TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

DC0 888

Distr.

LIMTED
11)/W:
) F口bratry 1 ,
OHI:IMAL: bNALIDI

Expert Group Meeting on Guality
Control in the Textile Industry
bv
A. Barella

Director of the Institute for Textiles and Seather, Barcelona, Spain

1/ The views and opinions expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing.

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master ficlet.

Summary

D. Introduction.

1. Statistical parameters.
1.1 Definitions.
1.2 Measures of position.
1.2.1 Arithmetic mean.
1.2.2 Median.
1.3 Measures of scatter.
1.3.1 Range.
1.3.2 Standard deviation.
1.3.3 Coefficient of variation.
1.3.4 Percentage Mean Range.
2. Distributions.
2.1 The normal distribution.
2.2 Non-Gausian distributions.
2.2.1 The binomial distribution.
2.2.2 The poisson distribution.
3. Sampling distributions.
3.1 Distributions of samples.
3.2 Standard error.
4. Statistical methodologi.
4.1 Probability levels.
4.2 The null hypotinesis. Statistical teats.
4.3 The risk.
5. Main statistical tests and their applications.
5.1 Comparison of means.
5.2 Comparison of variabilities.
5.3 Confidence intervals.
5.4 Sample size.
6. Variance analysis.
7. Quality control.
7.1 Shewart's control charts.
7.2 Simplification of control charts.
7.3 Control charts without calculations.
7.4 Cumulative sum charts.
7.5 Trend clarts.
8. Aceptance control.
9. 1 Specifirations and tolerances.
B. 2 Sampling plans.
10. 3 Operating Characteristic curve.
8.4 Quality correction curve.
8.5 Quality curve fur the controlled lots.
8.6 Single, double, multiple and sequantial sampling plens.
8.7 Sampling tables.

Appendixes

fopendix 1. Variance analysis through the range.
Appendix II Practical rules for the calculation of limits in the ontrol charts.
Appendix IlI Calculation of limits in the simplified charts. Appendix IV Calculation of limits in the cumulative sum charts. Appendix V Trend charts.
Appendix $V I$ Application of a multipl, sampiing plan to textile control.

Introduction

Quality control in industry leade to tables and numeri cal data whose figures are not identical but normally present va riations independent of any disadjustment of production mechanism. The unavoidable variability of processing car be atributed to mul tiple factors which should be considered to be of a random nature except when valiations can be discribed to one or more systimatic causes.

The charateristics of a product are dependent on a great deal of facturs: machinery (tipe, speed, condition) raw mateidal, manpower, general conlitions of work, etc. In spite of care to keep these factors uniform, this is only achaved in an imperfect menner. Thie results in the characteristic of the product presenting deviations with resoect to desired mean values.

A process is under "contrul" when those devations, which are random if the ir nature, fall between get limits and, within this interval, they distribute following a given law. Generally the noimal or Gauss's baw accounts for these accivental variations between products produced under ident:al conditions. According to the degrev of development of a technique, the relative distribution curve of a character can be more or less wire. whin baussian, it is defined by the mean (ental value) amu the amplitude (ot range) or the statdard deviation (variability index).

In this way al industivalist can quantee, with a certain degree of certainty, fixed from the properties of statistical laws, that the products from a controllad prucess lie between yiven limits. Alterfativelv, the buyer canot test each of the items he gets. His problem is to find the munbe: of indiv deals to be tested in each lot and how to choose trem so that he is almosecertain not to be sent any lot devidtimy from set colerances or alteradivaly not deviating in a proportion greater than the determined one. Inversely, knowing these reception conditions, the seller can asses the risk of refusal for a certain proportion of the lots he is of fering. The sellet's risk in at a minimum when the mertiandse is perfectly controlled duting patocsitig. It is therefore ensential, that the control be cortied out in a continuous adnoer, 20 that any deviation from either samards or slecifications cal be coirec ted rapidly.

The main objoctive of statistical contiol of prucessing 28, on the one hand, to find to what extent vatiation calt bo expec ted to be normal and to what point 14 can be considered that varia tion is not consistent witn tandom cmsen but, on the contrary, trey show the presence of systematic cases, i.e., the presunce of something being wrong with processing. On the othet nend, statistical control is intended tonsure tine agreematit of recu:ded data with "epriori" spectifications. In the first instance the cuntrol will be acting upon the correct settirg of the oroduction mechanism; In the secund the agrebent between recurded data and suecifications is examined.

The production cuntrol thas two distinct objectives: to secure studinese of produotion in the course of time and to limit the proportion of waste from pecification deviations. Control is
cerried out on samples from the process flow. The distribution of values of a characteristic studied through a sample of several individuals, will give, for each sample, a statistical image of the distribution, whose stability is required to be kept under control. This picture contains the whole information contributed by the sample on this distribution.

However, it is practically impossible to record the whole of the images that can be obtained in this way to check upon the steadiness of the distribution and, for this reason, the study of the distribution curves of the sample character is replaced by the study of some of its typical measures, whic! can be considered as sufficiently representative and easy to calcu late. These typical measures are those describing the central value and the scatter. The former is specific to "terthical quality" of prouuct and the latter to its "statistical quality".

This roport will cover the principles of statistics needed in Quality Cuntrol, the techniques of this being outlined. It should be pointed out from the very beginning that quality Control is not limited by a series of rules based upon Statistical methods, through the application of which problems can be mo re or less automatically solved. At present, quality control tech niques involve not only factors of a mathematical statistics type, but also technological, psychological which concern both cost and organisation; in such a way that the former are practically relegated to the role of a simple tool, certainly a valuable one, to develop certain phases of the whole, whose application, if not accompanied by an adecuate policy is insufficient by it self to get the optimum results that a modern entreprise should aim at.

1. Statistical parameters

1.1 The paraneters depicting the statistical distribution of a pre perty can u divided intu two kinds: parameters of locitior or position and parameters of scatter. The former tell us the place the distribution occupies in a numerica, field, and the latter are a pointer to greater or sinaller amplitude of the distribution.

In Quality Control, all of the location and scatter pa rametirs are not used, but only some of them.

1.2 Measures of location

The main measures of location or averages are the following:

1.2.1 Ihe arithmetic_mean

This is the position parameter more widely used and it is the quotient from dividing the sum of the individual values by the nuaber of them. Lat x be the variable and n the number of values:

table, the central values of each class interval must by multi plied by the number of times the class is present. Let $\times_{1} \times_{2} \bar{x}_{3}$, the central values of the class intervals and fiff f_{3} the fre cuencies,

1.2.2 median

This is the value of the variable defined by the concition that here should exist an equal number of observations above and below the median. Therufure, it is the value equidistant to the extreme values which have been found or central value of the variable.

When the varable is a continuous one, it divides the variation field into two equal parts.

1.3 Measures of scatter

A stat stical set, or sample, is not entirely defined By its mean value, it is only defined when in addition to t'a mean (parameter of location) the standard deviation is taren into account (scatter parameter). That is to sar, to obtain a omplete information from a sample it is necessary i, hou its va: rabiltay. The main scat measures are:

1.3.1 Ine rance

 the difterence between ihe extren - values ot ine variable in tine sample.

The rarigt is given i the same units as the mean.
1.3.2 The standard_deviatior -

The squase lation of a value from an of in is the square root of the sum of the squares of the dift:s: ces between that value and the origin divided by the number of values. Let A be the arbitrary origin,

$$
s=\frac{1}{n}\left\{(x - A) ^ { 2 } \text { i.B. } s \sqrt { \frac { 1 } { n } } \left\{(x-A)^{2}\right.\right.
$$

When the arbitrary origin is the arithmetic mean, the square deviation is referred lo as the standard deviation. It is represented by σ :

expressed in the same units as the mean.
The square of the standard deviation is the variance:

$$
\sigma^{2}=v=\frac{1}{n} \sum(x-\bar{x})^{2}
$$

When the number of individual in the sample is small $(n<100)$ the sum of the squares is divided by $n-1$ inatead of n.

1.3.3 The coefficient of variation

It is sometines convenient to give the standerd devis tion as a percentage of the mean. This is the coefficient of ver riation:

$$
C V=\frac{\sigma \cdot 100}{\bar{x}}
$$

The coefficient of variation is a dimensionless quantity; it is an absolute measure of scatter affording comparisons to be made between different populutions.

1.3.4 The fercentage_men Range

The application of the Statistical techniques of Quality Control has brought about new parameters. A particularly useful one (mainly in spinning control) is the percentage mean Range or P.m.R.. It is easy to grasp even by the non-iritiated in statistical techniques and it is easy to apply.

For large samples, made of smaller sub-samples, when the range R of the latter is known, the mean range can be calculated. This parameter is related to the standard deviatio: of the population through the following equation:

$$
\overline{\bar{A}}=\sigma^{\prime} d_{2}
$$

where d_{2} is a constant dependent on the size n of the sub-sample The PMR is defined by:

$$
\text { PMR }=\frac{\bar{R} \times 100}{\overline{\bar{x}}}
$$

where $\overline{\bar{x}}$ is the grand mean (the mean of the means of each sub-sample). Then the coefficient of variation is related to PMR by 2

$$
C V=\frac{1}{d_{2}}(P M R)
$$

2. Distributions

2.1 The Normal Distribution

When a quantity is under the influence of anmer of causes of variation and these are small and independent fom asch other, it can be shown that the individual values or meas rements follow Gauss's law. This property grants the Nulmas law a general character.

The main characteristic of thes iaw 1 wet known when the variable is a cuntimuous oni. Ine results ciostef aumut the mean and ar: symmetrically distributod with a requetcy which tails of on voths sides of the mean as values qut fattot and at ther from the center (fig. 1).

The Noimal Distiluution has played a fromituent rale or a long time because of its su. essfin aprifiction to te tindy of errors of ubservation and because uf the singlicity of the arlithmetic involved and the definite character of fre faraters on which it is de endent, viz. the mean and lie standad hevolion.
 tributions tu be found in llifustriat practict ar, iotat. i meat Normal. Foi a distribution to be Normal it is suf in int: il Inat the variable be under the effect of differeat sumias of valiation which are independent; (2) That the effect f eacy ausa be independent from the others; (3) That the effec: or vach can be suall in relation to the sum of line effects. inest cond.tion or lead to normal distributions.

The auove conditions art dip:oximitiy fullilifi in practice. When the mechanism of the observed phenomene is consistent with such conditions, the values of any hara ter at apoplation may be dastributed according to tre Normal law unly if: (a)
 the random mechanism comint into play, directly afocts such a quantity, (c) if the numorical data rollectod d ue consiteled as true measurements of the studited quality.

