TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

01379

Develoment of Mownowng
Incusmes in Devoruray Commies

Reports puesconted at the United Nations
Interresional Smporimn, Abocow
7 Seprainer-6 Octaber 1966

1

CRITERIA AND BACKGROUND INFORMATION FOR PROGRAMMING THE MACHINE-TOOL INDUSTRY

Secretariat of the I'nited Nations Economic Commission for Latin America

Industrially developing nations which are starting the expansion of their traditional industries must evaluate the extent to which capital goods and. whthin this vast branch. machine tools, should be mannfactured in the country.

This problem has not been posed with a view 1 altailling total mational antonomy as regards the elaboration of apital goods. but mather to determine. quantily and qualify the type of domestic eflort to he realized in front of global demand. a relatiomship which should be considered under a certain discipline.

One method of tachling the subject might consist of finding out whether there exists a useful historical corretation betaeen natlomal mamblacture of machine tools and the vie of the mathene inventory used by the mechatimal industres.

This hould be followed by broad convaleration of the

 amalon would requme In pathe dillerent wolatom may be appled to the e.me prohlem.

 65 per cent of latil fixed mertment). they hate now become the mont papolar worh invorument. an were

 ing areas porme attenton aho to the stategic whe they have been acyuring withon motis! technical and ecomomic ewlum品
 dynamic lictor determmong the importance of national manntacture of madnose bow and of the magnitude of the incollorics uperathe on the mechanical ind atries. this indirects shes a an apped of demestic participation on apparent comamptom. Ita succemate sectoms deat with the induaty in charge of the comstation of the ee machmes, summing up its peculiar techecial problems equisalent to the various stages of development. The last section is aboat the usually admatted dependency between the machine-wol manuliacturer and the rest of the mechanical industry, that dependency mereasing in quality, volume and technute as progeres in made on the construction of more complex units.

It should be pointed out that the conclusions of this essay must be interpreted as global, because though a
preat number of the varable in the comstraction of machone tond hasc been tahen mon accomm, there are still many more. Howewer, once the rewts of the follow-

 (lassification of mashine troh

Because of the great nomber of dinerest mberpetations with regard to the lype if mahites included as such. machane toon are here detined a metaluotimg machines in cold amd mhe and the metal-cuthing as
 Worhing Word. platics and molmetallie materials. Within the catcent ol metalworhme madmers. those

 comvtitule a

In pratace bor the ane a well of for the combtactor,

 bamable widely ditiering in outhe contros. pardice taits. ve and wher fictors. forden be watwh ant wale of magntude conterning the mombe of sariable applazable (a) each mathome. (wn wernal hase been adopted
(a) I wame for exh lype af mathone bater for ex ample. certain vatiater vallomenty dillememtiated 1 .

(b) Relate cald of thone vambles la leme basic con-

 mechanls. which da nol exat mecomarily in all the varable

On the banis of thexe cratertal. It has beon powhle to quantily, for each machine the most important typer and models which lagether comstate the large tamily ol machme tools in the combractore bat morld unply Table 1 , how the reath obtamed 1.097 mann tariants. 776 of which (75 per cent) correpond to the catcgary of metal cutung machanes, and 261125 per cent) 1.9 metalforming machines
The information in table I cannot be fice form whicetive interpretations and, also, from incomplete data regarding some of the variables, in which cate figures

Table 1

Nember of typis and models of machivi: IOMS IV III WORI.D MARKFT

number of $1 / r^{\circ}$
amd man

Metal-calting mathocs	106
Lather	63
Milling mathines	46
Drilling machine	32
Shaper and planers	27
Itheatiog machmes	19
Sisw	94
(icor-ctuting mathom	84
Boring machines	131
(irinding machines	43
Tool-grinding machones	10
Broaching machines	33
l.apping and honing machines	46
Special mathines colr, uned hy vork unis.	22
	776

Melalworking machine	75
Mechanical prestes	54
Hydrantic presses	23
Forgeng machines	24
Metal-forming machunes in codd	85
Machines for theel	261
Total machune lools	1,037

should be taken rather by defall. But even with all the Imitations. he dita appear aceeptable for the purpose.

Another mportant factor which might hase been added in combinatom with the aboue ligures. to whain a grealer nurnber of vatiables, in quality. Howeder. at thas tige of bla dmathe. It has been deemed admable to amit it as meluson would mot aller whatantally the determination of an mdeath that points out the pereentage af hathonal manaficture of the varable in tront of their statiolical umiseres a a function of the numerical value of the machine-tooh insentory.

Participation of notional manufacture in redation to installed inventay of machime tools

Within the oder of idens mentioned, an endeanour will be made to determine national constructors possible reactional hehasour. measured it: the sariety of typer and models a a lunction of the numerial value of the enventory. Concepually, INO different anpects exist simultaneonsly whin an insentory: the serial lactor (purchange power. high population both. els.), and the vartey and complexity of the mechamial and electromechancal product mandiactured. In the measare that these lactors afe comsidered to be growing. the one as well as the other will urge for the utiliation of more improsed lechonognal productice means which in practice will be trandated mbo a progresome merease in the sariets of syme and modet of machines in une. This evolutionaly procen tahe place: under dilferent combinations of the elements taken into actount. with diree impact upon national mduns!. This implies admitting a priori that to equal numerial values of inventories. different actions may correplend on the part of the
 assume that mathonal manutacture of machane toots participates within mimmon and masmum limis.

To this end. it has heen pewthe to recombatiot the number of typer and modet of machme clabomad on

 such an antalysin is now circumseribed b. hownong the behaviour ol supply for conntrics wilh insentorics of less than 500.0000 units.

Almost all the asalable intomation derive from studes being systematically carried out in the region by the Economic Commismon lor Lation America (ECLA) on the mechanical industries in peneral and especially on machine tools. ligure I shows a summary ol the data, as well ats an interpretation ol its trend adjusted to Gomperti curve (curse 1). It may be observed that in Latin America, when inventories are of ies than 10.000 units. no cons raction ativities of machine tools have oceurred. a fact which is apparent. But when inventories comprise from 10.000 to 20.000 . the firs local intiatives are already sarting, naturally pularized on the manuFacture of smple machine of still delicient quality.

To attan the claboration of forly lo sixty variables of low-cost and how mit-wengh machene does not allo-
 this diflicull techatque, and in acherement in generally posible withom the support of all importan technological inflantimetue on the reat of the industry. This lime vage of apply of chememary machmes practically
 index. In in geat part the revelt of the trone incidence of small indians and the mans artame who hate protile ar ted in tha area dace whather pecthat condeloms. At any
 sign of underdeveloped comblios. the lad of all upera-
 with a limited lechmal apacts and fen yeans une, logether with wher wh medum and clesitted ategory, the first ones in !agh properlom.

Starting from a glean batalion of apply. lor example
 units. this become progeraisely comples as the increase in the variest of 15 pes and modet implics almond watematically higher standath of yodits whin an international pattern. In order to reach thone qualtative demands. techaically well-armourd bictorios and ellicient anxiliary industries ate requered.

