TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

Dewawame of Nownomag

Reports presented at the United! Nations
Interrewional Symaminen, Mioscow 7 Scpremicr-6 Octolur 1966

> Salew :io. 1 E. 60.11. T.? 111/6

UNITED NATIONS
New Ioth, 1969

$$
0
$$

THE POSITION OF METALWORKING INDUSTRIES IN THE STRUCTURE OF an INDUSTRIALIZING ECONOMY

Inne P. Carter and Wassily W. Leontief, Harvard Economic Research Project. Harvard I'niversity. Cambridxe. Mass.. Inited States of America

In this report are described the relationships, weach other and to all other sectors of an industrial economy. of industries in the metaluorking complex. Systematic quantitative information should facilitate ranslation of the preliminary aggregative outlines of a national development plan into spectric industrial programmes which, in turn, should provide a firm basis for detailed design and ansessment of individual investment projects.

The emphasis in this intermediate stage of developmental planning is on interindustrial batance: on the provision. for each newly estaboshed branch of production. of an appropriate supply of raw and semifinished materials, of power, and of other kinds of inputs on the one hand. and of a properly assured outlet for its output on the other. The analytical procedures and the factual information are intended to lacilitate planning the expansion of metalworking industries within a framework assuring balanced growth of all sectors in a developing economy.

In an industria! economiy, metalworking industries function as the chel suppliers of durable capital goods to, all set irs. Indeed, metalworking and construction sectors, are th. only major suppliers of durable capital goods. In 1958. United States metalworkers contribated 31 per cent of all gross private capital formation, the bulk of the remainder coming from the construction industry. In contrast, their contribution of current account inputs. that is, materials, parts and components, and services to other industries in the economy, was relatively sriall. Because of the special interest here in capital-producing sectors, particular attention must be given to problems of cap tal accumulation, of growth and replacement, if the economic lunctions of the metalworking industries are to be understood.

Cirrent account input-output tables

The presentation will be organized around a series of tables. each designed to illustrate a particular aspect of industrial interdependence. Table I is an input-output table for the United States in 1958. It shows the dollar value of sales by establishments in each of the eighty-one industries of the economy in relation to each other and to final consumers, households, Government, exports and imports, net change in inventories and gross capital formation. Imports are shown as negative entries, i.e., as an offset to other final demand items. Each row describes the industrial destinations of an industry's
products: each column details an industry's purchawes from the other sectors. If we divide the purchases by each industry (in a gelen column) by that industry output, we obtain ate of input-output coedicients. These are shown in table ? The coeflicients in cach column are essentially a recipe for a umat of w wotput. They shou. for example, how much coal, ore and serap are purchased by the steel induntry per unt of steel onaput.
Throughout the world, imput-output tablev liane heen made for more than fitty commeries baymg in stages of industrial development and typer of ceonomate ogamiation. Eeonomes differ yuile a bit, and wo. naturally, do the input-output tables which descrite them. I woh, for example, at the input-output tables for India and Japan. tables 3 and 4. While it is not easy to compare them (the transactions are in different carrencies, and prices and the sectoring plans are not the same), important resemblances and differences are apparent. Siles and purchases by manulatituring and particularly by metalworking sectors have mach grealer relative importance in Japan than in India. In both countries, however. primary metals producers and other metalworkng sectors supply the bulk of metalworkery mputs.

A country which is formulating its development plati will want, natually, to base is allalys on th own input output table in so far as possible. In the discis,sion which follows. we shall refer most often to the mont recent material for the United St:ate , economy, sunce this is the material most readily avalable to us. Becaluse the United States already has a hiphly develaped metalworking complex, we can use it to provide ex.amples of the interrelationships anoong metalworking and other weitors. Later, imports are introduced an an alternative wource of metalworking products. The analytical procedures which are presented can, and indeed should. be applied to data for other economies as well

In tables 1 and 2 , sectors have heen arranged roughly in "triangular order", i.e., the industres producing primarily final goods (machinery, clothing, procesed foods) are placed at the top of the chart, fillowed by the prodscers of intermediate producis (engines and turbines, electronic components, machine hop products), and still below that by producers of rau materials, energy, etc. If production were always a "one-way street", the arrangement would be perfectly triangular: there would be no transactions in the upper triangle of the input-oulput table. But this is not the case. Chemicats are used to make paper, but paper is used to mackage chemicals.

Steel is used to make hlast furnace, but blast furnaces are used to make steel. Nits. bolts, and srews go into machines, hut are alor made by machones, etc. These circular or backfecóng aspect are very important in a complex induatralised coonomy. It is important to insure balance among mese merdependent procescos, in planning or forcowlong cobomic development

A standard input-output computation permits us to trace the mpact of any given change in delacrie to tinal demand an all inter-mdustry flows on current account. and hence on all mdustres outputs. If mose atutomohiles are to be produced for consumers of for export. then the economy will hase th lelacer more veel, metal products. textiles, and pouser to the automobile industry. To supply these additoond mputs to sutomobiles, the steel industry will have to consume more coal, ore, and scrap, the metal products industry till more stee, the textile industry more chemucals and natural fibres. To supply this second round of additional inputs. vill more ore, coal and scrap. more chemicals. more coal, and wo on. are needed. To compute all the direct and irdirect requirements of a given change in final demand. we compute the so-called "inverse coetticient matrix." Fable 5 is such an inverse matrix. Fach element tells how much of the products of the industry on the left are required per unt increase in final demand for the product listed at the top. The inverse coefficient for steel into automobiles tells how much the total production of steel in the coonomy must increase per dollar increase in deliveries of altomobiles to final demand Inverse coefficients will always be equal to as larger than direct input-output coefficients (table 2) because they include indirect, in addition to direct, production requirements.

Foreign traiby and import sumstitution

In tracing the direct and indirect effects of changes in the bill of final demand on domestic oulputs, exports must be added to the other items included in the final demand, whike imports have to be entered in it as a column of negative tigures. If. for example, a country were to increase its export of electic motors, the output of the electric motors industry and of its various direct and indirect supplicrs would hate to increase by the same amount by which they would have to be raised if the additional motorn were produced for domestic use. Increased importh of electric notors would have just the opposite eifect.

Import substitution is nothing but a comhination of a cut in imports and an equal rise in domestic output (with the level of domestic final demand remaining the same as it was before). The combined direct and inciiect impact of the two shifts on every sector of the economy

can be estimated through smple vammation ot the separate effect, of each of them. In general. gisen a wim. plete export programone and a correxponding mpont programme of a country. their total effict on the fexd it output in each branch of deme fe molutry s.ln he colt mated through subtracton of the derest and mblucs
 effects of atl the differemt had of erport

 material, seni-fimened and finshed gemeis in the export surpluse correvponding to any combunattom in
 quantities of thear respective products allocated to exports and absorbed in final domestic use The inpurrequired by each industry to attain the projected le .d of output can be determined on the bass of the appropuatic input coefficients. These inputs combince with prowed deliveries to final use will yield estimates of total domestic demand for each type of good. Comparing thex with the projected total domestic outputs, we arrace at the tigures of required imports or exportable surpluses
I. AROLK AND (APITAL, COHFHCHNIS; ACGRIGAIIN IO A 38-SHCOR CTASSIIC AIION
Large coefficients in the United States coefficient table and in the inverse coefficients table are shaded. They represent relatively important direct or indirect linkages between a given selling industry (identified on the left) and purchasing industry (identified at the top). Sectors 9.35 (sector 15 can be excluded) in tables 1,2 , and 5 are metalworking sectors.

With large capacity high-speed computing equipment, it is not difficult to deal with eighty-odd sector inputoutput tables, or even much larger ones. On the other hand, it is still very clumsy to print and reproduce la age matrices on a single page of paper. To facilitate presentation here, we have chosen to consolidate or aggregate, the United States input-output materials to a thirty-eightorder classification. The consolidated flow and coefficient tables are given as tables 6 and 7. Since we are concentrating on the metalworking sectors, we have kept full detail in the twenty-five metalworking industres, but aggregated the non-metalworking sectors into only thirteen sectors. Metalworking sectors are renumbered 1 25. The list five rows in the coefficient table. 7 . how total fixed capital requirements (dollars per dollar of output), labour requiremerts in man-years per thousand dollars of output, for three different types of labour sills. and total labour requirements. Multiplying the output Icvels for each of the thirty-eight industries by these labour coefficients, we can obtain estimates of each of the three types of labour required in each producing sector. Comparison of these estimates of labour requirements with projections of skilled labour supply or manpower training plans will tell whether a given set of output levels is feasible.

Supplies of ther factors of production which may introduce bottlenecks can be treated analogeusly. If an economy has only a limited supply of, for instaice, an
$<$

-

ore, ar petroleum, which cannot be increaked in the short run. then their requirements can the compulted a in the case of villed latour. and the teavhility of a given programme evaluated. Imporscan wometimes till the gap

Capolal requirement, hould be treated in exactly the s.ane was in the thont run Gisen vultiesent lime, of course. "hlled labom wall te "produced" through edacalon and induatral tramme programmev and capmoll god coln the manutatured The role of metat.
 owered in detal later on

A lime in drawn around the induners in the metat-

 fand of metaluorking supplers Withen the bles. houcver, there are strong elements of interdependence Betore gonge lurther into the relaton of metaluorking to wher sectors. let us surves the mernal veruture of meth/wathog more carefully

Summing the transactions withon the box tlathe $6 t$. Ae wherwe that the lotal balue of tratsactons among the metalworkers themelses is $2 x$ per cent of their combined toral output Thus, a far proportion of metalworking atavily ${ }^{\text {" }}$ taking in cach wher", wan" Maker, of for instance, engenes and turbines. purchase hells and nut, and tampang from wher metalworhers and, in turn. firmah marme engine to hoal huilder, Intra-mdusiry tramadions along the "diagonal" may often comant of sale on vecialised parts made in one evahlahment to isembling plants included on the same indertry. Thus. for example. the very large wolume of alev as: ang automabile establahments retlect, the 1 mited States practice of decentraliang automohile anembly plants throushout the country
 metalwarhing wectornalone for the 1 med State in 145x? Metaluorking induvtrios are spectally arranged if that tate whighlight their internal organtation: indautien which vecialise ill components for wher metaluorking :ndustics are placed near the bollom of the tahle, and prodecers who specialise primarily in limal metal prodach are located near the lop.
tinal metal produch are divided imto three mator group: 1ramportation equpment lautomobiles atrerati. ratroad equipment. atces. ele.). electrical equapment celectraial trammisuon cyupment. rada and televanom co. household appliances. office and compuung machmes) and non-electrical equipment (aduatral procsung cquipment, farm machinery, makrath-handling çutipment. metaluarhing machinery. che lindusima Inded mear the lop of cach linal product ter"up or "bler".
 materalh-handling maviners. ell hate or mothing bo कher metahorking sectors on current account Belaw them are listed vector anch as electrona compenents and

