

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria

Tel: (+43-1) 26026-0 · www.unido.org · unido@unido.org

OCCASION

This publication has been made available to the public on the occasion of the 50
th

 anniversary of the

United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations

employed and the presentation of the material in this document do not imply the expression of any

opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development

Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its

authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or

degree of development. Designations such as “developed”, “industrialized” and “developing” are

intended for statistical convenience and do not necessarily express a judgment about the stage

reached by a particular country or area in the development process. Mention of firm names or

commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes

without additional permission from UNIDO. However, those who make use of quoting and

referencing this publication are requested to follow the Fair Use Policy of giving due credit to

UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

mailto:publications@unido.org
http://www.unido.org/

UNIDO Training Workshop Report
On Software Development and Management

From 19 to 30 November 2001

I. Background

l.Subject
Promoting IT popularization and exchange ---- the 2001 IT Training Activities in the

Asia-Pacific Region.

2.Theme
Management and technical development of the software programs

3.Bases
According to the project document Enhancing IT Cooperation and Partnerships in

the Asia-Pacific Region signed on May 25 2001 by Shanghai Municipal Government
and UNIDO on the Second High-Level Forum on City Informatization in the Asia-
Pacific Region, we shall actively support human resource development, especially the
training of IT personnel in the less developed countries.

4.Target
In order to promote city informatization in the Asia-Pacific region, especially in the

developing countries in this region; to exchange the latest technology in software
technology and software project management; to improve the level of management and
technology of the software industry in the developing countries

5.Time
From Nov. 19th

, 2001 to Nov.30th
, 2001

6.Courses
There are 2 courses in the training workshop:
(l).CMM software project management;
(2). Software development process using UML

n. Training Work

With the kind support of UNIDO and Shanghai Government .The trmmng
activities were successful carried out from Nov.19, 2001 to Nov.30, 2001. In order to
popularize the training activities, UNIDO actively invited those participants
recommended by their own governments, while having provided round-trip air tickets
to some participants from the developing countries. The Shanghai Municipal
Government whose attention was paid to these training activities, actively organized,
finalized personnel, ground, facilities and carefully arranged the students' daily life

during this training.

l.Enrolment
The enrolment of participants began from September 1, 2001 and ended on

October 15, 2001. During this period we made full use of multi-channels to actively
launch the publicity for the training workshop while having overcome the unfavorable
factors of international situation. After careful consideration and selection, 20
participants including the government officers, researchers, engineers, project
managers with software project background coming from 11 countries in the Asia-
Pacific Region had participated in the training.

Our training workshop has received energetic support from the Foreign Affairs
Office of the Shanghai Municipal Government, who rendered the visa service to the
participants, and ensured the participants' smooth entry.

2.Service
The workshop has two courses, i.e. CMM software project management and

Software development process using. UML. Every course is further divided into 10
teaching units, totaling 40 teaching hours.

Professor He Jiefeng, senior fellow of the United Nations university and Dr.
Rajest Vasa from a U.S. famous IT company were invited to give lectures in Shanghai.
Their lectures were focused on the technical practices and application as well as
engineering experience, which is of great significance for reference.

According to the project memorandum signal between the UNIDO and RCOCI
(UNIDO Project No.2001/300) the collection, compilation and editing materials for
CMM and UML training courses were successfully completed within two months.
These materials were timely printed and given to the workshop for us.

The corresponding teaching facilities and places, for instance, computers,
projectors, conference rooms and hall, motor rooms and library, etc, were provided
while management personnel for educational administration who offered convenience
to participants' daily life during the training.

Given considerations to the insecure factors arising from the international
situation, we had bought accident insurance for all participants.

3.Action

Shanghai Municipal Government offered the kind support to this trammg
workshop. Fan Xiping, the Director and He Shouchang, the Deputy Director of the
Shanghai Municipal Informatization Office attended the opening ceremony.

The participants were organized to visit the Shanghai Super Computer Center
where they could directly experience the fruit of city informatization construction.

Two seminars were arranged for the participants to probe into the policies and
laws or regulations in the cyberspace while exchanging the successful experiences and
solution so participants own countries.

The participants are arranged to visit Shanghai International Industrialization Fair,
especially to see about the IT Production Hall of the Fair.

The Participants have visited the Bund and the Shanghai Museum, as well as
places of cultural interest, which enriched students' extracurricular life.

YANG Xiong, the Vice Secretary General of Shanghai Municipal Government
attended the graduation ceremony and issued the certificates to the students. Then,

2

evening party was held with a brilliant performance given by the participants
themselves, which had left deep impression to everybody.

ID. Training Fruits

The training activities had obtained the anticipated results through the vivid and
brilliant lectures given by teachers and through practical discussions and case studies.

1.Through the learning of the management curriculums of software program, the
trainees could fully:

• Understand the essence and characteristics of software project, the international
standard ISO 9000, as well as the Capability Matured Model CMM;

• Select suitable software process model for the supervision of the software
project;

• Apply suitable software to prepare the planning of software project;
• Apply suitable software to assess the scale and cost of the software project;
• Understand the technology for the management of software project so as to

provide products with good quality and less risk;

2.After the study of the UML curriculum the participants came to understand the
problems emerged from the large-scale software development while solving these
problems with face object technology. In understanding and using the facing-object
technology to analyze, standardize, design and realize the super computer system, now
the trainees could:

• Analyze the demands of customers;
• Use UML to supply standards for proper scale system;
• Design on the basis of object oriented standards;
• Realize designing and clearly grasp the activities carried out and products

produced in the software development;
• Comprehensively master the basic principle and technology of the software

development with Object Oriented Data Technology.

IV. Participants' Suggestions

The profound friendship between the participants and also between the
participants and teacher were established through 12 days studies. A fellow-
participants association was initiated to maintain the contacts while sharing the
information and focusing the attention to the technical development. All participants
reached consensus that the training activities are of great significance, from which they
gained a great deal of enlightenment and experience for the future works. Therefore,
they do hope to attend such as kind of workshop in the near future. Some participants
suggested that a workshop on policies and laws or regulations in the cyberspace should
be held. Thus, the participants can have more time to discuss and exchange the
successful experiences of the IT technology, IT industry and its application so as to
promote the informatization construction in every country. In the meantime, they also
expressed gratitude to the organizers of the workshop, which had provided a learning,
exchanging and cooperation opportunity to them.

3

~ Conclusion

With the development of information technology and coming of networked new
economy, the software industry is becoming the core of 21st century and even national
economy development. The significance of introducing CMM & UML into the training
course is aimed improving the understanding of software development and the
management, providing a great amount of program experience in practice while having
successful management experience and discussed technical applications. And as a
carrier, training class has provided an exchange and cooperation platform for
exchanging situation and experience of informatization construction, so as to
encourage the mutual understanding and cooperation while promoting the technical
progress and the development of the city informatization.

The training activities have also signified the start of the establishment of the
Shanghai International Center for Information Technology Promotion, which is a good
beginning for future training activities. Shanghai will work hard for offering active,
continuous and systemic training to trainers and managers of the city informatization in
the Asia-Pacific Region, and for promoting progress in city informatization
construction management and techniques and for narrowing the 'digital divide' of the
developing countries in the Asia-Pacific Region and other regions.

The Regional Cooperation Office for City Informatization

4

/

Annex 1

rrtie J!uf Session ojrteclinicaCq'raining on Informatization

--Software (j)eveCopmentana :Management

Program Calendar

Sunday Monday Tuesday Wednesday - Thursday Friday Saturday

Date 11/18 11/19 11/20 11/21 11/22 11/23 11/24

The
Shanghai

Morning
Beginning UML@ CMM@ UML@ CMM@

One-day
8:30-- Tour:

Ceremony
Museum,
Art

Afternoon UMLCD CMM
UML@ CMM@ UML@

Museum,
1:00-- Registration CD Grand

Theatre

Welcome
Sightseeing: BundEvening

Buffet

Date 11.25 11.26 11.27 11.28 11.29 11.30 12.1

Morning
_UML@ ..CMM@ CMM

UML@ - UMt@ CMM@
8:30-- @

Check-out
Transport to

Shanghai Visit SSC, CMMCD
CMM@ UML@) Airport

Mternoon International Science Seminar
1:00-- Industry «&Technology UMLCD (Shanghai Seminar Graduate

Fair Museum Info-office)
(SMERT) Ceremony

Evening Shopping Tour Party

==...]
==~
'"o

....o....
c..>
Q),=oe
::l
0..
Q)o

-'üs=
::lo
U
....
Q)....
::l
0..ao
U
..s:::

CI)
Q)
-0~eos=~
a:l

Q)

(;a

s=o.~
oe-oue
U
~

~..s:::o

....
Q)....
::l
0..ao
U
s=

CI)
Q)
c..>s=~
,S
~
<+-<o
C....
CI)

'2
~

~
-0s=
Q)

~
Q)
s=s=o>>-

Q)
c..>s=
Q)

'üen....
Q)....
::l
0..
Eio
~ ~o 0....0
~.2Ei c..>

'g~
0..-0Q 1ä

~
s=:.a
u
to-oo
@
oos=..s=
c..>
Q)

E-<
~
Q)
c..>s=
Q)

'üen
to-oo
e
'Vi....
Q)

>
'0
::J

Q)
c..>
s=
Q)

'üen....
Q)....
::l
0..
Eio
~ ~o 0....0
~.2Ei c..>

'g~
0..-0Q 1ä

~c::.au
to-oo
>-
öl)
oos=..s=
c..>
Q)

E-<
~
Q)
c..>c:
Q)

'üen
to-oo
o
'Vi....

Q)

>
'0
::J

Q)

(;a

-0s=~....
CI)o~

<+-<o
(; s=....0
~ '~
Q) 0
0'2
Q) ::l~ a....a.2 0o c..>Q) Q)
.:: 1)
OE-<

Q)

(;a

....
Q)....
::l
0..
Eiou....
Q)
Oll~s=~ s=

::;E Q)

Ca
::l ~
0..0..Q) Q)00

Q)

(;a

..s:::..s:::-:: :.a
..s::: ,~
0..>a-o
o ~~00""

Q)

(;a

....
Q)
Q)

s=
'5'0
s=

l.Ll
Q)....~

~o
00

<>'d
Ei
Q)....
CI)

>.
00

-0....
...J
ci
U....

Q)....
::l
0..aoo:ao
a:l

~..=::l=U
8

s=oo....
Q)

~u

~s=:au

~.

~c::a
u

~
'fii
Q)
s=o

-0s=.....

,~....s=
Q)

>

CI)

o~
.....:l

a
,~....s=
Q)

>

CI)o~
...J

00

....

- ~
.0

~
5

,~

ö
Olls=o::;;

Q)....::s.....
u
Q)

...J

....o.....u
Q).::
Cl.....=t':l......~
VI
VI

-<

=o.-j
=~
~o

~~==o
U

,~

Ö
bO=o

:::E

o-

,~

Ö
bO=o

:::E

--
(Ü
0..
Q)

Z

C"l-

=Q)

"1:l
'6'0a
...J
1::
Q)
.0....
Q)::r:
,f'
u
=o
N
Q)::s
Ci

\I')- \0-

~
..Q
o=..cu
Q)

f-o....
Q).....::s
0-
Eo
U
"1:l=t':l
VIu
'2
oU....w't)f-o~uww(Üb=o ~'~ 5Zu

r---

~o
Ö=..c
u
Q)

f-o....
Q).....::s
0-
Eo
U
"1:l=t':l
VIu
'2oU....w't)f-o~u
(Ü~=o ~
'~ 5Zu

.....::s= g
] 8-bOE= 0O..cZu

00-

~=.....Q)

>
0\- o

C"l

~
rI.l ::;EI.:l= ::;E ::;E0u u 0

I.~
"0 Q) Q)
Cl - ~~ cd
~ S S

-
~
..9
ä3

rI.l ~
rI.l .c=Q)

~ ~ u- :a.... rIl

~
.- ;:j Cl)

E-t rn- cx:l ~~ I-< -'C3 0
;:j ...rIl 0

!.: '8 ~ '2co.i Q) 0
0 U

Cl)
CI) U'.l

.... ,~
0 rn...
Cl) ~ Cl)- >a .•o l::

'+j '0 ::J
Cl 0 .s.E~
0 ..s - () 0.- cd Cl) ••....

l::E-<1ij.~ .m .g ~ Z
Cl 00 cd "0~ ..0 5 ~.~~ Q)I.

~ - 0 l::0 ..5U'.l::J

cd
rn
cd 00:> l::

~ ..J:::: ~
E! Vl ;.::;Cl)

~ '= Cl)

Z ~ ::z::
"'0

~ ::3
cd

C 'E ~.- 0
~U ~

t- cd
().... 'C cdCl= Cl) l::

0
~

:.au u
...... C'J

8

•

./

\

I.~
'0 il.> il.> il.> il.>= ca ca ca~ ro
c.? S S S S

.......... !::
0 il.>
!:: S
0 t:

'Vi t':l
'ü 0..

il.>:.a Cl..... 01)
~ 0..... E ,5.... Q) !::E: :a Q) t':l- ... u S i5:~ Q) c~Q) ...

!::.. Q)U !:: u ::3 t':l t':l1.= 'Sn !+:: 0..8 .Dc;..; !:: <+-i ö::E ...
0 LLl 0 ~

VJ VJ... ...
~ ~ "0 !::

0<+-i 8 .~<C <C
!:: Sn C 001) e-'Q) 'Q) VJ

::3= "0 0
0 0 !:: U.g t.I., t.I., c.... 'Oct:~ 0 0 us C C c~..= - - .~~ t':l~ ,~ VJ

~ef c:: '2 ,5 8
~ ~

..c:
0 ::E:r: Cl

~
Vi

.s
-;s :a '<;'0 Q) U

t':l :a ';; ,!::
...c 01) "0 U'.l
0.. Z Q) "0
E ~ t':l

t':l ...c St':l 0> - S:r: :a~
~

0.. t':le 8 E ..c:
0~ ...c ::3 0 ::Ez 0.. >< CI)

'0 '0 .~ t':l- ~C 8 8 !::
Q) ..c:U :r: :r: > Cl

..c:
VJ

C Q)

~ ~
"0.... t':l= !:: S VJ ö.o= - 80 Q) Q) 0> > t':lU ...:l a:l

....... N M '-.:t<
~~

•

Software Project Management

Lecture 1--- Introduction to Software Project Management

Lecture 2---Software Development Models

Lecture 3---Size and Cost Estimation

Lecture 4---Software Project Planning

Lecture 5---Software Project Risk Management

Lecture 6---Resource Allocation

Lecture 7---150 9000

Lecture 7A---SEI - Capability Maturity Model

Lecture 8---Software Project Performance Tracking and Monitoring

Lecture 9---Software Configuration Management

Lecture 10---Project Team Management & Organization

f Software prOje~_~anagement

Lecture 1
Introduction to Software Project

Management

.~ Software Cri~l~.
• Faulty software
• Delay in completion time
• Over budgeted
• Difficult to maintain software

~=Software _~~9~_~eering
• No standard definitions

Sol'tw,yeProjeCt~

. 1 .

..~~. Overview
• Software engineering
• Software project management
• Formal methods

~ Some import~~~..facts
• Relative cost of the software in a

system is growing
• Increase in demand for software
• Increase in size and complexity of

software
• Increase in performance of hardware

Sollwn...jo<t_

,-4 Software _~~JJi~eering
• Aimed at large software
• Systematic and well-defined techniques,

methodologies and tools
• To design, code, test and maintain

quality software
• Within a resource constrained

environment

So"-e"'jo<t_

''iLarge Softwar~_.
• Developed by more than one person
• Effective communications are important

- standards, documentations, etc
• Management issues
• Techniques and methodologies are

useful only if automated systems can be
built upon them

..,~ Some importa~~observations
• Maintenance is the most expensive

phase and coding is the least expensive
phase

• The earlier the detection of faults, the
less expensive the correction of faults

Phasesof Software
.~ Developmen_t__..

• Requirements analysis and
specifications

• Design
• Coding
• Testing
• Operation
• Maintenance

-"'jcCl-

'~ Characteris~~~?f software
• Simple and elegant mathematical

representation
• Logic intensive
• Cannot have partial completion
• Design costs are more expensive

-"'jcCl- -"'jcCl- 10

,~ What is a...p.~~J~<:t?
• Key characteristics of a project:

• A planned activity
• Specific objectives or products
• Work to be carried out in several phases
• Limited resources
• Deadline
• Large and complex

i......Major differenc.es.between software
""', : products a~_~_~~rdwareproducts

• Progress of software development is not
obviously visible

• Modifications of software products are
more easy and flexible

• Software products are usually more
complex than the hardware products in
terms of development or construction
cost

-"'jcCl- II

.2.

-"'jcCl- "

~ Major processes In developing a
:;;:':~ software system

ci: .::.~ ---,,'

III Feasibility study
• Project planning
• Project execution

,~ Feasibility Study
III Analyze the general requirements, costs

and the functionalities and services
provided by the system to be developed

II Aimed to determine whether a system
should be developed or not

III Note that a feasibility study can be
viewed as a project itself

J

IJ "

Important factors in planning
,~~ a software ~~oj~~

III To know the nature of the system to be
developed
• A management information system or a

control system
III To know clearly the objectives and

products of the project
• How to evaluate the objectives and

products after the completion of the
project

~ What is man~-2.~ment?
III Management involves the following

activities:
• Planning'
• Staffing
• Innovating
• Directing
• Monitoring
• Liaising

15 .6

What is software project
,~;;~manage~~.~~?-

III Understand the characteristics of
software products

• Understand what is meant by project
III Understand what is meant by

management

Common problems with~bsoftware e~-,?j~cts
• Lack of quality standards and measures
II Lack of measurable milestones
• Difficult to make the progress visible
• Poor communications
• Poor documentation
• Frequent changes of requirements
• Over budget and late delivery of software

17

. 3 •

.6

~... Major issues of s.oftware project
', •...management~~.~e covered

• Software development models
• Software size and cost estimation
• Software project planning
• Software risk management
• Resource allocation
• ISO 9000
• Performance tracking and report

Major issues of software project
.~ management to b~.~overed (cont'd)

• Software project configuration
management

• Software project team management

Softwn""')ea_ 19 20

Main problems encountered with
~ requirements~~~ ..~pecifications

• Ambiguous
• Incomplete
• Inconsistent

~ Main problems encountered with
" .,) requirements and_~~cifications (cont'd)

• To overcome these problems via
• Formality - achieving preciseness
• Abstraction - contracting on essential parts

-""')ea_

'~ Formal Methods
. Co', .M••••••••• _ _ .

• Mathematically based techniques
• Providing a universal and concise language
• Supporting formality
• Supporting abstraction
• Supporting logical reasoning
• May support automation

So-'''''')ea_

,.~ Why for~~!~ethods?
• Unambiguous
• Concise
• May support automatic verification
• May support automatic processing

""')ea

22.

24

~. Why not fo~_~~~methods?
• Lack of knowledge
• Lack of experienced staff
• Lack of supporting tools
• Cost-effectiveness

50"-" Projoa_

~ Formal Meth!?~s(continued)
• Two important aspects:

• Expressiveness
• Solvable properties - automation

,~ Formal Methods
• Most commonly used mathematical

techniques:
• Set theory
• Logic

SoftwonlProjoa_

Logic

• Propositional calculus

• • First-order predicate calculus .25

• Second-order predicate calculus i

17 5o"-"ProjCa_ I'

~;bExamplei.~p~essiveness):
• Consider the following:

Every citizen has an ID number.
Since John is a citizen, John has an ID
number.

This kind of information cannot be
deduced using the propositional
calculus, first-order predicate calculus is
required.

i SolvableProJJ.~~ies
• A problem is solvable if there is an

algorithm which can determine "yes" or
"no" as the solution to the problem

• A problem is unsolvable if it is not
solvable.

• A problem is partially solvable if there is
an algorithm which can determine "yes"
as the solution to the problem

5o"-"Projoa_ 19

.5.

SoftwonlProjoa_

Solvable Properties
,~ (continue9.2._,", ,

• The validity problem of the
propositional calculus is solvable

• The validity problem of the first-order
predicate calculus is unsolvable, but
partially solvable.

• The validity problem of the second-
order predicate calculus is not partially
solvable.

"~bA Dilemma
• More expressive
• Solvable in preference to partially

solvable
• Partially solvable in preference to

unsolvable

Software ProjeCt MInIQcmett 31 Software Project ManIgemeA: 32

~,.....z _
• Developed at Oxford University (UK) in

the late 1970s and early 1980s
'. Use set theory and first-order logic to

model the requirements
• Can check inconsistency among

requirements

7'1,",; Z~i-------'
• A specification language not a

programming language
• A what-to not a how-to

• Specify pre-conditions and post-
conditions

• Based on state-based models

Essentials of State-Based
~~ Model

~ ~.. ~---_¥"'."'-'"''

Besides variables and their types, we
have:

• State
• Invariant
• Input and output
• Operation

Sottware:ProjeaM~

J]

35

. 6 .

Software ProjeCt Hanage'nert

An Example: Container and
~-i Indicator

. - Container ---- .. "." .. , Indicator

contents: N light: (on, off)
cUffLeve/: N

capacity: N 10wLeve/: N

contents <' capacity light= on e> cuffLe vel <,lowLevel

1Schema Name 1- ~1Mlmn.!J
Ciiiifri1M-f-----"")

ISchema Signature j- 'tlXllQlJIQ(' .' C0_."'

1Schema Predicate 1- 'iiJ"/'rUvdJ .. et>n18ilts ~
.. ~P/!P!Y.16!lO .. . " ,

lQ~4t!l'.l11~.......-J
Software ProjeCt Hanaoemert J6

.~ An Example: A_?~orage Tank
Storage Tank _
contants: N
capacity: N

light: (on, oll)
currLava/: N
10wLava/: N

con/ants < capacity
light = on "" cu,rLava/ < lowLaval
cu,rLava/ = contants
capacity = 1500
lowLava/ = 50

]7

~J Reference~._ .
• Hughes, B., and Cotterell, M. (1999)

Software Project Management, 2nd ed.,
McGraw Hill

• Dean, C.N., and Hinchey, M.G. (1996)
Teaching and Learning Formal Methods,
Academic Press

• Sommerville, I. (2001) Software
Engineering, 6th ed., Pearson Education.

.~ An Example: ~!~ingthe Tank
Message ::= okMsg I overfillMsg

FillTank Overfill
Ii StoragaTank ::: Storaga Tank
flIlAmount?: N nt/Amount?: N

msg/: Massaga msg/: Massaga

currLaval + til/Amount? < capacity currLavs/ + n1/Amount? > capacity
currLava/' = currLaval + IiIIAmount? msgl = ovsrfi//Msg
msg/ = okMsg

DoFillTank 9 FiIITank v Overfill
_ ...jeet-

1lI

So jeet_ 19

.7.

Software Project Management

Lecture 2
Software Development Models

't;"J; Definitions _
• Software Process

• the set of activities, methods, and practices
that are used in the production and
evolution of software

• Software Process Model
• one specific embodiment of a software

process architecture
(Humphrey 1990)

''iProject A~_~ly~is
, .J

• Methodologies
• Object-Oriented Development (000)
• Structured System Analysis and Design

Method (SSADM)
• Jackson Structured Programming (JSP)

• Technologies
• application-building environment
• knowledge-based system tools

Software Project Management

"~ Overview
• Introduction
• Technical plan
• Software process models
• Selecting process model

"~ Why Modell~,~g?
• To provide a common understanding
• To locate any inconsistencies,

redundancies and omissions
• To reflect the development goals and

provide early evaluation
• To assist development team to

understand any special situation

,~ Project ~~~E~~eristics
• data oriented or control oriented

system?
• general package or application specific?
• a particular type of system for which

specific tools have been developed?
• safety-critical system?
• nature of the hardware/software

environment?
SaIIw.... __

.9.

-;6 Project Risks _
• Product uncertainty
• Process uncertainty
• Resource uncertainty

,~ Technical PI~~ _
• Contents

• Constraints
• Approach
• Implementation
• Implications

Software Project Management

Considerations for Projecti:Approach._.
• Control systems
• Information systems
• General applications
• Specialized techniques
• Hardware environment
• Safety-critical systems
• Imprecise requirements

,~ Technical Pla.~_.-.Constraints
• Character of the system to be

developed
• Risks and uncertainties of the project
• User requirements concerning

implementation

~~ Technical_~I~n - Approach
• Selected methodology or process model
• Development methods
• Required software tools
• Target hardware/software environment

Technical Plan -
,~~ Impleme~_~~~~~n

• Development environment
• Maintenance environment
• Training

.0

\I

. 10 .

