‘_ i S e -—4180
| | ‘ ' I
; 1} : b |
+ IR ot
; | ! | | ; ‘.
150 — + 11'_ ]1' + ‘ll —+ -4 - b + - -1200
‘ : ‘ | X l : -—— e e wn w e w.
: i | : ; Kol %
4 T s 4 d 4 ‘__T____.T_.__, e b e e

“A-

- ‘? ! A e e -+ -
| i .
. ST N U P
1 f . :
+ _+_ e 4,_ —-——-—0————i~~~ [ “+ —d
‘seE]on 1 . 1
) i \
- L1 . l L I 4 i i A " - 350
0 $00 1000 1500 2006

Figure I

PFCOMPOMEFION : HIXED COMIS OF COMPEEXES ADIDID

the slope of the vertex-to-vertex average. This is due to
the tace that 4, B, and the end-poines of the correct
averaging line torm a parallelogram, because the same three
vectors have been added both to 4, and to B, though in a
different sequence. Thus the correct averaging line refleers
marginal rates ot substitution beeween labour and capiral,
while an apex-to-apex connecting fine does not.

Two important qualifications to the foregoing procedure
have to be noted -

(a) While points C and G represent inefficient complexes
in a lincar system, it is by no means a foregone conclusion
that they will also be inefficient in a non-convex system
comprising fixed costs. If, for example, the fixed costs
associated with C were unusually small, it could casily
happen that the correct averaging line involving C will pass
in part on the infeasible side of the correct averaging lines
for the other complexes, and will thus yield preferred poines
in this range (sce figure VIl and footnote 30).

(h) In a lincar system, averages of neighbouring vertices
are always superior to averages of non-ncighbouring verti-
ces. In a non-convex system with fixed costs this s not
necessarily so; for example, the correct averages between

Apex. A’ and B and between apex 8 and D' may prove -
terior in certain ranges to the corcect average of apex A
and D’ it the fixed costs assoctared with vertex B are un-
usually high.

Do the apices and the correct averaging lines appearimg
figure V jointly form mo-product hnes tor the two sectors®
In answering this question it should be noted that frec
labour and capital disposal i permitted at all ames: thus
any point in the diagram representing 4 legitimate apes o
average will donmate all pomes denved trom it by such
disposal activities. Therefore B” will dominate all points on
the correct averaging line between 47 and B chatare to the
northeast ot B'; and likewise for 4’ Asa resale, the entire
lne connecting the end-points of vectors 3y added w B
and Tz added to A" will disappear and will be replaced by a
step function between A and B’ (figure VI). Applving the
same considerations of domimance to other arcas of the
diagram, we obtain the iso-product lines of tignre VI which
have a much simpler contiguration than the apices and
correct averaging lines of hgure V. This simphhcation of
the diagram is not a special teature of the nunnencal ex-
ample under study bue a general phenomenon which is due
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DIECOMPONINION . AVERAGING OF COMPLEXTN INTRODUCID

to the tact that the correct averaging lines have pronounced
dips at the apices where one fixed cost is in all cases elimi-
mated. As a resule the straight line segmients representing
variable costs are generally truncated near the apices and
1 some cases (as beeween 4 and BY) completely clinnared
m favour of simple step tunctions,

What can be said about the non-convex decompaosition
problem represented by the iso-product lines of tigure VI
I general when the lines are correctly drawn and all the
apices corresponding to feasible basic solutions of the see-
toral problems are known, it is impossible to tind a solution
to the master problem without taking into consideration
all the detailed mformation represented by the specific see-
toral resonrce balances and sectoral activities. A knowledge
ot the capital and labour requirements at these apices,
together with correct averaging procedures, is sufficient to
gnarantee an exact solution to the master problem. The
averaging procedure i the present case can be based on a
listing of activities included in cach complex together with
their fixed capital and labour requirements; when two or
more complexes are averaged, it is then necessary merely
to check of all activities that are wicluded and to add ap
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their fixed costs. Formally, the maseer problem becomes an
meeger programming problem in which the averaging of
the variable costs of the complexes is conditional on -
curnng all the requisite fixed costs (s amex).

In practical applications, the shortccoming of this pro-
cedure is twofold. First, it is difficult to solve a large integer
programming master problem; second and more im-
portant, the availability of nformation concerning the
requisite apices cannot be taken for granted, because the
number of such apices ncreases in combination with the
sze of the problem. The virtue of the Dantzig-Wolfe
algorithm is precisely that it generates new complexes as
they are needed. thereby shortcutting the enumeration of
cHlicient complexes. The question is, can a similar procedure
he developed tor the non-convex case? No such procedure
s presently avanlable and the difficultics of evolving one are
great.

First, the meanmg of prices in the master problem - as
nteger programming problems in general now becomes
ambiguous. In tigure VI the over-all optimum happens to
be at the vertical line passing through B’. as can be verfied
geometrically or by means of 3 simple enumeration of
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DECOMPOSITION | 1SO=PRODUCT 1INES DERIVED

alternatives. What is the proper price ratio between labour
and capital characterizing this optimum? Isit the slope of the
iso-product linc at J? This slope corresponds to the averag-
ing of variable costs, i.c., to the slope of the line EF; it is
thus a marginal cost ratio. Or is the proper price ratio the
slope of the apex-to-apex connecting line, E'F'? In the
present case the two slopes are not greatly different, but
with only a small change in some of the fixed costs the
optimum can be shifted to a vertical line such as MN. Here
we have three possible price ratios: the two above-mention-
ed, and the zero price corresponding to labour disposal.

Second, we have to ask what the role of such a price ratio
is going to be. Will it be used, as in the lincar decomposi-
tion problem, in a search for new efficient complexes? If so
the sectoral sub-problems become integer programming
problems involving the minimization of combined costs
(as in the lincar casc), but with allowance for fixed costs of
the individual projects. In the present illustrative case
(figure VII) such sectoral optimizations performed at
the proper price ratios will identify all apices that partici-
pate in defining the iso-product lines; however, this can-
not be generally guaranteed, because apices can also occur

in local indentations of the iso-product lines that are not
optimal under any price ratio. In figure VIII, for example,
the fixed costs of sector 1+ have been changed and apex €
now occurs within a local indentation of the iso-product
line.3' Regardless of the price ratio for the optimization
performed within sector 1, apex € will never become the
aptimum. If the price ratio between labour and capital 1

_ 3 Fixed costs within sector 1 have been changed 2y follows:
X1-0,0,% 0,0, Xy 100, 100, % 20, 20. These tixed
costs carry the points A, B, C, and D o 4°, B, ', and D), a
shown in figure VIl The correct averaging lines for all binary
combinations of complexes are shown : these are de woted by ab, ar,
ad, be, bd, and d. The sectoral iso-product function: is made up of a
vertical stretch above 1’ (capital disposal together with use of
complex )); line «d (the correct averaging line for complexes €
and D’); the line segment between points C7 and T (use of complex
C’ rogether with labour disposal): the line segment between poines
U and 17 (part of the corruct averaging line bd); the line segment
between points 1 and B’ (use of complex B together with capital
disposal); the line ab (correct averaging line tor complexes 47 and
B); and the horizontal stretch to the right of A7 (use of complex A
together with labour disposal). The correct averagmg lines ac, ad,
and be lic entirely above the iso-product functions, as do parts of
bd. The line connecting points B and 17 is not a correct averaging
line.