[^0]electric lighting and wiring equipment. which prowide current inpun to electrical machinery producers at later tages. "r enges and lurbines, which prosluce component, for indwaral and transmoristont cylipment manalacturers The beltom row at the whte coman of induatres which pethorn mete geter.al medaluathing fundions nol seoshlied to a pathular thal met.al product tampers. maker, of hall and rolke teames. the thew
 urirhing praduclown
tole the here bersater of the celectrad and non-
 litle trom exh ather athough touth gromp purchase trom the "eneral mermediote" metatuather, detated at the holtom of the bate lompportatlon equpment
 purchace tomm both the clewtal and the monelestrial

(Dice should thet. If colise apod meloluarking complexe in te fulls desclaped in all ecomomes

 mithin each mpur-wilut sallegen the mix of wheh

 crient.
Some wrattems in the daswon of t.tbeur withon the metaluorking hlen appear from da compation of tatles *. Y. and 10 Table 8 , bun, the intertependeme of metaluarking welow for the I miled station flyax Iable - , hou , the ame kind of pettice tir the 1 inted State in 1947. Nthengh we knou that there nere mans dramitic hange in medaluerhing lechmones local durme the

 Iere not change whatentath allod the mpentathe of

 ereftiesent vability in the lace of klown lowame of hangme fechmese thould foll the varpromg veu

 ponens may ned te dixcomble il totlo it dice mexent

Iatele 9 dexition the fipance metaluowhing complex
 fifferent fram that of lice 1 mided stater, 11 was penthle

 wothomy. but inly what wapeng pondent, were purshavel of wold

Now Fhows under 5 milikon rupees are remesumed bi cers,

- Incluave of mirum

Inchave of "umers
 Orome value achied

Insludes MS 13 a criore or lases on perriteum mentucts

Ifansactions (1959 60) prices)
rupes

Arculture. Foreary and I wheries	1	490)	10	2	1541	319	3.2	46	$1)$	1	50	58	5	2	2	
Coal, Peiroleum and Valural Cias	2	0	3	2	I	6	1	11		0	2	25	255	22	5	
Metal and Oher Mining	3	1		1	R		0	1	0		1	33	2	46	176	
Fond Primlasts and Tohasco	4	129			527	6	0	1	11	18		20		10	176	
Trutikes and \pparci	5	35	2	0	2	842	5	4	2	4	38	7	I	2	5	
Wood Promist, and I urmurs	6	7	2	11	15	5	90	16	1	0	0	21	2	2	6	2.
Pulp. Papci. cis	7	4	1	1	28	X	3	2001	120	0	1	70	2	16	5	12
Printing and Puhbohur	*	1	2	1	4	7	1	20	6	0	1	5	1	16	10	12
Isather Prowlus,	9	0			1	18	0	0	1	\checkmark	0	0	1	2	10 0	1.
Rubter Prowhis	10	2		11	0	7	1	0	0	0	5	1		1)	4	26
Chemkals	11	144	4	3	85	$24 \times$	21	19	15	2	26	46 X	7	11	26	36
Petrokeum and Corl Proxlus	12	41	1	3	19	10	1	7	11	0	5	55	19	24	125	20
Ceramin. Sonc, abl Clay PrisJucis	1.3	4	0	11	38	0	1	1	0	0	2	8	0	44	27	29
Primars Melal	14	8	5	2	29	11	12	2	2	2	1	22	5	15	2186	681)
Makhiners. chept I ranumertaloon lasap.	15	21	6	3	1	13	3	1	4	0	2	13	5	3	4)	\$18
	16	14	1	0	1	0	1					0	11	1	2	12
Frevisat Invimbents Misellaneow Manoficiurin	17	0	0	0	0	1	0	0	1	0	0	0	0	0	1	23
Mixclameots Mandaturing Constrichon	18 19	7	0	0	K	4	3	0	I	2	3	1	1	0	1	39
Fectrinty dild (ias	19 20	16 6	17	5	12	5	3	1	1	1	1	K	2	5	10	8
Trade	21	34	17 4	3	17 145	24	6	33	2	0	3	51	3	23	66	25
Real I vate	22	0	0	1	14.	88	30	20	11	1	11	57	K	27	71	68
Transpothaton and Commminkation	23	26	5	0	6	11	19	21	01	0	0	0	0	0	0	1
Service	24	2X	6	3	$4 \times$	31	11	21	20	I	4	48	15	34	67	66
Undisiribuled	25	21	6	12	114	41	11	10		,	?	52	5	12	31	59
Internkdiale 1atal	26	1036	40	52	2710	1795	577	507	216	45	162	54 1080	4	13	9	118
Businew Comvomplarn	27	7	7	6	33	20	13	¢	15	0	3	22	6	7		59
Wages and Salarics	2 H	224	107	56	1:?	251	100	67	X	6	35	149	16	91	29 318	344
Prutit	29	1615	117	12	176	184	56	57	59	4	36	1.39	100	91	318 385	401
Deprectaten	10	211	21	13	47	47	11	24	8	1	5	91	21	22	100	401 69
Indirect taxes	31	$4 \times$	6	4	510	12	?	4	2	0	1	20	123	7	13	5
Subsidiev	32	1	11	11	24							0	12.	7	1.	S
Value Aded	33	2013	150	111	919	515	188	159	173	12	80	451	266	219	845	472
Tinal Promicion	41	1116	230	16.3	1639	2311	76.4	666	389	56	242	1531	6.34	52.1	3798	3067

to subdivide the complex into roughly the same general bloc categories axd in tables 8 and 9 . Vole the resemblances betucen the spectalizatoon patterns of the two countries. the relatite patity of ahose thagonal entries. the relatue self-atlicachey of bow and the prominence of general matmednac metatworhmg wetors. These latter seem to be kow mipentim1 in Japant than in the

 clear whether tha dillerence represems real ditierences in specialtation pattern, of Japances and l'med Slate extahlishment, or diflerence in accounting comentoms. (Perhap the Japanex count plans making wire product,
for household machines in the household machinery rather than the wire products industry.)

General intermediate metalworkers sell the bulk of their output as current inputs. They lurnish parts and components to other metaluorking sectors. Products ol the later stages of metaluorking, the so-called "final metalworking" products, are delivered to both metalworking and non-metalworking rectors on capital acoum: they become part of the stoch of durathe goods encontial for modern industrial technology. Relerring fach to the na tonal imput-out put table. atiel or table 6 . we bote that transaction, between metalworkers and other industrial sector are really very small. Metal-

Jupansi folonomy, 1960
induniry transactions

workers supply important inputs only to other metalworkers, and changes in final demand for sectors other than metalworking have very little direct or indirect impact on metalworking sectors. The characteristic dependence of all sectors on the metalworking complex hecomes apparent only when the capital account is considered.

Rediced inp't-ol:tplet tables

Being interested prima:ily in metal products, we should like to ignore all the other sectors of the economy except in so far as they contribute to, and in turn depend upon
the growth of the metalworking complex in the frame work of an over-all developmental plon. We shall now introduce an analytical device that will permit us to cenlre all attention on a selected group of indoseries, in this case, the metalworking complex. with the iwsurance that the requirements of all the oher secors of the economy are automatically taken into account. In order to explain the practical meaning of the analy(kal ramformation that leads to the comatruclion of what we call the reduced inpur-output matrix of a matonal ecombony, we will ask you to visualize a situation in which. For trading purposes, all industries of a councry have heen divided in two groups. The indatries belonging to

 adentilied a "uhcontracting" induerice

E wh coritrating mduary coter, it dered mput need for the products of wher grour 1 indavtes hi direst purchaxe and cach group 11 motuals mathe direa purchase from wher group 11 mdand: Ilanster, the produch of group 11 indwation delsesed to groun 1 endustres are manulatured on the bown of vectal work coneracts I Dider such a contract. The group I mduaty placing atl order with a geoup 18 mdavir prosdev the latter with th own prodticis and dhe the porduch ol all Wher group I induvices. III amouns required to lill the paricular order To be athe lo da w. 11 mowt, of cource first purchase all these goosk. from group I metuntien that manulature them. ©口 小 (wn acolut I he retaton, hip between a condrakting group I. ald a wheontracting group II. induary N tha alnologen to the relatomehip tetween , tathor and has covomer wha bow the doth himelf and then bring it he the bilan to be made illo a 1411

 acount not coly IV unt immedtate mput requrement hut aloe the inpul requinemention the group It induatio Io which il will hase wether corred amouns of the
 quendy. IS ownll the procenced under conoract for planning purposes, a group 1 induner might a well accomint lor the amomots of the prodict of group 1 indurtre that 11 will have be supply to the group II industre working fior it an thes nere elements of in oun inpul wricture I hall sex asly whal is belleg dane ill conveltacting oreduced inpur-oulpul table

The relationship of the reduced latbe to the argemal bate from whicte : inderived is amblat the relationship of an athresbated tran tmetable to the complete. detaled limetable which alow last the intermedtate vathoms The subdusson of all the xechors af an economs intw groups I and 11 must, of course, depend on the -pectlic purpose of the propored analys.

I ving a reduced tathe lor planning purpones, we can be sure that if the inpul-output flows among the group I industries thoun in it are properly balanced. the halance betueen the oulpuls and inputs of all the other industries - milled from it will aloo be secured. all kas with respect fo the supply and demand lor commodities and wervices - lasified in group 1 .

