

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

United Nations Industrial Development Organization

UNIDO/DECHEMA Seminar on Operation, Maintenance, Design and Manufacturing of Chemical Plants and Equipment in Developing Countries

Königstein (Taunus) near Frankfurt/Main Federal Republic of Germany 25 - 26 June 1970

Distr. LIMITED ID/WG.60/8 3 June 1970

ORTGINAL . ENGLISH

FROCESS EQUIPMENT INCLUDING MATERIALS OF CONSTRUCTION

Luis Michael Fluiters Director Canzler Iberica Madrid, Spain

1/ The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing. We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

61

.i

United Nations Industrial Development Organization

UNIDO/DECHEMA Seminar on Operation, Maintenance, Design and Manufacturing of Chemical Plants and Equipment in Developing Countries

Königstein (Taunus) near Frankfurt/Main Federal Republic of Germany 25 - 26 June 1970

Distr. LIMITED ID/WG.60/8 SUMMARY 12 March 1970

ORIGINAL: ENGLISH

SURFACT.

PROCEES EQUIPMENT INCLUDING MATERIALS OF CONSTRUCTION

by

Luis Nichael Fluiters Director Cansler Iberica Madrid, Spain

1/ The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

id.70-1352

With regard to organisation and technical installations for the mechanical machining, the apparatus manufacturing industry should be on the level of a medium-sized European industry for the construction of apparatus.

• J •

and a state of the second state of the second

A survey concerning organisation and technical installations is given by 2 diagrams.

It is recommendable to fabricate only construction parts of well weldable steel in the opening stage of the manufacture. Material recommendations are given by 4 diagrams. Steel quality and dimensions of the construction parts should be in such a way that an unobjectable welding process is guaranteed at supposition for the seam quality concerning the requirement of security, and that heat treatment can be avoided. Easily applicable welding processes are to prefer. Recommendations as to procedures and welding material are shown in the diagram. The welding engineering-equipments should cover first of all current sources (rectifier), oxygen-, acetylene- and argon supply.

Suitable welding equipments in a sufficient number must be available as well as trained welding staff and experienced welding supervising staff in order to guarantee a good workmananip. The training level has to be equal to the surcean standard. The quality control and acceptance require suitable controlling equipments and well-trained controlling personnel. Devices for non-destructive testing, (x-ray testing, surface control, spectroscopic analysis, hardness test) are necessary for the control of the quality and acceptance.

It is recommendable for the purpose of steady supervision of the welding staff to make also non-destructive testing with non-acceptable, pressurcleus operated construction parts. A technical office is required for planning and technical execution (procurement of material, making of shop-drawings etc). The staff and the technical installations have to meet the requirements resulting from the manufacturing program. The technical equipments have at least to cover arawing- and working utonsils, accessories and one copying machine, testdes documentation (codes, standards, tables, material data sheets etc.)

The leader of the technical office has to meet the special high requirements, he should at least be technical engineer (mechanical engineer or even better chemical engineer) with thorough practical and theoretical knowledge. Required is employment of several years in a chemical industry as plant engineer and as shop engineer for construction of chemical apparatus. Employment in an engineering office is desirable. Thorough knowledge of strength calculation, mechanical science, material substance and calculation of welding technique is required, as well as experience with machines, mainly used in chemical plants, i.e. pumps, drives, controllers and measuring instruments.

The level of qualification and training of designers and technical drawers should comply with the European standard.

When building fabrication plants for the manufacture of apparatus for the chemical industry in developing countries, some essential aspects and conditions have to be considered. Within the scope of this lecture there will be tried to herefore give hints and recommendations.

In the following some contemplations conc. the "Lay out" of an apparatus manufacturer of a minimum size of around 50 professional workmen in the starting phase.

1. Location determination

In this respect, the following points will have to be checked:

Procurement of the rawmaterials under particular consideration of the transportation conditions choice of workmen supply of electric power and climatic conditions

2. General organization

It is the aim of the plant planning to get the optimum arrangement of workshops and equipments enabling the most economical manufacturing and, simultaneously, a safe and satisfactory working for the workmen. That means an arrangement making possible to produce at a price teing low enough to make it competitive and to sell it with profit on the market by means of a suitable, productive co-operation of workmen, materials, machines, and appertaining working material.