The hypothesis of nominality cannot be accepted but aftef the apropriate statistical testa nave uiten cillite out.
mality the aplicatior of statistical technique based upon norconclusions.

The normal curve, however, cafi fit many ur amodal distim butions quite well, affording treatement in al apoiox, mate mannet of many distributions of this type whict uthtelse miut be difficult to handle.

Normal theory has aiso been applied tu non-notinal fitting. Finally, non-normal distiloutions far som, be be fade ln to curve approximately normal througli e chanye in the valable.

In the normal curve the arlithmetic moen, the medien and the mode, or more frequent value of the varaule coincide. It ie

Pully described when the mean and standard deviation are known.
If values of one, two and thret standard deviations are taken on both sides of the mean, on the normal curve, the proportion of ooservations within the intervals thus limited is as followe:

$$
\begin{aligned}
\text { Interval } \bar{x} & \pm \sigma=68 \% \\
\bar{x} & \pm 2 \sigma=95 \% \\
\bar{x} & \pm 3 n=99,8 \%
\end{aligned}
$$

In other words, if a sample is taken at random from population following Gauss's law, there is a probability of 2
0.68 (68%) that is will not fail outside the limits mean ± 1 S.D. 0.95 (95\%) thet 15 will not fall outside the limits mean ± 2 S.D. 0.99899 .8) that it will nut fall outside the limits mean ± 3 S.0.

Thus, an interval of ± 3 S.D. practically covers the whole distribution.

2.2 Mon-Gusition distributions

2.2.1 Ing ginomigiodstrautinn

As known, tho probability of an event being a succea is equal to the tatio of to the number of times that success is possible to cotal number of outcomes, if the latter are equally probable. If f is the prubability of success and g is the probes bility of salure, then $p, q: 1$.

Let N the lutal number of outcomes of en event, the arithmetar mean of the prupaplity distituutiong is $=$ No. The standard deviat on is s Npq. Inis distribution is referred athe binomial astribution.

2.2.2 Ing Passion giettibution.

1. the lieit of the binomisl distribution when sne of
the prababilities becomes infinitely small an: N is sufficiently large for $p . q$ to be finite. This is the "rare event" distribution and applies to a number of cases in the textile industry. Among the se:
2. Number of yarn breaks.
3. Number of neps un a given surface of the card web, or siliver length.
4. Number of fitures in the cross-section of a sliver or yarn.
5. Number of machine breakdowns.

The stardard deviation of Poisson's distribution is:

$$
s=\sqrt{m}
$$

where II is the mean.
This distribution is highly assymt tical and it becomes more symmetrical as \underline{m} increases. Its limit is the normal distribution.
2.2.3 The property of the majority of values lying uithin the inter val mean ± 3 S.D. still holds for a great deal of non-gaussian distributions, including the uinomial and posisson's. Therefore the consideration of this interval will also be useful here for the same sort of applications shoun for Gauss's law.

3 Sampling distributions. Standarderror

If a number of samples are taken from the population nd we calculate a parameter such as the mean or thu standard de viation of each sample, different values will be found. If the number of samples is large, these values cen be grouped into a fiequency dist: ibution which will get closer and closer to an ideal continuous curve as the numuer of samples incteases. This is a "sampling distitibution".

The sampling distributions of the mean and stardard deviation are Gaussian, but distributions of rance and coefficient of variation are assymetrical. However, in practice trit whol dis tribution still lies within the limits mean ± 3.O. very approximately.
3.2

The "standarderior" is the standard deviation of the sampling distribution. Generally, we can take the interval ± 3 S.t. to find the limits out of which it 15 not probable that any sample value would lie. It can be used to measure the accuracy of an es t imate, or to assess the degree of disagreement detween ubserved and expected values.

The standall error is expressed in the same units as the variable which is being measu: 0 .

We shall now show what the standard errors of the main perameters of location and satter are.

Standard erior of the mean

The standurderror of the mean is: $=\frac{\sigma}{\sqrt{n}}$

This formula is very important in statistics and 1 .
is independert from the shape of the frecuency distriuntion and, therefore, has a queral awnilication.

$$
\begin{aligned}
& \text { Stondard error of scattes measures } \\
& \text { The standard titur ut ft sdald deviation is: so }=\frac{\sigma}{\sqrt{2 n}} \\
& \text { The standarderror of the afficiont ot variation is: } \\
& s_{v} \frac{c v}{c u} \sqrt{+\frac{2 c v^{2}}{i v 4}}
\end{aligned}
$$

4.1

The stitistiria strive to qut eufclus ons out of a limited

 andyys.

mental characters from the population, or between several experimental characteristics, can be attributed to sample variation. If the answer frow the test to the null hypothesis is contradictary within the given urubability level, it illl be concluded that the d fferences are "significant".

When a "test" foes not refute the "null hypothesis" the re 1 , no reason to asume that there is a disturuing factot. However, although the stat cical "tests" can plove, within a degree of prohability perfectly stablished, that a sample is heterogeneous or that systanatic variation has takun place during its for mation, they are unable to show that the contrary hypothesis is true: they only shou that the hypothesis is not contrary to facts,

If other watds, the "tests" cal edther prove or dispro ve the existence of non-random a source of variation, but they can never pruve its nonexistence. In a set of experiments or observations, a neyative answer with respect to the null hypothesis, found trum test, is valid whatever th number of contrary answers already recurded. However, if the number of the latter is high, tbe improbable vent (refutzig the hypothesis when this is exact), can be found to be realised.
inis obseivation 2 , used to interpret the same series of ouservations oy different tests. From the nature of the formu lated hypothesis, the "tests" cannot contradict themselves and any shyificant effect sliown by one of them is an actual proof, although the others should eveal unable to do so. it is obvious that the more the number of observations, the better armed the lavesta, ator to refute the null hypothesis, that is to say, to show the effect of the systematic, though little onspicuous sour ces of valation. Ihat is to say, the larges the amount of information. the hatyet the tield of the hypothesis that one is able to refute and the mote limited the field of the acceptable hypothesis and there is a righer probability of finding the true natuie of the phenomina.

On the other nund, the "tests" can de more or liss adap ted to hyputhesis atd their power is variable.

The special noture of the statistical tests leads to the ldee if "risk". If it is assumed that a given "test" has made us refute the null hypothesis when the hypothesis it true, that is to say, has malead us into the conclusion f an actual differ rence when it dues not exist, the "test" has made us run on a flist kind tisk. lits sisk can be rapesented by a probioility, wifich valies, inverselv to probability level and to sample size. If it is desired to limit the tisk to a set protability level, the statistical tatles qive the value to jo taken as a function of the number of samples.

A test whach tends to vecrase the value of the first h. Ind risk as much as possible is an assymetrical test. The conditions to which the application of such a test leac, are subject to secund kind error, which consists in not disproving the null Hypothesis when it is actually false, that is to say, to reach the conclusion that the value of the perameter which characterises the population 15 equal to that of the ample, when there is
a difference between them.

5. The main comparative tests and their applications

5.1 Comparison of inezons

The "t", or Student's, test is used here, which is particularly useful fur small samples. When an experimental mean x is compared with a theoretical mean m,

$$
t=\frac{|\bar{z}-m|}{\sigma} \sqrt{v+1}
$$

where \underline{V} is the number of degrees of freedom, equivalent to $n=1$ ($n=$ sample size).

When two experimental means \bar{x}_{1} and \bar{x}_{2} found from sam ples of size n_{1} and n_{2} and standard deviations $\sigma 1$ and $\sigma 2$ res pectively, are to be compared first the pooled standard deviation must be calculated:

$$
\sigma=\sqrt{\frac{\sum\left(x_{1}-\bar{x}_{1}\right)^{2}+\sum\left(x_{2}-\bar{x}_{2}\right)^{2}}{n_{1}+n_{2}-2}}
$$

and then

$$
t=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

The "t" Tables afford calculation of the probability that an experiment ${ }_{i 1}$ value of \underline{t} be equalled or exceeded in connection with the ranoom sample variation. Normally the 5 per cent and 1 per cent significance levels are used.

5.2 romparison of variabilities

Snedecor's f test is used, which afforde a comparison between variances:

$$
F=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}
$$

The aignificance of f is tabulated as a function of the degrees of freedom $V_{1}=n-1$ and $V_{2}=n-1$ (n_{1} and n_{2} are the sample size of samples of standard deviations σ_{1} and σ_{2} res
pectively). In the calculation of F the larger variance must alway be in the numerator. This criterion can also be applied to compare the variance with a specified value.

5.3 Confidence intervals

The formula for Student's t can be rearranged so thats

$$
|\bar{x}-m|=\frac{t^{t} \sigma}{\sqrt{v+1}}
$$

and

$$
m=\bar{x} \pm t \frac{\sigma}{\sqrt{v+1}}
$$

i.e., when the mean and standard deviation of a sample of a given size are known, the intervals within which the mean will lie at certain probability levels, can be found.

The principle can be applied to difference between means of two samples:

$$
\left|x_{1}-x_{2}\right| \pm t \sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

In any case t is the value from the Tables for the co rresponding degrees of freedom and the desired significance level.

For samples where $n>30$ the t values for significance levels of 1 per cent and 5 per cent are 1,96 and 2,58 respective $1 y$.

Sample size
We may wish to estimate the sample size n with an error for the estinate of the mean not greater than a certain value E per cent. The following expression is used:

$$
n=\frac{t^{2} c v^{2}}{E^{2}}
$$

where CVis the coefficient of variation.
If the parameter we may wish to calculate with a given error is a measure of scatter, the sample size is,

$$
n=\frac{t^{2} C v^{2}}{2 E 2}
$$

In these formulae, t is $1,90,2,58$ depunding on whether the probability level is 5 per cut or 1 per cent.

Generally the sample siat fur a coret estanate the mean is $n=30$.

and 40 .
6. The analysis of var ance

Fir: methots of variance analysis due to fisher, afford analyzing the var,abilit: of a product when tils is not attribu-
 be ascribu, at least in bart, t the intervention a small number of cases act producim, ar ar :eciabse efter.