4
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I1-COMPOMTION: APEX TO APEX CONNEC TING

higher than the slope of the line 8D, apex D' will be
optimal, but if it is lower, apex B’ will be optimal. Thus the
sectoral optimization can identify apices only if they lic in
the convex hull of the sectoral iso-product lines.

Alternately, the role of the price ratio may be to sustain
an optimum, as in the lincar casc; if so, the local marginal
price is the proper one to use, but under the assumption of
profit maximization for cach sector, such a price will sustain
the optimum only in a most unstable way as the slightest
change in the price ratio will generally precipitate a cnmula-
tive movement away from the optimum. The coneept of
price characterizing convex systenis is obviously not cap-
able of ready superficial excension to non-convex Systcins.

Although no available procedure enarantees the iterative
derivation of the exaar optimum while shortcutting the
commeration of efficient complexes, we may still make
considerable headway toward the practical objectives set
out at the beginming of this section by looking for suitabl:
approximations,

Figures VIL and IX have been drawn to indicate two
possible approximations to the derivation of an exact
optimum in such non—convex decomposition problems.
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TINES COMPARED TO 1NO=PRODUCT TINES

Approximation 1 (apex-to-apex comecting linc)

In figure VI the apex-to-apex connecting lines are
shown in relation to the correct iso-product lines. The apex-
to~apex: connecting lines yield o linear approximation to the non-
convex master problens while maintaining the non—convex
nature of the sectoral problems. The lincarized master
problem in effect assumes perfect divisibrlity of the sectoral
complexes, and thus ignores the all-or-nothing character of
fixed cost incurrence in a given sectoral activity, An
approximate over-all solution can be obtained in an
iterative fashion by determining successive price ratios
from the basic solutions of the lincarized master problem;
these price ratios arc then applicd tosectoral integer program-
ming problems w an attempt to identify new cfficient
apices (sectoral complexes), if such are available. These new
apices if found, are included in the lincarized master
problem and the procedure is iterated. This procedure has
the virtue of gencrating new complexes only as needed,
similarly to the lincar decomposition problem (sce annex).
The key characteristics of approximation arc:

(4) It will always y'eld cither an exact or an opercstimate
of the correct optimal value of the objective function. The
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EXAMPLE OF APEX OCCURRING IN LOCAL INDENTATION

correct optimum in figurc VII, as verifiable graphically or
by simple algebra, is a capital surplus of 79:9 units that
occur at B'J. (By comparison, the distance between the
sectoral iso-product curves at a line passing through A’ is
only 775 units.) The approximation, on the other hand,
will yield the overestimate of 86-3 units where the capital
surplus is estimated as the vertical distance between B’ and
the E'F’ apex-to-apex connecting line. The reason for the
overestimate is that the approximation ignores the indent-
ation occurring between E' and F'; ic,, it does not take
into account the fact that rthree rather than two fixed costs
have to be incurred when complexes A’ and F’ are cor-
rectly averaged. Note that the indentation will be ignored
cven when it contains an apex, as at C’ in figure VI,
because this apex will never be identified. Note also that
while in the present case the approximation attains its
optimal valuc at the same combination of complexes as the
correct optimum, this cannot be gencrally expected.

(b) Integer programming within the sectoral problems
is cssential for cxcluding the possibility of an under-
estimate, It might be thought that an cconomy of computa-
tion would result if the sectoral integer programming

problems were replaced by their lincarized  versions
excluding fixed costs; this would identify new vertices ivom
which the corresponding apices could be derived by the
addition of fixed costs. Such apices, however, would not
necessarily lic within the correet iso-product line; they
might be dominated by other apices and could lead to an
underestimate.

(¢} The approximation will be good to the extent that
non-convexities are weak, i.c., to the extent that local
indentations are small in comparison with changes of the
objective function corresponding to different basic solu-
tions of the lincarized miaster problem; in other words, t
the extent that the apex-to-apex connecting line stays close
to the truc iso-product line. Closeness is measured in
reference to a feasible arca which is convex in the large and
has only small local non-convexitics. Note that the graph-
ical representation permits an intuitive appraisal of the
rlative roles played by convexity-in-the-large  versus
non-convexity-in-the-small.

(d) Such a situation 1s likely to arise when fixed costs are
small in relation to the changes of variable cost over the
averaging ranges, or when the fixed costs of many common
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activitics are shared among neighbouring complexes that
differ only slightly in activity composition.

(¢) Another important situation of this kind arises when
fixed costs in a sector are incurred stepwise, i.c., when
projects with given fixed costs are limited to a maximum
scale, beyond which the fixed cost has to be duplicated.
This reduces the size of the abrupt increase in correct
averaged costs near the apices and brings the iso~product
line within a fraction of the distance from the apex-to-apex
connecting line that prevails when fixed costs have to be
incurred in a single step (sce annex).

() The computation will be efficient to the extent that the
sectoral integer programming problems are small or have
a special structure that renders them casy to deal with,
Approximate solutions to these sectoral optimizations arc
acceptable provided they are dual feasible, i.c., that they
constitute overestimates of the sectoral optima. Algorithms
employing cutting plancs satisfy this requirement and may
thus be terminated after a reasonable number of steps. The
approximate sectoral solutions are then available for sub-
sequent itcrations of the master problem. As such algor-
ithms show rapid progress initially and often slow down

critically near the optimum, the possibility of using the
results of runs of limited length might be valuable.

Approximation 2 (maveraged apices)

In figure IX the unaveraged apices are shown in relation
to the correct iso-product line. An approximation to the
iso-product line can be picced together from these apices
by adding vertical and horizontal extensions corresponding
to free labour and capital disposal activities. In other words,
whercas in approximation 1 we formed apeX=to-apex con-
necting lines which gave the appearance that the apices
could be averaged in a straight lincar fashion, the approxi-
mation 2 discards the tool of averaging altogether and
simply disposes of labour and capital not required by one
apex or another in a given solution. As a result, solutions
are restricted to one complex in each sector. The character-
istics of this approximation are the following:

(a) It always yields an underestimate of the potimal value
of the objective function, for two reasons: first, because it
ignores the possibility of legitimate averaging; and second,
because it generally operates with an incomplete list of
apices if the problem is large. In the present case the
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optimum  occurs using complexes A1 and F', and yiclds
an cstimate of 77- 5 as against a correct optimum of 79-9
units.

() The master problem is now an integer programming
problem which does not yield useful prices for defining
sectoral objective functions.

(¢) Individual apices may be generated in any conveniene
way; c.g., by means of simultancously undertaking the firse
kind of approximation (apex-to-apex connccting lincs),
or by lincarizing the sectoral problems.

(d) Approximation 2 is good whenever non-convexitics
arc large in relation to changes in the objective function
corresponding to widely separated solutions; in other
words, when the sectors are characterized by a few major
indivisibilitics. The reasons for this arc that in the case of
large nen-convexitics not much is lost by refraining from
averaging and the number of apices contributing to the
correct iso-product line in any sector is necessarily smallcr.
Thus the apices are relatively casier to identify on the basis
of empirical considerations which are likely to be well
known to planncrs familiar with the scctor, and therefore
the possibility of missing significant apices is greatly
reduced.