Along curve 1 , a position that might be called of high mational elfort is clearly discemible exactly between points A and B. Should this position be related to the Latin American panorama, it would broadly represent the transition from under development to a satisfactory development of the mechanical industries. comprising under the concept of development the verial aspeet as well as the disersilication of mechanical produets. It now seem. whisable 10 admit that especially between points A and B dillerent ways may exist in connexion with the position of supply and that the previous and subsequent situations to these points would present further
stabilas. Such was would explatio, as alreads said. that

 voms "pool supply and .the. that the wherwable difler-
 loped combtry and another in the precenof dectopment.

dyamism in front of a given intentory. The complementation and relinememt of data be behatasd 1 b the near future will contim whether the hamberathbind In 'igure 1 thengh comse 1 and 2 ate ceal and applable

Reference:
a - France
b - Italy
c - Argentina
d - Brazil e-(Chile (Chile
$(1960)-537$ varieties
$(1958)-435$ varieties
$(1963)-144$ varieties
$(1960)-124$ varieties
$\binom{1960}{1964}-10$ varieties

Curve 1

0.81325^{x}

 $y=87.4 \quad 0.01638$

 $y=87.4 \quad 0.01638$}

Where: $y=$?ercentage of domestically produced types and models
$x=\frac{\text { machine }- \text { tool inventory }}{35,000}-1$

Figure 1

and the percentacie of bomestically prodi (ID IMpls Avo mall
that of Italy and France when they had a similar number of machines which served such important sectors as aeronautic constration. that of ships of more than 10,000 tons, and the manulature of other ditersified and complex canital goods not being developed in the two I ation American evotries. The machine-tool supply accompanied this process, with a consequent lurther diversifieation of types and models that those elatorated by Argentina and Brazil.

This and other examples woild be better represented by curve 2 land out empirically to illustrate those canes in which the behaviour of supply mairtains its maximum
of in produck. : lact which wa mol taken into account in this pretimnan! oullane

Starting firom , illation of more than $5(x) .000$ installed mits. it sean! be melewtand that though the technieal problem, the combractom mon hace combloue to grow. the magnitude of the marke and the mbtantuctare hat -hould exat in the een of the mednaty comathate lactorn
 requirements of mernal combimpton in an mataving and varymg m:maner
Despite the liat that the preceding notes do nom intend to lead towards the formalation of exact decsioms on the
problem under analysis, they are explanatory enough in regard to the philosopty to be followed by those countries whose deschopment depends upon signifieant apparent consumption of mathine took. There could not he important and prolonged expamion of the medtanial industry without a giadually increasing comtribution from loxal ind stries combtreting machine toots. The Traming of an evern partal allitude of participation in the domertic mandiature of the captal goods in gitestion is of vital importance nol onty for improsing the balance of payment of this item. but aloe for familariaation with evers chamaterinat problem in the elabomaton of machines. Manalictures mus be respomible and alfer user the pombility of direct contact.

When dealing with machone-tool manulacture different stages of supply development will be considered in an indired manner. that is. Showing wheh qualitative and varying production potentals may be attribuled to a specifie number of emterprises lypified by diverse struetures. From the lumblest to the well-cyuipped. generally knowing that such imitatives get consolidated in the measure that the insentory improves in its numerical and technological aspects.

Characheristic probighs of machine-tool MANTIACITRI
 Introduction tio the wubject

To facilitate research into some general laws. it seems advisable to apply a restrictice criterion to the miverse of types and model of machines, selecting those with more homogeneols and similar fahrieation problems. The machine uned in micro-medhanics, heany and superheary mechanion ate thas excluded. incomporating insterd the ones used in currem. mediom and vemi-heas mechanics, which are mose populat

The mit weight of the mathes shmed to appoximately ten toms the hagly yectialiaed typer, weh ar the jig boring machines. mached mots and ohtors, are not taken into acoumt. The same happens with the machines using immenal contool progiammers. etc. Deapite these redtictors, the ret comprine the majorty of exating Darables in the world matret and coner to a great extent the fahriatten interens of conntries with reatiacly smatl demand. concomtated on the most current typer of mathene (ows.

The binal whectise of this oulline is the anallas of ghabal mathe-tool mandiacturinge arsing whame the techncial. pactacal and economic tich of ation of the comaturnanemerpes. It the same time. It is intended to indarle how the "economy of same" combept. so
 once bey hase been matalled in the workshops. has a differen meaning when refered to the elaboratoon of thone mathonc

Unlihe ofler sectomal the medhamical industries where the same product may be elabobated for a bong time machine-tool mambiacture wht the exception of some simple types, is comtamts er ling in details as well as in general compostion, hecause of the need for more productivity at the sime price, weight or power. This
situation is reflected in the fabrication series of identical products. reducing them in a sensible manner. Because composition of machine-tool imentories is related to the quallity, the saricty, and the sorics of prod, cts, when development of the mechanical indusiry starts, the demand for machines correvonds to elementary types For maintename and fabricallion of simple articles. As in this tage of development demand is saatecly diversified in typerand model, latsourable conditions are present for construction in series, abowe a hundred, for example, "hich represems a higl scale in machine-tool mamulacture on the oider of one ton weight. Ifowever, while the number of machine tools integrating an inventory increises and new products are launched into the market, a substantial change takes place in the requirements of users who first try whtain the type of machine best sunted from the standpoimt of operation teehnology (more variet: and then, aceording to the serial size, the most productive machine.
It is dilticult to reconcile the interests of a very diversified demand with there of machine-tool construction in important series. Ifere it must be recalled that, during a period shortly before the Second Word War, ditferent productaon sales of mechanical manofiatures were generaliy atamed though the installation of larger or smatler number of eynal machomes. The technology trend pratiling at presons. far form elminating the

 catreme. It mght be aid that for wome aticle maximum productsas ornts athescal bs mean of yectal and comples machmes clathaitted to inter. In wher words. the manmom pradmewn solk for the user would correppend th the mimmom sale for the comstractors. thin machle , wrtan celato.xhip of merse propor-
 tool mianul titurer

In weder to condense the pecultar aperative condilion upon what the sector mus rely. the producers' matn prohlems hate been typilied through five sies of machinc-tool combtration collerprises, assigning to them beforehand the equmpent logether with direct and indired lahour correponding w predetemined manu-
 and modet ol machines. The posholity and comenience
 prise is then examined, considering the greater ponsible mumber of variables in order to sunthesis the most chatacteristic echnical and economic prohlems of the sector.
the first lan vize of enterprese represent embryonic technical stluations of an artsian type which are specially unclin in countries with low industrialization indices. The last lwo sise denote more advaned structures of specialiaed fictories already ahle to produce complex machines for more demanding and developed markets. The other type of enterprice coaslitutes a sort of transition fremartisani production to production ol great industrial signilicance.

The values assumed as well as the conclusions are always indicative of intermediate situations. The basic
data related to the first three sizes of enterprise have been obtained from studies of the machine-tool industries of Argentina and Brazil. Information for the other enterprise derives from some Western luropean firms.

The method took account, simulaneonsly, of a tast ensember of products and latories of diserse technical operative charateristics and represents an apprateh the ultimate objective of which is to finour the formation a selection of hasic ideas with regard to the new imbiatises frequenty emerging from this sector in countries with mechamiall industries in the process of development.

lariahles

Marhine, type. model, acessory

The term "machine" designates a lathe, a milling machine or an eccentric press. The type determines one of the probathe variables in the construction of a machine; in milling machines. for example, there are the universal, horiontal, vertical, simplex, duplex, for splines and copying types. In its turn. the model indicates mainly the size of each ty pe and in directly related to work capacity. installed power and wher dhatateristios.

The type aded model are desually acoopmanied by a series of acconorie dicervilied in form. complexity and weight of as atore gealer utilization capacily. Production machine eyupment in stadiad amd adapted
 pieces. When the prodncer design. mannlatelme amb

 machines. At ally ralle, the inclusion wh tandard and special accosorice to the nomal lane of prodection implies supplementary serion of liahriation which overlap the basic problems, thus athementing the variable factor: that affect the producers.