These methats requate th ouserve: hatato at a roped
 by the systenatic deturntion of one of seveta lactors, of which the inf wemat on the vability, tata ts to be found.
 proolens:
(a) Finding ut.ty: a i, oup of samples i nome meuns.
 the part de to bance shat the one whth car be attributed

 different facturs unde: cuntrol and of luturac: ons amon, those facturs. It has a large firl of phlication, sine li tends to reach the oujec:ive of a invest. ation, such as fle itentification of lie causes unuse flect ly uin. stadita.
6.2 In quality 2 otiol it is quite often useful to fisiriamate the variat.lil, fium diftient somicts. Shothet methous based upon the rante call be advatayeously used ifstoad of the tadg tional more curbersome fisher's t, chique.

It will be reca. ita the trat in diny pracess aplying several nacmate, at woit the tutal validice mid its components "between" and "within" must be comsidered. Inese are related by the following expressions

$$
V \infty=V_{D}+V_{w}
$$

where,

$$
\begin{aligned}
V_{0}= & \text { Total varlance } \\
V_{\mathrm{b}}= & \text { Variance between machines } \\
V_{w}= & \text { Variance within the machine } \\
& \text { It can also bewrittent } \\
& \sigma_{0}^{2}-\sigma_{0}^{2} \cdot v^{2}
\end{aligned}
$$

or, through coefficient of variation:

$$
C v^{2}=C v_{b}^{2}+C v_{v}^{2}
$$

The calculation of total and uithin-maching vatiation cen be calculaten intuugh the ineen rage in a teo fold wey:

1. Besed ufon the telationship:

$$
\sigma=\frac{\bar{R}}{d_{2}} \quad \text { of } \quad \sigma^{2}=-\frac{\bar{R}^{2}}{d_{2}^{2}}
$$

2. According to relationships:

$$
\bar{R}^{2}=\frac{\left\langle R^{2}\right.}{k} \quad \text { and } \quad \sigma^{2}=\frac{\bar{R}^{2}}{0_{2}}
$$

wherak is the number of groups of size n. 0_{2} end d_{2} are dependent on sample size according to lablet

n	D_{2}	d_{2}
n	-	-
3	2,000	1,128
4	3,656	1,693
5	5,014	2,059
6	6,157	2,326
7	8,145	2,534
8	8,784	2,704
9	9,477	2,847
10	10,109	2,970
		3,078

The "between" variance can be found by subatrecting the "mithin" variance from total variance. An exemple will be found in Appendix 1

7. Requlation contiol

7.1 Shouhart' con: rol charte

The technique intraduced by Shewhart in 1931 takes in to account the mean and either the standard devietion or the ranga as the only parametere, and it is choracterized by an ingenous wey of recording statistical date, es they come out es a

Punction of timu. It is based on the ± 20 and $\pm 3 \sigma$ intervale on both sides of the mean in the normal distribution.

When the lnvestrgated chalacter is a measurable one, control begars at a stalting point, the ouservations being recorded ether sthity or in successive samples of several ooser vations at rublar tamt intervals. The montiol diagram is found by takime the orde fifure of the sample on the ablisae and the value uf the varlathe or the ardsoate axis. tach sample otiginates ont puint (1 , 2).

IA alithmetic mean is used as measure uf the central value. The scater, farameter is ither the standard devidion or the tamif . The fotmet is ised fot larqe samples $(\Gamma>10)$ and the latet for sall samptes ($n<10$).

II adfition tu chaits for the mean, others are used for vastability or scatet.

Once daca fron a process has been collected for some time, they are toped such that the it statistical analysis should afford the theornibal distribution ot be found in an approxin te rapter (this is generally gaussian). Then, the hypo thesis of the steauiness of procesiing is set out. When acceptud, it will aftord findime the distribution of the properties of futur sampits of known size, from the theoretical distribu tion.

If we cons der the ardthmetic mean as representative of the central value a conf. conce ioterval such that there is - suft iclently nigh a piubauslity of finding within the same the mean of sample, ls defined. Practically, the control limits on ooth sudes the mean correspond to values of the 99.8 per cent prouability. Another pair of limits, referred as the "warning" limits". Corfespond to the 95 per cent probability and they are set on botes lites of the mean on ancillary purposes.

If Che consideted characiet.atic of a sample fails within the ontrol inte:val, the result does nut contradict the hypothes.s of the stedainess of the mean and there is no reason to question the nypothes s (however, the hypothesis could be inexact. Second mind risk). If the caracteristic falls outside the contro merval, the hypothesis of steadiness can not be accepted ume in potuability is very low. Therefore, it is deasonably accupted that there is a disadjustment in processing (however, the fyothes.s could be exact. first kind risk). By reason of this fact, as we s'all soon show, there are other complementary fiteriuns, with the safe or uetter efficiency than the one explained above.

In the absince of any systematic cause, the chart should appear as a series of random points. The plotting of points which appear to be lyiny in certain privileged areas, the trend toward a certain requlasity in their array, are pointers to the hypothesis of disadjustment (or to the existence of a relationship amonc, the samples or pieces drawn). The observation of such irre gularities cannot be considered as significant, but in the event they had been pieviously defined as a criterion for control; "a posteriori" a limited series of points gives, in effect, an impression of internal regularity which would be of significance excent if it would eventually appear quite frequently.

On this Jine of thought, one of the more important criterions comes from examinat, on of the trend shown by sequences of points. These sequences fall into two categories.
(a) Increasing or decreasing is rend: A sequence of points each adove (increasing trerd) or below the preceding one (decreasing trend).
(b) Trend whereby all points fall below the central value.

The longer a sequence is, the more unlikely of it happenning by chance. Usually, the following rules are considered for the two classes of t rends: a sequence of five points is a warning signal (attention to further behaviour); a sequen ce of six points is an alarm signal (the study of the causes of disadjustinent should begin at once); a sequence of seven points shows a disadjustmunt (utop pruduction).

Sequences can also be controlled on the criterion of the longest sequence observed for a set of points.
tither an increasinty or decreasing sequence may be pointers to a long term change.

The above eriterions do not take into account the na ture of the parameter under control. Generally as we know, con trol is cariied out on a set of two parameters (central value and scatter) whose simultaneous examination contrioutes extra precision, since the infurmation supplied by each of them restricts the significance of the caracter supplied by the other.

It is advisable not to neylect calculations and to draw the lower limit in the control chart for scatter. This, quite often is not done, on the excuse that a decrease in scat ter is associated with an improvement in the "statistical quality of the product", no account being taken of the fact that a temparary jempauement ju piocesodny, if nui atiaibutade to chance, will point to a disturbance of which the source must be looked for.

It follows from the above thut a trained statistician should be able to discriminate through simple craterions and be fore the technician realises it, the existencer of any anomaly in processing.

In Appendix two the practical rules for the application of Shewart's control charts are given.
7.2 Simplification of control charts

The simplification uf the control charts is aimed at using the median and ranife instead of the mean and standard de viation. The range hus almost universally been adopted. Clifford proposes control chart where the values of all individuals in the sample are plotted, the median being easy to draw, whereas the range is graphicaliy measured from the distance apart of the most spread out points. Inis distanwe is then taken to another frequency distribution diariam, where it is gasy, when there are ufficient points, to find the median and the rande and to establish till cuntiol limite for median and rante. fols method makes any ai ithmetic unnecessary. (see ?. ${ }^{\text {a }}$;
lerrel suggests a procedure which is essentally ư the same trie, urorise is made of the mid rance, the median, and $t \cdot{ }^{\prime}$ a ange, a on alternative method to usual charts. The range mid points is the mean of the extreme values in the sample. Although when the fruces is under cuntrol, the method is less effici ut than the classical one, this method permits easy detection of dastarbance in tro process. Calculation is very simple since on y extreme vaiues in the sample are used.
A. Fhough the mothog 1 : nut as eff cient as that of the mudian an ranqe when the proces: i under contan and for important variations in the processing mean, it presents interesting qualities because of oinplicity of application.

We detalls ar Given in Apperalx III
7.3 Control charts with no calculatiors

Thas sori of chists are asud pon the technique of control through the median ans m.ranges shown above. Fig. 3 ildustrates one such chart, where the points corresponding to individual measurements have been plotted, the points for the median of the sample being signaled differently. When the sample size is an odd number, the point is inmediate and, by reason of this fact, it is convenitnt for the sample size to be an odo number (in or example $n=5$). In this way, the position and scatter parameters are included in only one chart, since the range of each sample can easily be found from the dastance apart between the extreme values. In the fiyure, the values of the median of each sample have been joined by a continuous line and by a pointed line the extreme values, so that the evolution of the range can be seen.

After a number of samples has been selected, 25 in our example, the median of the medians is found (P point) and
from the frequency distribution of the range, which can be graphically found through adecuate cards, the median of the ran ge can be determined. The only calculation, is that of the con trol limits on the criterion explainedin the ptecering section. Where there i:s a limited number of samples (<20) it is convenient to estimate the medion fium the total number of infividual results and not to blot the medran of the nedrans. Itis easy to find yraphically by ifawing the frequincy distifunton of lindvitual results.

To draw the control lanits for the indiuldual values. the rance of the median will be divided by dil (seg Apmidix Il) and the quotient will be multiplied by 3 . In fact $R / d y$ is an estimate of the standard deviation.

This method of fers the following advantages:
(a) No data sheet or arathmetic are necrssary to calculate the mean and the mian ranye.
(b) Since out of control observations do not affect to latge extent either \underline{x} or the \underline{R} of the medians, rupetition of cal culations for central line and control limits are practically unnecessary.
(c) The centre line in the chart is the most adequate for coun ting sequences above and below the median.
(d) When the individualvalues have been plotted, it is possible to indicate the control and specification or tolerance limits.
(f) Comparisons can easily be made detween capacity and actual scatter of process. The graph can fasily be sumarized.

A similar method uses the mid-ranye as a measure of the central value (fig. 4). In this instance only extreme and mean readings will be plotted and the procedur is stmalar, tht centre line in the raph can be estimated on the basis of the median of the inid-ranges. The coefficients to atplied are sicytiy different, as shown in the previous section. (see Abpendix lli)

Here, it is not necessary for the sample size to be an odd number as when working with the median, and the uraph is very clear. When there are many samples will anumalous ranges, it L intere to use the median graph to that of mid-ranges, since the former lesa affected by what Clifford's "contamination" of the tames. fut for small ranges the mid-range is an efficient measure.

All short cut methods are, as lready sad, less efficient than those based upon the mean but, industraliy, wider control limits can in some instances be an advantage except for really severe control) because they make adjustments less frequent.
he simplification of graphs leads in the long run to their supression whin they art no longer useful, although it is difficult to determine when this moment comes. However, control through modians lemos it selt to a procedure withoul charts and fir gures ronctuma ent tot linits tot the median and the range being preserved. Inis wo th ume that the se thter of the process is practicaliy rouspable o: that thery are especificatione establishing o veti indidu valiability.

