

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

1 OF 2

()1029

Steel Works Projects in Developing Countries

A Survey for the United Nations Industrial Development Organisation

1, in

W.S. ATKINS & PARTNERS

TEPCO FILECOPY

01029

STEEL WORKS PROJECTS IN

DEVELOPING COUNTRIES

A Survey for the

UNITED NATIONS INDUSTRIAL

DEVELOPMENT ORGANISATION

W. S. ATKINS & PARTNERS Planning, Engineering and Management Consultants

Woodcote Grove, Epsom, Surrey, England

May 1971

CONTENTS

	1	Page
	CHAPTER 1 - INTRODUCTION	
1.1	Terms of reference	1
1.2	Method of study	2
1.3	Outline of chapter contents	4
	CHAPTER 2 - DEVELOPMENT PROJECTS	
2.1	North Africa	7
2.2	West Africa	9
2.3	Central Africa	12
2.4	East Africa	14
2.5	South America	17
2.6	Central America	25
2.7	Middle East	28
2.8	Far East	30
2.9	Indian sub-continent	36
2.10	Europe	41
CHA	APTER 3 - DEVELOPMENT OF STEEL PRODUCTION AND CONSUMPT	ION
3.1	Steel production	46
3.2	Steel consumption	4 8
3.3	Conclusions	49
	CHAPTER 4 - DEVELOPMENT OF IRON AND STEEL TECHNOLOGY	
4.1	The available process routes to steelmaking	55
4.2	Factors affecting process selection	58
4.3	The development of steel industries	63
4.4	Current schemes	65
	CHAPTER 5 - CONCLUSIONS	
5.1	Factors determining steel industry development	67
5.2	Future regional development	70
APPE	NDIX I – QUESTIONNAIRE	77
APPE	NDIX II - REGIONAL CLASSIFICATION OF COUNTRIES SURVEYED	84
A PPF	NDIX III - SCHEDULES OF STEEL WORKS PROJECTS	87

CHAPTER 1 - INTRODUCTION

1.1 Terms of Reference

In September 1970 W.S. Atkins and Partners were asked by the United Nations Industrial Development Organisation to prepare a report on all integrated and, as far as possible, on semi-integrated iron and steel works projects in the developing countries, with a capacity of more than 100,000 tons per year.

Integrated works have been defined **as** those which start with iron ore **or** oxide pellets as a raw material, and semi-integrated works as those which start with scrap, pig iron or reduced pellets. Thus information was not sought for rolling mills, forges buying in steel as slabs, blooms or billets, nor for foundries making iron or steel castings without any further processing of the cast product.

It was agreed:

(i) that the definition of developing countries should exclude:

Australia

Canada China (mainland) Europe Japan New Zealand Rhodesia South Africa United States U.S.S.R.

with the exception that certain countries in Europe should be covered. namely Cyprus, Greece, Ireland, Turkey and Yugoslavia.

- (ii) that published information on development plans and statistics of apparent steel consumption were to be gathered for these developing countries. Thus the report was to be prepared primarily from published data. although information was also to be sought direct from the countries concerned, through such sources as embassies, commercial offices, and trade corporations.
- (iii) that all information should relate to steel works projects falling within the following four categories:
 - (1) now under execution;
 - (2) agreed upon but not yet started;
 - (3) planned but not yet agreed;
 - (4) considered for implementation in the 1970's but not yet planned in detail.
- (iv) that such projects should be assessed in terms of:
 - (a) the source of raw materials;
 - (b) the type of process to be employed;
 - (c) the size and sector of market to be sought;
 - (d) the approximate capital cost of the development;
 - (e) status of the project, in terms of the categories indicated above.
- (v) that the information acquired was to be treated analytically, in terms of the likelihood of the projects concerned going ahead in relation to the markets envisaged for their output. The likely impact of the projects on the iron and steel industry of the country concerned, or of the region, was also to be considered. For this purpose, the developing countries should be classified by regional or sub-regional zones.

1.2 Method of Study

All sources of non-confidential information in the possession of W.S. Atkins and Partners were utilised, and various libraries were used, such as the Iron and Steel Institute in London. The co-operation of the British Steel Corporation in supplying information drawn from a wide range of publications was invaluable as was the assistance of the Metal Bulletin. Assistance was also received from many other sources, including the Projects Group of the Department of Trade and Industry, the Commonwealth Development Corporation, Ashmore Benson Pease & Co., and John Miles & Partners.

In order to obtain information direct from the countries concerned, **a** questionnaire was drawn up - an example has been included as Appendix I. It was decided that, in general, no approach should be made to countries with a population below 1 million, since in terms of per capita steel consumption **a** smaller population would not justify a 100,000 ton steel works. A few exceptions were made - for instance, Bahrain and the Gulf States were included in view of the potential investment in an iron and steel industry out of their oil revenues. On this basis, it was necessary to make some approach for information to a total of 94 countries, distributed among the following major regions:

Africa:	37
Latin Ame rica :	24
Middle East:	11
Far East:	17
Europe:	5

It should be noted that the Far East is taken to include the Indian sub-continent, while the Middle East includes Egypt and Iran, but not Turkey.

The first approach was made to the embassies of these countries in London, and to British embassies in the respective countries. They were asked both for any information they possessed on iron and steel works projects, and also for the most appropriate person or office to whom a questionnaire might be sent. The response from the embassies was good, although considerable delay was caused by the coincidence of the prolonged postal strike in the United Kingdom. On the basis of the information supplied by the embassies, a certain number of countries were assumed to have no steel works plans within the terms of reference of the survey, and no further approach was made to these countries. $(2^{\circ})^{\circ}$ or all $(2^{\circ})^{\circ}$ is a construction of the confirmation that is total dimension the confirmation descent of verteos into a total of 28 countries. The actual number of question matter despitched was considerably higher, since several addresses of suitable information sources were obtained for many countries, and individual question matters were sent to each address. The response rate was good - replies were received from a total of 41 countries, of which 22 were completed question matters. The return was thus 46% in terms of countries, although considerably lower in relation to the total number of question matters despatched. By region, the returns were distributed as follows:

Region	Completed Questionnaire	Replies by Letter	
Africa:	7	9	
Latin America:	5	5	
Middle East:	1	2	
Far East:	7	1	
Europe:	2	2	
	- Second States		
TOTAL	22	19	

Unfortunately, replies were not received from some of the countries where there is already a well developed steel industry with known expansion plans.

1.3 Outline of Chapter Contents

Chapter 2

The information gained from the questionnaires, publications and other sources has been recorded in Chapter 2, which has been subdivided into ten regional areas. Africa has been treated as four sub-regions - North. West Central and East; Latin America has been divided into two areas only - South America and Central America including Mexico and the Caribbean islands. The Middle East and the Indian sub-continent have been dealt with independently, leaving the Far East as an area comprising the rest of Asia together with Papua and New Guinea. Finally the European countries, including Turkey, have been treated as a separate group. Details of the countries in each region are given in Appendix II. Within the appropriate section dealing with each of these ten sub-regions, discussion of the sub-region as a whole precedes more detailed information on individual countries, under separate headings. No absolute line of distinction was drawn between those countries treated as part of the general assessment and those given individual treatment; the division differs for each sub-region, according to an assessment of the importance of developments in each country and their impact on the sub-region.

The information in Chpater 2 is complemented by a set of schedules for all countries with definite expansion plans. All available details of the raw materials, implementation date, process, crude steel capacity, product output and capital costs of each project have been given in these schedules, which are assembled in Appendix III.

Chapter 3

Estimates of the development of steel consumption and production in the developing countries during the 1970's have been given in Chapter 3. These estimates have been made in comparison with the equivalent levels during the 1960's, and have been based entirely on published statistics. The technique used to assess what level of consumption and production will be reached by 1980 was linear regression, whereby a line of best fit was drawn for the published figures for the 1960's, and extrapolated to 1980.

It was not possible to make detailed forecasts for each country, in view of the lack of information. The trends for the developing countries were therefore calculated by comparing the figures for the whole world with those for the developed countries, for which statistics are more readily available. In addition, estimates were made for each of four major regions - Africa, Asia, Latin America and Europe (developing countries only); it was not possible to single out the Middle East for this purpose.

Chapter 4

In this chapter, the alternative technological processes for steelmaking are discussed, with special attention to future trends in technology and their possible relevance to the development of the iron and steel industries of developing countries. Consideration has also been given to the particular processes

envisaged for expansion projects, wherever these have been reported in sufficient detail, in order to assess the application or otherwise of new technological trends in the developing countries.

Chapter 5

This chapter considers the various factors affecting the development of an iron and steel industry, including political, sociological and economic factors as well as the technological aspects already discussed in Chapter 4.

The report concludes with a summary of the likely pattern of development during the 1970's in each of the major regions.

CHAPTER 2 - DEVELOPMENT PROJECTS IN THE DEVELOPING COUNTRIES

2.1 North Africa

Gene ral

Of the five countries in this region, only two have well-established steel industries - Algeria and Tunisia. The steel plant at Algeria's Societe Nationale de Siderurgie will become operational this year, with a capacity of 500,000 tons, which will give Algeria the biggest steel industry in North Africa. Their output of rolled steel is already higher than Tunisia's, where there is a smaller integrated steelworks with capacity of 120,000 tons of crude steel per year. Expansion at this works will be somewhat slower than in Algeria.

In Morocco, the present steel industry is small, but there are plans for an integrated works at Nador (Raskebdan), with a capacity of 120,000 tons envisaged on completion of the fir: . stage, rising to between 250,000 and 300,000 tons, including some 20,000 tons of ferro-manganese. This plant would probably utilise local deposits of high quality iron ore and coal from the Djerada deposits, although the possibility of using a HyL direct reduction process has not been ruled out, based on natural gas from the Arwez Terminal. The intention would be to substitute home production for Morocco's fairly substantial imports. Work does not seem to have begun on this project, since the financial arrangements have not yet been finalised, although it is reported that a U.S. -French group has proposed to finance an \$85 million works.

In Libya there is at present no steel industry other than a plant producing around 20,000 tons per year of reinforcing rounds, but the Government has plans to exploit local availability of natural gas and fuel oil to establish a substantial

local industry based on the direct reduction process. The objective of this steelworks would be mainly to supply the rapidly growing home market for steel products, especially tube and pipe for the burgeoning oil industry as well as steel for the construction industry. It is believed that the Libyan plans are fairly tentative, and that production would not start in any event before the end of 1975 or the beginning of **1976**.

There is at present only a galvanising plant of 18,000 tons capacity in the Sudan. They have plans to set up a plant by 1974 for resmelting scrap iron; the planned capacity is 18,000 tons of finished products, consisting initially of reinforcing bars.

Algeria

Algeria's iron and steel industry plans originated under the French administration about 10 years ago. The basis of planning was to exploit the country's own iron ore deposits at Ouenza and also local availability of oil and natural gas.

The plans have been broadly to build up an integrated steel industry in three stages, first by establishing ironmaking, secondly steelmaking, and finally finished products manufacture. Ironmaking is now operational, and much of the iron is being exported, particularly to Japan; building of the steelworks is well advanced with technical and financial assistance being provided by the Soviet Union and other countries. The steelworks should become operational this year, together with 10 million tons per year capacity of hot rolling and 200,000 tons per year of cold rolling mills. There are joint plans to add a third LD converter in 1973.

The rapidly developing oil and gas industry in Algeria has meant that one of the most rapidly growing domestic markets for steel has been tube and pipe. There are already some facilities for tube manufacture at El-Hadjar, but there are plans for a 160,000 tons per year seamless tube plant to be added in 1974. Looking further ahead, there are plans to double ironmaking capacity in 1975 and also to add a 400,000 tons per year bar and section mill in the same year.

Given the determination of the Algerians to develop their own integrated steel industry, there is no reason to suppose that these plans will not eventually come

 $\mathbf{8}$

(c) Construction of the second sec

Innsia

The foundation cold human screte juster takes and the screte scale factor. 1963 when work was startest on the Merill Book on a constraint scale factor. capacity freme is angle block book of the start of the start periods of the scale scale of the 300 roots periods, includence of the 100 sector scale scale scale of the around 120 000 roots per years. Efforts are now beauty and there is a scale scale of in the areas of fruitshed and scale function and a consoly to odd to the scale of available capacity of the integrated work of and a consoly to odd to the scale of electric induction furnaces.

Phase Lot this operation is the Jaying down of a sine trawin, is dliwith capacity around 15,000 tons per annung, this is now thing this!

Phase 2 for which the start up date is rentatively potor 1914 models a additions to the existing oxygen plant, extensions to the rolling will continuous continuous casting capacity and installation of electric himaces. So final decision has yet been taken on the Phase 2 plans, but the would effectively increase billet capacity by 50,000 tons and write rolling capacity by 60,000 tons.

Tunisian dinars.

2.2 West Africa

Gene ral

The steel industry in West Africa is not as well developed in general as in North Africa. Of the 17 countries in this region of applies that 10 hive me existing steelworks, and no plans whatsoever for developing them within the foresceable future.

	- sue
	the second
	- ETC \$
	$(\varphi \to \beta_{10}, \varphi)$
	: \$ \$ € 1 \$₿
	1 - 1 t - 1 .
	 1 → 1 <li< td=""></li<>
	1 § 1 În \$ 28
	ŝ
	a a a a a a a a a a a a a a a a a a a
4.1	3、《清书、《第2书》,有
	王:朱奢日 日 人名爱奇德 ~~~

مېرىقىلىڭ ئويغۇڭ ئەرىپ بولار ئەرى قايلىدى. ئىلەر بىلەر بىلە بىلەر بىلەر

Vita sanga series and the constraint of the same series of the series of the constraint of the same series of the same serie

المعلم معرف معرف مدول معرف مدول معرف من المعرف المعرفة مدول معرف المعرف ال المعرف معرف المعرف ا المعرف المع المعرف المعوف المعول المعول المعرف المعرف المعول المعوف المعرف المعرف Lindly, there are four countries which already have small steel industries and some development plans - Ghana. Every Coast. Liberia and Nigeria. There is considerable scope for them to co-operate over steelworks development in view of the rather restricted size of their individual home markets, and in 1967 a study was carried out on this basis, which has been detailed below under Liberia. The Nigerians were not prepared to consider co-operation at that time, and have their own development programme. Ghana have been considering for some years extending their steel plant at Tema, which produces around 30,000 tons of merchant steel and reinforcing rods per year from ships' scrap, to a level around 100,000 tons per year. The state of progress on this proposal is not known. There is a small steel industry developing in Ivory Coast which consists at present only of rolling mills, but electric steelmaking is being introduced between 1971 and 1975. Even by 1980, however, total capacity will only be around 160,000 tons per year. Local iron ore deposits in Ivory Coast are also being developed.

Libe ria

The Liberians have no iron and steel industry of their own, but plans were drawn up in 1967 to establish an integrated steelworks to serve the whole of the West African sub-region. It was assumed that the markets in Nigeria and the Niger would be supplied by the steelworks planned for Nigeria, and that the net market in West Africa open to a Liberian steelworks would be 400,000 tons per vear in 1975. The plant was, therefore, planned to produce about 200,000 tons per year initially, using one 15 foot blast furnace and two LD converters; output would eventually rise to over half a million tons per year. Nothing has yet been done towards the implementation of these plans, which would have been based on the availability of high quality local ore which is at present only exported; there is also a local pelletising plant, which is planned to produce some 2 million tons per year in 1971. Financial arrangements were to have been shared between the participating countries; the capital cost was estimated in 1967 to be of the order of \$115 million over the first ten years.

Nigeria

Ngaria is a country with a bauntial reactives of coal as well as from ore (although the latter is not of such good quality as, for example, in Mauritania). Further, Nigeria alone probably accounts for as much as 50% of the total market for steel products in West Africa. As yet there is no integrated steel industry in the country, although there have been ambitious plans to establish such an industry. The latest official plans as set out in the official Second National Development Plan (1970 - 1974) call for the establishment of a 750,000 tons per year integrated works, construction of which is scheduled to start in 1974. Total cost is expected to be £150 million (Sterling). This plan will probably go ahead in due course possibly with Soviet technical and financial assistance.

Plans for semi-integrated steelworks have also been noted by the private sector in particular by Korf. These plans are shown on the schedule, but if the State plans for an integrated works are given the go-ahead, it is unlikely that permission will also be granted for the private sector proposals.

Finally, there is a very small semi-integrated steelworks, Nigersteel Company at Enugu, based on local scrap; plans for rehabilitation and for expansion, following the civil war, are under consideration. Output before the war was about 10,000 tons per year.

2.3 Central Africa

Gene ral

Half the eight countries in this region have no existing steel industry, and no plans to establish one. Information from the Central African Republic and Chad was not available, but the circumstances in these two countries preclude any steel works development. Information from Malawi confirmed that they have no steel industry, and no development plans, and in Swaziland the only proposal is to beneficiate the lower grades of ore which they are currently exporting at a rate of 2.5 million tons per year.

Of the other four countries, only Angola and Zambia have any steel works at present, although in Zambia this consists only of small galvanised sheet and welded

pipe plants. Both countries have plans to construct integrated steelworks, as do the Congo Republic (Kinshasa) and Mozambique; details are given below. The development of steel demand in these countries should justify these projects, in view of their restricted objectives; development of large-scale steelworks cannot be expected in the immediate future, however, with the possible exception of Angola where the potential for future industrial development to match their large material resources is considerable.

Angola

Angola's iron and steel industry was established in 1965 with the opening of the first part of an integrated industry producing pig iron and crude steel. These works are based on different sites, but together form an integrated industry. There are now plans to extend the works to raise crude steel capacity to around i20,000 tous per year, and it is believed that a start has already been made on the implementation of this expansion programme.

Congo (Kinshasa)

There are plans to establish an integrated steel industry at Maluku, with Italian assistance, based initially upon scrap, but later to become integrated utilising local iron ore. It is planned for the works to come on stream in 1972/73 with a capacity of around 150,000 tons, and for this to be raised progressively to 300,000 tons. Demag are installing a 50 ton electric arc furnace which will rely for power on the hydro-electric scheme at Inga; a 4 strand Conticast plant and light section mill are also being installed. Italimpianti are installing a CR strip mill.

There are also Congolese plans to establish a steelworks at Kimpako near Kinshasa, but no recent news has been released on the progress of this plant.

Mozambique

Mozambique has had plans for some years to develop an integrated iron and steel industry at Beira to exploit local coal and iron ore. The latest proposal is by Companhia de Uranio de Mozambique, who are planning a 250,000 ton plaut to

produce mainly for export. The tentative implementation date is 1974, but no start has been made on the project as yet.

Zambia

The Zambian Industrial Development Corporation (Indeco) has plaus to construct an integrated steelworks at Kafue near Lusaka to utilise local available coal; the plaus envisage a plant of around 60,000 tons per year initially, costing approximately \$25 million. The plaus include introduction of pig iron, steel ingots and approximately 50,000 tons of rolled products. Start-up is provisionally scheduled for 1974, and initial orders for equipment are expected to be placed during 1971.

2.4 East Africa

Gene ral

11

This region has been taken to include Mauritius and the Malagasy Republic, and thus consists of nine countries. Of these, only four countries have any significant steelworks projects. There is no steel industry in any of the remaining five countries, with the exception of Mauritius and Somalia; the former have only a 6,000 tons per year rerolling mill, for which there are plans to install a small electric arc furnace to melt local scrap, while in Somalia such a semi-integrated works already exists, with an annual capacity of 6,000 tons. Burundi have no steel industry and no plans to establish one, and it is assumed that the situation is the same in Rwanda, although no definite information 1s available. In the Malagasy Republic, however, studies have been made for a rolling mill project to be based either on imported billets or on scrap melting; these studies have been suspended in view of the small market, and will not be revived unless a more economic process allowing price reductions of the finished products should become available.

Ethiopia, Kenya, Tanzania and Uganda can to some extent be considered en bloc, and indeed a feasibility study for the development of the steel industry in East and Central Africa (covering Malawi, Rhodesia and Zambia, in addition to the nine countries in East Africa) was carried out on behalf of the United

Nations Economic Commission for Africa in 1965. Consumption of iron and steel products at that date was about 450,000 tons per year. of which only 75,000 tons was produced in the region - principally in Ethiopia, Rhodesia and Uganda. Excluding Rhodesia, consumption in 1965 was about 300,000 tons for the whole region, and was expected to rise to 400,000 tons by 1970 and 600,000 tons by 1980. This level of demand is sufficient to justify the development of an integrated steelworks to serve this region. There have been no further developments, however, towards a multi-national project of this kind.

Ethiopia

Steel industry developments in Ethiopia are on a very small scale, with a scrap based plant at Akaki producing at a rate of around 5,000 tons per year and a small galvanising plant.

There were reports some years ago of plans for a major steelworks at Sebeta, but these appear to have fallen through. There are also plans to install steel-making capacity at Akaki of as much as 80,000 tons per year at a cost of around \$ Ethiopian 50 million; so far, this has not gone further than the planning stage.

Kenya

Kenya's iron ore and coal reserves are not easily exploitable for steelmaking; the two basic steelmaking raw materials have therefore to be imported, as does scrap which is not available in large quantities. The market is expanding quite rapidly, and is now at approximately 100,000 tons per year (84,000 tons per year in 1966).

There are three main producing companies, Kenyan Sheet Manufacturing Co. Ltd. with a 25,000 tons per year galvanised sheet plant at Changamwa and a corrugating plant at Shimagi; EMCO Steelworks Kenya Ltd. at Nairobi; and KUSCO, which started as an expansion of East African Wire Industries Ltd. in collaboration with Development Finance of Kenya Ltd. Both EMCO and KUSCO have expansion plans, envisaging the installation of electric arc steelmaking of approximately 100,000 tons capacity, the former by 1972 and the latter by 1980. However, it is probable that expansion to this level of capacity will not go ahead much before 1980, in view of the market size, although Kenya envisages exporting much of the output to Ethiopia and Zambia.