(¢) The computation will be cfficient to the extent that
the master integer programming problem is of manage-
able size. If an approximation is required for the master
problem, it should be the primal-feasible kind in order to
vomserve the character of an underestimate,

In sum, the two approximations arc complementary.
Taken together, they vield both an upper and a lower
bound on the value of the optimal solution; in addition,
cach tends to be close in cases with opposite characteristics.
The first approximation tends to be close when the feasible
arca within a scctor is convex in the large and has only
small local non-convexitics, while the second approxima-
tion tends to be close when a sector is characterized by a
tew major indivisibilitics. It is noteworthy that present
practical methods of coping with non-convexitics in
cconomics tend to run in the dircction of these two
approximations. Thus in the casc of small non-convexitics,
an attempt is made to define some reasonable average cost
and price that will take into account the presence of fixed
costs, while in the case of major indivisibilities the oper-
ation of the price system is invoked only after quantitative
decisions have been taken in regard to these indivisibilities
on other than pricing criteria.

The decentralized decision-making process, using these
two approximations jointy to simultaneously obtain the
apper and lower bounds of the optimal solntion, operates
m the following fashion. The starting point is a feasible basic
‘olution to the linearized master problem; in the present
cxample, this can be provided by a single complex in cach
sector, together with the labour-disposal activity. The
upper decision-making level calculates the prices corres-
ponding to this initial solution and transfers them to the
wectors. The sectors regard these prices as parameters and
optimize their integer programming problems at the given

prices; then they pass the combined fixed and variable
labour and capital requirements of their optimal solutions
to the upper level. The wpper level checks these factor
requircments against the current shadow prices of the
linearized master problem including the sectoral “*sub-
contracting fees” (see foomote 26). If no profits occur,
approximation 1 has terminated and the current solution
of the lincarized master problem furnishes an overestimate
of the correct non-convex optimum, otherwise the profit-
able complexes arc included in the lincarized master
problem and a new trial solution is computed. As long as
profits are present, however, there can be no assurance that
the current solution is an overestimate, The upper decision-
making level may solve in the course of every iteration an
integer programming problem, constructed from the
currently available sectoral complexes on the principles of
approximation 2. If undertaken, this computation furnishes
at every stage an underestimate of the correct non-convex
optimum, but it is not necessary to perform the computa-
tion until approximation 1 terminates, because the stagc-
by-stage results are not required for later operations.

An important feature of these stage-by-stage under-
estimates is that cach of the corresponding solutions is
feasible, and if the iterative process is broken off at that
stage the solution will yicld a decision (plan) which can be
translated into practice with a known payoff. This is not
true of the stage-by-stage solutions of approximation 1 if
one of these solutions is translated into practice there is go
way of predicting, from the information available to the
upper decision-making level, what the actual payoff will
be. In other words, if the upper decision-making level
instructs the scctors to utilize given sectoral complexes
with prescribed weights corresponding to a particular
solution to the master problem, the resulting payoff is
uncertain. This uncertainty carrics over cven into the
optimal solution obtained by approximation 1. Itis known
that the latter solution gives an overestimate of the payoff,
but when translated into practice there is no assurance that
it will yicld an actual payoff that is superior to the under-
estimate provided by approximation 2.

In view of this situation it is useful to introduce the
correct averaging procedure as an auxiliary feature of the
decentralization mechanism. As indicated in more detail in
the annex, the correct averaging procedure requires
slightly more information than approximations 1 and 2.
In addition to the combined factor inputs at the apices, it
requires a list of fixed costs incurred at cach apex so that all
fixed costs characterizing both (or several) apices may be
included in the correct average. Given this additional in-
formation the decentralization mechanism can be strength-
ened in the following ways:

(4) As regards approximation 1, given any feasible
solution to the lincarized master problem, the actual payoff
of this solution in the non-convex system ¢an now be
calculated. Moreover, this payoff is a firm underestimate
of the optimal payoff in the non-convex system. Thus a
solution obtained at any stage of approximation 1 can he
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translated into practice with a known payott: m particulur,
the optimal solntion for approximation 1 will now offer
both an upper and a lower bound on the optimal payoft of
the non-convex system.

(h) As regards approximation 2, given a lise of apices
obtained through the iterations of approximation 1 or
otherwise, a master mteger programming problem can
now be formulated which will allow a solution to be
tound with a closer approach to the optimal payoff of the
non-convex system. Where previowsly only the straight
combination of maveraged complexes has been permiteed,
averaging now becomes possible. The solution will seill be
- underestimate since the lise of apices s generally
incomplete,

THE ROLE OF PRICES IN NON=CONVEX TWO-LEVEL NECISION
SYSTEMS

Whichever way the approximate solution to the non-
convex problem s identitied, the question remains how
the wpper decision-making level can put such a solution
into cfece and what role a price system might pay wnder
such circumseances.

Marginal~cost pricimg of the connecting resonreys is consistont
with optimal resowrce allocation. It has alrcady been shown
that the slopes of the correct averaging lines (fignre V)
represent marginal rates of substitution between Tabour
and capital. The same interpretation can abso be extended
to the horizontal and vertical line segments that are wsed for
climinating inefficient streeches from the so-produce line
(compare tigures V and VI). Horizontal line segments
represent labour disposal: i.c., over these segments it s
more cfficient to we a single complex in a sector than o
average two complexes, even though the nse of a single
complex entails the presence of some mused labonr.
Vertial line segments are similarly obtained by replacing
an inefficient averaging of complexes by a single complex:
in this case, the capital saving shows up as a net gain that is
available only at a single poine along the continmum of
labour allocations. Thus the marginal rate of substitution
m these ewo cases is zero and infinity, respectively. With
this extension the slope of the so-product line can be
mecrpreted as a marginal rate of substitution at every
point where such a slope is defined.

At a local optimum (and thus necessarily at the global
optinim as well) the relationship between the marginal
rates of substitution of any two connecting resonrces for
any two sectors is a straight extension of the neo-classical
cfficiency conditions, from the usnal smooth iso-product
finctions to the presene angular ones32 I the upper

21 M. D. Litde (1950), page 127, summarizes the relevant con-
dition thus: ™. . . the ratio of the marginal products of any two factors
of production must be the same for cvery good in the production of
which they both co-operate™. Replace the ratio of marginal prod-
ucts by the corresponding marginal rates of substitwtion and con-
sider a differennial reallocation of labour from sector 2 o wctor 1,
Then the marginal rate of substitution dkedl in sector 1 can be
interpreted as the corresponding decreas in the use (increase in the
surphus) of capital and conversely in sector 2. Maximization of the
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decision-making level sets the price ratios of connecting
resources to the marginal races of substieution prevailing ae
the global optimum ™ there will be no incentive for
turther margimal resonrce reallocations trom the point of
view of the system as o whole.