7.4 Ihe cumulative su chatts

oome t, at fration, mainly in continuous processing,
 cosdiny, !. fesuit fium on sanple is analyzed, no account deing taki.. ot ather apple. here, a change in processing can be more deatiy shown oy the cumus live su met od, which i more sensitar that erditiond shewnart's contol crarts.

 value for the mut r a itsits is then on the abcissar, and the
 the cumulat.ut sum of I treults and point 3 tot the cumulative sum of the N resuts.

Point A dil cuver N-t realts and the cumblative sum ull be SA-Sp-r, unertas d, it will be N and S_{N} espectively. If the mual wore curromt all adong the N experiments, the slope of line OAB woula of, this 15 to sey, the \boldsymbol{g} is 450 and, therefore, any chame in the nean, in a cumslativi sum giaph, wich as the one inf10. 5, will othinas arne in the slope lite of the chart. Thus, considering the mea of the stides of woints between and旦 , it could be written:

$$
\frac{S_{N}-S_{N-1}}{r w} \quad t_{1}
$$

The advantage of this int hod is that it uses smaller samples then ordinaty controi flarts and affords the same efficiency if the sample size remains invariable; the time taken to detect a change is shortet thin for Shewart's charts (almost by a half), mich is very importatit in urder to secure stability of the considered parameter.

Une way of establishing these charts will be found in Appendix lu. Thev can also be used for control of faulty pieces and defects wet unit

7.5 Trend graphs

1his name refers to shurt of data plotting which is quitu common in france. In addition to playing the role of control chalt, $i l$ afforis obseivation of result trands, whether on emachine or a group of machines, in connection with the para-

This type of chart, when in card form, can be used for machine control or for yarn and fabric characteristics. We will show several examples in Appendix V.

8. Aceptance control

8.1 Specificatauns anu toderances

The main objective of apocification ie to establish certain desirable pruperties for the material or end product, and to descriue an inspection system affording to find whether the material ot a given lot has such properties or not. Cenera1ly, fhecking is carilet on a sample selected in a definite man ner w.ich, after being subjected to ceitain testing must yield results failing within certaindimits "U.k. Limits"). These limits are the most important part in the specification, so that they must be established by tuk 1 h , into account the inherent variabiLity of all mateitals.

File leyulat on cuntrol, affords lavest fating syotema tic cuases of disturbance, which can eventually de proqressive ly eliminated. This elimination must be pursued until variation is consistent with a system of random causes, over which there is no possible control, that can de considered as a cnaracteris tic of the production process under study.

The fact chat production should br " tatistically controlled" is not suffletent to erswe agretient detuetn specifica tions and quality product. dut, statistacal cuntrol affords to know at any monent:
(a) Whiether the whole, o: aimost the whuse, fistribution is within tolerances, wheseoy the facty fracion is nil or almost nil. Here, the maintenancu of the stability of production pro cess secures aqreemunt with spucifications.
(b) On the contrary, if the faulty fraction is righ, the adopted processing is not wholly consistent with specificationis; machinary is nut sufficiently accurate in its work, the quality of the raw inaterial is too low, or the specifications ignore the possitilities and limitations of the technique employed.

The control of processing is a necessaxy condition for specifications to be fulfilled, but it is not sufficient at all, since it is necessary to understand that if a given production process is not capable of making more than a certain proportion of the production falling within specifications, any control will be powerless to remedy this fact. However wis securing stability, a better quality will be obtained.

Therefore, specifications, raise two disiinct probleme: (a) the regularity in production must be secured through application of regulation control. (b) Setting up a production process
where its technical capabilities should wo consistent with contract apecifacations.

The specifications that in sume in tana are imposed upon the prothets, tat be titablistue on sitit, or or word of moun contract, and they id fefer te cas : hodetrostics
 descibe th testin to whill the wects muct subject. I ree cun

 they al a. x onilatera of ullateral, that is to say, only by plus of nimus, ut but: at lom same iame, in comection with the enf. 11 sinc.lad visue.
Wie buse th differenit cases that a yiocess can preset in ruthlos with limits or specification tilerances. The zone detweet tolerance linits rotiesponds to acceptable prodict, whereat that on viter left or riunt ut limits, 1 vo articles delivered watnout in "itrar" requisites. Let us un: idered the difite : Casis:
 mea of the iftribution superimiosing the nominal one.
(b) The process falis within specifications, tut the ean is shintly deviated, there not being individuals out of limits thanks to small variability.
(c) The whole process is deviated deliverina, a material which falls whiw the duevi init. This may originate from (i) an excessive devation of the mean (atlougr variability is corrict) (i: of the pocess $i=$ centered or almost centered and visiabillty is excessive.
(d) Frocess deliut inity rejectabie articles, whether on the upper or the luwer side, because of excess varlability, the mean dein. centered.
(e) Prucess which of haves as the previous one, out is deviated wi:n respect to it, so that the rejectablefraction appears on one sade undy.

Ueperding on the tulerance range on both sides of the central value, thollowing cases may happen (fig. \underline{f}).
(a) Tolerances which are narrow as regards the scatter of process. There will aluays be a fraction lyıng out of limits.
(b) Very narrow limits; it is difficult to avoid that a fraction of the product should fall out of limits unless there is a very strict centering of processing.
(c) Very wide limits. The central value call o:cillate and yet there not be ing a rejectable fraction.

In fig. 8 only the lower limit is considered. It is in teresting to study the mean to be produced as a function of tolerances and process variability. We cannot go here into details
concerning this question which has only been pointed out to.

8.2 Sampling plans

Thus, in all processing stages from reception of the raw materials to the inspection of the finished product before delivery to the consumer, there is a need for an acceptance con trol or con orinity of the manufactured product to specifications.

Where a 100 per cent certainty of no faulty items is desired, every single unit should be cheched upon. In this way, thanks to rejection of faulty units, these would absent from any delivery. Such a lengthy and costly method is not free fromeror and, in many instances, it is nut necessary. In addition, on many occasions it is impracticable, above all when the test to which the unit is being subjected is of a destructive nature, a very frequent occurrence in textile industry. furthermare, the cost of 100% control raises the selling cost of product so that it becomes unpayable for, in spite of the high quality level.

Generaily, the control of a lot is carried out on the basis of the information from one or several samples. One such information, incumplet in its moture, does nut prevent faulty items from included in the lot. The only objective that can reasonably be assigned to control, is that of realizing a better dis crimination between lots judged as "good", where the amount of faulty articles is very small, and the "bad" lots where the carac ters are reversed, so as to accept the foriner and rejuct lie lat= ter.

The whole set of agreed rules on which acceptance or rejection of a lot is based depending on the information from the analysis of one or several samples from the lot, is the "sampling schemen. The techniques used in the acceptance control invalve sampling and the way samples must be drawn; there are several basic types of acceptance control (single sampling, doubla and multiple sampling and pruyressive sampling) which will be applied according to circumstances of inspection and its cost. Statistical methods afford to choose at any time best sampling scheme for the efficiency of cuntrol.

8.3 Operating Characteristic Curve.

The control car ied out on the basis of a determined sampling car lead to rejection of a good quality lot and to accep tance of a bad lot. Whatever the quality of a lot under control, there is a probability fur the lut to be accepted and, another complementary one, of being rejected.

A sinqle samp. iny schene involves independent farameters n, N and c, where n is the sample size, N the lot size and c the limiting value ot the number of faulty items in the sample, which if surpasced would invulve rejection of the lot (acceptable quality level $A(H L$). These three parameters define the scheme without ambiguity.

When the values fur parameters N, n and c are known, it is possible to calculate the probability of acceptance, according to the adopted scheme, of a lot whose faulty fraction is p (con-
taining $100 \times p \%$ faulty items). The curve of p as a function of p is the "operating characteristic curve" of the scheme. Probability theory gives the analytical expression as a function of n, N and c. This curve, (Figure 9) does not depent but on the three quoted parameters, which univocally defin, the samilinu scheme. Therefore, it is equivalent to know the sampling nlan or the OCC of this later, because the curve describes graphically the statis tical properties of the sampling plan. If interpreted in frequency terms it gives, for every eventual quality of the lots, the mean value for the proportion of th. lots of this quality, that in the "long run" will be accepted (ordinate riN in the curve) or rejected (eumplement mm^{\prime} of the ordinate).

Comparison of their operating characteristic curves, affords judgement of the respective merits of the sampling plans and their efficiencies to oe compared too. A sheme is the more satisfactory the better it affords discrimination of the good from the bad quality lots, that is to say: that it leads to accep tance of a greater proportion of lots subjected to control, fur which the faulty fraction is small, and t_{1} a smaller proportion of lots for which this fraction is important, that is to say, it will be the more satisfactory when the ordinate $1-\alpha_{0}$ of any point A of abgissa p_{a}, close to zero, be near to unity and when the ordinate of a point β of abcissa p_{b}, close to unity, be closer to zero.

The first condition is mainly interesting to the "producer". \propto, the complement of $1-\propto_{0}$, is the probability of a lot whose faulty fraction is pa beiny rejected, that is to say a good quality lot. It measures therefure the producer's risk at the q quality level; the second conditions is of interest the consumer; (8) the probauility of accepting a lot whose fraction is P_{b}, that is to say, bad quality, measures the consumer's risk at the p_{b} quality level.

If it were possible to divide the lots into "good" and "bad", depending on whether the faulty fraction be below or above a clearly defined lim. t, the ideal operating characteristic curve would be as iliustrated in Fig. 10, for which all good lots are accepted and the bad rejected. One such scheme is not stricly accomplishable, although it is possible to get an approximation. In practice, passing from "goud" to "bad" lots does not correspond to a given and well determined value of the faulty fraction, but there is a transition coverinis a zone of "indifferent" qualities. The a and b linits can from reasonable criterions, be ascribed to such a zone by observing that the β_{0} risk, correspondiny to b quality is the maximum risk of accepting a lot whose quality is worse than that of b (i.e., for which the faulty fraction is greater than b) and that the χ_{0} risk, corresponding to quality is the maximum risk of refusing a lot whose quality is better than a. (i.e., of a smaller faulty fract.on). If limits and bare jefined, these risk deserve being called "producer's risk" and "consumer's risk" respectively corresponding to the scheme.