The Kenyan Aluminium Works Ltd. have been thinking of installing a merchant bar mill of 60,000 tons per year capacity, but this project does not seem to be progressing.

Tanzania

The United Republic of Tanzania bas 130 m. tons of proved iron ore reserves, and 200 m. tons of coal, part of which is coking coal. The location of the deposits is the Livingstone Mountains between the towns of Sonjea and Njombe.

A very ambitious project was approved, of which the first phase requires an investment of 5.7 million Shs. for the mining of the iron and coal deposits. The complete project includes an iron and steel works, the exploitation of the mines on a large scale, the building of a power station, and the construction of a whole village for 30,000 people. The total investment would be 3,000 million Shs., and the project will be co-ordinated with the Tanzania Railway project.

The existing steel producers are re-rollers - Matabi Ltd., a galvanised steel plant at Dar-es-Salaam of 25,000 tons capacity, and the National Steel Rolling Mill at Tang. of 10,000 tons per year capacity of bars and sections. Neither of them have integration plans.

Present consumption is about 65,000 tons per year of rolled steel; it is forecast that consumption will be 150,000 tons per year by 1976. It is, therefore, possible that the ores will be beneficiated by the end of the decade, and a small integrated plant producing semis will probably be constructed.

Uganda

Iron ore known reserves in Uganda amount to about 100 million tons. Magnetite deposits at Sukuka which have 45 million tons of proved reserves are sufficient for economic steel production. The iron content of the ore is 62%. Coking coal is not available in substantial quantities in Uganda, and would, therefore, have to be imported.

There are two steel companies in Uganda producing galvanised sheet - the Uganda Boati Company (25,000 t.p.y. capacity) and Uganda Steel Company (15,000 t.p.y. capacity) - and also a semi-integrated steel company, Steel Corporation of East Africa, which owns a 12-ton are furnace and a rolling mill of 24,000 t.p.y. capacity, both situated at Jinja. No details a cavailable of any expansion plans for these companies, but the Uganda Development Corporation have a project for a 100,000 tons per year integrated steelworks, to be completed by 1980, with the steelmaking plant for billet production installed in the early 70's.

2.5 South America

General

The steel industry in South America has been developing for thirty years and in the case of Brazil dates back to 1921. Production has been higher in this region than any other, and consumption very similar to Asia - the proportion of steel consumption covered by local production has, the refore, been considerably higher than elsewhere in the developing world.

Of the six countries in this region who already have integrated steelworks, Brazil and Argentina produce over half the total crude steel output. In Brazil there are 11 integrated and 30 semi-integrated steelworks with a total capacity of over 5 million tons per year, compared with the 2.4 million tons in Argentina. There is a National Plan to raise output in Brazil to 20 million tons per year by 1980. All major projects are under way, and although this ambitious target may not be reached, capacity will undoubtedly rise substantially during the decade, based on the three major state-owned companies who together account for 3 million tons of the current crude steel production.

The steel industry in Argentina is based on three integrated plants, although there are eight steelworks with existing capacity in excess of 100,000 tons of crude steel, and a ninth which is expanding capacity to this level. All these plants have expansion plans, and if they all materialise, the total capacity will reach approximately 7 million tons by 1975; the growth of steel consumption will not match such an increase, and it is unlikely that these plans will in fact all be implemented. Priority is likely to be given to the largest plant - Sociedad Mixta Siderurgica Argentina (SOMISA) - and even the plans of the other large plant -Probulsora Siderurgica SA - may be curtailed by SOMISA's expansion programme which envisages a capacity of 4 million tons during the decade.

Apart from Brazil and Argentina, there are weil developed steel industries in Chile. Colombia, Peru and Venezuela. The last two have plans which would increase their capacity to more than 5 million and 10 million tons respectively, by the introduction of new integrated steel plants. In both cases, the output would have to be exported, and there is considerable doubt whether the new works will in fact be built during this decade; on the other hand, their existing integrated steelworks are likely to increase their capacity to 500,000 tons in Peru, and 1.5 million tons in Venezuela, by 1975, rising to between 2.5 and 3.0 million by 1980.

Chile and Colombia - the remaining two countries with integrated steelworks at present - have, by comparison, more modest proposals whereby Chile's state-owned integrated works will increase capacity to 1 million tons in 1974 and 2 million tons in 1976, while Colombia's Acerias Paz del Rio will increase capacity to 500,000 tons of crude steel. In addition, Colombia has plans to build three new works, of which one would produce 300,000 tons per year, and the other two rather less; the total crude steel capacity might thus approach 1 million tons by 1980, which will be matched by the expected growth in domestic steel consumption.

The remaining countries in South America - Bolivia, Ecuador, Paraguay and Uruguay - do not currently have integrated steelworks of 100,000 tons capacity, nor any definite plans to develop them. Ecuador has a low consumption of steel and a shortage of raw materials, as does Uruguay, and Paraguay's consumption is minimal at 54,500 tons forecast for 1980. Plans for integrated works are, therefore, not justified and any prospects of developing semi-integrated works are also strictly limited - one company in Ecuador is building an electric arc furnace to produce 40,000 tons per year. Only in Bolivia are there plans to develop an integrated works; this would use pellets produced from their considerable iron ore deposits at Mutun and would transport their products output by the Paraguay river. This project would be on a multi-national basis,

also involving Argentina. Brazil. Paraguay and Uruguay, but it is very much a long term project which is unlikely to be realised in this decade, in view of Bolivia's restricted domestic market of some 50,000 tons per year. In Guyana, French Guiana and Surinam, there are no known projects and no existing steel industry.

Argentina

The whole of the Argentinian steel industry is based on three companies, Sociedad Mixta Siderurgica Argentina (SOMISA). Propulsora Siderurgica SA and Altos Hornos Zapla, which are the only fully integrated works operating in Argentina. The first two were set up mainly to supply semi-integrated works and re-rollers with semis, and also to substitute imports mainly of flat products. Propulsora Siderurgica will only be allowed to expand if imports of steel products continue to be necessary to satisfy domestic domand, after SOMISA's projected expansion by 4.0 million tons per year; this might well, therefore, curtail the expansion programme of Propulsora Siderurgica. Altos Homos Zapla does not have any expansion projects planned for implementation in the near future, and is not well placed for further expansion due to the remoteness of its plant from the home market areas. Thus, only two major development plans are under way, with some doubt as to whether part of Propulsora Siderurgica's expansion will be substituted by a further expansion at SOMISA. The remaining plans are those of special steel firms which intend to modernise their equipment or integrate or semi-integrate their production. Tonnages involved in these projects are small compared with the two principal projects, because they relate to quality steels. Expansion projects with capacities under 100,000 tons per year were not considered, although in some cases they could very well be of great importance if the type of alloy steel is unusual.

Raw material deposits are also being developed to supply the steel industry with more suitable raw materials. It is planned to have a pelletising plant for the Iron Ore Deposits at Sierra Grande, which would substitute some of the ore imported by SOMISA from Brazil or Peru; SOMISA is also planning a sintering plant to be supplied either with Argentinian ore or imported ore. Coking coal is not to be found in Argentina, but the coal at Rio Turbio can be blended with coking

coal to produce coke. The present ratio is 15%, although it is possible that a 25% or 35% ratio could be used. Scrap availability is not a problem, due to the vast amount of old scrap generated during the past years, and the potential availability from old railway material. Common ferro-alloys are currently produced in acceptable quantities within Argentina, the less common alloys being imported with gradual substitution by home production. Limestone is produced wholly in Argentina, as is Dolomite to a great extent, the balance being provided by imports from Uruguay.

Brazil

In 1970 there were 11 integrated steelworks, 30 semi-integrated works and about 89 other works in the Brazilian steel industry. The five biggest plants produce 66% of the total steel output, which is currently some 5.4 million tons per year of crude steel. The known expansion plans of the three major steelworks will increase their capacity to over 6 million tons by 1975, and over 10 million tons by 1980. There are a further three plants who plan to expand capacity to more than 250,000 tons each, while the remaining eight plants with expansion plans will all remain in the 100,000 to 200,000 tons range of crude steel capacity. If these plans are all implemented, they will total approximately 12 million tons of crude steel capacity. On this basis, the total capacity in Brazil by 1980 is likely to reach some 17 million tons, rather than the 20 million tons per year target of the National Plan.

Iron ore is produced at the Ferriferous Quadrangle deposits (Mina's Gerais) where reserves have been estimated at 40,000 million tons or 8% of the world's known reserves. Large deposits have also newly been discovered in the northern Carajas Mountains, in the Amazon region, which are supposed to be as rich as those in the Ferriferous Quadrangle. There is a third ferriferous formation in the western state of Mato Grosso, which does not seem to offer possibilities of immediate exploitation due to the distance from the Atlantic coast (2,000 Km). This availability of iron ore in Brazil makes it ideal for steel production, particularly in Mina's Gerais and coastal districts nearby. In the Amazon valley, Manaus is a potential site for a steelworks once the steel market develops.

Other raw materials are not so abundant as iron ore - coal must be blended with imported coking coal to produce coke, and the main source for imported coking coal is the U.S.A. Natural gas is available at some of the steelworks sites such as Bahia and Salvador, which might lead to the development of Direct Reduction processes, at an advantage over the conventional steelmaking process.

The National Plan set up to develop the steel industry has been based on work done by the Brazilian Steel Institute (Conselho Consultivo da Industria Siderurgica), Tecnometal (Estudos e Projectos Industriais S.A.), and the three state-owned companies. Although the target is high and may not be reached, it should set the pace and will probably give rise to high growth rates. All major projects appear to be under way after agreement was reached between the Government and international financial organisations.

Market studies are being carried out by Tecnometal to support the Plan, although the go-ahead has been given in advance of the results of the survey, on the assumption that the rates of market growth used in the Development Plan were on the low side. This assumption has been made in spite of the forecasts of an American firm of consultants, whose figures were even lower and were considered too pessimistic by the Brazilians. It is thus very possible that the targets set by the National Plan will not be reached, although this would in itself only lead to postponement of some of the projects, or to temporary exports of steel products to other South American countries.

Chile

The only integrated works in Chile is the State-run steel company CAP (Compania de Acero del Pacifico). There are also semi-integrated privately-run works such as FAMAE (Fabrica y Maestranzas del Ejercito) and others whose total capacity is only 35,000 tons; their expansion projects have not therefore been considered. Chile also produces 15,000 tons of casting and 30,000 tons of forgings for the mining industry and the railways.

Raw materials are available locally, with promising deposits of iron ore in the northern part of Chile. Much of the Chilean investment plans relates to iron ore, in the form of pelletising plants -a 5 m.t.p.y. pelletising plant is planned

at the Algatobo mines, and Bethlehem Chile is also planning a 4.5 million tons per year pelletising plant.

The Chilean Steel Market has been expanding at a rate of 6.0% per year on average during the past years. Apparent consumption has been forecast at a level of about 800,000 tons per year in 1975, and about a million tons per year in 1980. Exports have been going down lately due to increased internal consumption, and are presently running at a level of about 20,000 tons per year. The CAP has expansion plans to increase crude steel capacity to 1 million tons by 1974, with a second phase expansion to 2 million tons by 1976. The first stage is in progress, but in view of the market forecasts outlined above, it is probable that the second stage of the expansion plan will be postponed.

Colombia

There are 5 steel companies in Colombia, of which three are integrated or semi-integrated. The semi-integrated works are Empresa Siderurgica SA (Medellin), with a 22,000 tons per year capacity electric are furnace, and Siderurgica del Pacífico SA with a 31,000 tons per year electric arc furnace.

Colombia's Instituto de Fomento Industrial and the Instituto de Investigaciones Tecnologicas were considering the construction of a \$280 million steelworks with a capacity of some 1 m.t.p.y., taking into consideration the possibility of obtaining the necessary coal supplies from Cerrejon and Palmarito deposits. This plan seems to have been substituted by an alternative project for three works, one to be an integrated works at Tibate near Medellin, the second an iron and steel works at Barranquilla (a harbour in the north of the country) with a capacity of 100,000 tons of plates a year, and the third an iron and steel works with a capacity of 100,000 tons of steel per year at Sinacura (near Bogota). Details of these three works are not known because they are at a very early planning stage.

Raw steel apparent consumption was 575,000 tons in 1968, of which 46% (240,000 tons) was produced in Colombia. Growth of ingot equivalent has been 5% yearly (4^{100}_{270} for bar products, 4% for flat products, and 9% for scamless tubes). Some 90% of the steel produced within Colombia was produced by the integrated works of Acerias Paz del Rio.

Here a CARA have a production of the contract of the contract

Peru

There is only one tore prated work in Perin (2001) ESV (S. 2002) (2002) (2002) de Chimbote SV) - but the issue of exercise control to the second seco

Iron ore of good quality is found in various place in Perioden the Nodes mountains. The principal deposits inclocated at Marcon (and Varia) the Marcona Mining Company produces 8.5 million tone periodic to the solution of the has obtained a government agreement to increase production to 10, small contous, its pelletising plant – the only one in South America – vall increase its apparty to 3.3 m.t.p.y. in the early 70's. Coking coal is at o available in Periodic Hydroelectric power is easily available from power stations – relating advictage of the level differences in the Andes rivers.

Apparent consumption of finished steel products expressed to input equivalent was estimated at 367,000 (ons in 1970. The various forecasts on future consumption indicate a fevel between 500,000 and 600,000 tons per year by 1980.

SOGESA intend to expand their capacity to 500 000 tons of a code steel. this is likely to take place, since the market will require this expanded capacity by 1980. There is also a project for a new steelworks, it Marcoaa, orthoug the iron ore pellets to manufacture 1.5 million tons of crude steel ox 1976. This is a 3 million by 1978 and 5 million by 1980. The projects for the ciplans includes certain, in view of the distances to the centre's of steel contamption, since revenues are unlikely to cover the cost of transportation havoived at exporting the products.

1 1. A.M.

3 ۰ . <u>ا</u> 54 e - o 1111

n - 3 f 撑 1 1 1 1 1 1 1 1 . . ч. ВЭ $\lambda^{-1-1}\lambda^{-1}=\lambda^{-1}-\lambda^{-1}$ 2011年1月1日 3 - 8 1 0 8

and the second sec e se réclaté crance é

84 y 14

STATES AND AND AND ÷ . ŀ (a) a set of the form the project second over optimitic, and is set to be the two optimized doing this decade.

2.6 Const American Area

In the contrast term taken to include the whole of Central America. Mexico w^{-1} the contrast of the Caribbean.

Of the value of the condy Mexico has a sub-dantial steel industry including a feature conducts with a production in 1965 of 3.4 million tons. This was used an effective clow their apparent steel consumption; thus, Mexico has almost reached self sufficiency, and already exports about 177,000 tons. The expansion planned for this decade would more than double their capacity, which will necessitate an increase in their exports, since home consumption will not quite heep pace with this rate of increase.

In Central America, there are currently no integrated steelworks, but several projects for plants of the scale of 100,000 tons per year or more are under consideration. In the Caribbean countries, however, there are no steelworks and no plans to establish them in the foreseeable future, with the sole exception of Cuba, where the possibility of developing a steel industry is currently under consideration.

Central America

The countries included in this area are those of the Central American Common Market — Guatemala, Honduras, El Salvador, Nicaragua and Costa Rica - as well as Panama and British Honduras.

Iron ore is found only at Agalteca (Honduras) in the form of hematite, with estimated reserves of 6 - 10 million tons, and on the Pacific Coast of Costa Rica, where magnetite TiO_2 bearing sands have been discovered, which can be concentrated and used for steelmaking in this form. Proved reserves have been measured to contain an iron equivalent of 4.5 million tons. Charcoal can be obtained in both regions from the forests near the iron ore deposits. Limestone

is potentially available near both deposits.

Dust, 19 dynamic licit diversity is expressioned prostonates for integrated steelworks in Honduras and Costa Rica. The market considered was the existing re-rollers future requirements of semis, and the future use of finished rolled products by the countries of the area. The conclusion reached was that the potential steel works shoul! mainly concentrate on billet production with some emphasis on bars which would be produced at a later phase, following the market's development. The trends over the past years in the apparent consumption of steel in the countries of the Central American Common Market a re shown below:

	1955	1960	1965	1968
Costa Rica	43,944	36, 513	70, 701	n.a.
El Salvador	26,254	25, 302	55,960	••
Guatemala	27,113	44, ó08	79,468	••
Hondu ra s	22,055	13, 721	32,043	• •
Nica ragua	27,265	20, 479	48,932	••
Total	146,632	140,623	287,094	

There are also figures available for the whole of Central America including Panama; these are not comparable with the above, but are shown below:

Total + Panama	 127,900	228,100	290,000
		220, 1 00	- 2 90, 00

It should also be possible to export billets from Central America to flaiti and the Dominican Republic.

On the basis of this demand for steel, there is scope for building up to two iron and steel integrated works with an annual capacity of some 100,000 to 150,000 tons per year each. The results of the study mentioned above showed that the Hondura's project would be more profitable if complemented with a bar rolling mill. The Costa Rica project did not seem profitable on the basis of the information available at the time; there is, therefore, less probability of it being implemented, although transport costs would be lower than for the Honduras project. Details of both these projects are given in Appendix III. Information from a leading El Salvador industrialist indicates that an alternative joint project or or instead to abend at Colfo de Fonceer on the Hordura's Pacific Coast. It is also likely that a pelletising plant will be built at Agalteca in place of the originally planned steelworks, for which transport would have been a problem in view of its inland site.

Mexico

There are four integrated producers in Mexico. One of them is the state-owned AHMISA, the biggest steel producer in Mexico with 40^{σ}_{c} of Mexico's total gross production and 60^{σ}_{cc} of the steel. Three out of these four companies produce sponge iron by the HyL process of direct reduction, which is still at its research stage. The c_{cc} il number of steel producers in Mexico is over 50, but the four integrated works produce about 90% of all Mexican steel.

The main steelworks are situated in the northern region of the country, near the most important coal belt, that of Coahila, relatively distant from the iron ore deposits. New installations such as the plant of Hoja y Lamina at Puebla, and the Tubos de Acero de Mexico plant at Veracruz, are relatively close to their consumer markets and very distant from the iron ore deposits from which they are supplied (El Encino, Jalisco). The greater part of the semi-integrated and non-integrated works are situated near the consumer markets in the Distrito Federal and in the Estado de Mexico. The policy followed by Mexico of locating integrated works at a distance from their iron ore deposits - the opposite policy to that followed by other countries - appears to be due to a defective railway tariff structure which subsidises the transport of iron ore, and penalises that of finished products. This policy leads inevitably to loss of efficiency in the steel industry as a whole. There are some signs of change, such as the possible location of a new steelworks at Las Truchas, near the iron ore deposits. This project is understood to be under active consideration. Pending government approval, the only information available is that, if approved, it will be an integrated steel plant consisting of a pelletising plant, two blast furnaces, BOF steel converters, equipment for continuous casting and continuous rolling mills. The plant would be built in two phases: the first one for a capacity of

1.5 million tons of steel, and the second for a similar additional capacity. It would use the iron ore deposits at Las Truchas, near the Pacific Coast, and near the mouth of the Balsas River.

A brief study of the Mexican market for steel rolled products indicates that Mexico has practically reached self-sufficiency. Apparent consumption, expressed in ingot equivalents, was 3.47 million tons in E968 against production of 3.43 million tons. Imports and exports were running at the rate of 224,000 tons and 177,000 tons respectively; imports are now lower than they were in 1953 by approximately 30%.

Current expansion programmes are only likely to go ahead if they are planned to meet future consumption in the home market, plus a reasonable increase in exports. All major companies envisage more than doubling productive capacity by 1980. This would necessarily outstrip growth in home consumption, especially when it is considered that as the industry matures, utilisation rates of installed capacity will increase with more efficient production. It is therefore likely that 1980 target capacities will have to be reduced if exports do not increase substantially during the next decade.

2.7 Middle East

Gene ral

There are six countries in the Middle East which have existing integrated plants of 100,000 tons plus capacity, or plans to introduce such steelworks -Egypt, Iran, Israel, Kuwait, Saudi Arabia and Syria. Of these, only Egypt and Iran have definitive plans to expand their steelmaking capacity during this decade.

Israel have one plant with a capacity of 125,000 tons per year - Israeli Steel Mills Ltd. - and a smaller plant of 25,000 tons; they do not, however, have any plans for further integrated steel plants.

There are plans in Kuwait for a 100,000 tons per year mini steel plant, which would be scrap based with continuous casting and rolling mill for producing reinforcement rods of maximum 30-32 mm diameter. A feasibility study for this project has been completed, but no firm decision to go ahead appears to have been made.

In Syncholo, increase plans to company hiterated works, and a reasonity study for this project is currently in progress with assistance from India; the order of magnitude is understood to be in the \$100 million region.

In the rest of the Middle East there are rolling mill facilities, but no integrated plants nor plans to introduce them. In the Lebanon there are some scrap-melting facilities. No information is available for the Yemen, and it appears that there are no plans to construct steelworks in the Trucial States, Bahrain, Qatar, or the Sultanate of Oman.

Egypt

The steel industry in Egypt is entirely state-owned, and in 1969 had an annual capacity of 500,000 tons of crude steel. Iron and steel are made at five plants, of which the largest is the integrated plant at Helwan, the Egyptian Iron Steel Co., which had a capacity in 1969 of 300,000 tons of crude steel and rolled products, and 200,000 tons of pig iron. Three of the other plants have steelmaking capacity in the region of 50,000 tons per year, based on open hearth or electric arc furnaces, while the fourth is a welded tube plant.

The Delta Steel Mill does not appear to have any expansion plans, but the other two - National Metal Industries and Egyptian Copper Works - propose to increase capacity by the addition of electric are furnaces and continuous casting machines, to 160,000 tons and 150,000 tons respectively. The bulk of Egypt's expansion plans, however, will be centred on the Helwan Steelworks, where new equipment includes a third blast furnace (650,000 tons per year), two 100-ton basic oxygen converters, continuous casting plant and galvanizing facilities. These are planned to raise capacity to 850,000 tons on the introduction of the third blast furnace, and 1.5 to 2.0 million tons on completion of the fourth blast furnace. The iron ore will be supplied by rail from their mines at Baharia.

