TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

UNITEA NATIONS INDUSTRIAL DEVEIOPMENT ORGANIZATIO: VIENNA

01401

Develo mant of Netalworking Indurtios in Develoning Comaties

Reports presented at the United Nations

Interregional Symposiunh, Moscow
7 Septeniber-6 Octoler 1966

$$
\text { Sulos :Mo.: } \begin{gathered}
10.60 .1 I_{0} \text {. } 2 \\
10 / 6
\end{gathered}
$$

PRODUCTION MANAGEMENT FOR DEVELOPING COUNTRIES

Samuel Eilon, Imperial College, London L'niversity, London, I'nited Kingdom

INrodelction

"The highest efficiency in production is obtained by manntiacturing the required quantity of product. of the required quality, at the required time, by the best and cheapest method." This is the way L. P. Alford and J. R. Bangs detined efficiency in production systems in their Produchon Jandbook.' and this detinition was subsequently adopted in later editions. It summarizes in a sentence the major problems that production managers hate had to contend with during the past century, and it define the prevalent parameters that a control mechanism1 in a production system must incorporate. And in spite of the vast development in prodaction and control techniques in the past two decades, the formulation of the new analytical tools which managers have mow at their disporal, the advent of computers and the sophisticated data-processing systems and the penetration of atomation to the shop floor. the basic objectives of a production system remain unchanged. In fact, it can be argued that all these developments have come about in order to provide better means of achieving the objectives which are defined in terms of quantity. quality. time and cost.

It in interesting to note that the first three factors are delined as constraints, not absective functions which one wishes to optimize. There is no advantage in producing more than is required (in fact, it can cause an embarrassment if it leads to excessive carrying co.ts or too severe a reduction in price): there is no virtue in producing too high a quality il such a high standard is not required (this will merely increase production costs); there is no need to complete the task too early in time (is this will just lead to unnecessary storage costs before the good are due for delivery). On the other hand. the constraints do set a "minimum" standard of performance. which it would not be in the interest of the firm to violate, as the penalties involved could be quite severe and could obvously lead to loss of future business. Certain margins of safety can. therefore be built into the production framework---margins that will safeguard with a reasonable probability level the attainment of given specifications for quantity, quality and time.

Within these constraints, elficiency in production is achieved by using "the best and cheapest method". What does this phrase mean? It implies that. in many cases. several alternative methods can be designed to attain an objestive and that these alternatives have to be evaluated

11 P. Alford and J. R. Bangs, Production Hardbooh (New York. Ronald Press, 1952).
before a dinal chonce is made. The batement alsa veeme to imply that there is a "heal" method of pertiorming a task, and this implication was generally accepted during the carlier days of industrial engincering, particularly by work study practitioners.

Curiously enough. this search for the "one best way" (as coined by F. B. Gilbreth, the pioneer of work study ower forty years ago) was again revived atter the Second World War, when operational-research techniques began to develop and when mathematical models were devised with the view of optimizing some abjective finction, whether it be the minimization of costs, the maximization of profit or any other predetermined objective. There is a difference. howeser, between the two movements. In the first, the selection of "the hest method" was based on comparing a limited number of altermatioes. and although one could state with some conviction that the selected method was better than some others, one could not assert that all the possible altermatives were really exhausted in this way. Some operatomal-resarch models. however, doexhaust all the altermatives, so that for any given model and a given set of data it in possible to state that a certain solution is truly the best.

There are many models, howeser, in which an exhaustive search is either too lengthy or loo expensive, or sometimes just impossible, by the very nature of the problem or the limitations of the model. An obsesson with optimization under these circumstances is clearly a waste of time, and a conscious effort nust be made to relate the cost of finding a solution to a given problem to the expected benefit to be derived from such a solution. It is essential to bear this point in mind in applying modern management techmiques to the control of production operations

Production consist of a sequence of operations designed to transform materials from a given to a desired form. The transformation may be accomplished in one, or in a combination, of the following ways:
(a) Transformation by distintegration, i.c. by having essentially one ingredient as input and proclucing several outputs. This type of transformation is almont invariably accompanied by changes in the physical shape of the input, such as changes in the physical state or in the geometrical form. Examples: producing lamber in a sawmill; rolling steel bars from cast ingots: making components from standardized materials on machine tools: oil-cracking which yields severil products: etc.;
(b) Transformation by integration or assembly, using several components as inputs and obtaining essentially
one product as output. Examples: producing machines, furniture, household appliances, motor-cars, radio and relevision receivers, alloys, sulphuric acid, concrete etic:-
(c) Transformation by serviee, where virtually no change in the object under consideration is percepuible. but where certain operations are performed whange one of the parameters which define the object. This may include: operations for improsing the tensile strength. density, cryballographic structure. wear or other mechanical properties of the object: operations that change its locality or state by transportatoon or handling means: maintenance operations. Examples stang and coining in presswork; servicing and light repars of motor-ärs: loading and unloading of lorries: etc. Many purely service operations are not considered to be part of industry. but the planning and control of such operations is basically similar to those of industrial operations. By analogy, one could say that "the highess efficiency in servicing is obtained by processing through the service station the required volume, offering the required quality, at the required time, by the best and cheapest method"

The analogy between the third category and the first two emphasizes the fact that management methods are equally applicable to manufacturing and non-manufacturing operations. Thus, the techniques used in work study or in studies of plant layout or materials handling have had a wide appeal and have been applied to the study of warehouses. trimsportation systems. office blocks, ports or even farm. Operational-research techniques are widely based albo. with no specific industry or manufacturing actistly in mind. This means that methods and concepts of prodaction control can be unefully applied to situatious where no "production". in the conventonal semes, takes place: and. smilarly, that one can learn from experience in areas other than one's own in designing better control methods for "prodaction" systems.