The α_{0} and β^{2} values represent the nigher and lower limits, guaranteed by the adopted scheme, of the rejection riaks of a satisfactory quality and of acceptance of a faulty quality,
on both partios.
Once a sampling plan has been adopted, these riske can be found through direct calculation or by simple reading on the operuting characteristic curve. Its knowledge cannot replace that of the curve (since it is equivalent to knowledge of only two points A and B on the curve), but it gives informa tion on the a priori ensured quarantees for the acceptance of the scheme. Cinverseley, if for two and \underline{a} qualities che maxi mum values α_{0} and So are established beforehand on the ope rating characteristic curve should fulfill the condition of passing on the two given points A and B. Thest cunditions are not sufficient to determine this curve which is dependent on three parameters N, n and ce and, therefore, they do not, by themselves, define the sampling scheme. There are, in effect, infinite operatinc, characteristic cuives passirig on two yiven points and, therefore, infinite sampling plans securing for the producer and consumer the above guarantees.

To define, without misunderstanding, a sampling pian, such a plan must fulifill a third condition, which can arbitrarily be chosen, whereby the curve curacopoding to the plan, fullfilling that condition is selected from amony the family of curves passing on A and B.

The acceptance sampling plans can be descifoted, therefore, by the three quantities given above, i.e., N, n and c. Thus one such plan could be the following: $N=50, n=5$ and $c=0$. This means: from a lot of 50 individuals, pick up 5 of them at random; if the sample has more than zero defects, reject the lot; if not, accept it.

Figures 11 and 12 show different sampling plans. In in dustrial practice it is customary to specify the sample at a $\mathrm{i}=$ ven percentage of the whole lot, that $i s$ to say, $1, \% 3 \%, 5 \%$, etc. This specification is generally based on the urong idea that the protection from the sampling plans is constant when the relationship sample size/sample lot is constanit. Uy comparison of figure 11 to fiqure 12, we can realise the advantages of using a constant value for n over that of a proportional value.

8.4 Average outgoing quality curve

When a sufficiently hich a number of lots with the same faulty fraction is subjected to cuntrol, the mean value π of the faulty fractions which characterise each of these lots after the control respectively.s equivalent to P.p; or aiternatively, the value of the faulty fraction of the whole bulk obtained by grouping these lots into P.p.

In the curve of π as a function of p, an eventual value D of the quality of a lot subjected to control, corresponds to the mean value of the quality that should be expected for this lot after control.

This curve which binds the mean corrected quality is
referred to as "average outgoing quality curve" concerning the plan (A.O.Q.L. curve). The maximum of this curve \mathbb{T}_{F} (F 1 g .13) is referred as the "averaqe outgoing quality limit' (A.U.G.L.). If set of lots of the ane qualit, is subiected to control this point will be the nagher limit tor the faulty mean fraction charactrifilme t's set made of these luts after control, whatever their common imital witit. The limit for the average out-
 corte ting anspection $h a l$ leas as a function of the sampling plan adopted, watever the evential quality of the lota subjected to
control.

The Pa acceptance probability will be:

$$
p_{e}=\frac{\pi c}{p}
$$

One of the conditions that can be set on sampling plan is triat of imposin, an anticipated value to this limit, so as to $9^{n t}$ ay : ram the ask uf acceptance of too bad qualities.

8.5 Qudity curve for the contiolled lots

when callsumer'samj producer's risk are set befuruhand, which mat related to a plan, it is only required that the rules in L^{\prime} later fulfill ceitain condstions for a right judgement, les: ether 2 acceriance or rejection of a lot. The refore, a sas sfactor, , dr is only souqht.
 ted out frum t oument when the effective quality of the poouaction under c itiol is known. inis wualit, cen be appreciated from the "pracedute ru" of wiv, \quad t.t. Uution of lotsproduced accurding to theli fallty frac:1.. When this curve is known, pro bability treazy afturds finding the "outgoing quality curve" of the cunt rolleg 10 : s (0.6 .6.) of which the maximum is the "mean outguing quality evel" (fig. 14). If the control is not a correc ting one, oassing from one to another curve involves the operating characteristic curve uf the plan; if a correcting inspection is veing cartied out, the so callod "efficiency matrix" is involved, or relation inip between the quality of a lot before and after con trol.

If the size of consumer's lots is different to that of the controlled lots, esther through subdivision or grouping, pro bability theo:y permits constructing the distribution curve of the furmer as a function of their faulty flaction or "consumer's quality curve". If the size of these lots is a very large multiple of the luts under control, ts faulty fraction varies little and it is very cloci: to the mean value of the faulty fraction of the controlled lots. In order to simplify, it is generally accep
ted that the control lots should be utilised by the consumer as they are. A knowledge of this curve affords, especially, to cal culate the fraction of the production received, whose quality falls below some preset standard value. Also, amony otrer conditions to be set for determiring a sampling plan, is that in the deliverits of luts whose faulty fraction is above a toleran ce limit 1 , the mean propurtiun be at most, equal to a preset value; this later measures the maximum risk known to the consu mer for using lots whose quality is below $\underline{1}$ (a posteriori risk of the consumer).

In a similar manner, in the case of a non correcting control, the pruducer can demand that, at most, unly a given frac tion of his production of which the quality is above a given level, should be rejected.
8.6 Single samplinge douple, moltiple and sequential sampling.

Single sample: By means of tins type of sampling, a de cision is made on either to accept or reject each lot subjected to control after one single sample hus been examined.

Douthe sample: A secund extru sample is taken to better defirie the quality of a lot, mainly when the lot subjected to control is of a medium quality. If more than tuo samples are used, we are in the face of multiple sampling (see schemes 15 and 16).

Sequential: In this type of sampling, the items to be examined, are not simultaneuusly taken intu samples of a given size, but by successive random election of separte units or by groups of size n, sampling being interrupted when the collected information affords establisning a significance judgement on the quality of the examined lot. multiple sampling is but a particular case of sequential sampling.

The sequential plan can be set on a chart as a pair of parallel lines (Fi ure 17). It is limited by the acceptance line $-h_{1}+m s$ and rejection line $h_{2}+m s$. The vulues h_{1} and h_{2} are cal culated from the conditions of the plan. In the graph, we have three zones, viz., acceptance, iejection and indifferent. The me chanism is simple. Items are continually taken in so far as the nuinber of defects falls within the so called indifferent zone. When, on taking a new item, the acceitance line is surpassed, the lot is accepted (case in the fiuure). When on the contrary, on taking a new item the rejection limit a sirpassed, the whole lot is rejected (case A Figure 17). It may happen that we should move within the indifferent zone without being able pither to accept or reject the lot. In that event, there are special techniques to trunk the test when it is convenient to do so.

Below are indicated tle advantages and inconvenience of each of the sampling methods.

Factor	$\frac{\text { Single }}{\text { sample }}$	$\frac{\text { Double }}{\text { smple }}$		$\frac{\text { multiple }}{\text { spmple }}$
Projection against rejection of good lots and acceptance of bad lots	Practically	the eame		
Mean number of ins pected items per lot	The best	Medium		The least
Variability in the number of items ins pected from one to another lot	None	Some		Some
Sampling cost when samples can be taken as needed	The most expensive	madium	The	least expensil
Estimation of the mean quality of the inspection lot	The most accurate	Medium	The	least accurati
Sampling cost when samples are taken all at the same time	The cheapest	The most	expensiv	Medi:m
Training of inspectors to use the plan	The easiest	medium	The	most difficul
Psychological: Give the inspection lo more than one chance	lot The worst	Medium		The best

8.7 Sampling tables: to facilitate application of the sampling methods indicated above, there are special tables by different authors, the most widely used being the U.S. Military Standards, covering single, doble and sequential sampling. Also, the tibles of Dodge and Romig for single and double sampling and Columbia University, is which cover all three types: single, double and multiple.

An example of application of a multiple olan in textile qualí ty control is given in Appendix VI, where the mechanism of these plans is explained.

APPENOIX I

Practical application of the analysis of variance through the

range.

Example of how the total variance can be aplit into its components "between" and "within", in the control of count variability in a department of spinning frames.

Table 1 shows the method of calculating the variance within the machine and Table 2 shows how to find the total varian ce. The working paraneters are the mean range R, the $P M R$ and the coefficient of variation.

To find the CV between machines, the tatal CV is substrac ted the "within" CV, and taking into account that tne coefficients of variation must always be squared for sum or substraction. Thus,

Total CV $=5,4 \%$
CV Within 4,02

Therefore:

$$
C V \text { between }=\sqrt{5,4^{2}-4,02^{2}}=3,60 \%
$$

TABLE I

Calculation of variation within
Data Junc 1 Total Mean Range

Frame No.	43	27	5	16		
	55,5	51,8	56,-	52,-		
	50, 2	54,2	57,1	56,1		
	54,8	50,1	55,2	54,1		
	52,1	54,1	51,1	53.-		
Total	212,6	210,2	219,4	215,2	857,4	53,6
mean	53,2	52,6	54,9	53,8		53,6
Range	5,3	C. 1	6,0	4,1		