The indeterminacy of decentrali zation and control hy means
of purely price=type instruments that has been observed in linear
systems will be present 10 an cven sronger degree when the
optimization of sectoral payoffs under marginal<cost pricing s
applicd to non—convex systems. By sectoral payolt we mean
the value of the comnecting resources, in the present case,
the cost (negative value) of labour and capital. Though, in a
hnear system a given price ratio will generally sustain an
optimum in the sense that ae chis price ratio no movement
away from the optimum will appear advantageons to any
of the sectors (even though this optimum will not be
attamed withont the intervention of quantitative controls),
M 2 non-convex system a set of marginal-cost prices will
not sustain «ven the optimum in any stable sense. In 2
hnear system the sectoral payofs are maximized at the
margintal-cost prices corresponding to the over-all system
optimum. In a2 non<convex system, on the other hand,
marginal-cost pricing at the system optmum will in some
sectors lead only eo stationary ranges or points in the
payoff3 such as the stationary range along the points of
the straight-line segments XJY of the so-produce curve of
sector 2 passing through J (tigure VII). Note that at the
labowr price set by the slope of this segment the payoff of
sector 2 at Jis actaally at a minimum; aleernate minima
oceur along the entire stretch XY of the straight-linc
segment. Movement away from J, cither to £ or },
would improve the payoff of sector 2. Marginal-cost
pricing of the connecting resources can be said to sustain
the global optimum B’ only in the limited sense that at
such prices sector 2 will be indifferent to small local move-
ments along the iso-product curve. However, given the
abiliey of the sector to consider longer-range adjustments
to E or F' (which is certainly a reasonable supposition in
the case of ewo-level plamiing or decision systems),
marginal-cost pricing alone will no longer suffice to sustain
cven the global optimum of the system.

Thus in non-convex systems where the sectoral valwes of
the connecting resources are 1o be maximized wnder
marginal cost pricing there is a constant tendency for some
sectors to abandon the position required for the system

surplus of capital requires MRS, < MRS; when Labour allocation
to wotor 1 s slightly less than that ar the optimal solution and
MRS, > MRS; when labour allocation to sector 1 is slightly greater
than that at the optimal solution. In these formulas MRS is taken as
mherently negative. ke can readily be verified by reference to
tigure VII that the global optimum at 8/ and the akernate bocal
optima near MN satisfy these conditions,

3 The marginal rate of subwitution will be undefined at the
optimun for some of the sectors, c.g., in bigure VII at point B’ for
wetor 1. By coincidence it might happen that the same condition
holds for 4 resource in il sectors: in this cax more than one price
Tatio is consistent with che optimum.

M Arrow and Hurwicz (1960), pages N¥—yo,




optimum. and this tendency has to be counteracted by
specitic quantitative controls such as fixed resource alloca-

tons. The practical consequences of the meroduction of

such quantitative controls are not greatly different from the
cffects of such conerols in lincar systems; in chis regard
non-convexitics merely reinforce the control require-
menes already manifest in lincar systems.

In non=convex amlti-level decision systems with maxionizativa
of sectoral payoffs under margiaal~cost priciag for the coancetiag
resources, there will always be exteraal cconomies aad dis-
cconomies linkiag the sectors. The tendency of some sectors
to abandon the position required for system optinum is
due to the possibility of improving sectoral payofts with
large readjustments at current marginal-cost prices. But
the improvement for the sector would be obtained at the
expense of the deterioration of the system as a whole,
because the factor reallocations required for the readjust-
ment of the sector in question would leave other sectors
with a loss greater than the gain of the first sector. Marginal-
cost pricing furnishes a reliable measure of system-wide reper-
cussions only for differentiol readjustments near a local optimna,
not for the longer-range readjustments considered here.
Thus in the course of such longer-range, non-marginal
readjustments of a sector, external cconomies o dis-
economies of the technical variety will come into play: it
is as though the sector originated un-priced services or
disservices that affect the efficiency of system-wide re-
source allocation. The question arises as to whate the exact
nature of these un-priced services or disservices is. Similar
questions have puzzled generations of cconomists con-
cerned with the analysis of externalities. 3

A key to the problem is furnished by the cutting-plane
technique of solving integer programming problens (see
annex). When new lincar constraints of the proper kind
are introduced into lincar programming problems whose
variables arc restricted to integer values, the resulting
enlarged lincar programming problem will yicld an
optimal solution identical to the integer solution of the
original problem. The enlarged problem is convex, and
all constraines, including the newly defined constraints,
have proper shadow prices in the optimal solution. The
“resources” corresponding 10 the wewly defined constraint, un-
priced in the original problem, are the missing services and
disservices linking different sectors.3 In general there is no

¥ For a recent review, see Whinston (1962).

* The cocfficients of the new constraints are derived from 1he
coefficients of the original constraints in such a way that zero co-
cfficient in the origimfzmmaims imply zero coefficients in the new
constraints. Thus the new constraints will leave unaffected the
sectoral partitioning of 2 matrix such as that of table s or table 6 in
the annex. How can we then assert that the new constraints create
externalitics linking diffcrent sectors? Even though the new con-
sraints do not possess coefficients interlinking the sectors, the deriva-
tion of the new constraints depends on the coefficients of the commecting
resources which of course do link all sectors. In Gomory's fractional
method the new constraints depend on the non-integer solution of
the (pr ively restricted) original problem while in his all-
integer ithm (1960) the maintenance of dual feasibility in the
course of his lambda-transformations depends on the cocfficients of

umgue way of defming new constramts; 7 thus the Tinssing
resonrees™ do not have a detimte identity of their own and
are just shadowy  reHections of  the underlying  non-
convexity ot the system. No wonder they have persistently
cluded being detined by cconomists. The search has been
all the more frustrating because in some essentially convex
systems exhibiting technical externalities, the un-priced
resources responsible tor the latter are relatively casy o
identity (lighthouses e, ships, sparks from railroad cngines
rs. lumber tracts, smoke nuisance, ct('.)

Decisions iavolving the incurrence of fixed costs can eeaerally
aot be decentralized by a price systewr aud the maxion zation of
sectoral payoffs, except in aa approxiaate fashion. The tixed-
cost mcurrence activitics, even though associated with
individual scctors, carry over rom the lteer into the non-
convex master problem involving the correct averaging of
a complete list of known teasible basic solutions (compare
annex, tables 2 and 3): thus the correct averaging of
complexes requires information on sectoral fixed costs,
activity by activity. In other words, while the sectors in 4
lincar system are tree to choose all aspects of their own
technology under a st of centrally amounced prices for
the comnecting resources and are subject to quantitative
controls only in regard to a selection from among their
altermate optima, - non-convex systems the optinal
allocation of resources s contingent on reterring all
detailed tixed=cost incurrence decisions to the planiing
centre,

An approximate decentralization i, however, possible
tollowing the principles of approximation 1. There it was
shown (see also anmnex) that a lincarized master problem
that handles individual complexes as though they were
perfectly divisible will yield a seeof prices which will guide
the system to a satisfactory sub-optimal solution, provided
that the deviation of the apex-to-apex comecting lines
trom the correct iso-product lines is within tolerable error
limits. The lateer is more likely to be the case when fixed
costs can be incurred stepwise in the individual activitics
rather than requiring all-or-nothing decisions (see annex.
tigure I). Under such an approximation the individual
sectors are again free to choose their own technology
including the assortment of fixed costs w0 be incurred, but this
gain in decentralization is achicved at the expense of some
blurring of the optimal resource allocation for the system
as a whole. If, however, the size of the steps by which tixed
costs are incurred  becomes  progresively smaller, the
approximation in the limit approaches an exact solution-
finding procedure for the case of perfect divisibility, and
average factor costs defined by the apex-to-apex connect-
ing line become truc marginal costs. The same resule also
obtains when in the long run fixed costs can be proportion-
ally adjusted to required capacities that are continuously

the objective function and, due to the paramount importance of
degeneracy and lexicographic criteria, on the coctficients of the
other connecting resources as well.