The expansion plans indicated above will enable Egypt to meet her entire domestic steel consumption, with a surplus for export of up to 500,000 tons.

There is no its final interposite to been harded in fact interposite 1 of 16 works, the National Iranian Steel Company, is currently under construction with Soviet technological assistance, and is due to come into operation by the end of 1971. The initial raw steel capacity will be 700, 000 tons per year, rising to 1.4 million tons within two years. The first blast furnace will have a daily capacity of 1,500 tons, and steelmaking will be carried out by two 100-ton LD converters, which will be supplied by Dnepropetrovsk steetworks. The researches of this company indicate a demand for steel rising to 3 million tons per year in 1975, from the present figure of 1.4 million tons; such a rise would more than cover the output of their new integrated plant.

Iranian Rolling Mills also have plans to expand their total rolled steel output to 0.5 million tons per year by 1973, and to install steelmaking facilities in their associated company, the Sharian Steel Plant Co. at Ahwaz. The latter have ordered two 50-ton electric furnaces and a 4-strand continuous casting machine for 90-130 mm² billets. If the activities of these two plants are considered together, they will form an integrated complex with a crude steel capacity of approximately 200,000 tons per year.

Saudi Arabia

The General Petroleum and Mineral Organisation has a steel rolling mill at Djeddah with 45,000 t.p.y. capacity. They intend to install a billet mill, and in due course, iron and steelmaking capacity. Detailed plans have not been agreed to date, but the alternatives foreseen are an electric are furnace based on imported scrap, or a direct reduction process to utilise the large local deposits of hematitic ores.

2.8 Far East

General

In this area, there are only four countries whose steel industry currently includes any plants with a capacity in excess of 100,000 tons of crude steel - South Korea, Taiwan, Singapore and Malaysia. In all these countries, there are

Iran

plans either to explud the facilities of existing works, or to set up a new intervented steel plant. South Korea already have the largest output of crude steel in the area - over 500,000 tons in 1970. They also have a new integrated plant under construction, which will have an output of 1 million tons of raw steel by 1973, in addition to expansion plans for their existing plants. Malaysia's only major company also has an expansion programme currently in progress, whereas explusion plans in Singapore have not yet been finalised. In Taiwan, a decision to build a new integrated plant has been made and detailed plans drawn up, but construction has not yet begun pending finalisation of the plans, particularly in respect of financing arrangements.

Apart from these four countries, the Philippines and Thailand also have well established steel industries, although they do not at present have a large integrated steelworks. Both countries, however, have firm plans to expand existing plants considerably over the 100,000 tons level, and perhaps to invest in new integrated steelworks.

No other country in this area is likely to develop a 100,000 tons integrated plant in this decade, although Burma and Hong Kong have steelworks with capacities in the region of 25,000 tons per year, and are known to have expansion plans. In Indonesia, there is a partly finished 100,000 tons steel plant at Tjilegon, which was under construction by the USSR; the recent plans of Granite City Steel of the USA to complete this plant have been abandoned. There are reports of a project for the construction of an entirely new integrated plant, to be completed in 1972, but details are not available. In South Vietnam, there are a number of steelworks projects, largely based on steel scrap. The biggest of these will produce 30,000 tons per year of coiled rod, and the total output of the four works for which details are available will be 70,000 tons. In Cambodia and Laos, there are no substantial steelworks.

The current demand for steel in the Far East is at such a level that all these projects are viable in terms of marketing the steel products. In each case the domestic market would absorb the increased output, and still require imports - which are principally from Japan.
There have been some developments toward international co-operation in the area, with the recent establishment of the South East Asia Iron and Steel Institute, whose members are Australia, Indonesia, Japan, Malaysia, Thilippines, Singapore. Taiwan and Thailand. This Institute should in due course provide comprehensive statistics on the steel industry in this area.

Korea (South)

The total raw steel capacity in Korea in 1969 was 513,000 tons, which will be trebled by the new integrated steel plant currently under construction at Pohang City in South East Korea. The output of the Pohang Iron and Steel Company will be 950,000 tons of pig iron, 1.01 m. tons of raw steel, and 925,000 tons of rolled steel; this will bring the total capacity in Korea more into balance, the new figures being 1.0 m. tons of pig iron, 1.5 m. tons of raw steel, and 1.7 m. of rolled steel. The raw material requirements of the Pohang Works will be met partially from domestic sources, although 70% of the iron ore (approximately 700,000 tons) and 300,000 tons of coal will be imported via the local harbour, which will accommodate vessels of 50,000 tons and, in future, of 80,000 tons.

The demand for steel in Korea has been increasing at well over 20% per year over the last ten years, with imports running at between 100,000 and 200,000 metric tons per year. The objective of the new integrated works is to meet this home demand, and no exports are currently envisaged. The project is being financed and technically assisted principally by Japanese, Austrian and Australian concerns, with a total foreign investment of \$1.63 million; in addition, the Korean Government and other domestic sources will provide local currency equivalent to \$125 million.

There have been reports that an existing Korean steel company, Inchon Heavy Industries, has plans to increase their current 100,000 tons output of raw steel to 200,000 tons in the near future, and in due course to 1 million tons. The time scale is not known, nor are any details available for this project.

Malaysia

The Malayawata Steel Company is the only substantial steelworks in Malaysia;

it is an integrated works with a current expacity of approximately 130,000 short tons of raw steel. A Phase 2 expansion is currently in progress, whereby a second blast furnace was introduced in 1970 which has increased the output of pig iron to 120,000 tons per year. The expansion will be completed by 1972, with the introduction of a 10-ton electric are furnace, a continuous casting machine, hot coiled processing, and a slitting machine for wide strip. The total steel capacity of the existing two 12-ton LD converters will be increased by the electric are furnace to 150,000 tons per year. A further Phase 3 expansion is under consideration; no detailed plans have been made, but it is intended to produce steel sheets and tin plates.

The steel industry in Malaysia is also represented by three "mini' mills which have a total combined capacity of approximately 60,000 tons per year.

Philippines

There is a well established steel industry in the Philippines, with five semiintegrated plants and a number of rolling mills. None of the former have a capacity exceeding 100,000 tons, but there are currently three companies with plans to introduce substantial steelmaking capacity. The Higan Integrated Steel Mills Inc. was started in 1965 with the intention of becoming the Philippines first integrated iron and steel works, with an initial capacity of 350,000 tons of crude steel and 275,000 tons of finished steel. Existing production facilities consist of hot and cold rolling mills, and an electric furnace plant and LD steel shop, to be in operation by 1974, together with continuous casting facilities. The Elizalde Rolling Mills Inc. also have proposals for a blast furnace plant, LD steel plant and blooming-slabbing mill for implementation in 1972, to produce semis for its own mills and billets for other mills. Finally, the Marsteel Corporation, a smaller company, has plans for a 200,000 tons per year billet mill.

The Philippines Board of Investments is currently considering the viability of these proposals, and also assessing the alternative possibility of setting up a single integrated plant as a co-operative venture, in order to achieve a more economic initial capacity of 1.5 million ingot tons per year. Such a scheme would involve two blast furnaces for producing 2,500 tons of pig iron each per day,

and converting this to steel in LD converters; billets would be produced by continuous cutting, and a slabbing taill would be installed to roll ingots into slabs for processing by the two not rolling mills recently approved - one of which is already installed. Decisions on these alternative proposals will shortly be made.

Singapore

The National Iron and Steel Mills, who operate two electric are furnaces of 120,000 tens total capacity, are the only large steelinaking company in Singapore. The in explicit on planes will introduce a 10 ton (.20 MVA) electric are furnace raising capacity to 190,000 tons per year. Consideration is also being given to the making of sponge iron by a direct reduction process. Continuous casting machines to produce stabs, large blooms and billets, and increased rolling mill capacity will also be introduced. Almost half their production is eurrently exported, the remainder being marketed to the local construction industry. The domestic demand for steel is expected to rise by some 15% a year according to an assessment by the Japan External Trade Organisation, although the actual rate of increase may well prove to be rather less than this.

A joint Thai-Singapore project has also been reported, which would locate blast furnaces and melting shop in Singapore utilising iron ore deposits from Thailand and supplying rolling mills in Thailand. The property for such a steel plant depend on Thai and Singapore Government authorisation.

Taiwan

There are currently 20 steel companies in Taiwan with an installed ingot capacity of 800,000 tons and output of 700,000 tons of bars, rods and sections per year. All are based on electric are furnaces. Plans have been under consideration for several years to build a large new integrated steel works and the Economics Minister has recently indicated that this project will definitely go ahead for implementation over the next five years. Preliminary assessment of the feasibility of the project has been made on the basis of a first stage production capacity of 1.3 million tons of crude steel, to be followed by second stage expansion up to 2 million tons per year. Products would initially consist of 300,000 billets, and 800,000 rods, bars and sections, with the addition of flat products in the second stage. Static king would be by two 130-ton lastic oxygen farmaces, with a continuous easting plant for billets, a rod and far mill, and a far and section mill. From one and coal would be imported to feed one blast furnace of 1.15 million tons per year capacity; however, some consideration may be given to the use of direct reduction processes. Harbour and dock facilities would also have to be provided. Finance would be provided by equity and loans, in the ratio of 1:2, the former being largely divided between the Chinese Government (45%) and foreign investors (45%), while the loans would be obtained principally from Japanese sources (25%), suppliers credit (45%), and local banks (20%). Steel consumption in Taiwan has risen by 18% per year since 1950, and is expected to continue to rise at between 6% and 10% to give annual tonnages of 2.15 millio, in 1975 and 4.12 million in 1985. Existing production is expected to have dropped to 500,000 tons by the time the projected steelworks takes part in the domestic market, thus the output of the new works could be entirely absorbed by the domestic market.

Thailand

The current output in Thailand is 560,000 tons of steel products, largely from imported materials - pig iron production is only 22,000 tons per year. The only integrated steelworks is the Siam Iron and Steel Co. Ltd., which has expansion plans for implementation in four phases. By 1971 the first two phases will be complete, increasing production to 165,000 tons per year of sections, bars and rod with the introduction of a merchant and bar mill; the third and fourth phase to be completed in 1976 and 1978 respectively. will increase their total capacity to 230,000 tons per year of these products. It is reported that two 25-ton electric arc furnaces, plus some LD capacity, will be installed to increase their crude steel output, which is presently provided by an open hearth furnace, an electric arc furnace, and high frequency induction furnaces, with a total capacity of 40,000 tons. It has also been reported that two charcoal blast furnaces, with a capacity of 600 tons per day each, will be installed at some future date.

Plans for a new integrated steelworks have also been discussed for some time and various Thai-Japanese projects are reported to have been submitted to the Board of Investments - who have not supplied any details in this

connection. There and other proposals from the USA and Australia, all put forward capacities in the region of half a million tong of products per year; this is understood to be the minimum required output of cold rolled products together with a crude steel capacity of 1 million tons in the opinion of the Board of Investments.

In 1968 it was estimated that steel demand would reach 0.9 million tons in 1970, 1.1 million tons in 1975 and 1.7 million in 1985; current needs have already reached 1 million, so that there is likely to be a firm market for the products of Siam Iron & Steel's expansion plans. It is estimated that Thailand will be approaching self-sufficiency in bar production by 1973, with the Siam Iron & Steel expansion, but with total imports in 1969 of over 600,000 tons of steel products, there appears to be room both for their expansion plans and for a new half a million ton integrated steelworks.

2.9 Indian Sub-continent

General

The countries included in this region are Afghanistan, Ceylon, India and Pakistan. These have all been dealt with independently below, in view of the diverse nature of their steel industries, which is virtually non-existent in Afghanistan, small in Ceylon, somewhat larger in Pakistan though with some semi-integrated works, and in India is the largest steel industry in the developing world with the possible exception of Brazil.

In Ceylon, there are plans to introduce steelmaking capacity in the state owned rolling mills, and Pakistani expansion plans will create two integrated steelworks with a combined capacity in excess of one million tons. Thus during this decade, all these countries except Afghanistan will have an integrated steel industry.

In India, production is currently some 5 million tons per year of crude steel, while apparent consumption is 9 million tons rising to 12 million by 1973-4. Their expansion plans are substantial; the state-owned Hindustan Steel Limited have projects for three new steelworks together with expansions at their existing works. The private sector is also planning to expand marginally;

the two main privates connected that the test states a connected on the test states of the second states of the test states of t

progress.

Ar Sumiatan

The next, draw chalanov ender a subsection with drawed drawed by a sector of the secto

Fight which produces build president oddates. In the produces build president oddates.

Government has approved plans by a local true to set approved plans by a local true to set approved plans by a local true to set approved plans to have a local true to set approved to produce concentration of the power of the produce concentration of the power of t

Home consumption can be measured from importe which are the table of some 20,000 tors per year that singular states before to present the building of an integrated works, and it any such place cut alread at sould be necessary for most of the output to be exported. No note, and the up of my importance are therefore likely to be built in Abburn trainible to a future.

Ceylon

Rolled steel production started in Certon in 196 where the Certon Steel Corporation started a bar mill at Ornwell with an initial entries of 10,000 rous per year, to be increased to (0,000 tons per year. While dress supporting is 12,000 tons per year. In addition to the state owned soft she to a diabove, two privately owned plants for galvanised sheets have been built, with capacities of some 12,000 tons per year and 10,000 tons per year respectively.

From ore reserves in Ceyton amount to some 32 outflow rows. The two bits of deposite are at Kurm. In (7, 5 outflow) in UP - control of continue). Coking coal is non-existent in Ceyton and would have to be imposed, but the الم المراجعة المراجع الإسلام المراجعة المرا الإسلام المراجعة المرا الإسلام المراجعة ا

A set of the object of the obje

the product of the second s

المعطولة معروفية الدينة المركبة المعلية المعروفية المعروفية المعروفية المعروفية المعروفية المعروفية المعروفية ا المعطولة من المعروفية ا

-

at the state or edistectivories which already account for 70 per cent of total fan er production. The explosion plans for Rourkela, Durgapur and Pailai will rule cupycity 14 T00,000 to 800,000 tonk at each works, to a level of 2.5, 3.4 and 2.5 (rishe later to 3.6) willion tons per year respectively. Easides these espensions, Hindustan Steel Ltd. (II.S.L.) are building a new steelworks at To ano with a phaned capacity of 1.7 million t.p.y. of crude steel by 1973 in the to 4.0 million t.p.y. by 1976. II.S.L. also intend to build two more p.2. Red as Apple by 1958/9, at Vishakhapathanoin Andhra Pradeah and at 110. pet; both vill have a crude steel capacity of 2.0 million tons per year. A special steels plant at Solem. Madras is planned, as a complement to the Dar apur special steels production. Completion of all these projects would raise the total capacity of H.S.L. to 17.5 million tons per year of crude steel by 1980; it is quite possible, however, that the two plants planned for 1978/9 as part of the 5th five-year plan will not be commissioned by 1980, and in any case output will probably continue to be well below capacity. Nevertheless, H.S.L. production of crude steel in 1930 is likely to be approaching 10 million tons per year.

There are also two privately owned concerns with substantial steel production - Tata Iron & Steel (TISCO) and Indian Iron & Steel (HSCO) - who have expansion plans. The former intend to modernise their existing plant with only a marginal expansion of capacity, but HSCO plan to raise crude steel capacity by 1 million tons per year by 1974. The Central Engineering and Design Bureau of HSL co-ordinates all expansion programmes and participates in the design of new steel works. Encouragement is being given to private expansion, especially to build mini-mills (six of these have recently been given the go-ahead) based on scrap or on Direct Reduction produced sp age-iron; the state owned companies however, are still likely to produce 70 per cent or more of the total steel output at the end of this decade.

The rise in demand for steel is sufficient to justify all the projects indicated above, although there is almost certain to be some delay in the implementation of the 1 industry St. 1 plans, through difficulties with technology, equipment supplies, and plant supplies - such as the graphite electrode shortage. The

to all capacity for calde seed production in Irdia on fit to reach the 20 million to spectycer mark during the 1980's.

Pakistan

Pakistan has iron ore reserves proved at 125 million tons. In the Kalakugh district, 35% Fe content ore has been discovered. High content ore (65%) is also found in the Chittral district. There were attempts in 1968 and 1969 to build an integrated works in the Kalabagh district with German (Salzgitter), Russian and French aid, but the project does not seem to have anterialised. An integrated steelworks is being built at Karachi instead, based on imported ore. Coal reserves are potentially 190 million tons, but they do not seem adequate for steelmaking. Integrated steelworks therefore have to be based on imported coal supplies. Natural gas reserves are estimated at about 600,000 million m³ and electricity generating capacity is about 1.5 million kw.

The country's steel is produced by semi-integrated works, and some 130 small re-rollers with combined capacity of about 275,000 tons. The development projects are co-ordinated by Pakistan Development Corporation, and in East Pakistan by the EPIDC (East Pakistan Industrial Development Corporation). The fatter owns the Chittagong Steel Mills, which will be sold to private companies in the near future. The Pakistan Chamber of Commerce also advises as to the future of the Industry, and has recently been encouraging the establishment of mini-mills for West Pakistan, which would ensure selfsufficiency in this area. In total, U.S. \$21 million have been allocated to the steel industry for modernisation of plant, and U.S. \$260 million for new plant, of which U.S. \$180 million will be financed externally.

Pakistan's consumption is running at a level of about 1 million tons per year, of which some 750,000 t.p.y. are imported. The integrated works programmed for Karachi and Chittagong are therefore reasonable if markets alore are considered; costs of imported raw materials must also be considered, in order to decide whether it would be economical to construct an integrated steelworks. The U.S.S.R. favourable appraisal and aid will eventually lead to the construction of the two integrated works mentioned above, which will provide 70% of the forecast 2.0 million t.p.y. Pakistani steel market.

.]()

The Pollistan St., I Mills Corporation at Karachi will econtrolly have a copacity of I million tone of crude steel; the Chittigung Steel Mills capacity is planned to reach 250,000 tons per year.

There are other projects of less importance, mainly in special steels. The Valika Steel Works Ltd. with Japan's HII aid, plans a steelworks at Manghopir of 20,000 t.p.y. capacity, requiring U.S. \$14 million investment.

2.10 Europe

General

The countries which have been considered in dealing with this region are Cyprus, Greece, Ireland, Turkey and Yugoslavia. Of these, Cyprus does not have any steelworks or any plans for one, and Ireland's existing steelworks has an output of only 75,000 tons of crude steel. Greece currently has one integrated steelworks with a capacity in excess of 100,000 tons. By comparison, the steel industry is well developed in Turkey and Yugoslavia; the former has two integrated plants with a total capacity in 1967 of over 1,000,000 tons of crude steel and, in addition, three smaller plants with a combined capacity around 100,000 tons per year. Yugoslavia has eight plants, of which the largest has a capacity of over 1,000,000 tons and the combined capacity approaches 3,000,000 tons per year of crude steel.

Greece

The only integrated steelworks in Greece is Halyvourgiki at Eleusis, which has a capacity of 340,000 tons per year of crude steel. The Hellenic Steel Corporation has an output of some 250,000 tons of steel products but no iron or steelmaking capacity; it is thought that their capacity is planned to increase to 900,000 tons per year by 1980.

There are several expansion possibilities under discussion for the Greek steel industry, of which the most important appears to be the proposal for an entirely new integrated steelworks, probably at Thessaloniki. This is intended to produce 1,000,000 tons per year of crude steel initially, rising eventually to 2,000,000 tons; it is possible that this plant may be partly state-owned and the Greek government appears confident that the project will be realised. The

ind a trialist Tom Pappas, owner of the Hellenic Steel Company, is also deeply involved in the project. Hellenic Steel may themselves invall either a blast furnace or an electric steelmaking furnace using scrap and/or pellets from a local direct reduction plant.

Steel consumption in Greece is currently 1.1 million tons of steel ingots per year, as compared with an output of 550,000 tons local production. Local capacity is in fact 1.2 million tons of steel but the Halyvourgiki plant is only operating one of its two blast furnaces, producing 400,000 tons. There have receally been two licences granted to Greek firms to establish steelworks worth a total of \$7.8m, of which no details are known. Nevertheless, there is scope for the implementation of plans for expansion at Hellenic Steel and for a new integrated plant, in terms of the domestic demand for steel.

Ireland

Irish Steel Holdings intend to double the capacity of their existing steelworks by the introduction of a 30-ton electric arc furnace for easting $2\frac{1}{4}$ ton ingots. This will operate on scrap and imported pig iron and is expected to be operating early in 1973 when capacity will be about 135,000 tons of crude steel. Their mills will also be modified to increase output by 54,000 tons of billets, 11,000 tons of sections and 24,000 tons of bars and rod. The total cost will be in the region of $\pounds 3.2m$. sterling, of which approximately $\pounds 1m$. will be financed by the company. Since apparent steel consumption in Ireland in 1969 was some 400,000 tons in ingot equivalent, the entire output of 1rish Steel Holdings could be absorbed by the home market, although it is expected that a proportion of the product will be exported, depending on market conditions.

Turkey

Of the two larger integrated steelworks in Turkey, only the plant at Eregli appears to have firm plans for expansion. Details of their programme are not available but it seems that their capacity will have risen in 1971 to 700,000 tons and will be increased in 1972 to approximately 1,000,000 tons. As regards the second plant at Karabuk, there is no indication of any plans to expand capacity in spite of a recent report by a United Nations consultant that they are attempting to improve productivity.