June 2

June 3

TABLE 11

Calculation of overall variation

Data	June 1				Qverall renge
Frame No.	43	27	5	16	
	$\begin{aligned} & 55,5 \\ & 50,2 \\ & 54,8 \\ & 52,1 \end{aligned}$	$\begin{aligned} & 51,8 \\ & 54,2 \\ & 50,1 \\ & 54,1 \end{aligned}$	$\begin{aligned} & 56,- \\ & 57,1 \\ & 55,2 \\ & 51,1 \end{aligned}$	$\begin{aligned} & 52,- \\ & 56,1 \\ & 54,1 \\ & 53,- \\ & \hline \end{aligned}$	$\begin{aligned} & 4,2 \\ & 6,9 \\ & 5,1 \\ & 3,- \end{aligned}$
Total Mean Range	212,6 53,2 5,3	$\begin{array}{r} 210,2 \\ 52,6 \\ 4,1 \end{array}$	$\begin{array}{r} 219,4 \\ 54,9 \\ 6,- \end{array}$	215,2 53, 8 4, 1	
June 2					
Frame No.	8	39	-7	$\underline{-12}$	
	$\begin{aligned} & 50,3 \\ & 58,8 \\ & 54,- \\ & 53,8 \end{aligned}$	$\begin{aligned} & 59,9 \\ & 58,2 \\ & 56,3 \\ & 57 . \end{aligned}$	$\begin{aligned} & 55,5 \\ & 50,2 \\ & 51,6 \\ & 54,7 \end{aligned}$	$\begin{aligned} & 58,8 \\ & 56,1 \\ & 59,2 \\ & 57,1 \end{aligned}$	$\begin{aligned} & 9,6 \\ & 8,6 \\ & 7,6 \\ & 3,3 \end{aligned}$
Total Man Range	216,9 54, 2 8,5	$\begin{array}{r} 231,4 \\ 57,9 \\ 3,6 \end{array}$	$\begin{array}{r} 212,- \\ 53,- \\ 5,3 \end{array}$	$\begin{array}{r} 231,2 \\ 57,8 \\ 3,1 \end{array}$	
June 3					
Frame No.	21	29	41	32	
	$\begin{aligned} & 50,4 \\ & 52,1 \\ & 51,6 \\ & 53,5 \end{aligned}$	$\begin{aligned} & 55,4 \\ & 56,3 \\ & 56,1 \\ & 58,1 \end{aligned}$	$\begin{aligned} & 58,8 \\ & 57,3 \\ & 56,8 \\ & 53,9 \end{aligned}$	$\begin{aligned} & 58,6 \\ & 59,2 \\ & 55,7 \\ & 57,1 \end{aligned}$	8,4 7,1 5,2 4,6
Total Mean Range	$\begin{array}{r} 207,6 \\ 51,9 \\ 3,1 \end{array}$	225,9 56,5 2,7	226,8 56,7 4,9	$\begin{array}{r} 230,6 \\ 57,7 \\ 3,5 \end{array}$	
Total Average overall	range				$\begin{array}{r} 73,6 \\ 6,1 \end{array}$
$\text { PMR }=\frac{6,1 \times 100}{55}$	$=11$;	$=\frac{11,}{2.0}$	$=5.4$	

RPPENDIX II

Practicat rules for inding Control chart limite

We shall now study the practical manner of finding con trol limits for uifternt cases in industry.

To samplify, warnifig limite will not be considered, jin ce they are not a.ways used. The f:llowing will be studiedz

1. Conitol of viriables. To ve applied to proceseing contzol.
2. Contro o^{\prime} it faulty fractar and defects. For product clas sification hito jifferent qualities allit to quality levels, and uther aspects wish shall later be shown.
3. Contrul of defects. To be applied to fabric defects, in adcilion to others.

1

1. Control of variaules

The following cases should be taken into account:
(a) Control of gmall samules (size $n \leq 10$)
(b) Control of medium sampies (size $11<\mathrm{n}<25$)
(c) Contron of latue sanples (sizen>25)

In any of tic above cases it may happen that there is or there is a yiven specification, whether for the mean or the varlability.

In (a) the mean and the range are used, the mean and standard deviation for the others.

> Ithe trietal method is as follows:
(a) Choose tic variaule to be controlled
(b) Choose the sample size. let it be n
(c) Make a previous andysis of some 25 to 30 samples, of which the results will of whoted on the moan and range, or stan dard deviation, tephriding on sample size n graphs. To plot the puints on the intan contrul chart the mean of each sample of size n will ve found. Thest will be plotted on the chart. Plot for each sample of $512 e n$ the selected parame ter un the variability chart.
(d) Calculate the mean for the whole 25 or 30 samples. Also, calculate either the mean range or standard doviation de pending on sample size.
(a) Find the control limits by means of the formulas in Table 1, according to the concrete case we may be dealing with. The cunstants in Table 1 are dependert on sample size and they are also tabulated later (Table 2).
(f) Draw the central, upper and louer control lines on the mean and variability charts.
(9) Take action to get proress under control.
(h) In future, take corrective action when the control chart suggests to do so, as the different sampies are being analyzed, and do not change anything when tne gruph does not shou the existence of any wrong.
(i) Periodically, calculate the mean and the range (or, alterna tively, the standard deviation for large samples) and alter limits accordingly. A minimum of from 20 to 30 values is necessary.
rwo things may happen on initial testing and first dra-
wing of limits.

1. All points representative of the samples fall within the control limits.
2. Some points fall outside limits.

In the second case, the facts originating points out of control should be analyzed in connection with the sampling me tnoa.

When there is a technical explanation for such anomaly, the points should not be taken into account in the calculation of limits if the source of trouble can be eliminated and if, it is sure that future processing will not change after correction.
it may also happen that the initial analysis gives a deviation of the mean from the desired quality (control at a wrong leval) or that the variability be excessive. In guch events corrective action should be taken, su that p. acessing will be considered under control when a number of from is to 30 succesive sample results fall within limits.

When in the periodic revision some points happen to fall outside limits, they will not be taken into account in the calculation of new limits (when circunstances command to do so) if the re are known technical causes accounting for such points.
. ./

TABLE I

measure of scatter	$\left\|\begin{array}{l} \text { Size of } \\ \text { sub- } \\ \text { group } \end{array}\right\|$	Specifi cation	Chart for the means			Chart for scatter		
			Central line	Control limits		$\begin{aligned} & \text { Centray } \\ & \text { line } \end{aligned}$	Control limits	
				Upper	Lower		Upper	Lower
5tan- dard de viation	> 25	with	\bar{x}	$\bar{x}+(3 / \sqrt{n}) \sigma$	$\bar{x}-(3 \sqrt{n}) \sigma$	σ	$(1+3 / \sqrt{2 \pi}) \sigma$	$(1-3 \sqrt{2 n})$
		without	$\overline{\bar{x}}$	$\left\|\overline{\bar{x}}+(3 / \sqrt{n})^{\frac{5}{5}}\right\|$	$\overline{\bar{x}}-(3 / \sqrt{n}){ }^{\text {s }}$	5	$(1+3 / \sqrt{2 n})^{-3}$	$(1-3 / \sqrt{2 n})$
	11 a 25	with	\bar{x}	$\bar{x}+A \sigma$	$\bar{x}-A \sigma$	$c_{2} \sigma$	${ }^{3}{ }_{2} \sigma$	${ }^{\prime} ; \sigma$
		without	$\overline{\bar{x}}$	$\overline{\bar{x}}+\overrightarrow{A s}$	$\overline{\bar{x}}-\mathrm{As}$	C^{\prime} : ${ }^{\text {s }}$	$8^{\prime} 2^{\text {s }}$	$8^{8} 1{ }^{\text {® }}$
Ranje	≤ 10	with	\bar{x}	$\bar{x}+A \sigma$	$\bar{x}-A \sigma$	${ }^{\text {d }} 2 \sigma$	$\mathrm{D}_{2} \sigma$	$0, \sigma$
		without	$\frac{\bar{x}}{}$	$\overline{\bar{x}}+A_{2} \overline{\bar{R}}$	$\overline{\bar{x}}-A_{2} \overline{\bar{R}}$	\bar{R}	$\mathrm{O}_{4} \overline{\mathrm{R}}$	$3_{3}{ }^{\text {® }}$

When the sample size is not constant, the control limits eill vary depending on size, the same formulas applying for calculation.

Action will be taken according to whether the values of the mean and variability are specified or not beforehand.

Example

A spinning frame is producing a nominal 40 s count. The data from 30 days on the basis of a daily tast, are summarised in Table 3. (for the sake of simplicity, only data of the first two days and the last day are shown). Sample size $n=4$ bobbins

table II

$\begin{aligned} & \text { Group } \\ & \text { size } \end{aligned}$	Factor $\overline{\bar{x}} \text { char }$	for the	Factor	s for	the P	(range	chart	$\begin{aligned} & \text { Factor } \\ & \text { (stan } \end{aligned}$	for t ard de	viation.
n	A	A_{2}	d_{2}	D_{1}	O_{2}	D_{3}	D_{4}	$\mathrm{C}^{\prime} 2$	8'1	$3^{1} 2$
2	2,121	1,880	1,128	0,000	3,686	0,000	3,267	0,798	0,000	2,296
3	1,732	1,023	1,693	0,000	4,358	0,000	2,575	0,886	0,000	2,111
4	1,500	0,729	2,059	0,000	4,698	0,000	2,288	0,921	0,000	1,982
5	1,342	0,577	2,326	0,000	4,918	0,000	2,115	0,940	0,006	1, 68\%
\bigcirc	1,225	0,483	2,534	0,000	5,078	0,000	2,004	0,951	0,085	1,417
7	1,134	0,419	2,704	0,205	5,203	0,076	1,924	0,960	0,158	1,762
8	1,061	0,373	2,847	0,387	5,307	0,136	1,864	0,965	0,215	1,715
9	1,000	0,337	2,970	0,546	5,394	0,184	1,816	0,969	0,262	1,670
10	0,949	0,308	3,078	0,687	5,469	0,223	1,777	0,973	0,302	1,644
11	0,905							0,976	0,336	1,616
12	0,866							0,977	0,365	1,589
13	0,832							0,980	0,392	1,568
14	0,802							0,981	0,414	1,548
15	0.775							0,982	0,434	1,530
16	0,750							0,984	0,454	1,514
17	0,728							0,984	0,469	1,499
18	0,707							0,986	0,486	1,486
19	0,688							0,986	0,500	1,472
20	0,671							0,987	0,513	1,461
21	0,655							0,988	0,525	1,451
22	0,640							0,988	0,536	1,440
23	0,626							0,989	0,546	1,432
24	0,612							0,989	0,556	1,422
25	0,600							0,990	0,566	1,414
25	$\frac{3}{\sqrt{n}}$								$\frac{3}{\sqrt{2 n}}$	$1+\frac{3}{\sqrt{2 n}}$

table III

Bobbing

	1	2	3	30
1	39,85	41,46	40,50	38,93
2	40,49	39,41	39,82	40,50
3	39,41	40,32	41,10	40,62
4	40,05	40,53	38,55	39,17
means.	39,95	40,43	39,99	39,80
Ranges..	1,00	2,05	3,55	1,69

In practice four bobbins will be taken for each test and a 100 m skein will be reeled from each. These will be weighed on quadrant balance. Readings to nearest 0,1 to 0,25 counts are suficient in routines control.

Calculations are as follows:
Crardmean:

mean range:

$$
\bar{A}=\frac{1,08+2,05+3,55+\cdots+1,69}{30}=2,01
$$

P.fin. R :

$$
\text { PMR }=\frac{2,01 \times 100}{40,64}=4,92
$$

The count deviation from the nominal count is, in our examples

$$
\frac{100(40,64-40)}{40}=1,6 \%
$$

The coefficient of variation can te found fion the PMR:

$$
C V=\frac{\text { (FMR) }}{d_{2}}=\frac{4,92}{2.059}=2,44
$$

The control limits are found in the following ways
For the mean:
Control Limits:

$$
\overline{\bar{x}} \pm A_{2} R \quad \overline{\bar{x}}=\text { specified mean count }
$$

Warning limits:

For the range:

Upper control limit:
$D_{4} \bar{R}$

The values of the constants A_{2}, d_{2} and $O_{4} w i l l$ be found in Table II for $n=4$.