Complexity index

One of the obstades met in this study is that of clasifying and comparing even anproximately the difticulties of construction of the great number of machines types and models in existence. T_{0} asere. For mbance, that the elaboration of a parallel lathe is casice than that of a ture tathe of the same power, is mot alwity trae

In order that the mathines mas be comparable by fabrication, it is necenan: 10 introduce an med mumber Ic eatled "complexil! indes" which represents the mont signifiem and ehatacteristic quantity of the machining difficulties.

This If index may be delined as the sum of various categories of simple or compound machine elements, as:

$$
\text { If } a_{1}+a_{2} a_{3} a_{4}: a_{5}
$$

where:

a_{1} Indicator number of the quantity of gears, internal and external splined profiles, pulleys and flywheels;
a_{2} Indicator number of transmission shafts, racks, movement screws and motors. The transmission shafts are related to the bearings and consequently
(0) the preeision borers for the bearinge and bushes seat:
a_{3} Indicator number of the quantate of complings. clutehes, brahes, itternal and external kever, all worts of cams, and other progemmers of a himematic tepe. Thin group of element is indicanse of the degree of mechamial allomathom attamed be the prome and control at pragramming tambinionols.
a_{4} Vumber of plane variace and vides that suppot those parts which being enter in mosement of hlochaded are indiopemaible w determine a work cycle:
*. Number of tinal and intermedtalle apparatis. liters pumps and tank, belonging to the cricuits of lubricattion. effigeration. patamata, hatramic and mised: a_{5}. Number of pistoms and rotom,

It is whious that an commene the dillerent parts and pieces from a_{1} to as ablatation has hem made of the barying degres of machining difficulty among the elements: but in is alon trae that the vimplification facilitates equationing the problem without altering its. nature.

Higure 2 present the entimated 16 indice for wome machines: the gleat tic vation octurting on the bame

 is powille la subtivide the vat tatton field of h into five
 lent du.
I, K Kimematically wot smple mathes.
I: K mematio ally xomicomplacated machime:
1, Kinematacally complicalled mathone
14. Machines with complatad homematic hydratice pucumatic and luhtiation arculs:
 the work cycle thromgh pertorated, magnetic band and wher adtanced methods not dealt with here.

In numerial terms, the four groups could be lractionated as:

$$
\begin{aligned}
& \text { } h_{1} \text { from } 10 \text { (1) } 50 \\
& \mathrm{H}_{2} \text { from } 50 \text { (0) } \mathrm{f}(\mathrm{~N}) \\
& \text { Ica from l(N) to 200 } \\
& \text { IC. from 200) (O. } 4 \text { (K) }
\end{aligned}
$$

Waght al machima

The weight of machom in amother tariable factor Which constitutco an impondall characteristic for the manulatures. A, alteady demomerated by pratice, at equad complext! the machming of large piecen with a high degree of accuraty is in some was, more dillicilt than the smaller pices Actualls. the heasier mathenes present specitic problems of deformatton, algmenent, perpendicularity and others. prosolig ardions fire the producer depite the implate adnission that when augmenting its sis the machine tool lases in precinom as compared with the umaller ones.

[^0]

Figure ? - COAPIIXII INIIX CORRISBONING IO

Of course it is evident that lor each site of enterprise considered further on, the same productive capacity an regards the atserage weight of machines camon be assumed. os the heavier ones need a determined managerial intiontructure on equipment. lechnical expert: and tramspert whith am only be found if factorion of certan dimembions. Praedice suggents then to alloibute the maximum ueight of the machines the are able to produce to the dillerent mannlaturing structures. This fimitation is particularly valid and applicable to the small enterprises.

Qualit! of marhimes

The quality factor is also a significamt variable that should not be ignored when analysing this sector. The veritication of de patity of a machone according to Schlesinger and Salmon standards combtates the most accepted method. It is only by means of such vandards that it will ise homon afterward whether the machine was manulatured within or outside the ppecitications. Thes checking is, howeser, not vitlicient for the purpore of these motes is mo acommt is taken of the degres of difficulty the combluctor confionts when producing at different quality levels.

It is convenient in the fise place to xeparate the quality of machines into four posible and real clance:
Q_{1} Quality of thene machine in which the exults of the lests are aluays inferior to the recommendations of maximu n error in the vandards:
Q_{2} Quality of thome machine satisaternily passing anly one part ol the vandarus tent or which, os: ine to inadequate materials or deticient devign an a whote or in detail, work with ileir intial precision for only a short time:
Q3 Quatity of machme, alwass in accord with the standards alled in condition to maintain the initial precision for a long time, requiring only normal mantenance:
Q_{4} Quality of high precision machines such as the jig buring machines, not included in this autine.
A criterion might be colablished right away to determine the existing relatiombip between the linal quatity of the product and the technieal attemtion to wheh its componemb would be subjel, laking is an example the number of conton periomed on each machined part.
It is a well-hmonn fict that in onder to achice Q_{1} quallity the use of calibre with a range fiom 12010150 mitlimetre is emogh: abo that the acturaty on the claboration of couplings of planc sufface is generally left w the operator. Category Q_{2} demand further hanwledge on the part of the comstrictor with regard to metrology. lice gealer number of measuring instraments and a minimum of quality controls inclading even the phase of elaboration of pieces. So as 10 attan category O_{2} manulaturers must mate signilicant efforss ans in general the contod of all machining operatoms is carried cou in the section of specialized metrology. Naturally these three canes difter in the instrument wilized, personnel technical level and the indired hoursemployed on the quality controls.

Taking now as a poin of reference the number of controns the manufacture usually pertorms on the components and comsidering tentatively that the operations matronge between + to 6 for each part. the result is: for φ_{1} one control per piece: for Q_{2} from two to three controh per piece; for Q_{3} from lour to six controls per piece.

Thene data maly also be tramseribed thus:

$$
\begin{aligned}
& \qquad \frac{Q_{1}}{} \frac{Q_{2}}{2}=\frac{Q_{3}}{4} \text { controls } \\
& \text { one piece ol tour operations } \\
& \text { one piece ol six operations }
\end{aligned} \frac{1}{2} \quad 6 \text { controls }
$$

The number of controls, rellects in good measure the final result envisiged once the pieces are assembled, as well as that sticter control corresponds to more rigoroas design specilications which must be verilied.
from amother point of view, a certain correbation may be admitled between Q qualitien of the machines and ISO nork tokerame with regard to the more reyponsible parts and piece forming the prodact. Accordng winformation gathered from tamon produces, that correlation cond be approximately: O_{1} quality comenpending 10 graden 10 and 11 of ISO) tolerances: O_{-}quatity contesponding Wgade x of iso tolerances: Q_{2}, quality comerponding to grade 7 of ISO tolerances.
fo pars from precision degree 7 to degree x. the tield of tolerance of the first piece most be multiplied by 1.56 . and Irom degree 7 to degrees 10 and II by multiplying by 4.0 and 6.2 reopecticely. Supposing now a certain dentitication among the twerance degrees and the manaliactaring ditheultics for ohtaining the pieces under consideration, which in practice is partly conlirmed, it might be said that other lactors being equal, quality Q_{1} is 4.0 or 6.2 time casier to ohtain thatn quality Q_{3} and 2.6 or 40 times easier to obtain than Q_{2}. If the tolerance criterion is combened with that of the control of pieces with similar values. and adopting intermediate situations, it will be possible to formulate comparisons, which though
abstatel. lead to the meaning of starting the manuficture of products of difterent yuality.
On the basis of the above it may broadly be admitted that: Θ_{1} is thee times easier on mathine than Q_{2} : Q_{1} is live time canser to makhene than $Q_{3}: Q_{2}$ in 1.7 times casier to machine than Q_{1}

This preliminary equation of the problem hats been made with the whe purpose of illeminating how didiculd
 an inferior yuality ward amother of international leve Abo. that it is not posible to pas fiom a qualiastive sittation of elaboration to a supertion one wihoul changing the striciture of the mandiaturing equipment or extending the corresponding eechnical servies.