37 Gomory and Baumol (1960).
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variable: the sityation is then an exact analogue of the
well-known textbook case of a long-nm envelope line
derived from the capacity points of lincar short-run total-
cost curves with fixed costs, cach of which has a smaller
sdope than the envelope (sce annex, fignre 1h).38 With
small but finite fixed cost steps, the APEX-LO-apex connect-
g line will yield exacr estimates of resonrce requirements
At a number of lattice points along the line if at these
points all fixed-cost increments alrcady  incurred are
operating at capacity.® At such lattice points. if any cxist,
the amomnt of fixed costs actually incurred will be iu-
distinguishable from a perfece long-rim adjmstment with
continnons variability. Such lattice points are most likely
to occur in practice when only one of the complexes to be
averaged has fixed costs,

If the decentralization of hxed=-cost incurrence decisions is
altegether abandoned, marginal-cost pricing of the connecting
resources will permit the  decentralization of other sectoral
decisions. If the wpper decision-making level provides a list
of fixed costs to be incnrred in the sectors. the activitics
whose fixed costs have ot been inenrred will be inacti-
vated. The other activities will now Jointly define a lincar
two=level decomposition problem whose solntion implics
marginal-cost pricing of the connecting resources. Sich a
decision strategy is often snitable, c.g., for plant location
problems where  after the selection of active plants - the
remaining production-and-transport problem is convex
and leads to a well-detined system of shadow prices. The
central selection of active plants can be ymdereaken by
witable approximations such as those described in the
section o the decomposition principle in non-convex
svstems,

In this case the decision process is divided into two stages,
During the first stage information is interchanged between
the upper and lower decision-making levels: as a resule a
programmc emerges that represents a target decision (plan)
for all levels of the system. In stage two this plan is to be
mplemented. Following the annomncement of active
plants by the centre, and reduction of capital and labour
availabilitics by the fixed amomnts already  commiteed,
further implementation can follow  the trial-and-crror
adjustments of a lincar decomposition system, held within
reasonable bonnds by the quantitative controls that are

™ These cases are compatible with pertect competition that would
prevail in the undecomposed system as a whole, without any need tor
upper or lower decision-making levels. Here all decisions are
decentralized to1he individual activity within a sector; this activity
i a compasite of the production and fixed-cost-incurrence activities,
with all resource coefficients corresponding to operation at capacity
level (see model of table S. atmex). This is a limiting case of conr-
petitve snpply with U-shaped average cost curves: with lincar tonl
L p to capacity, the left leg of the U™ is a hyperbola, the right
feg i vertical, and the level of minimum average costs is determined
thesides variable costs) by average tixed costs at capacity operation,

Bl

Fixed cosis, commmon 10 both complexes, that are incurred in a
angle step at the scales of these complexes, need not meer ihis
requirement.

P Excep tor tised costs of the kind specitied i the previoas
taotnone.

FR}

always needed in linear systems for the weighting of
akernate -cctorzl optima in some of the sectors at the given
prices.

“Arerage=cost™ pricing of the comnecting resonrces is prelerahle
1o marginal-cost pricing. to the extent that the decentralization of

fixed=cost incursence decisions i of practical concern. In this

context “average-cost™ pricing of the connecting resonrces
s taken to mean prices that correspond to the slopes of the
apex-to-apex connecting lines.

In many practical problems of multi-level decision-
making, c.g., in national cconomic planning, the decentral-
ization of fixed-cost incurrence decisions is of the ntmost
importance. In national planning large nimbers of invest-
ments have to be identified by class of cconomic acuvity,
time period and location, and it is desirable that the contral
planning level be relieved of all but the most essential of
these decisions. Average-cost pricing of the connecting
resonrces (as defined above) by the npper decision-making
level will permie trial-and-crror adjustments in the course
of plan implementation that follow the principles of
approximation 1. These adjusements, like the ones of a
lincar system, have to be held within reasonable bownds by
guantitative controls which preseribe the weighting of
given sectoral complexes, even thongh, in contrast to the
linear case, this may lead to a reduction of some sectoral
payofls.

In this, as in the previons case, the decision process will
generally have to be divided in two stages. The first stage is
required in - order that the degree of error of resource
allocation, inherent in the decentralization of fixed—cost
menrrence decisions, may be judged. If this error is toler-
able, the second stage can follow with its trial-and-crror
adjustments in the conrse of plan implementation,

More generally the first stage permits a Jjndgement con-
cerning which fixed costs are to be centrally prescribed
and which arc to be left for decentralized decision making.
It is entirely possible to prescribe or to Snppress one gronp
of fixed costs while another group is left open for decentral-
1zed decisions. In this case the prices of the connecting
resonrces will be “averagecost” prices as before, but with
certain fixed costs (those that have been prescribed) omit-
ted from the complexes, and with certain complexes (those
that contain activities with suppressed fixed costs) omiteed
altogether from consideration. As in approximation 1, the
sectors will maximize their payoffs, taking into considera-
tion only those fixed costs whose incurrence has been left
open. Resowrce availabilities are again reduced by the fixed
costs already commiteed. At every stage of plan implemen-
tation the trial-and-crror adjustment is kept within bounds
by gumtitative controls,

Ina two-level decision syseem, where sectoral decisions
ocenr as a amit, the question of pricing for individual
activitics can be left open. Given the non-convexity of
fixed-cost incurrence operating within as well as benveen
sectors. there will be externalitics (and corresponding nn-
priced “missing resources”) at the sectoral level as well as at
the level of the systenn as a whole; therefore, no simple




pricing prescriptions can be expected. In considering intra-
sectoral pricing rules, the possibility of further decentral-
1zation must be kept present: morcover, on practical
gramds the setting of prices to cover average costs
approximately at plamned ontpnt levels is to be strongly

tavonred.

CaNcLusion
The mvestigation of the properties of two-=level decision
systems with angular  decomposable  structure made
nan-convex by the inclusion of fixed costs vields some
preliminary insights into the structnre of more general
non-convex cconomic systems, Thus it is apparent that non-
convexity usmally will give rise to externalitics, but the

converse cannot be asserted. Morcover, an cconomic
system snch as that of a present-day predominantly private-
enterprise indmtrial cconomy can operate with a reasonable
degree of cfficiency i spite of i pervasive clements of
non-convexity, provided that (a) highly indivisible decis-
wns are subject to some kind of rational centralized
deliberation wmdependent of the market, and (M smaller
irregularities are adjuseed by a price system that s based on
average costs near the highest efficient scale of operation.
It is cqually clear that these preconditions are only im-
perfectly satisfied in practice and that 4 properly tunction-
ing decentralizeq planning svstem can contribute  sub-
stantially to coping with the problems of cfficient resource
location.

ANNEX

NoOTATION®

The schema given in table 1 (text), following Tucker (1903, 18
A sucemcet joint representation of two svstems of lincar cquations,
One system arises by forming the inner products of the vector

.\. : I¢\‘", caay \’\I

with the rows of the matrix A, the matrix of numerical cocthici-
ents m table 1 (text), and setting cach inner product equal to the
corresponding components of

oy

oy

This leads to a system of M - 1 linear cquations in the N variables

.\'j.'

oa - apnXy ... agy Xy

oy aypNy o .. ayy Xy

The second system arises by forming the inner products of

Y
with the cohmming of A, and sctting cach cqual to the correspond-
ng component of
L= | Lu, caay L.\'].

» Quoted, excepr Tor a change in notarion, from Tucker (1963), pages

I-2.