In the process of consolidation. the technical details of which we will not descrite here, the labour and the copital coeflicients of each of the velected principal undusties can aloo be transformed. that is. recomputed, in such a way that these coefficients will reflect not only its oun lahour and apital requirements, but also the capital and latoour requirements ol all the group 11 andustries which deliner their product, to it It is as if, under the imaginary contracts described ahove. cach group I industry provided the group II industries working thr It. not only with the inputs coming from all the different group I sectors, but also with all the capital and labour employed by the group II industries in filling their contractual orders. Thus, the output levels of all the
promary induatre as proseded on the h.as of redaced inpul-oup put tatle will. if multiplied wilh the sppopatile
 onk tor the copltal and litherif requitemems of the ex

 mot he .llatlocd

 arder tabls I a cample the weflacoll howme farow

 from group II industies pit prope for wal momes ved

 the proclactoon of plavice parsathderes. che the lan lise
 ever) and total captal regurements on the origmal and the reduced form han revpelask latal applal requrements for farm equipment in table If melode wor only

 manulacturng farm eywiment
the reader will mote that the differemen between corresponding "inpul careliciells" in tahle 11 , and 7 are wery small inded Mont of the dillerences betuect correvponding entres were volll enough lo daappar when the conellicents were romended in ino decimal places On the wher hamd. dilleremes betucen comer pondeng labour and captal ucllicems in the orgemal and reduced tables are weathe I lis leature himen ant. ance again, the untue poition of metaluarhing malastres in relation to the rest of the cantomy A, win ponted out belore, metaluorkers luminh only a wers wall proportion of their poduct to non-melatuation on current account. Thus. as member of group 1 they are not required to contrihute apprectatio amounts al metalworking product to ther wheontracting supplers in group II. Direal purchases by medalworker, from wher metaluorkers accobnt for mont of all corrent account metaluorking product requirements in the reduced tahle Metalworkers do hase lo simply relatively large amount iogroup II induntren on capital accombi If the latter are to he ahle tolurnish requite non-metaluating input, to group I industres; hut this is a quile dillerent matter that will be taken up th the context of dynatme input-ouiput analys. Similarly. under this nex yytem of accounting. metaluorking sectors are called upon to supply labour not only lor their own production hut aloo for the production of all their input, from group II

			2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Aircraft and purts	1	2414	17	9	15	19	1	52	1			2	9	2	5	22	5		56	6
Ships, trains, trailers, and cycles		3	251	20		1	7	1				4	8	15	1	20	5	1	5	26
Motor vehictes and equipment		N1	50	6799		28	8	1	53			10	7	45	41	56	6		51	8
Ofice and computing machines		6			19.3			7	1		13	1	4	I			1	1	46	3
Service industry machine,		*	4	29		106	104	4		2		2	12	2	1		I		6	2
Household applances		2N	14			143	39	2	4	1	2		3	1	9					3
Radio, televishon, and communkaton cyupment		144	6	114	21	7	1	3.0	7	5	9)		23	2			1	7	38	52
Batteries, rat and engine electrical cqupment		46	5	32	1	.	1	2	57	67	2	2	1	5	19	39	3	6	3	11
Electric lighting and wiring equipment		16	1.1	\%	9	15	28	69	57	92	21	3	1	3	2	1	1	6	12	86
Hectronis components and accessoriev		76		IB	92			1048	21	8	162		7	1					102	140
Materials handling mashery and equpnent		5	16	5		3		.		.		41	12	17	1	3	1			2
Spectal indinet machinery and equpment		6	1	0	12	6		2	.	.	1	5	125	6	7	3	10	2	6	6
Consitrution. mining. and oil-lield mathenery		2	20	10		1	1	1	2	1	2	54	19	173	31	61	5		2	6
Farm machinery and equip	14	2	19	24		,			1	1		3	7	54	92	30	1		1	1
Engites and turbinev	15	20	114	81		4			2			15	I	80	120	202	8			81
Machine shop products	16	126	13	147	5	2	4	6	12	4	3	17	10	14	37	66	107	1	26	9
Optical. ophthalmis and photozraphic equipment	17	26		I			5	14	1	.	1		5					86	20	3
Sientific, controlling instruments and clock,	18	197	5	100	N	29	109	13	6	6	13	1	4	2	1	2	2	22	202	67
Fectrical apparatio and motor,	19	43	125	50	52	200	149	100	36	78	88	53	97	35	15	38	8	21	120	341
Metalworking makhinery and equipment	20	246	19	257	21	7	2N	2X	22	13	15	17	58	52	44	37	29	7	43	59
General indistral mashinery and equpnent	21	138	SN	13)	14	35	39	8	26	3	3	73	139	176	140	71	15		20	45
Ha Jware, plating. valves, and wire promlicts	22	111	74	$\times 2.3$	13	54	119	72	7	40	36	23	42	40	17	6	33	16	57	43
Stamping, xich machure prodicts and belts	23	245	1*	709	25	79	193	112	17	6.3	62	19	32	32	80	49	8	9	63	76
Heating. plambing. and strintural metal products	24	x	171	23		52	57	4		5	1	13	27	49	6	3	3		4	15
Automonse repait servises	29	2	3	k	1	2	1	1	1	1		1	4	3	3	1	\pm	1	1	3
New and mantenance contstrikther; glaw, stone and day products	26	72	51	170	*	22	17	54	16	N2	105	5	14	19	16	16	34	47	24	51
Primary ifon , ind vael mining and manufaturing	27	415	42	2015	44	154	274	4	47	155	54	117	224	975	367	224	127	9	67	299
Fimary nonlerrobus netal mining and nanulaturing	$2 x$	160)	$6{ }^{*}$	261	42	114	1,1	117	164	122	119	13	112	22	19	72	123	42	141	169
Maxclameors manutaturing and wrake retors.	24	(4)	()	14	59	-4	41	124	23	45	67	45	49	19	12	32	22	20	106	123
Chemeak, plaslias. mbber. struges, and peint,	4	114	101	K29	3)	49	106	112	113	102	70	24	41	57	97	16	4	108	69	107
Lumber and woral products. paper and paper produs	11	6x	1+1	138	29	41	71	214	13	50	62	3	23	11	19	17		62	66	73
Textiks and leather eramis	12	19	12	(1)	2	2	17	7	2	1	4	1	9	3	5		5	3	31	8
lomi, labacod and metal comtamer	13												1		3				24	
Cial. petroleum and utities	14	102	43	171	11	14	27	25	12	16	24	*	28	14	26	20	29	12	18	33
Radn and takristan bromed casting, sommuthalluors	15	56	10	47	y	*	14	20	5	6	8	4	24	10	6	6	11	5	16	21
Tranapurtation and waretwouning	16	112	65	426	1*	14	57	69	20	31	28	11	28	44	40	27	15	22	34	61
Whokevale and retal trade	37	224	178	6xs	107	12?	151	211	52	144	145	46	97	109	100	59	49	55	133	155
Other business and personal writes	38	177	7 K	93	41	73	$3+5$	209	54	67	103	37	79	87	100	65	58	124	113	131
Totals		$602 \times$	22x2	15972	4ix	1477	2247	1167	875	1211	$13(1)$	678	1346	1719	1509	1265	733	695	1748	2344

for Unitei States hconomy， 1958
industry Iransactions only

A Hara 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	17	38	1 inal demand	Ciross domes－ （It －utpul
20	63	5	6	12		1	1	．	32	18	19	2	7	．		163	68	1561	1419	1260：
1	19	5	1	57	10	3	18	6	15	2	9	－	23	13	5	303	13	70	2778	1721
173	24	32	98	321	1131	9	37	15	140	2	6	1	58	16		88	208	204	13188	こ2816
		1	2	3			1		34	7	10	．		8		2	14	301	1321	2217
7	33	9	7	67		219	2	2	12	3	15	．				2	35	149	14111	22.44
7		13	9	54		266	2	4	36	4	5		5				24	279	2631	1994
．	7	2	1	1		59	1	8	137	6	8			8	157	IK	64	405	4079	（h）${ }^{\text {a }}$
．	4	2	1	．	118	20		50	8	2	I	．	32	2	4	73	49	4！	496	1534
2	4	15	15	17	33	951	10	56	16	14	30	6	26	8		7	14	83	44	22×7
．	1	5	3	8		4		2	11	2	2	2		11	5	25	10	387	454	$26+4$
9	29	7	1	8		281	2	1	4	9	6	－		11		14	13	8	575	1081
31	25	16	2	29		6	24	2	32	136	102	65		9			28	15	1784	2409
7	28	19	1	24		268	39	29	10	15	1			199			28	24	2057	3184
6	8	7	4	14		3	27		11	1	1	1	20				18	154	1745	3434
7	48	7	6	32		2	3	1	3	．				17		81	11	155	104.4	2201
22	22	19	14	33	105	8	144	34	47	24	8	1	10	2		7	22	11	410	15×7
．	1	1	2	1		1	2	1	23	18	53	3	，	．			36	4311	815	1842
3	23	21	7	71	16	213	5	4	55	39	14	15	1	2	．	26	42	447	10， 1	14.10
99	193	25	15	91	6	514	85	40	39	24	12	1	10.	52		31	23	182	2012	410）
207	67	171	42	44	1	14	129	73	14	19	20	4	40	15		23	15	156	1574	16，24
118	257	54	3	92		303	60	34	23	14	23	3	16	86		14	29	12	146x	1744
75	72	248	98	253	114	1021	336	109	126	187	461	59	180	411	3	41	63	54	879	（4．4）
97	42	129	100	155		131	126	94	121	58	72	5	225	23		15	44	28	111	4， Na
14	69	57	29	150		6080	49	3	34	7	33	1	10	10		1	98	24	425	2015
2	3	6	3	17	133	313	7	6	8	27	101	15	395	59	17	821	826	479	46，34	7417
15	48	52	35	89	245	7126	484	63	60	371	365	62	1561	716	301	1259	1005	6978	$5 \times 1 \times 7$	M02\％s
277	400）	1262	739	1920		2562	5181	205	308	305	240	6	921	89		38	7	30	141	1490）
16\％	106	4.39	241	587		1177	368	4021	328	251	88	5	64	17	23	49	16	51	170	11226）
70	63	109	59	115	107	673	683	486	458	723	802	724	2256	331	185	769	$2(1) x)$	3797	367	11944
21	27	128	72	57	342	2433	324	294	466	7204	1329	2168	2212	775	N	345	4×4	1487	N（1） 1	$\because 194$
7	26	148	78	99	14	5136	123	56	1662	925	11660）	462	1846	157	130	144	1222	6812	（4in）	10917
4	7	21	7	13	36	29	18	29	340	690	419	13168	261	11	14	45	144	6.58	1629	\＄26，75
1		5	13	3		264	7	1	2246	728	1117	18025	2254	133		138	693	2451	8575	121515
41	37	78	58	94	189	2074	1152	310	54	1398	671	267	18.49	16653	81	1692	26.45	2284	17176	4，96\％
311	34	18	9	32	55	162	70	30	29	108	295	84	298	75	14 X	271	1：122	30×4	476×1	110×11
428	49	86	57	193	74	2618	1007	214	2725	$\times 34$	1174	502	344．	1313	19	2106	396	971	13132	312×1
102	170	219	108	290	671	6702	701	338	675	916	1458	11.33	4912	（6）	6.7	10×4	1582	2767	6， 9.4%	95350
－139	102	189	103	225	679	3827	538	265	1354	2048	1881	965	6460	2948	834	2279	11794	$2(\mathrm{NOL} 4$	1310035	189949
1768	2106	3627	2047	4932	4079	45472	11768	6888	11699	17138	22961	21532	79153	24797	1993	11 スリ	24898	56.26 .4	9765	$4.2 \times 2 \mathrm{k}$

Thinty-eight sector input-output

s:hup

Tatle 8

Internal strlctiat ow mainomikinc; United States, isse Input-output coefficients excluding secondary transiers

industries. Comparison of the last rows in tables 11 and 7 shows that these amounts are far from trivial.