Size of emfermises

With a view to athalysing ther sector in its mose general aspect. it sems advisable to consider different sies of mandiacturing enterpise from the artisan to a fatcory with adequate techmiad resources arabable for the production of tarious typer and modeh of machines

Fwe typical size of enterprises (Te have been selec.ed. The tirst 1 wol $1 e^{\prime}$ and T_{2}) with 20 and 50 persons ocellpied. are characterized by the high percentage of direct or productiae hours in relation an indired or unprodaclise ones. The dispone of pecarious production means and may therefore manufacture simple artaces of low qually and low price per hilngramme. Iheee enterprise are justalied espectally in thone comstumption atean where the demand for machine bow is still al a primary vage and matitenance and mandacture of metalice devices of clementary componition are predominam. Sis te, with

 In this dimentoin. the proportion of mblact peranald

 fiom a lechmial amd orgamathonal poom of ace fhe

 cutialty
 most be themblat that the merease ill the mondel of

 weight, yuality and complevily fatom, alreads mideanded
 be valid low the ex enterperes
the subdisision of dired and mdacel peramod derme from diata colleeted in Argentma. Bialal and

 tathe 2 and ligute ?
the lach of at dawalicallom that allow, tan the enat

Figure 3
Percentage distribution of direct and indirect labour

Tablc ?
Direct and indirfte prrsonvil. in ilie tive shis of in terprists

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

have been classilied. pointing out the evintence or absence in each size of enterprise. The wher ativitio hane been taken as direct or pooductive and are waccounted in order to know the real time of elahomation hy pieces. assemblies and machine,

Taller

D. m,m.nit $=$	1.	I,	IS	$1 \cdot 1$	I.
- - . \quad -					
Assistant madhine uperater				*	,
Preparation of work on machime					,
Manaal intertal tratmpurs	,	x	*	x	
Mechamised mernal tramupurs.			*	\mathbf{x}	\cdots
Maminenamie	"	"	*	x	x
Iools	"	$"$	x	x	λ
Conuthetorn of iga		b	1	*	,
Fool warchouse			*	\mathbf{x}	x
Cicneral warheuse			x	*	x
Metwhagy xatan				*	x
Buling and pioking				*	*
Detrera .	$\stackrel{ }{ } \times$	\%	\%	\times	X
Person in thatge ol atailialy					
lorman	v	*	x	*	X
t abuer lineman		*	*	\mathbf{x}	K
Wats Shen limphanor)					
1 ngmeer				*	x
Tedomad ollice fior piecenork cotimale					x
Technsal allics lor jign design				d	x
Olice lar prodnction planning				x	x
Olice lor disatibuton of prodacion cards.				*	X
Co-ordination of purchases ...				X	X
Tess, laboritury and research					x
Offres (cmplaniov					
Teihmial	F	*	x	\mathbf{x}	v
Accombting	c	X	x	\mathbf{x}	x
Cinss			x	x	X
Adminostation	f	*	x	\mathbf{x}	\mathbf{x}
Siten	f	f	x	x	x
Purchises	f	f	x	x	x
Ixpures					\mathbf{x}
Managemen			x	x	x
Giemeral neticos					
Cleining	4	d	x	x	\mathbf{x}
Conticrgerie				X	X
Outside sersices				X	λ
Outside tranyport				x	,
Chard:				x	V

Warh chethed m dited inerdibr

-Collathitatom il thiril p.at: $1 \cdot 011$ time

In this waly the profound structural differences of the diserse Te sies stand out. and consequently the diverse human tednical potentials they have available to uperate. Thus, after establishing criteria to detine the Q qualities. Ic complexity indices and Te sise of enterprise, and also taking into account the machines and equipment mentioned ehewhere. it is possible to delimit the most adequale field of action for each industry. using logic compatibility and practical experience an co-ordanating elements: among the mattiple tariabls . comsidered.

Table + summarize the most probable situations which maly actually happen.

Data regissered in table + may be transcribed in the following wily, bringing out the limit baluen of if information of Q.

		f. (thiti, tar	-
ri.	U_{1}	0.	0,
Til	(10) 125	10.62	
T',	10 210	(1) 100	10.50
Tis	(th) 250	10175	(1) 125
$T c_{4}$		(100) 30	50250
Tes			(0) 4(0)

Another observation derives fro m the work field of the enterprises: that it is necessilry to dillerentiate between the possibility and the comenience of elaborating certain products. This situation is moditied according to the size of the enterprise: relating it to the quality factor it might be said thatt:
$T e_{1}$ may manuficture produch
$Q_{1} Q_{2}$
$T c_{2}$ mily mannfacture products
$Q_{1} Q_{2} Q_{3}$
$T e_{3}$ may manuficture products
$Q_{1} Q_{2} Q_{3}$
$T e_{4}$ is only interested in products $Q_{2} Q_{3}$
Tes is only interested in products
 within the pretiousl! detcrmined la complexity indices.

It is understood that $T e_{4}$ and F a are manubacturing the products of the smaller enterprises though it does not seem adwasable an their pretised structure wauld render this uncconomical given their high operational cost. On the contrant, the fied of action detined for the first three Ti correspond, to the masimum technological limits they maly acheve as functions of 9 and $/ E$.

Produc thin seric:

Among the factors analysed production series are perhaps the mest variable, as in practice they are influenced by imumerable causes. Attention has already
been drawn to the finet that the order af magnitude of the series is mambaned low even lor Te enterprises. The diservilication of lypes and modets logether with the number at different pieces compriang the machines comatitle elements so charsateristic of the consaruction af capital goods and of this sector in particular. that they present the serial fictor from receising the same approach as. lor example. the darable comsamer goods.

In order la fornish some arguments on the subject which maly be applicible lo everal producers. the liactors indicaling the clasticily with which this sector should operate are
(a) During the pabt lify years, satistic hate wstemaltially shown that in diverse conntries the machine-tool demand has almost alwats heen variable in weight and in quallill!:
(b) lath time, the producer tends to study the most adequatic machine for the user's different "economies of scale":
in different models which is obvioush reflected upon the ammal series of fabrication. It may aho he added that as a rule this sector kend a frationiate th total production many limes in the course of the gear, which nallurally reduces the order al magnitade of the repetitise series As a matler of lact, the mantituturer aluals tres to defend hamself agamat the low law serien, on the hass of:
(a) Katunching the balviallon of small pieces once or wice a bear. The starage of vidh pece doen not imbore a signilicamt immobilizallon of capital.
(b) Stulving the produch in order that the smatl mechanical piecen are commen lo barion wpen and models of machime (imernal miticaltion):
(c) Maximum bandardizalton of piecen bought from third parties (lens variety of tools for their applications). including electrical material:
(d) Unifying as much as possible diamental measures, screws, splined profiles, threads, tolerances and pieces ol all types:

Table 4
Work field of the rnterprises

	IC_{1}			1			A,			16		
Sizs	Q_{1}	0	0.	\mathbf{O}_{1}	0	O_{3}	O_{1}	0	0.	O_{1}	0_{2}	0
Te_{1}	10.50	10. 50	-...	50.100	50.62		1(x)-125					
Te,	10-50	10. 50	1050	50.100)	$501(0)$		(0) $2(0)$					
Te_{3}	- ...	10-50)	10.50		50100	50.100	100 200	16M1 175	(10) 125	2 m 150		
Te4		---	...			50 1(0)		1(m) $2(x)$	IIM 2(Mi	2 H	2IM1 1 ln	201250
Te:	--								(1x) 201		2 H , 1	IIMI HWI

(c) As a consequence, the manufacture of complementary and special equipment, sometimes more complieated than the machines themselves, assumes an increaning importance since the constructor will have to take care of them in wome way, even if he does not integrate them in his production:
(d) In liont of a fluctuating demand, the manataturer bhow his imerest on the claboration of different models of the same type of machine thus ensuring a more regular sale:
(c) 1 we the salme reanon, the producer: preference may be inclined loward the lithrication of more than one ispe of machinc:
(f) The elabomation of one ype of machine in varion models gelew the user the impresson that the manufacturer has a more thorough heowledge of hiv lield of yeccialization and that therefore he in mot improsising:
(5) When manulature is divided into several models it combltute a mosh vernger incentise loward the introdaction af structural or marginal modilications and innosations on the prodacts than if the case were of elaborating a turigue or del, since then it is not necesaraty (1) metrene on the whole production:
(h) lathly, it may be said that the comantation of one lype of mathine in more than one model is alwavs a sign of prestige for its manulacturer.

From the above it is apparent that the machine-tool producer should elaborate at least one type of machine
(a) Unilyngat a maximum the modulesand numbersof teeth of gears:
(f) Conceising the machome an a compontion af compate groups and vhgroups tor the power tomanmsion chain as well as for that of the contons. be they kinematic, hydramic, phennalle, of homation. de.
 stacture having in mind theor exentad adaptaton 10 machines mamatatured in diterent model har withon the same lechnical line:
(g) Abandoning the tadational tidea of incorpmating
 sions, that is. of tom potemtial, to aply them ceternatly. This would vimplat in a comble matmer the machming of heavy peces, tiong at the sathe tome mone soppe for powsible medificatiom:

 rathomisuma:
(i) Devening vmalar pieco to potherm the same finction wilh dificaent prometias.

The productan mean gencrally mithed on the construction of machme are almon alwath of a manersal type. Consequently, in order that the products may be elaborated within a reasonable number of direct manhours per 100 kilogrammes (Hs 100), the manufacturer
also is compelled to give maximum altention to the auxiliary produe: ion equpment and tools.

The diflicultion met when tiving to evtablish a criterion to determine the mimimum connomic verien of fahtiation which mas be equatly adid for the defferent produes levels than are resealed deats. The entmate methods adopted lor this purpone would onls be applicable to homogencous groups of machones and vecitic manufacturing viluatom, I whermere in platice, seacal combinations atre whed the the atme constructor
 machines. ead bate with a differem xeros).
 been prosided he machine-tond mandiadures in connexan with the mimmom preducton ere for machines up to five toms. It is undervorod that these salues do not prevail for the wal production of the emerprice but only for one or a lew types ar moklo of machines

J.	‘	\therefore ' ${ }^{\text {, }}$	$1 \ldots$:		$\because \cdot$
Fr_{1}			4	4	12
Tr:			5	11	15
Tr3		3	6	14	18
Te_{4}	3	4	12	20	26
Tes	4	8	16	24	32

Productive capacily epmessed in toms per lear
It is possible to evtimate the annalal tonnge of timished products for each enterprise. Comsder on ane side. the total number of direct man-hour, (H) asailable during
one year in each Te enterprise and. on the wher. the number of direct man-hours necestaly to manulatur 100) hilogrammes of product (1l, lok).

Parposely. no spectiantion has been mate perand in order to da it now. The atombles comadered a
 examined herein. These atre summed up tor each enter prise in table 5

Tihlt':

(M minimam: S stace: R esglar: N normal,

Di Mominatien	${ }^{\prime}$	1.	1.1	1. ${ }^{\text {d }}$	t
Cleaning and proparalom al can tron picco.	M	S	R	\mathbf{N}	\mathbf{N}
Marking	N	N	N	N	\mathbf{N}
Operalom wilh dired machose	N	N	N	N	\mathbf{N}
Scrapung	M	\mathbf{S}	N	N	\mathbf{N}
Amembly	N	N	N	N	N
Patining	N	N	N	N	\mathbf{N}
Break in		M	R	N	N
I mal comerols according (a) babdiards	M	S	R	N	N

The ammal production right lines P marked as a Functan of $H, ~ l(0)$ are indicated in ligure 4 . The extemson colered by them mobserable as well as the superposition an the lomange produced betueen one enterprice and amother. Which in practice is dillicult 10 admo Vemwhile. comidering that it has been sertied that the production per accupied person dediect and indrect persomady and per year mormally flactablen helween

Figure 4
INVAL PRODICHON OF I NIGRPRISES AS A FINCTION OF PRODICTIVITY

Ino and four tons. it is possible to delimit the production field of the enterprises. It will then be enongh to werlap to the right lines P a laggoi of right lines ρ reprextating the dillerent producton values per peram and per sear that, when loxated between ino and fom toms. leads to the elimination of prodation merference hetween one emerprise and another. The problem then delined gese a - lear idea is a whole. emablang at the same tome a glampee of the panorama presented by those ver abose Tes.

Differem obervallom man be formalated an comenexion "ath figure 4 . In the first place, it mis he suppored that one goes from a to b along right lines P when the $l a$ and Q indices increase. The same happens assuming that /c and Q remain comstant if bad use is made of machines
and installations. or a prodichan is fractionated in 100 many typer and models of machunes, or boll things at a time. (ioing from how a. he apprectations are eqnal and opposite. Attention vould also be drian in the tiret that $2.2(0)$ effectice work hour per year hase been admented for each direct person, which in equivalent to ane worh hifi.

Productive capde ils cxprexsed in mumber of madhines per wear
If a determined weight unit is attributed to machines, it is easy to estimate the number Te maty elaborate on the basis ol already available production data in tons per year.

This situation is illustrated in figure 5 where $H: 100$ scales and those of productivity per person hane alon been adapted for each enterprise. The action tied of the enterprise is defined when possibility or consenience limis are ewablished regarding the weight of machines. in accordance with the ser of industries and tahing into account.

Te,

(a) The means for lifting and for internal transportare exclusively manual. thus making it difficult to remose heavy volumes such as cant iron bodies of machines of more than one ton:
(b) The machines used are more adequate for light production:
(c) Should the combtracted machines weigh more :ham one ton. their libricattion number per vear would be bow. In that care. annual invoicinge would be sublivided into al few fractions. which is mennpatable with the economicfinameial structure of the momuthemeng ation:
(d) In order 10 ensure a more regular intoring. Tis should elaborate tanger quantimes of tight products suseeptible of beme latimbed imta production twelse times a leat (mombty frequency)
(1) It ma! be nobed that I e, has possibilites of producing Q_{2}, machinco only it their unit weight is reduced.

In view of the aholes. the manafacture of products with a unit weight of more thin one ton does not seem advisable for Tri.

Ti2

Gencratly speaking, the observations made for the former enterprise are also valid for Te.
(a) However. unlike Tir. this enterprise is able 16 produce Q_{3} mathines prosided their weight is not high, for example up to 0.50 .75 ton.
(b) It sems combenent that when this enterprise elaborates its products in tha models, the maximum weight be limited to around 1.25 toms.