This is the summary for what the plant has to take care:

a) to co-ordinate all facts which can have influence on them

- b) shortest distance at material transporation
- c) a smooth working process in the plant
- d) the optimal utilization of every room
- e) satisfaction and safety for the workmen
- f) an adaptable arrangement which can easily be changed

In the following the characteristics of a plant for chemical apparatus plants will be shown. Basing on a minimum size of around 50 workmen (specialist and additional helpers) and the administration required for this, the layout will be worked out in a rough analysis under special consideration of an expansion at a later date.

2.1. Classification of the products

The building of chemical plants will, first of all, be demonstrated by means of the working-up processes and sequence of workingup. It includes in the essential points the following processes, as demonstrated in the enclosure:

Order administration (table 1)

It consists of sale, purchase, finance and works bookkeeping, and stock administration

Design

For the planning and technical processes (material procurement;

making of workshop drawings etc.) a construction office will be required. The staff and technical eugipments have to comply with the demands resulting from the fabrication program. The technical equipments should include at least drawing instruments and working instruments as well as accessories and a copying apparatus. In addition to this, documentation (codes, standards, tables, and material sheets etc.) must be available. The leader of the technical office has to comply with specially high demands. He should, at least, be professional school engineer with profound practical and theoretical knowledges. An activity of several years in the chemical industry as work's engineer and in the construction of chemical apparatus will be required. Occupation in an engineer office would be desirable. Good knowledge in calculation of stability, mechanics, material knowledge, welding technique calculation must be required. Knowledge and practical experiences with machines, being mainly in use in chemical plants, such as pumps, drives, controller and measuring instruments, is necessary. Qualification and training of constructors and technical draftsmen have to be of European standard.

1

2.2. Operational working-up of orders

for finding-out and providing of suitable dates for production in proved manner production divisions. For the first step, equipment as per table 2 is supposed.

Quality control and inspection:

An expert engineer must be head of the quality control. There have to be available appropriate test equipments, in order to be able to make a qualitive distinction as to alloy groups (with No-content and without Mollytdenum). Appropriate testing processes are the spectroscopic analysis and chemical testing processes (spot test). Control of the semi-finished products must be done when receiving the material. It is recommended to have trained the control personnel by experts of the supplying company for test equipments.

Control of the finished parts

In case of pressure vessels the testing extent is fixed in the inspection instructions. As far as vessels and apparatus, presureless operated, are concerned being not subject to inspection, it is recommendable to test at least for leaks and to X-ray at ranoom in the company. There is also recommended the surface crack test by the dye penetrant test for welding joints. The control is to be <u>unindependent</u> from the production workshop. Recommendable control equipments for non-destructive examinations of welding seams:

One tank X-raping apparatus 300 KV, 3 mA. This apparatus can be used both stationarily and in workshops, as well as on jobsite.

Administration and management

In addition to the divisions being necessary for production and execution of an order, there must be taken into consideration administration and management.

Administration: for supply and administration of the company Management: for maintenance of the company

2.3. Nanufacturing principle

Out of the 3 kinds of working-up (local-bound working-up),

working-up as per performance principle, and flow-principle, the two first processes in combined form will come in question, that means local-bound manufacturing when mounting, but the mechanical working-up as per performance principle. For the choice of the appropriate amterial flow-schemes, and the association with each other, an exact analysis of the products to be made is required before. It can be said that the mounting and the welding shop can be located in one hall, and due to a later production expansion the following dimensions should be kept.

Mounting and welding: width 12 m, height of crane 6 m Mechanical working-up and preparation : width 10 m, height of crane 5 m

The association depends upon the product and the planned expansion. Hall lengths of 80 m resp. 60 m as guiding value are sufficient for the mounting. Defending upon the climate, the building also can be made in light patterns with corresponding foundation plates for placing the machines.

There separately must be checked the transportation and the means of transport to be place at disposal. At the beginning, a mobile crane with around 4 tons of lifting power and corresponding transportation facilitites by hand are sufficient. For the hall's craning should be planned not less than 20 tons in the mounting, and in the suppliers' works chiplers shaping 10 tons and cutting shaping 15 tons, particularly because an expansion at a later date would be difficult.

2.4. Organization plan

Same shows the individual spheres and the staff in the summary (table 2).