The purpose of production managenemt, therefore, is to make effective use of the resources analable to the enterprise. These resources may be classitied under tive categories (a) manpower, (b) materials: (c) machines: (d) money: and (e) methods. These eategorie, generally relate to the way in which the production costs can be accounted for firn, labour coss, direat and indirect. including. of course, any allocation of owerheads: secondly, the cost of materials from which the product is made : thirdly, the cost of wing machines and processes: and so on.

The effective utilization of manpower is an obvously desirable objective. With the increase in standards of living in industrialized comenties and the inevitable resulting inerease in labour coss, more and more allention musi be paid to moreasing the leael of productivity, that is. the amount of ouput per man than can be obtamed. This has been the greatest impelts to the development of worl study techniques in the United States of America, under the name "time and motwon utuly", and this title well ugnifies the detail in which particularly mamal tasks
have been studied. down to the recording and investigation of every clement of motion of the operators hands, with a particular emphasis on the time element The more one can reduce the labour content of any given tash. The more there is a chance of keeping prices down when labour wages increase, and this has been the central theme in most productivity drives in many luropean conntries in recent years.

Ran materials constitute a tangible part of the cost of the product and any effort to reduce this cont will eridently make the product nore competitive Studies on the use of raw materials can take several forms, such as investigations of causes for waste and serap or messing the possible use of alternative materials in the production proces.

Similarly, the effectiveness of machines is often a central point in a productivity study, involving such lypical problems as:
(a) Is the machine suitable for the job in question? What are the alternatives?
(b) Is the machine working at its optimum running conditions"?
(c) What is the utilization (in percentage of the total machine time available) of the equipment and how can it be improved?
(d) Is it better to have spectal-purpose machines or general-purpose ones the latter having more flexibility in being adaptable to a wider variety of jobs, but generally operating at a lower performance level than a specialpurpose machine)"
(a) Should machines and mechanical device tahe wer manual tasks? The problem of mechanization and automation presents important economic and organtational considerations for the firm, ir relation to both the type of lasks that should or coold be mechanized and the capital oulay involved in the installation of such devices.

The cos of using financial resources is generally regarded as being outside the esponsibility of production managemeni, particularly when it comes to considering the allocation of these resources. the evaluation of altermative investmat shemes or the method of raising money. But here are many decisions which affect the use of tinancial senources and in which production management is clocely involved: the selection of processes: replacement and installation of plant and equipment: holding of socks of ratu materials or sem , serishable goods: or decisions about "what wake and what to buy"

The fifth resource mentioned above is "inethods". and although it is not a resource in the conventional sense of the word. it does represent the body of knowledge, the "know-how" (both technical and administrative) that the firm can employ in order to make good use of the other resources and, like the others. it coss money to acyuire and develop.

An histor: al review of the indastrial development in lechnologital innowation and design the effective utilization of resources has played a prominent role in accelerating the rate of industrial progress. Every plase of this development obsionsly had its own prohlems and
attention was focused on specific rechniques to solve these problems. But they all had this in common that resources which were costly or in rare supply should not be wasted. This history and past experience of highly indusirialized countries can be a salutary lesson for developing countries, not with the view of blindly copying all the techniques and methods that have emerged over the years, but with the intention of trying to relate these lechniques to the problems they are designed to solve and of determining their relevance to the problems which those countries have to face. There is little point in imitaling a particular procedure or recipe, irrespective ol how elegant or fashionable it happens to be, if its application will make only a marginal contribution, when there are perhaps more effective methods that can be employed. And one must also remember that, to a certain extent. manufacturing and control techniques must be a function of the social environment in which they have to operate.

II. Thi tackts or prodection managitmpit

The next items to be considered are the planning and control of production operations. In discussing planning activities. one must first distinguish between short-lerm and long-term planning. The first relates to a framework of resources which are already defined. the planning function is then confined to designing and evaluating alternative schemes for achieving the production goals set by top management. Long-term planning, however, is concerned with the resources not as they are but as they should be. that is, with the acquisition of resources to fit future goals of the enterprise. Although production management is mainly associated with the first, th:re are
many problems in long-term planning in which it must be involved, such as the replacement of machines and equipment due to wear and high maintenance costs or due to the technical innovaton incorporated in new designs, the rate at which the production activities should be mechanized or the kind of shills which will te required of operators in the future.