$T T_{3}$

(a) 1 getre 5 indicate the existence of a wider liedd of manufacturing powibilitio as regards the weight of machines. It is asumed that Ti, is merested in the construction of at leas three modes of mathines and for that reason the production of machone abone 1.5 toms is not desitable
(b) The texhmal calpatly of the enterprise might allow for erem hean er manubactuce hut whh Q_{1} ymality.
(a) for timatial motioes. the lamehings sould not be fewer than on per seat when it is the cince of producme whty olde modet: for wher cance eight launchings would te recommended.

Tis and $T:$

Within the high $t \cdot$ and Q patlerms angled to them, these enterprises permit the most varied conditions of operability in respect of weight and number ol machines. The limitations on the unit weight of products !or these sizes reter to the mimimum weight of the machines
they are interented in constructing. Otherwise, should this weight be reduced in extreme, productions would result in tes techaical and commercial signitianace in contrint w prelixed structures which are considered normal within the sector

Repratioe scriev

By repetitive series of mannlacture is understond the results from the division into fractions of the amual production of a given type or model of machine as a consequence of the number of launchings in the course ol a year.

Machine-tool fabricaltion, as with other capital goods. is chatracteriad by discontinuty which derives from the number of limes the series N repeated during the vear. The most frequent yuantios of launchings is in practice exactly one ino. three four. six. eight and twelse. ligures deserving wome additional comments.

Generally , peaking. lamehing of one two and three times a year are not aceptable for the prodaction as a whole becaluse the circubating capital would in such calse altain excewist high valuc, in comparison with the ecollomic arwiture of the collerprice, altering costs in at semable manner
 six and eght. Whate eqght and wose sem more sultable
 among theon demand whach mas dilfer accending to the ype and model daborated by a stagle comaructor. different lambtheng frequentor mas comat within a given factors. Hethe it heoms pratically imponible to take into acs:ath all the protathe combinatoms that may accur

Xevollaces. tartug from already known data in tigute 6 permis akatation of the magmtude of the comblaction ceme a a finction of the number of launchings and the quamil! if models.

This in of courec aldid for comating the average of a manutacturing situation a wall a lor facilitating some of the combinations which may derive from the subdivision of lotal amoal productionfor cach Pe.

Investmem on marhines for the the enterprises

Machine tow reprexent the greateot part of fixed total intestment. The number of dired operators working with machine han already been determined for each wite

 which athough thypothetalal mas vellicienty reprexentalles legating the form in operaton of the sector I wen if mot retered th the constructon of glen types or madeh of machmes. It mont be achnowledged that the e condtions are neater the ideal equment for the manulacture of metat-cullong machene than tor that of metal-forming machins. vilue the firt enes extet in a larger variet, of lyper and models.

The selection of the production equipment is also
nade, taking into aceount the factors, quality, complexits and weight of the mathines. in agreement with the positoons adopted in this outhice (iencritly. the smatler tirms use mitchmes of bow price and kes techmial resources. Te, utilize machines of medum value together with others of inferior quality, while for $\operatorname{li} 4$ and $t=$ the eategory of the machine integratiog the mentorsen or high level in terms of quality, operative resources and
$I c$ and φ and with equal equpment anci inseament. il is
 the more or less rationall uthtation of the aunhaty production equipment whel in 1 , surn depend upor the lechncal. magmatise and creatac apoats of the indirect permolach in chatege of than tanh.
It abo mon be sad that if at satler percentage of

Logarithmic scale

MAVIINIIRIVGIKIOIINY ANI MACIINI-IMH. WIIIIS
prices. Here an almost aluays salid obertation concerning the sector under analysis should be poimted out: A the importance of the series is tarlatble all lean between the limits considered, the machime do not difler mudh from the unisersal lypes. Hence athomatic and semiautomatic machones are not included in the manutaturess ansentory. This is casily underatond when wownt is laken of the great variety of pieces and the ate number of dilferent operations reqtared by the abratton of a machine in respect to the repetitive series. thinding out once more is the importance that must be Thithed to the quality of tools an 1 io a wider use of \because and special equipment for ohtaineng low Hs 100 satue This is equivalent to asserting that at parity of
important insentories tham the ex elected aim be conceised. Suth would the the canc. among others, of enterprises working exclusisely or partably through licencen of loregn firms. stace then the imbliee pervonat desoted to reacarch stades, product and eympment propects might be replaced by prodectace peranmed ance these
 the licence. Thus the number of direct herus asalable in one year could be increaned belween 15 and 5 per cent over the salues adopted. As these ease fall out of the scope of the present outline, they have not been considered further. However, it would not be difficult to adjust the respective corrections within the context of these notes.

The variety of the machines usually utilized in those manulactures may be appreciated in tabe 6. together with the distribution for the dilferent enterprises. Here it is naturatly understood that the displatement of Te, toward, Tis implis an improsemed of its quality with reperctosion wer the price.
In order w ficilitate the interpretation of the table. some comments are aded in comexion with each type of enterprise.

Machines for le, emerprise

The list of the machines required by this enterprise is extremely smple and offers lew varianes. As in this size there are no spectalised sections, mathines are used for direct as well is fir indirect services. There are no machines to earry out upecial services: this in a workshop where labour is exclusively artisanal and where it is normal that the same worker executes diflerent functions. passing from one w the wher with relatise facility.

This sick in oo charateriad by the employment of at reduced number of indired persomel. It insentory of machonery of of some importance and allows it to con-
 meet the demands of the mdtutral ime morien of veh
 Industion \quad, 1 rake the lechmo.al and commercial

 ments throgh lacmes from formentions I ar them
 The cy

Wachimes fort léa charpmas

 isaccompanied by increasing lechomical and organizational
 and progeveng lo. a complete vinctare alacady pomible

 is interevme and fasible to work with licences from specialised tiom.

Machimes for tia comerprise

When a machine-tool enterprise reaches $T e$, size the structure of ahoss all its sections is well delineated and the lirm is in a position to elaborate products of a certain complexity and of its own design. Such an enterprise may therefore contribute in some measure to the technofogiaal ewhlumon of the sector.

Machines for Tes cmerprise

In this site of enterprive. the preferential celection of equipment for the manufature of metal-cuting machines is more evident It mily aloo be obsersed that in Tes enterprise, indired machine call attallin almon: 9 per cent of the wat, which allow, internal comat uction of complex atuxilars production equipment I ader these conditions. rational emphoment of matalled machinery, together with efficient admonatration and organzation of the different sectoms, make posible productions with low Hs 100 vatues, athough k and 9 might be high.

Other intestinems.

This denomination coners manly the following items:
(a) Indiree and complementary prodiction equipment:
(h) Internat mechamised means of transport;
(c) Trucks and wehicles:
(d) Furniture and othee machines:
(e) Equipment for Laboratories:
(f) Industrial insallations:
(g) Terrain:
(h) Buildings.

Before evaluating the probable amount of investment, the position of ewery enterprise with regard to these points should wedined. This is summarized in table 7.

This sheme expedico the discriminatoon on capital
 information and lahing areage condutom within those
 cotmate mat mextment by type of emterprise an indicated in tablex.

In practice, whth the same ste of enterprise varied
 installation salles. Moreoser. these valuen differ between one cone and amother whinin the vame country. as welt as in the ditlerent collotrios. It is entmaned. however, that the values adopted for total inverment in table 8 are suthiciently indicatise of the structural differences that ceparate the several emerprises.