Therefore: control limitss

$$
40 \pm 0,73 \overline{\mathrm{~A}}=40 \pm 0,73 \times 2,01=40 \pm 1,47
$$

Warning limits:

$$
40 \pm \frac{2 \bar{R}}{d_{2} \sqrt{n}}=\frac{2 \times 2,01}{2,06 \sqrt{4}}=40 \pm 0,98
$$

Upper range limits:

$$
D_{4} \bar{R}=2,28 \times 2,01=4,58
$$

These are the limits to be drawn on the mean and ran ge charts.

The rean fange and the PMR are two random variables fluctuating with time. The statistical significance whether of two mean ranges or two Plir's corresponding to two running periods of a machine can to found.

In the former the parameter F_{R} is used:

$$
F_{R}=\frac{\left(\frac{\bar{R}_{1}}{\left(d^{\prime}\right)_{1}}\right)^{2}}{\left(\frac{\bar{R}_{2}}{\left(d^{\prime}\right)_{2}}\right)^{2}}
$$

Where \bar{R}_{1} and \bar{R}_{2} are the mean ranges corresponding to the two periods and d', the coefficient from Duncan's table. F can be tested by means Snedecor-fisher f Tables for the degrees of freedom given by Duncan, which are dependent on sample size and the number of groups k of n individuals (qenerally from 20 to 30).

For the more usual sizes and the \quad an comon number of proups in opinning quality cuntrol. Durcan' lanlas give the foLlowing valuest

No. of Groups (k)

15
20
25

$\begin{array}{ll}41 & 2,07 \\ 55 & 2,07 \\ 68 & 2,0 ?\end{array}$

31	2,34	74	2,71
73	2,33	106	2,71
-	-	-	-

To test the significance of the P.f.R., the author has atablished the significance limits for the 10%, 9% and 1% probability levals calrslated for $\underline{k}=25$ groups of $\underline{n}=4$ individuals. The values are shown in Taole 3
i Aule III

Significance levals

P.Mere \qquad
10\%
5\%

1\%
$3,4-4,7$
$4,2-5,9$
$5,1=7,1$
$5,9-8,3$
$6,8-9,5$
$7,7-10,7$
$8,5-11,8$
$9,3-13,0$
$10,1-14,2$
$3,3-4,9$
$4,1-6,1$
$4,9-7,3$
$5,7-8,6$
$6,5-9,8$
$7,4-11,0$
$8,2-12,2$
$9,0-13,5$
$9,8-14,7$
$3,0-5,2$
3,7-6,7
4,5-8,0
$5,2-9,4$
6,0-10,8
6,7-12,0
$10 \quad 8,5-11,8$
8,2-14,8
9,0 $-16,1$

It is advisable to interpret de results in the following ways
(a) The pmp falls within the 10% limits: the difference is nonsignificant
(b) The pmafalls in the 5% to 10% belts the difference is slightly significant.
(c) The PMR lies in the 5% to 1% belts: the difference is significant.
(d) The PMR falls utside the 1% limits: the difference is highly significant.

2. Control of attributes

This covers the control of the faulty fraction, number of faulty ones (total and per unit). Poisson's and binomial distributions are used here.
2.1 Faulty fraction (proportion of)

The scheme is as follows:
(a) Draw a list of possible defects.
(b) Group defects into categories (larger, smaller, etc.)
(c) Decide upon wheter all sorts of defects should be controlled by means of a single chart, or different charts should be used.
(d) Choose sample size.
(e) Record data and plot them on the control chart for the faulty fraction. 25 to 30 lots will be taken in the initial calculation.
(f) Calculate \bar{p} (mean faulty fraction) through the formula:

$$
\bar{p}=\frac{\sum^{m}}{\sum n} \frac{\text { sum of faulty individuals }}{t \text { tal sum of individuals }}
$$

(g) Calculation of control limits:

Upper control limit:

$$
\bar{p}+3 \sqrt{\frac{\bar{p}(1-\bar{p})}{\bar{n}}} .
$$

Lower control limit:

$$
\bar{p}-3 \sqrt{\frac{\bar{p}(1-\bar{p})}{\bar{n}}}
$$

π is the arithmetic mean of the 25 to 30 considered lots. For $p<0,10$ the above formula can to simplified to:

$$
\bar{p} \pm \sqrt[3]{\frac{\nabla}{\pi}}
$$

(h) Draw the contral and upper and lower control lines.
(i) Again calculate limits for points close to control line:

$$
\bar{p} \pm 3 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

(n being in this instance, the size of the sample which is being analyzed) to see whether the points fall within or outside control limits.
(j) Take action to get process under control.
(k) Periodically check upon the mean and control limits and take action if necessary. First checking should be done on the 25 to 30 lots following achievement of correct control to see whether the \bar{p} value can be considered as normal.

As in the control of variables, out of control points in the initial stage, of which the causes is known and c an be avoided, will riot be taken into account for calculatior. of limits.

2.2 Faulty (number)

The procedure is the same up to calculation of limits, which will be done in the following way:

$$
\bar{p}=\frac{\sum m}{\sum n}=\frac{\text { Sum of faulty individual in the sample }}{\text { Tatal sum of individual in the samples }}
$$

Control limits:

$$
n \bar{p} \pm 3 \sqrt{n \bar{p}(1-\bar{p})}
$$

The lower limit will be zero if the formula gives a ne gative value. If $\bar{\rho}<0,10$, then:

$$
n \bar{p} \pm 3 \sqrt{n \bar{p}}
$$

the next steps being the same as before.

2.3 Number of defects

The steps are as follows:
(a) Decide what a defect is.
(b) Decide what a sample is.
(c) Record data and plot points (first atage).
(d) Calculate the central line and the control limita:

$$
\bar{c}=\frac{\Sigma c}{n}=\frac{\text { sum of defect of } n \text { samples }}{\text { Number } n \text { of samples }}
$$

Limita:

$$
\overline{\mathrm{c}} \pm 3 \sqrt{\overline{\mathrm{c}}}
$$

Using zero as a limit, if the formula gives a negative value. From here onwards the method is the same as before. If the control is for number of defects per unit,

$$
\bar{u}=\frac{\sum u}{n}=\frac{\text { total number of defects }}{\text { Total number of tested individuals }}
$$

Limit:

$$
u \pm 3 \sqrt{\frac{\pi}{n}}
$$

If in these cases there is a given specification:

Faulty fraction:

$$
p^{\prime} \pm 3 \sqrt{\frac{p^{\prime}\left(1-p^{\prime}\right)}{n}} ; p^{\prime}=\text { specified value }
$$

Number of faulty ones:

$$
p^{\prime} n \pm 3 \sqrt{n p^{\prime}\left(1-p^{\prime}\right)} ; p^{\prime}=\text { specified value }
$$

Number of defects:

$$
c^{\prime} \pm 3 \sqrt{c^{\prime}} ; \quad c^{\prime}=\text { specified value }
$$

Deffects per unit:

$$
u^{\prime} \pm 3 \sqrt{\frac{u^{\prime}}{n}} ; \quad u^{\prime}=\text { specified value }
$$

The rest of the mechanism is the same as for control of variables.

APPENDIX III

Calculation of limits in the simplifiod Control charts

Let:
$X=$ median.
$\overline{\tilde{X}}=$ median of medians.
$\vec{R}=$ median of ranges.
$m=$ mid-range $=\frac{x_{1}+x_{n}}{2}$.
$\hat{m}=$ median of miu-ranges.
$\bar{m}=$ mid point of mid ranges.
(a) Where median \widehat{X} and range are used.

Control limits for the nedian:

$$
\stackrel{\breve{x}}{x}+A_{4} \stackrel{\rightharpoonup}{R}
$$

Control limits for the range:

$$
\begin{aligned}
& \breve{D}_{6} \breve{R} \\
& \breve{D}_{5} \breve{R}
\end{aligned}
$$

(b) Where the mid-range M and the range are used. Control limit for the mid range:

$$
\bar{m}+A_{4} \stackrel{\rightharpoonup}{R} ; \bar{m}+A_{5} \bar{R}
$$

The same formulas as before are used for the range.
These modalities for control are well applied when the sample size is not yreater than 15 and in Table 1 the coefficients A_{4}, A_{5}, D_{5} and D_{6} are given for sample sizes smaller than 10 . In the parameter of location charts, the median of the medians and the centre point of the mid range respectively are used as centre lines. The latter parameter is more efficient than the median for $n<6$ and less for $n>6$.

- 11 -

TABLE I

n	A_{4}	A_{5}	0_{5}	D_{6}	$d^{\prime \prime} 2$
2	2,224	2,121	0	3,865	0,954
3	1,137	1,806	0	2,745	1,588
4	0,828	1,637	0	2,315	1,978
5	0,679	1,532	0	2,179	2,257
6	0,590	1,458	0	2,055	2,472
7	0,530	1,402	0,078	1,967	2,645
8	0,486	1,358	0,139	1,901	2,791
9	0,453	1,322	0,187	1,850	2,916
10	0,427	1,293	0,227	1,809	3,024

appendix IV

Galculation of Cumulativegum Chacts

```
LA and LR = average tun lemqtis for the }\alpha\mathrm{ and }\beta\mathrm{ producer and
    consumer ilsks
ma}\mathrm{ and ma}= process mean for acceptable and rejectable qualities
h = oruinatt at t!r origin for tne upoer limit line
n = sample size
    The tw:dame:tal formulas are:
    L=\frac{\vdots}{\alpha}}\quad\mathrm{ and }\quad\mp@subsup{L}{R}{}=\frac{1}{1-\Omega
    h=a}\frac{\sigma2}{n(\mp@subsup{m}{R}{}-m
```

 The following ovalues are recommended
 Control o. action 1smit: a_{1}. 0,001
Warning limit: $X_{a} \quad 0,010$
and $/^{3}=0,5$ or $\sigma^{\prime}=0,667$ (which corresponds to average tun lengths of 2 and 3 ruspectively). Then, the a coef: cients far action and warning are:

$$
\text { Coefficient } \underset{a}{a}
$$

8	L_{R}	a_{1}	a_{a}
	2	6,215	3,912
0,667	3	5,808	3,506

sample size will be given by the formulas:
$\beta=0,50$

$\beta=0,667$

Example

In a process where $30 s$ counts are b.ing spun, with
$\sigma=0,6$, it is desired to establish a cumulative sum control charts in order to realize, whether an average from a second sample, gives a modification of one count (29 or 31).