The main activities and method, of prodiction management. particularly in relation to whirt-ierm planoing and conirol, can be conveniently grouped inder two catgories. the tirst called "production planning and comirol". the second, "method engineering" I hese categnries are briefly sumntarized in table 1

A. The production-comsumption cTole'

The way in which all these activitev are interrelated becomes clear when one considers the production procedure described in figure 1. where the main flow-channels of instructions. information and materials are shown The production-consumpion cycle hegins and ends with the customer, as may be seen from the following sequence of operations:
(a) The sales department studies the reception of products in the market and consumer reactions to new modifications and designs. Market research is also carried out regarding proposed new products:
(b) The collected data are analysed by the sales depariment, which prepares a sales forecast with a breakdown of products and models as a lunction of time periods. The detailed forecast is suhmitted to management:
(c) A production budget is prepared by the financial department, in consultation with the manufacturing

Table 1
Industrial. encinefring functions in an industrial enterprisf

Production planning und control
-... -.........-
Materials: records, availability, procurement, storage, issue, control

Methods choice from available facilities for nianufaclure: (owl and lig design

Machınes, specifications, availability, loading
Rouling sequence of operations, work flow, machine assignnent
Fistimating operation times
Sheduling time-table of production activities
Dispalching: releasing of woduction orders
I apchang recording of progress, correcilive action
lonpewon concerned with inspection results and then effect on the whodules

I salladton effective even on a hort-term bass, partisutarly for fotere rouling. wheduling and sleck control

Work study: method study (including workplace layoul), work measurement

Process evaluation: comparison of proxesses, new processes
Machines: equipment policy, marntenance, renewal
Layoot: flow of work, localion of machines and depariments. material-handling systems, elfect of expansoon plan,

Quality controt inspection procedures, tealing laturatores, siovt of quality

Standardization and smpliticalion of pronticis, methods, anvitary equipment, recording systems, prosedures

Sately instruchons for handing materiat and mationta
Incentive schemes wage and ather incentiven
Suggevilom scheines foxdhack and new deav from uperalors

Figure 1
The production-consumption cycle
department. The proposed budget and the sales forecasts are closely scrutinized by management, and a decision is taken regarding the annual or semi-annual quantity to be produced:
(d) The engineering department is instructed to prepare drawings, parts lists and specifications, or to check and modify existing ones. The manufacturing budget is then adjusted accordingly :
(e) The vice-president or the head of the department responsible for manufacturing is authorized to begin production. and instructions are issued to the producton planning and control department, specifying quantities, delivery whedules etc.;
(f) The technical information is obtained from the engineering department (including drawings, parts lists, specifications, standards etc.) and is passed on to the planning section:
(g) One of the first functions of the production planning and control department is to be well-informed about the
availability of materials and expected delivery dates of materials already ordered. Production planaing is carried out and detailed schedules are prepared;
(h) The inventory levels are checked to determine the orders for procurement of materials and standard parts that have to be issued. Parts and assemblies that are subcontracted are also ordered by the purchasing department:
(i) The purchased materials and parts are inspected prior to acceptance and are stored until instructions are obtained to release them to the shops;
(j) The production planning section supplies complete data on methods, machine loading and utilization, as well as on production schedules, to the control section for dispatching:
(k) The control section releases orders for materials, tools, fixtures etc;
(l) Orders are issued to the shop;
(m) Detaiied production orders are dispatched to the
shop hy the production control sectoon. specifying what, how, when and where uperation should be performed. The control functions are carned out throughout the manufacturing perrod, and progress is comstanti compared with the planned whedule w that sultable modifications may be comedered and monporated when required. This necesultites a close and permanent contact betueen the contiol sectoon and manufacturing departments. to faciltate a comstant flon of informatoon and instructions.
(n) Inspection orders are released. The purpose ol quality control during the production processes is to ensure that the specolications a lald down are conformed with. Final inspection of the parts is carried out before the product leases the whon and moves to the limshedparts or products store
(o) Evaluation of the prodution operation is the main pillar of the control lunction and has to be carried out both during and alter these operations. Inspection reports are one facet of evaluation, and they form the basis for corrective actions in the processes or methods. and sometimes even for modititation in the specalications of rath materials:
(p) The production planming and control department reports on the progress of the work w the vice-president responsible lor manufacturing. These reports are also studied by the financial control department. I he control section also evaluates data ohtained from the shom about operation times, ide time of men and machines. causes and effects of breakdowns, trends in the fluctuations of output etc. Action initiated by the control section as a result of such reports has to be followed up, and its evaluation should also be reported to the vice-president:
(4) Management receives interim and final reports from the vice-president of manufacturing:
(r) Management also receives al report from the financial department, alter which a final evaluation catn be made:
(s) The finished product is transferred (after inspection) to stock:
(i) Finally, the product is sold to the customer. who, after comparing the product characteristics with those of
its competitors and with his expectations, is ready to contribute his viens and reactions lo market researchers

It is evident from this oulline that the production procedure imolves the co-operative and co-ordinated effort of all the departments of the enterprice. lven when the functions of each department are clearly specified and nell understood, the departmens cannot operate independently. They have to perform as parts of an integrated body. and the purpose of the procedure dencribed above is to specify where and in what form their efforts are required, and what kind of flow information should be constantly maintained.