As a minimum size can be taken for the building of apparatus (in case of an industrial production):

Beginning phase: 50 - 60 workers (directly employed with the production)

30 employees (indirectly employed with the production)

this corresponds to an approxiate proportion:

Employees : workmen = 1 : 2

The possible turn-over volume would have to reach around 5 Mio. DM/year, in the peak up to 7 Mio. DM/year.

Developing phase: These can be made continuously and discontinuously Particular consideration deserves the question as to a training workshop for trainees of the jobs such as welder, mechanic, turner resp. machine operator in order to cover that way the personell demand by themselves.

3. Planning of the fabrication plant

Due to the shortness of the explanations, just a summary can be given. Before starting up, an exact analysis and planning has to be made. The individual tasks are:

- a) Planning of the total project (rough analysis), basing on the ... ideal solution
- b) determination of the place
- c) operation planning in details (fine analysis) under consideration of the particulars of the products to be made

7

d) erection of the building and placing of the machines

For the planning, leading questions can help. They can be divided into the following groups:

3.1. Materials

There has to be taken into consideration the rawmaterial, the incoming material, material in the fabrication, finished products, auxiliaries, and working materials, damaged goods, repairs and refinishing work, re-use of waste, scrap iron, shavings, packing material and the material for the maintenance and other auxiliary sections. From this, considerations do result having influence on the material choice, dimensions, construction, variety. Taking into consideration the high and versatile requirements the company has to be faced with as to the welding technical working up of high-quality materials (non-ferrous metals, clad steels, high-corrosion resistant materials) it seams to be recommendable to take up in the product program, at least in the starting phase, concerning developing countries, such construction being manufactured of materials which can good be welded, and are only subject to slight resp. medium stress.

There are given recommendations of materials for construction steels, boiler plates and fine grain steels in table 3 up to 5. Suggestions for acid-proof austenitic steels are included in table 6. An essential point of view for the material choice is the heat treatment. Annealing equipments are expensive investments, there must be also be secured an economical supply of power. Since these conditions will not be sufficiently fulfilled in developing countries, those steels should be taken into consideration with priority when choosing the material which, normally, do not require a heat-treatment after the welding process. As per German prescriptions, this is valid for all steels of table 3 - 5 with exception of boiler plate type I and type II with ASTM-analysis as well as fine grain construction steel type II with ASTM analysis. But for the heat treatment after welding the instructions of the individual producers and/or the local boiler inspection association will be decisive. Due to safety and smooth production process such steels are to be recommended which, based on their alloy composition, do guarantee before all as to the carbon steel content a sufficient viscosity in the welding joint even at unfavourable manufacturing and working-up conditions.

Hints and recommendations for the welding process and filler material as to the materials given under table 3 to 6 shows table 7.

3.2. Working materials

There has to be taken into consideration the necessary equipment as to:

Production machines, special accessories, tools, devices, measuring and testing materials, handtools, and tools operated by hand or by power, control points or testing stations, machines for maintenance of operation, tools and other auxiliary sections.

Kind, size, number of machines, co-ordination of capacity, main points and special requirements of the production (connection, piping, and canalization etc.) can be of influence on the planning of a factory.

3.3. Workmen

There has to be considered the number of workmen, foremen, chiefs, auxiliary helpers, transportation and storage workers, inspectors, works craftsmen, employees etc. There has to be enclosed in the planning: safety arrangments, working conditions, number of staff, Capacity and wages.

For a qualitative work, skilled welders are indispensable. Sufficient specialized knowledges and manual skill can be acquired generally at eductional institutes for welding techniques. As far as these eductional institutes are not available, training of the welding staff could be done in the own factory by the supervising welding engineer of by welding experts. The supervising personnel should have a careful practical and theoretical skill at an eductional institute for welding techniques. There, furtherbe acquired in welding shops of industrial countries. Unindependently from the welding and process tests being fixed in the inspection precerifiers, the manual skill of the welders should be currently supervised. This can be carried out without great expenditure by means of welding samples, the workshop bending samples are taken from and can be checked on simple devices. It is recommended to currently dupervise welders following DIN 8560.

3.4. Transportations

There have to be considered the kinds of conveyance (cranes, transportation means within the workshops, road vehicles), containers for conveying or temporary storage. There has to be talen into account process flow, material movement, the transprotation processes and the available room.