The same report concluded that improvement and enlargement of these two plasts would be more beneficial than building a third integrated steelworls on a greenical site. Recerticle is, the furthish Government decided on the latter coarse and construction started in 1970 at Iskenderun, following a contract to design and supply the equipment, with Tialpromexport of the U.S.S.R. who are providing a loan of \$263m. The Turkish Government is providing the bulance of \$150m, required in local currency for the \$340m, steelworks and \$70m, of associated works, i.e. reads, rail, power supplies, training etc. The steelworks will consist of two $1386m^3$ blast furnaces with an output of 1.1 million to a 3, i.e. 0130 to a system converters, there four estrond continuous casting units (bloom sizes 265 x 340 mm, x 10m, long), and three rolling mills - billet (955,000 tons), light section (330,000 tons) and wire rod (300,000 tons). The crude steel capacity of 1.1 million tons is expected to be reached in 1974 when output will be:

000 t/a	Product type
20	Flats 4-12 m/m x 12-70 m/m wide
100	Sections 20 x 20 to 50 x 50 mm angles
210	Reinforcing bars 8-30 mm. round, square and hexagon
300	Coiled rod 5.5 - 10 mm. dia.
300	Billets 80 x 80 mm.

All products are intended for the home market.

It has very recently been indicated by the Turkish Ministry of Industry that a fourth steelworks is already definitely planned for construction near Sivas in Eastern Turkey. The design and the first site works are due for completion by 1974, although financial arrangements have not been settled. No further details are known.

Yugoslavia

The eight steelworks in Yugoslavia satisfy about 70% of the domestic demand for steel products, of which about half a million tons were imported in 1968, mainly in the form of flat products. The crude steel output of these eight plants was just short of 2.0 million tons of crude steel in 1968 (and 1.5 million tons of rolled products). This can be compared with the target capacities set for 1970

	1968 Capacity	1970 Target	197 2 Target
Zenica	1,060	1,040	Ν.Α.
Skopje	600	600	••
Jesenice	560	475	
Smederovo	110	380	**
Sisak	280	285	**
Niksic	170	185	••
Ravne	150	150	**
Store	90	110	,,
TOTAL	3,020	3,225	4,300

and 1972, in the 1973 national plun; the figures given for each works as 1968 capacity are estimates only, (all figures are in thousands of tons):

However, the actual capacity and output in 1968 of individual plants was well below their theoretical capacity - for example, the actual capacity of Skopje in 1969 was only 300,000 tons. Attempts are being made to reach the 1972 targets by completing Skopje and installing a new 800,000 tons per year blast furnace at Zenica, although it is unlikely that Skopje will in fact reach 600,000 tons before 1974. Crude steel output from Zenica is expected to reach 2.5 million tons by 1975 and 4.5 million by 1978. The plant at Niksic is undergoing a modernisation programme to increase their current (1970) output of 135,000 tons per year to 380,000 in 1978, and Smederovo is intended to become Serbia's only integrated steelworks with the introduction of a blast furnace and continuous casting, which will create a crude steel capacity of two million tons per year in due course. The steelworks at Sisak has been allocated 500 million Dinars for modernisation, which should boost production to 400,000 tons of steel by 1973. If these expansion plans all run according to plan, it should enable Yugoslavia to reach their original 1972 targets by 1975, when output is expected to be between 4.5 and 5.0 million tons per year.

At the same time, there has been a long-standing discussion as to whether a ninth steelworks should be set up. One possible site would be Prijedor in Bosnia, where there are iron ore reserves estimated at 60 million tons of Limonite of over 50%Fe, and a 1.5 million ton steelworks was proposed. A two million ton steelworks at Split was under consideration for several years, but

electric are furnace and 2-strand continuous billet caster, which has just begun operation. The crude steel capacity will be 60,000 tons per year initially expected to be in 1972 - which is planted to double within a further two years. The decision over the Split plant would appear to substantiate the indication that Yugoslavia intends, in developing her steel industry, to concentrate on expanding her eight existing steelworks.

CHAPTER 3 - DEVELOPMENT OF STEEL PRODUCTION AND CONSUMPTION IN COMPARISON WITH THE LEVELS AT THE END OF THE 1960'S

3.1 Steel Production

The developing countries have been classified into the major regions of Africa, Asia, Latin America, and Europe. This is consistent with the organisation of statistics in the United Nations document "The Growth of World Industry - Commodity Production Data". It should be noted that within these regions Egypt is included with Africa and Turkey with Asia. Mainland China and North Korea are included with the developed countries, as are South Africa and Rhodesia.

The source of statistics on steel production in the 1960's was "The Growth of World Industry" for years up to 1967 and the "Statistics Bundesamt Dusseldorf" for updating the figures to 1970. Initially, a trend line was drawn based on ten year moving averages; it was decided not to use this, in view of the discrepancy between the production and apparent consumption figures. The former are available up to and including 1970 while the latter are only available up to 1968. The actual annual production figures were therefore recorded on a scattergraph. A trend line was drawn from these figures, using linear regression to calculate the line of best fit. This trend line was extrapolated to indicate the estimated level of production in 1980.

The production figures for the years 1958 to 1970 are recorded below in Table 1, and the comparative levels of production in 1959, 1969, and 1979 are shown in Table 2. The trend lines used to establish the production levels at the end of the 1970's are also shown in Figures 3.1 to 3.4. The linear projection shown on these graphs is felt to be an adequate method of forecasting

Year	Africa '000 tons	Europe '000 tons	Latin America '000 tons	Asia '000 tons	Developing Countries m. tons	Developed Countries m. tons	World m. tons
1958	55	1237	3122	2 192	6.61	267.63	274.24
1959	141	1402	3644	2901	8.09	297.11	305. 20
1960	167	1576	42 78	3783	9.80	336.71	346.51
1961	186	1663	5281	4618	11.75	339.50	351.25
1962	194	1730	6030	5725	13.68	346.31	359.99
1963	204	1773	6751	6574	15.30	372.20	387.50
1964	197	1885	7683	6759	16.49	417.57	434 .06
1965	202	1949	79 4 2	7411	17.50	436.52	454.02
1966	216	2052	9007	7904	19.18	452.97	472.15
1967	258	2021	9484	8020	19.78	476.27	496.05
1968	397	22 72	11052	8330	22.05	491.75	513.80
1969	4 10	2735	11986	8449	2 3.58	552.62	576.20
1970	435	2725	12825	8306	24. 29	567.91	592.20
Projected to	otals to	:					
1979	600	36 00	19700	14300	38.2	773.6	811.8
TAB	LE 2 - (COMPAR	ATIVE LE	VELS O	F PRODUCT	ION IN THI	E

TABLE 1 - ACTUAL TONNAGES PRODUCED (IN METRIC TONS)

1950'S, 1960'S AND 1970'S

1959	141	1402	3644	2901	8.19	297.1	305.2
1969	410	2735	11986	8449	23, 68	552.62	576,2
Factor increase	2.9	2.0	3.3	2.9	2.9	1.9	1.9
1979	600	3600	1 9700	14300	38.2	773.6	811.8
Factor increase (on 1969)	1.5	1.3	1.6	1.7	1.6	1.4	1.4

future production, since there was no evidence in the scattergraphs of exponential trends in the steel production of any of the regional zones.

The comparative share of world steel production for each of the regions, and the changes expected in their relative shares, are indicated in Table 3:-

TABLE 3 - THE EXPECTED SHARE OF STEEL PRODUCTION IN DEVELOPING COUNTRIES DURING THE 1970'S

Year	Africa '000 tons	% of total	Europe '000 tons	% of total	Latin America '000 tons	% of total		Developing Countries m. tons	% of total	Developed Countries m. tons	l % of tota1
1959	141	0.05	14 0 2	0.46	3644	1.19	2 901 0.95	8.1	2.65	297.1	97.35
1979	410	0.07	273 5	0.47	11986	2.08	8449 1.47	23.6	4.09	552.6	95. 91
19 79	600	0.08	3600	0.44	19700	2.43	14300 1.76	38.2	4.71	773.6	95.29

Thus the rate of increase in steel production appears to be slowing down in all four regions. Whereas the production of developing countries increased nearly three times in the 1960's, the level of production in 1979 is expected to be only one and a half times that of 1969; in terms of actual tonnage, the comparative increase is also slightly smaller. The effect of this, which can be seen in Table 3, is that the share of the developing countries in world production will increase only marginally by 1980, from 4.09 per cent to 4.71 per cent.

3.2 Steel Consumption

The source of statistics on apparent steel consumption was the Economic -Commission for Europe publication "The Steel Market". (It should be noted that this publication does not indicate whether the United Arab Republic is included within Africa or the Middle East.) In these figures, apparent world consumption does not match world production of steel over several years. Although there is approximately one million metric tons of consumption unaccounted for by our statistical sources, data has been used on the assumption that consumption does not necessarily match total production every year. For similar reasons, there is some discrepancy between the figures for the four regions and total for all developing countries.

The scattergraph of consumption over the 1958-68 ten year period

Year	Africa '000 tons	Europe '000 tons	Latin America '000 tons	Asia '000 tons	Developing Countries '000 tons	Developed Countries '000 tons	World '000 tons
1958	4152	1678	7949	10,077	23, 856	246, 2 83	270, 139
1959	3731	1865	8051	8,477	22, 124	282,674	304, 798
1960	42 99	2256	8437	10, 823	25, 815	319,555	345, 370
1961	4 517	2464	9599	11, 896	28, 4 76	321,905	350,381
1962	4572	2545	9081	14, 253	30, 4 51	329, 497	359,948
1963	47 73	2888	9882	15,729	30, 120	357,479	387, 599
1964	5947	3316	11640	16, 824	37,727	396, 336	434,063
1965	7059	3430	12253	18, 160	40, 902	413, 117	454, 019
1966	5808	38 42	12923	17,431	4 0,004	432, 149	472, 153
1967	6402	3827	13202	18,779	42, 2 10	453, 843	496,053
1968	7144	3754	14802	19,848	45, 548	482, 514	528,062
Projected to	tals to:						-
1979	10600	6600	21 800	32, 900	71,600	723,700	795,300

TABLE 4 - APPARENT CONSUMPTION (IN METRIC TONS)

TABLE 5 - COMPARATIVE LEVELS OF CONSUMPTION IN THE 1950's, 1960's AND 1970's

1958	4152	1678	7949	10,077	23,856	246, 2 83	27 0, 139
1968	7144	3754	14802	19,848	45, 548	482,514	528,062
Factor increase	1.7	2.2	1.9	2. 0	1.9	2.0	2. 0
1979	10600	6600	21 800	32, 900	71,600	723,700	795,300
Factor increase (on 1968)	1.5	1.8	1.5	1.7	1.6	1.5	1.5

demonstrates major fluctuations from year to year. Although linear regression does not provide an exact fit for this data, it has still been used as the most suitable technique for drawing a trend line. There is again no evidence of exponential trends, and the extrapolation to 1980 has therefore been drawn on the basis of these trend lines established by linear regression.

The figures for apparent consumption for the years 1958 to 1968 inclusive are shown in Table 4, and the comparative levels of consumption in Table 5.

It is clear from Table 5 that the rate of increase in steel consumption is slowing down, although not significantly. The apparent consumption of developing countries in 1968 was nearly twice the level in 1958, whereas by 1979 it is expected to increase further by a factor of 1.6.

In spite of this slowing down, the share of world steel consumption attributable to developing countries is likely to continue to increase at approximately the same rate over the next ten years. As shown in Table 6 below, the percentage share should increase by 0.51 per cent to 9.44 per cent by 1979, against an increase of 0.61 per cent between 1958 and 1968;-

TABLE 6 - THE EXPECTED SHARE OF STEEL CONSUMPTION IN DEVELOPING COUNTRIES DURING THE 1970'S

Year	Africa '000 tons	% of total	Europe 000 tons	% of total	Latin America '000 tons	% of total	Asia '000 tons	% of total	Developing Countries m. tons	% of tota]	Developed Countries m. tons	% of tota1
1958	4152	1.54	1678	0.62	7949	2.94	10077	3.73	23.8	8.83	246.3	91.17
19 6 8	7144	1.48	3754	0.78	14802	3.07	19848	4.11	45.6	9.44	482.5	90.56
1979	10600	1.47	6600	0.92	21800	3.01	32900	4.55	71.6	9.95	723.7	90.05

It is noticeable that the major part of the increase over the next decade will be attributable to Asia, with an increase of 0.44 per cent, and the developing countries of Europe, with an increase of 0.14 per cent, whereas the shares of Africa and Latin America are expected actually to decrease by 0.0F per cent, and 0.06 per cent respectively.

3.3 Conclusions

Steel production in the developing countries appears to be increasing at a slower rate, whereas their steel consumption is expected to rise over the next

decade at much the same rate as in the 1960's. Nevertheless, their share of steel production is rising marginally faster than their share of still consumption. The effect of this is seen the percentage contribution of the developing countries internal production to their internal consumption. The figures are shown in Table 7:-

TABLE 7 - THE PERCENTAGE CONTRIBUTION TO INTERNAL CONSUMPTIONFROM INTERNAL PRODUCTION IN THE DEVELOPING COUNTRIES

	Africa '000	% of consu-	Europe '000	% of consu-	Latin America	% of consu-	Asia % of '000 consu-	Developing Countries	(O):
	tons	mption	tons	mption	'000 tons	mption	tons mption	m. tons	mpno
1958									
Production	55	1.32	12 37	73.72	3122	39,28	2192 21.75	6.61	27.70
Consumption	4 152		1678		7949		10077	23,86	
1968									
Production	397	5.56	2272	60.52	11052	74.67	8330 41.97	22.05	48.41
Consumption	7144		3754		14802		19848	45.55	
1979									
Production	600	5,93	3600	54.25	19700	90.50	14300 43.43	38.25	53.42
Consumption	10600		6600		21800		32900	1. 60	

The gap between the apparent consumption and the steel production of the developing countries will reduce by 1980, on the basis of the trend lines estimated. However, the increase in their percentage contribution between 1968 and 1979 will be very much less than the increase during the past decade. Unless some thing is done to boost the rate of increase of steel production during from the decade, it is probable that at some time in the comparatively near tubure, the developing countries will cease to improve the contribution of their steel production to increase to increase of steel production of their steel production to be the tubure.

The variation between the regions is also noticeable. Only in Latin America is there a significant movement towards self sufficiency in steel production by 1980, when they should produce 90% of their home demand. In Asia and Africa the improvement is mariful, and the language development is mariful, and the language development is mariful, and the language development is mariful.

 (γ_{i})

FIGURE 3.3 - PRODUCTION AND APPARENT COMPUTATION AGIN, LATTE PEDION, AND ALL DEVELOPING COUNTRIES

CHAPTER 4 - DEVELOPMENT OF IRON AND STEEL TECHNOLOGY

4.1 The Available Process Routes to Steelmaking

Liquid iron or sponge iron

There are a number of different process routes in use today for making steel. They fall into two broad categories, the "hot metal" route involving the production of liquid iron at an intermediate stage, and the "cold metal" route in which steelmaking is based on the use of scrap or reduced pellets of sponge iron. In those routes falling into the first category the production of **Jiquid iron traditionally takes place in a blast furnace**, but other processes are in use as, for example, the electric arc shaft furnace. The liquid iron is refined to steel in open hearth or basic oxygen furnaces (e.g. LD, LDAC or Kaldo). The open hearth process is obsolescent, and one of the basic oxygen furnace routes is likely to be considered for a new works. Of these, unless special conditions such as high phosphorus levels dictate use of the LDAC route, the process normally chosen would be the LD. In routes belonging to the second category there are now a number of "direct reduction" processes in which the intermediate product takes the form of solid sponge iron. This highly reduced material can be charged into an electric arc steelmaking furnace in place of, or in addition to, scrap.

There are thus a number of technically possible process routes up to the liquid steel stage, but in any particular situation many of them are ruled out on economic grounds. If a completely new works on a greenfield site is under consideration the choice of process route is likely to be one of two hot metal routes: either a blast turnace or an electric smelter feeding liquid iron to a

basic oxygen process. However, where the scale of operation is not large enough to justify a blast furnace, the cold metal routes would be considered, using an electric arc furnace fed either with scrap or with sponge iron. In developing countries with their own iron ore and little scrap available, the direct reduction process is of particular significance, and is therefore dealt with in detail below.

Direct reduction processes

Of the many different processes for producing sponge iron, few have been developed beyond the experimental pilot plant stage. They differ from one another in the reductant that they employ (coal, oil or natural gas) and in the degree of reduction achieved. The subsequent processing of the sponge iron depends on this degree of reduction: however, the feature of any direct reduction route that is most sensitive to economic and geographical considerations is the type of fuel that it uses. Processes using natural gas to produce sponge iron include:

HyL	In commercial use for many years in Mexico
H - Iron	Found uneconomic compared with scrap prices
Midrex	One commercial plant in use.
Esso-FIOR	Pilot plant in use
Futakuski	Pilot plant in use

There are also many coal or coke using processes, including:

SL/RN	Two plants in the early years of commercial use.
Krupp-Renn	Used in Germany for low grade ones but most plants now closed
Hoganas	High grade but expensive product
Echevarria	High grade product, but only used on very small scale

Of those processes using a solid fuel the SL/RN is the one with most experience available.

There are also direct reduction processes using electricity as a source of heat and only enough pases or solid fuel to supply the access invaces more that for example, the Wilsing process used for special steel production in S. eleo. However, these are not as widely applicable as the processes using electricity for iron-making (Elkem, Tysland Hole) which are already in operation and which produce liquid iron.

Steelmaking process developments

There are other new steelmaking processes such as spray steelmaking, the dual-hearth furnace, continuous steelmaking processes, etc. As with most of the direct reduction processes, however, these are probably inappropriate to a works now being designed, on the grounds of too little experience on a reasonably large scale, despite their potential theoretical advantages.

Whatever judgement is made at the present time about the economic and technical suitability of new processes, the list of likely processes will have to be reviewed periodically. Any new process goes through a cycle of development, starting with a theoretical evaluation supported by empirical laboratory data, progressing to the pilot plant stage to develop the most suitable operating characteristics, and culminating in the design and construction of a commercial scale plant. The cycle of development from the initial idea and laboratory work to the first successfully operating commercial plant has in the past taken ten years. Only at the last stage have the operating and maintaining the plant have not manifested themselves at any earlier stage. The process routes which have been selected for discussion are representative of all routes which are likely to be ustalled in the short and medium term future.

Combining the front making and steel and my phases, there emerge five different representative routes to the production of liquid steel in a completely new yorks:

- (a) Blast furnace 4 basic oxygen furnace
- (b) Electric are shoft turnace Ebisic oxygen furnace
- (c) Gassfired direct reduction plant Felectric are furnace
- (d) Coal-fired direct reduction plant 4 electric are furnace
- A second se

4.2 Factors Affecting Process Selection

The factors

The choice of process will be affected by the location of the works primarily because the resources available vary from one area to another. These resources include not only the available materials, but also labour, money and the opportunities for selling the products. The main factors considered to be of greatest importance in determining the choice of process routes are: the raw materials available; the fuels or sources of energy available; the markets for steel products and their rate of growth; the ease of obtaining finance for purchasing and running the plant; and the technological risk. These factors are discussed in the following articles.

Raw materials

A high-quality iron ore, that is, one having a high iron content but low in sulphur and phosphorus and free from undesirable alloying metals, can be used for any of the first four routes. If the ore does not match up to these standards, there may be process routes for which it is unsuitable. For example, an ore with a low iron content is unsuitable for direct reduction processes unless it can first be beneficiated, whereas it can be used in a blast furnace because this process has a means of getting rid of the gangue in the form of slag. On the other hand, an ore like the New Zealand titanium bearing i ronsands cannot be used in the blast furnace, in particular because the slag would be too viscous, but it has proved possible to use it in a direct reduction process. A high phosphorus content, while not affecting the iron-making part of the process route, imposes limitations on the subsequent steelmaking process.

The theoretical maximum value to the steelmaker of the price of scrap is determined from a comparison of the costs of steelmaking using iron ore or scrap. However, the cost of obtaining scrap is in many circumstances very low and some people will even pay to have it taken away. There is thus sufficient scope for flexibility in the price of scrap to ensure that those quantities which are readily contained to be the theorem is the process for the cost of the process routes adopted. Fuels

There are three reasons why fuels have an important impact. Firstly, fuels form one of the largest single cost items. Secondly, in certain instances, fuels are a highly localised commodity which may be more available in one location than another. Thirdly, and in contra-distinction to the previous point, some fuels, like raw materials, are available on an international market and are on the one hand available to all, but on the other hand subject to world fluctuations in availability and price. The various fuels will be discussed in terms of these three points.

(a) Coal

The use of metallurgical quality coal in the blast furnace route is the largest single fuel cost incurred by any of the routes. It may be nearly twice the cost of using coal in a direct reduction process. Thus in comparing these two process routes, two issues should be taken into account. First, in any specific location it may be that cheap coal which is unsuitable for the manufacture of coke but which is suitable for the direct reduction process is available.

A second, and perhaps more important issue concerns the world availability of coke and coal today and in future. Metallurgical quality coal can now be regarded as an international commodity and one in which the price will reflect the level of world demand. At present there are increasing signs of a scarcity of this coal and there are no clear indications of how this shortage will be satisfied in the tuture. Clearly, the substantial reduction in cole rate which has occurred through the use of oil and oxygen injection, has helped to alleviate the problem. Any further rises in the price of metallurgical coal, and hence coke, will lead to further substitution. However, there is a limit to the amount of oil injection which can be used, and additionally, a minimum quantity of about 350 kilograms per ton of coke has been postulated for the blast furnace. If the shortage of metallurgical quality coal is to continue, the substance of metallurgical quality coal is to continue, the substance of metallurgical quality coal is to continue,

(b) Electricity

Electricity has a smaller impact on the cost of steel than coal, but still a significant one where the electric arc process is used for steelmaking. In a number of countries, electricity can be generated at very low cost, particularly where hydro-electric schemes can be installed.