The transformation of the original input-output table to reduced form aho requires, of course an appropriate conodidaton of the wolumn comalming the finat bill of
 the same nay a the mput, to group I madoly purchase from extors dowilied in troup 11 are nod thoun as such lonted of that. It: amoumt if the product of each ol the group I industres atherthed bs all the group II induatres in the production of therr delsemes on tilat user, are added to the amouns of the same good directly purchand by the linal was Thus, the comothdated finall bill if gend, will met thou . Im purchase from the chemeal ecturs, when themeats a clanalied as a group II mdentry the ligure reprecomong the final delaceres from the eerros metas mdantry will. however. be ategmented by the ambumt al ler.ans metals aborted in the mandsime of chemosh atcally purchaseal by the find ine. I hus. in we reduced. compact mput lable the batime thelwocol ted supply and
 tries will be accounted for a fully sim the orgmal tathe.

Table 12 a reduced input-ouput low table corres ponding to the therts-eight-order fous t.the table 6 . Vote that the letal outpul lesels for the thent-seven moduster included in group 1 are the same in hoth tables. Corresponding final demand entres for cach group 1 indastry are larger in table 1? than in table 6 Ihus becalue linal demand for. ady. materolohandlong eympment. In the reduced table. Incluale not only matertalahandling equipment directly purshased for the expalsame ol indatral capacty bat aho repalt and mamtenatice parts furmsed by the preducers of thasequpment to the manmlakturers of lond. chemishs, texilco. and other excladed group II Item, m limal dem.ond

By unite a compat mput-wutput lable with the corresponding complement of appropraticly enlarged technical coefficents, the planner call contre his altention on a selected group of mdistic uithoul worrying that any particular decinon concernong the kevel of output in these industriev mat turn wet to be ahortise because of unforeseen captal or latoour wortages or insufficient supples of materials, proditiced by these group I industries. in any wher sector,

(APIIV W113才

Let us shit our dttention, now, whe coonomy capital account. Table I? is a captal stexh matrix for the United States economy in 1958 tach elitry show, the value of the stock of goosls, produced by the induary identified on the left, held by the induatry adentitied at the lop of the table. While mpul-ouput fou lather report ateal transactions, wates and purchaw among indurties over a given tine peried generally asearl, the vack table presents the inventory if huldings.machine and all wher fathite held by each induary at a gesen poritt of nme Thus, a flow table is analogono th the ficome account and a towk table to the physial anct ill the capital sconumt. They show different aspects of the same productive process

Strictly speaking. all items which are reported as flow. should also appear as stocks, perhaps in the lorm o inventories: materials. goods in process, and tinishee goods. So-called "fixed capital goods" are distinguishee by their relative longevity : the sace of their stock, will be large relanse to their anmal flows. Compared witl mentories, a machine or hoilding tends to remain in the toxk for a relatively long period of time three. five ten, cen fifty geam hefore it is replaced. Actually. the toch ill tathe 13 do not include the relatinely short-lived Imentory flems, hut only stock of durable capital goods

Tate i ? has tha outstanding features. Firs, notice the importance of metaluorking products in the wlocks of durable capital

More than 42 per cent of the economy's capital originated in metaluorking induatries. In contrast to the current account picture bhown in tahle 6 . metalworking wock appear to be important across the entire table, that 1 , in virtually all using industries. Second, note the preponderance of stock held ouside the manulacturing ectors. While we are accustomed to thinking of steel. automohiles and cement as the prototype of capital mensive industries, much larger atelual volumes ol eapita goods are required in our networks of communication tramportation and trade. This feature is important in newly developing countries as well. In the United State economy. these co-ordinating sectors are growing in relatise 'mportance. and so are their capital requirements. Agricultural capital is also far from negligible in the peneral picture.

The ratio of tock appearing in eath cell to the annual rate of output of the industry which uses it is called capital coneflicient. A table or matrix. of capital co efficients tells the value of the sock, of the various tope of duratle or capital goods required per unit of sutput Here the notion of capacily output is important becalles of the powsility of idle capital goods. Tathle 14 is matrix of ifixed or durable) eapital coefficients. To make the tahle len cumbersome, only capital cokelficient greater than (x)5 are cited in the table.

This smplification tend once again to emphasice the concentration of capital originating in a few metal woiking sectors. Total capital required per unit of eapa city 1 given. for each sector at the bottom of the table These total capital coefficients vary greatly from industr to industry, particularly outside of manufacturing. ${ }^{4}$

Accimit himo om rigitred) caplial stekes

How do we relate sock requirements, deseribed it table 13. W interindustry flow requirements pictured it tahle 6 ?' It take, time to produce and acemmatate stack

[^1]Table 10
Internal structerf of metalworking; Japan. 1960
Input-output coefficients including secondary transfers

Aote Cisflicients less than wos are cxcluded.
of capital goods. In the short run. therefore, the stock of capital invested in, that is, possessed by, various producing sectors of the economy sets an upper limit on the Now of outputs that they can produce. The capital coallicient table tells us what durable goods we must have to produce any given set of outputs. Realistically, if there capital goods (largely metalworking products) are not available, the projected levels of production cannot lake place. As time goes un, a step-by-step accumulition if domestically produced. or imported. capital increases the productive capacities of an economy and, if these are properly balanced. permits it to increase its outpur and deliveries to final demand

Purchase of capital goods by the various industries are not reported in a conventional input-output table as curcent account transactions. but are relegated to a special gro capital formation column in tinal demand (table i it This column tells the total amounts of office whinery, trucks and electrical transmission equipment phed to the whole economy in a given year. In the
absence of capital imports over the years. all additions to equipment stocks must pass through the gross capital formation account. The single gross capilal formation column is a sum of additions to capital stock made by all using industries. It combines new laactors bught by agriculture with those bonght by mining and comeruction. Given the detaled tatmatal information, one could elaborate this single capital formation collumn into a complete matrix of many colums which would tell gross additions of each hand of capital goods in ciach indusiry in a given year. Thus. we would distinguish separately the tractor, bought by agriculture and by conotructom, the material-hatndling egupment bought by fiond processing and chemicals and antomohiles, ete

I ach element in the grow capital formation vector, or in a capital llow matrix, in lier combene tuo clements: capital goods to replate or renew exstong stocks. and capital to expand prodactive capactly by net addition lo previously atcumulated stock, In a highly industrialized country, a relatively large proportoon (perhaps 6) per

Aircraft and parts
Ships, trains, trailers, and cycles
Motor vehicles and equipment
Office and computing machines
Service industry machines
Household appliances
Radio, television, and communication, equipment
Batteries, x-riy, and engine electrical equipment
Electric lighting and wiring equipment.
Electronic components and accesories
Materials handling machinery and equipment
Special industry machinery and equipment
Construction. mining, and oil-lield machinery
Farm machinery and equipnient
Engines and lurhines
Machine shop products
Optical, ophihalmic, and photographic equipment
Scientific, controlling instruments, and clowiks
Electrical apparatus and motors
Metalworking machinery and equipment
General indusirial machinery and equipment
Hardware, plating. valves, and wire preducis
Stampings. wrew machine, products, and bolts
Heating. plumhing, and struciural metal prodesis
Automotive repair services
New and maintenance construction, glass, stone, and ctay prohasts
Primary iron and steel mining and manufacturing
Total capital
Professional, technical and clinical workers
Skilled workers
Semi-skilled and unskilled workers
Total labour

Cofficients under oas are represponed by ant.
cent in the United States) of annual capital soods purchases is devoted to renewal or modernization, and 40 per cent to expansion. In developing countries, the percentages for expansion will be much higher.

Table 15 giver rough estimates of the plit of the gross capital formation vector into a replacement and an expansion portion for the United States in 1958. To simplity the prexent exposition, It wilt he assumed that replacemen' requirements are fixed. say, at approximately the levels giten in column two of table 15. Beyond the maintenance and replacement of existing stechs. addstional capital goods are required for the expanson of capacity Let un se how this weond compenent ol gros capital formation is determined.

If we hegin in a situation of full utilization of capacity in consumpton goods industries, addittonat capital requirements will be proportoonal to the increase in output levels in each industry. Suppose a change in consumption demand calls for higher levels of output in
consumer goods and supporting industries. Higher ow put levels will be possible only if necessary addition capital stocks are also forthcoming. For each industr the amounts of the different kinds of capital goods p unit of additional output are given by a column in th capitat coefficent matrix. To produce an output 1 millon greater than 1958's. the food industry mu

[^2]
cquire additional capital stocks of $2 \times(.117$) of farm machinery, 2 (.026) of motor vehicles, 2 (.189) of instruction, and similarly prescribed amounts from "ther metalworking sectors. These are the additions to apital sock which must be delivered, that is, included in he gross capital formation column, if the given expanson "ogramme is to be possible. Thus. if we increase the ..nsumption column in final demand. we musl aloo add - the capital formation column. But this latter addition final demand will itself generate lurther output "reaves. in turn. further additional capital requirements, nd on
Wan illustration, column three of table 16 ,how, the - ants of addtuonal capital goods which must be hed ty the various sectors of the economy in order oport a 20 per cent increase in household conthon It in obtained by multiplying the increaxe in :hold consumption. detatied in column one. hy the vecoefficient matrix. This gives total outputs
required on current account to deliver the vecitied increase in consumption (column two), multiplying the increase in total sumput levels for cach industry fowlumn (wo) by the corresponding captal careficients. given in table 14. The sum-totals of all captal requrement irom each supplying sectir are gien in column three

Note that dired increase in housctwd demand (column one) and their indirect currem itcomin mpact (column two) aflect. primarily. non-metalu wirking weters The only important exceptuon to the excur in atutemobics and wher consumers durathe wetors these elements are usually much kes important during the early lages of modurrat developmemt the saptal impact coluinn three). "h coure, wheatert in metalmorking and construction.