B. The control fiunction

After the potential capabilities of resources have been critically evaluated, a programme can be set up to include produetion target and the way in which the organization will utilize its resources to attain these targets. This is, in fact, what the plaming function is supposed to do.

The control activity begins as soon as the proonducti operations hegin. Control has two main functions: the first is to ensure that operations are performed to plan. by taking corrective action. hy adfosting the plan and by "chasing" lools or materials (this is why the name "progress chasers" is often given to production controllers on the wop flow): the second is to evaluate the production plan and to determine if a better one could not be devised in the light of the experience gatined (this exercise is particularly valoable as tocoback wh future planning activities).

Thus. control consists of four stiges:
(a) Observation and recording of progress;
(b) Analysis of data and comparison with plans and objectives:
(c) Immediate corrective action to modify plans and redirect activities;
(d) Evaluation of the planning function and the effectiveness of the control procedures for future reference.
These states apply equally to the control of processes, to the control of inventory, to inspection and to cost control. as summarized in table 2.

Table 2
Control of processes, inventory, inspection and cost

[^0]
This is not the place to review the tarious tools of production management in detail. One can postulate in general terms about their potential usefulness for developing cobalries, but condithom, in differem countres vary no greatly that "1 would be forlhardy to wigges universal procedures
Of the vial spectroun of toosh, thene which hatse feen celected fier ducumono in the paper ate (A) work stadt, (B) problem, of machune capacity. (C) maschme capaciy for mulliple-product plams. (1)) control ol pro-
 becatue the author regard onlher toots an heing ummportant. Prodaction wheduling. deagn lor production. selection of materials, standirdiziltion. tooling, selection and evaluation of processes, mainmenance of plant, quality controland even packing and dispatching are allimportant facets of production: and, indeed, one cortld widen the brief to include problems. of organization and indnstrial relations. But first, all these would be even more difficult to generalize ahout, and. secondly. to do justice to thene issues a book of considerable length would be needed. The topics which have heen selected for further discussionn here perhaps serve to illustrate most poignantly that what production management is concerned with is the effective use of resoarces. but it is certainly not the intention to convey the impression that other tools have no contribution to make to this end.

A. Work studd.

Work study has long been recognized als one of the primary tools used hy industrial engineers to increase the level of productivity in their plants. As the term implies, the purpose of work sludy is to investigate the factors that determine the effectiveness of executing tasks and to suggest alternative methods which will improve the performance of the operitors and the equipment engaged on the task.
This term. which is widely used in the United Kingdom of Greal Britain and Northern Ireland, is probably better than the conventional name "time and motion study". because it does not confine investigations to the study of times or motions alsociated with the task, hut takes a broader view of the problems which are likely to be

Work study consists of iwo main areas: method study, which aims at improving the inethods used in the operator machine system: and work measurement. which Ittempts 10 determine the times tashs take or should take. Athough ithe meaturement of time can be helpful III meshod vady in that. ill wine canes, 11 prusides a yardstick for the effecticenew of certall methods or for anenolig the improwement suggested hy new methods. there are numerome worh sudy profect, which can be catried sut vecentulls withoul any tume measurement, particularty when problems of work flow or the right cequence ol "peralluon are innolved. The whiectives of method vudy and worh meanurement are cummarized II table 3 at the foon or the page

The worh-me:surement area is offen associated with rate fixing and wage-meentive schemes, and this in unfortumate Admilledly. in firm, which have piece-rates or other wage mentine which are clowely lizhed with the ouput of individual operiturs, rate fixing is inevitable, hut "l sould be realied that this is by no means the only purpose of work measurement. F wen in firms which have no wage-incentive schemes, there is semetimes a need to deter ianine the times of operations for planning and schedaling purposes.
How mach of all these is reletant to developing countries" Generally, work study tand in particular method study) hils a lot to offer, is it reveals the main intersections between such astivities as operation. Iransportition (or hamdling) and inspection, it identifies delays and determines where they oceur, and it highlights breakdowns and traces their causes and effects. In short, it helps to present the domain of the industrial tasks in an orderly and rational fashion, and, as such, it provides valuable information for those who attempt to control these tasks and to ensure that work proceeds along its pre-ordained course.
But this does not mean that all the techniques are equally useful. The very delailed study of work through various means e.g., micromotion analysis, observation of elemental motions through the use of films and operation charts which identify and record the distribution of motions to the two hands or even to various fingers-is justified only when sueh studies are concerned with highly repetitive tashs molving comparatively short cycle times and when the cost of libour is a siguificant component

Table 3

In the total cost structure. Under such conditions, even a marginal decrease in the cyele time can have a noticeable effect on the rate of output and on cosss. Indeed, it is for this reason that micromotion has been used in numerous mass production or large-batch production lines in highly industrialized countries. with tangible contributions to the improvement of productivity. In many developing countries, such conditionsare not widely encountered and it is a misiake to allou uncurbed enthostasm for $u_{\text {uk }}$ study to employ such tools indiscriminately. Not only can these techniques be expensive and time-consuming. and the potential tenetit minute, but the detailed analysis may cloud the issue; it may divert the attention of the investigator from the basic problems which the firm has to face. Management techniques. like the artisan's tools, must be suitable for the job and they must, therefore, be selected with care

B. Problems of machin: capacil!

Machine output is inversely proportional to the cycle time. that is. the time required to complete a set of activities associated with the manufacture of one unit of product. In order to utilize the machine capacity to the maximum, it is often useful to study in detail some of the components that make up it is cycle time.