There are two technical points which should be made concerning the use of electricity based processes. The first is that it can be difficult in a country with a small consumption of electricity to provide the required "stiffness" at the point of supply. Thus the feasibility of installing electric are furnaces may well depend upon the general level of industrial development in the country. The second feature concerns the way in which the steel industry develops in a country. Clearly, there is an economic link for electric are furnaces between the costs of melting scrap or reduced pellets, and hence as a country develops to provide more of its own steel requirements, it may be that the most natural step is to develop from the melting of scrap to the melting of reduced pellets. In such circumstances direct reduction ironmaking would be the natural technical course of development.

(c) Natural Gas

The gas-fired direct reduction process has a higher basic cost than the coal fired D.R. process or the blast furnace route and it would require a very low price for natural gas relative to other fuels in the particular location for the process to be economic. Although many countries have substantial couplies of natural gas, the level of remement of the fuel, its suitability for other applications, and the high costs of the gas-fired direct reduction process make it unlikely that it will be widely used in the steel industry.

Markets and growth rate

In a country in which a new steel industry is to be established, the major devices a second state of the state of the development of engineering

industries in a country and in many cases is considered to be a necessary catalyst for such development. Hence it is not surprising that most of the countries of the world have sought to establish a steel industry as soon as they could economically justify it. Thus, the picture emerges that new countries wishing to establish their own steel industry require small plants. This is happening at a time when more industrialised countries are moving to larger and larger plants.

A second important factor is that having at some point in time established a stable base line, the next problem is the phasing of plant to match the growth of the market. This is not a simple problem, and it can be related to other factors, for example, plant renewal.

Financial factors

In many countries import replacement is of great importance in establishing a steel industry. Governments are interested in the changes in the foreign exchange costs which will be incurred by manufacturing their own steel relative to the situation in which they import it. In analysing different process routes, therefore, they will be seeking those factors which allow a greater degree of indigenous contribution and the maximum amount of import replacement. The capital elements in the various process routes are fairly similar and it may be presumed that the level of manufactuo ing expertise required is similar for the various process routes. Thus, an industrialised country would expect to be able to manufacture its own requirements. A less industrialised country might be able to make minor items but not major ones and a developing country to provide a small part only of the plant required. However, these contributions would not be significently different from the various process routes.

In a similar way, demands for manpower and various sundry operating requirements would be similar for the various processes, the aim being to supply the maximum from within the country and only a small amount being imported.

The main area of potential difference lies in the field of raw materials - iron ore, coal, fuel and energy. The technical reasons governing the choice of these have been discussed earlier. In certain cases, the use of a small surcharge on imported materials of only 10-20 percent could alter the decision in favour of a process which uses more indigenous materials.

A different factor which can affect the decisions is the cost of capital. Where there is only a small difference in the capital cost, it might be expected that the effect of changes in the cost of capital would be negligible. Differences in costs between the processes are not large. However, as a number of the cost per ton curves have similar shapes there is a range of outputs either side of the cross-over point at which the costs are not significantly different. Changing the cost of capital does for this reason, therefore, have a considerable impact on the level of tonnage at which two processes break even. Clearly, if the costs of two processes are very similar then cost as a criteria will become less important and other criteria will dominate. These will be of a technical character and will, in particular, include risk.

Technological risk

One of the most complex parts of the comparison between processes is to feed into the various costs and performance parameters, factors which reflect the technical state of development of one of the processes which is at an early stage in its history. Theoretical predictions can be made of the consumption of materials, operating costs and management skills which will be needed when the process has been fully developed. However, the task of indicating any differences arising from the manpower available, particularly in respect of the level of skills and experience which may be required to commission a blast furnace and LD steelmaking plant as opposed to a direct reduction and electric arc steelmaking works is much more difficult and the issue is open to debate.

A further complication is the anomaly that the new technical processes are not being installed and experience gained in acknowledged steelmaking countries. This is of course because the new processes have greater economic advantage at the smaller levels of output. This raises an interesting point with regard to the technological progress of developing countries. In many fields the aim has been for these countries to take advantage of the latest developments pioneered by the industrialised countries and to take technological short cuts by using the latest plants. Here, however, the developing countries move in certain circumstances along a completely new path, untrod by the industrialised countries.

It is the years required to reach the normal operating levels which are crucial. First, because low outputs during this time mean lost revenue and higher costs (which in an open market situation cannot be recouped), leading to a lower overall profitability. Secondly, and perhaps even more importantly, is the effect on the liquidity of the business of a change in the cash flows.

4.3 The Development of Steel Industries

In addition to the relevance of the various factors discussed above, the way in which the steel industry in a country has or will be developed may have a far-reaching effect on the decisions to be taken.

In the first case, there is the position of an emerging industry in a country which hitherto has not manufactured any of its own steel. There can be a number of aspects of the industry which can form the focus around which it will develop. In some cases countries have launched their steel industry with the pre-requisite that it shall use indigenous materials. Tunisia and New Zealand are typical examples of two countries which have begun in this way. In New Zealand in particular, this had a major impact for technical reasons on the choice of the process. A number of other countries, however, have launched their industries on the scrap generated within the country from imported steel. Singap are is an example of this type, with a steel industry of about 0.1 million tons capacity. This satisfies only a part of the requirements of the country so that excess steel is still imported and the scrap arising is sufficient to feed the works.

The decisions to be made in an established industry can be radically different from those which are to be made in a new industry. In an established industry, the decision is rarely the simple one of how to expand the capacity of the industry. On many operations, this will be a comparison/real-second at decision in which obsolete facilities are closed at the same time as the extension

is made, thus allowing the installation of a larger plant than would have been required solely for growth. In other cases it may be that within the existing works at certain stages there is an out-of-balance, i.e. an excess capacity at one process level relative to the capacities at other levels. Expansion can then be achieved overall by increasing the capacity at the stages in the process which are bottlenecks. In many cases the decision as to process is pre-empted because of the large amount of heritage of plant in the upstream and downstream areas. A further ramification is that it may be possible to increase the capacities of existing facilities either by engineering or by changes in practice.

One final point which should not be overlooked is the overall position as regards competition within the industry, both within countries themselves and internationally, together with the attitude of the industry to technical progress. The steel industry typically is in a highly competitive situation. The question arises therefore as to how a steelmaker, when making a decision about the processes which he should use for a new installation, should balance the potential for lowest costs of a new process (and hence greatest profit) on the one hand against the risks attendant upon its initial development on the other. Technological development in the industry has been slow and turnover times for plant have been long, of the order of 20 to 30 years. Only now are operating lives of 15 years, which reflect the greater price of technological change, being included in feasibility studies. However, although a steelmaker may be at risk to a single competitor putting in a new plant it is unlikely that the whole industry will change character overnight.

In many instances in this situation there is a conservative attitude towards technological development which in many cases is based on sound commercial judgment. In particular, the question as to the amount of capacity which is to be devoted to a single process is a major issue. A stechnaker is even less likely to wish to be the first in the field if all his eggs have to be in the same new technological basket. Many have said that they would be happy to be second in the field because commercially they would not lose out too badly and would have saved themselves the technological cost of development which would then be borne by somebody clse. This raises the issue of who will then do the technological development, the steelmaker, the licensor, the plant suppliers,

future interested steelmakers of any combination of these,

4.4 Current Schemes

An analysis of twenty three steelmaking schemes in twenty countries from whom Questionnaires were returned, shows that they all comply fairly logically with the criteria outlined above.

Eight schemes are based on the blast-furnace ironmaking, basic oxygen steelmaking route. One of these, in Thailand, is an extension to an existing works already using these processes. Another in Liberia, is a very tentative scheme for the production of 0.2 million tons a year. A third, in Honduras, is for the production of only 0.1 million tons a year, but is based on charcoal troub locally grown trees. The other five schemes, in Korea, Peru, Turkey, Taiwan and Algeria are all new works (of which the latter is partly built) and all plan to have capacities in excess of 1 million tons a year. The scale of production envisaged in these five cases is such that the choice of the blast furnace as an iron-making process is almost axiomatic under present conditions.

There are two direct-reduction sponge iron, electric are steeln-along schemes. One, for the production of 0.3 million tons, is in Libya. Here the plan is to use a gas-fired direct reduction process, using treated enteral gas from the plentiful supplies available. The other, for the production of 0.2 million tons, is in Costa Rica. Here the process will be a coal fired one. The reason for this choice lies in the type of iron ore available, which is a titaniferous magnetic sand. This will be concentrated and pelletised before being reduced in a SL RN Fills. Such one concentrated and pelletised before because of problems with the slag. A similar plant, treating another ore, that recently started operating in New Zealand. In both Libs, and Costa Rice the choice of process is the logical one in the circumstances.

One tentative scheme in Sin Sulvador is based on the electric smolting of their own iron ore, followed by electric arc steelmaking. Electricity is available by hydro-generation, and is therefore presumably cheap.

any associated irror making processes. Three of these induction, a condor one

(0.5)

is the provide state of the second of the second provide the provide state of the s

* no checking are steple. Fing schemes are for new works, one cach in Sundi Araboa, Selss al, Ceylo , the Sudar and Kenyagand four in Vietnam. As a more slot is is a space of a biskry morach of these countries on the scale curve as different more vary from 12,050 sci05,000 tone a year), this would be the accepted choice of precises.

CHAPTER 5 - CONCLUSIONS

5.1 Factors Determining Steel Industry Development

Consideration of the many projects for developing integrated steelworks or expanding the capacity of existing plants, which have been outlined in Chapter 2, indicates that development plans are sometimes made without strict reference to the immediate profitability or viability of the particular plant. This in itself is not to say that such development is unjustifiable, since there are factors involved in determining the optimum size and character of a countries' steel industry, other than the profitability of an individual plant. The criteria involved in making decisions on the future direction of a country's steel industry include economic, sociological, political and technological considerations.

Economic Factors

Economic factors primarily affect the viability and profitability of an individual steel plant. They are governed by the nature of demand for steel products within a given country or market area, by the availability of resources, and by the product mix chosen, as well as by the technological factors already discussed. The optimum capacity of the steelworks will partially depend on the volume of unsatisfied demand of the relevant market area i.e. the total demand less the capacity of existing facilities in that area to satisfy it, but also on the variations in that demand projected over the life span of the project. It is important to assess the growth of markets both in terms of the changing levels of demand and of alterations in the balance of products required; a rapid growth, for instance, followed by a steady demand will justify a higher capacity plant than a steady growth over a number of years, albeit to the same level. An assessment of the future pattern can be made by studying the growth of user industries such as the construction industry.
The product mix will also affect the chain of processes and the economic viability of the plant. The product range will govern the capacity required - if heavier products must be produced, their capacity will have to be higher; if there is a large demand for only one line of products, this may cause underutilisation of one process in the chain, thereby loading the cost of supplying that product.

The availability or otherwise of resources will be a restraint on the capacity of a steelworks, which will operate economically in the sense that a shortage can be overcome physically by importing raw materials or rewarding labour highly, but will thereby push up the cost of operating the plant. Such resources include raw materials, fuel, power, water, manpower and finance including both internal capital and foreign exchange.

These factors, together with the technological aspects of setting up new steelworks, will all affect the future profitability and therefore the commercial viability, of such a project. They are the conditions and factors which govern the decisions of the business man. They may not necessarily be the only or indeed the dominant factors in any assessment of the future direction to be taken by a country's entire steel industry, which is often, indeed usually regarded as a national responsibility in view of its intimate relationship with the development of industry as a whole. Thus sociological and political criteria must be taken into account, and these may over-rule an otherwise uneconomic proposition alternatively, reduce the effectiveness of an otherwise sound plan.

Sociological benefits

It is primarily in the developing countries, where it is more often difficult to justify an iron and steel project on commercial grounds, that both sociological and political factors carry more weight. The benefits of a steel industry include such effects as increased purchasing power, higher levels of education and a better standard of living, which any form of industrialisation achieves by upgrading the value of the individual's work output and encouraging training and education facilities. Employment is very often a crucial factor, and not only does the development of a steel industry provide additional employment opportunities, but

the type of process adopted can be manipulated to provide a maximum labour force; the reverse of this is that employment requirements are themselves a factor involved in the selection of appropriate guide lines for planning a future steel industry.

Import substitution is another result of developing a local steel industry. This can have a direct effect on general standards of living by freeing foreign exchange - if only in the long run - which can be used for imports of food or luxury goods.

Political strategy

The factors discussed above have all been of influence in company or national terms. In the developing countries particularly, there are often also international and therefore political considerations. The foreign exchange aspect already identified in considering sociological factors, is primarily a political factor - the saving of foreign exchange is often the major political economic aim of a government in encouraging the growth of new industries. Trade agreements and regional economic alliances are other aspects of political strategy. In many cases, a steelworks designed to serve a region may be justified, when the home demand for steel in the parent country may be well below the economic output of the plant. Regional co-operation on industrial projects, however, may be very difficult to achieve - for instance, the economic location of a steelworks to serve a number of countries may be unacceptable because of the foreign exchange problems caused for a number of the member countries. It is significant that there are to date no significant projects for integrated multi-national steelworks under way, although the plans of the five countries of the Central American Common Market for a joint venture (to be located in Honduras) appear to be realistic, with good prospects of being implemented.

Technology

The technological factors have already been considered in some detail in Chapter 4. They are now represented in more general terms to indicate their

-69

relationship to the other factors determining steel industry development

The technological factors relate mainly to the capacity of the plant, which is in turn governed by the capacity of the individual process units. Decisions on the choice of processes will depend basically on three elements the economics of scale, the relationship of capital to operating costs, and the process yields. It is a characteristic of process economics that the capital charge per unit of capacity decreases as the size of the plant increases. However, in many of the countries under consideration, there may be an absolute restraint on the quantity of output which can be placed on the market, so that it is not possible to take advantage of the economies of scale. Thus it is all the more important to select processes which lend themselves to a low level of output.

Processes can be assessed in terms of their "comprehensive cost", only by taking account of both their capital and operating cost elements.¹ The relationship between capital and operating costs varies from country to country, and in general the position in developing countries is very different from that in developed countries, where the processes are likely to have been evolved. It is important to appreciate this when considering what processes to adopt. The yield of a process is determined by the technological characteristics of the process itself, but the overall yield of a chain of processes may vary considerably according to the precise arrangement of the different processes within the chain.

5.2 Future Regional Development

It is clea. that any decision on the development of a country's steel industry must take account of a large number of factors, many of which may be in conflict. It is also very necessary to look at all these factors in the light of a time dimension, which will itself vary according to the type of project and the characteristics of a particular country. It is impossible so to arrange the

See UNIDO paper, "Determination of the Optimum Capacity of the Fully Integrated Iron and Steel Plant and its Parts". H.R. Mills and B.S. Soan.) (†

capacity of a steelworks that it matches the demand made upon it, throughout its operational life—it will be necessary to balance the lost sales before implementation of a plant against under utilisation of capacity after commissioning it. The capacity of different parts of a steelworks complex must also be arranged as far as possible to match the varying growth through time of markets for different types of steel products.

While there are many projects described in Chapter 2 which have been worked out with due regard to the complex interaction of these many criteria, it is clear that there is a strong tendency in the developing world to promote the development of a steel industry without any real assessment of the true viability of the project. In particular, excessive weight is often placed on the political reasons for establishing an integrated steel industry regardless of the economic difficulties. Thus several of the schemes referred to in Chapter 2 will be delayed well beyond their proposed implementation date, if not for ever; others are likely to be modified to take account of the lack of reductant materials, product markets and so forth,

Some attempt has already been made to indicate the prospects of implementation, as part of the description of the particular schemes. A summary has been made below of the likely pattern of development in the various major regions, as opposed to the sub-regions treated independently in the body of the report.

Africa

As the figures in Chapter 3 indicate, both the production and consumption of steel is lower in Africa than in any other region of the world. The information which has been gathered in the course of this study from individual countries indicates that there are no large-scale projects for establishing integrated steelworks during the decade. The two most ambitious projects are in Algeria and Nigeria, where there are proposals to establish steelworks of a capacity of 500,000 and 750,000 tons per year respectively. The remaining projects are largely in terms of 100,000 to 250,000 tons per year. On this information production in Africa is unlikely to rise much during this decade, which accords well with the published statistics used to determine the trends indicated in

Chapter 3.

It is significant, however, that consumption in Africa is rising more steeply than production. There is therefore ample scope for boosting local production, in terms of the region as a whole. The problem is in part the nature of the African continent, which is fragmented into a large number of countries by comparison, for instance, with South America. The home market of individual countries is not large enough to justify significant steelworks developments, which could only be commercially viable if they were to be set up on a regional basis.

It is clear that this has fundamentally been appreciated by the African countries, since two regional studies were carried out in the 1960's - for West Africa and for East and Central Africa. The recommendations of these studies have not been put into effect, which is probably a reflection on the overriding political needs of the countries involved to be seen to be developing their own steel industry. Unless such political factors can be overcome, to allow international co-operation for the establishment of regional steelworks, the overall production of steel in Africa will lag further and further behind demand, retarding the growth of these countries.

Latin America

The steel industry in this region is well established, and should be approaching self-sufficiency by the end of the decade. Production is already over two million tons per year in three countries - Brazil (5.4), Mexico (3.4) and Argentina (2.4) - who between them alone account for about ten times the total production expected for Africa in 1979. If the national plans of these three countries were all implemented, their total production by 1980 would amount to nearly 35 million tons; it is unlikely that their steel output will in fact reach this level, but it seems possible that Brazil alone may reach a capacity of 17 million tons per year by 1980, while Argentina and Mexico should both reach 5 million. In addition the prospects of Venezuelan capacity exceeding 2.5 million, Chile 1 million and Columbia and Peru about half a million tons are all good. Thus capacity could well be over 30 million

tons by 1980, in which case a throughput in the region of 65 per cent of capacity would achieve the 20 million tons per year production forecast in Chapter 3.

It should thus be possible for the Latin American countries as a group to meet their home demand for steel by 1980, on the basis of the consumption forecasts of 21.8 million tons per year. The 90 per cent contribution from their internal production indicated in Chapter 3, appears to be a target well within their reach.

Middle East

It was not possible to indicate the trends of steel production and apparent consumption for this region in Chapter 3, since the statistical sources did not distinguish adequately between the Middle East and the rest of Asia. On the basis of figures available for 1965, an approximate estimate of current steel consumption in this region would seem to be 3.5 million tons per year.

Only Egypt and Israel have existing crude steel capacity of any significance, and between them they account for about 20 per cent of the region's total consumption. The projects recorded in Chapter 2 would increase crude steel capacity in Egypt to between 1.5 and 2 million tons, and introduce steelmaking capacity of 1.4 million tons to Iran. In addition, Saudi Arabia, Kuwait and Syria may set up their own integrated steelworks. Thus it can be estimated that steel production in this region will exceed 3 million tons by 1980.

The consumption of steel should rise to between 5.5 and 6.0 million tons per year. The only individual country likely to reach self-sufficiency in this decade is Egypt, but the region is likely to produce as much as half its steel consumption from internal production by 1980.

Far East

It was necessary in Chapter 3 to treat the whole of Asia, including both the Middle East and the Indian sub-continent as a region. In this chapter, the Middle East has been discussed separately but the Indian sub-continent is again included with the Far East.

Apparent consumption in this region is currently about 15 million tons per year, of which India accounts for some 9 million tons. Existing production of

crude steel is approximately 5.0 million tons in India plus a further 2.5 million tons in the rest of the Far East. The projects recorded in Chapter 2 would increase capacity for crude steel production to about 10 million tons, excluding India; expansion plans in India are so numerous that it is difficult to assess the level of output in 1980, but it is likely to exceed 10 million tons. On this basis, the Chapter 3 estimate of 14.3 million tons for the whole of Asia would seem to be rather low. The output of steel in India, Egypt and Turkey alone should reach this level, while production in South Korea, Thailand and the Philippines should total a further 5 million tons even if their expansion plans are only partially realised.

Thus the estimate made in Chapter 3 on the basis of the trend of production increases in the 1970's should perhaps be amended in view of the expansion projects planned 'w the individual countries. A very approximate estimate for the breakdown of production in Asia in 1980 can be made:-

		Million tons
Turkey	:	2.5
Middle East	:	3.0
India	:	10.0
Far East	:	6.0
TOTAL		21.5

Consumption in India alone is likely to rise to about 15 million tons, and in the rest of the Far East to over 10 million tons. Thus the estimate of consumption for the whole of Asia by 1980 made in Chapter 3 (33 million tons) may also be an under-estimate; a figure of 35 million tons would seem to be more realistic. These figures indicate that domestic production in India and the Far East could well increase its share of internal consumption to about 60 per cent by 1980, while the position in the whole of Asia could be very similar. This would be a substantial improvement on the trend recorded in Chapter 3, whereby the share of internal production by 1980 in Asia would be only 43 per cent of their steel consumption. Europe

Future development cannot be satisfactorily considered in regional terms, since so few European countries are included in the survey. The estimates for production in 1979 given in Chapter 3 appear rather low by comparison with the projects recorded in Chapter 2. In Greece, it is planned to raise total crude steel capacity above 2 million tons by 1980, and Yugoslavia is planning to reach a capacity of 5 million tons by 1975. This is double the 3.6 million tons estimated from the trend of production in the 1970's and actual output should therefore be noticeably higher, enabling these European countries to maintain their 60 per cent contribution to consumption from their internal production.

General observations

Consideration of the expansion projects and of the factors affecting steel industry developments gives rise to a number of general conclusions, which are recorded below:-

- (i) One of the problems for developing countries is the lack of a heritage of research on Direct Reduction processes, which may otherwise be the most suitable for the scale of plant often applicable in a developing country.
- (ii) The pattern has been changing from the availability of a quality iron ore to the availability both of a reductant material and of power, as the dominant factor affecting development of a steel industry.
- (iii) There is a strong bias in developing countries towards establishing a steel industry, in spite of possible adverse conditions, since it is a very useful start to industrialisation, with substantial male labour requirements and an output which is used in many other industries. Few industries can rival it on these grounds, perhaps only the cement and fertiliser industries.
- (iv) The steel industry tends to be Government run in developing countries, since the market size in most such countries does not permit the economies of scale which are necessary to achieve commercial viability. The exception to this is the mini-mill, which may often be commercially viable provided a narrow range of product is acceptable. This type of plant may become much more widespread in future.