The current consumpteren and aptial tormatern wetorn in ina. demand are in fact interrelated through urmeent tevinological requirements. In the abserice if ide capacity, our increase in household comsumptuon required

Aincraf and perts

Simpa. Iraims, Iralers, and cyctev
Motor vehkles and equipment
OWice and compuling machine,
Service indusiry matine-
Horusebeld applancer
Radio, tekersum, and communcalon equipment
Batieries x-ras, and engine detertal equipment
Fecirc lighing and wiring cyupment
Fhetronis womponent, and accesores
Material, handing machinery andel equipment
Spectal induars mathinery and cyumpeni
Consirisitun. mininga, and olfokld machinery
Farm mathnery and cyumpint
Engines and hurhuse
Machine thop produs
Optial, ophitalonc, and photographis equipment
Scientifi, conirollong insirumenis and black.
Flectrical apparallis and netors
Metalworking machinery and equipmens General induntial mathinery and cquppinens Hardware, plaling. valles and wire products Stampings, xrew machune producs, and holls.
Healing. plumbing and whetural netal producis
Autominte repair werices
New and mainienance construction. glaw. vones and clay products
Primary iron and veel minone and manufacturing

Totals

	1	2	3	4	5	6	7	N	1 tailloms of	
									y	10
1	2419	20	25	17	16	6	56	1	2	2
2	5	251	23	1	2	4	1	1	1	1
3	灰	52	6074	2	24	10)	4	54	2	2
4	7	1	5	144	1	2	4	1	1	11
5	4	4	11		16	105	5		2	
6	24	20	1		144	41	1	4	1	1
7	$14 *$	\%	12x	22	x	4	114	K	7	42
\hat{H}	44	6	147	2	1	1	4	54	68	1
9	21	14	101	10	16	W)	71	54	94	21
10	78	1	22	91	1	1	1089	21	\checkmark	162
11	5	16	6		1					
12	N	1	15	11	7	2	5	1	1	2
11	5	21	14		2	2	2	1	2	1
14	1	19	36		1	t	1	1	1	
15	21	114	K4		4	1	1	2		
16	129	14	151	6	. 1	5	7	14	5	4
17	2*	1	6	1	1	7	16	1	1	2
18	14.)	7	11^{7}	K	29	111	16	7	7	14
14	47	126	56	53	211	152	101	18	W0)	89
27	252	21	264	22	\times	31	H	24	15	17
21	141	59	114	15	16	4!	10	27	5	4
22	145	46	850	16	64	127	81	13	46	42
21	254	21	720	26	\mathbf{N}	147	117	41	66	65
24	4	172	26		41	47	5		6	2
25	12	10	1s	4	6	7	1)	1	5	5
36	110	71	486	20	16	70	88	28	48	122
27	425	451	20114	54	161	286	64	56	163	62
T	4840)	1547	13511	579	1022	110	1620	470	686	716

a total volume of capital formation almost as great as the initial increas in final demand. Going one step beyond table 16, we could show that the capital formation in column three liself requires additional capacity and hence still more capital in the metalworking and construction induatrics.

Available capacity in the capital gends industries limits the rate at which comumer goods industries can expand. Furthermore, the production and installation of new capacity does not take place instantaneously: there are appreciable lags between the production of goods that go into the crealion ef new productive capacities and the utilization of those leading to all increase in current output flows.

Tmang or investmint in metalworking indtstrifs in A deviloping fonemy

An increase in the rate of output in one or several difierent sectors in any given year has to be preceded by a
sequence of investments properly distributed over a number of preceding years.

It is the tark of dynamic input-output analysis to describe direct and indirect intertemporal dependence among the level of output, inventment. and employment in all the different vectors of a growing economy. A dynamic input-output table, simplar in its structure to a tatic one, can be constructed. in which all flows of goods and vervices are identified not only in terms of their ectoral origan and destination, hut abso in terms of the time. for example, the year. in which the particular transaction that they dexcribe took place. The tolal output, the final deliveries, and the labrour inputs of each sector are entered on such a lime-phased input-output table separately for eact year. For purposes of developmental planning. seel demanded and supplied in the year 1966 has to be distinguished from the steel demanded and uupplied in 1967. In a wense, these are now different good. A dynamic input-nutput table descriting the development of a national economy, broken down, say, into twenty sectors, over a period of ten years, would have

insactions only

1	12	13	14	15	16	17	18	19	20	21	22	23	24	23	26	27	10	(iln
1	11	4	7	23	6	2	59	9	22	65	10	N	18	10	44	21	9759	12692
\leqslant	ψ	16	6	21	6	t	6	28	2	30	1	3	60	12	48	14	1117	1721
11	4	46	42	57	7	1	54	12	174	26	36	111	18	1136	67	54	13914	229 \%
1	4	2	1		1	1	47	4	1	1	1	1	4	4	(4)	7	IXth	2216
:	12	2	1		1		6	2	7	11	4	7	67	1	231	4	1984	$294 \times$
	4	1	4				4	4	K	1	14	10	56	2	2xa	7	2 4 *	3544
1	25	3	1	1	2	\cdots	41	55	2	4	6	1	6	6	$10 \times$	17	4755	(wit)
1	2	5	2)	40	4	6	5	15	2	5	7	3	6	119	47	K	6x5	1911
1	1	4	2	2	1	7	14	\%)	1	5	20	17	23	35	474	17	62	22N6
1	7	1				1	102	141	1	2	6	4	111	1	26	5	*62	2645
41	12	19	1	3	1			2	4	24	7	1	\%	1	$2 \times x$	4	625	\| 1×1
5	136	6	\times	1	10	3	H	x	11	36	14	1	31	4	45	11	2197	3 mmx
4	21)	173	12	62	6	1	3	*	N	2 x	22	1	$2 \times$	2	241	47	2214	10×4
5	-	54	42	31	1		2	2	6	x	7	4	19	1	19	24	2109	$2+14$
15	2	10	121	2012	*		1	$\times 2$	7	49	8	6	13	1	21	x	121	I(m)
17	11	14	17	67	111\%	2	$2 \times$	12	21	21	21	16	37	16	24	191	545	15×6
	h	1	1	1	1	N6	21	5	1	2	1	3	1	1	17	7	$129 x$	14.?
1	5	3	4	2	1	21	213	64	4	24	24	N	74	20	29	14	297	1.497
4	48	15	16	19	4	21	122	145	(10)	194	24	18	47	9	444	45	23 x	5107
Ix	(1)	51	45	18	11	x	45	65	? 14	$6 \times$	177	46	52	1	49	113	1841	36.25
71	141	177	141	71	16	1	32	$4 \times$	119	-3x	57	\checkmark	47	2	122	69	16.45	1741
3	46	41	20	y	17	20	65	56	N10	77	364	107	272	129	1217	(xi)	? 111	(H14
211	14	13	K1	51	11	11	67	W5	(10)	45	134	1115	16 ?	4	(194)	144	Nin)	110×6
11	$2 \times$	44	b	1	1		5	16	14	70	$5 \times$	41	15	\geq	6102	54	lines	$\mathbf{N 1 4 4}$
\geq	7	6	6	3	4	4	6	10	6	x	16	4	29	$14 \times$	511	$5 \times$	6456	7412
11	2x	12	31	26	41	61	46	$x 2$	2	66	42	57	115	111	7 XbS	ath	-40569	8112x5
120	211	479	171	22x	112	14	79	120	3×4	417	12x6	753	14.44	12	2700	S211	1*4? 1	(YMM)
984	946	1140	1102	9N3	459	284	1054	1975	1277	1547	2352	1115	3463	30x?	29539	72x2	157314	210444

${ }^{2} 0120$
10) rows and 200 columns. The final deliveries - 1 each type of goods, to consumption and exports, as - ell as the imports (entered as negative figures), will be blered in such a table in the form of a dated bill of "ds wowing the deliveries from eath sector separatels y each year.
Imevement, i.e., additions to the stock of canital gond, enductively employed in various rectors, can now be hilted out of the externally preseribed column of tinal mand into the main body of the input-output table orribing interindustrial transactons. A rise in output 1 any given year requires creation of approprials rinductive capacities, ie.. additional invertment, in the "eceding years. If the magnitudes of the appropriate ipital coefficients are known, the direct and indirect thages between the final deliveries of one year and the irresponding input and cutput changes. some of them harged to the capital account, in the preceding years. in the computed through inversion of a dynamic inputuput matrix, just as the direct and indirect effects of
changes in the final deliveries on current interindustrial transactions can be determined through invervion of a ordinary static input-output matrix
becalue, as we hate veen before the products of the metaluorking induthes are ased manly for msevtment purposes. a proper inlegration , itell omput inla an over-all developmental plan depend 10 a wery large extent on proper linung Pollustrate he we widyamic input-output computatom, tor the purpose: we have

Ihe flow. capital and labour coelfir fents anourperated in that dynamie matrix. a ill some of our prevous examptes. are those of t inted States induatriesfor lask Ihe prodict mixe, in the houschold consumption, the export and the import vectur, ued in the computation ate bated on Indan inpul-output studes They weem forepresent farly well the structure of tinal demand whels prevatio in a developing ceonomy Vew produchec capalles created from the output of one year are assumed to he put into operation in the following year.