For $\beta=0,5$, the sample size is:
Calculation of limits:
Action:

$$
n=5,52\left[\frac{0,6}{1}\right]^{2} \cong 2
$$

$$
h_{i}=6,215 \frac{0,6^{2}}{2 \times 1}=1,119
$$

Warning:

$$
h_{a}=3,912 \frac{0,6^{2}}{2 \times 1}=0,704
$$

At the beginning of control, if the mean of the first sample (or first samples) falls between $m_{0}=\frac{m_{A}+m_{R}}{2}$, i.e.,
$\frac{30+25}{2}=29,5$ and $\frac{30+31}{2}=30,5$ (reference values) no action will be taren and the values will be plotted on the central axis of the chart. then there is a mean value falling out oither of the action or warning intervals, the nearest reference value is substracted (29,5 or 30,5) and the result is plotted, on the chart, account being taken of its sign. The means of the next samples are algebraically summed to the preceding ones after substracting the same reference value.

APPENDIX V

Trend Charts

(a) Control of machines

Assume (fig. 1) a four delivery drawframe in cotton spinning, where it is desired to control sliver hank. The data from a week's work is collected on a cuntrol card, which in cludes the nect ary blocks for data from each day to be recor ded.

Un the busis of the specified nean (290 in our case), the different class intervals, are recorded on the upper part (in thousardths of a count). The interval is 0,002 counts (or 2 thousandths), ulich is dependent or call be related to quadrant oalance readings. Control is caricd out by weighing $1,5 \mathrm{~m}$ to 10 m lenths of stiver from all the four deliveries of the drawing frane. Let ur ascant there ate lour daily controls.

The resultsfrom the second control will be recurded in a dificret colour or in a conventional sign (in our example the cipher : rum the delivery will be enclosed in a square block $\square)$.

The delivery numuer will be recoided in the square co rresponding to the test value. In this way, it will be possible to detect pusivie wring trends or anomalies in the machine deliveries. Thus, or instance, on fonday of April 4, the first test fro: delivery $\}$ has produced, a nurmal value, whereas the second valu has moved the opposite way and quite far from the mean. A thisd cest, ris: ween cartied out (represented by cyphers in a circle \bigcirc) and as can ve seen, again delivery 3 was far from them mean ans nut on the same side as in the frovious test. An insufficent wissure was found on the correspording delivery after machin checrin., which caused it to be out of control. After corfection, everything went on nurmally, on the following days.

At the end of the weer, fe 16 rule is applied to find the standara deviation.

In our example, 32 ouservations $\times 16 \%=8$ values from each of the tails of the distribution. The standard deviation is 294-290 2
mate of the mean) is 292 (i.e. 0,292 hank). The coefficient of 2×100
variation $\frac{292}{29}=0,7 x$
It is converient to find the value of the median daily In order to know the general trend of the machine and to ba abla
to correct for it if necessary. Control limits are calculated at the end of the week; these are marked on the sheet corresponding to next week. In our example $3 \sigma=3 \times 2=6$, i.e., 6 units on each side of the mean (286-298). These limits corres pond to andividual deliveries.

For the dilily means, σ will be divided by $\sqrt{n-1}$, but n varies from 8 to 12 , su that in the former case $\frac{22}{52}=0,75$ and in the latter $2 / \sqrt{1} 1=0,6$. In practice.
$292 \pm 3 \times 0,75=294,25$ and 289,75
$292 \pm 3 \times 0,0=293,80$ and 290,40
i.e., 294 and 290, (it is a coincidence that these values be the same which limit σ in the distribution of the means).

It should ue observed in this examule, inat the control limits have been set from the actual and ict from the nominal mean of the process. In this way the stivility of proce ssing is secured although it is slightly out of center.

When all the daliveries can be analyzed, the advantage of this system is obvious, since it is easy to see, from the values recorded for each machine, the posidule anomalies and to correct them. With a classical control chart the failure of delivery 3 on April 4 would not so easily un detected, If not corrected it would have been jown or, orimanating disturbances which perhaps mist have een starn on the lont, run at the cost of fal int uul rance and, pos ibl: afle sume uselesopinion change narmful to prucess statility.
(b) Control of phupe ties or parameter

In admiscion and production cuntrol, this method can be used as a substituce for classical Shewhart's control charts. Fig. 2 shows an example of control of a 30 yarn strength for one week at the rate of 25 daily tests. In this instance, the value fromeach test ar marked by a cross in the ulocks of the card. A 59 class interval was chosen.

The final calculations are the same which have been given for processing control.

On the whole, we have 150 tests, of which the 16 per cent is 24 . we shall, therefore, take 24 points iom each side and the interval $270-235=35$ will shou the 2σ value. The appro ximate mean will be $235+17,5=252,5$ a and the coefficient of variation $\frac{17,5 \times 100}{252,2}=0,9 \%$.

This type of graph has, therefore, many applications as a substitute of Shewhart's.

APPENDIX VI

Example of application of a Multiple Plan in Textle control

Quality Control of defec:s of vobbins
Tils confrul is to be applitd to aobbins in order to find the pruportiori and the surt of defects that quite of ten show up.

Th: dufect are classified into two qroupss
Major defects:
Slack bobbin because of an inadequate traveller (at the ring spanning fiam)

Lare Dackuards ouvuin.
Uad ucobin at stert, too low.
Poorly firished uodoin, wo high.
Minor defects:
Star wheel too fat anead, i, iving poorly shaped bobbins (whole doff).
Backwards bobuin.
Bobbin with a pooi start, either too nigh or too iow, on the whole doff.

These defects snoudd be added to those innerent to some processes nut imbluded in the abuve clasification.

Sampling plan anu implementation of cuntrol
A sequential multiple sampling plan has ueen adopted. where an accepted quality level of S per cent hes been set for the laruer defects and of 10 fer cent fur tne smaller defects.

The sampling plan concerns one duff and it is shown on the left top side of the card. It works in the following way:

A first sample of 40 bobbins is taken at random and bobbins are examined one by one, the defects being recorded under "major defects" and "ininor defects".
(a) Major defects

If in the whole 40 bobbins there is none to be faulty or only one, the doff will be accepted as good (column $A=a c-$ ceptance, for laruer). If on the contrary, the number of faulty bobbins is greater tan 6 (inclusive) the doff will be considered as faulty (column $\ell=$ rejection f r larger; If the number of faulty bobbins is between 1 and 0 , a second sample of 10 more bobtins will be taken, and on the whole sample $40+10=50$,
it will be noted whether there are less than two or more than six faulty bobbins, to acceptor reject to doff. If the number of faulty bobbins is from 2 to 6 , a third sample will be taken and so on, up to a fifth sample if necessary, this last being the decisive one.
(b) Minor defects

The procedure is the same to that for larger defects, but with the acceptance and rejection figures shown on the right of the sampling plan.

To count and classify the faulty samples the columns in the lower part of the card will be used. In the example given here, it turns out that of the 40 bobbins taken out of the first sample, (i) there is one slack bobbin, (ii) one large backwards and (iii) a poorly finished one (too hiqh): all said, three bobbins with darge defects. The table in the sampling plan shows us that a second sample must ue taken, where only a large backward bobbin has turned up. On the whole, there are 4 faulty bobbins out of 50. A third sample must be taken, which has not given any faulty bobbins, but it is still necessary to take 10 bobbins more. Since there are no faulty bobuins in this fourth sample, it will fall into the acceptance number for larger defects. As to the "smaller defects", in the four samples the following in succession have turned up: 2, 1, 1, 1. The total of five smaller de fects falls by far in the acceptance number corresponding to the fourth sample for defects of this sort.

Sometimes, the whole doff larger defects (all bobbins are slack) or smaller (star wheel to far forward, bobbins with a poor start or finish because of bad adjustment of the lift at the beginning, or too highly finished). In that evert a cross will marked (x) in the corresponding cell and the inspoction will be continued in order to detect other possible deficts, it being well understood that even if on carrying out this count, the above ge neral defect be overlooked, the fral classing will be rejection even if the other defects should be smaller than their mrespon ding limiting figure.

When there are bobbins with either a poor start or finish, it should be discriminated where the defect is major or minor - Generally, it will be considered as smaller if it affects the whole doff and larger if it only affects a few vobtins because of a bad condition of either spindle or tube.

For slack bobbins it should also be discriminated whether the defect is a general or a particular one, although in this event, the defect will be considered as major.

Backward bobbins can be classified into maior and minor according to severity of defect.

Whe a bobbin has two defects it will be classified following the most important of the two.

OEFECTS IN SPINNING

Faulty bobbins

Sampling plan

Major				minor	
A	R		$\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	A	R
1	6	1 er	40 (40)	4	9
2	6	2nd	10 (50)	5	10
3	7	3 rd	10 (60)	7	12
4	8	4 th	10 (70)	8	13
7	8	5 th	10 (80)	12	13

Complementary data

 DateMacnine.
No.
Batch.
Greaks: 100 spindle hours. . . .
Saturation.

Control date

Major

Minor

	Samples					Iotal
Star wheal too far forward	1er	2nd	3 rd 0	$4 \mathrm{th}$	5th	
Little backwards	11	1	1	1		5
Poor atart (low)	0	0	0	0		-
Poor finish (high)	0	0	0	0		-
	2	1	1	1		5

Fig 1.
Foint betroen warniry and sontrol ii! its. Ropetec tezt (ivis necos-

Fig. 3

$$
13.3 .74
$$

D. 0

0888

 $\lambda$$\theta$

Figi

Fjg. 10

Ahs: Persentare dof ctivo (10)
Ord: Acerptance prol bility P

Als: ferventar aciective (100 p)
Ord: Acoptance rrobabijlity P

Fif, 12

Fies. 13

Fic. 14

Fig. 15

F19, 16

F18. 17

RA: MARERIAL: Amorisan cotton x 10-20 SOIMPT: 0.29 (metric)
YAHAMFTHR : Bllver comt.

HA'SHINE: traw irame.
DATE: 1? - 17 January 1970.

:ATE 1. - 17 imnuery 197).

$$
\nabla
$$