(v) The difficulty of achieving regional co-operation, for instance in Africa, to overcome the problem of restricted individual home markets, has already been mentioned. There is an alternative approach to this problem, which is not strictly within the scope of this survey - to promote co-operation with developed countries. This already occurs in terms of ore processing plants, which have been set up in some developing countries with overseas assistance from commercial concerns who provide a guaranteed market for a proportion of the plants output in return for financial assistance. It would be possible to extend this to the manufacture of semi-finished steel products in the developing countries for export to developed countries, where these would be finished and marketed. Co-operation of this kind would probably need to be at a governmental level, rather than on a strictly commercial basis. It could well solve the problem of setting up large-scale steelmaking operations without a big enough home market to absorb the finished products.

APPENDIX 1 - UNIDO STEELWORKS STUDY

Questionnaire

Status of works

The information sought does not refer to steelworks in existence and operating at the end of 1969, except insofar as there are schemes planned, or currently in hand, for their expansion. The steelworks plans about which we seek information are to be allocated to one of the following four categories.

Category 1	:	Now in progress (including works completed in 1970)
Category 2	:	Agreed upon but not yet started
Category 3	:	Planned but not yet agreed
Category 4	:	Considered for implementation in the 1970's but not yet planned in
		detail.

Units to be employed

If the tonnages given are not in metric tons, please state unit used. All monetary sums should be in <u>either</u> local currency <u>or</u> the equivalent in United States dollars.

Please in deate Country or State:

		Comments
A. Location or Proposed Location of Works:		
B. Category of Works: (please indicate)	1 2 3 4	When production due to commence:-
C. Raw materials: Please indicate which are to be used and state source, if known.	<pre>Iron ore (Lump/fines/ oxide pellets) Pre-reduced iron pellets Steel scrap Coal Coke Limestone Others</pre>	Fe grade:
D. Energy supplies to steelworks: Please indicate which are to be used and state source if known.	Coal Fuel oil Natural gas Electricity Thermal Electricity Hydro Others	

6	4.5
1	4

		Comments
E. Processes: Please indicate which are to be used, the sizes of plant items and/or their annual outputs	Ironmaking: Blast furnace Electric smelting Direct reduction	
	Steelmaking: Basic oxygen furnace Electric arc Others	
	Casting: Ingot (state size) Continuous (state size)	
	Rolling: State types of mills to be installed	

8(1

\$ 1	1	· · · · · · · · · · · · · · · · · · ·	- 1, m.m
	B B KARALAN E	● 4 8 第 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Commente
	· · · ·		(Include notes on present sources of supply
			where appropriate)
	Heavy plate		
Dianned contract	Light plate		
I for each item			
or group of	Wide strip		
items and then	Nationstin		
of supply			
	Heavy sections		
	Mastin		
	MCCHUIT SCCOORS		
	Light sections		
	Our late lange		
1	Quanty bars		
	Reinforcing bars		
•	Colled rod		
	Straight rod		
	Tube and pipe		
-			
	Ingots		
	ж»		
	Slabs		
	Blooms		
	Billets		
	Others		
Lagrande an annance annance a star data a se			war 2 matrice utilities avan 12 % mm this!
- ivormany define	Light plate:	U	\mathbf{p} to 2 metres wide and up to 12.5 mm thick.
	Wide strip:	õ	wer 600 mm wide, up to 3 mm thick.
	Narrow strip:	U	p to 600 mm wide, up to 3 mm thick.
	Heavy sections	e O	over 35 kilograms per metre length.

Over 35 kilograms per metre length. From 15 to 35 kilograms per metre length.

Under 15 kilograms per metre length.

Over 12, 5 mm diameter.

Up to 12.5 mm diameter.

Please indicate where other definitions are used

Medium sections: Light sections:

Barst Rod:

	Product	Product Home Sales t. p. a.	Exp	Export Sales		
			t. p. a.	Principal Countries		
G. Markets: Please indicate	Heavy plate					
expected or	Light plate					
distribution of products to be	Wide strip					
made.	Narrow strip					
	Heavy sections					
	Medium sections					
	Light sections					
	Quality bars					
	Reinforcing bars					
	Coiled rod					
	Straig ht rod					
	Tube and pipe					
	Ingots					
	Slabs					
	Blooms					
	Billets					
	Others					

			 	8148	ur - 4	5 = 1
1)	C1)	u s				
			 -160-1-18	<i></i>	-87790 halpo	-1 actual

		Estimated Expenditure	Comments
H. Capital cost* of project: Please give estimates of expenditure on steelworks and such other associated works as form part of project.	SteelworksPlant and servicesBuildingsCivil EnginceringAssociated WorksRoadsRailwaysWater supplyPower stationPower transmissionHarbour/DocksTraining/SchoolsTownOthers		
J. Capital Financing of Project: Please give details of sources of funds.	Public sectorInternational loans (specify source):Government loan Government equityPublic loansPrivate sector Equity funds Loan funds Plant manufacturers' credits Advance sales	Amount	

* It possible - please state if design, engineering, erection and commussioning costs are included, please indicate foreign exchange requirements.

К.

Please describe any associated capital projects for which costs are given under H.

Please give details of any agreements for technical aid.

Please give details of any planned subsidiary industries to utilise steel output.

Any other relevant information.

APPENDIX II - REGIONAL CLASSIFICATION OF COUNTRIES SURVEYED

•

1.	North Africa	4 4	Algeria
			Libya
			Morocco
			Sudan
			Tunisia
2.	West Africa	8 6	Cameroons
			Dahomey
			Gambia
			Ghana
			Guinea
			Ivory Coast
			Liberia
			Mali
			Mauretania
			Niger
			Nigeria
			Senegal
			Sierra Leone
			Togo
			U pp er Volta
3	Control Africa	٠	Anaola
· · ·	Central Arrica	*	Central African Ropublic
			Chad
			Concelese Republic
			Malawi
			Swaziland
			Zambia
			28111048
4.	East Africa	6 4	Burundi
			Ethiopia
			Kenya
			Madagascar
			Mauritius

		5	Rwanda
			Somalia
			Tanzania
			Uganda
			C.
	5. South America	* -	Argentina
			Bolivia
			Brazil
			Chile
			Colombia
			Ecuador
			Guyana
			Paraguay
			Peru
			Surinam
			Uruguay
			Venezuela
(6. Central America	8 4	Barbados
			Costa Rica
			Cuba
			Dominican Republic
			Guatemala
			Haiti
			Honduras
			Jamaica
			Mexico
			Nicaragua
			Panama
			Salvador
	Middle Fast		Palmain and Trustel States
1	· Middle East	*	Banrain and Trucial States
			Egypt
			lerael
			lordan
			Kiwait
			Lebanon
			Saudi Arabia
			Svria
			Yemen
8	. Far East	*	Burma
			Ca mbodia
			Hong Kong
			Indonesia
			Korea (South)
			Laos
			Malaysia

		:	Papua and New Guinca Philippines Singapore Taiwan Thailand Vietnam (South)
9.	Indian sub-continent	:	Afghanistan Ceylon India Pakistan
10.	Europe	:	Cyprus Greece Ireland Turkey Yugoslavia

APPENDIX III

SCHEDULES OF STEEL WORKS PROJECTS

CONTENTS

Page

African countries	88
Latin American countries	100
Middle Eastern countries	113
Far Eastern countries	116
European countríes	131

Country ALGERIA

	Capital Cost cl Project (Milliers	L.83 Algorian	Dirars	foreign	credit										5	δ
	esent to such.			89.86 .00 - 90.00									1		and and a second se	and the subsection of the subs
ets	estimated for the second secon			450	02 6	150						80	4 00		006	nanna an far an ann ann ann ann ann ann ann ann an
Mark	Products			Plate, sheet		Plate, tinplate, galv. sheet						Seamless tube	Merchant bars & light sections) Plate , sheet) & strip)	
1 1 1	Future там steel сарасіту іп m.t.p	0.6- 0.7						1.55	1.6-	(0.1)	(0.5)			(1.3	-1.6)	an an Stoppener (All Spir Ann - Annanan -
• 1	wan to vitaeqe) Bant in mitaeqda	0.6- 0.7	0.5	0.0 1		0.150		1.	1.0-			0.08	0.4	<u> </u>	2000-00-00-00-00-00-00-00-00-00-00-00-00	entre angeweenten er en angeweenten en en e
	Processes	LD St ce lmaking (2 x 70T converters)	Slab continuous casting	HR Mills (flat products)		CR Mills (flat products)		Second Blast furnace	Third 90T converter	Flat continuous casting	Billet continuous casting	Scamless tube plant	Rar & section mill	HR expansion	CR expansion	
	lmplementation date	1972		1971		1973		1975								and a finite of the state of th
129(Category of Pro						+	2								
e.q . اه.	Existing raw ste .1.m ni yilosqes	Nil										r				
	Source	Ouenza (local)	imported	local	local											
1	Raw Materials	Iron ore	Coke	Oil	Natural gas								<u></u>			
	Location of Works	El-Hadjar (Annaba)														
	Name of Steel Company	STE NATIONALE DE SIDERURGIE												9		

		Capital Cost of Project (Millions)	70 mullion Lubyan Pounds. (Govern- ment funds)	89
	;	Present tonnage (thous, of tons)	Small	
	ets	Target tonnage (tono) (ano) (ano)	ns nums nums (60 mms ns ns r 60 mms r 60 mms ly ly ly t	
	Marke	Products	Rounds 6-60 mr Squares 10-39 r Hexagons 10-50 Angles up to 60 Bars 5x25 mms up to 25x150 mr V-sections abov Miscellan-ous sections in abov and longitudinaf welded. All production r for home marke	
	re∙q Is	Future raw stee capacity in m.t.	0.34	
ĺ	, 6	wən to trisaga Dant in m.t.d.	0.32	
		Processes	Direct reduction using natural gas. Electric arc furnaces Continuous casting Small section mill Cold wire drawing mill	
		Implementation date	1975/ 76	
	129(o	Category of Pro	ŝ	
	ləə . s.q	eapacity in m.t.	.02 (re- bars)	
ry LIBYA		Source	Local Local Local	
Count		Raw Materials	Iron ore Steel scrap Limestone Natural gas Fuel oil	
		Location of Works	Not yet decided	
		Name of Stcel Comp a ny		

		Capital Cost of Project (Millions)	US \$ 120,000, 000 (120m)	90	
		Present tonnage (thous , of tons)			
	œts	Sarget tonnage (anot lo . auot)			
	Mark	Products	Sections Bars Tinplate galvanised sheet		
	ا ۶۰۵۰	Future raw steel Gebecity in m. t. p	ese 0.25		
	•	wən to viisaqaD Dani in m.i.nafq	0.12 in first stage 0.25 in second stage for 0- ferro- mangan		
		Processes	ſ		
		lmplementation date	1971		
	109	Category of Proj	8		
co	[9: . 6.q	Existing raw ste 1.1.m ni vilosedeo	0.01		
t <mark>ry</mark> MOROC		Source	Rif deposits Impcrted		
Coun		Raw Materials	Iron ore - Coke - etc.		
		Location of Works	Nador		
		vame of Steel Com pany			

warmen from the

ć

		Capital Cost of Project (Millions		-) 3.4)Tunisiar)Dinars)		91	
		Present tonnage (thous of tons)	n		ł				
	ets	Sarget tonnage (tonage)		1	.015	0.05 0.06			
	Marke	Products			Wire	Billets Wire rod			
	• B. (Future raw steel 9.1.mni vijasqea				0. 170			
	•	wən lo yijə sqa .e.q.j.m ni jnalq			.015	0.05 0.06			
		Processes			Wire drawing plant	Electric arc furnace + continuous casting + rolling			_
		Im ple mentation date	ting		1261	1973			_
	109	Category of Proje	exis			ŝ			_
Y	ع . 19	Existing raw stee G.1.m ni yiiseges	0.12						-
ry TUNISI		Source	local local and imported imported	local					0 4
Count		Raw Materials	Iron ore - Scrap - Coke -	Limestone -					-
		Location of Works	Mcnzel - Bourghiba (El Fouladh)						
		Name of Steel Company	Societe Funisienne de Sicerurgie El Fouladh						

Country LIBERIA

	Capital Cost of Project (Millions)	US \$ 1.5 million		92
	Present tonnage (thous. of tons)		the who-regio	
ets	Target tonnage (thous. of tons)	31 36 93	nclude can su	
Marke	Products	light sections coiled rod straight rod	Markets would i of the West Afri	
• 8-0	Future raw steel capacity in m.e.p	.161 .185 .172		
•	wan lo viiseqeD e.q.j.m ni jnelq	.161 .185 .172		
	Processes	Blast furnace LD Converter d Continuous casting		
	lmplementation date	not decide		
109	Category of Proj	4		
e] ۴.۵.۵	Existing raw ste capacity in m.t.t	nil		
	Source	local Europe or USA		
	Raw Materials	Iron ore - Coke) Limestone)		
	Location of Works	Buchan an - Grand Bassa County		
	Name of Steel Compary	1		

$\mathbf{C} = \mathbf{77}$

82.05.03

2 OF

		Capital Cost of Project Millions)	US \$ 100 million	93
		Present tonnage (shous. of tons)	, , , , , , , , , , , , , , , , , , ,	
	ets	ອฐลกกо† 19ชาสโ (anot to . anot)	0.35	
	Marke	Products	Rolled products	
	• B • C	Future raw steel 1.1.m.ni viiosqaso	6.0	999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	•	wən îo viiska ba a.q.j.m ni jus iq	0 4	
		Processes	Sinter plant Blast furnace LD converters Rolling mills	
		lm pl ementation date	late 70's	
	109	Calegory of Proj	4	
171177	[э . в. с	Existing raw ste 1.1.m ni yitosqeo	Ĩ	
		Source	local imported from Europe + N. America local	
Con		Raw Materials	Iron ore - Coke - Limestone -	
		Location of Works	Port Etienne	
		Name of Steel Company	•	

ŧ

Country MAURITANIA

	Capital Cost of Project (Millions)	ul 50m (Sterling)	94
	Markets Products	Reinforcing rounds merchant bars for tubes for sheets home and etc. export etc. markets	rebars for light sections home wire rod in coil markets
	Future raw steel capacity in m.t.p.a.	0.75	0.1
	wən to virseqa .s.q.t.m ni məlq	0.75	0.1
	Processes	Not decided	electric arc furnaces + 2 strand continuous casting
	lim pl ementation date	Start of con- struct ion blanned or 974	1
	Category of Project	4 	4
RIA	Existing raw steel .6.q.1.m.ni y110.ed60		,
try NIGE	Source	local (Enugu local	Imported local
Count	Raw Materials	Coal iron ore limestone	Billets Scrap
	Location of Works	Not decided but possibly Onitcha (Eastern Region) or possibly primary facilities at Lokoja and rolling mills at Onitcha	ljeka
	Narne cf Steel Compary		Wemae (Korf)

		Capital Cost of Project (Millions)	£6. 3m.	95	eleberg ageworden w ¹ 44
		Present tonnage (thous. of tons)			
	ets	agen tonnage (onnage) (snot to .suoft)			menong database or org
	Marke	Products	Merchant bars⁄ sections etc.		
	rs∘q J	Future raw stee .1.m.ni viisagas	. 12		
	· f	wən lo yis aqıs 9.q.j.m ni juslq	. 12		
		Processes	20 tons Electric arc furnace. (Leone- Tagliateri) Merchant bar mill		
		lm pl ementation date	71/72		
	129j	Category of Proj	2 1		
V	f9: 19: 19:	eapacity in m.t. Sapacity in m.t.	•		
try ANGOL		Source	0		
Coun		Raw Materials	۱		
		Location of Works	Samambo and Luanda		
		Name of Steel Company	Siderurgia Nacional, Portugal		

İ

1

í

		Capital Cost of Project Millions)	\$100m.				96		
		Present tonnage (thous, of tons)						and the second secon	
	ts	Target tonnage (thous. of tons)	ets						
;	Marke	Products	rolled products sheets shapes galvanised she						*
	. Б. (Future raw steel capacity in m.t.p	0.3				 	and the second	
	•	wan to vitageD plant in minalq	0. 15 0. 1	0.08					
		Processes	Demag 50 ton electric arc furnace 4 strand conticast Rolling mill	Italimpianti CR strip mill					**************************************
		lmplementation date	72/73	<u> </u>	1972				-
IASA	10	Category of Proje	5		•				•
(KINSF	• e •	sis war guitsix: capacity in m.u.p.	[-
ry CONGO		Source	Local & imported Local						
Count		Raw Materials	Scrap Iron ore						-
		Location of Works	Maluku (Inga)		Kimpako				
		Name of Steel Company							

Country MOZAMBIQUE

Contraction of the local division of the loc

	Capital Cost of Project (Millions)		97
-	Present tonnage (thous, of tons)		
Markets	egenion regret (enor to .euo(1)		
	Products	Mainly for export	
• 8-0	9912 war stufu 1.1.m ni yitoaqas	0. 25	
•	wən to yıta sqa Q e.q.ı.m ni taslq	0. 25	Terrist and a specification of the discovery
	Processes		
	lmplementation date	1974	
109	Category of Proj	8	
6] ۱.a.	əts war gaitsixI 1.1.m ai yılə sq as	0	
	Source	local (Tete district) local (Tete district)	
	Raw Materials	Iron-ore Coal	
	Location of Works	Beira	
	Narae of Steel Company	Cempanhia de Uranio de Mozambique	

		Capital Cost of Project Millioné				K £1.5	interna						98	
ł		Present to the sub- (shot to . subdt)						<u>1994</u>				alar dige on specific diges () () de long a registration de		ngar ngar
	ets	Sarget tonnage (thous, of tons)				E1.0	T 2.0	T10.0	H 1.0	T 1.0		n an <u>airte</u> a speine anns a fairte ann an anns anns anns		
	Marke	Products	Wire rods	Reinforcing	Other light bars	HR Strip	Light sections		Reinf. bars Coiled rod					
	1 • 8 • 0	Future raw stee capacity in m.i.t	0.1	0.06		0.03			0.1					
	•	wən 10 yii əfaga 1. m ni ins iq	0.1			0.03								
		Processes	Electric arc Steelmaking	Merchant mill		Steelmaking 2 Electric arc	furnaces of 30T. Ingot casting 200 x 200	Ploughing mill Bar mill	Steelmaking					
	Implementation date					Jul. 1971			1980					
	129	Category of Proj	3			-			4					
	e] ۱۵.	əis wer guitsixI 1.1.m ni yıtəsqısə	0.04	bars		Nil								
the presence of the		Source	local and	imported		local	local imports	imports	.imports local	EAPTh. Co. Ltd.				
		Raw Materials	Scrap			Scrap	Lımesto ne Fe-Mn	Iron ore	Dolomite etc Fuel oil	Electricity				
		Location of Works	Miritini	(Mombasa)		Dandora (Nairobi)					opia			
		Name of Steel Company	CENYA UNITED	STEEL CO. LTD.		TANCO	ENYA LTD.				E. = Home market ZE = Zambia/Ethi	T = Total		

Country KENYA

l

I

		Capital Cost of Project Millions	r'S \$ 20 Lipanese aid		99
		Present tonnage (thous. of tons)		n gen hann med skapen bin annar ann annar ann an annar agus an agus an dùthail dùthail an Annar a Girl an Annar	an a
•	ts	egen to regret (anot to subtract) (subtraction of the second seco	lome markat		
	Marke	Products	Billets		
1	• в. с Г	ээі <mark>з war ə</mark> rufu q. 1. m ni y li ə bqaə	0.1		
•	wən to vitəaqaD van ti vitada van ti melq		0.1		nan mana ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o dia mana amin'ny faritr'o dia mana amin'ny fari
	Processes		Steelmaking		
		lmplementation date	Farly 70's		
	Existing raw steel capacity in m.t.p.a. Category of Project		4		
•			IIN		
try UGANDA	Source		Sukuku		
Coun	Raw Materials		Iron ore (magnetite)		
1	Location of Works		Sukuku (nr. Tororo		
		Name of Steel Company	CGANDA DEVELOPMENT CORPORATION		