Aivcrafl and parts
Shim, trains, trailers, and cycten
Motor vehicies and equimment
Owice and compuling mathines
Servie industry mathinev
Househoted applanses
Radio, tekvisen, and communcalen equipment
Bateries. v-rat and engme cletrical equipy rent
Fleatrk lighting and wing equinment

Materials handling machinery and equipment
special induetry matheners and cympment I?
A unstriciten. mining, and oil-lield math.
Farm machiners and cquipment
Enaines and lurbines
Machine thop prodelist
Opikal, enthatime and motesgraphe equipment
Sientitic. condrollong invruments, and cheik,
t lectrikal apparatio and monor-
Metalworking matherer and cquintent
General induntrat maduners and cyap
Hardware. plating. blion and wire minlins
sampengs. wrew mathoce prenduts, and boll.
Heating. plumbing. and strukioral metal mindists
Autonktive reparr wrices
New and mantename constraten. glass. tione clay profintion
Primary irun and vect mining and manufacturing
Primary nonferrous metal mining and manufacturny
Minellaneous manufacturnanand selvice wetor,
Chemicals, plabllw, ruhber, Irugs, and panis
Lumber and wasd prodicts. maper and panermendints
Teviles and leather gath,

Cowl. petroleam, and whine
Radio. tekevivom hroadeating and communnalaom
Tranequetation and warchomons
Wholesale and retall trade
Oher business, ind perumal ervien
Terah

1	2	3	4	3	6	7	8	9	10	11	12	13	14	15	16	17	18

3
he United States economy, 1958
(1/urs)

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	lanaln

							18	171	19		4	29	1	222	17	$\begin{array}{r} 2875 \\ 13116 \end{array}$				$\begin{array}{r}2 \times 75 \\ 3360 \\ \hline 1207\end{array}$
23	27	28	44	23	111		340	57	35	73	239	375	238	2809	330	345	5807	1112		12317
9	10	8	14	19	14		111	162	35	28	212	127	106	316	239	65	¢	447	716^{\prime}	$27(x)$
3	2	2	3	2	3	251	9	37	7	8	90	39	65	228	161	28	4	1264	291	2541
										5	2	35	798	5			*			674
2	2	2	3	2	2		8	18	5	3	20	20	11	20	128	8797	38	38		9144
2	2	1	2	1	2		9	23	8	2	26	22	9	16	129	69				3411
8	10	7	11	7	10		35	77	22	12	90	89	49	85	47	1027	8			1700
						584									21	9				614
138	138	138	254	193	150		488	662	230	280	702	842	48.3	7148	280					9122
106	31	10	82	15	13	584	1899	617	291	272	2967	4664	2230	3750	929					19181
1		.					1432	183	182		42	5	2	1017	2331					5212
							240	1	3					12641	9					12895
N	7	3	8	3	9		46	130	42	11	154	184	46	84	3721					9545
1	1	1	2	1	2		9	44	7	2	59	29	12	24	4.3					261
13	11	8	14	8	15		104	198	58	15	432	233	94	192	1183	11		95	32	2900
147	52	53	45	44	88		294	603	208	104	658	540	250	491	15623	184	11			21567
289	691	302	643	488	690		136	2605	523	387	168	323	94	337	3516		38	2604		19171
94	10*	71	113	81	112		370	1527	622	150	1340	822	460)	842	848					8766
14	17	12	20	12	21		617	233	70	26	421	296	134	256	781			3 N		3193
4	11	8	13	9	11		37	77	22	13	$\times 7$	92	52	88	43			219		902
60	41	35	57	36		251	253	751	189	58	1126	678	267	838	1251	11		1055		7174
1.91	786	596	955	585	946	6690	4134	6533	2499	967	6996	7317	3981	20384	50153	3258	17402	27491	9599	140750
14	12	9	14	8	15		82	192	64	19	365	248	105	206	6904					8421
25	28	20	32	21	31		114	254	73	36	351	301	157	280	233	6519				8779
2	3	2	4	2	3		10	21	6	4	23	24	14	23	26	9		561	90	856
10	12	9	15	10	13		53	89	27	15	107	104	58	100	49		135			797
38	62	38	63	32	61		132	286	81	60	302	452	296	420	143	1179		2556	553	$73(1)$
							1				3	2	1	8	4			$2{ }^{(1)}$		$\stackrel{204}{21}$
5	5	4	7	4	6		18	41	12	7	47	49	26	45	25					359
1	H	1	,	1	1		4	8	2	1	4	10	5	9	5					71
32	38	29	46	29	43		149	289	86	46	335	345	186	664	466	121	5794	16?	24.	9310)
20	259	195	313	199	293		858	1961	566	317	2285	2357	1272	2159	1187				2	17297
169	2369	1792	2880	1835	2728	8360	12020	17851	5997	2923	19662	20703	11501	S0645	(1) $\times 2.3$	216.31	65112	37819	11311	915361

Airctaft and part,

Ships. Trains, trailers and cycles
Motor vehicles and equipment
Office and computing mathines
Service induntry machines
Household appliances
Radio, television, and communazation cquipment
Batterics, x-rats, and enginc electrical equipment
Hectric lighting and wiring equipment
I lectronic compenens and acceromico
Materials homding andeheners and equipment
Special induat! mathriers and cyupment
Construction, minnge and all-fichd machiners
Farm machincry and equmpment
taggines and lurbines
Machine shop products
Optical. ophthatmic: and phetographic cyuipment
Scientific. controllug invormeris, and block,
Flectrical apparatun and monom
Metalworking mathoners and cumbent
General indmutal mathoners and cumpment
Harduale, platmy. valhes, and wie product

Heating. plumbing. and tructural metal produch
Athomentere repall ervice
 dall prodicts
Primars won and veed minne and mambaturing
Promars nomberroun metal mining and manalatiaring
Mixeltancoon manofatirrong and wersice wetor
Chemicals, planco. mbbel, drugs, and pailns
I umber and weod prodicis. paper and paper problucts

Textiles and keather good
Ford, tobatoo, and metal contaner,
Coal, petroleum and milnic-
Radio. IV broadashing and commonatams
Transportation and watrchousing
Wholesale and retal trade
Other businew and perwonal wervices
Totals
T

\downarrow
nited States hconomy. 1958
rur

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	10	31	32	3	4	35	4	17	. ${ }^{\text {a }}$
											. 10												
	.																				(0)		
	.	. 01	.		. 01	. 01	. 01		. 01		. 01	. 01			. 01	. 11	. 11	. 01	. 11	.13	. 12	11	
	.	. 01													. 01				. 01	. 11			01
	.									. 03	. 03						02					01	
-	-		- 79			
\cdot	\cdot	.	,	-	-	-	.	.	-					01			
.	-								09			
. 01	. 03	. 04	. 01	. 02	. 03	. 03	. 04	. 04	. 02	. 07	. 02	. 05	02	02	02								
. 01	.	. 08	. 03	. 02	. 01	.	. 01			. 07	. 06	. 05	. 01	. 02	. 09	. 11	. 02	01	. 02	. 01			
.	-05			. 01				. 11	105				
											. 01							. 12					
-	.	-	.		.	-	-				.	.							. 1				
\cdot	-	-	01										
. 01	. 02	02	. 01	. 02			02		01						01	. 01			01				
. 07	. 15	. 03	. 02	. 05	. 15	. 12	10	11	\%		. 1		01	. 12	. 02	. 1	. 01		4	12			
. 01	. 02	. 03	. 01	. 02	. 02	. 02	. 02	. 02	. 01		. 01	. 03	. 04	. 04		. 11			.17			. 3	
		. 01	.								. 02		. 01	. 01	$.10$	$\begin{aligned} & .02 \\ & .01 \end{aligned}$. 01	01	$.02$				
. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 03	. 01	. 01	. 12	01	03	02	. 01	. 01	. 03			. H	
. 01	. 15	. 17	. 10	. 11	. 17	. 14	. 14	. 13	. 11	. 85	. 14	. 17	15	. 19	. 21	. 17	. 11	19	1.04	. 29	. 05	. 29	. 10
.		 01	01			15				
\cdot	-	. 01	.		. 01	.	.	-	.			. 01	. 01	01	. 01	. 01			. 1	.99			
. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01			. 01	. 01	. 01	. 01	. 0	. 01			. 11		. 03	. 11
-	-	.	-	.	-	-					
.	. 01	. 01	.	. 01	. 01	. 01	. 01	. 01	. 01			. 01	. 01	. 01	. 01	. 01		. 0	01	. 01	. 02		
. 03	. 05	. 06	. 03	. 04	. 06	. 05	. 05	. 04	. 03		. 07	. 05	. 0 S	. 04	. 07	. 05	. 03	. 02	. 03				
. 28	. 47	. 50	. 25	. 32	. 52	. 43	43	. 40	. 32	1.06	. 53	. 42	. 46	. 50	. 58	. 48	. \mathbf{M}	47	1.97	1.94	. 17	. 32	. 12

The inverse of the dyuame matrix is eswentially smilar to the inserse of a balte input-output matrix. It describes the changes in the sutput of each induatry required. direcily and indirecth. Wdeliner we additiona' unit dior example $\$ 1$ mulloon worth in fixed bave vear presel of the ouput of ame geven mdaury for final demand In a dynamu wiom that hange cannos how ever. be dexerited thy a ungle tigure 11 annons of a whole train of ucesole change in the oupur of the imdovery in quevtion. dotribuled wei a number of seare preceding the year in which the final delwery wadrally to he made The sequence of hgures, thoun telow reprevemts, for example, a ungle element il a dyamis imere It thou,
industry io final demand in the lave year. 16 , the vear 0
Theoretically. the chain strelches hackuard wer an intinte number of years It, earlier memiter, houeder. are wo small that for all pracllal purpone the call walely he neglected

The large negathe entry in the lastser ed the year In which the delvers in linal demand is .allally made. requires coplandion it refleas an abrape radialion in the ublhatien of prevoult aceumblated preaductive capaties that would bearme dele a woll 小 the tinal delwery has heen made Actlally, all mareax in the firal delmery of electrial equpment and ins, uments in year 0 1. mone likely to the followed by an equal, of

powably even a greatet increax. projected ir planned lior the liblowing year, 1 e. for year 1. The effects on the industry in quevton of these iwolement, if a given dynamic. that is. lime-phased. bill of goond, houkd he superimpoed. They are desribed. in thin imsance. by a summathon of the two series.
the succersue changes in the oupul of the auto, atrerati and intermediate metaluorking indmentes. dotributed over the preceding mine-year period. that would the required, directly and indirecily. in order twenatle the national economy to deliver an addilional dellar', worth of products of the electrical equipment and imitruments