This vields a svstem of N 1 hinear cgmations m the vartables
Y,':

Ly amdy ... amoly

Ly agyYo... ayyVy

In table 1 (text), the neganve variables L have been replaced
by positive variables ;. Tucker (1963, pages ¥ 9) shows how the
systems of lincar cquations given m the schema in homogencous
form can be emploved in non-homogencons form by settmg Ng
and Yy equal to imity to treat dual lincar programmes. Here aq
becomes the maxinmand of the primal problem and 1y becomes
the minimand of the dual problem, with all other variables
required to be non-negative. When we replace the 1 variables
by m; variables, the minimand becomes my and the other ) Van-
ables are required to be non-positive. In the ccononne mterpre-
ttion of the problem, the L are losses while the 1, are
profits; the X; arc activity scales, the ¥y shadow prices of re-
sources, and the o; imused resource surpluses.

A tull algebraic expansion of the problem summarnized i table
(text) is given in the table on page s0.

T LINLAR DECOMPOSITION PROBII M

The master problens (extremal sub-problem) and one of the two
sectoral svb-problems, following the decomposition method of
Dantzig and Wolte (1961), are given in table 1 (below), agam
using Tucker's condensed schema. The interpretation agrees with
the discussion above, except for a slight moditication in the case of
the sectoral sub-problem. Here the maximand 24 i a weighted
average of the two top rows with px and p;, employed as con-
stant weights; in particular py is always set to imity. The resource
surpluses characrerizing the two top rows will be negative (as
capital and labour arc not produnced and as there are no exogenons
sectoral supplics) and are not subject to the nom-negauvity con-
straints applicable to the other resource surpluses. The constant
weights px and py, are set in the course of cach iteration to the
last solution values of the same variables m the master problem,
The sub-problem for the sccond sector (no1 shown) ¢ be
derived from the original problem by analogy,
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Primal prohlem :

Max! g 30 11Xy 125Xy 30Xy 7N
Subject to ay 2000 125X; 7§ Xa @roXg 70X,
[1))] SO .\'| .\'2 0'5.‘3 0'.’X|
(141 $0 0'.!5,‘2 ,‘3 . .\';
a4 2%
a3 23
and @ 20,0 1,...,%
.\’j 2 0,7 1, N
Dual problem:
Min! m 350 2000 Y; s0 Yo so Y
Subjectto my 1 125 Yy Y
m 1°2% 75Y) Yo o02¢Y3
T3 03 oYy o5ty Yy
™y 20 >0Y; oY Yy
5 10 15°0Y]
e 2% S'()Y|
m 06 40Yy
8 30 oY)
and Yi 2 0.0 1, .3
n; < 0,1 1, N

Xp 2:sXg oaX; 3ol
15:0N5 s0Ng 40X; 110Xy
X5 - AVIRGR A G
02X5 0 s\ X; AW
2 0¥ 25 0Y,
Y; o2Y;
}'4 0'5}'5
o8Yy - Y;

3

Depending on pyppg, diferent optima to the sectoral sub-
problems will be attiined.? The possible optima include, for the
present problem, vertices A, B, and D for sector 1, and vertices
E, F, and H for sector 2. Designate the total capital and labour
requircments of any of these optima by Ky, Ly, where w i
the index ot a vertex. The requirements appear in 11,0 master
problem (table 1(a)).

In the master problem Ay, ... Ay are variable weights to be
attached to cach of the sectoral vertex solutions. These weights
have to add up to unity for convex combinations of vertices, as
expressed by the constraints of the third and tourth row. Note
that the new resource surplus variables ag and ayq corresponding
to these constraints are arificial; i.c., they are mtroduced only
formally, since they are required to be exactly zero i the optimal
solution. The other two resource surpluses are the same as en-
countered in the original problem and refer to capital and labour,
respectively, The capital surplus is maximized. The variables of
the dual problem are the shadow prices px, pr, p1. pa associated
with capital, labour, and the two convexity constrames, The
shadow price for capital s identical with the variable Yq i the
original problem and is set equal to uniey; the shadow price tor
labour is identical to ¥y, The shadow prices py and pa can be
meerpreted as “subcontracting fees™ as discussed m tootnote 26 of
the text. The variables 7y, . . ., 7y are profits at shadow prices,
associated with the use of cach vertex (complex of activitics). The
dual minimand mg can be interpreted as the nee valuation of
exogenowsly given supplies and demands at shadow prices, where
the (1) cotries i the exogenous column stand for the net
exogenous denands of sectoral resources,

Y The optina may be extreme-point (vertex) or homogencous solitions
(Mg and Wolte, 1961). Homogencous solations mdicate that the
maxinund of the subeproblem miay be expanded without hmie; i other
words, the specitie sectoral resource conseraints do not preclude such an
expansion, 11 such 4 ituation oceurred in the Tull problem, 1t would
mdicate that the prol -m was unbounded ; but the solutions to the sectoral
sub-problems are abo subject to the constraints on the conmecting re-
sources, and thus homogencous sectoral solutions are permissible (Dantzig
and Walte, 1501, pagees 773 - 774). None such ocenrs in the present problem

S0

In the above formulation, al vertex solutions (eficient com-
plexes) are included in the master problem. If, m tact, all of these
were present trom the very beginning, the solution to the master
problem would at once vield the over-all apumum. The algor-
ithin operates, however, with only a partial list of such vertices
which initially define only 1 single feasible starting solution. At
any stage of the algorithm the current optimum to the master
problem vield a set of shadow prices. At these prices, all vertices
with positive A, weights have zero proties, while other vertices
have negative profies: no postive profits can oceur at any such
A optinun,

In order to test whether the current optimum to the master
problem is also an over-all optimum, an attempt 1s made to tind
anew vertex that will show a positive profie at current shadow
prices. Since py and ps are given, a profitable new vertex w must
have the highest possible algebraic value for the expression

( Ia K Pr L u')-

where pg and py, are abvo given. The sectoral sub-problems select
the vertex which maximizes the above expression in cach sector.
It the algebraic sum of py or ps and this maximum is pasitiee for a
sector, vertex e is profitable and the current optimum to the
master pmblcm is not an over-all optimum, The new vertex s
then included in the list of known vertices, and the optimization
tor the master problem is repeated. In the contrary case the over-
all optimum has been attained.©

Tur NON-CONVEX DECOMPUSITION PROBLEM

In the presence of fixed costs the original problent has to be
expanded as shown in table 2. The fixed costs of cach activity X;
shown in table 1 (texe) are mtroduced as the capital and labour
inputs associated with new activities Xj®. The levels of these new
activities are tied to the level of cach corresponding ariginal
activiey X by means of proportionality constraints that force the

¢ For details including homogencous sectoral solutions and an algebraic
exposition apphicable to w sectors, see Dantzig and Wolte (1961).




Table 1

DANTZ16-WOLFE DECOMPOSITION METHOD FOR VINLAR SYVIFM

{a) MASTER PROBLEM

Sector 1 Sector 2
e et
0 0 0 0 0
Min! > > > > > 2
o Ta s n T mE Ty
Max! o4 = | 380 -K, K, -Kp -k, ~Ke  ~Ru| * pi o (1) Capital
0« o, -|2000 ~La ~Lg -Lp  ~lg ~Ly ~Lyl * P M L abour
0- 09~ -1 1 1 1 *
0= 0y-] -1 1 1 1| *p,
* * * * * * *
X, Aa Ag Ap Ag Ap An
-1
Exog- Averaging weights for complexes
enous
(b) SECTORAL SUB-PROBLEM FOR SECTOR |
Min' 0 0 0 0
> > > 2
”5 m T US| g}
Mex!z, - { of-| O -1.1  -1.2§ -3 .25 Px " Capital
~peobproflol-l 0 1125 75 60 70| ¢ p }Cm‘s“""s { Labour
0\\" *q =] -50 1 1 -2 * AP
O oy =] -850 0 -.28 l Yy
* *« * *
X3 Y, X, \, X,
(=1
Exog-

d

Production activities

level of cach X;* to cqual or exceed a constant fraction a of
activity X;. The new activities may be interpreted as the fraction
of fixed costs actually incurred. Of course the only levels of X;*
that make economic sensc are 0 and 1; thus we impose the con-
straint that X;® has to be an integer, thercby converting the
problem into onc of integer programming.d The constant fraction
a is chosen small enough so that it will not drive the value of any
X;® above unity. With these provisions we have the following
chain of interactions between the variables: X; cannot exceed o
unless X;® riscs to at least aX;; once X;® rises above zero, however,
the integrality condition takes over and drives it all the way to

¢ While values exceeding 1 will be excluded by the optimizalion process
itaclf, the convergence of some integer programming algorichuis is im-
proved by an explicit upper bound.

unity. Thus X; cannot exceed o unless the corresponding fixed
cost is incurred in its entircty.

The new variables introduced in table 2 include, besides the
Xj®*, also profits m® on these activitics. New “resaurces” abso
appear corresponding to the proportionality constraines linking
the linear production activitics with the new fixed-cost activities:
the non-negative “resource surpluses’ i these rows are desig-
nated as o;® and the shadow prices as ¥5®, where the subscript
corresponds to the production activity whose fixed cost gives rise
to the proportionality constraint in question.

It should be noted that the primal-dual representation of the
integer programming problem in table 2 is incomplete, as the
possibility of simultancously satistving both primal and dual
constraints—while assuring integer values for the fixed-cost

$1
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vorables depends on the ineroduction of ctutting plines.c The cut-
tg planes appear as additional constraint rows that are mplied
by the constramts of the problem when mtegraliny requirements
arc imposed. I the absence of seh extra comtraines no primal-
teastble integer solngion generally exists that would also satisiy the
dwal comseraines. AN Tucker schemara presented Jor iuteeer progran-
g problems in this paper wnst be interpreted with this rescreation i
'H”Il’.

Hiw does the presence of fixed coses affeet the maseer problem
of the purely linear case? Given a Iist of the capitad amd Labour
mput requirements (excluding fixed costs) of all feasible basic
sohiiom to the sectoral sub-problems, we abo need the fixed
costs of all sectoral acovites and o specification of the individual
scovities that are apevative in cach sotution on the Tist. On the
basis of this informuation we can tormulate a master problem for
the mteger programmung case as shown m table 3. AH fixed-cont
wovities X;* are expliathy inclnded in the revised master prob-
lem, and proportionality constraimes are added connecting the
level of 4 complex with the scale of cach fixed cost activiey
required for rumning. that complex. When complexes are aver-
spedscecordingly, these constranes will force the seales of il the

" Gonmory developed ahe tirg snccessfnl method of detining cutming
planes A siple denvation of ating plines for the former abgorithng o
welb s for an ali-sinteger algornhm will be Tound in Gamory (1y6o by
Speatic methods for dealing with mised mteger problenn were developed
by Beale (tos®), Gomory (1960 1), and ahers, For 4 general survey of
available solnuion and Jpproxmuniion techimques Tor mteger pProgramming
see Beale (toos) and Balinsk {1463).

Ne

N* aequired for any of the complexes above zero, and the in-
tegrahey constraines for these variables will force them further up
ey, Note thata knowledge of the camhined variable and tixed
mputrequirements for cach connecting resonree {capital and

Labour) assoctated wiels . complex is not enongh for

deriving the

over-all opmum; it i abo necessary 1o have correct averaging
rules. L the present case the fixed-cost mcurrence rules have the
ceet of such correet averagmg rules,

In table 3

o the linear master problem, cach complex s

represented by e aggregate rariahhe capital and labour require-
ments that appear i the first two rows. The level of operation of
cach complex is a variable A, that can be mterpreted, as n the
Imear case, as 4 weighe. Weighted averages of complexes are
formed by requiring that these non-negative weights add np to
ity this is expressed by the dast two rows: these agree with the
hnear case. Note that in the lincar case only the vertex solutions
were included, 1., only efficient feasible basic solutions partici-
pated in the waster programme. In making the transition from
the lincar to the nen-convex case, duce to reasons cited in the text,

the pessibibey cammot be excluded
teasible basic solunons mav contribute o segment to the new
production possibility frontier. Therefore the
teasible hasic sodntions ha. to apperrin the master problem. Fixed-
cost activities are added with their usual
pr(\ﬁt levels m*
new “resonrees” whose s
nated by g, and p,, ;. respectively, where w is the index of the
complex and jw the mdex of the respective fixed-cost activity,

that previously inethicient
complete hist of
activiey levels X;* and

. The proporaonality constraints again give rise to
uses and shadow prices are desig-
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The integer programming version of the master problem, when
operating on a parrial known list of complexes, will vield an
underestimate of the correct optimun.

APPROXIMATIONS

The two approximations described in the text have a reduced
nced for information. They operate on the combined fixed plus
variable factor inputs of a complex without recourse to further
information on the fixed costs of activities that make up the
complex.

Table 4 lists these combined factor inputs for the apices A',. . .,
H’, while tables s and 6 formulate the approximation methods.
Table sa shows the lincarized master problem of approximation 1
while table (b) shows one of the corresponding sectoral infeger
programming sub-problems. Table 6 formulates approximation 2,

In the master problem of approximation 1 (table $(a)) the capital
and labour inputs of the individual complexes correspond to the
sum of fixed and variable requirements, as can be verified by
reference to table 4. The averaging weights arc subject to the
usual convexity postulate (rows 3 and 4); the fixed-cost activities
used for correct averaging (sce table 3) are omitted. Note, how-

ever, that the factor inputs of a given complex in table 3 do ne
contain the fixed factor requirements, whereas in table s(a) they do:
i.¢., complex B in table 3 has capital and labour inputs of 1280
and - 1,071°4, respectively, while complex B in 1able s(a) has
corresponding inputs of 1486 and  1,1214. The effect of thi
difference is that the model of table §(a) permits the lincar com-
bination of apices, i.c., 1t assumes perfoct divisibility of the fixed
costs included in cach complex; contrariwise, the model of table 1,
while giving the same combined factor inputs as table s(a) for cach
apex (due to the operation of the proper fixed-cost activities
whenever any onc apex is used), in addition cnforces the full
incuerence of additional fixed costs when complexes are wed m
combination,

Similarly to the lincar master problent of table :(a) the lincarizcd
master problem of approximation 1 starts out with Just one feas-
ible basic solution and gencrates additional apices 2 required. The
prices for labour and capital, px and py, calculated from the
model of table 5(a) in cach iteration, arc insereed, as in the lincar
case, into the sectoral sub-problems (compare tables 1(h) and s(h)).
In table 5(h), however, this sub-problem is an integer programming
problem. The solution to cach sub-problem will be an apex