3.5. Waiting and storage times

There has to be taken into consideration for the storage or temporary storage: Where will be received and stored incoming? Where are located the production and intermediate storages? Where can material be stored between the working process? Where are stored products, auxiliaries, waste, etc.? That means: Determination of the storage places, size of storage and storage

3.6. Social equipments, auxiliary and additional equipments such as planning of ways, toilets and wash-rooms, dining and sitting room, equipment for First Aio, telephone connections, doorman, personnel office, wages office, illumination, procurement of power, etc. In addition to this, there will have to be planned place for quality centrol, manufacturing supervision, repair and waste equipment for power procurement.

3.74 Buildings

1

Consideration of walls, ceilings, floors, existence of siding, streets, channels etc. Consideration of building with view to capacity expansion at a later date.

										*						
grade	Designation acc to	mechar ac	rcal pro	perties	mechan acc	ical prop to DIN	serties 17100	recommended limit of wall		5	emical	comp	bsition	3 ×		
steel	ASTM and Div 17100	е В А	ه ج اسس ⁵ اسسط	د م. *	¢ Β ¢ β	6 0,2 1mm ² mind	°,5 ,,, mind.	thickness mm	U	is	¥	d Xoff	S	2	others	ajcu
7,000	25-1022 N.ST 21.5	38, 7 215, 7 45, 7		28	i	I	4	25	0.20	0,15 brs 0,30	60,80	070'0	1050	,	≤ qZSCu	,
1 206	b S+ 3 ⁻ - 2	I.	I	1	37 bis 25	24°C	25 1)	25	61,0	I	1	0,055 (2,055 (3,0 08	1	prece-analysis
Tune T	High strength Low olloy structural steel	5 27 1 21	32,3	I	1	I	I	20	<u></u> \$ 0,22	1	: 1,25	1	2,050	I	I	
	5+52-3	I	I	1	52 brs 62	36,0	22 y	20	0,22	1	1	0,050	2,050 (<i>010</i> (1	piece-analysis
	note 1) S 10	10mm s	amples	n kong	ritudina	sense	5)	tor 5>%*\$1}2	•_							
CARL DU	CANZLER IREN				Ğ	meral :	Structui	al Steels	-							70017

Table 3

Duren

danceto accto $ASTM$ $danceto$ accto $ASTM$ $danceto$ accto $ASTM$ $danceto$ accto $ASTM$ $danceto$ $accto ASTM danceto accto ASTM danceto accto ASTM dand de de de dand de de de de de dand de de de de de de de dand de $	accto DIN 171 decto DIN 171	155 155 05	ו ברחוווווובוובנים										
IM and Φ_B Φ_S δ_Z DIN kg/mm^2_{Din} min min qq 238.7 $21,12$ 29 qq $25,72$ $21,122$ 29 TM 220165 $25,72$ $21,122$ 29 TM 220165 $25,72$ $21,122$ 29 TM 220165 $25,72$ 226 26 TM 220165 $22,52$ 26 26 TM 220165 $22,52$ 26 26 TM 220165 $22,52$ 26 26 TM 22026 $22,52$ 26 26 TM $222,52$ $26,72$ 22 26 TM $232,52$ $26,72$ 22 26 TM $232,52$ $26,72$ 22 22 TM $232,52$ $26,72$ 22 22 TM $232,52$ $26,72$ 22 22 TM $232,52$ $26,772$	& B & 0.2 kg/mm ² 35	ر 5	limit of wall		ç	emical	com	ositic	× \$				
DIN kg/mm ² min hin hin kg/mm ² 21,1 29 bq 51M A201-65 25,7 21,1 29 tT v 17155	kg/mm ²)	thickness	ر			-	 (-	-	:	
bq 38,7 21,1 29 br br br 21,1 29 br br 57,7 21,1 29 vi 17155 - - - vi 17155 - - - vi 42,2 50,6 22,5 26 vi 17155 - - - vi 17155 - - - vi 29,2 26,7 22 bq 29,2 26,7 22 bq 29,2 26,7 22 bis 26,7 22 26	35	% min	ш Ш	 د	ñ	un	r n	ر سويد	ა	ž	Ŷ	others	
-1 V 17155 fbq bis 22,5 26 51M A201-65 50,6 22,5 26 1 I N 17155 N 17155 50,6 25,7 22 1M A212-65 50,6 25,7 22	35	1	25	≨ 0,20	0,15 bus 0,30	£0,80	0,035	0'070	I	1	I	ł	
#bq 22.2 22.5 26 STM A201-65 50,6 20.5 26 H II - - - N 17 155 - - - IN 17 155 - - IN 17 155 - - IN 17 155 - - IN 29.2 26.7 22 IM 20.2 26.7 22	bis 22,0 45 22,0	<u>1000</u> ح	25	≨ 0'16	<i>50,35</i>	07'03	0.050	0,050	1	l	I	max Q.30 Cr	L
HI W 17155 Mag 29,2 STM A212-65 50 8	1	1	25	≨0,24	0, 15 215 0,30	£0'80 (,035	070'0	1		1	I	L
11 bg 29,2 26,7 22	21 bis 25,0 50 1)	1000 6 B	25	£0,20	±0,35	20,50	0.050	<i>ס:050</i>	1	I	1	max 0,30Cr	
		1	20	£0,31	0, 15 bis 0, 30	06'0 ₹	0,035	0,040	1	I	I	I	L
7 Mn 4	47 bis 28,0 56 µ	<u>ن م م م</u>	20	0,1 L bis 0,20	0,20 bis 0,40	0,90 bis 1,20	0,050	0,050	1	I	1	тах 0,30 Сг	
5 Mo 3 IN 17 155	 4.4 bss 27,0 μ 	6 <u>8</u> 6	20	0,12 bis 0 ,20	0, 15 bis 0, 35	0,50 bis 0,70	070'0	0,040	1	l.	0,25 bis 0,35	I	