Cost of direce mam-hom

One of the more acceped methods lor calculating hourly cosst emsists of relating all lixed expenses regisered in one year with direct or productive man-hours actually availatie. (iinen its simple viluture. in the smatler emterprise it is enough to issume for the direct hour an anerage salue equal for all sectors of the lactory. For F_{4} and Fis. it in preterable to establish arerage values lor the diree hour for eath group of similar machines and for the different prodaction vections, as in these cane the hourly cost is diverse ether owing to the stronger or waker incidence of labour or to the degree of intensity of the applied capital.

According to the purpose of this outline, it is enough to present the anerage cost of direct hour for each enterprise so as to reduce the number of variables, already high. In this respect. the following should be kept in mind:

Tahle 6
Inventory of macilinery hiotirid by the diffrant types of enffrprises

O4, meminuriom	!	$t:$	1.4	H	r,
				-	
Production muchimes					
Paralle lathee of tarious dimemsions	6	9	1.3	18	24
Screw-ctiting bithe	.	--.	1	2
Vertical lathe	\cdots	-	--	-	1
Terret lathe	-	-	1	6	9
Copying lithe	--*	-	-	-	1
Cowersil millong	1	1	3	5	5
Vertialal milling	-	1	2	3	4
Special malling	-	-	1	2	1
Iforimontal milling	-	--	-	-	1
Strex-ctutinp millong	-	-	-	-	1
Planning	1	2	3	4	4
Planemilling	-	-	-	-	1
Slouting	-	-	1	1	2
Shaping	1	3	3	5	3
Horrantal boring	-	1	2	3	1
Verliall buting	\cdots	-	-	-	2
Pillar and bench drilling.	3	6	8	12	14
Column dralling	-	-	-	-	6
Radial dralling	1	1	2	4	6
Universal chlindracal gri ding	--	2	2	4	7
Internal colmdical gerinomg	-	-	-	2	1
Phain grinciang	-	1	2	2	4
Plaingrinding for vides and					
Crinding lor yhancel protiles	-	-	-	-	1
Cicar culting. I cllow, type. . . .	\cdots	-	1	2	3
Gear ctilme Matag tys	-	-	-	-	1
Cialr colting. Pantier type	-	-	1	1	2
Gear coltmes. Harher - olman ispe	-	-	-	-	1
Cuncal geat cutting	-	\cdots	-	\cdots	1
Cirmding ler geam	\cdots	-	-	1	2
Bexdling geam	-	-	*-	1	2
Bradhong ...	--	\square	-	1	1
Threading. (RI-I)AN type	--	-	-"	1	2
Straghtenng lor shalts	-	-	-	-	1
Sall,	1	3	4	6	7
Maching lion treer	1	1	2	3	4
Welding.	-	1	1	2	-
Hydranlic pres	\cdots	-	-	-	2
Honing and lapping	\cdots	-	-******)	-	1
Dynamic balancing	-	-	-	-	1
Centre hole grinding	\cdots	-	-	-	1
Centring shalts. . .	-	\cdots	-	-	1
Dividing and engraving	-	-	-	1	2
Special"	-	-	-	4	7
Others	\cdots	-	--	2	8
		32	32	-	160
Total atrect machuntes.	17	32	32	98	160
Machin', fier tool mumifacture, maintenance and consiruction of jigs and apecial production equipme"!					
Jig boring	-	-	-	1	2
Precision milling	-	-	\%	-	1
Universal milling	-	-	1	1	1
Universal grinding	-	-	-	1	1
Precision parallel lathe	-	1	1	2	3
Tool grinding	1.	1	2	3	4
Shaping	-	-	1	1	1
Drilling	-	1	1	1	2
Welding	1	-	\cdots	\cdots	\cdots
	-	-	---	-	
Total indirect machines	2	3	6	10	15
	-	-	-		\square
Total inventory	19	35	58	108	175
			mited State. d	lury	
Total value of machines"	36,000	105.0x)	244, (x)	663,000	1,156.(0)0
Average value of machines'	1,900	3.000	4.200	6,140	7.750

[^1]- For simple machines, the type and prices prevaiting on the Argentine and Hramban marketa have been considered
*For machine of non-l atin American origin. an overcharge ol ill per cent wet the I wh. balive lar transpoft and insurance, and another of 20 per cent for internment expenditures, and withers have been considered
(a) Accounting of all direct man-hours already determined, that is those comsidered as procluctive: this is done by means of the cards encloned with the work during its execution. The esm of all dired hour accumulated in the eobrese of a lear should contide with the theoretiad hours aralahle, which are dedaced in accord with the nomber af dired permoln working in ant emterprise. It is understend that pombe time af work prepatation as well as of the uperatonat eycle proper hould abo be ateomed for, chargeng them to the respectiac piece or machine:

Fvidently each Te will be characteriaed by a diferen (h value that will incteace as lang ar T atuments.

Table 9 prexems relesant dita that would be kept in mind when calculating the cont of dired man-hour on
 American countrics, with 5 pecial seference to Argentima and Braril. Onece h_{h} has beon determand. in a cany 10 arrice at the fived con per for kilogammes al fimbed product (\because I (0) which if wher conditions are mantaned equal will be diflerent and variable accordang 10 its productivity in eath sice of enterprixe In agreement

Tuhle 7
SChematif disikibe tion of investmivi, extitding machine toxis.

Hem	In	I.	10	$\mathrm{I}_{\text {i }}$	In,
(a) (b)	almosi nil	sarce lackles	medium tacklen	complete bridge cranc and lifling tackles	complete cont,lete
(c)				yes	
(1)	nextigible	scarce	nedtu.in	complect	complele
(e)		primary			medram complete
(f)	almosi nil	primary	ciarce	meditim	complete
(b)	yes	yes	50,	yer	y
(b)	yes	yes	yev	ves	yer

Table: s
Estimate of total investment by iypes of enterprise

(b) Accounting of all expenses during the sear in connexion with wages and sataries, wolial tases gencral expenses of uperation and indirect materal for comsump. tion by the allice and the workshop. as well is other expenses except rall maticrials. sake and bamhing expenditures:
(a) Amortization of all mestments. In the following estimates an ammal amotidation of for per cent mer the total valace of mestment has been comsolered. In litit. part of tise amornation. that of matired mamulatioring cquipment relatise \mathbf{t} a determined model. measurament caliheses, cas mon models and others, shoukd reter to enterior times. while the oher, that of huildings and installations, allows for longer periods.

It derives that the cost of direct man-hour (Ch) witl he:

$$
C h=\frac{b: c}{a}
$$

with the aneage figures adopted, it may be pointed out that (0) 100) watues lluctlate hetween $\$ 45$ and $\$ 150$. Oning to the method lollowed to estimate (ol00) this represents only part of the cost, the rest being constituted by:
(14) Ran materials (cant iron. steel bars, sheet, etc.);
(h) F a entaal machining subcontracted to third parties;
(c) Parts and piecen bought in the markel and used drectly on the asembly line:
(d) Jropaganda and sales eapenditures:
(c) Banking expenditures.

The sales salue is ohtatied through the addition of gross protit to these expenses and to those indicated in table 7.