53




‘Fable 4
VAR|A|".E, HXED, AND COMBINED FACTOR INPUTS FOR COMPLEXES

Sector 1 Sector 2
Complea Capital Labonr Complex Caprial Lathower

4 Y7°s 1,237°5 E Ry 3 940°4
45 o 20 o

142°§ 1237°§ 1093 940°4

B 1286 1,071°4 H 2260 025°0
20 $0 10 s0

1486 1,124 23570 6750

«’ 191°0 1,100°0 {’ 1150 70§°0
3o 0 14 o

22100 1,100°0 130°0 70§:0

D’ 24314 9342 «’ 1375 7875
A so hl §o

2484 gRg2 142:5 K37°s

contamed m the convex hull of the non—convex production
possibility function for cach sector. When these apices are in-
cluded in the master problem their combined factor COM may or
may not be less than the current subscontracting fec py for the sector
(sce the discussion of the lincar case), e, cither leaving or not
leaving a positive profit. As long as there is a profit, the solution
to the master problein must be changed by entering any profitable
acaviey mto the base: vhen profies no longer appear, the over-all
optimum fo the approximation has been attained. Since some fixed
costs that should have been meluded in combined complexes may
have been suppressed by the linear averaging procedure of the
master problem, the optimal solution to this approximation, if
ROt an exact optimum to the integer programming problem, 1
an overestimate,

Table 6 represents approximation 2. The rows of this table are
identical with the top two rows of table s(@): however, while in
table 5(a) the A were continuous variables., in table 6 they become
o, 1 variables,

STEPWISL INCURRENCE OF HXED COSTS

In figure 1 a section of figure VII (text) corresponding to com-
plexes B and F has been redrawn on a slightly enlarged scale, on
the assumption that the fixed costs of the individual activities
making up the two complexes can be incurred in several steps.
The data are identical to those in table (text) excepe for the
tollowing changes. Activiey X7 incurs fixed costs in units of ex-
penditure of ( 270) for capital and labour, respectively: these
fixed costs vield a capacity of up to K units of Xz, Activity Ny
sinilarly incurs fixed costs in units of ( 1-0) with a correspond-
mgE capacity of up to 6 units of Xy, Activity Xy which occurs m
both complexes 15 assumed to incur its fixed costs all at once, in
order to simplify the graph.

As usual poine E represents the capital and labour inputs of
complex: excluding fixed costs; the costs have to be added on
separately to obtain the corresponding apex E’. The addition of
g 18 represented by a vertical arrow : N7 isnotadded on all at once
but uc five steps. The scale of X- in complex £ is 35714 (sec
table 1 in text) while in complex F it is o: thus when com plexes

ALY

Eand ¥ are correctly averaged with the weight of complex &
varving from o to 1, the seale of activiey X5 increases from o o
35714, Since cach umit of fixed costs vields a capacity of 8 units,
as the scale of X= increases along the F-E comnecting line the firse
step of 35 s incurred at 11 (arrow of 2 units pomnting vertically
downward), and vields 4 maximum capacity corresponding to
pone ¢y ; thereafter another fixed-cost step has o be incurred that
will vield capacity np to ¢, etc.; the final step of fixed costs is
menrred after ¢ and vields a maximum capacity corresponding
to pont ¢5. Up to this point the cumulative capacity has reached
40 units which is bevond the 3 $°714 units required for apex E'; ac
E', however, the cumulative fixed cost incurred is already
( 10:0) wmits. Similarly the fixed cost of acavity Xg is incurred
in steps; the first of these is shown as an arrow of unit length
pomtng verically downward from 17 this vields a maximum
capaciy corresponding to pomt fi; thereafter another step s
mcurred, with maximum capacity at fa, ctc. When the fixed-cost
expenditures for Xg are added to the step function restlting from
the stage-bystage incurrence of the fixed costs of X7, the shape of
the resalting total expenditure curve i quite jagged. Some parts
of this curve are, however, dominated by other parts and have to
be replaced by horizontal lines representing labour disposal; the
black triangles in the plot represent the parts of the curve that are
cut away. the final iso-product line runs along the tops of these
triangles.

While drawing such an so-product line to scale requires some
care, the fundamental concept is simple and corresponds to the
textbook case of linear total cost curves wich capacity limits that
are proportional to fixed costs (shown for reference in figure 1(h)).
In the lateer case thie capacity limits accur at points y1 which fall
along a straight lin: OY; i figure )(a) likewise capacity limits for
Xz fall along a straight line connecting points W, ¢y, e9, . . ., cg
and for Xgalong a straight line | I fets, ta, F . The apex-to-apex
connecting line £°F* in the present case i considerably closer to
the sectoral iso-product line than when fixed costs have to be
menrred in a single step. For reference the iso-product line for the
latter case is added: see line & XYE", With perfect divisibility the
so-product line becomes the sum of two straight lines, }'F* and




Tahk ¢

APPR()XIMATI()N I NON=CONVEX PROGRAMMING, PROBI EM

‘1 MASTER PROBLEM

Sector 1 Sector 2
Min' 0 0 O 0 0 0 4] ()
» » - s » ; P ’
o Ta s Tc n T TF 76 M
Capital Max! o, (350 [ -142.5 -148.6 -221 -248.4 -109.3 130 -142,5 235 » Pk v U D
Labour 0 o, =R000 | -1237.5 1121.4 -1100 -984.2 —946.4 -705 —837.5 —675|* Py,
i 0 o, -1 1 1 1 1 * P
0 0,-| -1 1 1 1 *p,
¥ * * 13 (3 * * 3 [3
Xo Aa Ap Ac Anp A Ap A An
-1
Exog- Averaging weights for complexes
enous
(b SECTORAL SUB-PROBLEM FOR SECTOR )
Min! 0 0 0 (¢ 0 (¢ { 0
P4 g > > z > > -
nd 7 7, 7, e m % .ﬂ; rr:
Max! z! - ( o} - -1.1 -1.28 -3 25 _30 _s -15 0 * Py
Constants
- pxnéop,p{ at~=1 0 | -12.5 -7.5 =60 -7.0 0 -5 0 o *p % ®
0« o,-[-50 1 1 -5 -2 *v,
O«o,=|-50| 0 -2 1 'y,
Oxol-l 0] 1 '
0 n’; - 0 - 1 * oyt
!
O at-| 0 - 1 N
0 (1: 0 ~u 1 * e
* * * * * * * - .
L TR W (SN R C RN VI S
_ S —————
=D Production 0,1
Exog- activities Fixed cost activities
enous

“‘

WE’ (cach of which is the analogue of line OY in figure I(h)): this

summed linc is E'},

For an aglebraic formulation of the above problem replace
cach a occurring in the column of a given X; in table 2 by 1/C;
and reduce the fixed—cost vector in the top two rows of the

corresponding X;® to the vector
incurrence step, where C;
such a step. With this

representing a single fixed-cost
is the capacity limit corresponding to
emendation the X;® become integer

variables that can take on optimal values exceeding unity. The

M

proportionality constraines now become

X/CE X,
These constraints, together with the integrality requirement for
X;®, will lead to the incurrence of an additional fixed-cost step
whenever X exceeds Cy, 23, ..., ctc. Intable 3 an a correspond-
ing to X;* and associated with complex w is replaced by 8, /€,
where ), w0 is the scale of activity X; when complex w 1s utilized
at unit A weight; fixed costs in the columns of the X;® variables
arc reduced the same way as in table 2.
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