note: 1) for S>163 40mm

70018 NON-Alloyed and Low Alloyed bailer Rates CARL CANZLER DÜREN

Table 4

L

4

\$

•

grade of	Designation acc. to ASTM and	mechai acc. tr	nical pr o ASTM 6 s	operties	mechan مدد to Th ه م	vcal prop vssen Rt 6 n 2	erties heinrohr √ς	recommended limit of wall		τ	emica	l com	positi	2. 3	×		
stee/	Thyssen - Röhrenwerke	k9	l mm² min	*	kg/	mm ²		tickness mm	U	.is	W	d xom	S	ა	ż	¥	other
Tvoe T	Gr 55 acc to A 57M A 515 - 65	38.7 bis 25.7	21,1	29	I	1	I	25	£ 6,20	0,15 brs 0,30	0,85 bis 1,20	0, 035	0,020	1	1	1	I
	HSB10	1	I	I	40 bis 52	29 2)	:200 6 B	25	≨ 0,18	<u>≤</u> 050	0.60 bis 1,20	0.02	0.02	1	1	1	AI
Ĩvee II	Gr 65 acc. to ASTM A 515-65	45,7 bis 54,1	24,6	25	I	i.	I	20	≨ 0,26	0.15 bis 0,30	0,85 bis 1,20	0,035	070'0		1	1	
	HSB 45	I	1	١.	45 bis 57	32 2)	1200 6 B	20	≤ 0,18	≤0,50	0.70 bis 1,30	70'0	70'0	1	1		AI
	note: 1) prop	berties k	n norm	ally and	realed	conditic	s	2) for S\$ 35	Ē		1			-			
CARL DÜI	CANZLER REN			C-Pate:	s of Me	dium st	rength	and Fine Grains	ed Stre	uctura	/ Stee					2001	6

Tahle 5

.