A typical sequence of activities in a man-machine system employed on repetitive operations may consist of:

Operator

Unloading the machine Inspecting the work piece loading the machine Starting the machine Transporting work to and from the machine

Machine

Beng unloided
Being started
Performing operations on
the workpiece
Bemg unloaded

All these actinties may be grouned inder two categories:
(a) Concurrent ariwitic:: these are tasks that requine the simultaneous "attention" of both operator and machine buch as loading and unloading; let the total length of these tasks per cycle be a):
(h) Independent activities: These are tasks which the operator and the machine can perform independently of each other the operator: inspecting ald handling, totalling h per cycle: the machine: running automatically for a time t without supervision).

In addition. one may have idle times incurred by both the operator $\left(i_{i}\right)$ and the machine (i_{m}) during the cycle, bo that the cycle time T for the operator is

$$
\mathbf{T} a \cdot b \cdot i_{0}
$$

and for the machine
T a l i_{m}

Figure 2
Reducing the cycle timi
machine system by rearranging the sequence of operations and by avoiding delays at the beginning and at the end of the eycle:
(b) Reducing the independent activity time of the "busy partner":
(c) Reducing the concurrent activity time by devising more efficient methods for loading and unloading the work piece.
The effect of such sequential studies often follows the law ol diminishing returns, as is shown in figure 3. At first, the improvement is substantial, but as more and more studies are conducied, the level of sophistication and, with it, the cost of the study rise rapidly; and as the work becomes more rationalized, there is less room for manocuvre and the resultant benefit shrinks further and further. It is. therefore, important not only to know when to begin an investigation into an industrial activity. but also when to stop and divert the investigators and their resources to new problems, or to devise new approaches to the old ones.

C. Machine capacity for multiple-product plamts

One of the major prohlems with which production management is constantly faced is whether the manufacturing capacity is adequate and to what extent it is affected hy the product-mix in multiple-product schedule. As an illustration of the way in which this prohlem can be analysed, one maly examine the following example: a plant producestwo products. A and B. and live machines are involved in the production process. The rates of production are given below:

Machine12345	Ratry of produr riom (anite per din)	
	Prodimit	Product H
	300	300
	400	200
	150	-
		350
	$2(0)$	300

Thus, machine 1 can produce either 300 units of product A or 300 units of product B. but, of course, it is possible also 1" produce a mixture of A and B. The various combinations are represented in figure 4 by the line $P Q$. Point P indicates the production of 300 units of A and none of B, whereas point Q indicates the production of produ: B only. Any point on the line gives us a possible combination, for example. point R signifies 200 ol A and 100 of B, and S stands for 50 of A and 250 of B.

The line $P Q$ therefore represents the lull capacity of this machine: any point below the line also signifies a teasible product-mix. although in the region below the line the machine is no longer being utilized to its full capacity. Point T. for examples stands for 150 units of A and 50 of B , hut for this level of production of A , one can increase the outpur of 8 in 150 units before reaching the full capacity line

Similarly, any point aboce the line PQ is not a feasible product-mis, becalue it requires more capacity than is avallable. Point U, for example, represents an output of 250 units of A and 150 of B , whereas the full-capacity
represents the limiting capacity available, whereas machine I will not be fully utilized. The heavy line, therefore, gives the full capacity for the two-machine system; any point below this line is feasible, any point above it implies that at least one of the two machines does not have adequate capacity. And only at one point, namely R, can both machines be fully utilized.
One may then superimpose capacity-restriction lines for the other machines, as shown in figure 6. Line 3 is horizontal, since machine 3 is used for product A only and it does not restrict the output of product B in any way; similarly line 4 is vertical because machine 4 is used for product B only.

Figure 6
Feasible product-mix
Following earlier arguments, the lowest line represents the global capacity restriction of the plant, because on that line one machine is fully utilized, and that machine can be described as the "bottle-neck". Other machines may be capable of a higher output, but the output of the plant as a whole is always determined by the bottleneck.
The capacity restriction in this case is given by the broken line WXYZ. The portion WX represents product mixes for which machine 3 is fully utilized and all the others are underutilized. At point X machine 5 is used to its limit and along the portion $X Y$ this machine becomes the bottle-neck. As one moves along XY towards point Y. increasing the output of product B and decreasing the output of \mathbf{A}, one gets further and further from line 3 , which simply implies that increasingly more idle time on machine 3 is incurred. And at point Y, both machines 2 and 5 are fully utilized, whereas along the portion YZ , the capacity restriction of machine 2 is the significant one.
The polygon OWXYZ is the space within which pro-duct-mixes are feasible, although any point below WXYZ means that all the machines are under-utilized.