•

Ξ	
ARGENTINA	
Country	

I

	Capital Cost of Project Millions)	J. S. \$298	J. S. \$230	S . 5310	. S. \$176	100											
Markets	Present tonnage (thous. of tons)	170 1, 450 550 110		3504													
	Sarget tonnage (thous. of tons)	350 3, 000 1, 100 220		550 1, 350													
	Products	Rails & Sections HR strip CR prods. Tinplate		CR sheet HR strip													
. B. C	Future raw steel 1.1.m ni vijages	5 1	4.0		2. S	2.5											
•	wən 10 yirəg a D 6.q.1.m ni inc iq	0.9 2.5 2.5	1.5	1. 2 1. 36 1. 36	2. 5 total 2. 5 total 0. 3 to 0. 7	1. 2											
	Processes	Ironmaking 2nd BF 2900T/d Steclmaking 3 LD's of 150T Continuous casting mach.	Steelmaking	Ironmaking BF Steelmaking LD 175T Roughing mill	Steelmaking LD Roughing mill HR plate mill CR sheet mill	2nd BF											
	lmplementation date	1972		1973	1975	1976											
109	Category of Proj	1	4	T	7	7											
fsis war guitsixA .a.q.t.m ni ytiseqas		1.1	-														
Source		Pcru Brazil/Chile U. S. A. 95% Arga. 5% Imported local		Somisa plus imports													
Raw Materials		Pellets Iron ore Coal Semis Scrap Limestone															
Location of Works		San Nicolas (B. A.)		Ensenada (Pto de la Plata B.A.)													
Name of Steel Company		SCARSA		PROPL LSORA SIDERURGICA SA													
		Capital Cost of Project Millions															101
----------	--------------	---	--------------------	------------------------	----------	--------------	-----------------------------	---------------------------	----------	----------------	---------------------------	----------	-------	--------------------------------	----------------	--------------------	------
		Present tonnage (thous, of tons)	1				150				140	150		240			
	ets	Sarget tonnage (thous, of tons)	800				200				140	150		330			
	Mark	Products	Forgings	Bright bar	Wire rod	Welded tubes	Seamless tubes			Quality steels	Bar	Forgings		Light bars and sections			
	1 	Future raw stee capacity in m. t. j	0.8				0. 3								0.3		
	•	wən to viszagaD a.q.s.m ni snafq	0. 8	0.8			0. 1								0.3		
		Processes	Continuous casting	Steelmaking LD			Steelmaking	Electric arc furnace 50 T		Steelmaking	Electric arc furnace 40 T			Ironmaking direct reduction	Steelmaking LD	Continuous casting	
		Im pl ementation date					1970										
(3)	109	Category of Proj	4				-			4				I			
NTINA	[9- . 8.0	ets wer gaitsixI 1.1.m ni ytiosqeo	0. 125				0. 3			0.19				0.3			
try ARGE		Source	local	local	local		local	local	imported	local and	umported	local	local	local and imported			
Coun		Raw Materials	Coke, scrap	Scmis	Ferro	alloys	Ferro alloys	Scrap	Pig iron	Ferro	alloys	Scrap	Semis	Semis	HR coil		
		Location of Works	Rosario and	Villa de la Consti-	tucion	(Santa Fe)	Campa ra (B. A.)			La	[lablada			Avellaneda (B. A.)			
		Name of Steel Company	ACINDAR				DALMINE SIDERCA SA			CSTABLICINIEN-	US SIDERURGI-	-OSA		JURMENDI SA			

Å

l

	Capital Cost of Project fillions			102
-	(snot to .suoff)			
	Second 19318T (short form) (short for the second for se			
	Market Products		High C.Si steels Plate	
	Future raw steel capacity in m.t.p.a.	0. 2		
	wan lo viisege. .e.g.i.m ni inelg	0. 2	0.1	
	Processes	Stcelmaking Continuous casting	Steelmaking	
	lmplementation date			
(3)	Category of Project	-	4	
NTINA	ləərə war gairsixi . a.q. r. m ni yıtəaqısı	0. 133	0. 043	
ry ARGE1	Source	local local and imported	local imported	
Count	Raw Materials	Scrap Semis Ferro alloys	Scrap Ferro alloys Ingots	
	Location of Works	Bragado (B. A.)	Valentin Alsina (B. A.)	
	Nume of Steel Company	CERIAS KAGADO-LUCINI SACIF	CEROS OHLER	

		Capital Cost ol Project (Millions	US\$ 95 200		06	290		78	235				420		103
		Present tonnage (thous. of tons)													and any second secon
	ets	Sarget tonnage (thous. of tons)													
	Marke	Products	HR Strip CR Strip	Plate Galv. plate Tinplate	Plate	IIR Strip	Slabs	Plate Strin HR	Strip CR					Exports	
	• e • 0	Future raw steel capacity in m.t.p	1.7 2.5	4.0	1.0	2.0	3.4	1.8				0.2	1.0	2.0	
	•	wən to vito sqa D s.q.ı.m ni tus lq						1.8				0.2	1.0	1.0	
		Processes			Steelmaking LD	Steelmaking LD		Steelmaking LD	Steelmaking LD	Belo-Horizonte			Steelm aking LD	Steelmaking LD	
		lm pl ementation date	1973 1975	1980	1972	1975	1980	1975	1980				1976	1980	
	109	Category of Proje	1 2	n	-	5	3		e			-	5	4	
(1)	[e . e.	g. 1. m ni yiiska g. 1. m ni yiiseges	1.4		0.88			0.83				0	0		and a state of the
ry BRAZIL		Source													
Count		Raw Materials													
		Location of Works	Volta Redonda		Cubatao	(Sao Paolo)	anu Piacaguera	lpatinga &	Camara	(Minas Gerais) Boli	Beio - Horizonte	Mogi das Cruzes	Rio de	Janciro (Guanabara	
		Name of Stoc1 Company	COMPANEIIA SIDERURGI CA	(CSN)	COMPANIHA	ADERURG CA	COSIPA)	S.NAS	ALENCAUCAS DE MINAS	EKAD USIMINAS)		.COS VNHAGUERA SA	TA SIDERURGICA	JA CUANABARA	

Í

l

	Present tonnage (thous. of tons) (millions. of tons) (millions (millions)		CR \$ 22		20	L'S\$34_] ().
Markets	Products Target tonnage		Bars Sections Wire Rod		Merchant bars & wire 22(rod		generate dissociations - America generator
• 8 - 0	ləəis war əruiu ⁴ q.1.m.ni yiləbqbə	1. 0		0.3			0. 11
·	wən to vi i anala B.q.i.m. ni i nalq	0.2	0.2	0.2	0.15 0.3	2.0 0.5	 0
	Processes	Steelmaking LD	Ironmaking HyL direct reduction Steelmaking by electric are furmace	Bars & Section mill Billet cont. cast	Steelmaking Bar & wire rod mill	Ironmaking by direct reduction Steelmaking LD Medium & heavy section mill	Steelmaking BF
	lm plernenta tion date	1975 1980	1972	1974	1976	Sanda Sanda in a diserta sense di secondo di	0791
to9	Category of Proj	5 I		7		e	an a
[9 . 8.(eis wer guitsixI 7.1.m af Vitseges	0			0, 03:		0
	Source		Aratu				
	Raw Materials		Gas				
	Lccation of Works	Rio dos Sinos (Guana - bara)	Salvador (Bahia)		Rucife (Pornam - buco)	Parapcoba Valley (Xinas Gerais)	Barra Mans a
	Nume of Steel Company	TERDAL SIDEUR- NGA RIO TEANDENSE	SINA SIDERURGICA DA EAHLA USIEA)		ACONORTE - ADAC JR OUP) Jesinor	VIFTANING CO.	LA LU XCICA A NRA LINNA

Country BRAZIL (2)

		rupta. rusto Project Milliors				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				UŠ\$ 40		105
	k-m-ndaburne nog	agentot trassard (snot to , suortt)		0	1		10000000000000000000000000000000000000			anna an ann an ann an ann an ann an ann an a		
	V.	agentio 19816T (Silo) 10 . Suod1)										
	N.	Products						Rod Bar Sections				
I	* 19 (Future raw steel Future raw steel			999kmionappy.co.com			0.26				
	*	wan to vitaaqa. a.q.in ni inafq	0, UM	7 °		0.0	phase) 0.170	3 2 0 0	r. o	0.3	0.6 1.2	
		P TOCCES	burs & Sections		Steelmaking	Electric arc steelmakg.	Rolling Mill	Steelmaking GHH Sterkrade Continuous casting Merchant bar mill	Ironmaking SL/RN direct reduction Steelmaking GHH	electric melting Bar & Rod mill	Steelmaking Ultimate expansion	
		norrarnemediari date	1973	1970						1974	0861	
ĺ	109	Category of Proj										
	e). ه. ر	sis wer gnitsixX 1.1.m.n. vitongeo	Sual-valisity statio es							0.15		
a y contra the		Source										
		Raw Materials										
		Location of Works	Manurs			Carlacko			luiz Je Fore (Minas	Gerals)		
		Nume of Steel Company	IN RECO	2. 2.		(етрикант. КОРОПИ А Э.Ө. АСОБ	A RUDA UNDES JUNOR			

		Capital Cost of Project US \$	320 (180 by Japan rest loca	106
		Present tonnage (ino) o.suo()		
	ets	egen to range (source) (such to the second s		
	Marko	Products	Mooms Billets Bars Plates Sheets Calvanised Plate Tinplate	
	, 6, 0	Future raw steel capacity in m.t.p	1.0	
		wan to vijageD a.g.j.m ni jnelg		
		Processes	Ironmaking, 3rd BF Steelmaking, two 100 T. LD Continuous casting machines (two) Light section mill 3rd galvani sing line Oxygen plant, 290 t.p.d. Limestone plant Iron ore mines develop- ment at Vallemar	
		lmplementation date	1974	Sinta Sharan Anggo di Kanalar nga naka ma
	129	Category of Proj		
	e] ٤.٤.٥	sis war guitsixI (1,1,11,11,11,11,11,11,11,11,11,11,11,11	0.66	
try CHILE		Source	Local	
Coun		Raw Materials	Iron Ore Coking Coal	
		Location of Works	Huachipato nr. Concepcion	
		Name of Steel Company	CAP) CERO 02L ACIFICO (CAP)	

Ì

	1			
	Capital Cost of Project (Millions			107
	Present tonage (thous of tons)			
ts	Sarget tonnage (thous. of tons)		99999-000-000-000-000-000-000-00-00-00-0	a (paran - 16 de la Allan - 17 de la Allan - 18 de la Allanda - 18 de la Allanda - 18 de la Allanda - 18 de la
Marke	Products	Strip Plate Shect CR Sheet Wire Rod Wire Billets Slabs		
, B, C	Future raw steel capacity in m.t.t	0.5	0.3	
•	wən 10 yıta sqa a.q.1.m ni 1na l q			
	Processes	lronmaking BF Steelmaking LD CR mill	Integrated	
	noitatromentation date	mid 70's		
109	Category of Proj	7	بر -	
e] ۲۵.۵.	Existing raw ste capacity in m.t.t	0.3		
	Source	Paz del Rio (Boyaca)		
	Raw Materials	Iron Ore Coking coal Limestone		
	Location of Works	Belencito	Tibate nr Medellin	
	Name of Steel Company	CEALAS AZ del RIO	NDER STUDY	

Country COLOMBIA

		Capital Cost of Project (Millions)		\$600 51% of which is local		108
		Present tonnage (thous. of tons)			ő	
	ets	Parget tonnage (thous. of tons)	100	Japan USA Germy Italy Export	As abd	
	Marke	Products	Strip, plate, sheet, galv. plate, tinplate, merchant bars	Ingots Slabs Blooms Billets Semis as above	Semis as above	
	• 8- 0 1	Future raw steel i.i.m.mi yiiosqao	0.5 0.35	1.5 3.0	0 0	
	•	wan to ytiomaa B.q.j.m ni jum lq	0. 25 0. 2		****	
		Processes	lronmaking BF Steelmaking LD Strip mill	Ironmaking BF Steelmaking LD Continuous casting Same processes as above	Same processes as above	
		noitatnentation date		1976 1978	1980	
	100	Category of Pro	ŝ	4		
	e] ۱۹.۹	Existing raw succession of the second s	0. 225	1		
try PERU		Source	Marcona River Santa Power Station Iocal	Marcona Australia Canada Iocal	Mantaro	
Coun		Raw Materials	Iron ore pellets Electricity Coke	lron ore Pellets Coal Limestone	Electricity	
		Location of Works	Chímbote	Marcona		
		Name of Steel Company	SOCIEDED SIDERURGICA D.S. CHNDOTE S.A. (SOGESA)	NEW STEEL- Works		

ł

I

	Capital Cost of Project Millious			US\$ 1000 50% loca source:	109
	Present tonnage (snot to .suodt)	500 home mkt. 300 expts.		x	
	Target tonnage 55	96% of home mkt. 500 cxpts.		Export	
	Marke Products	Merchant bars Structural steel Scamless tubes Flat products		Semis	,
	Future raw steel .s.q.1.m.ni yiisgas.	1.25	2.5 to 3.0	5.0 each	
	wən to vito sqa .e.q.t.m ni taslq	0.7 0.65		5.0 each	ingen internet allegedre bruken diese
	Processes	Steelmaking Ironmaking BF Steelmaking LD HR and CR strip mills Centrifugal tube casting Sheet mill (1970) Tinning line	Steelmaking	Steelmaking	
	Implementation date	1972 1975	1980	beyond 1980	
	Category of Project	- N	с	4	
ZUELA	Existing raw steel .a.g.i.y in m.t.p.a.	0.73		N11 N	A - 19-19-19-19-19-19-19-19-19-19-19-19-19-1
ry VENE	Source	local area Aroca imported		local imported	
Count	Raw Materials	lron ore Natural gas Coal		lron orc Coal	
	Location of Works	Santo Tome de Guayana or Puerto Ordaz and Matanzas			
	Name of Stord Company	SIDERURGICA del DIUNOCO (SIDOR)		2 NEW STEEL LANTS	

	Capital Cost of Project (Milliors)	8.37. 5 Mexico.207 rest local of which U. S. sup- phers \$15.0			5.7. 5 50% appr. Ioreign	110
	Present tonnage (thous, of tons)	u		u	щ	
ets	ogennot togreT (anot to , anot)	Central Americ Marke 100		Centra Amerie Marke	Centrul Americ Marke	
Mark	Products	Billets		Billets	Billets Merchant bars Wire rod	
• e.	ləəiz war ərutuf q.t.m.niyitərqaə). 125 to). 150). 113). 1		. 1	161.1	Tentin fut anna a chuideacha matao
	wen to vitaeqaD e.g.t.m ni taelq	0. 125 0 to 0. 150 0 0. 113 0 0. 1		0.1	0. 191 0	
	Processes	lronmaking, charcoal firing blast furnace Steelmaking LD Continuous casting billet mill	Second phase bar mill	Steelmaking electric arc	lronmaking, direct reduction Steelmaking electric arc Continuous casting billets Bar mill	
	lmplementation date	1972		1972		
109	Category of Proj	Υ	3	ε	m	
19 . 8.0	eis war guitsix ^H q.1.m ni yitosqeo	IN		IIN	IIN	
	Source	Agalteca local local		local and imported	local local	
	Raw Materials	lron ore (hematite) Charcoal Limestone		Screp	Titani ferrous magnetite Charcoal	
	Location of Works	Agalteca (Honduras)		Golfo de Fonseca (Honduras)	nr. Puntar enas (Costa Rica)	
	Na nc of Steel Company	ALTOS HORNOS DE CENFRO AMERICA		ALTOS HORNOS DE CENTRO MERICA Alternative Troject)	TOFTA RICA PFICINA DE TLANIFICACION Alterrative Troject)	

Country CENTRAL AMERICA (EXCLUDING MEXICO)

10 A

	Capital Cost of Project	(Millions)				\$30			111
	escano) (Suo) ja (Suo) ja	Present (thous.c							
	o N ogano (snot fo	Target t (thous, c	Mainly Home Marke						
	Ma rk Products		Scmis, Slabs Billets, HR strip plate, Tin plate, Galvanízed plate Bar products						
	ləəta wa .a.q.t.m.ni	r sruture r Future r	3.0	l.5	3.0	1.0	1.5	2.0	
	wən to . s.q. t.m	Capacity plant in		1.5	1.5				
	Processes		Steelmaking LD HR plate mill CR sheet mill Steel making LD	Pelletísing plant 2 BF ironmaking Steelmaking LD Continuous casting Continuous rolling mills	Steelmaking LD	Steelmaking LD CR sheet mill Galvanising plant	Steelmaking	Steelmaking	
	noitatna	Im pl eme date	1975	1975	1980	1970	1975	1980	
	y of Project	Category	2	m	L	-	5	e	
CO (I)	raw steel . b.q. J. m ni	gairsixI Capacity	1.5	IIN		0. 837			
try MEXIC	Source		Coahuila Cerro del Mercado Durango La Perla Coahuila El Encino (Jalisco)	Las Truchas		Coahuila Cerro del Mereado	La Perla	Coanula El Encino (Jalisco)	
Coun	Raw	Materials	Coking coal Iron ore	lron ore		Coking coal Iron ore			
	Location	OI WOFKS	Monclova Picdras Negras Mexico DF Lecheria	Las Tru- cnas (Side- urgica Las Truchas SA) AHMSA	subsidiary	Monterrey			
	Nume of Steel	Cemputy	ALTOS I CRNOS DE MEX CO SA (MIMSA)			COMPAN A LUNDECRA DE FIERRO Y ACERC	DE MON ENNEN		

				e] ۴.۵.۵	100			·	• B - (Marke	ets		
Name of Steel Company	Location of Works	Raw Materials	Source	ətə war guitaixH 1.1.m ni ytiəsqəə	Category of Proj	lmplementation date	Processes	Capacity of new Dant in m.i.n.slq	Future raw steel 1.1.m ni viicapacity in m.t.	Products	Sarget tonnage (in tonnage)	egennot ineserq (anot io , anoti)	Capital Cost of Project Millions)
HOJALATA Y LAMINA SA (HYLSA)	Xoxtla Pucbla	lron ore Natural gas	El Encino (Jalisco) NE of the	0.8	н	1970	lron making HyL Steelmaking are furmace Rolled products	0. 33 0. 264 0. 3	0. 33 0. 264 0. 8	Bars Sections Wire rods			\$27 . 0
			country		2	1975	Steelmaking		1.5				
					ε	1 980	Steelmaking		2.0				
COLINA STATE COLERANENT	Colima	lron ore	Peña Colorada	IIN			Steelmaking		1.0				
TUDOS DE	Veracruz	lron ore	El Encino	0.5		1 970	Iron making HyL 350T		0.5	Scamless tubes			
MENICO 3A		Natural gas	NE of	'	5	1975	Steelmaking		0. 6				
			country		3	1980	Steelmaking		0.8				
					5 ** ******								
													
													112

Country MEXICO (2)

l

		Capital Cost of Projece Millions				113
		Present tonnage (thous, of tons)				-
	ets	ടുമന ് 1931 aT (2001 Jo , 2004)				
	Marke	Products	HR strip CR sheet	HR sheet Tinplate		
	1 'B.C	Future raw steel 1.1.m.ni yiipeqed	(1. 75) 2. 00	0. 16	0. 15	анна на бразована на одржавно обла на од нарина <u>од</u> жава, на
	•	wən 10 yılasqıs) 6.q.1.m ni insiq	0. 80			
		Processes	3rd or 4th Blast furnaces LD Steelmaking - 2 x 100-ton converters Continuous casting Galvantsing plant	Electric arc furnace (30-ton) Continuous casting	Electric arc furnace Continuous casting	
		loitation date	1975			
	129(Category of Pro.	1			
L	e] 19.a.	Existing raw sto 1.1.m ni yitəsqəə	0. 30	0. 05	0. 065	
try EGYP		Source	local Baharia & Aswan			
Coun		Raw Materials	lron ore			
		Location of Works	Helwan	Cairo	Alexandria	
		Namic of Steel Company	CVPTIAN IRON STEEL	(ATTONAL) TETAL NDUSTRIES	CCYPTIAN COPPER WORKS	

l

Millions) Cost of Project Capital 114 (suor jo · snout) Present tonnage (suot to .suod) agennoi jagraT Markets Products . a.q. . . m ni vilo eqac 0.70 1.40 Future raw steel .s.q.1.m ni inslq Wan to VitabdeD Processes LD Steelmaking Blast Furnace Expansion to: 1971 1974 date Implementation Category of Project -. e.q.ı.m ni yıləeqeə ΝIJ Existing raw steel Country IRAN Source Materials Raw Location of Works Isfahan ALTHONAL RANKIN STEEL Name of Steel Company

	Capital Cost of Project Millions		115
	Present tonnage (thous, of tons)		
ets	ອຊຣກຕof ງອນຈະT (2001 lo .2004)	45 500	
Mi. rk	Products	Billets Reinforcing bars and rod	
• 8- 0 1	Puture raw steel capacity in m.t.t		
•	wən to yizsabD e.q.t.m ni taslq		
	Processes	Electric arc (if scrap based) Continuous casting (80 x 80) Rolling mills (including Djeddah) J. p. y. current capacity).	
	Implementation date	Not 100m 45, 000	
109	Category of Proj		
e] ٤.٤.٥	əfə wər gaifətix. 1.1.m ai yılə əqəs	Nil sting n	
	Source	imported local imported or locally manufac- tured local oject for exi	
	Raw Materials	Scrap or Sponge Fe Coke Limestone expansion pr	
	Location of Works	1) Dammaın 2) Djeddah -	
	Name of Stort Cenexiny	LANFAL TRCLEM & UNURAL DRGANISATION	

Country SAUDI ARABIA

l

	Capital Cost of Project Millions	\$163 (+ \$125 Local currency								116	
	Present tonnage (thous, of tons)										
ets	Sarget tonnage (inoi to .suodt)	600 185 141									
Marke	Products	HR Strip Plate Billets									
• B+0	Future raw steel 1.1.m.ni vijosepacity in m	0.95	0.925	2.4	5.0		 				
•	wan to ytio sqa D a.q.i.m ni inalq	0.95	0.925				 	 	 	<u></u>	
	Processes	Blast furnace Steelmaking LD	Rolling Mills	Expansion (Phase II)	Expansion (Phase III)						
	noiterrenterion date	1973	1972	1974	1980						
109	Category of Proj			2							
6] • 8 • (Existing raw ste capacity in m.t.p	IN									
	Source	Up to 50% Korea • Balance - Australia	Domestic	U.S.A.,	Canada, Australia	Domestic					
	Raw Materials	Iron Ore	Steel Scrap	Coal		Limestone					
	Location of Works	Kyung Sang							 		
	Name of Stee ⁷ Coarfuny	FOLIANG IRON & STEEL CO.									

- Section

l

.