Table 15

EXFFNDTLEE ON HIXHO APIIAL HOIPMFNI (IXIITMNG CONSTRICTKN) He REPLACMENI AND EXPANSON Of CAPACIIY. US. HCINOMY, 195\%

- Milluens of detlars)			
(iaptal produc me wame	IThal Aviduapetal rxpentiture.		tat
Aircrafi and paris	1*)	291	(4)
Sheps, trains, irallers and obcles	1.175	Wh	214
Motor vehules and eyupment.	3,561	1.027	54
Olice and computing machine,	1.017	174	
Service indistery machines....	950	27x	672
Houschold applances	41	20	65
Radio, television and communtalion equipment	1.6m	34	?
Batteries, v-ray, and engine electrial equipment	81	14	44
Wlectic lighting and wiring equipment	25	9	16
Flectronic components and accesorien	27	12	15
Materiats handling machiners and equpment	140	197	153
Special indusery madiners and equipenent	1,467	\$14	64x
Consiruction. mining and oilticid mathinery	1.316	61\%	
farm machiners and cqupment	1.670	1.34n	2 H
Engines and lurbore	576	216	41
Opticat. ophihaloms and phonographis equpment	161	* 7	112
Scentitic. controlling mistrumens, and cfaks	5w	176	8.4
Ciectrical apparalus and wettor	1.415	54.	1.10*
Metaluorking mathner and cepupment	1.152	671	474
Generat onduvital matimers athe cepupment	1.151	54	15
Harduare, plating. volsea and uire prostisis	164	78	*K
Heating. phomtinge vematurat metal prodiacts	7\%	113	i41
Miscellancous mathataturng and xertae witors	1.115	4 4	646
Chermeats, nastis, luhter drus and patms .	53	17	4
	4W	119	019
Tevtiles and leaher gamb	44	17	$!$
Fond. tobaces and netal whimers	11	5	5
	62	72	**
Transportation and warchooming	$1{ }^{7}$	23	274
Trade and wivices....	1.74	1.76	- 1 Hem
Toal	25, $\times 1$	11.770	12.046

Tahle in

1. Aincrafi and parts	5	10w	29\%
2. Stipe, trauns. tratkrs and bycks	145	313	424
1. Metor veticlev and equpment	1.840	1.14]	1.162
4. Ofice and computing machines	12	110	较艮
9. Servke applanuer	49	114	446
6. Househodd appliances	4×1	34h	226
7. Radm, televaion and commumation cqumment	271	401	1.3.4
* Watteres *-ray and engine clectreal cquipment	52	171	+
9. Fectru lighting and uiring equmpment	6.1	149	2w
10. Itectronic components and dccersmes	. 0	194	110
11. Matertalv handling mathmery and cutapment	0	In	1.154
12. Specal indusiry maxheners and equpment	4	7	2.76 m
13. Converimimon. mining and witehd mathoers	0	$5 \times$	7 H
14. Parm mexhinerv and cyupnemi	2	72	2.647
15. Inelmev and lurbioce	24	\%	722
16. Machine vhen perducts	0	111	11
1. Optal. aphthatmic and phetugaphis equpment	4	14.3	H1
18. Sentific. watrolling indrumenis. clecks	70	212	* 14
19. Iketrkal apparatue and motor	3	175	1.176
2. Metaluerking maxheners and equmpment	6	14*	1.442
21. General indistrial mathinery and equipment	0	IIN	4*
22. Harduare plating. whes and wire prodents	76	4x2	413
23. Stampings. write matherv predesis and bolts	59		116
24. Heating. plumhing. vratural netal produch	14	241	1.014
25. Autommthe repar wrics	W47	1.317	11
	72	2.774	26.119
27. Prmary iron and vicel mmong and manutalluting	4	1.413	1.48
24. Promary non fircous metal mmong and manufaturing	-	72.	234
29. Mixellaneom manuficturing and wowke wotors	1.276	1.14\%	141
9. Chemmala plasti s ruhber drus and pamts	1.02\%	4.1×4	41
11. Lumber and werad predicion papa and paper moduction	1,205	5.170	1.64\%
32. Textles and leather goms	1,265	6.176	57
33. Inal. whasw and metal wotatior	10.46	22.768	1
43 Cial, metroleum and ubluc,	3.116	7. ma W	42
35. Radmo and televsion broadionting communtations	782	1.641	8
3. Tranamplatern and warchowing	1.712	4.222	535
17. Whetevale and retal trade	12.113	1538 mm	11
9\%. Other buanew and jerwenal crumes	17.365	26.624	2,019
Intal	67.33	$112.64{ }^{-}$	\$1. A (th

The prodinine capactios built up for the delivery of an additenal dollars worth of electrical equipment and instrument, in year 0 are 16 wet Iree a they were in the pevoras csampte lmade they ate uilied to till add-
 The vum-thtal it ino supermiponed fram. of odditemal atpulval athow. dircraft diti imermedate medworker-

 ane and momement, in gear it and thother dollais Whth in doblome equipment and invrument in sar I new thincul to be meviluce in sear 0 Irue. $1 t$ tecomes astixe in the year 1. However. the requirer ents octaked ty vamequent deliveries to final dema id in
vears 2, 3 and w on will obverusly posipone the final liquidation of do capathes indefimiely.

The combined total eflects, on the output level of a partisular induatry of aty gisen requence of timat
 call thu the compuled to vammong the porperty neghted dements of the dyambe mere wat the year

The maser, that n. the generalad momermal whtman
 full in tahlel' Ah ane at atomend reatmentat will.
 shange, in the sutput level ot the industry named on the keft of the row. Ithere thanges reprexet the required direct and indirect contribution, if that meduary to the
delivery by the indusiry listed at the head of the corres－ ponding column of one additional unit of its respective output to final demand in the last year．year 0

As in most bher mput－output computatoms．the unit in terms of which the cutput of eath xctor 1 ，measured fankes peolied wherwix）in a dellar，worth in hax year prices Hawe edor price are the price in term，of which we compled the have xt，of kethmal wetticients that wed inte the comorutlen if the dyamm input－ outpul whem \mathbf{W} hereve wome of the cotlicients，for example，the latheur uxthemes or the destrie energy consumptern cettivents，ate devorited in phowal unms
 outpul and input level in the invere of the dynamie matrix will be expresed in wich unis．for Inedentally． there exas no whection to the vmultaneoun tise at hase year price measures in wome parts of the syotem and direct phyncal meanures in others．
we have to compute a properly weighted anerage of the corresponding element，of the dunamic in－ verse．

The final revuls of such a compuldan are vam－ manted in tatce is 11 ，how，hew an addlional com－
 price of houxhoded cornumptan，of exports．or af
 thace metaluerting vectors．af the teroows metath and of the comberthen mblutrien wer the mane－sedr vetch at the end of whish the fllal delseres are altolls to be made The product maxi，axrimed to the heriachold comamption bundle，the export hundle and the import bundle are based on the proseled componallon of these three vector，for lodha ill 1970

All sequelles of output changes call be of course transated intu correspunding me－vear requences of changes in illestment and employment．These are

Table 17
Dyamic invers Final demand，in year I．lior product，ol industry

1					
2					
1					
4					にここここここここ
5					

The fotal annual final hill of geods profected or planned for a paricular national economy is usually dexrited in terms of everal different hundles of goods destined to satisfy different kinds of final demand．For purperes of present analyws we distinguish three such hundle．One． by far the largevt．conmon of the combination of gords and server aborited in prisate hourehold eonsumption． another is devtised for export．and the third reprewents imports．To detirmine the direct and indirect effects of achange in the keve of hourehold con umplion of of expris and impors．in alis glen year．on the time－ phased production progiamme of a particular industry． we have only to add wgether the eparate effects of the final deliseriev from each induery that make up that particular bundle of tinal demand In other words，
entered in table 1 X ．loo．In interpreting these investment and employment figures，it is important to remember that the enure computation s based on a reduced input matrix in which only the live listed industrics were in－ cluded in group I．all other，being treated as belonging to group II．Hence，the capital and the labour figures shown lor each of the five selected industries satisfy not only If own requirements．hut also requirements of capital and labour for group II industries supplying intermedtate inputs（o）it．

I inally，we wish to show how the elements of the dynamic inverse are used as huilding blocks in the combtruction ol a developmental plan for metalworking industries．In actual planning．we must sum all the direct and indirect requirements for metalworking outputs
generated by the whole chain of annual final bills of goods pecified wer the entire stretch of time covered by a particular arer-all profection. Becaluse of the retroactive effects of eath annual hill of goodh, the gisen projection of the final demand must be extended for a number of vars, beyond the tan year of the peried of tume conered by the detaled programme of sectorat productions, inrestment. and employment.
Table 19 presemb such a hypothetical production programme and inestment programme for the three metalworking industries covering a tume span of ten years.
The equence of annual deliveries to tinal demand that these production programmes are imended to serve was propected for eight years beyond the last year covered by the detailed setoral programmes. It is described in terms of leveh of household consumption, of exports. and of imports given for the first year and growing at three constant, but different prescribed rates for the years that follow. For the first year, the relative magnitudes of
the total levels of household consumption, of exports. and of imports are set at 20.0: 1.0: 1.5 (which implies an aggregate final demand or grown mational product of $20.0 \quad 1.0 \quad 1.5 \quad 19.5$. The exces of impors above exports implies foretgen add or private capitat intow. Comemption is anumed to expand an an annual rate of 4 per cent and crports and imports an the rate of 3 per cent.