This is obviously a very useful analysis. One finds, for example, that in this case a product-mix is preferable to producing only product A. The maximum output of A is given at point W as 150 units, but on can produce up to 75 units of product B without having to reduce the output of A (at point X); and, provided product B is at all profitable, it is certainly better to operate at X than at W . One also gets useful data in considering such problems as:
(a) Is it worth while increasing the capacity of certain machines. and, if so, which?
(b) When the botte-neck is removed (the capacity of the limiting process is increased), where is the new bottleneck? (a bottle-neck will always exist, if one wishes to maximize output; however, it may shift to another machine):
(c) Should the product-mix remain the same for the new capacity restrictions?

Those familiar with linear programming will recognize it in the loregoing discossion, and it goes without saying that when a product-mix of more than two products is considered, graphical presentation becomes difficult if not impossible and one must then resort to formulation of the various restrictions in all algebraic form. But this does mot detract from the value that may be gained from such an analysis, which can be and often is very useful even for smatl plans.

1). Commol of product varict!

One of the major problems with which production management is constantly faced is the control of the variety of products, materials and methods. The variety of products is stimulated by the whims of cissomers and by the natural desire of the salesman to satisfy them. Variely is fike entropy in thermodymamics; it has a lendency to grow unless a conscious effort is made to put it under control. The advantages and disadvantages of
having a wide variety of products are summarized in table 4 at the foot of the page.

There is little doubt that a small range of products enhances the efficiency of production methods, as well as the planning and control procedures of production activities andinventories, but there is a limited number of products for which demand i; high enough to justify exclusive production lines working on a continuous or mass-production basis. Even in highly industrialized countries with well-established markets, the development of production processes has generally more than kept pace with increasing demand: the desire to keep production lacilities busy. and the lact that customersincreasingly prefer some variations of the basic product to the standard model always lead to a diversification of products. In addition, financial managers and salesmen are often very unhappy about over-specialization. It makes the company too vulnerable. they argur. First, it commits the company to a narrow and often rigid set ol specifications, thus allowing ample upportunities for competitors to consolidate their position in the market; secondly, by mitizing its resources for a single product, the company can be seriously challenged by new products which threaten to replace or make obsolete the current one. The balance between the consincing technical and administrative advantages of specialization and the philosophy of risk spreading by diversification is obviously a delicate one, and it is probably one of the major factors in determinting the productivity of the plant.

The growith of variery in often effectively demonstrated in a distribution of sales income curse, as is shown in ligure 7. The products are arranged in a descending order of their sales income, and the cumulative income is then plotled against the percentage of the products olfered by the firm. In this curve, it may be seen that some 25 per cent of the products account for 75 per cent of the lotal income, and this is by no means uncommon in firms which tend to diversify their product range. In fact. calses in which 10 to 20 per cent of the products are

Tahle 4

Provarust	truinusurn
	--. --
Salsfy a wide range of demand	Reduce slocks of materials and finished goods
S laner contact with ilse miarkel	
	Reduce inventment in plant ind equipment
Avod lowing arders for more profitable gonds. if contamer directs all his wrders to ather suphem	Satce shorage vficie
Cicna mex demand	Simplify produchan plamong and control prowedares
	Simplify in-pectom meihods
	Redacie range of requmed whilv
	Simplits Iratmong melhorl
	Simplate dispathong le sustumers, Ieduce wationg nimes or arder

responsible for more than 80 per cent of the sales income have been recorded. Figure 8 also shows this point in a histogram form. and the level of profit or loss accorded to each product is also indicated. In the case described in figure 8, one finds that some of the popular products (Nos. 2, 5 and 6) are not very profitible, and one must immediately suspect that the costs of production are unduly high or that there is something wrong in the pricing policy. It is not difficult to see that when the distribution of sales and profits take this form, an elimination of the tailend of the product range (involving more than 25 per cent of the products) will reduce the

Figur. 7
Cumulative sales-income imstribution

Figure $\$$

Sales and prohits histokirams

total sales income by little more than 2 per ce t. and this is a obvious course of action that, under these conditions, must be further investigated.

Many readers will be familiar with the break-even chart method shown in figure 9. This is a useful analysis
in studying the profitability of any particular product. The total costs are assumed to consist of two major components: fixed costs (F) and varible cost $(a \mathrm{Q})$. The fixed costs are assumed to be unaffected by the volume of production. the direct or variable cost (a) is the cost of materials, machines and direct labour associated with the production of one unit of the product, so that the direct cost of Q units is $a Q$. If the sales price, or income, is b per unit, one obtains a break-even point at the intersection of the line $\mathrm{F}+a \mathrm{Q}$ with the sales-income line $b \mathrm{Q}$. Activity below this break-even point incurs a loss to the firm; activily above this point yields a profit. It follows, therefore. That the greater the production volume, the greater will this profit be.

This analysis is. of course, a gross over-simplification of what happens in real life, and there are many assumptions that could be challenged:
(a) The direct costs (a) may well depend on the level of aclivity (Q). If Q is high, Ihere is more incentive to introduce labour-saving devices; furtitermore, operators have a beller opportunity to become proficient at their job and thereby reduce the labour content per unit of product;
(h) The sales price (b) is not necessarily constant and the introduction of quanlity discounts to customers will make the sales-income line of a somewhal different shape than that shown in figure 9 :

(c) The fixed cosis (F) may well depend on the level of activity of the firm and could, in lict, assume a stepwise function when plotled agains the activily (Q):
(d) While it is generally not difficult lo determine the level of the fixed costs when the lirm is engaged on producting a single product. there is sime uncertillity aboul the way the fixed costs of the whole plant should be allocated to several prodacts. One popular method is to perform this allocation according to the relative proportions of sales incomes of the various products, but this raises the problem of reallocation when production volumes are adjusted or when some products are eliminated.