1

	ł		1	I	1	1		1	1	r	125X%C	j 2 5X%C	l sense	70020
	£	1	1	1	1	2,0 bis 3,0	2,0 bis 2,5	2,0 bis 3,0	2,0 bis 2,5	1	-	2,0 bis 7 2,5	jitudina	.4
	ž	8,0 bis 12,0	9,0 bis 11,5	8,0 bis 12,0	10,0 bis 12,5	10'0 212 12,0	10.5 bis 13.5	10,0 215 12,0	11,0 bis 12,0	9.0 5:5 12,0	9,5 bis 11,5	10.5 bis 13.5	s in long	6
	১	18,0 brs 20,0	17,0 bis 20,0	18,0 bis 20,0	17,0 bis 20,0	15.0 bis 18,0	16,5 bis 18,5	16,0 bis 18,0	16,5 bis 18,5	0,7; bis 0,9,0	17,0 bis 19,0	16,5 bis 18,5	sample:	
tion %	S	0:030	I	0:030	• 1	0:00	I	οεο'ο	I	060'0	I	1	20mm,	
Isodwo	d E	0,025		0,025	1	0'0'2		0'0<5	I	0'0'	I		0 up to 2	
icol c	ž	<u>\$2,0</u>	2,0 max	£2,0	2,0 max	≤2,0	2,0 max	₹2,0	2.0 max	£2,0	2,0 max	2,0 max	ites > li	
chem	<i>.</i>	0'l \$	1,0 max	0'I 3	nax 1,0	0'15	01 10	0'1 3	1,0 max	O'I Š	10 1:0x	io ia	for pla	
	<u>ს</u>	80 [;] 05	≤ 0'07	≨ 0'03	<i>≤ 0'03</i>	<i>≤ 0'0</i> 8	≰ 0,07	£0'0∍	£0'03	€ 0'08	¢0',0	±0,0	val ves	steel
recommended limit of wall	thickness mm	Q	6	52	15	ę	9	15	£	51	£	Ł	sense 2) J5-	aust en itic
berlies	ه ج ۳.		50 N	ł	45 2)	I	45 10	I	40 2	I	35 1)	ж И	tudinal	proot
ical prot CC lo	10-Dehr grenze mm ²		23,0	1	22.0	l	25,0	I	24,0	Î	25,0	57,0	in longi	Acid-
mechan A	¢ B 67	1	50 bis 70	I	45 bis 70	-	50 bis 70	1	45 bis 70	I	50 bis 75	50 bis 75	samples	
perlies	دی. ۳	70	I	07	I	7 0	I	07	I	70	ļ		10mm,	
nical pr CC to	د S اسس ²	21,1	ł	17,6	I	21,1	1	17,6	1	21,1	I	I	> 5 up la	
mecho	б <i>и</i> 8 9	≧52,7	I	<u>≥</u> 49,2	I	≧52,7	1	≧ 49,2	l	≧ 52,7	1		plates.	
Des ignation ACC. lo	ASTM-A204-63	TP 304	X5CrN189 W-Nr14301	15 302L	X2Cr Ni 189 W-Nr 1 4306	1P 316	X2Cr M M01810 W Nr 1 4401	1916 J	<u>X2CMI M018 10</u> W-Nr 14204	TP 321	X10CrN. T. 189 W-Nr 1.4541	X10CrNiMoTiBD W-Nr 1.4571	1) ds-values for	anzler So
grade	of Steel		iypei		Пэдүі		Пэdí(lipell		I squ'i	lуреШ	nole	Carl C Düre

Tatle :

		Т	T	
	Materials (Compare with table1-4,	recommended limit of wall tickness mm	welding procedure	filler ınaterial
	General Structural Steels Type I	25		<u>for open</u> argon arc welding lime based
	Туре II	20	Open /	electrodes
	non alloyed and low alloyed boiler plates Type I Type II	25	argon arc welding by hand	or type Kb IX s 345 26 acc. to DIN 1913 correspondingto E 345 B 26 in accordene to ISO
Ţ	Туре Ш	20	and	and F 7018 acc to
	C-Thick Plates of Medium strength and Fine Grained structural steels Type I	25	by UP welding	AWS-ASTM <u>for UP- welding</u> wire S2 acc to DIN 8557 weldingpowder 487
	Туре II	20	1 1	acc.to DIN 8557
	Low alloyed boiler steel TypeTV	20	Open argon arc welding by hand	lime based electrodes of Type Kb XI S 535 26 acc to DIN 1913 corresponding to E 535B26 acc to ISO and E 7015-A1 E 7016-A1 and AWS-ASTM
	Acid. proot. austenitic steels TypeI TypeII	6	Open argon arc welding by hand	with supp material acc. to
	Туре II Туре IV Туре I Туре II	15	and by iniertgas – WIG-welding (for S≦ 6mm)	Vornorm DIN 8556 and acc.to ASTM-A298 ASTM-A371
	ARL CANZLER DÜREN	Velding procedure and	d filler material	70021
				I

Table 7

•

.

8