The time-phated direst and melirest ontpon requirements corresponding to sine unit of annalat fital deliseries of each hind are show in table f8. Changes in the anmaal levels of each one of the three componeme of timal demand and the corresponding growth in the ontpon lecel of each one of the three melalworhing induntien are shown in table 19. Total investment and employment in each sector is shown for each year. too. The projected growth curves of the three components of final demand extend beyond the last year for which the sectoral production programmes were actually computed. While these later

Relative rates of growth of consumption, exports, imports and of labour and capital in three metalworking industries

IN SEIFCTH HINAL DEMAND

Privale consumption

	of oulput:	8	7	6	5	4	3	2	1	0	*	7	6
	Ouipui" Labour" Capial	(0)OI (0)96 0×1	$\begin{aligned} & \text { (ONO2} \\ & .0201 \\ & .0 \times 12 \end{aligned}$	$\begin{aligned} & .0015 \\ & .0429 \\ & .0 \times w 18 \end{aligned}$	$\begin{aligned} & 6010 \\ & 10410 \\ & 10 x) 7 \end{aligned}$	$\begin{aligned} & \text { (0123 } \\ & 1477 \\ & 1 \mathrm{k} 19 \end{aligned}$	$\begin{aligned} & 01041 \\ & 1864 \\ & 1027 \end{aligned}$	$\begin{array}{r} .0144 \\ 1.2553 \\ 10493 \end{array}$	$\begin{array}{r} 1011 \\ \times .8320 \\ 11657 \end{array}$	$\begin{array}{r} 1102 \\ 4.616 \% \\ 0717 \end{array}$	$\begin{aligned} & \text { (170)t } \\ & .0122 \\ & \text { (mw) } \end{aligned}$		$\begin{aligned} & \text { mon } \\ & 0891 \\ & \text { (a) } \end{aligned}$
	Oupal I aboult Capial	$\begin{aligned} & (6 \times 0) \\ & .06 .40 \\ & (0 x) 5 \end{aligned}$	$\begin{aligned} & .011 K \\ & 11340 \\ & 0011 \end{aligned}$	$\begin{aligned} & (613 x \\ & 2 \times 50 \\ & 1024 \end{aligned}$	(N)NO 6(1)30 (x)S1	$\begin{array}{r} 0164 \\ 12 \times 31 \\ 1110 \mathrm{x} \end{array}$	$\begin{array}{r} 10394 \\ -6 \times 30 \\ 11225 \end{array}$	$\begin{array}{r} 10 \times 29 \\ 63540 \\ 10926 \end{array}$	$\begin{aligned} & 1617 x \\ & 5430 \\ & 10040 \end{aligned}$	$\begin{array}{r} 10 \times 27 \\ 6.27+1 \\ 0527 \end{array}$		$\begin{aligned} & \text { (1) } 23 \\ & 1723 \\ & \text { (0)15 } \end{aligned}$	$\begin{aligned} & .1048 \\ & 1658 \\ & (0131 \end{aligned}$
	Ourpul Labour Capilal	$\begin{aligned} & .0 \times 03 \\ & .0224 \\ & .0 \times 02 \end{aligned}$	$\begin{aligned} & .0066 \\ & .0474 \\ & .0013 \end{aligned}$	$\begin{aligned} & 6012 \\ & 10 \times 0) \\ & (0 \times 17 \end{aligned}$	$\begin{aligned} & (x) 25 \\ & 2121 \\ & (x) 15 \end{aligned}$	$\begin{aligned} & n 52 \\ & 4510 \\ & \text { (n) } 3 ? \end{aligned}$	$\begin{aligned} & .011(1) \\ & .74119 \\ & 1076 x \end{aligned}$	$\begin{array}{r} 02+5 \\ 2.1117 \\ .1152 \end{array}$	$\begin{array}{r} 16419 \\ 5.5478 \\ .14417 \end{array}$	$\begin{array}{r} .017 x \\ 7.9745 \\ .0544 \end{array}$	$\begin{aligned} & 6003 \\ & 0.285 \\ & .0 \times 02 \end{aligned}$	$\begin{aligned} & .007 \\ & .0 \times 104 \\ & .(x) 04 \end{aligned}$	$\begin{aligned} & 10015 \\ & 1265 \\ & 0 \mathrm{KOH} \end{aligned}$
$\underbrace{\frac{5}{2}} \frac{\frac{\pi}{2}}{\frac{2}{x}}$	Ouipu Labour Capital		(B)15 (0660) (1) 112	$\begin{aligned} & .0031 \\ & .1400 \\ & .0025 \end{aligned}$	$\begin{aligned} & 1067 \\ & 2975 \\ & 10054 \end{aligned}$	$\begin{aligned} & .0141 \\ & .6271 \\ & .0113 \end{aligned}$	$\begin{array}{r} 0.16 \% \\ 1.3737 \\ .0247 \end{array}$	$\begin{array}{r} .0548 \\ 2.442 .3 \\ .14 .39 \end{array}$	$\begin{array}{r} 1 \times 48 \\ 8.4642 \\ .1522 \end{array}$	$\begin{array}{r} .2635 \\ 11.7914 \\ .2111 \end{array}$	$\begin{aligned} & .0019 \\ & .0001 \\ & .0007 \end{aligned}$	$\begin{aligned} & 0015 \\ & 00452 \\ & 000 t 5 \end{aligned}$	$\begin{aligned} & 0040 \\ & .1002 \\ & (0032 \end{aligned}$
$\frac{x}{8}$	Oupur Labour Capilal	$\begin{aligned} & (\mathrm{OXO}) \\ & .0153 \\ & .0 \mathrm{MxO} \end{aligned}$	$\begin{aligned} & 00015 \\ & .0326 \\ & .0004 \end{aligned}$	(0)IO .07(1) (MXA)	$\begin{aligned} & .0021 \\ & .1477 \\ & .0019 \end{aligned}$	$\begin{aligned} & .0144 \\ & .3148 \\ & .1040 \end{aligned}$	(X) ${ }^{(2) 4}$.6546 (MON4	$\begin{array}{r} .0222 \\ 1.5407 \\ .0198 \end{array}$	$\begin{array}{r} 0191 \\ 2.7114 \\ 0.348 \end{array}$	$\begin{array}{r} .1526 \\ 3.6466 \\ .146 * \end{array}$		OMM . 1423 (MOS	$001 ?$ (0195 (M) 2

[^3]projections were used in the computations, they are not reproduced in the table.

The total levels of consumption. exports, and imports, together with the corresponding levels of investment and employment in the three metalworhing industries, are abo depicted in figure ! The vertical sale is logarithmic. so that the steeper slopes represent higher. the gentler slopes lower, rates of growh.

The medaluorking oulpuls showis in tahle 19 grow more rapidly than the asomed rate for housholds, t per cem. (lantortumately. the ditferences in rate of grouth are loo smatl to be apparent in ligure 1.1 the reatively high rates of growh of all metalworking induseris are explaned by the fact that bothexpors and impurts ate in bas calse anmed to expand lew
 cemb. Susce mpons comtan more manaliatured metal product, 1s.at etther exports or domentic consumplion. their elathely lower growit rate has to be compensated by acceleraled expansion of domestic metalworking indumbicu called upon to cover a greater and greater
proportion of the total demand for manufactured metal products. We have here a typical instance of import substitution.

The assumption of a constant rate of growth for each component hundle of final demand was med only to simplify the computation and the presentation of its detail. The figures contained in the numerical inverse of a dy namic in put-output sytem permit ins to determine. through a smple proces of addation and suntraction, a mutually conswent set of time-phased production programme correvpondme 10 ally given also, fimephased combinathon of limal delveres.

The time protile of hat deliserier representsa country's spectice gosk and propectams and mon be talored to its pectic ned and policies. deally. of cour es. the dy namic merse 1 alf should be tallored io the pectal leatures of each dechoping ates thr requmexpert fudgenent as (1) the appropriate uput-ntpul and apial cocthicients (o) choonc as a biss for planming Practical planners already know that collection and selechon of basic data is still the mose difficult part of their tark.

BI NDHES IV Y ()
liment

Table 19
Annual shquences of indistrial outputs, iamone and captal mfolirements for assemed anntal. Rates of GMOWTH OH final demand hundiesa

Year		1	2	1	4	5	6	7	s	9	10
Houschold consumption		20.0 mon	$20 \mathrm{XOM})$	$21.60 \times(1)$	22.4000	23.3000	24.2001)	25.2000	26.2000	:7.2006	2x.2mot
Exports		1.0000	$1.0300)$	$1 \mathrm{Ck}(\mathrm{M})$	1 (tax)	1.12(x)	1.150	1.1800	1.2200	1.2(n)	13×1
Imports		1.50 mm	1.5450	1.5900	16150	$1 \mathrm{fr(0)}$	1.7250	1.77(\%)	1.8300	$1 . \mathrm{X90} 0$	1940
Railroad, farm, and construction equipment	Output	.1511	. 1543	1613	. 1681	1963	20.4	2091	2145	222x	2911
	Labour	13.22(x)	1.5900	14.0200	$14.71(0)$	171701	$17.71(x)$	18.3100	18.76m0	14 4Mn)	219×101
	Capita!	.096:	.1011	1144	11994	127x	1317	1362	.196	1490	16.15
Autos. alreralt. and intermedtate metaluorkers	Output	. $96(1)^{4}$	9978	11421	1.1031	$1162 x$	123 mk	12442	$13145 x$	$1871{ }^{\circ}$	14.9
	Labour	72.4400	75.7310)	$79.1(1)$	$\times 1.700$	x $\times 2 \mathrm{frg}$	प1 f(a)N	$951 \mathrm{Mm)}$	991/(0)	1142 fra	104 450,
	Capial	6127	6362	6fot4	7017	7414	7645	7497	W:6	$x \rightarrow 54$	19194
I lectrical cyupment and insiruments	Outpur	4419	4572	4744	4967	5321	5512	56×5	¢kx'		1,515
	Labour	3×1100	$34.430)$	$40.910)$	42×400	45 SMAN)	47.45010	4403 NI	61) THM,	52 ¢fukt	an 1601
	Capital	2715	2×10	2936	. 3174	129	1405	391\%	36.45	1772	+144

[^4]
10.7 .74

[^0]:

[^1]: 14. are "ol set awable for mant cobonies. A se was develone fir the Indian economs on a taily egeregated clawatialion havi and xets of lofal aphal andikent, Correvponding to the colum
 prelimenars onersumparion uggests that the Japanese capetal e aticients are of the same order of magnilude as these for it I nited Slates Thene fir Inda appear fo be roughly double th I nied Stales ones. The source of the differences, real or statistica has still whe studied in some detail.

[^2]: One can arguc that roughly the same proportion of carital sto must te renewed each sear since capital stock requirements are. lurn. proporioned to ouput, one can then justify converting tl replacement captat flow, to wethicents and adding them tir il coefficienis of the orginal fow matris. This prosedure is obviously gross oversimplithation. Farticularly if appled in analyos of highly industrialized economy. In many instances. it is difficult disilnguish replacement from expansion expenditures, and the dev hopment of iew technologial aliernatives makes replacement matter of economic advantage rather than pure iechnical necessit In developing countres. where a large proportion of equipment is recent orgin, and new capital goods are relatively difficult to obtat it will generally be rational to restrict replacement to minimu level close to that required by absolute technological necessily

[^3]: - Benlar of ontpuit required per dollar ina leave in tinat demand. - Dollirs of investment required pur dollar at tinal demand.
 - Man years required per thousand dotlars of tikal demand.

[^4]:

