

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

. ~
,."".,...:'W:,' .'"

.
•e •

\
!
I
\

"-
\
"-

)

I

,
I

I
(

(

,
\

I

/

\

)

I

\
)

Object-Oriented Software

Development Using UML

Contents

Contents

1 Introduction 1
1.1 Reading List 1
1.2 Introduction to Software Engineering 2
1.3 Questions 4

2 Software Development Process 5
2.1 Software Development Process 5

2.1.1 Requirement capture and analysis 6
2.1.2 System design 8
2.1.3 Implementation and unit testing 9
2.1.4 Integration and system testing 10
2.1.5 Operation and maintenance . 10

2.2 The Waterfall Model ... 10
2.3 Evolutionary Development 11
2.4 Questions 14
2.5 Further Reading 14

3 Introduction to 00 Development 15
3.1 The Inherent Complexity of Software 15
3.2 Mastering Complex Systems 17

3.2.1 Examples of complex systems 17
3.2.2 The five attributes of a complex system 20
3.2.3 The generalization-specialization hierarchy 21
3.2.4 Function-oriented and object-oriented methods 22

3.3 The Rest of The course 25
3.4 Questions , 25

4 Requirement Capture and Analysis - Use Cases 27
4.1 Understanding requirements ... 27

4.1.1 Introduction 27
4.1.2 Case study: Point-of-sale . . 28
4.1.3 Requirements specification . 28

4.2 Use C-ases: Describing Processes . 33
4.2.1 Use case concepts 33
4.2.2 Identifying use cases ... 34
4.2.3 Writing use cases 35
4.2.4 Essential and real use cases. 39
4.2.5 Use-case model and use case diagrams 40
4.2.6 Use cases within a development process 43
4.2.7 Actors and use cases of the POST system 44
4.2.8 Summing up 45

4.3 Questions 46

ii

5 Requirement Capture and Analysis - Conceptual Model
5.1 Conceptual M,odel - Concepts and Classes

5.1.1 Conceptual Models
5.1.2 Defining tenns and modelling notation for a concept
5.1.3 Identifying Concepts
5.1.4 Conceptual modelling guidelines. . .

5.2 Conceptual Model- Associations .
5.2.1 Strategies for identifying associations
5.2.2 The aggregation association

5.3 Conceptual Model-Attributes .
5.3.1 Adding attributes to classes .
5.3.2 Attributes for the Point-of-Sale System

5.4 Steps to Create a Conceptual Model
5.5 Recording Tenns in the Glossary
5.6 Questions

6 System Behaviour: System Sequence Diagrams and Operations
6.1 System Sequence Diagram .

6.1.1 System input events and system operations
6.1.2 System sequence diagram "
6.1.3 Recording system operations .

6.2 Contracts for System Operations . . .
6.2.1 Documenting Contracts '"
6.2.2 Contracts for some operations in POST system
6.2.3 How to make a contract
6.2.4 Contracts and other Documents

6.3 Analysis Phase Conclusion

7 Design Phase: Collaboration Diagrams
7.1 Object Sequence Diagrams
7.2 Collaboration Diagrams .

7.2.1 Examples of collaboration diagrams
7.2.2 More notational issues . .

7.3 Creating Collaboration Diagrams.
7.3.1 Overview of Design Phase
7.3.2 Real Use Cases .
7.3.3 GRASP: Patterns for Assigning Responsibilities
7.3.4 GRASP: Patterns of General Principles in Assigning Responsibilities
7.3.5 A Design of POST .
7.3.6 Connecting User Interface Objects to Domain Objects
7.3.7 Design Class Diagrams.

7.4 Questions

8 Implementing a Design
8.1 Notation for Class Interface Details

Contents

49
49
49
51
52
55
56
59
63
66
67
73
74
75
77

81
81
82
83
85
87
88
89
91
92
92

95
96
96
97
98

103
103
103
105
106
117
128
129
133

137
137

Contents

8.2 Mapping a Design to Code .
8.2.1 Defining a class with methods and simple attributes .
8.2.2 Add reference attributes .
8.2.3 Defining a method from a collaboration diagram
8.2.4 Container/collection classes in code
8.2.5 Exceptions and error handling
8.2.6 Order of implementation

8.3 Questions .

9 Advanced Modelling Concepts and Design Techniques
9.1 Iterative Development Process .

9.1.1 Use case and iterative development
9.1.2 Development cycle 2 of POST '.
9.1.3 Extending the conceptual model

9.2 Generalisation
9.2.1 The notion of generalization ..
9.2.2 The meaning of the generalization-specialization relationship
9.2.3 Abstract classes .
9.2.4 Type hierarchies in the POST application

9.3 More about Associations .
9.3.1 Associative types .
9.3.2 Qualified associations .

9.4 Packages: Organizing Elements
9.4.1 POST conceptual model packages

9.5 Modelling Behaviour in State Diagrams

10 Summing Up

iii

139
139
139
140
143
144
144
145

147
147
148
148
152
152
154
154
156
156
159
159
162
163
165
167

177

Chapter 1

Introduction

Topics for Chapter 1

• Reading List.

• Introduction to Software Engineering

1.1 Reading List

Recommended Reading

1. I. Jacobson, G. Booch, and 1. Rumbaugh, The Unified Software Development Process, Addison-
Wesley, 1999.

2. R. Pooley and P. Stevens, Using UML: Software Engineering with Objects and Components,
Addison-Wesley, 1999.

Background Reading

1. G. Booch, J. Runbaugh and I. Jacobson, The Unified Modelling Language User Guide, Addison-
Wesley, 1999.

2. 1. Runbaugh. I. Jacobson and G. Booch, The Unified Modelling Language Reference Manual.
Addison-Wesley, 1999.

3. M. Fowler, UML Distilled -Applying the Standard Object Modeling Language, Addison-Wesley,
1997.

2 Introduction to Software Engineering

4. B. Meyer, Object-oriented Software Construction (2nd Edition), Prentice Hall PTR, 1997.

5. O. Nierstrasz and D. Tsichritzis, Object-Oriented Software Composition, Prentice Hall, 1995.

6. R. Pressman, Software Engineering -A Practitioner's Approach (4th Edition), McGraw Hill. 1997.

7. M. Priestley, Practical Object-Oriented Design, McGraw-Hill, 1997.

8. 1. Runbaugh, I. Jacobson and G. Booch,The Unified Modelling Language Reference Manual,
Addison-Wesley, 1999.

9. S.R. Schach, Classical and Object-Oriented Software Engineering (3rd Edition), IRWIN, 1996.

10. I. Sommerville, Software Engineering (5th Edition), Addison-Wesley, 1995.

1.2 Introduction to Software Engineering

The notion of software engineering was proposed in the late 1960s at a conferenceJ held to discuss what
was then called the 'software crisis'. This software crisis resulted directly from the introduction of third-
generation computer hardware. Compared with software systems developed for the second-generation
computers, software systems now often have among the others the following features:

• they model parts of the real world;

• they are large and complex;

.. they are abstract;

• they must be highly dependable;

• they need to be better maintainable: as the real world changes, so too must the software to meet
the changing needs and requirements;

• they must be user friendly, and thus the user interface in a software system is an important part.

Software development was in crisis because the methods (if there were any) used were not good enough:

• techniques applicable to small systems could not be scaled up;

• major projects were sometimes years late, they cost much more than originally predicted;

• software developed were unreliable, performed poorly. and were difficult to maintain.

INATO Software Engineering Conference. Garmisch, Germany. 1968.

Introduction to Software Engineering 3

The fact that hardware costs were tumbling while software costs were rising rapidly, as well as the above
required features, called for new theories, techniques, methods and tools to control the development
process of software systems. Software engineering is concerned with the theories. methods and tools
which are needed to develop software. Its aim is the production of dependable software, delivered on
time and within budget, that meets the user's (the application's) requirement.

A Software engineering is not to produce a working software system only, but also documents such as
system design, user manual, and so on.

Software products

The objective of software engineering is to produce software products with high-quality. Software prod-
ucts are software systems delivered to a customer with the documentation which describes how to install
and use the system.

The quality of a software product is judged by, apart from the services provided by the product, the
characteristics displayed by the product once it is installed and put into use. The critical characteristics
of a software product include

.' Usability: It must be ,useful and usable to make people's lives easier and better. For this, the
software should have an appropriate user interface and adequate documentation .

• Maintainability: It should be possible to evolve software to meet the changing needs of customers.
In other words the product should be flexible to changes that need to make.

• Dependability: Software dependability includes a range of characteristics including reliability,
security and safety. Dependable software should not cause physical or economic damage in the
event of system failure.

• Efficiency: Software should not make wastefulllcse of system resources such as memory and pro-
cessor cycles.

It should be noted that the relative importance of these characteristics obviously varies from system to
system. and that optimizing all these characteristics is difficult as some are exclusive. Also the relation-
ship between the cost and improvements in each characteristic is not a linear one.

To build good systems, we need

• a well defined development process with clear phases of activities, each of which has an end-
product,

• methods and techniques for conducting the phases of activ.ities and for modelling their products,

• rools for generating the products.

4 Questions

In this course, we shall concentrate on methods, strategies and tools in the object-oriented framework
which lead to dependable, maintainable, and user friendly software.

Returning to the issue of maintainability, a software product as a model of the real world has to be
maintained constantly in order to to remain an accurate reflection of changes in the real world. Therefore,
software engineering must be also concerned with evolving software systems to meet changing needs and
requirements.

For instance, if the sales tax rate in the USA changes from 6% to 7%, almost every software product that
deals with buying or selling has to be changed. Suppose the product contain the C or C;++ statement

const float sales_tax = 6.0;

declaring that sales_tax is a floating-point constant, and initialized to 6.0. In this case maintenance is
relatively simple. With the aid of a text editor the value 6.0 is replaced by 7.0, and the code is recompiled.
However, if instead of using the constant declaration, the actual 6.0 has been used in the product wherever
the value of the sale tax is invoked, then such a product will be extremely difficult to maintain.

1.3 Questions

1. Consider a piece of software that you enjoy/hate using. In what respects is it a high/low quality
system?

2. Do you know some infamous examples of failures of the desirable attributes of software that have
dramatic effects? Which of the attributes failed in your example?

Chapter 2

Software Development Process

Topics for Chapter 2

• The main activities in software development

• The watetfall model of software development process

• The Evolutionary development

2.1 Software Development Process

All engineering is about how to produce products in a disciplined process. In general, a process defines
who is doing what when and how to reach a certain goal. A process to build a software product or to
enhance an existing one is called a software development process.

A software development process is thus often described in terms of a set of activities needed to transform
a user's requirements into a software system. At the highest level of abstraction, a development process
can be depicted in Figure 2.1.

The client's requirements define the goal of the software development. They are prepared by the client
(sometime with the help from a software engineer) to set out the services that the system is expected to
provide, i.e. functional requirements. The functional requirements should state what the system should
do rather than how it is done. Apart from functional requirements, a client may also have non-functional
constraints that s/he would like to place on the system, such as the required response time or the use of a
specific language standard. This course is mainly concerned with the functional requirements.

We must bear in mind about the following facts which make the requirement capture and analysis very
difficult:

5

6 Software Development Process

Software Product

Figure 2.1: A simplified view of the software development process

• The requirements are often incomplete .

• The client's requirements are usually described in terms of concepts, objects and terminology that
may not be directly understandable to software engineers .

• The client's requirements are usually unstructured and they are not rigorous, with repetitions,
redundancy, vagueness, and inconsistency.

• The requirements may not be feasible.

Therefore, any development process must start with the activities of capturing and analyzing the client's
requirements. These activities and the associated results form the first phase (or sub-process) of the
process called requirement analysis.

2.1.1 Requirement capture and analysis

The purpose of the requirement capture analysis is to aim the development toward the right system. Its
goal is to produce a document called requirement specification. The whole scope of requirement capture
and analysis forms the so-called requirement engineering. In this chapter, we mainly discuss the main
activities needed and the essential attributes of their products, and later we focus on the study of 00
techniques for requirement capture and analysis in chapters 4-6.

The document of the requirement specification will be used as

1. the agreed contract between the client and the system development organization on what the system
should do (and should not do);

2. the basis used by the development team to develop the system;

3. a fairly full model of what is required of the system.

To fulfill these purposes, the requirement analysis process, depicted in Figure 2.2, should include the
following highly iterative activities:

-~j

Software Development Process

DovelopeJ

Client Y
Domain exp,v\

Specification document

7

Requirement statements

Figure 2.2: A view of the requirement analysis process

• Domain understanding Analysts must develop their understanding of the application domain.
Therefore, the concept is explored and the client's requirements are elicited .

• Requirements capture The analyst must have a way of capturing the client's needs so that they
can be clearly communicated to everyone involved in the project. They must interact with the
client, and the application domain experts, and the potential system users to discover and capture
their requirements. The skills of abstraction is important to capture the essences and ignore the
non-essences.

• Classification This activity takes the unstructured collection of requirements captured in the earlier
phase and organizes them into coherent clusters, and then prioritizes the requirements according
to their importance to the clients and the users.

• Validation This is to check if the requirements are consistent and complete. and to resolve conflicts
between requirements.

• Feasibility study This is to estimate whether the identified requirements may be satisfied using the
software and hardware technologies, and to decide if the proposed system will be cost-effective.

There is no hard guideline rule on when requirement analysis is completed and the development process
. proceeds into the next phase. The following questions must be asked before the development progresses
into the next phase:

• Has the system required been fully understood by the client, end-users. and the developers?

8 Software Development Process

• Has a fairly complete model of what is required built? This is a model of the system about what
must be done by the system in terms of

- what functions (or services) are available;

- what the input & output are;

- what data are necessary;

but no implementation decisions should be described in this model.

Of course, the requirement specification and the model of the system at this level must be adjusted and
improved once this is found necessary during a later stage of the development.

An important side effect of requirement analysis is testing the final system:

• test plan must be made according to the requirement specification;

• test cases should be designed to cover all the crucial services required.

In summary, the requirement specification is the official statement of what is required of the system
developer. It is not a design document and it must state what to be done rather than how it is done. It
must be in a form which can be taken as the starting point for the software development. A specification
language is often used. Graphical notations are often also used to describe the requirement specification.

The requirement capture and analysis phase is important. as an error which is not discovered at the
requirement analysis phase is likely to remain undiscovered, and the later it is discovered, the more
difficult and more expensive is it to fix.

2.1.2 System design

After the specification is produced through requirement analysis. the requirement specification under-
goes two consecutive design processes. The first comes architectural (or logical) design in which the
requirements are partitioned into components. This results in an. architectural design document which
describes what each component must do and how they interact with each other to provide the over all
required services. Then each component in turn is designed; this process is termed detailed (or physical
design. The detailed design document describes how each component does what it is required to do and
thus how the whole system does what it is required to do. The activities of the design process and the
associated results are depicted in Figure 2.3

Therefore, t.he document produced in the architectural design phase is an architectural model consisting
of the specifications of the components which describe what each component must do by specifying the
interfaces of the components. The model of the system at this level is stilI abstract, implementation
independent, and stilI much about "what" rather than "how".

Software Development Process 9

Concrete, implementation dependent
detailed architectural: skeletal system

Model of the System

ReQUi«rnt Specifie"ion

Logical Dessign:
Abstract, implem.
independent. Detailed Design:

Partition. general Architeclu e Refinement,
What does a component do? How does a component do it
Relate Components

Design of the relationships.

Figure 2.3: A view of the design process

The detailed design sub-process involves a number of steps of refinement to the architectural model,
resulting in a detailed design model which describes

• the design of the functions of each component, describing how each component provides its re-
quired functions,

• the design of the interface of each component, describing "how" each component provides its
services to other components.

The model of the system at this level can be seen as a skeletal system which is concrete, implementation
dependent, and defines "how".

2.1.3 Implementation and unit testing

During this stage, each of the components from the design is realized as a program unit. Each unit then
must be either verified or tested against its specification obtained in the design stage. This process is
depicted in Figure 2.4

Design Specification
Implementation

and

Unillesting

A set of tested program units

Figure 2.4: A view of the implementation and unit testing process

10 The Waterfall Model

2.1.4 Integration and system testing

The individual program units representing the components of the system are combined and tested as a
whole to ensure that the software requirements have been met. When the developers are satisfied with the
product. it is then tested by the client (acceptance testing). This phase ends when the product is accepted
by the client.

2.1.5 Operation and maintenance

This phase starts with the system being installed for practical use, after the product is delivered to the
client. It lasts till the beginning of system's retirement phase, which we are not concerned in this course.

Maintenance includes all changes to the product once the client has agreed that it satisfied the specifica-
tion document. Maintenance includes corrective Maintenance (or software repair) as well as enhance-
ment (or software update). Corrective Maintenance involves correcting errors which were not discovered
in earlier stages of the development process while leaving the specification unchanged. There are, in
turn, two types of enhancement:

• Perfective maintenance involves changes that the client thinks will improve the effectiveness of
the product, such as additional functionality or decreased response time .

• Adaptive maintenance are about changes made in response to changes in the environment in which
the product operates, such as new government regulations.

Studies has indicated that, on average, maintainers spend approximately 17.5% of their time on corrective
maintenance, 60% on perfective maintenance, and 18% on adaptive maintenance.

2.2 The Waterfall Model

According to the software development activities discussed above, the whole development process is
often described by the so-called 'waterfall model' depicted in Figure 2.5

The development process of a software product is also called the life cycle of the software. We must note
that

• In practice. the stages in the waterfall model overlap and feed information to each other: during
design. problems with requirements are identified; during coding, design problems are found and
so on. Therefore. the development process is not a simple linear model but involves a sequence of
iterations of the development activities.

Evolutionary Development

Requirement
Analysis

Design -

Implementation -
and Unit Testing

Integrating and
System Testing

1
Operation and
Maintenance

Figure 2.5: The Waterfall Model

11

• During the final life cycle phase, perfective maintenance activities may involve repeating some or
all previous process stages .

• A development process which includes frequent iterations makes it difficult to identify manage-
ment checkpoints for planning and reporting. Therefore, after a small number of iterations, it is
normal to freeze parts of the development such as the specification, and to continue to the later
development stages. Problems are left for later resolution, ignored or are programmed around.

• Sometimes it is quite difficult to partition the development activities in a project into these distinct
stages.

The waterfall model can be used for some statistic studies about the software development. Figure 2.6
and Figure 2.7 illustrate why high quality software is difficult to produce and to maintain, and why the
development activities must be conducted in a good engineering manner.

2.3 Evolutionary Development

A problem with the waterfall model is that some software development project is difficult to be parti-
tioned into the distinct stages of requirement analysis, design and so on. Sometimes, it is also difficult
(or impossible) to establish a detailed requirement specification.

12

Cost

Evolutionary Development

67%

Figure 2.6: Approximate relative costs of software process phases (from Schach 1990)

Evolutionary development is based on the idea of developing an initial implementation, exposing this
to user comment and refine through many versions until an adequate system has been developed (Fig-
ure 2.8).

The development process starts with an outline description of the system. Rather than having separate
specification, development (design, implementation) and validation (testing and/or verification and/or
prototyping) activities, the:;e are carried out concurrently with rapid feedback across these activities.

The techniques used in an evolutionary development include

• Exploratory programming where the objective of the process is to work with the client to explore
their requirements and deliver a final system. The development starts with the parts of the system
which are understood. The system evolves by adding new features as they are proposed by the
client.

• Prototyping where the objective of the development is to understand the customer's requirements
and hence develop a better requirements definition for the system. The prototype concentrates on
experimenting with those parts of the client requirements which are poorly understood.

Obviously, this model with the iterations of try-see-change activities suffers from the following problems

• The process is not visible It is difficult and expensive to produce documents which reflect every
version of the system .

• System are poorly structured Continual change tends to corrupt the software structure.

Evolutionary Development 13

Effort to correc
Source of error

(a) (b)

Figure 2.7: Software errors (a) their source and (b) their correction effort (from Finkelstein, 1989)

• It is not always feasible For large systems, changes in later versions are very much difficult and
sometimes impossible. New understanding and new requirements sometimes force the developer
to start the whole project all over again. Software evolution is therefore likely to be difficult and
costly. Frequent prototyping is also very expensive.

These problem directly lead to the problems that the system is difficult to understand and maintain.
Therefore it is suggested that this model should be used in the following circumstances:

• The development of relatively small systems .

• The development of systems with a short lifetime. Here, the'system is developed to support some
activity with is bounded in time, and hence the maintenance problem is not an important issue .

• The development of systems or parts of large systems where it is impossible to express the detailed
specification in advance (e.g. AI systems and Interfaces).

The ideas, principles and techniques of the evolutionary development process are always useful and
should be used in different stages of a wider development process, such as the requirements understand-
ing and validating in the waterfall process.

14

Concurrent activities

(Specification) Initail version

~

Outline description Intennefiate

~
() version

Development

()
Final version

Validation

Figure 2.8: Evolutionary development model

2.4 Questions

I. Why do we need a software development process.

Questions

2. Find more about software development process, especially the requirements that a good software
development process must be met.

2.5 Further Reading

1. I. Jacobson, G. Booch, and 1. Rumbaugh, The Unified Software Development Process, Addison-
Wesley, 1999.

2. R. Pooley and P. Stevens, Using UML: Software Engineering with Objects and Components,
Addison-Wesley, 1999.

3. R. Pressman, Software Engineering -A Practitioner's Approach (4th Edition), McGraw Hill, 1997.

4. I. Sommerville, Software Engineering (5th Edition), Addison-Wesley, 1995.

Chapter 3

Introduction to 00 Development

Topics for Chapter 3

• The inherent complexity of software

• Mastering complex systems

• The hierarchy of complex systems

• Motivation to 00

• The outline of the rest of the course

3.1 The Inherent Complexity of Software

Within the scope of software engineering, the models for software development process and their asso-
ciated principles and techniques have provided much better understanding of the activities in the process
and have led to great improvements in productivity and quality of.software. On the other hand, we are
still in the software crisis. Now we understand that this is because of the inherent complexity of software.

The following three observations show why the complexity of software is an essential property.

The complexity of the problem domain This, in turn, derives from the following elements:

1. Difficulties in capturing requirements This usually comes from the "impedance mismatch" that
exists between the users of the system and its developers:

15

16 The Inherent Complexity of Software

• Users generally find it very hard to give precise expression to their needs in a form that
developers can understand .

• Users may only have vague ideas of what they want in a system.

2. Competing and contradictory requirements Consider the requirements for the electronic system of
a multi-engine aircraft, or an autonomous robot. The raw functionality of such systems is difficult
enough to comprehend, but now add all of the (often implicit) nonfunctional requirements such as
usability, performance, cost, and reliability.

3. Changing requirements Requirements of a software system often change during its development,
largely because

• Seeing early products, such as design documents and prototypes, and then using a system
once it is installed and operational, lead the users to better understand and articulate their
real needs.

• At the same time, the development process itself helps the developers master the problem
domain, enabling them to ask better questions that illuminate the dark comers of the system's
desired behaviour.

Elements 1&2 imply the problems and difficulties that are involved during the requirement analysis
phase, while element 3 implies that a software development is an evolving process and iterations are
inescapable, and that evolution and maintenance are inherently difficult.

The difficulty of managing the development process The fundamental task of the software devel-
opment team is to engineer the illusion of simplicity - to shield users from the vast and often arbitrary
complexity (See Figure 3.1) of the system.

Figure 3.1: To Engineer the illusion of simplicity

Mastering Complex Systems 17

However, the sheer volume of a system requirements often requir~s us to write a large amount of new
software or to reuse existing software in novel ways. No one can ever completely understand a system
containing hundreds of thousands. or even millions of lines of code. The amount of work demands that
we use a team of developers. More developers means more complex communication and hence more
difficult coordination.

The problems of characterizing the behaviour of system In a software system for a large application,
there may be hundreds or even thousands of variables as well as more than one thread of control. The
behaviour of the system is how it changes from one state to another. Although a system can in practice
have only finite number of states,

• in a large system, there is a combinatorial explosion that makes this number very large;

• each event external to the system may change the state of the system;

• the system may react to an external event nondeterministically, i.e. it may not be predictable which
of a number of states the system will enter after a certain event.

This observation indicates the importance and difficulty of the decomposition in the design phase.

3.2 Mastering Complex Systems

Having said what make software inherently complex, An essential problem of software engineering is
how we can master this complexity during the software development process.

3.2.1 Examples of complex systems

A personal computer A personal computer is a device of moderate complexity. Most of them can be
decomposed into the same major elements:

• a central processing unit (CPU),

• a monitor,

• a keyboard, and

• some sort secondary storage device, either a floppy disk or a hard disk drive.

Each of these parts can be further decomposed into subparts. For example, a CPU is composed of

18

• a primary memory unit,

• an arithmetic/logic unit (ALU), and

• a bus to which peripheral devices are attached.

Mastering Complex Systems

Each of these parts may be in turn decomposed: an ALU may be divided into

• registers, and random control logic

which themselves are constructed from even more primitive elements, such as

• NAND gates, and inverters,

and so on.

Here we see the hierarchic nature of a complex system. A personal computer functions properly only
because of the collaborative activity of each of its parts. We can reason about how a computer works
only because we can decompose it into parts that we can study separately.

The important observations that we can make about a hierarchic system are:

• The layers of this hierarchy represents different levels of abstractions, each built upon the other,
and each understandable by itself.

• At each level of abstraction, we find a collection of parts that collaborate to provide services to the
higher layers.

• The layer we choose to investigate depends on our current needs.

The structure of plants To understand the similarities and differences among plants, a plant can be
seen as a complex system which can be decomposed into the hierarchy of subsystems illustrated in
Figure 3.2

All parts at the same level of abstraction interact in well-defined ways. For instance, at the highest level
of abstraction:

• roots are responsible for absorbing water and minerals from the soil;

• roots interact with stems, which transport these raw materials up to the leaves;

Mastering Complex Systems

Plants

19

Figure 3.2: The hierarchy of plants

• the leaves in turn use the water and minerals provided by the stems to produce food through
photosynthesis.

There are always clear boundaries between the outside and inside of a given level. For example. we can
imagine that the parts of a leaf work together to provide the functionality of the leaf as whole. and yet
have little or no direct interaction with the elementary parts of the roots. In other words. there is clear
separation of concerns among the parts at different level of abstractions.

Social Institutions As a final example of complex systems, we turn to the structure of social institu-
tions, which are groups of people join together to accomplish tasks that cannot be done by individuals.

The structure of a large organisation is clearly hierarchy. Multinational corporations, for example, con-
tain companies. which in turn are made up of divisions. which in turn contain branches, which in turn
encompass local offices, and so on (see Figure 3.3)

The relationship among the various parts of a corporation are just like those found among the components
of a computer or a plant. For instance, the degree of interactions among employees within an individual
branch is greater than that between employees of different branches.

20 Mastering Complex Systems

Multinational corporations

Figure 3.3: The hierarchy of multinational corporations

3.2.2 The five attributes of a complex system

From the examples, we have five attributes common to all complex systems.

The fact that many complex system have a decomposable hierarchic structure is a major facilitating factor
enabling us to understand, describe, and even 'see' such systems and their parts. This is summarised as
the following attribute.

1. Complexity takes the fonn of a hierarchy. whereby a complex system is composed of
interrelated subsystems that have in turn their own sl{.bsystems. an so on, until some
lowest level of elementary components is reached

Regarding to the nature of the primitive components of a complex system, we have that:

2. The choice of what components in a system are primitive is relatively arbitrary and is
. largely up to the discretion of the observer of the system

The components in a system are not completely independent. The understanding of the linkages between

Mastering Complex Systems 21

the parts of the system is also important. The nature of these linkages is another attribute common to all
complex systems:

3. Intracomponent linkages are generally stronger than intercomponent linkages. This fact
has the effect to separating the high-frequency dynamics of the components - involving
the internal structure of the components -from the low-frequency dynamics - involving
interaction among components

The following attribute says that complex systems have common patterns in their construction and im-
plementation:

4. Hierarchic systems are usually composed of only a few different kinds of subsystems in
various combinations and arrangements

In other words, a considerable amount of commonality cuts across all parts in the structural hierarchy of
a system. For example, we find, in a computer, NAND gates used in the design of the CPU as well as in
the hard disk drive. Likewise, cells serve as the basic building blocks in all structures of a plant.

Complex systems tend to evolve over time. As systems evolve, objects that were once considered com-
plex become the primitive objects upon which more complex systems built. This fact is stated as another
attribute of complex systems:

5. A complex system that works is invariably found to have evolved from a simple system
that worked. A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working simple
system

Furthermore, we can never craft the primitive objects correctly the first time: we must use them in context
first, and then improve them over time as we learn more about the real behaviour of the system.

3.2.3 The generalization-specialization hierarchy

Having that complex system can generally be decomposed into components which are combined and
arranged into layers representing different levels of abstraction, such a decomposition represents a struc-
tural (or "part-of') hierarchy. More interesting systems embody another hierarchY. For example, with a
few minutes of orientation, an experienced pilot can step into a multi-engine jet s/he never flown before
and safely fly the vehicle. In general, if a pilot already knows how to fly a given aircraft, it is far easier
to know how to fly a similar one. Therefore, the concept of aircraft represents an abstraction which

22 Mastering Complex Systems

generalizes the properties common to every kind of aircraft. In other words, and particular plane is a
special kind of aircraft, which has the properties that are common to all aircraft and properties which
are special to its kind. We shall see this secondary hierarchy is also essential to understand a complex
system. In the 00 framework, this "is a (or kind of)" hierarchy is called the class structure and the
"part-of' hierarchy is called the object structure. This is illustrated in Figure 3.4

Objects
Classes

- -------- belongs to

Figure 3.4: A canonical form of a complex system

This figure represents the two hierarchies:

• any instance (object) of class C6 is a kind of instances of class C3;

• objects D2 and D2 are parts of object D1;

• object D2 is an instance of class C6, and so on

00 software engineering is about how to engineering the class and object structures which have the five
attributes of complex systems. And in the context of 00 software engineering, the structure of a system
means the class and object structure of the system,

3.2.4 Function-oriented and object-oriented methods

Having said decomposition of a system into components is essential in mastering complex systems, what
is the role of decomposition in the development of a software system?

Mastering Complex Systems 23

Function oriented methods Until the middle of the 1990s, most of software engineers are used to the
top-down functional design methods (or structured design), whose defining aspects include

• It is strongly influenced by the programming languages such as ALGOL, Pascal and C. all of which
offer routines as their highest-level abstractions .

• The functions of a software system are considered as the primary criterion for its decomposition .

• It separates the functions and data. where functions, in principle, are active and have behaviour.
and data is a passive holder of information. which is affected by functions .

• The top-down decomposition typically breaks the system down into functions. whereas data is
sent between those functions. The functions are broken down further and eventually converted
into source code (see Figure 3.5).

Main function

Figure 3.5: Functional. top-down decomposition

People have found the following problems with the functional technology:

• Products developed with this approach are difficult to maintain. This is mainly because that all
functions share a large amount of data, and they must know how the data are stored. To change a
data structure, we must modify all the functions relating to the structure.

• The development process is not stable as changes in the requirements wiIl be mainly reflected in
its functionality. Therefore, it is difficult to retain the original design stricture when the system
evolves .

• The development process gets into the "how" business too soon. as when we decompose a function
into subfunctions, we cannot avoid from talking about first do this and then do that, and so on.

24 Mastering Complex Systems

• This approach only captures the "part-of' abstraction .

• Obviously, this approach does not support programming in object-oriented languages, such as
Smalltalk, Eiffel, C++, and Java.

Object-oriented technology The strategy in the 00 software development is to view the world as a
set of objects. They interact with and collaborate with each other to provide some higher level behaviour.
Objects have the following characteristics (see Figure 3.4):

• An object is simply a tangible entity in the real world (at the requirement analysis phase) or repre-
sents a system entity (at the design stage).

• Objects are responsible for managing their own private state, and offering services to other objects
when is it requested. Thus, data and functions are encapsulated within an object.

• The system's functionality is observed by looking at how services are requested and provided
among the objects, without the need to get into the internal state changes of the objects .

• Objects are classified into classes, and objects belonging to the same class have common proper-
ties, such as attributes and operations.

It seems that the 00 approach reflects the "is a" abstraction as well as the "part of' abstraction better,
and can overcome some of the problems in the function approach (notice that J do not want to make
stronger claims).

What actually is 00 Technology?

There is currently an war in arguing about what 00 is and how it differs from the classical structured
design methods. Here I quote

...... Unfortunately, object-oriented programming means different things to different people.
As Rentsch correctly predicted, "My guess is that object-oriented programming will be in
the 1980s what structured programming was in the 1970s .. Every one will be in favour of
it. Every manufacturer will promote his products as supporting it. Every manager will pay
lip service to it. Every programmer will practice it (differently). And no one will know just
what it is". Rentsch's predications still apply to the 19905.

- Grady Booch 1994

I do not think we should join this war. We rather like to learn the concepts, techniques, and notations that
have developed and found useful in the 00 framework. One thing will become clear to us, 00 design
helps in developing good software written in C++ and Java.

The Rest of The course

3.3. The Rest of The course

25

The rest of course is to discuss the object-oriented software methodology. The methodology includes the
following

• Notation The language for expression each model of the system at a level of abstraction. For this
purpose, we shall use UML. standing for Unified Modelling Language which is widely used as a
standard modelling language .

• Process The activities leading to the orderly construction of the system's models. We shall focus
on the activities of object-oriented analysis (OOA), object-oriented design (OOD), and object-
oriented implementation strategies (OOI).

• Tools The artifacts that eliminate the tedium of the model building and enforce rules about the
models themselves, so that errors and inconsistencies can be exposed. The tool that we use for the
practicals will be the Rational Rose'

3.4 Questions

1. Discuss the complexities apparent in the following software development:

A group of developers in a small start-up located in Los Angeles have been contracted
to build a chemical analysis system for an industrial chemical lab in Santa Fe. The lab
works with several thousand chemicals, and wants an exploratory tool for predicting
the interactions of chemicals in novel combinations. The software house won the con-
tract by under-bidding the competition. so they have little money available for travel.
Only the team leader is able to make trips to Santa Fe and all contact between the
chemists and the design team takes place through the team leader. She takes detailed
notes on her discussion with the chemists who will use the tool, then briefs the team as
a group when she returns. Requirements are established and a high level design devel-
oped as a group. At this point, individual designers take on separate modules (e.g., the
chemical database, the graph computation, the user in.terface). The developers are a
close-knit group, and often discuss the detailed design of their modules with each other.
This enables them to coordinate their designs from the beginning -for example, as the
organization of the chemical database develops, the a.uthor of the graphing module di-
rectly incorporates the chemical grouping information embedded in the database and
uses this information as an organizing rubric for his analysis options. Unfortunately,
when the first prototype is shown to the clients, the clients are unhappy with the chem-
ical combination options. Both the database and the analysis modules must undergo
'substantial redesign.

IFor infonnation about National Rose. a thorough treatment of raw UML notation, the complete specification is available at
Ration Corporation's web site: www.rational.com

http://www.rational.com

26 Questions

2. The library at East-West University is a large building with over 4000 square feet of stacks. and
a spacious reading/periodicals room overlooking the main quad. The library has holds over 10K
volumes. and subscribes to about 200 periodicals; most of these are archival and the has bound
journal volumes dating back as far as 1901. Books can be checked out for two weeks. periodicals
for three days. A wide selection of reference aids are also available, but these must be used in
the library. The material is heavily biased towards sciences, with engineering, life sciences, and
mathematics the major topic areas. A smaller set of holdings in the liberal arts (literature, social
sciences. and history also exists. the staff consists of a head librarian, six students who take turns
working at the desk and shelving returns, and two reference librarians.

Characterize the East-West library system described above in terms of the five attributes of com-
plex systems.

3. Fred is a Dodge dealer - his dealership maintains an sells a vehicle inventory typically numbering
over 100 at any given time. It also services cars of all makes. While it stocks a variety of parts
for Dodge models, it purchases parts for vehicles of other brands on an as-needed basis. What
"kind-of' hierarchies might be useful in organizing Fred's dealership? "Part-of' hierarchies?

4. Figure 3.6 depicts a possible object structure for a simple blackjack game, listing some of the
important elements connected in a "part-of' hierarchy. In analyzing complex systems, under-
standing the relationship(s) between hierarchical components is just as important as identifying
the components themselves. For each connection among notes in the blackjack graph, specify the
relationship(s) between the connected objects.

Figure 3.6: Object structure for a Blackjack Game

5. Describe one or more extensions to the blackjack game depicted above that would have little
impact on the complexity of the system. Then describe an extension that would make the system
noticeably more complex.

Chapter 4

Requirement Capture and Analysis - Use
Cases

Topics of Chapter 4

• Understanding requirements specification, such as functional specification, and nonfunctional at-
tributes of systems

• Understanding use cases, use case diagrams, and use-case model for describing the functional
. requirements

• Use-case diagrams and their use for describing a use-case model

4.1 Understanding requirements

4.1.1 Introduction

The creation of correct and thorough requirements specification is essential to a successful project. How-
ever, the treatment of the whole host skills necessary to elucidate meaningful requirements is simply too
much to cover in this course. Instead of going into every aspect of every skill, we use a case study to
illustrate the following three problems .

• What should be produced in the requirements capture and analysis?

• How to identify the elements of these artifacts?

• How are artifacts expressed?

27

28 Understanding requirements

4.1.2 Case study: Point-of-sale

A point-of-sale terminal (POST) is a computerized system used to record sales and handle payments; it
is typically used in a retail store. It includes hardware components such as a computer and a bar code
scanner, and software to run the system (See Figure 4.1).

Assume that we have been requested to create the software to run a point-of-sale terminal. Using an
object-oriented development strategy, we are going to proceed through the requirement analysis, design,
and implementation.

Figure 4.1: A point-of-sale terminal

4.1.3 Requirements specification

The requirements specification is a description of needs or desires for a product.

The requirements must be described

• unambiguously, and

• in a form that clearly communicates to the client and to the development team members.

It is recommended that the requirements specification at least include the following parts:

• an overview of the project

• goals

• system functions

• system attributes (non-functional requirements)

Understanding requirements

• Glossary - definition all relevant terms

• Use cases - narrative descriptions of the domain processes

29

• Conceptual model - a model of important concepts and their relationships in the application do-
maIO.

These are typically produced through gathering and digesting

• varied paper such as the client's statements about their needs, preliminary investigation report, and
electronic documents,

• interview results,

• requirements definition meetings, and so on

This section only discusses the first four parts of a requirements specification, and the others are left for
subsequent sections.

Overview of the project

This should describe the need for the system. For a large system, it should also briefly describe the
system's functions and explain how it will work with other systems.

The overview of the POST case study project can be simply written as the following statement:

The purpose of this project is to create a point-of-sale terminal system to be used in retail
sales.

Goals

This is to describe how the system fits into the overall business or strategic objectives of the organization
commissioning the software.

The goals of the POST system can be stated as

In general the goal is increased checkout automation, to support faster, better and cheaper
services and business processes. More specifically. these include:

• quick checkout for the customer,

30

• fast and accurate sales analysis,

• automatic inventory control.

Understanding requirements

The overview and the goals can be combined into an introduction section in the document.

System functions

System functions are what a system is supposed to do.

To verify that some X is indeed a system function, it should make sense in the following sentence:

The system should do < X >

For example, "ease-of-use" does not fit in the verification sentence. Thus, system qualities of this kind
should not be part of the functional requirements specification.

The system's function should be categorized in order to priorities them or to avoid from missing them.
Categories include

• Evident functions should be performed, and user should be cognizant that is performed .

• Hidden functions should be performed, but not visible to users. This is true of many underlying
technical services, such as save infonnation in a persistent storage mechanism. Hidden functions
are often incorrectly missed during the requirements gathering process .

• Frillfunctions are optional; adding them does not significantly affect cost or other functions.

In the presentation of the functions,

• they should be divided into logical cohesive groups,

• each function should be given a reference number that can be used in other documents of the
development,

• the category that a function belongs to should be indicated.

For the POST application; we present two groups of the system functions, the basic functions and the
functions related to payment. These functions serve as a set of representative sample, rather than a
complete list.

Understanding requirements

Basic functions of the POST system

Ref# Function Category

Rl.I Record the underway (current) sale - the items purchased. evident

R1.2 Calculate current sale total. evident

R1.3 Capture purchase item information from a bar code using a bar evident
code scanner, or manual entry of a product code, such as a univer-
sal product code (UPC).

RIA Reduce inventory quantities when a sale is committed. l\idden

R1.5 Log completed sales. hidden

R1.6 Cashier must log in with an ID and password in order to use the evident
system.

R1.7 Provide a persistent storage mechanism. hidden

R1.8 Provide inter-process and inter-system communication mecha- hidden
msms.

R1.9 Display description and price of item recorded. evident

Payment functions

31

32 Understanding requirements

! Ref# Function Category

I
i R2.1 Handle cash payments. capturing amount tendered and calculating evident

balance due.

R2.2 Handle credit payments, capturing credit information from a card evident
reader or by manual entry, and authorizing payment with the
store's (external) credit authorization service via a modem con-
nection.

R2.3 Handle cheque payments, capturing drivers license by manual en- evident
try, and authorizing payment with the store's (external) cheque au-
thorization service via a modem connection.

R2.4 Log credit payments to the accounts receivable system, since the hidden
credit authorization services owes the store the payment amount.

System attributes

System attributes are also called nonfunctional requirements. They are constraints imposed on the
system and restrictions on the freedom of the designer. These may include

• response time and memory requirements,

• ease of use,

• operating systems platforms,

• interface metaphor,

• retail cost,

• fault-tolerance, and so on

Some attributes may cut across all functions. such as the operating system platfonn, or be related to a
particular function or a group of functions.

Here are examples of attributes for the POST system:

Use Cases: Describing Processes

Attribute Constraints

response time When recording a sold item, the description and price will appear
within 5 seconds

interface metaphor Fonns-metaphor windows and dialog boxes

fault-tolerance Must log authorized credit payments to accounts receivable within
24 hours, even if power or device fails

operating system platfonn Microsoft Window 95 and NT

4.2 Use Cases: Describing Processes

33

One of the major aims in OOA is to decompose the requirements into concepts and objects in the appli-
cation domain and produce a conceptual model. An important technique to help in this decomposition
is to consider use cases - narrative description of domain processes in terms of interactions between the
system and its users. This section introduces use case concepts.

4.2.1 Use case concepts

Infonnally speaking, a use case is a story or a case of using a system by some users to carry out a process.
A bit more precisely speaking, a use case describes the sequence of events of some types of users, called
actors, using some part of the system functionality to complete a process.

For example, to carry out the process of buying things at a store when a POST is used

• two actors must be involved: Customer and Cashier,

• the following sequence of events must be performed:

The Customer arrives at a checkout with items to purchase. The Cashier records the purchase
items and collect payment. On completion, the Customer leaves with the items

Therefore, to a user, a use case is a way of using the system. A use case is described in tenns of a
sequence of interactions between some actors and the system by which the system provide a service to
the actors. Each use case then captures a piece of functional requirements for some users. All the use
cases together describe the overall functional requirements of the system. The first step in requirement
capture is to capture requirements as use cases. All the use cases allow software developers and the
client/customer to agree on the requirements, that is, the conditions or capabilities to which the system
must confonn.

34

Actors

Use Cases: Describing Processes

An actor represents a coherent set of roles that are entities external to the system can play in using the
system, rather than representing a particular individual. An actor represents a type of users of the system
or external systems that the system interacts with.

Note that

• An actor typically stimulates the system with input events, or receives something from the system.

• Actors communicate with the system by sending messages to and receiving messages from the
system as it perfonns use cases.

• Actors model anything that needs to interact with the system to exchange infannation: human
users, computer systems, electrical or mechanical devices such as timers.

• A physical user may act as one or several actors as they interact with the system; and several
individual users may act as different occurrences of one and the same actor.

• If there are more than one actor in a use case, the one who generates the starting stimulus is called
the initiator actor and the other participating actors .

• The actors that directly interacts the system are primary/direct actors, the others are called sec-
ondary actors.

Example: An ATM system (an auto bank machine system) interacts with a type of users who will
use the system to withdraw money from accounts, to deposit money to accounts, and to transfer money
between accounts. This type of users is then represented by The Bank Customer actor. Therefore a
use-case model can be used to represent the three use cases WithDraw Money, Deposit Money, and
Transfer Money. that have association to the Bank Customer actor.

Thus, actors represent parties outside the system that collaborate with the system. Once we have identi-
fied all the actors of a system, we have identified the external environment of the system.'

4.2.2 Identifying use cases

Each of the following steps for identifying use cases involves brainstonning and reviewing existing
documents of requirements specification:

1. One method to identify use case is actor-based:

(a) Identify the actors related to a system or organization, i.e. find and specify all the actors by
looking at which users will use the system and which other systems must interact with it.

Use Cases: Describing Processes 35

(b) For each actor, identifying the processes they initiate or participate in by looking at how the
actor communicate/interact with (or use) the system to do his work.

2. A second method to identify use cases is event-based.

(a) Identify the external events that a system must respond to.

(b) Relate the events to actors and use cases.

To identify use cases, read the existing requirements from an actor's perspective and carry on discussions
with those who will act as actors. It will help to ask and answer a number of questions, such as

• What are the main tasks of the actor?

• Will the actor have to refld/writelchange any of the system information?

• Will the actor have to inform the system about outside changes?

• Does the actor wish to be informed about changes?

For the POST application the following potential use actors and use cases can be identified:

Actor Processes to Initiate

Cashier Log In
LogOut

Customer Buy Items
Refund Items

4.2.3 Writing use cases

When we use the methods given in the above subsection to identify a use case, we first create a high-level
use case to obtain some understanding of the overall process, and then expand it by adding to it with more
details.

A high-level use case describe a process very briefly, usually in two or three sentences. They are often
only concerned with the eve~ts that the actors perform. It is described in the following format:

36 Use Cases: Describing Processes

Use case: Name of use case (use a phrase starting with a verb).

Actors: List of actors (external agents), indicating who initiates the use
case.

Purpose: Intention of the use case.

Overview: A brief description of the process.

Cross References: Related use cases and system functions.

For example, the high-level description of the Buy Items with Cash process can be described as follows.

Use case:

Actors:
Purpose:

Overview:

Cross References:

Buy Items with Cash

Customer (initiator), Cashier.
Capture a sale and its cash payment.

A Customer arrives at a checkout with items to purchase. The
Cashier records the purchase items and collects a cash payment.
On completion, the Customer leaves with the items.

Functions: R1.I, R1.2, R1.3, R1.7, R1.9, R2.1.

The references to the system functions indicate that

• the use case is created through further understanding of these functions,

• these required functions are allocated to this use case,

This is useful that

• it is possible to verify that all system functions have been allocated to use cases,

• it provides a link in terms of tractability between the products produced at different stages in the
development,

• all system functions and use cases can be traceable through implementation and testing.

An expanded use case shows more details than a high-level one, and is often done in a conversational
style between the actors and the system. Typically, an expanded use case extends a high-level one with
two sections typical course of events arid alternative courses of events (or exceptions):

Use Cases: Describing Processes 37

Use case:
Actors:

Purpose:
Overview:
Cross References:

Name of use case (use a phrase starting with a verb).
List of actors (external agents), indicating who initiates the use
case.
Intention of the use case.
A brief description of the process.
Related use cases and system functions.

Typical Course of Events

Actor Action System Response

Numbered actions of the actors. Numbered descriptions of system responses.

Alternative Courses

• Alternatives that may arise at lineJlumber. Description of exception.

For example, the high-level Buy Items with Cash use case can be expanded with the two sections in the
following way.

Typical Course of Events

Actor Action System Response

38 Use Cases: Describing Processes

1. This use case begins when a Customer ar-
rives at a POST checkout with items to
purchase.

2. The Cashier records the identifier from
each item.

If there is more than one same item, the
Cashier can enter the quantity as well.

3. Determines the item price and adds the
item information to the running sales
transaction.

The description and price of the current
item are presented.

4. On completion of the item entry, the 5 Calculates and presents the sale total.
Cashier indicates to the POST that item
entry is completed.

6. The Cashier tells the Customer the total.

7. The Customer gives a cash payment, pos-
sibly greater than the sale total.

8. The Cashier records the cash received 9. Shows the balance due back to the Cus-
amount. tomer.

Generate a receipt.

10. The Cashier deposits the cash received 11. Logs the completed sale.
and extracts the balance owing.

The Cashier gives the balance owing and
the printed receipt to the Customer.

12. The Customer leaves with the items pur-
chased.

Alternative Courses

• Line 2: Invalid identifier entered. Indicate error .

• Line 7: Customer didn't have enough cash. Cancel sales transaction.

We must note, the use case Buy Items with Cash is a simplified description of the full buy item process.
It assumes the following:

• Cash payments only.

• No inventory maintenance.

Use Cases: Describing Processes

• It is a stand-alone store, not part of a larger organization .

• Manual entry of UPCs; no bar code reader .

• No tax calculations .

• No coupons.

• Cashier does not have to log in; no access control.

• There is no record maintained of the individual customers and their buying habits.

• There is no control of the cash drawer .

• Name and address of store. and date and time of sale, are not shown on the receipt.

• Cashier ill and POST ill are not shown on the receipt.

• Completed sales are recorded in an historical log.

39

It is important to remember the 5th attribute of complex and we always begin the development with
building a simple system and then enhance and improve it over time as we learn more about the behaviour.

4.2.4 Essential and real use cases

At the requirement level, the use cases are relatively free of technology and implementation details;
design decisions are deferred and abstracted, especially those related to the user interface. An use cases
of this kind is said essential as it describes the process in terms of the essential activities and motivation.

In contrast, a real use case concretely describes the process in terms of its real current design, committed
to the specific input and output technologies, and so on.

For example, consider an ATM Withdraw Cash use case. The Typical Course of Events sections in an
essential form and in a real form can be used for illustration:

Essential

Actor Action System Response

1. The Customer identifies himlherself 2. Present options.

3. and so on 4. and so on

~o Use Cases: Describing Processes

Real

Actor Action System Response

1. The customer inserts his/her card. 2. Prompts for PIN.

3. Enter PIN on keypad. 4. Display options menu.

5. and so on. 6. and son.

4.2.5 Use-case model and use case diagrams

All the actors and use cases of a system make up a use-case model which describes how the use cases
relate to each other and to the actors, and specifies the system functional requirements.

A use case diagram describes part of the use-case model and illustrates a set of use cases for a system,
the actors, and the relation between the actors and use cases. The UMI.. notation for a use case diagram
is shown in Figure 4.2, in which

• an oval represents a use case,

• a stick figure represents an actor,

• a line between an actor and a use case represents that the actor initiates and/or participates in the
process.

Figure 4.2: A sample use case diagram

Use Cases: Describing Processes

Making up a big use case from simpler ones

41

It is not difficult to see that the sequence of actions from 7 to 10 in use case Buy Items with Cash can
be treated as a use case, which we can call Pay by Cash. It can be refined by adding more details such
as:

Pay by Cash

Typical Course of Events
Actor Action

1. The Customer gives a cash payment, pos-
sibly greater than the sale total.

2. The Cashier records the cash tendered. 3.

4. The Cashier deposits the cash received
and extracts the balance owing.
The Cashier gives the balance owing and
the printed receipt to the Customer.
Alternative Courses

System Response

Show the balance due back to the Cus-
tomer.

• Line 3. If cash the amount tendered is not enough, exception handling

• Line 4: Insufficient cash in drawer to pay balance. Ask for cash from super-
visor.

Using exactl)' the same techniques in the creation of Pay by Cash, we can create two use cases Pay by
Credit and Pay by Cheque.

Now it is not difficult to create the general use case Buy Items that can be written as follows.

42

Buy Items

Typical Course of Events

Actor Action

1. This use case begins when a Customer arrives at
a POST checkout with items to purchase.

Use Cases: Describing Processes

System Response

2. The Cashier records the identifier from each item. 3. Determines the item price and adds the
item information to the running sales
transaction.

If there is more than one of the same item, the
Cashier can enter the quantity as well.

The description and price of the current
item are presented.

4. On completion of the item entry, the Cashier indi- 5 Calculates and presents the sale total.
cates to the POST that item entry is completed.

6. The Cashier tells the Customer the total

7. The Customer chooses payment method:

(a) If cash payment, initiate Pay by Cash.

(b) If credit payment, initiate Pay by Credit.

(c) If cheque payment, initiate Pay by
Cheque.

8. Logs the completed sale.

9. Prints a receipt.

10. The Cashier gives the printed receipt to the Cus-
tomer.

11. The Customer leaves with the items purchased.

Alternative Courses

• Line 2: Invalid identifier entered. Indicate error .

• Line 7: Customer didn't have enough cash. Cancel sales transaction.

Use Cases: Describing Processes 43

In general, a use case may contain decision points. If one of these decision paths represents the over-
whelming typical case. and the others alternatives are rare, unusual or exceptional, then the typical case
should be the only one written about in the Typical Course of events, and the alternatives should be
written in the Alternative Courses section.

However, if the decision point represents alternatives which all relatively equal and normal in their like-
lihood, this is true of the payment types, then we have to describe them as individual use cases and they
can be used by a 'main' use case, such as Buy Items.

UML provides a notation for describing such a uses relationship between use cases, and this is illustrated
in Figure 4.3.

Cashier

credit Authorization
Service

POST

Pay by Check

Customer

Check
Authorization

Service

Accounts Receivable

Figure 4.3: Relating use cases with a uses relationship

4.2.6 Use cases within a development process

This section summarizes the activities and artifacts of use case analysis.

1. After system functions have been listed, then identify actors and use cases.

2. Write all use cases in the high-level format. You may like to categorize them as primary, secondary
or optional.

3. Draw a use case diagram for the system.

44 Use Cases: Describing Processes

4. Relate use cases and illustrate relationships in the use case diagram.

5. Write the most critical, influential and risky use cases in the expanded essential format to better
understand and estate the nature and size of the problem. Defer writing the expanded essential
form of the less critical use cases until the design or event the implementation starts.

6. Ideally, real use cases should be deferred until the design phase of a development cycle, since their
creation involves design decisions. However. it is sometimes necessary to create some real use
case during the early requirement phase if

• Concrete descriptions significantly aid comprehension .

• Clients demand specifying their processes in this fashion.

• For prototype purpose.

7. You may like to rank the use cases to plan which should be taken into the design and implementa-
tion phases first.

4.2.7 Actors and use cases of the POST system

Using the techniques of this section, a sample list (not an exhaustive) of relevant actors and use cases
they initiate include:

Actor Use Case

Cashier Log In
Cash Out

Customer Buy Items
Refund Items

Manager Start Up
Shut Down

System Add New Users
Administrator

We leave the construction of the use cases as exercises.

J

Use Cases: Describing Processes

4.2.8 Summing up

Use case definition

45

A use case specifies a sequence of actions that the system can perform and that yields an observable
result of value to a particular actor. A use case is full end-ta-end story about the use of the system to
carry out a task. not an arbitary combination of a number of steps of computation. For example, we
should not combine two tasks into a use case. such a Borrow a Book and Return a Book. if it is not alway
the case that one must be carried out after the other.

Why use cases?

The reasons why use cases are good for requirement capture include

• They do not only answer the question what the system should do but answer it in terms of what
the system should do for each user/actor. They therefore identify the system functions a system
provides to add values to its users. and help to remove functions that they do not add values to the
users .

• They identify system functions and the relationship among the system functions.

• They also identify concepts and objects involved in the application domain. These concepts and
objects are very important in modeling the architecture of the system, and are later in the design
realized as software classes and objects .

• Use cases are also used as "placeholders" for nonfunctional requirements, such as performance.
availability, accuracy, and security requirements that are specific to a use case. For example, the
following requirement can be attached to the Withdraw Money use case: The response time for
a Bank Customer measured from selecting the amount to withdraw to the delivery of the notes
should be less than 30 seconds in 95% of all cases .

• Use cases are also important for project plan, system design and testing.

Use Cases Specify the System

The use-case model represents all the use cases and their associated actors and specifies all the functional
requirements and most of the nonfunctional requirements of the system. Requirement capture is to
caplllre requirements as use cases. Its main purpose is to work with the customers and users to identify
the use cases and to create the use-case model. The use-case model serves as an agreement between the
client and the developers, and it provides essential 'input for analysis, design, and testing.

46 Questions

We find the use case by looking at how the users need to use the system to do their work. Each such
way of using the system that adds value to the user is a candidate use case. These candidates will then be
elaborated on, changed, divided into smaller use cases, or integrated into more complete use cases. The
use-case model is almost finished when it captures all functional requirements correctly in a way that the
customer, users and developers can understand.

4.3 Questions

1. As we said in Chapter 2, the task of the requirements capture and analysis is difficult and complex
for a variety of reasons .

• The requirements are the client's requirements which are actually the needs of the users of
the system to develop, rather than those of the developers .

• Any system has many users (or types of users), and while each user may know what he or
she does, no one can see the whole picture.

• Very often, users do not know what the requirements are or how to specify them in a precise
manner, either .

• Different types of users have different, sometimes conflicting, requirements.

How can you, as a requirement analyst, help to over come any of these problems, and to create a
use-case model?

2. What are the differences and relationships between system functions and use cases? How can they
be identified?

3. Each use case has to represent a task, or a coherent unit of functionality, which the system is
required to support. Normally, this means that the use case has value for at least one of the actors.
An actor for whom a use case has value is normally called a beneficiary of the use case. Discuss
the following questions.

(a) Consider the use case Buy Items with cash in the POST system, who is a beneficiary and
what value he/she gets from the system?

(b) How important is it to identify the beneficiaries of each use case?

(c) Is a initiating actor always a beneficiary?

(d) Does a beneficiary have to interact with the system carrying out a task to get benefit?

(e) What is the role of an actor of a use case who is not a beneficiary, do you think that we do
not need to show such an actor in the use case model?

4. Discuss the possible use of use cases for the planning of the project.

5. Discuss the possible use of use cases in system vaLidation.

6. About 25% of projects were canceled simply because someone somewhere decided it wasn't worth
going ahead with. Discuss the possible use of use cases in dealing with politicaL aspects of such
in a project.

Questions

7. Discuss the possible problems with use cases.

47

8. Consider an example of a library system. Assume that a member of the library is allowed ~oborrow
up to six items (e.g. a copy of a book, a journals, ete). The system supports to carry out the tasks
of borrowing a copy of a book, extending a loan, and checking for reservation. Write the use cases
that represent these tasks, and use a use-case diagram to represent relationships among these uses
cases.

Do you realize, from this problem, an issue of factoring, sharing, and reusing functionality? Can
you discuss the advantages and pitfalls in documenting shared and reused functionality like this on
a use-case diagram?

9. Suppose that you are involved in the design of East-West University's library (described in a ques-
tion at the end of Chapter 3) browsing and loan system. What are some of the important use
cases you might develop in the analysis phase (simply enumerating them with brief discussions or
present them in the high-level format is sufficient)? Try to identify at least 4-5 cases, and draw a
use-case diagram to illustrate them

Questions

Chapter 5

Requirement Capture and Analysis
Conceptual Model

Topics of Chapter 5

• Identifying concepts in the application domain which are related to the system to be developed and
building a conceptual model

• Associations between concepts (classes)

• Attributes of Classes

• Class diagrams and their use for describing a conceptual model

5.1 Conceptual Model - Concepts and Classes

An important and typical activity in object-oriented requirement analysis is to identify concepts related to
the requirements and to create a conceptual model of the domain. The tenn domain covers the application
area we are working with. e.g. the retail store in our POST case study. This section is to introduce the skill
in identifying concepts which are meaningful in the problem domain, and the notation for representing'
such a model.

5.1.1 Conceptual Models

A conceptual model illustrates abstract and meaningful concepts in the problem domain. The creation of
concepts is the most essential object-oriented step in analysis or investigation of the problem domain for

49

50 Conceptual Model - Concepts and Classes

t--M_o_dU_le_--l oB
code
tille
credits

., A Courlie offerred as a component
of a degree: . o Intension

0 . EXlensison

Figure 5.1: A concept has a symbol, intension, and extension

building genuinely extensible software with reuse. The aim of this step is decomposition of the problem
into individual concepts or objects.

Concepts

Informally, a concept is an idea, thing, or object. More formally, a concept may be considered in terms
of its symbol, intension, and extension:

• Symbol - words or images representing a concept. It can be referred to when we talk about the
concept.

• Intension - the definition of a concept.

• Extension - the set of examples or instances to which the concept applies.

Each individual example that the concept applies is called an instance of the concept.

For an example, the symbol Module in University of Leicester is a concept with

Conceptual Model - Concepts and Classes 51

• the intension to "represent a course offered as part of a degree in that university" having a code,
title. and number of credits; and

• the extension of all the modules being offered in the university.

This concept is illustrated in Figure 5.1

5.1.2 Defining terms and modelling notation for a concept

In the UML, the tenns class and type are used, but NOT concept. We may interchange these tenns as far
as we are clear that we are at the requirement analysis stage and we are understanding and investigating
the problem domain.

And in the UML, we use the notation shown in Figure 5.2 to denote a class.

I Class Symbol

Figure 5.2: UML notation for a class

Each instance of a class is called an object of the class. For example, see Figure 5.3. Therefore, a class
defines a set of objects.

The notions of class and object are interwoven as one cannot exist without the other, and any object
belongs to a class. The differences are:

• an object is a concrete entity - exists in space and time (persistence property of objects);

• a class is an abstraction of a set of objects.

The UML definition of a class is "a description of a set of objects that share the same attributes, opera-
tions, methods, relationships, and semantics". This covers classes used at all stages in an 00 develop-
ment process. We shall see the concepts of attributes, operations, methods, and relationships one by one
when we come to the particular stages of the 00 development of process.

A defining aspect of objects is that every object is distinguishable from every other object. This is true
even if two objects have exactly the same properties. For example, two instances of Student may have
the same name, age, doing the same degree, in the same year, taking the same courses, etc. The property
that enables objects to be distinguished from each other is know as an object's identity.

Some other important features of objects are:

52 Conceptual Model - Concepts and Classes

lohnSmith: Student

Student

laneBrown: Student

Figure 5.3: Class and Object

• Object's Identity: Every object is distinguishable from every other object. This is true even if two
objects have exactly the same properties .

• Object's persistence: Every object has a life time, and this property implies the static nature of
the system .

• An object has behaviour and may act on other objects and/or may be acted on by other objects,
this property implies the dynamic nature of the system

• An object may be in different state at different and may behave differently in different states.

5.1.3 Identifying Concepts

A central distinction between OOA and structured analysis is decomposition by concepts (objects) rather
than decomposition by functions. The key point in this decomposition is to find what can behave. and
then to decide later on in the design and implementation how they behave to realize the system function-
ality.

There are usually two strategies to identify concepts. The first one is to find concepts from the textual
descriptions of the problem domain according to concept category list. Concepts and objects (things)
can be divided into different categories according to their nature of its instances. The concept category
list given below has been found useful in identifying concepts.

Conceptual Model - Concepts and Classes

Concept Category Examples

physical or tangible objects (or things) POST, House, Car; Sheep. People, Air-
plane

places Store. Office. Airport. PoliceSation

documents. specifications. designs, or de- ProductSpecification. Module Descrip-
scriptions of things tion, FlightDescription
transactions Sale. Payment. Reservation

roles of people Cashier; Student. Doctor; Pilot

containers of other things Store, Bin, Library, Airplane

things in a container Item, Book. Passenger

other computers or electro-mechanical CreditCardAuthorizationSystem, Air-
systems external to our system TrafficControl
abstract noun concepts Hunger; Acrophobia

organisations SalesDepartment, Club, ObjectAirline

historic events, incidents Sale, Robbery, Meeting, Flight, Crash,
Landing

processes SellingAProduct, BookingASeat
(often not represented as a concept, but
may be)
rules and policies RefundPolicy, Cancellation Policy

catalogs ProductCatalog, PartsCatalog

records of finance, work, contracts, legal Receipt, Ledger. EmploymentContract,
matters MaintenanceLog

financial instruments and services Line OfCredit; Stock

manuals, books EmployeeManual, RepairManual

S3

This strategy is to create a list of candidate concepts from the client's requirements description, initial
investigation reports, system functions definitions, and use cases.

Notice that the categories are not mutually exclusive and one concept may belong to more than category.

S4 Conceptual Model- Concepts and Classes

Another useful and simple technique for identification of concepts is to identify the noun and noun
phrases in the textual descriptions of a problem domain, and consider them as candidate concepts or
attributes.

Warning:

Care must be applied when these methods are used; mechanical noun-to-concept mapping is not possible,
words in natural languages are ambiguous, and concept categories may include concepts which are about
either attributes, events, operations which should not be modelled as classes. We should concentrate on
the objects/classes involved in the realization of the use cases.

Consider our POST application, from the use case Buy Items with Cash, we can identify the some
noun phrases. Some of thenoun phrases in the use case are candidate concepts; some may be attributes
of concepts (see Section 5.3). For example, price is obviously an attribute of an item or a product
description. Also, the concept price is not easy to fit in any of the categories in the Concept Category
List, and thus it should not a candidate concept. The following list is constrained to the requirements and
the use case Buy Items with Cash:

Post

Item

Store

Sale

Payment

Product Catalog

ProductSpecification

SalesLineItem

Cashier

Customer

Manager

This list of concept names may be represented graphical in the DML static structure diagram notation to
show the concepts only conceptual model (See Figure 5.4).

We may find it is a bit odd that Receipt is not listed as a candidate concept, as a receipt is a record of a
sale and payment and a relatively important concept. However, here are some factors to consider:

• In general, showing a record or a report of a thing, such as a receipt, in a conceptual model is not
very useful since all its information can be derived from other concepts. For example, a receipt can
be produced by extracting the relevant information from the ProductSpecification and the Payment.

• A record or a report, such as a receipt, sometimes has a special role in terms of the application
and need to be maintained. For example Receipt confers the right to its bearer to return his/her
bought items. In this case, it should be shown in the conceptual model. However, item returns are
not being considered, and thus Receipt is not at the moment included in the list. When the system
evolves and needs to tackle the Return Items use case, it would be justified to include Receipt.

Conceptual Model - Concepts and Classes

_POS_T 11_ltem_II_Store_1 I_sale ~

55

SalesLineltems I Cashier II Customer I I Manager I

I Payment ProductCatalog

Figure 5.4: Initial conceptual model for the point-of-sale domain (concepts only)

Obviously, these factors can be very easily overlooked. However, we should remember our goal is to
create a conceptual model of interesting and meaningful concepts in the domain under consideration.
The following guidelines are useful:

• It is better to overspecify a conceptual model with lots of fine-grained concepts, than to underspec-
ify it.

• Do not exclude a concept simply because the requirements do not indicate an obvious need to
remember information about it.

• It is common to miss concepts during the initial identification phase, and to discover them later
during the consideration of attributes or associations, or during the design phase. When found,
they are added to the conceptual model.

• Put a concept down as a candidate in the conceptual model when you are not sure it must not be
included.

As a ntle of thumb. a conceptual model is not absolutely correct or wrong. but more or less useful; it is
a tool of communication.

5.1.4 Conceptual modelling guidelines

The mapmaker strategy applies to both maps and conceptual models:

• Use the existing names in the territory Map makers do not change the names of cities on the map.
For a conceptual model, this means to use the vocabulary of the domain when naming concepts
and attriblltes. For example, we use POST rather than Register.

56 Conceptual Model - Associations

• Exclude irrelevant features A mapmaker deletes things from a map if they are not considered
relevant to the purpose of the map: for example, topography or populations need not be shown.
For examples, we may exclude Pell and PaperBag from our conceptual model for the current set
of requirements since they do not have any obvious noteworthy role.

• Do not add things that are not there A mapmaker does not show things that are not there, such as
a mountain that does not exist. For example, we should include Dog in a model of a library.

Finally, remember that a conceptual model focuses on domain concepts, not software entities.

5.2 Conceptual Model - Associations

A conceptual model with totally independent concepts only are obviously useless, as objects in different
classes must be related to each other so that they can interact and collaborate with each other to carry out
processes.

In UML, an association is a relationship between two classes that specifies how instances of the classes
can be linked together to work together. In the same sense that instances of a class are objects, instances
of an association are links between objects of the two classes - this what we meant that objects in the
same class "share the same relationships" (see the end of Section 5.1).

For example, an association called takes links the classes Student and Module. An individual student,
say one with the name John Smith is linked with a particular module, say the one with the code MC206
if this student takes this module.

In UML. an association between two classes is denoted by a line joining the two classes, see Figure 5.5 .

..-.------ ..--0-------
association_mame

I Sludent
I lakes I Module I SIOn: I S1ecks I_h_em__

Figure 5.5: An association between two classes

Conceptual Model - Associations

Multiplicity

57

With respect to an association between classes A and B, an important information is about how many
objects of class A can be associated with one object of B. at a particular moment in time. We use mul-
tiplicity of A to represent this information. Figure 5.6 shows some examples of multiplicity expressions
and their meanings.

'I zero or more: "many" 51 T exactly five
T

\.. "
T one or more: "at least one" '~RI T I exaclly lhree. five or eighl

__ 1_,.4_0I T

One person may
have any number
of jobs or no job,

I one to fony

Works-for Works-for

Each person works
for one and only one
compnay

Figure 5.6: Multiplicity values

Determining multiplicity often exposes hidden constraints built into the model. For example. whether
Worksjor association between Person and Company in Figure 5.6 is one-to-many or many-to-many
depends on the application. A tax collection application would permit a person to work for multiple
companies. On the other hand, an auto workers' union maintaining member records may consider second
jobs irrelevant (See Figure 5.6).

More examples of associations are shown in Figure 5.7. The default direction to read an association in
such a diagram is from left to right or from top to bottom. otherwise the small arrow shows the reading
direction.

58 Conceptual Model- Associations

I II Contains I..*1
Librnry . Book I

0..8 On-loan-to
_______ 1 I Borrower I

Employs
1.*

Assigned-to

... *

- Assinged-lo

.... _.S.u~~i~c:s _ :

1..*

Paid-by1...

:_.. _ ~~~r.u:? _ _ ~ _ !_ '

Figure 5.7: Examples of associations

Roles of associations

Each end of an association I is called a role of the association, which may has a role name. Naming a role
in a conceptual model is sometimes useful. For example, the role names boss and worker distinguish two
employees who work for a company and participate in the Manages association (See Figure 5.8).

boss Works-for

employee employer

1... worker

Manages

Figure 5.8: Examples of role names

When we ~ome up to the design and implementation of the system, roles provide a way of viewing an
association as a traversal from one object to a set of associated objects.

Iin this course. we are mainly concerned with binary associations which relate two classes. In general. an association may
be ternary or even higher order which relate three or more classes.

Conceptual Model - Associations 59

The purpose of an association and a link between two objects Objects may have many sorts of
relationship, and thus classes (or concepts) may have all sorts of associations in a problem domain.
Whether an association is useful or not depends on whether it fulfill the following purpose.

• An association between t\VOclasses is to provide physical or conceptl/al connections between
objects of the classes.

• Only objects that are associated with each other can collaborate with each other through the links.

Booch describes the role of a link between objects as follows:

"A link denotes the specific association through which one object (the client) applies the ser-
vices of another object (the supplier), or through which one object may navigate to another".

This can be taken as a criterion for whether two objects should be linked.

Multiple associations between two classes Two classes may have multiple associations between them;
this is not uncommon. For example, in the domain of an airline example, there are two relationships
between a Flight and an Airport, Flies-to and Flies-from, as shown in Figure 5.9.

• Aies-IO 0 .. 1

Aighl Airport

• Aies-from I

Figure 5.9: Multiple associations

These two associations are distinctly different relationships between flights and airports. Note that not
every flight is guaranteed to land at any airport! However, there is always one airport from where a flight
flies.

5.2.1 Strategies for identifying associations

For the requirement analysis, we have the following principles:

• An useful association usually implies knowledge of a relationship that needs to be preserved for
some -duration ("need-to-know" association); and

• an important link between two objects should fulfill the role to provide a means for the objects to
collaborate or interact with each other.

60 Conceptual Model - Associations

Like the identification of concepts, an Association Category List are helpful. The following list contains
common categories that are usually worth considering.

Association Category Examples

A is a physical part of B Drawer-POST. Wing-Airplane

A is a logical part of B SalesLineltem-Sale. FlightLeg-FlightRoute

A is a kind/subclass/subtype of B CashPayment -Payment, Nonstop Flight-Flight

A is physically contained inion B POST-Store, Item-Self

A is logically contained in B ItemDescription- Catalog, Flight -FlightSchedule

A is a description for B ItemDescription-1 tem, FlightDesc ription -Flight

A is a line item of a transaction or SaleLineltem-Sale
report B

A is known/logged/recorded/ Sale-POST. Reservation-FlightManifest
reported/captured in B

A is member of B Cashier-Store. Pilot-Airline

A is an organisational subunit of B Department-Store, Maintenance-A irline

A uses or manages B Cashier-POST. Pilot-Airplane

A communicates with B Customer-Cashier. ReservationAgent-Passenger

A is related to a transaction B Customer-Payment, Passenger-Ticket

A is a transaction related to another Payment-Sale. ReserVation-Cancellation
transaction B

A is next to B POST-POST. City-City

A is owned by B POST-Store. Plane-Airline

Naming Associations

Conceptual Model - Associations 61

• Name an association based on a ClassName- VerbPhrase- TypeName format where the verb phrase
creates a sequence that is readable and meaningful in the model context.

• Association names should start with a capital leUer.

• A verb phrase should be constructed with hyphens.

High priority associations Here are some high priority associations that are invariably useful to in-
clude in a conceptual model:

• A is a physical or logical part of B .

• A is physically or logically contained in/on B.

• A is recorded in B.

Association and implementation During the analysis phase, an association is not a statement about
data flows, instance variables, or object connections in a software solution; it is a statement that a re-
lationship is meaningful in a purely analytical sense - in the real world. Practically speaking, many
of these relationships will typically be implemented in software as paths of navigation and visibility,
but their presence in an investigative or analytical view of a conceptual model does not require their
implementation.

When creating a conceptual model, we define associations that are not necessary during construction.
Conversely, we may discover associations that needed to be implemented but were missed during the
analysis phase. In that case, the conceptual model should be updated to reflect these discoveries.

Point-of-sale domain associations

We can now add associations to the POST system conceptual model created in the previous section (see
Figure 5.4).

We first apply the need-to-know policy to the use case Buy Items with Cash, from that we can identify
the following association:

• POST Captures Sale in order to know the current sale. generate a tota!, print a receipt.

• Sale Paid-by Payment in order to know if the sale has been paid, relate the amount tendered to the
sale total, and print a receipt.

• ProductCatalog Records ItemsSpecification in order to retrieve an ItemSpecification, given a Upe.

62 Conceptual Model - Associations

We can run the Association Category Checklist, based on Figure 5.4 and the Buy Items wish Cash use
case.

Association Category POST System

A is a physical part of B not applicable

A is a logical part of B SalesLineltem-Sale

A is a kind/subclass/subtype of B not applicable as we only consider on
kind of payment

A is physically contained inion B POST-Store, ltem-Store
A is logically contained in B ProductDescription-ProductCatalo g

ProductCatalog-Store
A is a description for B ProductDescription-ltem

A is a line item of a transaction or report SaleLineltem-Sale
B

A is known/logged/recorded/ (current) Sale-POST
reported/captured in B (completed) Sale-Store

A is member of B Cashier-Store
A is an organisational subunit of B not applicable

A uses or manages B Cashier-POST
Manager-POST
Manager-Cashier; but probably N/A

A communicates with B Customer-Cashier
A is related to a transaction B Customer-Payment

Cashier-Payment
A is a transaction related to another trans- Payment-Sale
action B

A is next to B POST-POST. butprobably N/A

A is owned by B POST-Store

This check derives the conceptual model shown in Figure 5.10 for the POST system, which extended the
model in Figure 5.4 with associations.

Conceptual Model - Associations

Records-sale-of

Descri~d-by

63

0..1

Contained-in

Used-by

log-

completed Houses

Initiated-by

Stocks

I
Describes

Figure 5.10: Conceptual model for the point-of-sale domain (concepts and associations)

5.2.2 The aggregation association

Most 00 modelling technologies singles the "part-of' relationship between two objects for special treat-
ment.

Aggregation is a kind of association used to model whole-part relationships between objects. The whole
is generally called the composite.

Aggregation is shown in the UML with a hollow or filled diamond symbol at the composite end of a
whole-part association (Figure 5_11).

There are two kinds of aggregation:

• Composite aggregation or composition means that the multiplicity at the composite end may be at
most one, and is signified with a filled diamond. It implies that the composite solely owns the part.
and that they are in a tree structure hierarchy; it is the most common form of aggregation shown in
models .

• Shared aggregation means that the multiplicity at the composite end may be more than one, and
is signified with a hollow diamond. It implies that the part may be in many composite instances.
Shared aggregate seldom (if ever) exists in physical aggregates, but rather in nonphysical concepts.

64 Conceptual Model - Associations

Rim
*

Spoke

I University 1.... 1 ,*_1 Depanment

I Hand

1.-1 I,------*- Division

I Finger0..7 _

Figure 5.11: Aggregations

For instance, a UML package may be considered to aggregate its elements. But an element may
be referenced in more than one package (it is owned by one, and referenced in others). Another
example is that a directory can contain a number of files, each of which may be another directory
or a plain file. A file or a directory may be contained in a number of directories. These examples
are shown in Figure 5.12.

I L-. * References * I I
UML Packager-"-------- UML Element

I ~' COO",", ',-----'Ü,----- File

Contains

Figure 5.12: Shared Aggregations

However, we must note two important properties of aggregation;

1. Antisymmetry: this states that if an object a is related to an object b by an aggregation, then it is

Conceptual Model- Associations 65

not possible for b to be related to a by the same aggregation. In other words, if b is a part of a then
a cannot be a part of b.

2. Transitivity: this states that if a is related to b by an aggregation link, and b is related to c by the
same aggregation. then a is also linked to c.

When to show aggregation

Here are some guidelines that suggest when to show aggregation:

• The lifetime of the part is bound within the lifetime of the composite-there is a create-delete
dependency of the part on the whole. The part may not exist outside of the lifetime of the whole.

• There is an obvious whole-part physical or logical assembly.

• Some properties of the composite propagate to the parts, such as its location.

• Operations applied to the composite propagate to the parts, such as destruction, movement, record-
ing.

• Jfyou are not sure when to use it, ignore it and stick to plain association. Most of the benefits of
discovering and showing aggregation relate to the software solution phases.

Based on the above discussion, we can polish the conceptual model in Figure 5.10 by replacing the
Contain-in association between SalesLineltem and Sale, and the Contains association between Product-
Catalog and ProductSpecijication with the aggregation associations shown in Figure 5.13

__ Sa1_e]~

Product .- Product
Catalog

I Specification

Figure 5.13: Aggregation in the point-of-sale application

Example Consider an Environmental Information System (ENFORMS) that is used to establish a dy-
namic network of distributed earth-science data archieves with integrated on-line access services. The
problem domain in which ENFORMS operates consists of a set of data centers that may be physically
distributed throughout a geographic region. ENFORMS allows these data centers to make their data
available through a regional data sharing network (established by ENFORMS) and provide a variety of

66 Conceptual Model-Attributes

tools (a mapping utility, for example) for locating and manipulating that data. the most general require-
ments that guide the problem analysis are as follows.

I. Data centers must be able to independently manage both content and access mechanisms for their
data stores.

2. Data centers may disable access to their data at any time (i.e. go off-line).

3. Data centers may make their data stores avaolable at any time (i.e. go on-line).

4. at any time, all on-line data centers must be available to any ENFORMS user.

The concepts and associations identified are as follows .

• access: User x DataCenter x Dataset [*,1, *]

• uses: User x NetworkManager hI]

• is-online: DataCenter x NetworkManager [*,0 ..1]

• queries: User x DataCenter [0..1, *]

• stores: DataCenter x Dataset [Compositie Aggregation]

The above simple conceptual model conveys a significant amount of information about the possible
instances of an ENFORMS system. One such an instance (II) could be a system with three Data Centers
dI, d2, d3 and one User u that queries the Data Centers dl and d3.

Another instance can be a system with two Users UI and U2 using a Network Manager n; one Data Center
d that stores two Datasets il and i2, and is in the system and it is on-line with the Network Manager n.
In this instance, we can also assume that only U2 access il.

We can also show that a state that is not consistent with a conceptual model. For example, a system with
two Network Managers ni and n2 and one user that uses the two managers as entry points is not a valid
state as the conceptual model indicates that a user can enter an ENFORMS network via a single network
manager.

5.3 Conceptual Model-Attributes

Each instance of a concept may have some useful properties. For examples, a Sale has a date and time;
a Module has a code, title, and number of credits, a Student has a name and age, etc ..

Conceptual Model-Attributes 67

An attribute of a class is the abstraction of a single characteristic or a property of entities that have been
abstracted as objects of the class. At any given moment of time, the attribute of an individual object
in the class is a logical data value representing the corresponding property of the' object, and called the
mlue of attribute for the object at that time. One object has exactly one value for each attribute at any
given time. Therefore, the value for an attribute of an object may change over time. For examples,

• time and date are attributes of class Sale, and an instance of Sale can be a sale at 13.30 on
1/10/1998 .

• code, title, and credit are three attributes of class Module, and an instance of Module can have a
code MC206, title: Software Engineering and System Development, and credit: 20 .

• name and age are attributes of Student, an individual student can have the name John Smith, and
age 19.

An attribute has a name such as date, and can specify the type of the data described by the attribute, and
a default (or initial) value for the attribute.

In UML, attributes are written in the class box, separated from the class name by a horizontal line, as
shown in Figure 5.14. The features other than the name are optional, however. Especially in the early
stages of the development it is very common to show nothing more than the name of the attribute.

Now we can understand that the objects of a class "share the same attributes" (see the end of Section 5.1).

5.3.1 Adding attributes to classes

For each class in a conceptual model created in Section 5.2, we would like to find a set of attributes that
are

• complete: Capture all relevant information about an object,

• fully factored: each attribute captures a different property of an object,

• mutually independent: For each object, the values of the attributes are independent of each other,
i.e. we should do our best to avoid derived attributes,

• relevant to the requirements and use cases: Focus on those attributes for which the requirements
suggest or imply a need to remember information.

The common mistakes in 00 modelling is to represent something as an attribute when it should have been
a concept (class) or an association. In the following, we see how to avoid from making this mistake.

68

The defaul value is 10

unless otherwise specified

Keep attributes simple

Sale

date
lime:Time

Module

code
lille:Slring

..0 credit:lntege~ 10

Srudent

name

age

reg.no

Figure 5.14: Attributes

Conceptual Model-Attributes

:S.a.le.....

date= 1/10/1998

time=I3.30

code=MC206
litle=Software
credit=20

name=John Smith

age=19

reg.no=H 1530

The attributes in a conceptual model should preferably be simple attributes or pure data types:

• Intuitively, most simple attribute types are what often thought as primitive data types: Boolean,
Date, Number, String(Text), TIme.

• Other simple types include Address, Colour, Geometries (Points, Rectangle, ...), Phone Numbers,
Social Security Number, Universal Product Code (UPC), Post Code, enumerated types.

The type of an attribute should not nonnally be a complex domain concept, such as Sale or Airpon. For
examples (see Figure 5.15):

• It is not desirable to let Cashier to have an attribute currentPOST to describe the POST that a
Cashier is currently using. This is because the type of currentPOST is meant to be POST, which
is not a simple attribute type. The most sensible way to express that a Cashier uses a POST is with
an association, not with an attribute.

• It is not desirable for a destination airport to be an attribute of a Flight, as a destination airport is
not really a string; it is a complex thing that occupies many square kilometers of space. Therefore,

Conceptual Model-Attributes

Flight should be related to Airport via an association, say Flies-to. not with an attribute.

Worse

69

C~shier

n~me O'
currentPOST

NOl a "simple" ~llrib

Better Cashier I Uses I POST

name number

Worse Aighl j a complex concept ~

deslinalion 0

Better __ IIAight .
Aies-to

I I Aill'O"

Figure 5.15: Avoid representing complex domain concepts as attributes; use associations

The first guideline is

Relate concepts with an association, not with an attribute.

What about attributes in code?

The restriction that attributes in the conceptual model be only of simple data type does not imply that
C++. Java. or Smalltalk attributes (data members. instance variables) must only be simple. primitive data
types.

Pure data value

More generally. attributes should be pure data value (or DataTypes in UML)-those for which unique
identity is not meaningful in the context of our model or system. For example. it is not (usually) mean-
ingful to distinguish between:

• Separate instances of the Number 5.

70 Conceptual Model-Attributes

• Separate instances of the String 'cat' .

• Separate instances of the PhoneNumber that contain the same number.

• Separate instances of the address that contain the same address.

However, it is meaningful to distinguish (by identity) between two instances of a Person whose name are
both "Jill Smith" because the two instances can represent separate individuals with the same name.

So the second guideline for identifying attributes is:

An element of a pure data type may be illustrated in an attribute box section of another
concept. although it is also acceptable to model it as a distinct concept.

Pure data values are also known as value objects.

The notion of pure data values is subtle. As a rule of thumb,

stick to the basic test of "simple" attribute types: make it an attribute if it is naturally
thought of as number, string. boolean, or time (and so on); otherwise represent is as a
separate concept.

We always have the following rule.

If in doubt, define something as a separate concept rather than as an attribute.

Design creep: no attributes as foreign key

Attributes should not be used to relate concepts in the conceptual model, but to store some information
about the objects themselves. The most common violation of this principle is to add a kind of foreign key
attribute, as is typically done in relational database designs, in order to associate two types. For example,
in Figure 5.16, the currentPOSTNumber attribute in the Cashier type is unde.sirable because its purpose
is to relate the Cashier to a POST object. The better way to express that a Cashier uses a POST is with
an association, not with a foreign key attribute. Once again

relate types with an association, not with an attribute.

Conceptual Model-Attributes

Worse

71

Cashier

name
currenlPOSTNumber O.

a .. simple .. auribute. but being
used as a foreign key to relate to another
objecl

Better
Cashier I Uses I POST

number
name

Figure 5.16: Do not use attributes as foreign keys

Non-primitive attribute types

The type of an attribute may be expressed as a non-primitive type in its own right in the conceptual
model. For example, in the point-of-sale system. there is a UPe. It is typically viewed as just a number.
So should it be represented as non-primitive type? We have the following guidelines:

Represent what may initially be considered a primitive type as a non-primitive type if:

.. It is composed of separate sections.

- phone number, name of person

• There are operations usually associated with it, such as parsing or validation.

- social security number, credit card number

• It has other attributes.

- promotional price could have a start and end date

• It is a quantity with a unit.

- payment amount has a unit of currency

Applying these guidelines to the following examples:

• The upc should be a non-primitive upe type, because it can be check-sum validated and may have
other attributes (such as the manufacturer who assigned it).

72 Conceptual Model-Attributes

• price and amount attributes should be non-primitive Quantity types, because they are quantities in
a unit of currency.

• The address attribute should be a non-primitive Address type because it has separate sections.

These types are pure data values as unique identity is not meaningful, so they may be shown in the
attribute box section rather than related with an association line. On the other hand, they are non-primitive
types. with their own attributes and associations, it may be interesting to show them as concepts in their
own boxes.

There is no correct answer; it depends on how the conceptual model is being used as a tool
of communication, and the significance of the concepts in the domain.

This is illustrated in Figure 5.17

OK

IProcIuclSpccifi .. 'ioo I- . I I UK I Store II Address

OK
Product
Specification

Store

address:Addrcss
upe:UPC

Payment o-----~Iusable. but not flexible ~
amount:Numbcr , or robusl :=.J

'-----....I

o

~,

"'~_Beller _~

Payment

amaunt:Quantity 0

Payment Has-amount Quantity Is-in Unit. I amaunt:Numbcr . I ...

quantity is pure data
.a1ues. so OK!

Figure 5.17: Modelling non-primitive attribute types

Where and how to Find Attributes for a class?

Conceptual Model-Attributes 73

• Read the problem description and system functions document, and use cases, find what information
or data should be maintained and updated. These also usually occur as nouns or noun phrases.
Make them as attribute candidates .

• Use the guidelines discussed in this section to rule out and rule in these candidates .

• Read the simplification and assumptions that are currently made for the development to judge if a
candidate is relevant to the current development.

• Assign the identified candidate to classes in the conceptual model which has been created so far,
according to characteristics of the objects of a class

5.3.2 Attributes for the Point-of-Sale System

Based the discussions presented in this section, we can clearly add attributes to the concepts in Figure 5.4.
by reading

• The system functions

• The the use case Buy Items wish Cash

• The simplification, clarification and assumption documents

Figure 5.18

I POST

S.I.sUnell.m

quanlil)':lnt.gcr

Paymenl

amount:Quanlily

Illem

I Cashier

ProductC.I.I08

Sll .. e Sal.

address:Address <late:D.te

namc:Tex1 timc:Timc

I Cuslomer I
Man.g.r

Product

Spcciticalion

descriplion:T ...
pricc:QuantilY
upc:UPC

Figure 5.18: Conceptual model showing attributes for the point-of-sale-system

74 Steps to Create a Conceptual Model

These attribute are only those relevant to the Buy Items with Cash. Combine the Figure 5.18 with
Figure 5.10. we can obtain the conceptual model in Figure 5.19 for the consideration of the Buy Items
with Cash use case.

Rc..:ords-salc ..of

Dc:scribed.hy

Used.by

Conl4.ins

1...

Produci
SPCCiJiClltion

dcscriplion:Tul
price:Quanlity
upc:UPC

Describes

0 .. 1 •

1...

•

SIan:

......
LoI•.
",,,,,,Ict<d

•

House

Slocks
•

Solo

time:Time

"'fl'lDOd-by

1

Figure 5.19: A conceptual model for the point-of-sale domain

Such a class diagram is called a static structure diagram. It descri~es the structural relationships holding
among the pieces of data manipulated by the system. It describes how the information is parcelled out
into objects, how those objects are categorized into classes, and what relationships can hold between
objects.

5.4 Steps to Create a Conceptual Model

Apply the following steps to create a conceptual model:

Recording Terms in the Glossary 75

1. List candidate concepts using the Concept Category List and noun phrase identification related to
the current requirements under consideration.

2. Draw them in a conceptual model.

3. Add the associations necessary to record relationships for which there is a need to preserve some
memory.

4. Add the attributes necessary to fulfill the information requirements.

The conceptual model should be created by investigating the system function, use cases and other initial
reports on the domain.

Conceptual models are not models of software designs. such as Java or C++ classes

Therefore a conceptual model may show

• concepts

• associations between concepts

• attributes of concepts.

The following elements are not suitable in a conceptual model:

• Software artifacts, such as a window or a database, unless the domain being modelled is of software
concepts, such as a model of a graphical user interface .

• Operations (responsibilities) or methods.

This is illustrated in Figure 5.20

5.5 Recording Terms in the Glossary

A glossary is a simple document that defines terms used in the system development. At the very least,
a glossary or model dictionary lists and defines the terms that require clarification in order to improve
communication and reduce the risk of misunderstanding.

Consistent meaning and a shared understanding of terms is extremely important during application de-
velopment, especially when many team members are involved.

76

Belter

Avoid

Sale

dale

time

SalesOatabase

Sale

Recording Terms in the Glossary

o .. Real world con t

o Soflware emily.
nol pan of the
conceptual model

Avoid
dale

time

prinlO

0 .
software class.
nol pan of
conceptual model

Figure 5.20: A concept does not show software artifacts or classes

The glossary is originally created during the system functions definition, and use case identification, as
terms are generated, and is continually refined within each development phase as new term are encoun-
tered. It is thus usually made in parallel with the requirements specification, use cases, and conceptual
model. Maintaining the glossary is an ongoing activity throughout the project.

There is not official format for a glossary. Here is an sample.

Questions 77

Term Category Comments

Buy Items use case Description of the process of a customer
buying items in a store

ProductSpec ification.descri ption:Text attribute A short description of an item in a sale,
and its associated ProductSpecification.

Item type (class) An item for sale in a Store

Payment type (class) A cash payment
Productspecification. price: Quantity attribute The price of an item in a sale, and its as-

sociated ProductSpecification
SalesLineItern.quanti ty:Integer attribute The quantity of one kind of Item bought
Sale type (class) A sales transaction

SalesLineltem type (class) A line item for a particular item bought
within a Sale

Store type (class) The place where sales of items occur
Sale.total:Quantity attribute The grand total of the Sale

Payment.amount: Quantity attribute The amount of cash tendered, or pre-
sented, from the customer for payment

ProductSpecification.upc: UPC attribute The universal product code of the Item.
and it ProductSpecification

5.6 Questions

I. Express in UML that a Student takes up to six modules, where at most 25 students can be enrolled
on each Module.

2. Express in UML that a Module is a part of an Honors Course, that a Wheel is a part of a Car, that an
Employee is a member of a Team. Discuss the use shared aggregation and composite aggregation.

3. Express in UML the relationship between a person and hislher shirts. What about the person's
shoes? Do you think you have exposed a weakness in UML? Why, or why not?

4. Objects have properties (attributes) which are usually static, and values, which are usually dy-
namic. What are the properties of a 5p coin in you pocket? What values do these properties have
- are they dynamic? What about a literature review you are editing in a word processor - what are
its properties and values?

5. Consider a car as an object. What are some of its behaviors that are dependent on its state? How
about a computer chess game?

6. What is the multiplicity of the association between classes in each of the following pairs?

(a) the classes Dessert and Recipe in a cooking tutorial

78 Questions

(b) the classes Vegetable and Nutrient in a hydroponics farm management system

(c) the classes Room and Window inan architectural design system

7. Although we said that a conceptual model is not absolutely correct or wrong, but more or less
useful, we still wonder what makes a class model good. In general a useful class model should
aim at, among the others, the following two objectives:

• Build, as quickly as possible and cheaply as possible, a system which satisfies the current
requirements;

• Build a system which will be easy to maintain and adapt to future requirements.

Discuss how these two aims conflict with each other, how they can be met by a class model. What
considerations might determine whether an organization considered one more significant than the
other?

8. Some people may like to discard a noun phrase identified by the following list of reasons:

• redundant, where the same class is given more than one name .

• vague, where you can't tell unambiguously what is meant by the noun. Obviously you have
to clear up the ambiguity before you can tell whether the noun represents a class.

• event or an operation, where the noun refers to something which is done to, by or in the
system.

• meta-language, where the noun forms part of the way we define things. We use the nouns
requirements and system, for instance, as part of our language of modeling, rather than to
represent objects in the problem domain.

• outside the scope of the system, where the noun is relevant to describing how the system
works but does not refer to something inside the system. For example, 'library' in a Library
System and names of actors are then often discarded by this rule, when there is no need to
model them in the system.

• an attribute, where it is clear that a noun refers to something simple with no interesting
behaviour, which is an attribute of another class.

Is this list of reasons for discarding reasonable? How applicable are these rules to our POST
system and the Library System in Question 8 of Chaper 4? Can you think of cases where it might
be too selective or too permissive? .

9. In general, if you are not sure about whether to keep a class, do you think it is better to keep it in
(possibly throwing it out later) or to throw it out (possibly reinstating it later)? Do you have any
other alternative?

10. A classic error for people not yet steeped in 00 is to invent a class, often called [Something]System,
which implements all the system's interesting behavior. It is then easy to drift into a monolithic
design in which there is just one object that knows and does everything. Can you see why this is
bad? Then discuss your understanding about the use of POST to represent the overall system in
our case study.

Questions 79

II. An inherent difficulty in oject classification is that most objects can be classified in a variety of
ways, and the choice of classification depends on the goals of the designer. Consider the holdings
of the East-West University library first described in Chapter 3 questions. What are some of the
ways you might classify these holdings. For what purpose(s) might you use different classifica-
tions?

12. In Section 5.4, we said that it is not suitable to show in a conceptual model operations. Do you
have any reason to disagree froin this principle? When do you think it may be helpful to show
operations in the conceptual model?

13. Consider the following game: two players each draw three cards in turn from a pack; the player
with the highest total is declared the winner.

Start the development for a software of this game by drawing a conceptual model using UML
notation.

80 Questions

Chapter 6

System Behaviour: System Sequence
Diagrams and Operations

Topics of Chapter 6

• Identifying system events and system operations

• Create system sequence diagram for use cases

• Create contracts for system operations

6.1 System Sequence Diagram

This chapter is to identify the operations that the sytem needs to perform and in what order the system
need to perform these operations to carry out a use case, and the effect of such an operation on the
system, i.e. on the objects of the systems.

A use case defines a class of conversations between the actors and the system, and and individual con-
versation of this class is a realization of the use case. Obviously, there may be many realizations for a
use case. For example, consider the Buy Items with Cash use case.

• Different customers buy different items and therefore carry out the use case with different partic-
ulars, even though the overall pattern of the interaction remain the same.

• Also, in some occasions, the amount tendered is less than the sale total.

A scenario of a use case is a particular instance or realized path through the use case, i.e. a particular
realization of the use case.

81

82 System Sequence Diagram

6.1.1 System input events and system operations

During the interaction in any realization, the actors generates events to a system. requesting the systen to
perform some operations in response. Events generated by actors are very tightly related to operations
that the system can perform. This implies that we identify system's operations by identifying events that
actors generates.

We first define our terminology:

• A system input event is an external input generated by an actor to a system. A system input event
initiates a responding operation.

• A system operation is an operation that the system executes in response to a system input event.
Some system operations also generate output events to the actors to prompt the next system event
that an actor can perform.

• A system event is either an input event or an output event.

Therefore, a system input event triggers a system operation. and a system operation responses to a system
input event.

Now we can formally define a scenario of a use case as a sequence of system events that occur duration
a realization of the use case. For example, consider the use case of Make Phone Calls for a telephone
system, which involves two actors, Caller (initiator) and Callee. The following sequence of events is a
scenario of this use case:

Input Events

1. Caller lifts receiver
3. Caller dials(5551234)

6. Callee answers phone

10. Callee hangs up
12. Caller hangs up

Output Events

2. dial tone begins
4. phone rings to Callee

5. ringing tone to Caller
7. phone ring stops
8. ringing tone stops
9. phones connected
11. connection broken

The sequence of system events, their order, the actors that interact directly with the system, and the
system as a black box can be shown in a event trace diagram (see Figure 6.1). Time proceeds downwards,
and the ordering of events should follow their order in the use case.

System Sequence Diagram

Make Phone Calles

1 :System 1
Caller Callee

!irIS receiver
~,

dial tone begins
:-..:

dials(5551234)
Jr'

ringing lone phone rings

-..: ~:
: answer.; phone

:<
ringing lone stops ringing stops

'< J>:
phones connected phones connected

E ~
:hangs up
:<

connection broken connection broken

:~ ~
hangs up

~:

Figure 6.1: Telephone system event trace diagram for the Make Phone Calls

6.1.2 System sequence diagram

83

At the requirements analysis phase, it is necessary to define the system by treating it as a black box so
that the behaviour is a description of what a system does, without explaining how it does it. Therefore,
we are mainly interested in identifying and illustrate the system operations that an actor requests of the
system. This means, we are interested in finding the system input events by inspecting the use cases and
their scenarios.

For example, the typical course of events in the Make Phone Calls indicates that the caller and callee
generate the system input events that can be denoted as liftReceiver. dialPhoneNumber. answersPhone.
hangs Up. In general, an event takes parameters. We would like to present them in an unified form:
Event (Xl, ..• , Xn) to indicate that event E carries n parameter, and Event () to indicate that Event does
not have parameters.

To identify the system operations only, we also would like to use a trace diagram to show, for a particular

84 System Sequence Diagram

course of events within a use case, the external actors that interact directly with the system, the system
(as a black box), and the system input events that the actors generate. And we call such a simplified trace
diagram a system sequence diagraml• A system sequence diagram for the Make Phone Calls use case
can be illustrated in Figure 6.2.

Make Phone Calles

Caller

I. ~

IiftReceiver() :;.:

dialsPhoneNumber(number)

~werPhoneO

:<
: hangUp()

:<

Callee

Figure 6.2: Telephone system sequence diagram for the Make Phone Calls

A system sequence diagram should be done for the typical course of events of the use case, and possibly
for the most interesting alternative courses.

Consider the Buy Items with Cash use case for the POST system. The use case indicates that the cashier
is the only actor that directly interacts with the system, and that the cashier generates enterltem, endSale,
and makePayment system input events. A sequence diagram Figure 6.3 is given for Buy Items with Cash
use case for the POST system.

Steps in making a sequence diagram

1. Draw a line representing the system as a black box.

2. Identify each actor that directly interacts with the system.

3. Draw a line for each such actor.

4. From ~he use case typical course of events text, identify the system (external) input events that
each actor generates. Illustrate them on the diagram.

IScenario. event trace diagram. and sequence diagram are used inconsistently in books: some use scenario as a synonym
for use case. some use event trace diagram in the same way as sequence diagram and vice versa.

System Sequence Diagram

Buy Items with C:.ssh

C:.IShier

emerlteml upc.quamiry,

endSalcl)

: makc:Paymenllamounll

Figure 6.3: A POST system sequence diagram for the Buy Items with Cash use case

85

Both event trace and sequence diagrams are dynamic models which show the time-dependent behaviour
of the system. They are used for dynamic analysis by looking for events which are externally - visible
stimuli and responses. Algorithm execution is not relevant during this analysis if there are no externaIly-
visible manifestations; algorithms are part of detailed design.

Dynamic models are insignificant for a purely static data repository, such as a database. They are im-
portant for interactive systems. For most problems, logical correctness depends on the sequence of
interacting events, not the exact times when events occur. Real-time systems, however, do have specific
timing requirements on interactions that must be considered during analysis. We do not address real-time
analysis in this course.

6.1.3 Recording system operations

The set of all required system operations is detennined by identifying the system input events. Each
system input event Event(xl, ... , xn) causes the execution of the system operation Event(xl, ... , xn).

The name of the input event and the name of the operation are identical; the distinction is that the input
event is the named stimulus, the operation is the response.

For example, from the inspection of the use case Buy Items with Cash, we have identified the system
operations: .

• enterItem(upc, quantity)

86

• endSale()

• makePayment (amount)

System Sequence Diagram

Where should these operations be recorded? The UML includes notation to record operations of a type
(or a class), as shown in in Figure 6.4. With this notation, the system operations can be grouped as

ClassX

attributel
attribute2

operation 10
operation20

Figure 6.4: The UML notation for operations

operations of a type named System as shown in Figure 6.5. The parameter may optionally be ignored.

System

enterIternO
endSaleO
makePaymentO

Figure 6.5: System operations recorded in a type named System

This scheme also works well when recording the system operations of multiple systems or processes in
a distributed application; each system is given a unique name (System!, System2, ...), and assigned its
own systems operations.

When naming system input events and their associated operations, they should be expressed at the level
of intent rather than in terms of the physical input medium or interface widget level.

It is also improves clarity to start the name of a system i'lput event with a verb (add ... , enter ... , end ...,
make ...). For example, we should use enterltem() rather than enterKeyPressed(), endSaleO rather
than enterRetumKey.

Contracts for System Operations

6.2 Contracts for System Operations

87

A system sequence diagram does not describe the effect of the execution of an operation invoked. It is
missing the details necessary to understand the system response - the system behaviour.

Part of the understanding of the system behaviour is to understand the system state changes canied
out by system operations. A system state is a snapshot of the system at a particular moment of time
which describes the objects of classes currently existing, current values of attributes of these objects, and
current links between the objects at that time. The execution of a system operation changes the system
state into another state: old objects may be removed, new objects and links may be created, and values
for attributes of objects may be modified. This section introduces how we to write a contract for a system
operation to describe what state changes that the operation commits to achieve.

The contract of an operation is defined mainly in terms of its pre-conditions and post-conditions:

• Pre-conditions are the conditions that the state of the system is assumed to satisfy before the
execution of the operation .

• Post-conditions are the conditions that the system state has to satisfy when the execution operation
has finished.

In formal specification literature, the contract for an operation GpO can be written as a Hoare-triple

.{Pre-Conditions} Gp () {Post-Conditions}

roughly meaning that if the execution of GpO starts from a state satisfying Pre-Condition, then when
the execution has finished, system will be in a state satisfying Post-Condition.

Pre-Conditions and Post-condition are Boolean statements. A post-condition is a statement of what the
world should look like after the execution of an operation. For instance, if we define the operation
"getSquare" on a number, the post condition would take the form result = this * this, where result is
the output and this is the object on which the operation is invoked.

A pre-condition is a statement of how we expect the world to be before the operation is executed. We
might define a pre-condition for the "getS quare" operation as this >= O. Such a pre-condition says that
it is an error to invoke "getS quare" on a negative number and the consequences of is undefined.

Therefore, the pre-condition shall be checked either by the caller to ensure it is true before the execution,
and/or checked the object executing the operation to flag an error when it is not true.

As an example, consider the operation enterltem(upc: UPC 1 quantity: Integer):

• Its pre-condition can be stated as UPC is known to the system.

88 Contracts for System Operations

• its post-conditions include:

- If a new sale, a Sale was created (instance creation).

- If a new sale, the new Sale was associated with the POST (association formed).

- A SalesLineltem was created (instance creation).

- The SalesLineltem.quantity was set to quantity (attribute modification).

- The SalesLineItem was associated with a ProductSpecification, based on UPC match (as-
sociation formed).

It is recommended to express post-conditions in the past tense, in order to emphasise they are declarations
about a past state change, rather than about actions. For example, we had better to write

A SalesLineltem was created.

rather than

Create a SalesLineltem.

There can be many possible pre- and post-conditions we can declare for an operation. Generating com-
plete and accurate sets of pre- and post-conditions is not likely. For the post-conditions, we are suggested
to focus on the following effects of the operation:

• Instances creation and deletion.

• Attributes modification.

• Associations formed and broken.

For pre-conditions, we are suggested to note things that are important to test in software at some point
during the execution of the operation.

"

Contracts of operation are expressed in the context of the conceptual model: only instances of classes in
the conceptual model can be created; only associations shown in the conceptual model can be formed.

6.2.1 Documenting Contracts

We are suggested to use the following schema for presenting a contract:

Contract

Contracts for System Operations

Name: Name of operation, and parameters.

Responsibilities: An informal description of the responsibility this operation must fulfill.

Type: Name of type (concept, software class, intenace) .

. Cross References: System function reference numbers, use cases, etc.

Note: Design notes, algorithms. and so on.

Exceptions: Exceptional cases.

Output: Non-ill outputs, such as messages or records that are sent outside of the system.

Pre-conditions: As defined.

Post-conditions: As defined

6.2.2 .Contracts for some operations in POST system

Contract for enterltem

Contract

89

Name: enterItem(upc:UPC. quantity:Integer).

Responsibilities: Enter (or record) sale of an item and add it to the sale. Display the item description
and price.

Type: System.

Cross References: System Functions: Rl.l, R1.3. R1.9
Use Cases: Buy Items

Note:

Exceptions:

Output:

Use superfast database access.

If the UPC is not vaiid. indicate that it was an error.

Pre-conditions: UPC is known to the system.

Post-conditions: • If a new sale. a Sale was created (instance creation) .

• If a new sale. the new Sale was associated with the POST (association formed) .

• A SalesLineltem was created (instance creation) .

• The SalesLineltem.quantity was set to quantity (attribute modification) .

• The SalesLineltem was associated with the Sale .

• The SalesLineltem was associated with a ProductSpecification, based on
UPC match (association formed).

90

Contract for endSale

Contract

Name: endsaleO.

Contracts for System Operations

Responsibilities: Record that it is the end of entry of sale items, and display sale total.

Type: System.

Cross References: System Functions: R1.2
Use Cases: Buy Items

Note:

Exceptions:

Output:

If a sale is not underway, indicate that it was an error.

Pre-conditions: UPC is known to the system.

Post-conditions: • Sale.isComplete was set to true (attribute modification).

Here. we notice that we have discovered a new attribute for class Sale which is isComplete. so we
should add it to the conceptual model that we created in Chapter 3.

Contract for makePayment

Contract

Name: makePayment(amount: Quantity).

Responsibilities: Record the payment, calculate balance and print receipt.

Type: System.

Cross References: System Functions: R2.1
Use Cases: Buy Items

Note:

Exceptions:

Output:

Pre-conditions:

Post-conditions:

If sale is not complete, indicate that it was an error.
If the amount is less than the sale total, indicate an error.

• A Payment was created (instance creation).

Contracts for System Operations. 91

• Payment.amountTendered was set to amount (attribute medication) .

• The Payment was associated with the Sale (association fonned) .

• The Sale was associated with the Store, to add it to the historical log of com-
pleted sales (association fonned).

Contract for startUp

It is easy to identify a StartUp use case for the POST system, and thus identify a startUp() operation.
And in fact, every system should have such an operation. However, although the StartUp use case and
the start Up() operation are always carried out first when the system start to work, they can be finalized
only after it is clear about what are needed for carrying out the other use cases and operations. The
contract of startUpO for the POST system can be given as follows.

Contract

Name: startUpO.

Responsibilities: Initialise the system

Type: System.

Cross References:

Note:.

Exceptions:

Output:

Pre-conditions:

Post-conditions: • A Sore. POST. ProductCatalog and ProductSpecification were created (in-
stance creation) .

• Product Catalog was associated with ProductSpecification (association fonned).

• Store was associated with Product Catalog (association fonned) .

• Store was associated with POST (association fonned) .

• POST was associated with Product Catalog (association fonned)

6.2.3 How to make a contract

Apply the following advice to create contract:

92 Analysis Phase Conclusion

1. Identify the system operations from the system sequence diagram.

2. For each system operation, construct a contract.

3. Start by writing the Responsibilities section, informally describing the purpose of the operation.

4. Then complete the Post-conditions section, declaratively describing the state changes that occur to
objects in the conceptual model.

5. To describe the post-conditions, use the following categories:

• Instances creation and deletion .

• Attributes modification.

• Associations formed and broken.

6.2.4 Contracts and other Documents

• Use cases suggest the system input events and system sequence diagram.

• The system operations are then identified from system sequence diagrams.

• The effect of the system operation is described in contract within the context of the conceptual
model.

6.3 Analysis Phase Conclusion

The analysis phase of development emphasises on understanding of the requirements, concepts, and op-
erations related to the system. Investigation and analysis are often characterised as focusing on questions
of what - what are the processes, concepts, associations, attributes, operations.

In Chapter 4 and Chapter 5, we have explored the following minimal but useful set of artifacts that can
be used to capture the results of an investigation and analysis:

Analysis Artifact Questions Answered
Use Cases What are the domain processes?
Conceptual Model What are the concepts, associations and attributes?
System Sequence Diagrams What are the system input events and operations?
Contracts What do the system operations do?

Analysis Phase Conclusion

Questions

93

1. Discuss how post conditions of an operation can be generated from the use case of the operation
and the conceptual model. What are the relationships among the three main kinds of effects of an
operation described in the post-conditions?

2. Discuss the diferences and relationships between contracts of operations here and the VDM-style
specification of pre- and post conditions of an operation that you have learnt from other modules.

3. We discussed the use cases, conceptual model, system sequence diagrams, and contracts regarding
to the whole system to be developed. Discuss the use of the techniques of use cases, conceptual
model, system sequence diagrams, and contracts in a component-based development.

Chapter 7

Design Phase: Collaboration Diagrams

Topics of Chapter 7

• Notion of collaboration diagrams

• UML notation for collaboration diagram

• The nature of the design phase

• Patterns for assigning responsibilities to objects

• Use Patterns to create collaboration diagrams

A contract for system operations describes what the system operation does. but it does not show a
solution of how software objects are going work collectively to fulfill the contract of the operation. The
later is specified by an interaction diagrams in UML. Therefore, a major task of the design phase is to
create the interaction diagrams for the system operations.

The UML defines two kinds of interaction diagrams, either of which can be used to express similar or
identical messages interactions I:

1. collaboration diagrams

2. object sequence diagrams

'Given an underlying class model, some CASE tools can generate one from another.

95

96 Object Sequence Diagrams

7.1 Object Sequence Diagrams

Sequence diagrams iIlustrate interactions in a kind of fence format as shown in Figure 7.1

message I()
I

~I
I

I message2()
I
I,
I
I

'<I
I

message40

Figure 7.1: Object Sequence Diagram

Notice here the differences between a system sequence diagram and an object diagram include:

• A system sequence diagram illustrates the interaction between the whole system and external ac-
tors, while an object sequence diagram shows the interactions between objects of the system .

• A system sequence diagram shows only system's external events and thus identifies system oper-
ations, while an object sequence diagram identifies operations of objects .

• System sequence diagrams are created during the analysis phase, while object sequence diagrams
are models created and used in the design phase.

If we treat an object as a subsystem, and other objects as external actors, then an object diagram is a
sequence diagram of this sub-system.

7.2 Collaboration Diagrams

A collaboration diagram is a graph (as shown in Figure 7.2) showing a number of objects and the links
between them, which in addition shows the messages that are passed from one object to another.

As both coIlaboration diagrams and object sequence diagrams can express similar constructs, different
people may prefer one to another. We shaIl mainly discuss and use coIlaboration diagrams.

Collaboration Diagrams

mcssugcl()~

I: message2()~

2: meuage3(~ I £I.:LuB.. I

97

Figure 7.2: Collaboration Diagram

7.2.1 Examples of collaboration diagrams

Suppose after receiving the cash payment from the Customer, the Cashier records the amount of the cash
received by sending the message makePayment(cash Tendered) to the POST. The POST carries out
this request by sending the message makePayment(cash Tendered) to the (current) Sale, which carries
out the task by creating a Payment. This interaction is shown by the collaboration diagram in Figure 7.3.
From a programming point of view, Figure 7.3 represents the following pseudo program:

l:makcP.ymenl(c:asbTendcrcd) ~

1.1 :cn:atcd(c.&S~Tcndercd)

Figure 7.3: An example of a collaboration diagram

:POST accepts a call of it method makePayment()
(from an Interface Object);

:POST calls for the method makePayment() of :Sale;

:Sale calls the constructor of class Payment to create a new :payment

Therefore, a collaboration diagram for an operation represents an algorithm that implement the operation.

We now explain some basic UML notation used in collaboration diagrams:

1. Instances: An instance (or object) uses the same graphic symbol as its type (or class), but the
designator string is underlined. Additionally, the class name should always be preceded by a
colon. An value for an attribute of an object is represented as attributeName = attribute Value.

2. Links: A link between two objects is a connection path between the two objects; it indicates that
some form of navigation and visibility between the instances is possible. More formally, a link

98 Collaboration Diagrams

is an instance of an association. Viewing two instances in a client/server relationship, a path of
navigation from the client to the server means that messages may be sent from the client to the
server.

3. Messages: Messages between objects are represented via a labelled arrow on a link line. Any
number of messages may be sent along this link. A sequence number is added to show the se-
quential order in which the message are sent. This is shown in Figure 7.4. A message can be

msglO t
l:messagelO ~
2:message20 ~
3:message30 ~

Figure 7.4: Messages

passed between two objects only when there is an association between the classes of objects, such
as Captured-by association between Sale and POST, and the two objects are linked by this asso-
ciation.

4. Parameters: Parameters of a message may be shown within the parentheses following the message
name. The type of the parameter may optionally be shown, such as makePayment(cash Tendered :
Quantity).

7.2.2 More notational issues

Representing a return value Some message sent to an object requires a value to be returned to the
sending object. A return value may be shown by preceding the message with a return value variable
name and an assignment operator (':='). The type of the return value may operationally be shown. This
is illustrated in Figure 7.5. The standard syntax for messages is:

msgO ~

gelClassLislO
~

I :IOI:=IOlaJO:lnleger

1:name:=geIName():Slring ~

Figure 7.5: Return values

Collaboration Diagrams 99

return message (pararneter parameterType) returnType

Representing iteration An object may repeatedly send a message to another object a number of times.
This is indicated by prefixing the message with a start ('*'). This is shown in Figure 7.6.

msglO ~

I :'li:=nextLinellemO:SalesLineltem
~

msglO

1:'Ii:= 1.. 10] 1i:=nexILineltem():SalesLineltem
Jlo

Figure 7.6: Iteration with and without recurrence values

For any other kind of iterations we may combine the asterisk with an iteration clause in square brackets,
such as

• *[x < 10] - the message will be sent repeatedly, until x becomes less than 10,

• *[item not found] - the message will be sent repeatedly, until the item is found.

To express more than one message happening within the same iteration clause (for example, a set of
messages within afor loop), repeat the iteration clause on each message. This is illustrated in Figure 7.7.

msglO ~

1:'li:=l..IO] msg20

Jlo

2:'[i:=1..10] msg30
~

msglO
t
for i:= 1 to 10

t
myB.msg20
myC.msg30
I

Figure 7.7: Multiple message within the same iteration clause

100 Collaboration Diagrams

Representing creation of instances The UML creation message is create which is independent of
programming languages. shown being sent to the instance being created. Optionally, the newly created
instance may include a < < new> > symbol (See Figure 7.8).

create(cashier) ---

Figure 7.8: Instance Creation

A create message can optionally take parameters when some attributes of the object to be created need
to be set an initial value.

Representing message number sequencing The order of messages is illustrated with sequence num-
bers, as shown in Figure 7.9. The numbering scheme is:

1. The first message is not numbered. Thus, msgl0 is unnumbered.

2. The order and nesting of subsequent messages is shown with a legal numbering scheme in which
nested messages have appended to them a number. Nesting is denoted by prepending the incoming
message number to the outgoing message number.

msgl() ~

J.l:msg30 t
2.I:msgSO t

2:msg4() ~

2.2:msg6() t

Figure 7.9: Sequence numbering

Representing conditional messages Sometimes, a message may be guarded and can be sent from one
object to another only when a condition holds. This is illustrated in Figure 7.10.

Collaboration Diagrams

msgl() t

101

1:lncw sale) createll ~

:SalcsLincllcm

Figure 7.10: Conditional message

At a point during the execution of an object, a choice of several messages, guarded by different con-
,ditions, will be sent. In a sequential system, an object can send one message at a time and thus these
conditions must be mutually exclusive. When we have mutually exclusive conditional messages, it is
necessary to modify the sequence expressions with a conditional path letter. This is illustrated in Fig-
ure 7.11. Note that

msgl() ~ la:[condtion] msg20 ~

lb:[nol condition) msg40

t
la,l:msg30

f
Ib,l:msg50 ~

Figure 7.11: Mutually exclusive messages

• Either 1a or 1b could execute after msg 1(), depending on the conditions.

• The sequence number for both is 1, and a and b represent the two paths.

• This can be generalised to any number of mutually exclusive Conditional Messages.

Representing multiobjects We call a logical set of instances/objects as a multiobject. In general, a
multiobject is an instance of a container class each instance of which is a set of instances of a given class
(or type).

For example, SetO/Sales is a class each instance of which is a set of sales. Many implementation data
structures are examples of container classes: Array, List, Queue, Stack, Set, Tree, etc.

102 Collaboration Diagrams

Therefore, each multiobject is usually implemented as a group of instances stored in a container or a
collection object, such as C++ STL vector, Java vector or a Smalltalk OrderedColiection.

In a collaboration diagram, a multiobject represents a set of of objects at the "many" end of an association.
In UML, a multiobject is represented as a stack icon as illustrated in Figure 7.12.

I
sales:Sales

Figure 7.12: A multiobject

We represent a message sent to a multiobject in the standard way with the standard meaning, see Fig-
ure 7.13.

Notice that a message to a multiobject is not broadcast to each element in the multiobject; it is a message
to the multiobject which is an object itself.

mSgl(~

msgl(0.l.
msg20 ,

l:s:=sizeO:inl ~

l:add(e:C) ~
2:delele(e:C) --

Figure 7.13: Message to multiobject

To perfonn an Operation on each object in a multiobject requires two messages; an iteration to the
multi object to extract links to the individual objects, then a message sent to each individual object using
the (temporary) link. This is illustrated in Figure 7.14

1.:\for... h).lb O

2:prinlO ~

:SA1cILiHllcm

Ili:SalcsLiftChem

Figure 7.14: Performing an operation on each object of a multiobject

.-,-.'

Typically the selection message in each iteration returns a reference to an individual object, to which the
original sender sends a message.

Creating Collaboration Diagrams 103

Figure 7.14 indicates that a Sale object has received a message to print itself, which then requires each
of the SalesLineltem objects contained in the Sale object to print itself.

7.3 Creating Collaboration Diagrams

7.3.1 Overview of Design Phase

During the design phase, there is a shift in emphasis from application domain concepts toward software
objects, and from what toward how. The objects discovered during analysis serve as the skeleton of
the design, but the designer must choose among different ways to implement them. In particular, the
system operations identified during the analysis must be assigned to individual objects or classes, these
operations must be expressed as algorithms. Also, complex operations must be decomposed into simpler
internal operations which are assigned to (or carried out by) further objects.

The major task in the design is to create the collaboration diagrams for the system operations identified
in the requirement analysis phase. The most important and difficult part in the generation of collabo-
ration diagrams is the assignment of responsibilities to objects. Therefore, the rest of this chapter will
mainly discuss the general principles for responsibility assignment, which are structured in a format
called patterns.

The creation of collaboration diagrams is dependent upon the prior creation of the following artifacts:

• Conceptual model: from this, the designer may choose to define software classes corresponding to
concepts. Objects of these classes participate in interactions illustrated in the interaction diagrams .

• System operations contracts: from these, the designer identifies the responsibilities and post-
conditions that the interaction diagrams must fulfill .

• Essential (or real) use cases: from these, the designer may glean information about what tasks the
interaction diagrams fulfill, in addition to what is in the contracts (remember that contracts do not
say very much about the V/-outputs). .

7.3.2 Real Use Cases

As we briefly said in Chapter 4, a real use case is the real or actual design of the use case in terms of
concrete input and output technology and its overall implementation. For example, if a graphical user
interface is involved, the real use case will include diagrams of the windows involved, and discussion of
the low-level.interaction with interface widgets.

For example, if we are to use window widgets in the POST system, we may describe the real use case
for the Buy Items with Cash use case as follows:

104

Use case:
Actors:
Purpose:
Overview:

Type
Cross References:

Creating Collaboration Diagrams

Buy Items with Cash
Customer (initiator). Cashier.
Capture a sale and its cash payment.
A Customer arrives at a checkout with items to purchase. The
Cashier records the purchase items and collects a cash payment.
On completion. the Customer leaves with the items.
Real
Functions: R1.l. R1.2. R1.3, R1.7, R1.9, R2.1.

Ohject Store

upe Quantity m=J
Price Desc II
Total Blilimce m=J
endered ,"

Figure 7.15: Window-1

Creating Collaboration Diagrams 105

1.

2.

Typical Course of Events
Actor Action

This use case begins when a Customer ar-
rives at a POST checkout with items to
purchase.
For each item, the Cashier types in the 3.
UPC in A of Window-l (shown in Fig-
ure 7.15). If there is more than one of an
item, the quantity may optionally be en-
tered in E. They press H after each item
entry.

System Response

Adds the item information to the running
sales transaction.

4. On completion of the item entry, the 5
Cashier indicates to the POST that item
entry is completed by pressing widget 1.

6.

The description and price of the current
item are displayed in Band F of Window-
1.
Calculates and presents the sale total and
display it in C.

7.3.3 GRASP: Patterns for Assigning Responsibilities

Responsi~ilities

A responsibility is a contract or obligation of an object. Responsibilities are related to the obligations of
objects in term of their behaviour.

There are in general two types of responsibilities:

1. Doing responsibilities: these are about the actions that an object can perform including

• doing something itself

• initiating an action or operation in other objects
• controlling and coordinating activities in other objects .

2. Knowing responsibilities: these are about the knowledge an object maintains:

• knowing about private encapsulated data
• knowing about related objects
• Knowing about things it can derive or calculate

We notice that objects support the concept of information hiding, i.e. data encapsulation. All information
in an object-oriented system is stored in its objects and can only be manipulated when the objects are
ordered to perform actions. In order to use an object, we only need to know the interface of the object.

106 Creating Collaboration Diagrams

The general steps to create collaboration diagrams is described as follows. Start with the responsibilities
which are identified from the use cases, conceptual model. and system operations' contracts. Assign
these responsibilities to objects, then decide what the objects needs to do to fulfill these responsibilities
in order to identify further responsibilities which are again assigned to objects. Repeat these steps until
the identified responsibilities are fulfilled and a collaboration diagram is completed,

For example, we may assign the responsibility for print a Sale to the Sale instance (a doing responsibil-
ity), Or we assign the responsibility of knowing the date of a Sale to the Sale instance itself (a knowing
responsibility). Usually, knowing responsibilities are often inferable from the conceptual model, because
of the attributes and associations it illustrates.

Responsibilities of an object are implemented by using methods of the object which either act alone or
collaborate with other methods and objects. For example, the Sale class might define a method that
performing printing a Sale instance; say a method named print. To fulfill that responsibility, the Sale
instance may have to collaborate with other objects, such as sending a message to SalesLineltem objects
asking them to print themselves.

Within UML, responsibilities are assigned to objects when creation a collaboration diagram, and the col-
laboration diagram represents both of the assignment of responsibilities to objects and the collaboration
between objects for their fulfilment.

For example, Figure 7.14 indicates that

1. Sale objects have been given a responsibility to print themselves, which is invoked with a print
message.

2. The fulfilment of this responsibility requires collaboration with SalesLineltem objects asking
them to print.

7.3.4 GRASP: Patterns of General Principles in Assigning Responsibilities

Experienced 00 developers build up both general principles and idiomatic solutions called patterns that
guide them in the creation of software. Most simply, a pattern is a 'named problem/solution pair that can
be applied to new context, with advice on how to apply it in novel situations.

We shall present a pattern in the following format:

Pattern Name:

Solution:

Problem:

the name given to the pattern

description of the solution of the problem

description of the problem that the pattern solves

Creating Collaboration Diagrams 107

Now we are ready to explore the GRASP patterns: General Responsibility Assignment Software Patterns.
They include the following five pattern: Expert. Creator; Low Coupling. High Cohesion, and Controller.

Expert

Pattern Name:

Solution:

Problem:

Example

Expert

Assign a responsibility to the information expert - the class that has information
necessary to fulfill the responsibility.

What is the most basic principle by which responsibilities are assigned in OOD?

In the POST application, some class needs to know the grand total of a sale. When we assign responsi-
bilities, we had better to state the responsibility clearly:

Who should be responsible for knowing the grand total of the sale?

By Expert, we should look for that class of objects that has the information

• all the SalsLine/tem instances of the Sale instance, and

• the sum of their subtotal.

that is needed to determine the total. Consider the partial conceptual model in Figure 7.16.

Only the Sale knows this this information; therefore. by Expert, Sale is the correct class of objects for
this responsibility. Now we can start working on the collaboration diagram related to the assignment of
responsibility for determining the grand total to Sale, by drawing Figure 7.17.

After assigning the responsibility of getting the grand total to Sale, it needs to get the subtotal of each
line item. The information needed to determine the line item subtotal is SalesLine/tem.quantity and
ProductSpecification.price. As the SalesLine/tem knows its quantity and its associated ProductSpecificati.
by Expert, SalesLine/tem should be responsible for returning its subtotal to the Sale. In terms of a col-
laboration diagram, the Sale needs to send subtotal message to each of the SalesLine/tem and sum the
results; the design is shown in Figure 7.18.

In order to ~ulfill the responsibility of knowing and returning its subtotal, a SalesLine/tem needs to
know where to get the product price. The ProductSpecification is an information expert on answering
its price; therefore, a message must be sent to it asking for its price. The design is shown in Figure 7.19,
which is the complete collaboration diagram representing the design for operation totalO.

108 Creating Collaboration Diagrams

Sale

date
time

Contains

1..'

Sales Product
Lineltem • Described-by Specification

description
quantity price

upc

Figure 7.16: Associations of the Sale

t:=lolaIO ~ I :Sale

Class willi a
melllod identified

Sale

dale
time

totalO

Figure 7.17: Partial collaboration diagram

Remarks on the Expert Pattern The Expert ,pattern is used more than any other pattern in the assign-
ment of responsibilities; it is a basic guiding principle used again and again in 000. It expresses the
common intuition that objects do things related to the information they have.

The fulfilment of a responsibility often requires information spread across different classes of objects.
This means that there are often many "partial" experts who will collaborate in the task. Whenever
information is spread across different objects, the objects will need to interact via message passing in
order to exchange information and to share the work. Information which is spread across different
objects is exchanged via the links between associated objects.

Expert leads to designs where a software object does those operations which are normally done to the
real-world (or domain) object it represents; this is called the" DO it Myself' strategy. Fundamentally,
objects do things related to information they know.

The use of the Expert pattern also maintain encapsulation, since objects use their own information to
fulfill responsibilities. This also implies low coupling, which means no extra links needed to be formed
apart from those whIch have to be there. Low coupling implies high independency of objects that leads
to more robust and maintainable systems.

Creating Collaboration Diagrams

t::MüJ(J 1-:\1« each I sli:.nCll..tl)

109

2: :lil:=s.ublutaltl

Sale

dole
time

SalcsLinellcm

quan.tity

NbtotalO

Figure 7.18: Getting the subtotal

Creator

The creation of objects is one of the most common activities in an 00 system. Consequently, it is
important to have a general principle for the assignment of creation responsibilities.

Pattern Name:

Solution:

Problem:

Example

Creator

Assign class B the responsibility to create an instance of a class A (B is a creator
of A objects) if one of the following is true:

• B aggregates A objects.

• B contains A objects.

• B records instances of A objects.

• B closely uses A objects.

• B has the initüzlising data that wiD be passed to A when it is created (thus
B is an expert with respect to creating A objects.

What should be responsible for creating a new. instance of some class?

In the POST application, consider the part of the conceptual model shown in Figure 7.20.

Since a Sale contains (in fact, aggregates) many SalesLineltem objects, the Creator pattern suggests
Sale is a good candidate to be responsible for creating SalesLineltem objects. This leads to a design of
object interactions in a collaboration diagram, as shown in Figure 7.21.

110

1::.IOlalll ~ 1':I[or eachl .li:=neXl()

Creating Collaboration Diagrams

2: sl:=sublotalC)

sli:SalesLinellcm

2.1: p:=price!)

t
ProduclSpccifocation

:SaJesLinellem

S3le

date
time

.tOlaJO

Sale.Linellem

quantity

.ublolal!)

Product
Specification

description
priee
upc

prieeO

Figure 7.19: Getting the price of a product

Sale

dale

rime

Contain •

..."
ProduclSpeciflcatioo

Sale.Linellem DelCribed-by

" description
quantity price

1 .. -

Figure 7.20: Partial conceptual model

The assignment of this responsibility requires that a makeLineltem method be defined in Sale. In
general, a method has to be defined in a class to fulfill each responsibility assigned to that class.

Sometimes a creator is found by looking for the class that has the initialising data that will be passed in
during the creation of an object. This is actually an example of the Expert pattern. For example, assume
that a Payment instance needs to be initialised, when created, with the Sale total. Since Sale knows the
total, Sale is a candidate creator of the Payment object.

Low Coupling

Coupling is a measure of how strongly one class is connected to, has knowledge of, or relies upon other

Creating Collaboration Diagrams

mok.Lin.ll.m(qu.nlily)
~

l:createCquantily)

:S.le 5.1.

date

lime

mak.Linelt.m()

lot. III

111

:Sal.sLin.h.m

Figure 7.21: Create a SalesLineltem

classes. A class with low (or weak) coupling is not dependent on too many other classes.

A class .with high (or strong) coupling relies upon many other classes. Such classes are undesirable; they
suffer from the following problems:

• Changes in related classes force local changes, i.e. changes in this class.

• Changes in this class force the changes in many other related classes.

• Harder to understand in isolation.

• Harder to reuse as its reuse requires the use of the related class.

When we assign a responsibility to a class, we would like to assign responsibilities in a way so that
coupling between classes remains low. This is captured by the Low Coupling' Pattern described below.

Pattern Name:

Solution:

Problem:

Example

Low Coupling

Assign a responsibility so that coupling remains low

How to support low dependency an increased reuse?

Consider the classes Payment. POST and Sale in the POST system. Assume we need to create a
Payment instance and associate it with the Sale (see the contract for makePayment given in Chapter6).
Since POST "records" a Payment. the creator pattern suggests POST as a candidate for creating the
Payment. This would lead to a design shown in Figure 7.22.

This assignment of responsibilities couples the POST class to the knowledge of the Payment class. An
alternative assignment of the responsibility to creation of the Payment and to associate it with the Sale
allows us to do so and is shown in Figure 7.23.

112

makePayment- l:crealeO~

2:addPayment(p) ~

Creating Collaboration Diagrams

Figure 7.22: POST creates Payment

makePaymenl()- I :makePaymenl(}-
l.I:orealoO

t

Figure 7.23: Sale creates Payment

Assume that Sale will be eventually coupled with Payment. The second design is preferable because it
does not need an extra link formed between POST and Payment. This assignment of responsibility is
also justifiable as it is reasonable to think that a Sale closely uses a Payment.

In object-oriented programming languages such as C++, Java, and Smalltalk, common forms of coupling
from ClassX to Class Y include:

• ClassX has an attribute that refers to a Class Y instance, or Class Y itself.

• ClassX has a method which references an instance of Class Y, or Class Y itself, by any means.
These typically include a parameter or local variable of type Class Y, or the object returned from
a message being an instance of Class Y.

• ClassX is a direct or an indirect subclass of Class Y.

Coupling may not be that important if reuse is not a goal. And there is not absolute measure of when
coupling is too high. While high coupling makes it difficult to reuse components of the system, a system
in which there is very little or no coupling between classes is rare imd not interesting.

High Cohesion

Cohesion is a measure of how strongly related and focused the responsibilities of a class are. A class
with high cohesion has highly related functional responsibilities, and does not do a tremendous amount
of work. Such classes has a small number of methods with simple but highly related functionality.

A class with low cohesion is undesirable as it suffers from the following problems:

Creating Collaboration Diagrams

• hard to comprehend;

• hard to reuse;

• hard to maintain;

113

One important nature of a good 000 is to assign responsibilities to classes that are naturally and strongly
related to the responsibilities, and every class has something to do but does not have too much to do.
It is often the case that a class takes on a responsibility and delegates parts of the work to fulfill the
responsibility to other classes. This nature is captured by the high cohesion pattern.

Pattern Name:

Solution:

Problem:

Example

High Cohesion

Assign a responsibility so that cohesion remains high

How to keep complexity manageable?

The same example used for Low Coupling can be used for High Cohesion. Assume we have a need
to create a Payment instance and associate it with the Sale (see the contract for makePayment given
in Chapter 5). Since POST "records" a Payment, the creator pattern suggests POST as a candidate
for creating the Payment. This is the design shown in Figure 7.22. However, this design places the
responsibility for making a payment in the POST. The POST takes on part of the responsibility for
carrying out the makePayment system operation. Imagine that there were fifty system operations, all
received by POST. If it did the work related to each, it would become "bloated" incohesive object.

In contrast, as shown in Figure 7.23, the second design delegates the payment creation responsibility
to the Sale, which support higher cohesion in the POST. Since the second design support both high
cohesion and low coupling, it is desirable.

The benefits from the use of the High Cohesion Pattern include:

• Clarity and ease of comprehension of the design is increased.

• Maintenance and enhancements are simplified.

• Low coupling is often supported .

• Supports reuse.

114

Controller

Controller pattern deals with the identified system operations.

Coniroller Pattern.

Creating Collaboration Diagrams

Pattern Name

Solution:

Problem:

: Controller

Assign the responsibility for handling a system (input) event to a class repre-
senting one of the following choices:

• Represents the "overall system" (facade controller) .

• Represents the overall business or organisation (facade controller).

• Represents something in the real-world that is active (for example, the role
of a person) that might be involved in the task (role controller).

• Represents an artificial handler of all system (input) events of a use case,
usually named "< UseCaseName > Handler" (use-case controller).

Who should be responsible for handling a a system input event?

This pattern also suggests to use the same controller class for all system input events in the same use case.
It also implies that a controller is a non-user interface object responsible handling a system input event.
and that controller defines the method for the system operation corresponding to the system input event.
An interface object may accept a system input event, but it does not carry out any of the responsibilities
(or any part of the work) of the system operation rather than simply passing (or delegating) it onto the
controller.

Example

In the POST application, we have identified several system operations, including enterItemO, endSaleO.
and makePaymentO.

During system behaviour analysis (see Chapter 6), system operations are recorded to the class System
as shown in Figure 7.24

However, this does not mean that a class named System fulfils them during the design. Rather, during
design, a Controller class is assigned the responsibility for system operations.

By the Controller pattern, here are our choices;

I. POST: represents the overall system.

Creating Collaboration Diagrams

System

enterIternO
endSaleO
makePaymentO

Figure 7.24: System operations recorded in a type named System

115

2. Store: represents the overall business or organisation.

3. Cashier: represents something in the real-world (such as the role of a person) that is active and
might be involved in the task.

4. BuyltemsHandler: represents an artificial handler of all system operations of a use case.

In terms of collaboration diagrams, this means that one of the diagrams in Figure 7.25 will be used.
~

enlerllem(upc:.quanlily)

31
enlerllem(upc:.quanlily)

>'
entcrllem(upc:.quanlily)

)l.

enlerllem(upc:.quanlily)

:Slore

~I
:BuyltemHandle

Figure 7.25: Choices of Controllers

The final decision on which of these four is the most appropriate controller is influenced by other factors,
such as cohesion and coupling.

In the design, the system operations identified during the system behaviour analysis are assigned to one
or more controller classes, such as POST (see Figure 7.26).

Discussion about Controller

• Controller and Use Cases: The same controller class should be used for all the system input
events of one use case so that it is possible to maintain information about the state of the use case,

116 Creating Collaboration Diagrams

System

cntetllcm{)

endS.Ic()
makcPlIymcnl()

POST

eaterl_l
cadSaIe()
...uPaymelll()

Figure 7.26: Allocation of system operation to a controller class

for example, to identify out-of-sequence system input events (e.g. a makePayment operation
before an endSale operation). Different controllers may be used for different use cases .

• Use-Case Controller: If use-case controller are used, then there is a different controller for each
use case. Such a controller is not a domain object; it is an artificial construct to support the system.

• Controller and the other Patterns: Poorly designed controllers classes will have low cohesion
- unfocused and handling too many loosely responsibilities. Examples of poorly designed con-
trollers include:

- There is only a single controller class receiving all system input events, and there are many
of them.

- The controller itself performs many of the tasks necessary to fulfill the system operations,
without delegating the work.

The solutions to solve these problems include

1. Add more controllers.

2. Design the controller so that it is primarily delegates the fulfilment of each system operation
responsibility on to objects. rather than doing all or most of the work itself.

• Role controllers: Assign a responsibility to a human-role object in a way that mimics what that
role does in the real world is acceptable. However, if a role controller is chosen, avoid the trap of
designing person-like objects to do all the work.

Creating Collaboration Diagrams 117

7.3.5 A Design of POST

This section applies the GRASP patterns to assign responsibilities to classes, and to create collaboration
diagrams for POST. We consider Buy Items with Cash and Start Up use cases in this design. Before we
start the work on the design, we first state the following guidelines for making a collaboration diagram:

1. Create a separate diagram for each system operation which have identified and whose contracts
are defined.

2. If the diagram gets complex, split it into smaller diagrams.

3. Using the contract responsibilities and post-conditions, and use case description as a starting point,
design a system of interacting objects to fulfill the tasks. Apply the GRASP to develop a good
design.

This is partly illustrated in Figure 7.27.

I. If a new sale. a new
Sale was c",ared ...

rJ~t~~~'
:POST t

Opcralion: oW:ePaymcn

1....

Paslconditions:m.akePaymenl(amounl)
:;J'

endSale()

Cashier ~
_ _ _ Opcrnfion:\ emerltcm

,- --, ---
I ~lerllem(upc.quan.!!l)l) Pa'lcondilions

- -:;J

Figure 7.27: Guidelines for design

With Buy Items with Cash and Start Up use cases, we have identified four system operations enter/tern,
endSa/e, rnakePayrnent, and' StartUp.

According to our guidelines we should construct at least four collaboration diagrams. According to the
Controller pattern, the POST class could be chosen as controller for handling these operations. If so,
we have the four starting diagrams shown in Figure 7.28 to complete.

Collaboration diagram for enter/tern

First by Controller, POST is a candidate as the controller for handling this operation. And POST is
satisfactory if there are only a few system operations. We make this choice in our example.

118 Creating Collaboration Diagrams

endSale() -

makePaymenl() -

:POST

:POST

:POST

I: ???'(}

1: ????()

I I I: ????O
stanUpO - :POST .. _

POST

enlerltemO

endSale()
makePaymcnlO
slanUp()

Figure 7.28: System operations

After assigning the responsibility for handling enterltem to POST, we need to look at the contract of
enterltem what POST needs to do to fulfill this responsibility.

Displaying item description and price

In general, model objects are not responsible for display of infonnation. These are the responsibilities
of interface objects which can access to data known by model objects and can send messages to model
objects. However, model objects do not send messages to interface objects in order to keep the system
independent of the interface.

Creating a new Sale

The post-conditions of enterltem indicate a responsibility for creation an object Sale. The Creator
pattern suggests POST is a reasonable candidate creator of the Sale, as POST records the Sale. Also
by having POST create the Sale, the POST can easily be associated with it over time.

In addition to the above, when the Sale is created, it must create an empty collection to record all the
future SaleLineltem that will be added. This collection will be maintained by the Sale instance, which
implies by Creator that the Sale is a good candidate for creating it.

Creating Collaboration Diagrams

Therefore, we have the collaboration diagram shown in Figure 7.29.

119

enlerltem(upc.qIYI :POST--- I :[new sale] creale()

~

1.1 :creale() f

Figure 7.29: Sale creation

Creating a new SalesLine/tem

The other post-conditions in the contract for enter/tem indicate the responsibility to create a SalesLineltem
instance. From the conceptual' model and creator, Sale is an appropriate candidate creator for the
SalesLineltem object. And by having the Sale create SalesLineltem, the Sale can be associated with
the SalesLine/tem object over time by storing the new instance in its collection of line items. The post
conditions also indicate that the new SalesLine/tem objects needs a quantity when it is created. There-
fore, the POST must pass the quantity along to Sale, which must pass it along as a parameter in the
creation message to the SalesLineltem.

Finding a ProductSpectification The postcondition in the contract of enter/tem also requires the
newly created SalesLineltem to be associated with the ProductSpecification that matches the upc
of the item. This implies that the parameters to the makeLine/tem message sent to the Sale in-
clude the ProductSpecification instance, denoted by spec, which matches the upc. This then requires
to retrieve this ProductSpectification objects before the message make/tem (spec, qty) is sent to the
Sale. From the conceptual model and the Expert pattern. ProductCataLog logically contains all the
ProductSpecifications. Thus by Expert, Product CataLog is a good candidate for looking up the ProductSI

Visibility to a ProductCatalog

After we have assigned the responsibility to Product CataLog for looking up the ProductSpecification,
we sould also decide the object that should send the message to the Product Catalog to ask for a
ProductSpecification.

In order for one object ~ to send a message to another object -Jl. object ~ must be currently linked
to object -Jl. In OOD, the linkage between two objects is closely related to the concept of visibility of
an object. The difference and relationship between the concepts of association and visibility are:

120 Creating Collaboration Diagrams

• If: A has visibility to ~, there must be a link between ~ and ~, and thus there must be an
association between class A and class B.

• If there is current a link ;...Li and ~, then one of the two objects has visibility to the other, though
it is not necessarily they have visibility to each other.

We should now restate more precisely about the message passing between objects as

In order one object ;...Li to send a message to another object : B. object ~ must currently
have visibility to object ~.

There are the following four ways that visibility can be achieved from object ~ to ~:

1. Attribute visibility - ~ is an attribute of : A. This is a relatively permanent visibility because it
persists as long as the two objects exists.

2. Parameter visibility - ~ is a parameter of a method of: A. This is a relatively temporary visibility
because it persists within the scope of the method.

3. Locally declared visibility - ;...JI is declared as a local object in a method of: A. This is a relatively
temporary visibility because it persists within .the scope of the method.

4. Global visibility - ~ is in some way globally visible. This is a relatively permanent visibility.

Now come back to our question about which object has visibility and can send a message ProductCataLog
object to find a specification. This is not clear in the conceptual model. So we need add an association
which links a class and ProductCatalog, and the links between these objects are established during the
initial StartUp use case so that it can be used when creating a SalesLineltern. The post<;onditions of
StartUp include the creation of the POST and the ProductCatlog, and the formation ofthe association
between these two objects. This implies that we can safely assume that there is a permanent connection
from the POST object to the Product Catalog object. Therefore, it is possible for the POST to send the
message, denote by specification, to the Product Catalog object. Based on this discussion, we now can
complete the collaboration diagram for enter/tern shown in Figure 7.30.

From the collaboration diagram, we can write a pseudo-code for the method enter/ternO of the POST:

POST--enterltem(upc,qty)
(

if new sale then «new»Sale.create()
spec: =ProductCataLog. specification(upc)
Sale.makeLineltem(spec,qty)

}

Creating Collaboration Diagrams 121

cnte~ltem(upc.ql)')

~
I :Incw Ic'calcO ~

3: makc Lincltcm(spec ,qIY) --

2: spec:=speciftcJtionl upc)

t 1.1:c,calcot

3.2:add(SIi~

3.1 :c'caIC(spec.qly I

~

sli:SalcsLincilem

Figure 7.30: The enterItem collaboration diagram

Remarks about messages to multiobjects

Notice that in general, a message, such as find and add, sent to a multiobject is to the collection object
itself, not to every object in the collection. The message 1.1 : createO sent to the SalesLineItem
multiobject is for the creation of the collection data structure represented by the multiobject, it is not
the creation of an instance of class SalesLineItem. The add message (3.2) sent to the SalesLineItem
multiobject is to add element to the collection data structure represented by the multiobject.

Collaboration Diagram for endSale

The first design decision is to choose a controller to handle this system operation. We continue to use
. POST as the controller for this operation.

The contract of endSale 0 requires

• Sale.isComplete was set to true (attribute modification).

By Expert, it should be the Sale itself to carry out this responsibiIlty, since it owns and maintains the
isComplete attribute. Thus the POST will send a message, denoted by become Complete, to the Sale
in order to set it to true. This assignment of responsibility is shown in Figure 7.31.

Calculating the Sale total Although we are not at the moment concerned ourselves with how the sale
total will be displayed, we must ensure that all infonnation that must be displayed is known and available
from the domain objects. Note that no class current knows the sale total, so we need to create a design of
the object interactions, using a collaboration diagram, to calculate the sale total.

In Section 7.4.1, we used the assignment of the responsibility for knowing and returning the total of
sale to understand the use of the Expert Pattern. There we obtained the collaboration diagram illustrated

122

endS.leC)-- I :becomeCompleli)~

becomcCompletc(1
I
isComplctc;;truc
I

Creating Collaboration Diagrams

Figure 7.31: Completion of item entry

in Figure 7.19. In Figure 7.32. we only add some pseudo-codes to clarify the purposes of some of the
operations.

s..1II-1O.10
I

Illl:.o
ro..lC~S. .. .u.lka .Ii

lOl:ato Ii.•lIbtoUkl, ...
I

do.--

SdCllLa .. IIcm--,.t.toaall'l

I "'him lity.pvdSpcc.prioc()
I

""",""

Spod/ko"-

daaipUoll
pri<.o...
pri<.oll

Figure 7.32: sale-total collaboration diagram

In general. since arithmetic is not usually illustrated via messages, the details ofthe calculations can be
shown by attaching constraints to the diagram that defines the calculations.

We have one question unanswered: who will send the total message to the Sale? Most likely it will be
an object in the interface, such as a Java applet.

Collaboration diagram for makePayment

Again. we shall use POST again as the controller. During our discussion about the patterns Low Cou-
pling and Cohesion, we decided that we should assign the responsibility of the creation of the Payment
to the Sale rather than to the POST. Additionally, it is reasonable to think that a Sale will closely use
a Payment. and our choice is thus also justifiable by the Creator pattern. This discussion leads to the
collaboration diagram in Figure 7.33

This collaboration diagram satisfies the postconditions that

Creating Collaboration Diagrams

mak~Paym."UcashT."d.red) :POST

\ -\
\
\

I by CO"!rolle, ..,

1.I:crcalcl cashTendercd)

123

Figure 7.33: makePayment collaboration diagram

• the Payment was created,

• The Payment was associated with the Sale, and

• Payment. amount was set with cash Tendered.

Logging the Sale

Once complete, the requirements state that the Sale should be place~ in an historical log. By the Expert
pattern. By expert, it is reasonable for the Store to know all the logged sales.

However, in some financial applications, the object representing the overall business may be come in-
cohesive if we assign it with all the responsibilities of logging all the financial information. In such. a
case, other alternatives include the use of classic accounting concepts such as a SalesLedger. Notice
that the posteonditions of the contract of makePayment include associating the Sale with the Store. If
a SalesLedger, rather than the Store, is used for logging the complete Sale, SalesLedger would ideally
be added to the conceptual model, and the contract for makePayment would be adjusted accordingly
as well. This kind of discovery and change during the design phase is perfectly reasonable and to be
expected.

For our POST system, we will stick with the original plan of using the Store for logging the sales. This
leads to the collaboration diagram in Figure 7.34.

Calculating the balance

The responsibilities section of the contract of makePayment requires that the balance is calculated; it
will be printed on a receipt and displayed. Note that no class currently knows the balance, so we need
to assign this responsibility to a class. To calculate the balance, the sale total and payment cash tendered
are required. By Expert, Sale and Payment are partial expert on solving this problem.

If the Payment is primarily responsible for knowing the balance, it would need visibility to the Sale,
in order to send the message to the Sale to ask for its total. Since the Payment does not currently have

124 Creating Collaboration Diagrams

1.t :create(cashTcndcrcd)

makePaymenl(cashTendered) :POST-
2addSale(st I

EJ
2,t:add(S)t

I :makePaymcnt(cashTendcrcd I-

compleledSales:Sale

Figure 7.34: Logging a complete sale

visibility to the Sale, this approach would increase the overall coupling in the design.

In contrast, if the Sale takes the primary responsibility for knowing the balance, it needs the visibility to
the Payment, in order to send it the message to ask for its cash tendered. Since the Sales, as the creator
of the the Payment already has the visibility to the Pyament, this approach does not not increase the
overall coupling, and it is a preferable'design. This design is shown in Figure 7.35

Sale-balance
(return pml.amouDl().lotal() I

,
baJ:=balance()

~

2:t:=lotalO

I: amt:=amOUDl() ~

Figure 7.35: Collaboration diagram for the calculation of the sale balance

An interface object will be responsible for sending the message ba,lance to the Sale.

Collaboration diagram for Start Up

Most, if not all, systems have a Start Up use case, and some initial system operation related to the
starting up of the application. Although this Start Up system operation is the earliest one to execute,
delay the development of a collaboration diagram for it until after all other system operations have been
considered. This ensures that significant information has been discovered concerning what initialisation
activities are required to support the later system operation interaction diagrams.

Creating Collaboration Diagrams 125

The startUp operation abstractly represents the initialisation phase of execution when an application is
launched. How an application starts up and initialises is dependent upon the programming language and
operating system.

In all cases, a common design idiom is to ultimately create an initial domain object, which is the first
problem domain object created. In its initialisation method this objects is then responsible for the creation
of other problem domain objects and for their initialisation.

The problem of who should be responsible for creating the initial domain object is dependent upon the
object-oriented programming language and' operating system. For example, if a graphical user interface
is used, ,such as a Java applet, its execution may cause the attributes to be initialised. One of these
attributes may be the initial domain object, such as Store Which is then responsible for the creation of
other objects. such as POST:

public class POSTApplet extends Applet
{

public void init()
{

post - store.getPOST();
}

II Store is the initial domain object.
II The Store constructor creates other domain objects
private Store store = new Store();

private POST post;
private Sale sale;
}

The collaboration diagram for the startUp operation illustrates what happens when the initial problem
domain object is created. rather than how the initial domain object is created. Thus, this collaboration
diagram is language independent. and applicable to different languages. Therefore. the creation of a
collaboration diagram for the start Up operation starts with sending a create 0 message to the initial
domain object to create it. However. the question Hi how to choose this initial domain object. One of the
following alternatives can be chosen to be the class of the initial domain object:

• A class representing the entire logical information system.

• A class representing the overall business or organisation.

Choosing between these alternatives may be influenced by High Cohesion and Low Coupling consider-
ations.

Therefore, for the POST application, we can either choose POST or Store as the initial domain object.

126 Creating Collaboration Diagrams

We choose the Store as the POST is already chosen as the controller to be responsible for handling the
system operations.

Persistent objects: ProductSpecijication

In a realistic application the ProductSpecijication objects will be maintained in a persistent storage
medium, such as relational or object-oriented database. During the startUp operation, if there are only
a few of these objects, they may all be loaded into the computer's direct memory. However, if there are
many, loading them all would consume too much memory or time. More likely, individual objects will
be loaded on-demand into the memory as they are required.

The design of how to dynamically on-demand load objects from a database into memory is not considered
in this module. You may have to learn this when you come to do your Software Engineering Project in
the next semester. Here, we simply assume that all the ProductSpecijication can be created in the direct
memory.

Create the Store and start up the system

From the contract of startUp, and the early discussion, the creation of a collaboration diagram

1. starts with a message createO being sent to the Store,

2. in order t~ create the POST and to allow it to have visibility and send messages to the the
Product Catalog (see the enter/tern collaboration diagram), the Store needs to create the ProductCatalog,
represented by pc first,

3. then the Store creates the POST and passes the pc as a parameter of the message createO to the
POST.

4. when the Product Catalog is created, it needs to create the empty collection of the ProductSpecification
objects to which further specifications can be added.

This algorithm (or design) is illustrated in the collaboration diagram in Figure 7.36.

Notice in the figure that pc calls a method of itself:

Productcatalog -- loadProdSpecs()
{
Repeat

ps=new ProductSpecification(upc,price,description);
Collection(ProductSpecification) .add(ps)

Creating Collaboration Diagrams

cre.teO~
:Store

2:crealeIPCr~

127

I.cre.tell

~

1.2:loadProdSpecs()

l.I:cn:.teO~

:ProducISpecific.tion

1.2.1 :.create(u~.pricc.description)

ps:ProdUCISpecilicati

Figure 7.36: Collaboration diagram for Startup

Until finished
}

A deviation between analysis and design

The collaboration diagram for StartUp illustrates that the Store only create one POST object. However,
the conceptual model that we created in Chapter 5 models a real store which may house many real point-
of-sale terminals.

Regarding to this deviation, there are the following points to be made:

1. The Store in the collaboration diagram is not a real store; it is a software object.

2. The Post in the diagram is not a real terminal; it is a software object.

3. The collaboration diagram represents the interaction between. one Store and one POST (certainly
with other objects). This is what we are required to do by the requirement that we are current
considering.

4. Generalisation from a single POST object to many POST objects requires that the Store to create
many POST instances. And the interactions between these many POST objects with other objects
would need to be synchronised in order to maintain the integrity of the shared information, such
as logging complete Sale objects, and looking up the product specification. These would involve
multi-thread computation or concurrent computation. Design and program concurrent systems
is out of the scope of this module, but it is the main topic of MC306: Programming Concurrent
Computer Systems.

128 Creating Collaboration Diagrams

7.3.6 Connecting User Interface Objects to Domain Objects

Although we are not concerned ourselves with the design of user interface objects, we are interested in
knowing how an user interface object, once it is designed, is linked to a domain object.

As discussed during the creation of the StartUp collaboration diagram, if a graphical user interface is
used. such as a Java applet, then the applet is responsible for initiating the creation of the initial domain
object. The initial domain object in turn created other objects. Then the applet requests a reference to
the POST object from the Store, and stores the reference in an attribute. With this attribute visibility to
the POST, the applet may directly send messages to the POST. This is illustrated in Figure 7.37.

createCr---- :POSTApplel

Figure 7.37: Interactions between the applet and a domain object

Once the applet has a connection with the controller POST, it can forward system input events message
to it, such as the enter/tern, endSale, and so on.

Ohjul Slnrl' !5i ~

Cashier

. , .. , .. "i" :;:;'\,: .!;" 'f' ., .. , ...

UPC I .I::,:~.'D
I "'E';"'.:I

Prke ~:t~'.~ ".,..
Tetal I I'I, ~ D
eadcnd I I'
~ EaIa:,I'#'hl

onEntcrhem() t
3:1=lol2l():FIoal

I:cnterhcm(upc,qly) t
1:(00 salt] Salt:=lelSale():S~.

1.1: aeate()

lalcrlace Laye.

Domain Laye.

Figure 7.38: Connecting interface and domain objects

For example, consider the case of the enter/tern message as illustrated in Figure 7.38:

1. The Cashier types in upc and qty (which are not shown in the Figure).

2. The Cashier requests enter/tern by pressing the button "Enter Item".

Creating Collaboration Diagrams 129

3. The window forward the message by sending onEnterltem() to tbe Applet.

4. The Applet then sends the message enter:ltem(upc, qty) to the POST.

5. The Applet gets a reference to the Sale (if it did not have one) by sending a message getSaleO to
the POST.

6. Applet sends a total message to the Sale in order to get the information needed to display the
running total.

Interface and domain layer responsibilities

We have to remember the following general principle:

The interface layer should not have any domain logic. responsibilities. It should only be
responsible for interface (presentation) tasks, such as updating widgets.

The interface layer should forward requests for all domain-oriented tasks on to the domain
layer. which is responsible for handling them.

Interface layer has visibility to the domain layer and can directly send messages to the
domain layer. However, the domain objects usually do not have visibility to the interface
layer. and cannot send messages to the interface layer.

This principle supports the separation between the design of the domain layer (application layer) and the
design of the interface.

7.3.7 Design Class Diagrams

During the creation of a collaboration diagram, we record the methods corresponding to the responsibil-
ities assigned to a class in the third section of the class box. For example, see Figure 7.39.

These classes with methods are software classes representing the conceptual classes in the conceptual
models. Then based on these identified software classes, the collaboration diagrams and the original
conceptual model, we can create a design class diagram which illustrate the following information:

• classes, associations and attribute~

• metqods,

• types of attributes

• navigability

• dependencies

130

e:=toeal() __
1':[for each!lli:=ne"O

Creating Collaboration Diagrams

2: 1l:=lubeotaIO

r
sli:SalesLinelcem

2.1: p:=price()

~
ProductSpecification

:SaJe,Linelc.m

Sal.

date
time

totaJO

SaJ.,Linelc.m

quantily

,ubeocaJO

Product
Specification

descriplion
price
upc

priceO

Figure 7.39: Recording methods of classes when create a collaboration diagram

Steps in making a design class diagram

Use the following strategy to create a design class diagram:

1. Identify all the classes participating in the object interactions. Do this by analysing the collabora-
tion diagrams.

2. Draw them in a class diagram.

3. Copy the attributes from the associated concepts in the conceptual model.

4. Add method names by analysing the collaboration diagrams.

5. Add type information to the attributes and methods.

6. Add the associations necessary to support the required attribute visibility.

7. Add navigability arrows necessary to the associations to indicate the direction of attribute visibility.

8. Add dependency relationship lines to indicate non-attribute visibility.

These steps, except for steps 7&8, are mostly straightforward.

Creating Collaboration Diagrams

Add associations and navigability

131

Each end of an association is called a role. In a design class diagram, the role many be decorated with
a navigability arrow. Navigability is a property of the role which indicates that it is possible to navigate
uni-directionally across the association from objects of the source to the targetc1ass. An Example is
shown in Figure 7.40.

Sale
POST

date
I Captures I time

i'Complele
ente,llem()

endSale() becomeComplele

maltePayment malteLineltem()
maltePaymenl()
total()

Figure 7.40: Showing navigability

Navigability is usually interpreted as attribute visibility from the source class to the target class. During
the implementation in a OOP language it is usually translated as the source class having an attribute
that refers to an instance of the target class. For example, the POST class will define an attribute that
reference a Sale instance.

In a design class diagram, associations are chosen by a spartan software-oriented need-to-know criterion
- what associations are needed in order to satisfy the visibility and ongoing memory needs indicated by
the collaboration diagrams? This is in contrast with the associations in the conceptual model, which may
be justified by intention to enhance comprehension of the problem domain.

The required visibility and associations between classes are indicated by the collaboration diagrams.
Here are common situations suggesting a need to define an association with a navigability from A to B:

• A sends a message to B, e.g. the POST sends makeLineltem to the Sale .

• A create an instance of B, e.g. the Store creates the POST, the POST creates the Sale.

• A needs to maintain a connection to B by having an attribute whose value is of type B, e.g. the
Store should have an ongoing connection with the POST and Prodv.ctCatlog objects it created.

• A receives a message with an object of B as a parameter.

Based on the above discussion, we have Figure 7.41 as a the design diagram with navigability information
for the POST system.

Notice that this is not exactly the same set of associations that we generated for the conceptual model:

132 Creating Collaboration Diagrams

Slore

I Uses
I address:Address

t t
- name:TeXI ProduclSpecificalion

ProduclCalalog
descriplion:TeXI

addSale(l price:Quanlity
Contains upc:UPC

I Looks-in I I 1.."
specificalion()

Houses loadProdSpecs() I

Describes

"
I I Sale SalesLineltem

POST date:date Contains
lime:Time quanlity:lnteger

isComplete:Boolean I I..
subtotal()

endSale()
becomeCompleteO
makeLinellem()

enterltem() makepayment()
makePayment lotal()

" II
Payment

Logs-completed Paid-by I amount:Quantity

Figure 7.41: Design diagram with association and navigability

• The Looks-in association between POST and Product Catalog was discovered during the design .

• The Houses association between Store and POST is now one-to-one association, rather than
one-to-many.

Add dependency relationships

Apart from the attribute visibility, there are the other three kinds of visibility: parameter visibility, locally
declared visibility, and global visibility. For examples:

1. The POST software object receives a returned object of type ProductSpecification from the
specification message it sent to a ProductCatalog. Thus, POST has a short-term locally declared
visibility to the ProductSpecification.

2. The Sale receives a ProductSpecification as a parameter in the makeLineltem message; it has
parameter visibility to a ProductSpecification.

A non-attribute visibility may be illustrated with a dashed arrowed line indicating a dependency relation-
ship from the source class to the target class. This is shown in Figure 7.42

Questions

Store

I Uses
1 address:Address

t I
- name:Texl ProduCISpecificalion

addSale() ProductCatalog
descriplion:TeXI
price:Quamity

Conlains upc:UPC
I Looks-in I I 1..•

specificalion() ,,~
loadProdSpecs() {f 1Houses ,- - ,

I Describes- - - - .-.- -----.-' I .,, ,
I I , Sale -----"" Sales Line hem

I

POST
I date:date ContainsI time:Time quamity:lmeger

isComplele:Bool~n 1 1..
sublotal()

endSale()
becomeCompleteO
makeLineltemO

emerhemO makePaymentO
makePaymem 101310

• t II
Paymem

Logs-completed Paid-by I amount:Quanlily

Figure 7.42: Design diagram with association and navigability

133

Some Remarks

• Some many of the concepts in the conceptual model, such as Cashier , Manager. Customer, and
Item. are not present in the design. They are not required to be there by the requirement (the use
case) that we are currently considering.

• Sometimes, it needs to add some classes which are not in the conceptual model but discovered
later during the design into the design class diagram.

• We do not show the message create () sent to a class as a method of the c lass, because its interpre-
tation is dependent on programming languages .

• Accessing methods are those which retrieve (accessor method) or set (mutator methods) attributes.
It is a common idiom to have an accessor and mutator for each attribute. and to declare all attributes
private (to enforce encapsulation). These methods are also usually excluded from the class diagram
because of the high noise-to-value ratio they generate.

7.4 Questions

1. What is the difference between *msgO, *[true] msgO. and [true] msgO in a collaboration dia~?

134 Questions

2. You might think it would be more obvious just to number all the messages in a collaboration
diagram using 1,2, ... , rather than using the nested scheme. What diference would it make? Can
you construct a situation in which it would be ambiguous?

3. We have said that the VML creation message is denoted by create() (sometimes with parameters)
with the newly created object labelled with < < new> >. In a collaboration diagram, objects my
be deleted/destroyed as wel as created. The UML notation for a message destroying an object is
destroy () with the deleted objects labelled with < < destroyed> >.
Can you think of a situation when we need to show in a collaboration diagram an object being
destroyed?

4. Develop a collaboration diagram in which:

(a) an object 0 receives message meg from an actor;

(b) 0 create a new object P;
(c) P sends a message to Q;
(d) then 0 destroy P.

We did not get into the precise syntax and detailed meaning of the UML sequence diagrams. Read
about the syntax of a sequence diagrams from Rational Rose tool or from a book to understand how
activations of objects and flow of control are described in a sequence diagram. Draw a sequence
diagram which models the above interactions.

5. If there is a message x := fooO from object" 0 to object P. should be x the name of an attribute
of 0 or P?

Discuss when it would and would not be meaningful and useful to name the return value from a
message?

6. What is the difference between the two sequence diagram fragments shown in Figure 7.43?

I m M:" I
[i=O] fooO

[i=!] barO

[i=O] fooO

[i:;") barO

Figure 7.43: Two sequence diagram fragments

7. What is the difference between the two collaboration diagrams shown in Figure 7.44?

8. Discuss the relationship between the conceptual model and the design class model in terms of
their classes and associations. What are the possible ways to assciate two classes in a design class
diagram?

Questions

msglO ~ la:[condlion] msg20 ~ :B

Ib:[nol condition) msg40

t
la.l:msg30

t

135

Ib.1 :msg50 ---;..

msglO ~ 1:[condlionJ msg20 ~ :B

2:[nol condition) msg40

t
1.1:msg30

t
2.I:msg50

Figure 7.44: Two sequence diagram fragments

9. 'Consider the following method.

msg1 ()
{
for i:=l to 10 myB.msg2()
for i:=l to 10 myC.msg3()
}

How do you, in a collaboration diagram, represent the above situation? Do you have any problem
if we still use the collaboration diagram in Figure 7.7?

10. Figure?? is not a complete/general collaboration diagram for operation getStudentNamesO from
an instance of class Lecturer, as the lecturer may teach more or less than two modules, and more
or less than three students. For the same application of Figure??, design a general collaboration
diagram for getStudentNamesO. :

11. If we introduce use-case handlers as controllers, what changes need to be made in the artifacts of
the requirements analysis and the design?

Chapter 8

Implementing a Design

Topics of Chapter 8

• The notion of the interface of a class and its features

• Definition of a class in a programming language

• Definition of a method of a class in a programming language.

The end goal of an object-oriented development of a system is the creation of code in an object-oriented
programming language. The artifacts created in the design phase provide a significant degree of the
information necessary in order to generate the code. Implementation in an object-oriented programming
language requires writing source code for:

• class definitions - define the classes in the design class diagram in terms of the programming
notation.

• method definitions - define the methods of classes in the design class diagram in terms of the
programming notation.

We shall discuss these definitions in Java. We first discuss some notations.

8.1 Notation for Class Interface Details

The interface of a class primarily consists of the declarations of all the methods (or operations) ap-
plicable to instances of this class. but it may also include the declaration of other classes. constants,

137

138 Notation for Class Interface Details

variables (attributes), and initial values. Therefore, the interface of a class provides its outside view and
emphasises the abstraction while hiding its structure and the secretes of its behaviour. By contrast, the
implementation of a class is its inside view, which encompasses the secretes of its behaviour. The imple-
mentation of a class primarily consists of the definitions of all the methods (or the implementation of all
the operations) declared in the interface of the class.

The interface of a Class can be in general divided into three parts

• Public: A declaration that is accessible to all the clients which are the classes that have attribute
visibility to this class .

• Protected: A declaration that is accessible only to the class itself, its subclasses, and its friends1 •

• Private: A declaration that is accessible only to the class itself and its friends.

The UML provides a rich notation to describe features of the interface of a class. Attributes are assumed
to be private by default. The notation for other kind of interface declarations is shown in Figure 8.1. The

C -Name

Aaribulc
Aaribut<:Typc
II1ribu":ty~inilial .al..
IdaiYCdAnribu ..
...

mcdlodl()
lIlCIbod2(poramclU lill):......" lYi
absrTOC''''~'hod(,
+publi<:Mcthod()
."n.... Mdbod()

~cthod()
.......

POST

... nclSoIc()
+e.hlcrllCm()
+makePaymcnt

SIDle

+oddSoI.O

+lpc:cilicationO
.loadPtodSpoa()

Sole

d...
lime
isComplelC

+bca>mcComplelc()
+m.W:lincl"lD()
+mabpaymenl()
+lOlcl()

ProcIu<1Spccifi.oIlor

dacriptioa
pri<:e
une

s.laLineltan

Figure 8.1: Interface details

figure also include some interface information about the classes in the POST system. Notice that, except
for loadProdSpecsO which is a private method of ProductCatalog, all other methods are public.

IFriends are cooperative classes that are permitted to see each other's private parts.

Mapping a Design to Code

8.2 Mapping a Design to Code

139

At the very least, design class diagrams depict the class name, superclasses, method signatl:lres, and
simple attributes of a class. This is sufficient to create a basic class definition in an object-oriented
programming language. More information can be added later on after such a basic definition is obtained.

8.2.1 Defining a class with methods and simple attributes

Consider the class SalesLinterltem and the partial design class diagram in Figure 8.2. A mapping of

public float subtolaIO\. ,
private inl qu~tilY ,
I ,- ,

public class SalesLineltem
. (

public SaJesLintellem(ProductSpecification spec. in! qty);I
I
I
I
I
I
I,
I
I
I

,-
,-

,-
I

I

,
I
I
I

I
I ,- ProdUClSpecificalionSaiesLinelterq ,-, ,-

description:Texl• ,. Described-by Iquantity:lnteger ,. price:Quan!ity,. . upc:UPC,.
subtotaIO:Quantity'

Figure 8.2: SalesLineltem in Java

the class box for SalesLineltern in the design diagram to the basic attribute definitions and method
signatures for the Java definition of SalesLineltem is straightforward.

Note that, we had to add the Java constructor SalesLineitem(...) because of the fact that a create (spec, qty)
message is sent to a SalesLineltern in the enter/tern collaboration diagram. This indicates, in Java, that
a constructor supporting these parameters is required.

Observe also that the return type for the subtotal method was changed from Quantity to a simple float.
This implies the assumption that in the initial coding work, the programmer does not want to take the
time to implement a Quantity class, and will defer that.

8.2.2 Add reference attributes

A reference attribute is an attribute that refers to another complex object, not to a primitive type such
as a String, Number, and so on.

140 Mapping a Design to Code

The reference attribute of a class are suggested by the associations and navigability in a
design class diagram.

For example, a SalesLineItem has an association to a ProductSpecification, and with navigability to
it. This navigability is needed for sending the message price to the ProductSpecification from the
SalesLine/tem in the collaboration diagram for total of the Sale. In Java, this means that an instance
variable referring to a ProductSpecification instance is suggested.

Reference attributes are often implied, rather than explicit, in a class diagram. Sometimes, if a role name
for an association is present in a class diagram, we can use it as the basis for the name of the reference at-
tribute during code generation. The Java definition of the class SalesLine/tem with a reference attribute
prodSpec is shown in Figure 8.3.

Simple attribute

Reference attribute

public class SalesLineltem
I
public SalesLinteltem(ProductSpecification spec. int qty);

public noat subtotalO;

private int quantity;
private ProductSpecifica~on prodSpec;
}

\
\
\
\
\

\

\
ProductSpecificationSalesLineltem \

\ description:Texl• Described-by \ Iquantity:lnteger price:Quantily

p\c
upc:UPC

subtolalO:Quantily

Role name used in attribute name

Figure 8.3: Add reference attributes

In the same way as we have defined the Java class for SalesLine/tem, we can define the Java class for
POST. This is shown in Figure 8.4.

8.2.3 Defining a method from a collaboration diagram

A collaboration diagram shows the messages that are sent in response to a method invocation. The
sequence of these messages translates to a series of statements in a method definition.

For example, consider the collaboration diagram for the enter/tern operation given in Figure 8.5.

We should declared enter/tem as a method of the POST class:

Mapping a Design to Code 141

at;) og pc ;
ProduclCatalog

nl upc. int qty); Looks-in)

ent(tloat cashTendered): specificationO

prodCatalog:

,
Sale" " " I date:date

POST
isComplele:Boolean
time:Time

1 Captures I
becomeCompleteO

endSa)eO makeLineltemO
enterltem(upc:lnteger. qty:lnteger) makePaymentO
makePayment(cash Tendered: Float) tolal()

private ProducICalalog
private Sale sale;
}

public class POST
I
public POST(ProductC

public void endSale();
public void enlerllem(i
public void makePaym

Figure 8.4: The POST class in Java

enter.U:m(upc.qty)
~

1:lnew) crealeO ~

J: makeLinehem(spec.qlyl ~

2: 'pec:='pecilication(upe)

t 1.1:create()t

J.\ :c",ale('pec.qty)

t

:ProduclSpecilication

J.2:add(Sli~ sli:Sale,Lineltem

Figure 8.5: The enter/tern collaboration diagram

public void enterltem(int upc, int qty)

This is also shown in Figure 8.4. Then we have to look at the messages sent by POST in response to the
message enter/tern received by POST.

Message 1: According to the collaboration diagram, in response to the enterltern message, the first
statement is to conditionally create a new Sale.

if (isNewSale()) { sale = new Sale()

This indicates that the definition of the POST - enter/tern method - needs the introduction of a new
method to the POST class: isNewSale. This is a small example of how, during the coding phase.

142 Mapping a Design to Code

changes from the design will appear. It is possible that this method could have been discovered during
the earlier solution phase, but the point is that changes will inevitably arise while programming.

As a first attempt, this (private) method will perfonn a test based on whether or not the sale instance
variable is null (i.e. sale does not point to anything yet):

private boolean isNewSale()
{

return (sale -- null) ;

You may wonder why not simply hard-code this test into the enter/tern method? The reason is that
it relies on a design decision about the representation of infannation. In general, expressions that are
dependent on representation decisions are best wrapped in methods so that if the representation changes,
the change impact is minimised. Furthennare, to a reader of the code, the isNewSale test is more
infannative in tenns of semantic intent that the expression

if (sale == null)

On reflection, you will realize that this test is not adequate in the general case. For example, what if one
sale has completed, and a second sale is about to begin. In that case, the sale attribute will not be null; it
will point to the last sale. Consequently, some additional test is required to determine if it is a new sale.
To solve this problem, assume that if the current sale is in the complete state, then a new sale can begin.
If it turns out later this is an inappropriate business rule, a change can be easily made. Therefore,

private boolean isNewSale()
{

return (sale == null) I I (sale.isComplete());

Based on the above coding decisions, the new method isNewSale needs to be added to the POST class
definition given in Figure 8.4. The design class diagram depicting the POST class should be updated to
reflect this code change.

Message 2: The second message sent by the POST is specification to the the ProductCatalog to
retrieve a ProductSpecification:

ProductSpecification spec =
prodCatalog.specification(upc) ;

Notice the use of the reference attribute prodCatalog.

Mapping a Design to Code

Message 3: The third message sent by POST is the makeLine/tem to the Sale:

sale.makeLineItem(spec, qty);

143

In summary, each sequenced message within a method, as shown on the collaboration diagram, IS

mapped to a statement in the Java method.

Therefore, the complete enter/tern of POST method is given as:

public 'void enterItem(int upc, int qty)
{

if (isNewsale()) {sale=new Sale();}

ProductSpecification spec = prodCatalog.specification(upc);

sale.makeLineltem(spec,qty);
}

8.2.4 Container/collection classes in code

It is often necessary for an object to maintain visibility to a group of other objects; the need for this is
usually evident from the multiplicity value in a class diagram - it may be greater than one. For example,
a Sale must maintain visibility to a group of SalesLine/tem instances, as shown in Figure 8.6.

public class sale
I

private Vector Linelterns,
,,,,,,,,,

Sale
SalcsLincllt:m

date: Date
time:Time Contains
isColnplete:Boolean quantity: Inle~er

I 1,. .•
becomCompleteO I subtOlal()

makeLinehem() I

makePaymenl() /
/

lotal() I
/

/
/

I
I

A container class is necessary 10 maintain
.nribute visibility 10.lIlhe SalesUnehems

Figure 8.6: Reference to a container

In object-oriented programming languages, these relationships are often implemented with the introduc-
tion of an intermediate container or collection. The one-side class in the association define a reference
attribute pointing a container/collection instance, which contains instances of the many-side class.

144 Mapping a Design to Code

The choice of a container class is influenced by the requirements; key-based lookup requires the use of a
Hashtable, a growing ordered list requires a Vector, and so on.

With these discussions. we can now define the makeLineItem method of the Sale class as shown in
Figure 8.7.

public void makeLineltem(ProduCISpeclficallon ;pec. int qly I

I
lineltems. addElfment(new Sales Line I~m(spec.q IY»:
) , ' , ,

\

3.2: addIs)~

t

....
\

\
I
I
I
I
I

....

3.1: creale(spec.qly)

~
sl:SalesLineltem:SalesLineltem

\
\
\
\

3: makeLineltem(s~c.qly) _enterltem(upc.qly)-

Figure 8.7: Sale - makelineltem method

Note that there is another example of code deviating from the collaboration diagram in this method: the
generic add message has been translated into the Java-specific addE/ement message.

8.2.5 Exceptions and error handling

Error handling has been ignored so far in the development of a solution, as we would like to focus on
the basic questions of responsibility assignment and object-oriented design. However, in real application
development, it is wise to consider error handling during the design phase. For example, the contracts
can be annotated with a brief discussion of typical error situations and the general plan of response.

The UML does not have a special notation to illustrate exceptions. Rather, the message notation of
collaboration diagrams is used to illustrate exceptions. A collaboration diagram may start with a message
representing an exception handling.

8.2.6 Order of implementation

Classes need to be implemented (and ideally, fully unit tested) from least coupled and most coupled. For
example, in the POST system, possible first classes to implement are either Payment or ProductSpecification.
Next are classes only dependent on the prior implementations - ProductCatalog or SalesLineltem

Questions

8.3 Questions

1. Define a Java class for ProductcataLog.

2. Define a Java class for Store.

3. Define a Java class for Sale.

145

146 Questions

Chapter 9.

Advanced Modelling Concepts and Design
Techniques

Topics of Chapter 9

• Iterative development process

• Generalization-specialization

• More about associations

• UML Packages

• State diagrams

9.1 Iterative Development Process

In the case study of the POST system, we have carried out three major steps of development: requirement
analysis and specification, design, and implementation, by mainly considering only one use case, Buy
Items with Cash. For this use case, we have also made assumptions to significantly simplify the problem
(recall the five attributes of complex systems).

However. for some complex applications. an iterative development process or an iterative life-cycle is
more effective compared with the waterfall life-cycle, in which each macro-step is done once for the
entire system requirements.

An iterative life-cycle is based on successive enlargement and refinement of a system through multiple
development cycles of analysis. design, implementation (and testing). Each cycle tackles a relatively

147

148 Iterative Development Process

small set of requirements, proceeding through analysis, design, implementation and testing. The system
grows incrementally as each cycle is completed. This is illustrated in Figure 9.1.

lIera,;ve Cycles \
of Development

\ "'::." ;';" "

Time

Figure 9.1: Iterative development cycles

Notice that the implementation result of a prior cycle can feed into the beginning of the next cycle.
Thus the subsequent analysis and design results are continually being refined and informed from prior
implementation work.

9.1.1 Use case and iterative development

As for the POST system, a development cycle is assigned to implement one or more use cases, or sim-
plified versions of use cases. This is shown in Figure 9.2.

During the project planning stage, use cases should be ranked, and high ranking use cases should be
tackled in early development cycles. The most useful strategy is to first pick use cases that significantly
influence the core architecture, i.e. the use cases that concerns the most of the important domain concepts.

9.1.2 Development cycle 2 of POST

.To illustrate the iterative development, we consider the second development cycle for the POST applica-
tion. In this cycle, we consider the general Buy Items use case by adding more functionality to the Buy
Item with Cash use case, so that it approaches the final complete use case.

Iterative Development Process

149

Use Case "'.
Simplified

Use CIJSC A-

Full

Use Cuse B

VCNtoft Version

Use CaseC

Figure 9.2: Use case driven development cycles

The first cycle made many simplification so that the problem was not overly complex. Once again-for
the same reason-a relatively small amount of additional. functionality will be considered:

. The additional functionality is that cash, credit, and check payments will be supported.

Also, most of the simplifications that were made for the first cycle apply to this cycle, such as that there
is no inventory maintenance, the system is not part of a larger organization, and so on.

Now we revisit the Buy Items use cases. This time we shall also give the sub-use-cases Pay by Cash,
Pay by Credit, and Pay by Check.

Use case:

Actors:
Overview:

Buy Items

Customer (initiator), Cashier.
A Customer arrives at a checkout with items to purchase. The
Cashier records the purchase items and collects payment. On com-
pletion, the Customer leaves with the items.

Typical Course of Events
Actor Action System Response

150

1.

2.

4.

6.
7.

This use case begins when a Customer arrives at
a POST checkout with items to purchase.
The Cashier records the identifier from each item. 3.

If there is more than one of the same item, the
Cashier can enter the quantity as well.
On completion of the item entry, the Cashier indi- 5
cates to the POST that item entry is completed.
The Cashier tells the Customer the total
The Customer chooses payment method:

(a) If cash payment, initiate Pay by Cash.

(b) If credit payment, initiate Pay by Credit.

(c) If check payment, initiate Pay by Check.

Iterative Development Process

Determines the item price and adds the
item information to the running sales
transaction.
The description and price of the current
item are presented.
Calculates and presents the sale total.

8. Logs the completed sale.
9. Prints a receipt.

10. The Cashier gives the printed receipt to the Cus-
tomer.

11. The Customer leaves with the items purchased.
Alternative Courses

• Line 2: Invalid identifier entered. Indicate error .

• Line 7: Customer could not pay. Cancel sales transaction.

Use case:

Actors:
Overview:

Pay by Cash

Customer (initiator), Cashier.
A Customer pays for a sale by cash at a point-of-sale terminal.

Typical Course of Events
Actor Action System Response

Iterative Development Process

1. This use case begins when a Customer chooses to
pay by cash. after being informed of the sale total

2. The Customer gives a cash payment-the "cash
tendered"-possibly greater than the sale total.

3. The Cashier records the cash tendered. 4.

5. The Cashier deposits the cash received and ex-
tracts the balance owing.
The Cashier gives the balance owing to the Cus-
tomer

Alternative Courses

151

Shows the balance due back to the cus-
tomer.

• Line 2: Customer does not have sufficient cash. May cancel sale or initiate
another payment method .

• Line 7: Cash drawer does not contain sufficient cash to pay balance. Cashier
requests additional cash from supervisor or asks Customer for different pay-
ment method.

Use case: Pay by Credit

Actors: Customer (initiator), Cashier, Credit Authorization Service (CAS),
Accounts Receivable.

Overview: A Customer pays for a sale by credit at a point-of-sale terminal.
The payment is validated by an external credit authorization ser-
vice, and is posted to an accounts receivable system.

Typical Course of Events
Actor Action

1. This use case begins when a Customer chooses
to pay by credit, after being informed of the sale
total.

2. The Customer gives the Cashier the credit card.
3. The Cashier records the information of the credit 4.

card and requests a credit payment authorization.
S. CAS authorises the payment. 6.

7

8.

System Response

Generates a cr~dit payment request and
sends it an external CAS.
Receives a credit approval reply from the
CAS
Posts (records) the credit payment and
approval reply information to the Ac-
counts Receivable system (The CAS
owes money to the Store, hence AIR must
track it.)
Display authorization success message.

152 Generalisation

Alternative Courses

• Line 4: Credit request denied by CAS. Suggest different payment method.

Use case:

Actors:
Overview:

Pay by Check

Customer (initiator), Cashier, Check Authorization Service (CAS).
A Customer pays for a sale by check at a point-of-sale terminal.
The payment is validated by an external check authorization ser-
vice.

Typical Course of Events
Actor Action System Response

1. This use case begins when a Customer chooses
to pay by check, after being informed of the sale
total

2. The Customer writes a check and gives it to the
Cashier together with the bank card.

3. The Cashier records bank card information and .. 4. Generates a check payment request and
requests check payment authorization. sends it an external Check Authorization

Service.
5. Check Authorization Service authorizes the pay- 6. Receives a check approval reply from the

ment. Check Authorisation Service
7. Display authorization success message.

Alternative Courses

• Line 4: Credit request denied by Check Authorization Service. Suggest dif-
ferent payment method.

9.1.3 Extending the conceptual model

Going through the Concept Category List and using the noun phrase identification, we can have a draft
conceptual model shown in Figure 9.3.

9.2 Generalisation

The concepts CashPayment. CreditPayment, and CheckPayment are all very similar. A Sale can be paid
by any of these methods of payment. A partial class diagram modeling this is given in Figure 9.4.

Generalisation

Cfelli1
Credil Oeek.

Au\hM1Ulion Service ApprovlIl '~UCSI ArPFOV.1 Request

I S.. t Cud I alcck Credil Check
Accounu Rcc:civable Aulhoriulion $(:n'K:r Approval Reply Approval Reply

IC.. h P.y I IC.... i1 P.y , I ICIleck P'rme •• CrcditC_d I Check

I POST I I "em I I 51'" I Sol. I IPl'od..,'C.taler I
15olaLincl- I I Cubior I I Cus....... I M.... er I IPl'oductSpccilicouoa

Figure 9.3: Draft conceptual model for cycle 2 of the development of POST

0 ..1 CashPayment

amount:Money
1

Sale
1 0 .. 1 CreditPaymentTime

date amount:Money
1

0.. 1 CheckPayment
amount: Money

Figure 9.4: A Sale can be paid by any of the payment methods

There are the following problems with the model in Figure 9.4:

153

1. There are too many distinct association (though they have the same name). one between each
payment method and the Sale.

2. The multiplicities in the model do not correctly capture the fact that a Sale is paid by one and only
one of the payment methods; and an instance of a Payment of any kind is to pay a Sale instance.

3. If a new kind of payment were introduced. a new association would also have to be added to the
model.

4. The model does not explicitly show the similarities of the three concepts of payment methods
which probably have a large amount of common structure.

154 Generalisation

9.2.1 The notion of generalization

These problems can be overcome by making use of the notion of generalization. Generalization is the
activity of identifying commonality among concepts and defining supertype and subtype relationships.
In a generalization-specialization relationship, one class is identified as a 'general' class and a number
of others as 'specializations' of it.

In UML, a generalization relationship is represented by a large hollow triangle pointing to the 'general
concept' from a 'specialized concept'. With the notion of generalization and the UML modelling notation

Figure 9.5: Generalization-specialization hierarchy with separate and shared triangle notations

for it, the associations between the Sale and the payment method can be clearly described by the model
in Figure 9.6.

Sale

time
dare

Paid-by Paymenl

amoum:Mone

Figure 9.6: A Sale can be paid by one and only of the payment methods

9.2.2 The meaning of the generalization-specialization relationship

What is the relationship of a supertype to a subtype?

A supertype definition is more general or encompassing than a subtype definition.

For example, consider the supertype Payment and its subtypes (CashPayment and so on). Assume the
definition of Payment is that it represents the transaction of transferring money (not necessarily cash)

Generalisation 155

for a purchase from one party to another. and that all payments have an amount of money transferred. A
CreditPayment is a transfer of money via a credit institution which needs to be authorized. Thus. the
definition of Payment encompasses and is more general than the definition of CreditPayment.

If we define a class as a set of objects. then subtypes and supertypes are related in terms of set member-
ship:

All members of a subtype set are members of their supertype set:

SubtypeSet ~ SupertypeSet

This is also termed as the Is-a-Rule for testing a correct subtype:

Subtype is a Supertype

Inheritance of attributes and associations

When a generalization-specialization hierarchy is created, statements about a supertype that apply to its
subtypes are made. For example, Figure 9.6 states that all Payments have an amount and are associated
with a Sale. All Payment subtypes must conform to having an amount and paying for a Sale. In general,
this rule of inheritance from (conformance to) a supertype is the 100% Rule:

100% of the superrype's definition should be applicable to the subtype. The subtype must
confonn to 100% of the superrypes's:

• attributes

• associations

The rules to ensure that a subtype is correct are the 100% and Is-a Rules.

When to define a subtype

A type partition is a division of a type into disjoint subtypes. When is it useful to show a type partition?

The following are strong motivations to partition a type into subtypes:

1. The subtypes have additional attributes of interest.

2. The subtypes have additional associations of interest.

, 156 Generalisation

3. The subtype concept is operated upon. handled, reacted to or manipulated differently than the
supertype or other subtypes. in ways that are of interest.

-l-. The subtype concept represents an animate thing (for example, animal, robot) that behaves differ-
ently than the supertype or other subtypes, in ways that are of interest.

In a design class diagram, in addition to adding new features to a subclass, it sometimes happens that a
class requires a customized version of a method (operation) that it has inherited from its superclass.

For example, assume that the withdraw operation in Account simply adjust the balance to take into
account the money withdrawn. A high-interest account, on the other hand, might want to deter investors
from making withdrawals by imposing a fixed charge for each withdrawal. Whenever a withdrawal is
made, the balance should additionally be decremented by the amount of the fixed charge. This means
that HighInterestAccount class needs to refine the withdraw operation of of Account class to provide
this extended functionality.

9.2.3 Abstract classes

There is a particular kind superclasses, which are called abstract classes. When the system is running, no
concrete instance of an abstract class is ever created. It is useful to identify abstract types in a conceptual
model because they constrain what types it is possible to have concrete instances of. A class T is called
an abstract class if every member (or an instance) of T must also be a member of a subtype.

Therefore, an abstract class does not has instances of it own, and every instance of this type created during
the execution of the system is created via the creation of an instance of a subtype of it. For example,
assume every Payment instance must more specially be an instance of the subtype CreditPayment,
CashPayment, or CheckPayment. Then Payment is an abstract type. In contrast, if there can exist
Payment instances (in the system) which are not members of a subtype, it is not an abstract type. These
two cases are illustrated in Figure 9.7.

In UML, the name of an abstract type in a class diagram is italicized, see Figure 9.8.

If an abstract type is implemented in software as a class during the design phase, it will usually be
represented by an abstract class, meaning that no instances may be created for the class. An abstract
method is one that is declared in an abstract class, but not implemented; in the UM!.. it is also noted with
italics.

9.2.4 Type hierarchies in the POST application

This section presents the the generalizations between types which can be justified by the four motivations
discussed earlier.

Generalisation

(a): Every paymenl is made by one of the three methods

(b) There are payments which do nOl belong 10 any of the three kinds

Figure 9.7: (a): Payment is an abstract type; (b): Payment is not an abstract type

Paymrnt

amoum:Mono

157

Figure 9.8: The name of an abstract type is italicized

Subtypes of Payment

The subtypes of payment have additional associations that are of interest, see Figure 9.9 .
. --..

Subtypes of A uthorizationService

The subtypes of A uthorizationService have additional associations that are of interest, see Figure 9.10.

158

Sale

time
dale

Paid-by Paymenl

alnounl:Monc

Generalisation

ldenlified-credil-wil

Figure 9.9: Justifying the subtypes of Payment

Subtypes of Authorization Transaction

Paid-with

The subtypes of Authorization Transaction have additional associations that are of interest, see Fig-
ure 9.11.

Modelling changing states

Assume that a payment can either be in an unauthorized or authorized state, and it is meaningful to
show this in the conceptual model (it may not really be, but assume so for discussion). One approach
to modelling this is to define subtypes of Payment: Unauthoriz~dPayment and AuthorizedPayment.
However, note that a payment does not stay in one of these states; it typically transitions from unautho-
rized to authorized. This leads to the following guideline:

Do not model the states of a concept X as a subtype of X. Rather:

1. Define a state hierarchy and associate the states with X, or

2. 19nore showing the states of a concept in the conceptual model; show the states in a
state diagram instead.

The first choice is shown in Figure 9.12.

More about Associations

AuthorizationServic

address
name
phoneNumber

159

Credit

Authorizalion
Service

Check
Authorization

Service

Figure 9.10: Justifying the subtypes of A uthorizationService

9.3 More about Associations

9.3.1 Associative types

As we said before, that attributes of class describe properties of the instances of a class. A Student
class might have an attribute name, for example, and every Student instance would contain a data value
giving the name of the student.

Sometimes, however, it is necessary to record infonnation that is more naturally associated with the
association between two classes than with either of the roles of the the association individually. In other
words, an association between two classes can have interesting properties that need to be modelled, and
these properties cannot be naturally described as attributes of either of the classes that the association
links.

For example, consider the association takes between the classes Student and Module. Assume that
the system needs to record all the marks gained by students on all the modules that they are taking. The
UML notation that we have introduced so far for class diagrams does not enable us to model this situation
easily:

• It is not sufficient to add a mark attribute to the Student class, as a student in general takes
many modules and therefore it will be necessary to record more than one mark for each student.
An attribute which allows a set of marks to be stored would get round this problem, but would
not preserve the information about which mark was gained for which module. It would not be
desirable to get round the problem by having the student instances explicitly store some kind of
module identifiers. This would duplicate some of the information modelled by the association
Takes.

160 More about Associations

Payment
AUlhorizalion
TrdnsaClion

dale
time

Payment
Authorization

Reply

Payment
Authorizalion

Requesl

Figure 9.11: Justifying the subtypes of Authorization Transaction

• Is-in

Unathorized
Payment

Figure 9.12: Modelling changing states

Authorized
Payment

• The same problems arise if we consider to add a mark attribute to the Module class, as each
module can be taken by many students.

Intuitively, an exam mark is neither a property that a student has in isolation nor a property that a module
has in isolation. It is rather a property of the association Takes that linked the student and the module.
What is required is some way of describing a property of an association. The notion of an Associative
class.. is introduced for this purpose.

In UML, the Takes association between Student and Module is further described by an associative class
in the way shown in Figure 9.13.

Like other types, an associative type can be associated with other class. For example, a class (in the
sense of a group of students who are taught together) might be defined as a set of registrations, namely
those for all the students registered to take a particular module in a particular semester. This situation is
modelled by the class diagram in Figure 9.14.

More about Associations

Studem Takes-according-to Module

credit
name

Registrntion

marle.
semester

Figure 9.13: Associative class

Studem Takes-according-to Module

credit
name

161

Registrntion I..•

marle. ConcaiDed-in
semester

Figure 9.14: Associative class can be linked to another class

For the POST application, the following domain requirements need the use of an associative type:

• Authorization services assign a merchant ID to each store for identification during communica-
tions.

• A payment authorization request from the store to an authorization service requires the inclusion
of the merchant ID that identifies the store to the service.

• Furthermore, a store has a different merchant ID for each service.

This is modelled by the class diagram in Figure 9.15.

Clues that an associative type might be useful in a conceptual model

• An attribute is related to an association.

• Instanc~s of the associative type have a life-time dependency on the association.

• There is a many-to-many association between two concepts, and information associated with the
association itself.

162 More about Associations

Store AuthorizationService
Authorizes- payments-via

address address, 1..'name name
phoneNumber

ServiceContract

merchantlO

Figure 9.15: An associative class in the POST application

• Only one instance of the associative type exists between two objects participating in the associa-
tion.

The presence of many-to-many association is a common clue that a useful associative type is lurking in
the background somewhere; when you see one, consider an associative type.

9.3.2 Qualified associations

In Figure 9.16, a qualifier is used in an association to distinguish the set of objects at the far end of the
association based upon the qualifier value. An association with a qualifier is a qualified association.

TypeX -------------.-1 TypeY

(a) Many objccts orTypeY are linked to one object of Type X

TypeX Iqualifier ,---------1 I TypeY

(b) One objeci ofTypeY is linked to one object of TypeX via an identifier

Figure 9.16: UML notation ualified association

For example, ProductSpectifications may be distinguished in a ProductCatalog by their UPC, as illus-
trated in Figure 9.17.

Packages: Organizing Elements 163

(a)
Product 1 Contains 1..* Product
Catalog Specificatior

(b)

Product
Catalog u

Contains Product
Specificatio

Figure 9.17: A qualifier in the POST application

We can see that the use of a qualifier in an association reduces the multiplicity at the far end from the
qualifier, usually down from many to one. Depicting a qualifier in a conceptual model communicates
how, in the domain, things of one type ~e distinguished in relation to another type. They should not, in
the conceptual model, be used to express design decisions about lookup keys, although that is suitable in
later design diagrams.

9.4 Packages: Organizing Elements

The conceptual model for development cycle two of the POST application is approaching an unwieldy
size; it indicates the need to partition the model elements into smaller subsets.

Further, we would like to group the elements into packages to support a higher-level view.

In UML, a package is shown as a tabbed folder as shown in Figure 9.18.

• Subordinate packages may be shown within it.

• The package name is within the tab if the package depicts its elements, otherwise it is centered
within the folder itself.

An element, such as a type or class. is owned by the package within which it is defined, but may be
referenced in other packages. When an element is being referenced, the element name is qualified by the
package name using the pathname format

PackageName :: ElementName

A type or a class in a foreign package may be modified with new associations, but must otherwise remain
unchanged. This illustrated in Figure 9.19.

164 Packages: Organizing Elements

Domain Concepts I

Core Elements

Figure 9.18: A UML package

Core ElemenlS I

~
~ I ..."

Sale

Figure 9.19: A referenced type in a package

If a model element is in some way dependent on another, the dependency may be shown with a depen-
dency relationship, depicted with an arrowed line. A package dependency indicates that elements of the
dependent package in some way know about or are coupled to elements in the target package.

For example, if a package references an element owned by another, a dependency exists. Thus Sales
package has a dependency on the Core Elements package, see Figure 9.20.

How to partition the conceptual model into packages To partition the conceptual model into pack-
ages, place elements together that:

• are in the same subject area-closely related by concept and purpose

• are in a generalization-specialization hierarchy together

• participate in the same use cases

• are strongly associated.

It is useful that all elements related to the conceptual model be rooted in a package called Domain
Concepts, and that widely shared, common, core concepts be defined in a package named something like
Core Elements or Common Concepts.

Packages: Organizing Elements

Domain Concepts

CoreEl'm,"~ <- - - -8
Figure 9.20: A package dependency

9.4.1 POST conceptual model packages

This section gives a package organization for the POST application.

Domain Concepts

165

Figure 9.21: Domain concept package

Core package

Put the widely shared concepts or those without an obvious owner (or home) into the Core/Mise package.

Sales package

Except for the use of composite aggregation, there is no new concept, attribute or association added.

166

Core I

Packages: Organizing Elements

Sale, I

I ,alcsUnchem I I C:u:hicr I

Produc" I

I CWlomer I

EJ I !'lodudSpocili<:alion I

Products package

Figure 9.22: Domain package

With except of composite aggregation, there are no new concepts, associations or attributes added to this
package.

Payments package

New concepts are itentified, new associations are primarily motivated by a need-to-know criterion. For
example, there is a need to remember the relationship between a CreditPayment and a CreditCard.
Some associations are also added for comprehension, such as BankCard Identifies Customer.

Note the use of the associative type PaymentA uthorizationReply - a reply arises out of the association
between a payment and its authorization servatice.

Modelling Behaviour in State Diagrams 167

Figure 9.23: Another domain package

Core

SIan:

name
address

1..*

Houses

Employs

1..*

Authorization Transactions Package

Figure 9.24: Core package

Notice that the names of some associations are left unspecified as they can be easily understood: trans-
actions are for the payment.

9.5 Modelling Behaviour in State Diagrams

A state diagram of an object shows

• all the messages that can be sent to the object,

• the order in which must be received,

• the effect of messages - what actions the object performs or what messages it sends to other objects
after receiving a particular message.

168 Modelling Behaviour in State Diagrams

Initiates

Captured-on -
Core::POST

Records-sales-on •

Sale

date
isComplele
time

- Logs-completed

1..'

SlesLinehem

quantity

Figure 9.25: Sales package

A state diagram can also be used to describe the legal sequence of system input events in the context of a
use case; and to define the behaviour, all the state transitions for the input events across all the use cases,
of the system.

Events

• An event is a significant or noteworthy occurrence.

• In a software system, an object must be able to detect and respond to events.

• The events detected by an object are simply the messages sent to it.

Examples

1. Consider a CD player as a real-world object, which contains a drawer to hold the CD. Suppose the
player provides buttons labelled 'load', 'play' and 'stop'",

The events that the player can detect are simply the pressing of the three buttons.

To respond to an event, such as 'load', the player will open the drawer if it is closed, and will close
the drawer if it is open.

2. Consider a telephone. It can detect the event 'the receiver is taken off the hook'"

Sates

• A state of an object is the condition of the object at a moment in time - the time between events.

Modelling Behaviour in State Diagrams

Producls

Described-by

0 .. 1

169

•

ProduclCatalog

Slocks

Producl
Specification

descriplion
1.." price

upc

Describes

Records-sale-of

•

It

•

Figure 9.26: Products package

• The object being modelle~ is thought of as being in different states at different time.

• The defining property of states is that the state that an object is in can affect how it responds to
partiCular events.

• The fact that an object is in different states can be identified by observing it responding differently
to the same event at different time.

Examples of States

1. At any time, a telephone can be in one of the two states: idle and active:

• It is in state idle after the receiver is placed on the hook until it is taken off the hook.

• It is in state active after the receiver is taken off the hook until it is placed on the hook.

2. The CD player can be in one of at least two states: drawerOpen and drawerClosed:

• When it is in drawerOpen, it closes the drawer after it~etects 'load' .

• When it is in drawerClosed, it opens the drawer after it detects 'load'.

A third state Playing can be identified by considering the effect of the 'stop' event.

Here, we need to clarify the meaning of drawerClosed and Playing.

State Transitions

• In general, detecting (receiving) an event can cause an object to move from one state to another.
Such a move is called a state transition.

170

P3ymcnlS

Modelling Behaviour in State Diagrams

....
Authorizes-pay ment -of

1...
AuthorizationScrvic

address
name
phoncNumbcr

•

Figure 9.27: Payments package

• A state transition is a relationship between two states that indicates that when a event occurs, the
object changes from the prior state to the subsequent state.

• The behaviors of an object is described in terms of it state transiti~ns.

Examples of State Transitions

1. When the event "off hook" occurs, the state transition from state idle to state active is taken place.

2. If event "load" occurs when the CD is in drawerOpen state, the state transition from drawerOpen
to drawer Closed is taken place.

UML Notation for State Diagram

• A UML state diagram illustrates the interesting events and states of an object, and the behaviour
of an object in reaction to an event.

• State transitions are shown as arrows, labelled with their events .

• States are shown in rounded rectangles.

• It is common to include an initial pseudo-state which automatically transitions to another state
when the instance is created.

•

..

Modelling Behaviour in State Diagrams

Rnzivc.

50"',

171

Figure 9.28: Payments package

off hook

on hook

Figure 9.29: UML notation for state diagrams.

This is shown in Figure 9.29

Example: CD Player Figure 9.30 gives a state diagram for the CD player.

A final state represents the state reached when an object is destroyed, or stops reacting to events.

Guards

• For the CD player, it is not correct that the player always goes into playing state when the play
button is pressed - even without a CD in the drawer .

• It should do so only when there is a CD in the drawer. More precisely:

- When the.event 'play' occurs, the player goes into the Playing state if there is a CD in the
drawer.

172 Modelling Behaviour in State Diagrams

SlOp

pow.rOrr

Figure 9.30: A sate diagram of the CD player

When the event 'play' occurs, they play goes to drawerClosed state if there is no CD in the
drawer.

.,

• This indicates the need of a conditional guard - or boolean test for a state transition.

• A guarded state transition can be taken only when the guard is true.

Examples of Guarded Transitions

Diagrams in Figure 9.31 show the UML notation for guarded transitions.

play [no CD]

play [CD in]

play [naCO]

play

off hook

on hook

Figure 9.31: Guarded transitions

Modelling Behaviour in State Diagrams

Actions

• A transition can cause an action to fire.

173

•

• In a software implementation. firing an action may represent the the invocation of a method of the
class of the object of the state diagram.

• An action must be completed before the transition reaches the new state .

• . An action cannot be interrupted by any other event that might be detected by the object - actions
are atomic.

Examples of Actions are shown in Figure 9.32.

load I open drawer

(Clo'," ~J dO"::::--:::.c Opo.)

off hook I paly dial tone

[valid ~ubscriber]

on hook

Figure 9.32: Examples of actions

Nested States

• A state allows nesting to contain substates .

• A substate inherits the transitions of its superstate (the enclosing state) .

• Nested state can be used to refine a state diagram at a higher level of abstract into one with finer
states.

• Nested states can be used for better modelling of the behaviour of an object.

Examples of Nested States are shown in the diagrams in Figure 9.33.

Use Case State Diagram

• A useful application of state diagrams is to describe the legal sequence of system input events in a
use case.

• For example, consider the Buy Items use case

174 Modelling Behaviour in State Diagrams

otThook I plu)' diull0nc

.-\l.:t.ive

IXlmplcle

OOMa:lcd

Conne..:1inl

NO! Playing •
.IOp play

InoCDI
play

ICDin)

load

poweroff
pow.,off

• 'Iop

Figure 9.33: Nested states

It is not legal to perform the makeCreditPayment operation until the endSale event has
happened.

This can be illustrated in Figure 9.34.

•
A State Diagram for POST

• A POST instance reacts differently to the Enterltem message, depending on its stat as shown in
Figure 9.35

Modelling Behaviour in State Diagrams 175

cnterltcm enccrltcm

cndSalc

handl.Reply

makcCashPaymcnt

makcCrcditPayrncnt

AUlhorizingPaymcnl

makcChcckPaymcnt

WailingForPaymcm

•

Figure 9.34: A sate diagram of Buy Items use case

enterltem

enterItem

EnteringSale

Figure 9.35: A state diagram for the POST object

176 Modelling Behaviour in State Diagrams

•

•

•

•

Chapter 10

Summing Up

Topics of Chapter 10

• Summing up the materials

• The scope of the exam

• About the revision

We use the UML notation for package to summerize the materials of this course.

MC206

Introductory Material

(Chapters 1-3)

Basic 00 Technique

(Chapters 4-8)

Figure 10.1: Three Parts ofthe Course

177

178

Basic 00 Techniques

00 Requiremenl Analysis

(Chaplers 4.5)

00 Implementation

(Chapter 8)

OODesign

(chapters 6-7)

Summing Up

•
Figure 10.2: The Basic 00 Techniques

Requiremenl Pha..(C

Figure 10.3: Requirement phase

Use Cases

Figure 10.4: Use Cases

•

•

Summing Up

Figure 10.5: Conceptual Model

System Sequence Diagrams

179

Use Cases:: Expanded Use Case

Question: what arc the system opcratiOßJ

Figure 10.6: System sequence diagrams

Answers

Sy... m Scquc_ Oialnms:: Sy'ICmOperatio

De nds.u n

Dcpend.~n

Use C,,".::E~JNU'dcd Use Cas

Figure 10.7: Contract

180 Summing Up

00 Implementation

Advanced Topics

Design Pbasc::Collebcwation Oiar~am

Figure 10.8: Design Phase

Advanced Modelling heralive Life-cycle

Figure 10.9: Advanced Topics