If Co 100 cons is related to the sales value of 100 kilo grammes of product ($V, 100$), it follows that although an optimum unique value cannot he attributed to this rela-

Table＇ 9
Batkgrol vid dat ior cald lating diret man－hotrs

Dintuniatmin	1.1	1.	H．	ri．	16.
1．Persons exisupeal in the enterprise	20	50	（10）	250	Sti）
2．Directs（widh and wilheril mathones）	14	41	72	159	275
1．Indirects	1	4	28	45	225
4．Annual hewir Mat dicut minorn	2，230	$2.2(x)$	2．3（x）	$2.2(x)$	2．2（1）
5．Total dircu man－herma per vals	＋1．8（3）		158．401	141.1600	（015．106）
6．Annual wigcr of dicel latheur	10.500	27．（kn）	$55.4(x)$	I26．0kn	242．140
7．Annual wiper or malimel lisherit	$2.4(1)$	9．（0）0）	2K，（KN）	113．（mx）	15．1mm
8．Tolal Magever ${ }^{\text {d }}$	12.900	36，（M）	M．4（k）	－+11.6 mm	¢5．．INK）
9．Stabl bate and imatallat （persentape of x ）	（x）	（6）	（6）	（1）	（1）
	20.640	57.60 KI	13.46	3n4．ant	891．3（0）
11．Annual amortiallum sace sable 8 ． 111 per wend	4.141	（2．8（6）	11．tim	105．030）	23.4 Mm
12．Fixedgencral expermen per year	6．（M）${ }^{\text {（1）}}$	20．（kM）	fS．mmi	Imation	2511．（MM）
13．Consumprom materail per seir	$5 .(\mathrm{Kk})$	12.0 Km	31），MKM	TIMK（	1－10．000
14．Tolal fised enpenditure per sear $(110,11 \quad 12,13)$	15．780	102．4（k）	219×410	GSY．（x）	1．52¢．2（6）
15．Cind ut dircol man－hour（14．5）	11.86	1．1．	1．引1	191	$こ$ こ

tionship，given the general term，under which the problem is framed，it is true that stich is cetatomship heeps within practical limss of thather operatoce femsibility of the order of 30 to 50 per cemt Thexe are apptied in figure 7 10 each Te．wgether with the atreads delmed data ${ }^{n} 0$
 tarting from bisourable and on powink factors．the

As regards the correlations among yuality，complexity of the product and sales watie of the same，it is evident as illustrated in ligure 7 that the N an empirical accom－ modatlon whose objectac is wgather into a single pamerama the free plas of the seteral techno－economic barables charaternatic of the sector．I methermore，it may easily be seen that te reght lines when deline the percentual retalmiship between（i） 100 alld by 100 are

Figure 7
Technico－economic feasibility of enterprise operations
 fier different techmad conditomis I aperation.

An ohereatuon here N that J_{1} and $/ I_{2}$ emberprise

It 15 ustally admilled as a general rule that the prodacer dependion greater or kence extent uponatuxilary industres that provide hom with aervices. specialized

But lor the products attribeted as leathle by the rest of the enterprises. the assistance of other spectialied enterprises is imperatice.

It is undersond that the comparison antong different 11, 100 will be balid as long as the manatature is integrated in the same namer. It must be peinted out that in pratice the integation tartalde are not mans. as the producer watly hus the cant irom material. machine it. purchase in the marke the parts and piece imatated on tathe lo. and machine the remainang piece

The group of rat materials and ane ice menthoned in that table combtitute a porme of mereme about that which has heen delined in intiantructureand which should conseyuenty be consid red as a domestic actaity. In atcordance with the qualitatise hypotheses connected with the sie of the comstactor. the quality demands al

Tible 10

Lisi of mins intirconvi xions belwiln macimite-toon. MANITACTIRING AND AIXILIARY INDUSTRIES

Otmemmatan	19	1.	Ti.	7 T ¢	ine
Raw matreial amis wotios					
(aut rogl lumalis)	mediun	regular	good	perfect	perfect
Rellef ald strexi .	no	sometimes	sometimes	always	aluays
Vartals of cal trons.	suarce	scarce	sometilles	high	high
Hardoces dentand of cias iron ...	marce	carce	sometimes	rigorous	rigorous
I oundry of bombleroms (quality).	medium	regular	good	perfeet	nerfert
Ise of common vecoly	scarce	warce	regular	mormal	normal
lwe ol vicual viccla Heal Iratmema	different very sarce	reduced	reduces	normal	normal
tean tramerns	very starce	scarce	insullicient	normal	noramal
Commetrial pancand puro					
I lectric moma,	common	common	conmon	vpectal	
Simple cemenn lor elecorse ciremis,	medium	almost regular	regilar	good	giod
 I lements lor hadrambic circuis.			sontetimes	normal	Irequent
			sometimes	correct	goud
	elementary	elementary	allomin normal	corrcis	good
Flemens lior strens, of refrigeration	elementary	almost regular	normal	gornd	youd
Cluthes, hatkes, tersamal. couphings, ele.	-.	elementiary	suarse	vallicical	complete
Screns. wew mals. walcom and similar Bems		almost regular	normal	gond	gond
Ise ot precisom ncialing	no	no	irregular	normial	normal
Springs of edery lype (cually and varicty)	suarce	Marce	almost regular	comber	complete
Non-metallic accenoricy (ave)	scarce	scarce	regular	complec	complete
(4ualits)	mediunn	clementary	almost normal	numal	vomplete
Thectric accersorics stach as magnedic platco. ©		comar	sonmimes	normal	complete
Simple non-metallic clemeonv (bse) .	starce	almost regular	regular	normal compleis	complete complete

parts and preces lor the mamblateture of his products. whase existence hats heen transomed into an indiopens. able infrastature for the development of the sector. It is abvious that the magnitule af such a structure as a supporting dement bar machine-tod comatuction is enlarged. complemented and compliatled in the meanure that guallity. Complexity and wometimes even the weight of the mathine increase: in wher words on dired account of the instathation of lime of growing sies

Thus. the presence of lactoriesof inpe F_{1} and T_{2} doe not necessatrily imply the evosence of an important anxiliaty industry as they produce yute simple machines.
cast iron material gol logether will the increase of $T e$. Hence. the importance of an iron foundry as cast iran is the hasie ran matterial for the manaliature of machines (fomen 50 aso per cent in grom weight with regard to the weight of the limshed machinet. The second group of parts and pieces presented in table 10 and in respective yualitatioc appectations in elation to the enterprises. dexerse further comment.
 ability in the marh : of all the items is conditioned by their being nationally manulactured. On the contrary, it is admissible that some of them hearings, camplex
 others heghs pectalized. for example depend upon importation. In thin group. seleral fer complataded produch may aloo he incladed which are bomght from local induntion verertheless. it a merosting that the exingerated dependeney of damestac midant upon the incorporatom of certan ace emotion for machome would alle the clasticits of the prodictace proces up (0) the permt that it mould be mane comseniont for the producer to take charge of the manuficture of parta such elemens until limeding some one who could chahorate them. Similar statams hate oceurred in Vegentma and Brazil where, anly recently, lirms capable of deagnomg and constructing acessoties under strict vpectications are starting to emerge from the medhanical mduats

Owing to the limited equipment availate to I_{0}, t^{\prime} : and $T e^{3}$. 11 is a normal practice for these enterprises 10 subcontract services fior specialized machining such as
gears, yplined halt amd machomeng of heas peces Withan the flevimilts wah wheh ol has heem mended to delime the most probable tied of aboni of the diflement

 between has what and be whe of peres and cympent purchased from thard partios ill some sers complen mathines. he correpondmgly hagh value of is lak) ane acheved througl: the importamt contribution by other provider industries of parts and pieces
,
i
λ

[^0]: For are and a...0.5 of eath element in comadered when they are bought from third parlics, and 2 for those machond by the silme producer.

[^1]: a Consiructed or adapted in the adme industry.