All these appear to be serious objectoms. but, in fact. the breakeven analysis can be eavily moditied to take aceount of the firn three.: The fourth ditliculty ean he overcome also hy using a multiple-product break-even chart and by comparing the marginal henetins (t a). which can be regarded as a protitability index: the higher it is. the larger the prodaction wolume of this product at which one should aim. One call see that the product, can be arranged in order of preference. according in their protitahility indexes, and a sales policy can then be formulated to discourage the sales of products with a low index and to encourage the sales of thene with a high index.
Another problem that needs to be looked into is that of "interdependence of prodicts", A customer may require a range of prodicis which he generally purchase from one supplier. and the ee prodacts may indude some "bread-and-hutter" lines which have a high protitability index and wome which are les protitable from the mannfacturers point of view. If the manuficturer were in eliminate his tess protitable lones, the customer might well decide to change his supplier altogether, of that the sales of the profitable prodicts coould be adversely affected If this effect were to be significallt, the mannfacturer might well tind that he must contillue ob offer proditacts in the tail-end of his valen-meome distribution in order in enhallece the sales of the products that he in promarily interested in promoting.

Howerer, whe: the interdependence fictor is properly identitied and quantitied, it in powible to proceed with a detaled analyon of the likely effects of a variety reduction programme, as well is with the posobility of int roducing a pricing policy which mould increane the relathe protitability index of the las popular prodeses If such a policy acterely discourages the sates of these prodacts in fatour of the whers, then variely reduction in achieved by an ewhutionary process, which is perhaps more palatable to suppliers and costomers: if, on the other hand. the sates of the less popular products persist, at least their protitability index and theor saler-income contribution hale been improved

One of the main problem, in vallety control in developing countries, particularly in the convumer goods lietd, is that with relatively small gevernmental encouragement fin the firm of excense daty an imports to protect lacal endustry. or of whadies and wher benefits to locial mandiaturers) a comparatisely large number of manufacturers mas comerge, alt competing in a relatively vmall market. In onge comery with about 2 million inhabitants. well over tuenty mathotacturers of washing machome were recorded a leu bears ago, wome prodicing more than whe model smabir mationce can be cited for miner domestic applatices materal-hatading equipment.
 electric motom and witch geansed Ite prolfferation of
 of them a chance brathomatie thear prodictoon method and attempl werport there gends, and the contomer does not nenctit either hecallee prodichan of umall yuatities

[^1]tends 10 keep prices high. Variety control in small marketss, therefore, of paramount importance, probably ewen more on in the developing countries.

F. Operational researdh

"Operational research is the altack of modern science on complex problems arising in the direction and management of large systems of men, machines, materials, and money in industry, business, government and defence. The distinctive approach is to develop a scientific model of the system. incorporating measurements of factors such as chance and risk, with which to predict and compare the outcome of alternative decisions, strategies or control. The purpose is to help management defermine its policy and actions scientitically. ${ }^{* 3}$
The theme is again that of eflective use of resources, and some of the problem.s which were discussed earlier can be legitimately regarded as being within the opera-tional-research orbit. The evaluation of plant capacity and the allocation of machines to various jobs or products. or the analysis of the protit function for different prodact-mixes. can be treated a linear-programming f. hlems. in which mathematical models are set ap with linear constrains discribug maximum machine capacitics. limitations on the supply or use of eertain materials. maximum or minimum production volumes. which most be ahereded for certain products ete.
Problems of congestion in producion departments for example. vem-finished produets piling in front of machmes or impection stations. long delays in foolroomsoringetting materials and tools irom stores, delays In the dispatch areal are problem, in which the theory of queues can be of wome help.

In the queuing model, one visualizes a stream of cusfomers arriving at a service-point and demanding service. A costomer can be served if one of the servers in the sysem in free: and when the service is completed, the contomer is discharged from the system and a new costomer can be attended to. If customers arrive and none of the servers is free, the customers have to wail in a queue. In the prodiction environment. the components waiting to he prow...d are the "customer": the machines. are the "servers" the operators waiting to be served in the wore are "customer," the storckeepers are "servers", and ow on. The type of problems in which operational researchers are interevted when faced with congestion situations are:
(a) How long does al costomer expect to wait before he "hatime wervice"
(h) What is the probathility of his having to wait longer the a given time period?
to) What o the arciage length of the queue?
(d) What in the probathility of the queue exceeding a guen length?
(1) What are the expected utilsatton and ide time of the server"
(1) How many ersers, hould there be to attain a

[^2]desirahle level of service (which can be defined in terms of queue length and waiting time)?
(g) How can arrivals and service time be regulated to reduce congestion?
(h) Should priorities be given to certain customers, and, if so, what will the effects be?

Operational research has also contributed to a more effective control of inventories. The main problem here is to determine a sound replenishment policy, so that stocks of materials. components or finished goods are available when required, yet the stock level is not so high as to incur excessive holding costs. This is a typical problem of conflict of interests. If demand for the commodity in question is variahle, probability of running out of stock can only be attained if a comparatively high safety stock margin is maintained, and it is this balance between having a reasonable stock level and an acceptable incidence or risk of run-out that an inventory coutrol policy attempts to formulate.

Another important area in which some useful models have been developed is that of plant maintenance and replacement. Numerous maintenance policies can be formulated, ranging from one extreme, which specifies maintenance on'y when plant breakdown occurs, to the other, which call:, for scheduled preventative maintenance at very short time intervals. The purpose of preventative maintenance is to reduce hreakdowns, but the more frequent it is, the more costly it is and the less the potential plant capacity which is available. Maintenance costs are also an increasing function with plant age, and this raises the problem of deciding when is the best time to replace the plant with a new one.

Scheduling is another theme on which numerous operational-research studies have been carried out. Scheduling is the projecting of activities and their sequences, generally on a lime scale. In production scheduling, one is not only interested in stating the allocation of jobs to machines or men. but also in the sequence in which these jobs should be carried out. The complexity of the scheduling activity naturally depends I pon the type of production (whether it is contilluous, batch or job production), upon the number of operations or machines involved in the production sequence and upon the degree of variability in the demand or in the pattern of incoming orders.
In the case of centinuous production, the problem is to control the production level in relation to fluctuating demand, particularly when the demand has a seasonal pattern. Two extreme alternatives can be adopted: the first is to have a constant level of production and a large enough inventory to serve as a cushion between the factory and the market. The fluctuating demand is then absorhed by this inventory, which is replenished at a constant rate. The second is to reduce inventory to a minimum and to transmit the demand fluctuations to the production line, so that production levels will also fluctuate. The advantages of the first method are that with a stahle production level, resources can be more effectively utilized, i.e.. machines can be kept running at a high performance level. and, what is more important,
the labour force can be maintained at a constant fevel without fear of redundancy at short notice. But if carrying high inventories durirg a slack season is very costly, the firm may he forced to allow some of the market fluctuations to he reflected in the production programe. and the prohlem of finding a compromise solution can then be solved hy using suitable linear-programming models.

Batch production presents problems of a somewhat different character. When the rate of production is higher than the rate of demand, the stock level will increase at a rate which is equivalent to the difference hetween the rate of production and the rate at which stock is withdrawn from the store to meet the demand. Therefore, one has to resort to batch production: the store is replenished with a batch, then the stock is depleted at a relatively low rate, until it is time to produce another batch to replenish the store. Between the two batches, the equipment is available to produce other products; the purpose of the scheduling activity under these conditions is to produce a programme in which the batches of the various products are dovetailed in such a manner that the slock level for each fluctuates between acceptable levels and that the equipment is effectiveiy used with as little idle time as possible. In other words, it is necessary to determine a production cycle, in which the appropriate quantities for each product are manufactured in turn.
In hatch production. therefore, some regularity in the production schedule can he perceived, even if the production cycle is subject to variations in order to accommodate fluctuations in demand. In joh production there are no such regular patterns. Jobs differ in their characteristics and specifications; they often arrive at random and the amount of processing and the machines required may vary with the job. In addition to the obvious objective of keeping the machines as fully employed as possible, one may have to bear in mind the delivery dates which have been promised to the customer. Joh shop-scheduling is a vast and intricate queueing problem, and simulation exercises can be of tremendous help to the scheduler in pointing out the vital parameters in the system and in suggesting what priority rules can be adopted when the schedule is constructed.

Another important scheduling problem occurs in project planning. Large-scale projects--such as the building of dams, bridges. industrial or residential estites, airports, harhours. ships, motorways etc.--involve large commitments of finance, machinery and manpower. A project can be broken down into individual jobs which may well depend upon each other (certail activities can begin only when others have already been completed). so that the successful management of a project largely depends upon co-ordinating the various activities and upon using the resources effectively. Here, network analy,is has made a
major contrihution in providing indispensabte aids to management for evaluating progress and controlling the execution of project work.

Conclesion

Modern management is becoming increasingly conscious of the need for analytical tools, reliable data and purposeful control. Can new techniques, such as those
of operational research. tee of use to developing countries? The evidence so far indicates that they definitely can. On the national scale. every Government is concerned about the allocation ol financial resources, about the relative merits of various development schemes and about the rate of industrialization: these are areas in which analytical tools can make a significant contribution. Certainly at the level of undertaking large-scale
projects. and even for production management in factories, modern xheduling methods can be very helpful.
The secret is not to copy blindly management practices from highly industrialized countries. Control tools must the related to the industrial and coonomic needs of the country and they must fit into the social environment in which they have to operate: and the selection and adaptation of these tools is an art of no mean complexity.

$5 \cdot 4 \cdot 74$

[^0]:

[^1]: :t.. P. Alfort mal I K Rumgs, Pordution Hanthook (New Kork, Romald Prow, lows), dopter, and 20

[^2]: Wetinum ruggeved in 1462 by the Operation Research