Country KOREA (SOUTH)

Project (Millions) Cost of Capital 117 \$21 ŝ (suot to .suod) Present tonnage (suor to . suour) Target tonnage Markets Products . a. q. J. m. ni vito aqao 0.150 Future raw steel 0.02 . s. q. J. m ni Inslq 0.07 0.07 Wen to vitoged 10-ton Electric arc furnace Hot coil processing Continuous casting Processes Wire rod mill Blast furnace Electrolytic tinning line **date** 1970 1972 Implementation ----Category of Project 3 0.130 e.q.i.m.m.yiibeqeb Existing raw steel Source Materials Raw Location of Works Prai ALAYAWATA Name of Steel Cornpuny **UALIME** - EEL

Country MALAYSIA

	Capital Cost of Project Millions	\$120			118
	Present tonnage (shous, of tons)				a na ang ang ang ang ang ang ang ang ang
	oggannot tograf. (anot to . anot)				
Marko	Products	Merchant bars Pipe Skelp Sheet			
•	Future raw steel e.q.1.mmiyi2eqe5	(0.35)			
	wən 10 vitəsqıs. 19.1.m ni tasılı	(0.35)		0.2	ις T
	Processes	Blastfurnace LD Steelma king	Blast furnace LD Stcelmaking Blooming mill	Billet Mill	Blast furnace LD Convertors Continuous casting Slabbing mill
	lm pl ementation date	1974	1973		1970's
1	Category of Projec	e	с		4
	loois wer guitsixU e.q.1.m ni ytioeqeo	IN			IZ
	Source	Mainly imported			an Mainly imported
	Raw Materials	Iron Ore Coal			e considering in lieu of the ted above:- Iron Ore Coal
	Location of Works	Iligan	Balayan	Limay	vestments al joint project plans indica Not Known
	Name of Steed Company	NA AN Na granted Metel MILLS	TEZED TOTENC MILLS		(N.B. Foard of In . Cruative independent Net Knewn

Country PHILIPPINES

New York

		Capital Curt of Lore (Millions	7076.1. 6.076.1. 6.077.0. 6.077.0. 6.077.0. 6.77	33 119
		ogamot treserf (enot to , enoff)	7	
	ets	Parket tounage (suot to .suol))	2 40 2 40 2 100	
	Mark	Products	Rods Bars Sections Billets Total	
	• e (fə <mark>əis war əruluf</mark> i . i . m ni 7012 əqfəə	1.30	2.30
		wan to yitaaqa() a.q.i.m ni malq	0.72 0.55 1.15 1.30 900	
		Processes	Coke Oven plant Sinter plant Blast furbace LD Steelmaking Continuous casting Rolling mills	Steelmaking
		hiiplenentation date	976	
	199	Category of Proj		
	19 . 6.0	ois wer gnitsixd futuru vitoeqeo	Z	
TAIWAN		Source	lmported -primerily Australia Domestic	
Coun		Raw Materials	lron Ore Coal Limestone	
		Location of Works	Kautis i ung	

ļ

· ·

Country THAILAND

	Capital Cost of Project (Millions)	\$22.4	中心				120
	Present tonnage (theus, of tons)	Phases I & II	Phases III &IV	2277, 442, 642, 642, 643, 644, 644, 644, 644, 644, 644, 644		a an tha an	
ets	Sarget tonnage (thous, of tons)	165	230				
Marke	Products	Sections Bars and Rods					
. 6. C	Future raw steel capacity in m.i., p	(0. 150)					
	wen to vitosqsD s.q.t.m ni inslq	(0. 150) (0. 150) (0. 075) (0. 155)	(0. 400)				n - Carllen and Barris Ann <u>a</u> patients agencies areas
	Processes	Electric Iron Smelting Electric arc Continuous casting Merchant and bar mill	Blast furnaces LD converters				
	Implementation date	1970/ 78		ports nited.	an balan dala dala dala dalam dala dala dala dal	1997 	
109	Category of Proj			y Lu			
e] ۴.۵.۵	əis war guitsixI 1.1.m ni yiləsqəə	(0. 04)		om nev Compan			
	Source	domestic	U. S. A. & Australia	estimated fr n and Steel (
	Raw Materials	lron orc Scrap Charcoal Limestone	Scrap	ts have been the Siam Ire			
	Location of Works	Ta Luang Saraburi		wn in bracke t supplied by			
	Name of Steci Comrany	SIAM IKON & Steel co.		N.B. Figures she and were ne			

	Capital Cost of Project Million 2Rs.	Civil Eng 55 55 55 55 55 50 50 50 50 50 50 011 11 11 115 115	121
	Present tonnage (thous. of tons)		
	agentionage (suot logars)	0.9 5.7 37.0 20.0	
	Marke Products	Narrow strip Light sections Quality bars Reinforcing bars Coiled rod Wire + wire products Ribbed twisted bars	
	Future raw steel capacity in m.t.q.a.	0.108	
	Capacity of new 1.6.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	. 065	
	Processes	Steelmaking elæctric arc furmace Billet cont.casting s0 x 80 mm. Steelmaking	
	lmplementation date	1974 2 - 1974 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
	Category of Project	m	
NO	feels wer guiteix? . e.g.t.m ni yttoegeo	HN NH	
ry CEYI	Source	local and imported local	
Count	Raw Materials	Scrap Limestone Ferro -alloy:	
	Location of Works	Oruwela	
	Na ne of Steel Company	D RPORATION	

	ital t of ect ons)				122
	Cap Cos Proj (Milli				
	Present tonnage (thous, of tons)	556 210	186 26 100	321 60	a namen a nalazza (ha san a da a san ang da san a da a
t s	egenion tegreT (inot to . suoil)				
Marke	Products	HR Sheets plus coil CR strip	Plates Tinplate Welded tubes	Bars Railway track) and Heavy) sections)	
• 1	Future raw steel capacity in m.t.q.is	2.5		3.4	
	Wan to vitageD .a.g.i.m ni trafq		1.6 0.05 1.5	0.3 1.6 2.4 0.075 0.011 0.028 0.042 0.042 2.5	
	Processes	Steelmaking LD CR grain orientated sheets (Si-steel)	Expansion licences for: Galvanised sheet Electrical sheet Tinplate	Steelmaking LD Expansion licence for Saleable pig iron Ingots Merchant bars Sleepers Fish plates Sections Forging blooms Billets Wheels & axles Tube	
	lmplementation date	Early 70's			
	Category of Project	8	4	4	
	loota war guitaixI 6.q.1.m.niyitoaqao	1.8		1.6	
61	Source	Barsud Barodjanda	Banspani	Balana and local	
	Raw Materials	lron ore		lron ore	
	Location of Works	Rourkela (Orissa)		Durgapur (West Bengal)	
	Name of Stee. Company	CDUSTAN FEEL LTD.			

l

		Capital Cost of Project Millions)	doffabor- diton with Milas Steel Canada)	130 crores dus fron ore mine cNp. 20 crores	
		Present tonnage (thous. of tons)	<u> </u>	330 3390 3390 3390	
	ets	ogannot tograT (anot to , anolit)	ноте татке	engine engine flay	
	Marke	Products	Sections Bars and rods Strip all stainless steel	Bars Railway track and heavy sections Plate	,
	1 • 6 - 0	Future raw steel capacity in m.t.p	0.2 00.3	3.6	
	•	wən lo yriosq s O s.q.i.m ni ins i q		0.7	
		Processes	Steelmaking electric arc furnaces 60T Continuous casting Section mill Im. strip mill	Ironmaking BF Steelmaking BF of Ironmaking BF of 1719m. 3 Steelmaking LD 2 x 100 tons Continuous casting 3 x 2 strand 1000-1800 mm. Plate mill 4 m.	
		lmplementation date	Early 70's	1971 1976 1981	
	129	Category of Proje	4	8 8	
(2)	e] ۶۰۵۰	Existing raw stee q.1.m ni yiisages	0.1	1.7	
ry INDIA		Source	local Fc-alloy Corpn. Orissa and Andhra Pradesh	Rajhara Dalli m ines Bokaro Jharia Korba Nandini (Madhya Pradesh) Pradesh)	
Count		Raw Materials	Scrap Fe-alloy Si-Cr Si-Cr	Iron ore Expansion Coal Limestone Manganese Dolomite	
		Location of Works	(Durgapur) Alloy steel works	Bhilai (Madhya Pradesh)	
		Nume of S.e.l Compury	HINDUSTAN STEEL LTD. (Continued)		

. .

	Capital Cost of Project Millious)	700 cror, of which 300 arc external (Russian Technical Aid)	124
	Present tonnage (thous, of tons)		angen al be an den och en standare för att störa som en
ets	Sarget tonnage (inoi to .suodi)	789 425 150 150 All for Home 53les 600 600 600 for Home Sales Sales	
Marke	Products	HR strip & shect CR strip & sheet Galv. and Al sheet CR strip & sheet Galv. and Al sheets	
• e • (Future raw steel capacty in m.t.t	1.7	an mananan mananan ang kanananan mananan kananan kananan kananan kananan kananan kananan kananan kananan kanana
·	wən to viiseqeS e.q.t.m ni melq	1.7	9 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 -
	Processes	Ironmaking BF 3 x 2000m. ³ Steelmaking LD Converter 4 x 100 Ingot casting 15.6 to 30T Slabbing mill 1250 mm Ø roll Strip mill 2m. wide CR Mill 2m. wide CR Mill 2m. wide I 2 x 200m. ³ Steelmaking LD I x 100 T. and 2 x 250T Finishing mill roll Ø s00mm. CR mill - 1.7m. wide	
	lmplementation date	1973	
109	Category of Proj		n an
[9 . 6.0	əis war şuitsixH 1.1.m ni yıləbqəə	Ĩ	
	Source	Kiriburu Maghata- buru (Bonai Rango of Orissa) local Hazaribagh (Bihar) Bhavanathpu & Kuteshwar Hiri (Madhya Pradesh) Santapur Barbil (Orissa) Damodar Valley	
	Raw Materials	Iron ore Scrap Coal Limestone Dolomite Quatsite Ore Electricity	
	Location of Works	Bokaro (Bihar)	
	Name of Steed Company	ADUSTAN (TEL LTD. .ontinued)	

Country INDIA (3)

STREET.

Î

I

ł

	Capital Cost of Project Millions)	50 to but rores	125
	Present tonnage (thous, of tons)	s s	
	ຈີລອດແດງ tegral (enot to .enot)	Home sales cspecia South India and Export	
	Marke Products	Structural sections and shapes	
	Future raw steel .a.pacity in m.t.p.a.	2.0	9 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
	wan to ytis ga S. .a.q.j.m ni jnafg	2.0	
	Processes	Ironnaking BF 2000m. ³ Steelmaking LD 250t.	
	lmplementation date	1978- 79 5th Plan	
	Category of Project	4	n a bhliadh air ain a' ann Anna Ann Anna Ann Anna Anna Ann
(†)	ləərə wer gritzix . e.q. t. m ni ytiə eqeə	TR.	
try INDIA	Source	Bailadila local Ramgarh Talgaria Mohuda (haria) Churtha Katkone (Madhya Fradesh) Jaggyapet (Andhra Pradesh) Tunkur (A.P.) Khamam (A.P.)	
Coun	Raw Materials	Iron ore Scrap Coal Limestone Manganese Ore Dolomite	
	Location of Works	Visha khapatnam (Andhra)	
	Nume of Steel Compury	THEL LTD.	

INDIA (1)

(5)
INDIA
Country

	Capital Cost of Project Millions)	750-800 e rores					180 crores	•			12	6
	Present formage (find for the sub- (find for the sub-											
ets	Struct tours. (snot to .suod))	Home sales in conth	India				Home sales					
Marke	Products	Structural sections and shapes					Special steels					
• 6 • 0	Future raw steel Capacity in m.t.p	2.0					0. 250					
•	wən to yitagaD a.q.t.m ni tnalq	2.0					0. 250 (9 <u>00</u> 0000000000000000000000000000000000
	Processes	Ironmaking BF 2000m. ³	Stcelmaking LD				Ironmaking DR	Steelmaking	Electric arc and LU			
	lmplementation date	1978- 79 5th	Plan				1978- 79	5th	rlan			
109	Category of Proje	4					4					
[∈ . 6.	osta war guitzixX q.1.m ni ytisagas	NII				ingent break de 1990	Nil					
	Source	Domamalai Rumandurg (Mysore)	see Vis hak- hapatna m project	Bagalkote	Tunkur (Andhra Pradesh)	Khamam (A. P.)	Kanjima la i (Madras)	local	Neyveli	Jaggyəpet (Andhra Pradesh)	Tunkur (A. P.)	Khamam (A. P.)
	Raw Materials	lron ore	Coal	Limestone	Mangancse orc	Dolomite	Iron ore	Scrap	Lignite char	Limestone	Manganese	Dolomite
	Location of Works	Hospet					Salerr (Madras)					
	Name of Steed Corapany	H.NDUSTAN STEEL LTD. (Continued)										

(6)	
INDIA	
Country	

	1	Capital Cost of Project Millious Lorore 107 Rs.	Parat & Service- 90 crore Buildings 8 crores Power trans.		24 eron	`	127
		Present tonnage (thous, of tons)	465 454 162 154 96 49 26				
	ets	Spendor 193257 (2001 10.20041)	o market	rttoH	əst	sərəni E.O səla	pəuuvid MosqA pouv
	Marko	Products	Semis Light & med. sections Tube semis Sheets Railway Plates Heavy sections Wheels, tyres Axles		Tubes Castings Wire rod	Light burs Light sections Sheets Calvarised Sheets Plates	
	• B. (Future raw steel capacity in m.t.p	5. 5		1.3	2.5	<u>2. manufalan anya sina dina di</u> na di katika <u>dan</u> a
	•	won to viioedaD a.q.i.m ni inalq	0. 0. 0.		0.3		-
		Processes	Expansion and modernisation of Melting Shop (LD Steelmaking) Rolling Mills		Steelmaking electric arc 40T. Continuous casting	Steelmaking	
		implementation date	Early 70's		Early 70's	1974	
	129	Category of Proj	m		ω	<i>न</i> ग	n an
(c)	e] ٤.٤.٥	eapacity in nitraw ste 1.1.11 ni vitastes	2.0		1.00		a)
try ENDIA		Source	Noamundi Gorumahi- sani Ioda (Bihar and Orissa) Jaria basin Birmitrapur local		Goa Monokhar - pur	Raniganj basin Jaria basin Rannagar	Chushdad (Bliar) Bisra (Oriss Satra (Madhya Pradesh)
Coun		Raw Materials	Iron ore (company owned mines) Coal (Co. owned mines) Limestone & Dolomite	(Co. owned mines)	Iron ore (company ov.ned	mines) Coal	Limestone
		Location of Works	Jam shedpur (Bihar)		Burnpur (West Eengal)	Hirapur Kulti	
		Name of Stoc1 Company	TATA IRCN & STEEL CO. LTD. (TISCO)		NDEAN IRON & STUEL CO. LTD. (ISCO)		

		apital lost of roject llilons)		6 mill.) mill. S		0 crorc:	.55 mill \$	2 erore		128
		(snot to suod)	6 8 13	ः स	ы К Ц		ν μ	<u>8 8</u>		50	an a
Markets	ŀ	(snot to suodi) Present tonnage	mc 2 les 1 6								
	rkets	эдвппот тэдтьТ	110 sal					ls			
	Ma	Products	Sections Rods & strip Cast iron					Special stee		Tubes	
ŀ	e-d I	Future raw stee сарасиу in m.t.I	0.2	0.05	0.075	0.2				0.3	
	•	wen to vitoede b.q.t.m ni melq	0.12			0.1	0.05	0.05	0.3	0.15	
		Processes	lronmaking d	Steelmaking	Steelmaking	Steelmaking Rolling mill	Steelmaking Electric arc 10T. Continuous casting Rolling mill	Steelmaking	Ironnaking SLRN process	Ironmaking D-R HR Strip	
		lmplementation date	1970 delaye	l st phase	2nd phase	3rd phase					
ĺ	109	Category of Proje	,		3		-		co	4	
-	e ا ۲۰	Existing raw stee q.1.mm/those pacity in million	0.08								
		Source								local	
Count		Raw Materials								Scrap	
		Location of Works	Bhadravati	Bhavangar (Gujarat)			Patratu (Biha r's Hazribagh	Ghaziabad	Bellary (Hospet)	Gancur (Haryara) and	Ganadran (Punjab)
		Na ne of Steel Company	CYSONE LEON &	OLY STELL			IRLA	ATH ALLOYS STEELS	TOW GULE &	ANAT STEEL ALES LTD.	

DIA ()

.

		Capital Cost uf Project (Millious	2 crore.			6.7 mil RS	129
		Present tonnage (thous, of tons)					
	ets	Sarget tonnage (snot to .suoilt)					
	Mark	Products	wire rod			Pig iron	
	• 8- 0 1	fəətə war ərufuf 1.1.m ni yitəaqaə		1 st stage 0.05 2nd stage 0.1 3rd stage	0.2	0.1	
		wən to ytisaqaD a.q.t.m ni taalq					
		Processes	Billet making plant Wire rod mill	Ironmaking D-R	Continuously cast billets	Ironmaking	
		Implementation date		1978			
	100	Category of Proje	4	- 1 1		4	
(0)	[9 . 8.	Existing raw stee eapseting finner, p					
ery Even		Source		local			
Cour		Raw Materials		Scrap			
		Location of Works	Blavagar	Arkcnam (Kerala)		Hissan (Haryana)	
		Name of Stoo. Company	FRAMEDAS RANJEMEJEA GROUP	STEEL COMPLEX		STATE SDUSTREAL DEVELOPMENT JORIORZIJON	

Construe CDLA (a)

l

l

		Capital Cost of Project Millio::s)	Ş150			\$14				•	130
		Present tonnage (thous, of tons)	-								49 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1
	ts	Target tonnage (thous. of tons)									
	Marke	Products	Sheet	Heavy sections	Re - rolling billcts	Special steels	Plate Shoot	Merchant	bars Galvanised plate & sheet		
	, 6, C	Future raw steel capacity in m.t.t		0.5	1.0	0.2	0.15	0.25			
	•	wən to yıta s Q a.q.t.m ni Jus iq	0.1				0.15				
		Processes	1st phase	2nd phase	3rd phase		Open Hearth	Steelmaking	Plate mill Bar mill Calvanising line		
		Implementation date	1972			1971	1971	Early	70's		
	109	Category of Proj		0	ო		-	6			 n yn af fan yn ar yn arlyn yn gyfri y ddi ar ddar og yn a
ISTAN	اع ۴.۵.۵	əis wer gaitsixI 1.1.m ni ytiəsqeə	IN				Nil				
ry PAK		Source	ustralian Ighanistan mports								
Coun		Raw Materials	lron ore Coal								
		Location of Works Buleji North of Karachi (West Pakistan)		Karachi	Chitta gong	(East Pakistan)					
		Narre of Steel Jorapuny	TANS DAN	STIC NULLS			C. ITTACONG	S . E E L M L L S			

ł

		Capital Cost of Project Millions			131
Ì		ogennot inoeory (enot to . enot)			
	ets	ogannot togaaTT (anot to .auodt)			
	Marke	Products			
	• 8 • 0	Future raw steel capacity in m.t.f	0. 300	6	
	•	wan to ytioegeD e.g.t.m ni tuelg	0. 300 1. 5		
		Processes	Electric arc HR mills	Iron and steelmaking	
		Implementation date		An 1999 An ann an Ann an Ann Ann Ann Ann Ann An	
	129	Category of Proj		ан байлайн ар нарон нэг нэг нэг нэг нэг нэг нэг нэг нэг нэ	andre ar an independent for an
BCE	19 ۵.۵.۵	Existing raw ste eapacity in m.t.p	IIN		
ry GREI		Source			
Count	Raw Materials				
		Location of Works	Thessalon- iki	Possibly at Thessa- loniki	
		Nu ne of Stuel Company	FLENC STEL CO.	NEW WCEKS	

-

	Carital Cost of Project (Millions)	C3. 2 (C0. 99 Local currene)	1.32
-	Present tonnage (thous, of tons)		
	ο ο ομείποι ιομικ (snoi lo .suoli)	5 I 2 4	
	Marke Products	Blooms Sections Bars and rod	
	Future raw steel capacity in m.t.p.a.	0. 135	
	Wan to vitobages) van in merup.a.	0.06	
	Processes	Electric arc - 30-ton vessel Modification to mills	
	lmplementation date	1973	
ĺ	Category of Project	M	
AND	leəiz war guiizixi . 6.q.1. m m yiloxqso	0. 076	
ry IREL	Source	Domestic and impor- ted Domestic Imported	
Count	Raw Materials	Steel scrap Limestone Pig iron	
	Location of Works		
	Nutue of Steel Company	IAISH STUEL HOLDINGS	

No.

l

I

1

ł

					y N	ł	2 2 2			1 3 3
		Present tornage (thore,	tin nekken in tar skiljener bir ska		allen		we cannot be a co			n marine gyrangan an marine an gydd yn ar a gyn y gyn y yn y yn y y yn y y y y y y
	J. 100	Taryet toppage (add to toppage)				1472		an saidin sa an		
	Malec	Products	Narrow strip Light sections	2010 1010 1010 1010 1010 1010 1010 1010	Could roo		de aller som an anderen			
	'r d I	Puture raw siee capacity in march	berned ₽₩₩₩							nin da kanan k
	• •	wan to yitaisqiisD s.q.t.m ni tirefq			0. 955	0.330	0.300	0. 70 1 0		
		Processes	2 Blast furnaces LD Steelmaking - 2 x 130	Continuous casting	billet mill	Section mill	Wire rod mill	Expansion programme	Steelworks	
		noiterrenention date	+ -61					1970 1971	s.0791	
	129[Oategory of Pro	para t					proved	5	
	e). ۱۹۰۱ - ۱۹۰۱ - ۱۹۰۱	ns wer guntetzal aan u zitoegeo	Z					0. 50 (1969)		n na na ang ang ang ang ang ang ang ang
ry TUR		Source	domestic domestic &	imported						
Count		Raw Materials	lron ore Serap	Coal	Limestone		antoi da - dagan gat ann			
		Location of Works	I-kenderun (3rd Iron & Steel-	works)				Karaceniz Eregli	Sivas	
								A REPORT OF MILE	- The second sec	

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche

$\mathbf{C} = \mathbf{77}$