.2

:~bTechnical Plan ~.Implications
• Project products and activities

• effect on schedule duration and overall
project effort

• Financial
• report used to produce costings

Software Project Management

~ Software Pro~~.ssModels
• Waterfall Model
• V Model
• Spiral Model
• Prototyping Model

Software Process Models:t (cont'd)
• Phased Development Model

• incremental development model
• iterative development model

• Operational Specification Model
• Transformation Model

13

IS

.'~ :'Waterfall M<?.~el.

14

16

.-;6 Waterfa.~I_~~gel(cont'd)
• classical
• one-shot approach
• effective control
• limited scope of iteration
• long cycle time
• not suitable for system of high

uncertainty

17

• 11 •

-...-- 18

,~ V Model (cont/~d)
• Additional validation process introduced
• Relate testing to analysis and design
• Loop back in case of discrepancy

\9

.~ Spiral Model__(~ont/d)
• Evolutionary approach
• Iterative development combined with

risk management
• Risk analysis results in "go, no-go"

decision

Software Project Management

i Spiral Model (a~a~ted from Boehm 1987)

CUmLllI ""_
Determine llIljecIM5.
_and
constraints

Plan next phases

20

'i;Spiral Model (~~nt/d)
• Four major activities

• Planning
• Risk analysis
• Engineering
• Customer evaluation

21 -...--- 22

:;6 Prototypi~_9.~odel
• Goals

B meet users' requirements in early stage
• reduce risk and uncertainty

23

. 12 .

"'"'Classification of Prototype
c~

• Throw-away
• After users agree the requirements of the

system, the prototype will be disgarded .
• Evolutionary

• Modifications are based on the existing
prototype .

• Incremental
• Functions will be arranged and built

accordingly.
_ ..."",jeCl-

~ Prototyping Mo~el

~

' .' ' YES

'-~ 00-;.

User feedback

Software Project Management

~. Benefits of Prot~typing
• Learning by doing
• Improved communication
• Improved user involvement
• Clarification of partially-known

requirements

~. Benefits of Pro!otyping
• Demonstration of the consistency and

completeness of a specification
• Reduced need for documentation
• Reduced maintenance costs
• Feature constraint
• Production of expected results

-...--

,~ Prototyping Seq~ences
• Requirements gathering
• Quick design
• Prototype constructiqn
• Customer evaluation
• Refinement
• Loop back to quick design for fine tuning
• Product engineering

-...--

..~ Drawback~.C?fPrototyping
• Users sometimes misunderstand the

role of the prototype
• Lack of project standards possible
• Lack of control
• Additional expense
• Machine efficiency
• Close proximity of developers

25

17

19

-...--

.,4Forms of ~~~!~~pes
• Mock-ups
• Simulated interaction
• Partial working model

• 13 .

16

18

III

'.iPrototype P~~_~ucts
o,.j.>

• Human-computer interface
• System functionality

Software Project Management

.~ Prototype Cha,nges
• Three categories

• Cosmetic (35%)
• screen layout

• Local (60%)
• screen processing

• Global (5%)
• multi-parts processing
• design review

.~ Phased Dey'~.lgpment
.. Reduce cycle time
D Two parallel systems:

• operational system (Release n)
• development system (Release n+1)

.. Two approaches
• incremental
• iterative

31

33

~ Incremental ~g.~~1
• Break system into small components
• Implement and deliver small

components in sequence
• Every delivered component provides

extra functionality to user

32

.~~=Increme.£l_~~1Model (cant/d) T~bIterative .~~gel
• Deliver full system in the beginning
• Enhance functionality in new releases

35

. 14 .

36

..4 Iterative Mod~!.Jcont'd)

Software Project Management

Combined Incremental and
~ Iterative ModeL

• Every new release includes
• extra functionality
• enhancement of existing functionality

• Popularly used in software industry

'C~-:1 Ranking the !_~~rements
r:\:.J,

• Rank by value to cost ratio
• V = value to customer (score 1 -10)
• C = cost (score 1- 10)
• Value to cost ratio = VlC
• Example: Table 4.1

Advantages of Phased
~:; Devel~p~.~~~(cont'd)

• Capture early market
• Facilitate early training
• Can be temporarily abandoned
• Increase job satisfaction

37

41

Advantages of Phased....-i Development
• Early feedbacks
• Less possible requirement changes
• Early benefits for users
• Improve cash flow
• Easier control and manage

Disadvantages of Phased
.~ Developm~~~

• 'Software breakage'
• Reduced productivity

. 15 .

Ja

42

Operational Specification
..I Model

.~.:..----~. --
II Use executables to demonstrate system

behaviour
• Resolve requirement uncertainties in

early stage
• Merging functionality and system design

Software Project Management

.1Transform.9t~onal Model
<=.jC..:

• Transform a specification into delivered
system

• Require automated support
• Rely on formal specification method

4J ..

.:l: References
• Boehm, B. (1987) A sprial model of software

development and enhancement, Software
Engineering Project Management, p.128-142 .

• Hughes, B. and Cotterell, M. (1999) Software
Project Management, 2nd ed., McGraw Hill.

• Humphrey, W. (1990) Managing the Software
Process, Addison-Wesley .

• Pf1eeger,S.L. (1998) Software Engineering
Theory and Practice, Prentice Hall

45

. 16 .

Software Project Management

Lecture 3
Size and Cost Estimation

.;~ Different lev~~..~!estimation
• Before a project is decided to pursue

• The estimation is coarse
• The estimation is in 'high level terms

• Profit? Good to the organization? etc.

• After the project is decided to go ahead
• More detailed size and cost estimations are

required

"'~ Project Ev~I~~tion - Why
"" " • Want to decide whether a project can

proceed before it is too late
• Want to decide which of the several

alternative projects has a better success
rate, a higher turnover, a higher ...

• Is it desirable to carry out the
development and operation of the
software system

~.overview
• Different level of estimation
• Project Evaluation
II Introduction to Estimation
D Size Estimation
II Cost Estimation

,~ Project Evalu~~ion
• It is a high level assessment of the

project
• to see whether the project rs worthwhile to

proceed
• to see whether the project will fit in the

strategic planning of the whole
organization

.,~ Project E\:,_~,I~~tion- Who
• Senior management
• Project manager/coordinator
II Team leader

. 17 .

~. Project Evalua!!on - When
• Usually at the beginning of the project

• e.g. Step 0 of Step Wise Framework

~ Project Evalua~!on - How
• Cost-benefit analysis
• Cash flow forecasting
• Cost-benefit evaluation techniques
• Risk Analysis

~ Project Evalua.!ion - What
• Strategic assessment
• Technical assessment
• Economical assessment

SoftwnPlojea_

i6Strategic Asses..~ment
• Use to assess whether a project fits in the

long-term goal of the organization
• Usually carry out by senior management
• Need a strategic plan that clearly defines the

objectives of the organization
• Evaluate Individual projects against the

strategic plan or the overall business
objectives

_ .. PIojea- 10

..~. Strategic ~~~ssment (cont/d)
• Programme management

• suitable for projects developed for use In
the organizations

• Portfolio management
• suitable for project developed for other

companies by software houses

"~ SA - Progr~~~e Management
• Individual projects as components of a

programme within the organization
Programme as '~ group of projects that are

managed in a coordinated way to gain
benefits that would not be possible were

the projects to be managed independenf/yH
by D.C. Ferns

Journal of Project Management
Aug. 1991

SoftwnPlojea_ II

. 18 .

SoftwnPlojea_ 11

SA - Programme Managementi Issues --
• Objectives

• How does the project contribute to the
long-term goal of the organization?

• Will the product increase the market share?
By how much?

SA - Programme Managementi;Issues (cont'd) __
• IS plan

• Does the product fit Into the overall IS
plan?

• How does the product relate to other
existing system?

SoIlw ... ProJ«l_ SoIlw ... ProJ«l_ "

SA - Programme Managementi Issues (cont'dt,
• Organization structure

• How does the product affect the existing
organizational structure? the existing
workflow? the overall business model?

SA - Programme Management
-"~ Issues (cont'd) _,

• MIS
• What information does the product

provide?
• To whom is the information provided?
• How does the product relate to other

existing MISs?

15 16

SA - Programme Management
'~, Issues (c~~_~~~)

:::.r
• Personnel

• What are the staff Implications?
• What are the impacts on the overall policy

on staff development?
• Image

• How does the product affect the image of
the organization?

'~ SA - Portf<?,I.,i.~Management
• suitable for product developed by a

software company for an organization
• outsourcing

• need to assess the product for the
client organization
• Programme management issues apply

• need to carry out strategic assessment
for the servicing software company

SoIlw ... ProJ«l_ 17

• 19 •

I•

SA - Portfolio Management
_~ Issues _

D Long-term goal of the software
company

• The effects of the project on the
portfolio of the company

• Any added-value to the overall portfolio
of the company

~, Technical Asse~~ment
• Functionality against hardware and

software
• The strategic IS plan of the organization
• any constraints imposed by the IS plan

19 20

,:~ Economic A~~~ssment
Why?
• Consider whether the project is the best

among other options
• Prioritise the projects so that the

resources can be allocated effectively if
several projects are underway

,~ Economic As.~_«:~sment(cont'd)
How?
• Cost-benefit analysis
• Cash flow forecasting
• Various cost-benefit evaluation

techniques
• NPV and IRR

21 22

~ EA - Cos~=_~~~efitAnalysis
• A standard way to assess the economic

benefits
• Two steps

• Identify and estimate all the costs and
benefits of carrying out the project

• Express the costs and benefits in a
common unit for easy comparison (e.g. $)

• 20 •

EA - Cost-benefit Analysis
'~ (cont'd)

,', .--..- , .." .

• Costs
• Development costs
• Setup costs
• Operational costs

EA - Cost-benefit Analysis
~ (cont'd) .., .

• Benefit
• Direct benefits
• Assessable indirect benefits
• Intangible benefits

-...--

~ EA - Cash Flo~. F.0recasting
• What?

II Estimation of the cash flow over time
• Why?

II An excess of estimated benefits over the
estimated costs is not suffident

• Need detailed estimation of benefits and
costs versus time

-...-- 26

EA - Cash Flow Forecasting
..~ (Cont'd) ..

27

EA - Cash Flow Forecasting
.~ (Cont'd) ._._.

• Need to forecast the expenditure
and the income

• Accurate forecast is not easy
• Need to revise the forecast from

time to time

-....-- 28

1O-...--

Cost-benefit Evaluation
,~_~_ec_h_n_iq,,-_U_e_~_..._

• Net profit
= Total income - Total costs

II Payback period
= Time taken to break even

B Return on Investment (ROI)
= average annual profit x I00%

total investment

29

YE'ilr Project J Project 2 Project J Project4

° '100,000 -1,000,000 -100,000 -120,000
1 10,000 200,000 30,000 30,000
2 10,000 200,000 30,000 30,000
3 20,000 200,000 30,000 30,000
4 20,000 200,000 20,000 25,000
5 100,000 350,000 20,000 50,000
Net Profit 60,000 150,000 30,000 45,000
Payback 5 5 4 4
ROI 12% 4% 10% . 11%

Cost-benefit Evaluation
.~ Techniqu~~_..~~~mple

-...--
. 21 •

Cost-benefit Evaluation'-4 Techniques -_~PV
Net present value (NPV)
• It is the sum of the present values of all

future amounts.
• Present value is the value of which a

future amount worth at present
• It takes into account the profitability of

a project and the timing of the cash
flows

Cost-benefit Evaluation
~. Techniques - N.~V(cont'd)

• Discount rate is the annual rate by
which we discount future earning
• e.g. If discount rate is 10% and the return

of an investment in a year is $110, the
present value of the investment is $100 .

31 32

Cost-benefit Evaluation
.~ Techniques ~_~.PV(cont'd)

• Let n be the number of year and r be
the discount rate, the present value (PV)
is given by

PV = value in year n
(1+ r)"

Cost-benefit Evaluation
~: Techniques_=.~PV(cont'd)

• Issues in NPV
• Choosing an appropriate discount rate is

difficult
• Ensuring that the rankings of projects are

not sensitive to small changes in discount
rate

_in __

Cost-benefit Evaluation
'~J Techniqu_~~.=~PV(cont'd)

• Guidelines:
• Use the standard rate prescribed by the

organization
• Use interest rate + premium rate
• Use a target rate of return
• Rank the projects using various discount

rates

33 _in PlUJe<l_

Cost-benefit Evaluation
i'TechniqU~~=- NPV(cont'd)

• Disadvantage
• May not be directly comparable with

earnings from other investments or the
costs of borrowing capital

35

• 22 •

36

Discount rate
(%)

98
o

-3000

Cost-benefit Evaluation
~. Techniques - I~R (cont'd)

Net Present Value($)

90

Cost-benefit Evaluation
~~ Techniques -, IRR

• Internal Rate of Return (IRR)
• The percentage discount rate that would

produce a NPV of zero
• A relative measure

]7]8

Cost-benefit Evaluation""4 Techniques - I~R (cont'd)
• Advantages

• Convenient
• Directly comparable with rate of return on '

other projects and with Interest rates
• Useful

• Dismiss a project due to Its small IRR value
• Indicate further precise evaluation of a project

• Supported by MS Excel and Lotus 1-2-3

"'~ Estimation _
• Why? - to define the project budget

and to 'refine' the product to realize the
budget

• Who? - the manager
• What? - size and cost
• When? - always
• How? - techniques and models

<0

'~. Issues rel~,~~_~,~o Estimation
• Difficult to make accurate estimation
• Better to have previous data and analyze the

actual values against their estimates so that
you know how accurate you are

• Even better to have previous data of the
whole organization so that you know how
accurate the estimation method, if any, used
within the organization is

41

Positive Attitude Towards
Estimation
• Use your estimation as a guide to

manage your project
• From time to time, you need to revise

your estimation based on the current
status of the project

-...,...-
• 23 •

.i Estimation App~oaches
• Expert judgement

• Ask the knowledgeable experts
• Estimation by analogy

• Use the data of a similar and completed
project

• Pricing towin
• Use the price that is low enough to win the

contract

Estimation Approaches"i,(cant/d) _
• Top-down

• An overall estimate is determined and then broken
down Into each component task

• Bottom-up
• The estimates of each component task are

aggregate to form the overall estimate
• Algorithmic model

• EstImation Is based on the characteristics of the
product and the development environment.

'3

~. Size Estimati~~.
• Problems related to size estimation
• Size Estimation Model

• Function Point Analysis (FPA)

Problems related to size
.,~ estimation

• Nature of software
• Novel application of software
• Fast cha'nging technology
• Lack of homogeneity of project

experience
• Subjective nature of estimation
• Political implication with the

organization

.5

Function Point Analysis
~ (cant/d) "","",'"

• Idea: Software system comprises offive
major components (or, external user
type)
• External input types
• External output types
• Logical internal file types
• External interface file types
• External inquiry types

~'.r Functio~._.~9i~tAnalysis (FPA)
-"

• Developed by A. Albrecht in IBM
• Aim: To estimate the LOC of a system

LOC of system
= FP of system x LOC-per-FP of the

language

-...--
• 24 •

-...-- ..

~ Function Point ~nalysis - Steps
• Identify each instance of each external

user type in the proposed system
• Classify each instance as having high,

medium or low complexity
• Assign the FP of each instance
• FP of the system = sum of FP of

individual components

'~ Function Point ~nalysis
Number of FPs Complexity

External user type Low Average High

External input type 3 4 6

External output type 4 5 7

Logical internal file type 7 10 15

External interface file type 5 7 10

External inquiry type 3 4 6

50

Function Point Analysis -
~ Example
c ~tr ._--"~ .., ..

• A component of an inventory system
consisting of 'Add a record', 'Delete a record',
'Display a record', 'Edit a record', and 'Print a
record' will have
• 3 external input types
• 1 external output type
• 1 external inquiry type

Then, assign FPs based on the complexity of
each external types

Function Point Analysis'i:(cont'd) __._
• Other issues

• The assignment of level of complexity is
rather subjective

• International FP User Group (IFPUG)
Imposes rules on assigning the level of
complexity to individual external user types

51 52

-16 Object P<?J_~_~_f'~alysis
• Similar to function point analysis
• Used on 4GL development projects
• Take account of features that may be

more readily identifiable if the system is
built on a high-level application building
tools

.~ Object Poi..~.!!\~alysis- Steps
• Identify the number of screens, reports

and 3GL components
• Classify each object as Simple, Medium

and Difficult
• Assign the weight accordingly
• Calculate the total object points

Total OP = sum of individual OP x weighting

53

o 25 .

54

Number of Total < 4 Total < 8 Total8+
views «2 server, (2-3 server, (>3 server,

contained <2 client) 3-5 dient) >5 client)

<3 Simple Simple Medium

3-7 Simple Medium Difficult

Object Point Analysis -
-~ Screens ..

Number and source of data tables

Object Point Analysis - Steps':i (cont'd). __.
• Deduct the reused objects (1'% reused)

NOP = OP x (1 - r%)
• Identify the productivity rate of both

developer and CASE
• Productivity rate = average of the two

PRs
• Calculate the effort

Effort = NOP/ Productivity Rate

55

8+

-..-- Medium Difficult Difficult

56

Object Point Analysis -
.~~ Reports

. j. ."",""" , .
. >,.'

Number of Total < 4 Total < 8 Total8+
sections «2 server, (2-3 server, (>3 server,

contained <2 client) 3-5 client) >5 dient)

<2 Simple Simple Medium

2 or 3 Simple Medium Difficult

Number and source of data tables

Object Point Analysis-
.~ Complexity W~i9htings

Complexity

Type of object Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3Gl component N/A N/A 10

_ .. Proje<t_ 5857

DifficultDifficultMedium>3

Object Point Analysis -
..~ Productivi!:.t~ate

Very
low low Nominal High Very

High

,c~ Object Poi~~J\nalysis- Issues
• Adopted in Boehm's COCOMO II in the

application composition stage
Developer's
experience 4 7 13 25 50
and capability

CASE.
maturity and 4 7 13 25 50
capability

-..-- 59 -..--
• 26 •

Object Point Analysis -
,~ Example __._

• See separate handout

,,~ Cost Estimation ."
• Cost Estimation Model

• COCOMOII

61 62

Constructive Cost Model II
~. (COCOMO II) ._.

• A parametric cost model
• Important aspects of software project are

characterized by variables (or, parameters)
• Once the value of the parameters are

determine, the cost can be computed from
the equation

'i COCOMO II (c<?~t'd)
• Recognize different approaches to

software development
• Prototyping, Incremental development etc .

61

,d;-: A history of COCOMOs
dt-' .

• COCOMO originally proposed by Boehm
in 1981, now called COCOMO 81

• Later evolved to Ada COCOMO in 1989
• In 1995, Boehm proposes COCOMO II

.~COCOMO II
, ,','. __ ._.h __ _ ..

• A family of models .
• Use different models in 3 different stages

of the project
• 3 stages: application composition, early

design and post architecture
• Support estimation early in the process
• Allow further detailed estimation after the

system architecture has been defined

65

• 27 •

-...--- 66

-~ COCOMO II (c.~nt'd)
• The basic model equation

Effort = Constant x (Size)scalefactor

x Effort Multiplier
• Effort in terms of person-month
• Size: Estimated Size In KSLOC
• Scale Factor: a combined effects of factors related

to the process
• Effort Multiplier (EM): a combined effect of factors

related to the effort-...-- 67

The Application Composition
.~Stage ...

• Estimation at the early stage
• Corresponding to exploratory work such

as prototyping
• Use object points to estimate the size of

the product

-...---

.~ The Early Des!9n Stage
• Estimate after the requirements

specification is completed and possibly
with some design

• Use the basic model equation
• Estimate the size by FPs (preferred) or

KSLOC
• Assign process exponent estimation

accordingly

The Early Design Stage -.-iScale Factor_._.
• Estimation on the scale factor

• A combined effect of 5 parameters
• Application precedentedness
• Process flexibility
• Architecture risk resolution
• Team cohesion
• Process maturity

69 70

The Early Design Stage -.i Scale Fact~~JCont'd)
• Calculate the scale factor based on the.

equation
Scale factor = 1.01 + sum of the values

The Early Design Stage -
~:) Scale FaC!~r(cont'd)

Pnmeter
Very"", low - HigIl VeryHigll Extra High
(0.05) (0.0<) (0.03) (0.02) (0.01) (0.00)

--. TIloRlult'Y lMV<'Y - Gene<olly lMV<'Y TIloRlult'Y~ ~ ~ _IIr
"."....

IIrDeveJ
RJgorous Ocr.aslcnol Seme Gene<ol Seme Gene<ol

-Iy rdldllal rd_'" -tv -tv goeIs

Ard1tedUe rtsk Ulll. Seme on.n Gene<olIy Mostly ""re5CIulIcn - - EOOIo 75"" - I.....

Team atlcsIcn VerydlllcUl Semed_, BasicaII. lMV<'Y - -interllCbOnS -- -... -... Coclp« --
Process maturity LMI ' 2 LtMl2+ LM3 LM' LM5

71 n

• 28 •

The Early Design Stage -,4Effort Multiplie! ..
• 7 factors on Effort Multiplier

• product Reliability and ComPleXity (RCPX)
• required reusability (RUSE)
• Platform DIFficulty (PDIF)
• PERSonnelcapability (PERS)
• PeRsonnel EXperience (PREX)
• FaCIlities available (FCIL)
• SChEDule pressure (SCED)

Softwn PIVjed_

The Early Design Stage -
.~ Effort Multi.e~~!:~,(cont'd)

Early Design Very Low - Extra High
RCPX 0.5 - 1.5
RUSE 0.5 - 1.5
PDIF 0.5 - 1.5 .
PERS 1.5 - 0.5
PREX 1.5 - 0.5
FCIL 1.5 - 0.5
SCED 1.5 - 0.5

The Early Design Stage-
~. Effort Multiplier.(cont'd)

• Assess each factor by
• Very low, low, nominal, high, very high,

and extra high

• Assign each factor using a value
between 0.5 and 1.5 (inclusive)

• EM is the product of all these values

Softwn PIVjed_

The Early Design Stage -
..~ Example _

• See separate handout

7.

SolIwn PIVjed__
75 Softwn PIVjed__

~ The Post-architecture Stage
',: -- .

• Estimation after the software
architecture has been defined

• The same basic model equation
• Size estimation by KSLOC (preferred) or

FPs
• Same process exponent estimation
• 17 factors in EM (more than 7 in early

design stage)

The Post-architecture Stage -
,,~..-E_ffo_rt_~I~!I?~~~r

• 17 factors in 4 different categories
• Product attributes
• Platform attributes
• Personnel attributes
• Project attributes

SoftwftPlVjed_ 77

• 29 •

Softwn PIVjed__
78

The Post-architecture Stage -
'~ Effort Multiplier.

• Product attributes
• Requi~ed reliability (RELY)*
• Database size (DATA)
• Product complexity (CPLX)*
• Required reuse (RUSE)**
• Documentation (DOCU)
*Relate to RCPXin early design stage

The Post-architecture Stage -.i EAF(Cont'd) .
• Platform attributes

• execution TIME constraint (TIME)*
• main STORage constraint (STOR)*
• Platform VOLatility (PVOL)*
*Related to Platform DIFficulty (PDIF) In

early design stage

79 BO

The Post-architecture Stage-
.~ EAF(Cont'd) "_'.

• Personnel attributes
• Analyst CAPabilities (ACAP)"
• Application EXPerience(AEXP)*
a Programmer CAPabilities (PCAP)"
• Personnel EXPerience (PEXP)*
• programming Languagerrool EXperience

(LTEX)*
• Personnel CONtinuity (PeON)"

The Post-architecture Stage -
..~ EAF(Cont'd)__,..

• Project attributes
• use of software TOOls (TOOL)*
• multiSITE development team

communications (SITE)*
*Relate to FOL in early design model

B. B2

'r~ EAFRela~g~~
Early Design Post-Architecture
RCPX RELY,DATA, CPLX,DOCU
RUSE RUSE
PDIF TIME, STOR, PVOL
PERS ACAP,PCAP,PeON
PREX AEXP,PEXP,LTEX
FelL TOOL, SITE
SCED SCED

• 30 •

The Post-architecture Stage-
~ExamPle

" .. ::- .. ; -..

• See separate handout

..~ COCOMOII (co.~t'd)
• Advantages • Disadvantages

• Good Improvement • Stili Immature,
over COCOMO diverse projects In

• Good match for database
Iterative • Hard to believe that
development, It will be any more
modem technology, reliable than the
and management original COCOMO
process model

.~ References
• Hughes, B., and Cotterell, M. (1999) Software

project management, 2nd ed., McGraw Hili
• PfIeeger, S.L. (1998) Software Engineering:

Theory and Practice, Prentice Hall
• Royce, W. (1998) Software Project

Management: A Unified Framework, Addison
Wesley

• Center for Software Engineering, USC (1999)
COCOMOII Model Definition Manual.

B5

. 31 .

86

Software Project Management

Lecture 4
Software Project Planning

«~ Overview
• Step Wise project planning framework
• Preparation of a software project plan
Ii Planning and scheduling the activities in

software project management
• Various approaches towards activity

plan
• Various scheduling techniques such as

sequencing and CPM

Step Wise - An Overview
.~ (cont'd)"

• from preytous slide
"~ Step Wise - ,Ä!l.Oyerview

o
~<

from""" slide

lDwer
level
detail

For each
activity

Step Wise - An Overview
.~ (cont'd) " _

to pmtous slides

.Step Wise - An Overview
..~ (cont'd)

" , ..- .

• Step 0: Select project
II Step 1: Identify project scope and

objectives
o Step 2: Identify project infrastructure
II Step 3: Analyze project characteristics
II Step 4: Identify project products and

activities

o 33 0

Step Wise - An Overviewi;(cont'd) .
• Step 5: Estimate effort for each activity
• Step 6: Identify activity risks
• Step 7: Allocate resources
• Step 8: Review/publicize plan
• Step 9: Execute plan
• Step 10: Execute lower levels of

planning

Step 1: Identify Project Scope
.~ Objectives (c.9~~~d)

• Step 1.3 Identify all stakeholders in the
project and their interests

• Step 1.4 ModifY objectives in the light
of stakeholder analysis

• Step 1.5 Establish methods of
communication between all parties

Step 1: Identify Project Scope
~. and Objective~_,

• Step 1.1 Identify objectives and
practical measures of the effectiveness
in meeting those objectives

• Step 1.2 Establish a project authority
• To ensure the unity of purpose among all

persons concerned

-..--
Step 2: Identify Project

~ Infrastructur~_ .
• Step 2.1 Identify relationship between

the project and strategic planning
• To determine the order of related projects

(In the organization) being carried out
• To establish a framework within which the

system fits
• To ensure the hardware and software

standards are followed

Step 2: Identify Project
>~~, Infrastructure (cont'd)

«p _............

• Step 2.2 Identify installation standards
and procedures
• more appropriate name: "Identify

standards and procedures related to the
software project"

• Step 2.3 Identify project team
organization

Step 3: Analyse Project
~f-; C_h_a_ra_ct_e_ri~!i~~

• Step 3.1 Distinguish the project as either
objective-driven or product-driven

• Step 3.2 Analyse other project characteristics
(Including quality-based ones)

• Step 3.3 Identify high level project risks
• Step 3.4 Take into account user requirements

concerning implementation

-..-- II

• 34 •

-..--

10

12

Step 3: Analyse Project.;6 Characteristics_.<~ont'd)
• Step 3.5 Select generallifecycle approach in

the light of the above
• Step 3.6 Review overall resource estimates

Up to this stage,
• the major risks of the project are identified
• the overall approach of the project is decided
So, it is a good place to re-estimate the required

effort and other resources for the project

Step 4: Identify Project,4Products and A~ivities
• Step 4.1 Identify and describe project

products
• Identify all the products related to the project
• Account for the required activities

• Step 4.2 Document generic product flows
• To document the relative order of the products

" Step 4.3 Recognize product instances

13 ••

Step 4: Identify Project
..~:; Products and ~ctivities(cont'd)

• Step 4.4 Produce an ideal activity network
• Activity network shows the tasks that have to be

carried out as well as their sequence of execution
for the creation of a product from another

• Step 4.5 Modify the ideal to take into account
need for stages and checkpoints
• To check compatibility of products of previous

activities

Step 5: Estimate Effort for
.~ Each Activity _"..,

• Step 5.1 Carry out bottom-up estimates
• need to estimate staff effort, time for each

activity and other resources
• Step 5.2 Revise plan to create

controllable activities
• need to break a task Into a series of

manageable sub-tasks

Software Pfo)eCt Managemett 15 16

ci Step 6: I~~~~ify Activity Risks
• Step 6.1 Identify and quantify the risks

of each activity
• Step 6.2 Plan risk reduction and

contingency measures where
appropriate

• Step 6.3 Adjust overall plans and
estimates to take account of risks

Step 7: Allocate Resources
..~ (Staffing)

- '-. .--.-....... -..•.•..... ' .

• Step 7.1 Identify and allocate resources
• type of staff needed for each activity
• staff availability are identified
• staff are provisionally allocated to task

• Step 7.2 Revise plans and estimates to
take into account resource constraints
• staffing constraints
• staffing issues

.7

. 35 .

18

,~ Step 8: ReviewZpublicizePlan
• Step 8.1 Review quality aspects of the

project plan
• To ensure each activity is completed with a

quality product
• Each activity should have 'exit

requirements' .
• This ensures the quality of the product on

each activity.

Step 8: Review/publicize Plan
~,(Cont'd) __'

• Step 8.2 Document plans and obtain
agreement
• all parties understand and agree to the

commitments in the plan

19 20

'~ Aside - Wh~~__~oplan
• Planning is an on-going process of

refinement
'. Planning at different stages of the

project have different emphases and
purposes

.~ Project Vs AC!iyity
• A project is composed of a number of

related activities
• A project may start when at least one of

its activities is ready to start
• A project will be completed when all of

its activities have been completed

11

.,~ Project Vs_~~ivity (cont'd)
• An activity must have a clear start and

a clear stop
• An activity should have a duration that

can be forecasted
• Some activities may require that other

activities are completed before they can
begin

l)

• 36 •

~ Activity Pla~~ing
• A project plan is a schedule of activities

indicating the start and stop for each activity
• Also provide the project and resource schedules

• The start and stop of each activity should be
visible and easy to measure

• Each activity should have some 'dellverables'
for ease of monitoring

.~ Activity Plannin~.(cont'd)
• During planning, managers consider:

• Resource availability
• Resource allocation
• Staff responsibility
• Project Monitoring
• Cash flow forecasting
• Re-planning of the project towards the pre-

defined goal_ore_~

Other Objectives of Activity
~ Planning . _

• Feasibility assessment
• Resources allocation
• Detailed costing
• Motivation
o Co-ordination

_oreProject ~
26

.~ Different Level~__of Plans
• Project Schedule: a plan that shows

• 1. the dates when each activity should
start and stop

• 2. when and how much of the resources
will be required

• Activity Plan: a plan that describe
• how each activity would be undertaken

~ Project Schedul~in 4 Stages
• Ideal Activity Plan

• An activity plan without any constraints
• Risk consideration for each activity
• Resource consideration for whole

project
• Schedule production (known to 'public')

l7 18

Various Approaches Towards
.~ Iden.tifying__~~ivity

• Activity-based approach
• Product-based approach
• Hybrid approach

~. Activity-b~~.~9.Approach
• Use Work Breakdown Structure (WBS)

to generate a task list
• WBS involves

• Identifying the main tasks
• break each main task down into subtasks
• The subtasks can further be broken down

Into lower level tasks.

_ ore_~
19

• 37 •

_oreProject _

Activity-based Approach
.~. (cont'd)

Work Breakdown Structure (an extract)

Activity-based Approach
::i~(Cont'd) ._.

• Advantages
• More likely to obtain a task catalogue that

is complete and is composed of non-
overlapping tasks

• WBS represents a structure that can be
refined as the project proceeds

• The structure already suggests the
dependencies among the activities

SaIlw .. __

Activity-based Approach
,~ (cont'd). ..

• Disadvantage
• Very likely to miss some activities if an

unstructured activity list is used

31

33

SaIlw .. __

.~ Product-based_Approach
• Product Breakdown Structure (PBS)

• To show how a system can be broken
down into different products for
development

• Product Flow Diagram (PFD)
• To indicate, for each product, which

products are required as 'inputs'

SaIlw" __

31

'. Product-based Approach
'7'h. (cont'd)

t:f-! .

• Advantages
D Less likely to miss a product unexpectedly

from a PBS

Product-based Approach - An
~ example .

A Product Breakdown SlNcture (an extract)

35

. 38 .

iHybrid Appraa~~
• A mix of the activity-based approach

and the product-based approach
• More commonly used approach
• The WBS consists of

• a list of the products of the project; and
• a list of activities for each product

]7

'4 Hybrid Appraac~ (cant'd)
• IBM in its MITP methodology suggests

5 levels
• Levell: Project
• Level2: Deliverables (software, manuals

etc)
• Level3: Components
• Level4: Work-packages
• LevelS: Tasks (individual responsibility)

'""01".~ Scheduli~_9.!~chniques
""I'"

• Simple sequencing
• Suitable for small projects

• Critical Path Method (CPM)
• Suitable for large software projects
• The most commonly used "networking"

techniques

.~ Hybrid Appraa~_ (cant'd)
-Pni<d

Planning and Scheduling the
.'\:~ Activities _.

• Once we have a project plan (or,
project schedule), we need to schedule
the activities in a project taking into the
resource constraint

-..--

"~ Simple s~g,~~~~ing
• A simple sequencing of the tasks and

the responsible personnel taken into
account of the resources

• Easily presented in a simple bar chart
• see figure 6.6 In Hughes book

• Suitable to allocate individuals to
particular tasks in early stage

4'

• 39 •

42

/~ Critical Path"M"~thod(CPM)
• Primary objectives:

• Planning the project so that it can be
completed as quickly as possible

• Identifying those activities where their
delays is likely to affect the overall project
completion date

• Developed by Du Pont Chemical
Company and published in 1958

4l

~ Critical Path M~!hod (cont'd)
• Capture the activities and their inter-

relationships using a graph
• Lines are used to represent the activities
• Nodes are used to represent the start and

stop of activities

-....---

~ Critical Path~~thod (cont'd)
• Adding time dimension

• The forward pass
• calculate the earliest start dates of the activities
• To calculate the project completion date

• The backward pass
• calculate the latest start dates for activities
• help to Identify the critical path from the graph

-....--- <5

"'i Critical Path ~~.thod (cont'd)
• Identifying critical path and critical

event
• Critical event: an event that have

zero slack
• Critical path: a path joining those

critical events

-...---

-....---

,IEvent Number I

-@}
~I Slack

-....--

Example to construct a CPM
,~ (cont/d)

"w .• ;..'T ._w__ M •••

[d. Activity Name Duration (weeks) Precedents

A Hardware selection 7
B Software design 4

C Hardware Installation 6 A

D Coding 4 B

E Data Preparation 5 B

F User Documentation 9
G User Training 5 E,F
H System Installation 3 C,D

.,,~ Example t~~~nstruct a CPM

• 40 •

~ Activity Float
• Time allowed for an activity to delay
• 3 different types:

• Total float (without affecting the completion of the
project)

= latest start date - earliest start date
• Free float (without affecting the next activity)
= earliest start date of next activity - latest end date

of previous activity
• Interferlng float (= total float - free float)

Example to construct a CPM
~ (cont'd) __

i Significance o~_c.riticalpath
• During planning stage,

• Shortening the critical path will reduce the
overall project duration

• During management stage,
• Pay more attention to those activities

which fall in the critical path

-..---

,~ References
• Hughes, B., and Cotterell, M. (1999)

Software Project Management, 2nd

edition, McGraw-Hili.
• PfIeeger, S.L. (1998) Software

Engineering: Theory and Practice,
Prentice Hall.

50

51 -..---

. 41 .

52

Software Project Management
y -. '

Lecture 5
Software Project Risk

Management

.~ Project Risks .~..
• Factors that cause a project to delay or

over-budget

SoIlw... __

.~ Planning..~~~~mptions
• Why assumptions

• Uncertainties in early stage of the project

SoIlw"' __

.~overview
• Project risks
• Nature of risks
• Risk identification
• Risk estimation
• Risk evaluation
• Risk management
• Risk reduction strategies

.~ Nature of Pr~l~ct Risks
• Planning assumptions
• Estimation errors
• Eventualities

SoIlw... __

~ Planning ~~~.~mptions(cont'd)
• Common assumption:

• "Everything goes smooth" symptom
• Software is OK
• Design Is perfect In the first place
• Coding Is 'nearly perfect'

• 43 •

..~ Planning Assur.!lptions(cont/d)
II Guidelines

• Ust all the assumptions
• Identify the effects of these assumptions

on the project if they are no longer valid

.~. Estimation Err~rs
• Difficult to have accurate size or time

estimations
• Lack of experience of similar tasks
• Lack of historical data
• Nature of the task

'~ Estimation ~~ror (cont/d)
• Estimation can be improved by

analyzing historic data for similar tasks
and similar projects
• Keep historic data of your estimation and

the actual performance
• Compare your estimation and the actual

value
• Classify the tasks that are easy or difficult

to give accurate estimation

.~ Eventualities __"
• Unexpected and unimaginable events
• Common unexpected events

.' Hardware cannot be delivered on time
• Requirement specification needs to be

rewritten
• Staffing problem

--- 10

....~_R_iS_k_Id_e_n~!.~~~tion
• Identify the hazards that might affect

the duration or resource costs of the
project

Hazard -7 Problem -7 Risk
• A hazard is an event that might occur

and will create a problem for the
successful completion of the project, if
it does occur

II

• 44 •

--- 11

~. Risk IdentificatiC?_n(cont'd)
• Type of risks

• Generfc rfsk (common to all projects)
• Standard checklist can be modlfled based on the risk

analysis of previous projects

• Specific rfsk(on1v apply to individual projects)
• More dlfflcult to find
• Need to Involve project team members
• Need an environment that encourages risk assessment

~ Risk IdentificatiC?n (cont'd)
• Guideline

• Use checklist that lists the potential
hazards and their corresponding factors

• Maintain an updated checklist for future
projects

13 .4

.~. Common Ris~_~actors
• Application • Changeover

factors factors
• Staff factors • Supplier factors
• Project factors • Environment
• Hardware and factors

software factors • Health and safety
factors

.~ Application Factors
• Nature of the application

• A data processing application or a life-
critical system (e.g. X-ray emission system)

• Expected size of the application
• The larger is the size, the higher is the

chance of errors, communication problems
and management problem

18

-.......--

.:;~ Staff Factors
- .

• Experience and skills
• Appropriateness of experience
• Staff satisfaction
• Staff turn-over rates

IS

.7

"~ Project Fa~~~~
• Project objectives:

II III defined
II Unclear to every team member and user

• Project methods:
• III specified methods
• Unstructured methods

• 45 •

Hardware and Software.~tFactors
II New hardware

• Stability of the new hardware system
• Cross platform development

• Development platform is not the operation
platform

• Does the language used support cross
platform development?

.~. Changeover F_~ctors
• 'AII-in-one' changeover

• The new system is put into operation
• Incremental or gradual changeover

• Adding new components to the system by
phases

• Parallel changeover
• Both the existing system and the new

system are used in parallel

19 20

~ Supplier FaC!~r.s
• Late delivery of hardware
• Instability of hardware
• Late completion of building sites

'~-4Environmen~..~~ctors
• Changes in environment such as

hardware platforms
• Changes in government policies
• Changes in business rules
• Restructuring of the organizations

21 SoIlw....... jeCI_

~ Health ~_~~.?~fetyFactors
• Health and safety of staff and

environment
• Staff sickness, death, pregnancy etc.
• Any tragic accident on staff

"~ Boehm's_.~9P,..enRisk Items
• Personnel shortfalls
• Unrealistic schedules and budgets
• Developing the wrong software

functions
• Developing the wrong user interface
• Gold Plating

23

• 46 •

SoIlware __

2'

Boehm's Top Ten Risk Items
,~ (cont'd)

• Continuing stream of requirements
changes

• Shortfalls in externally performed tasks
• Shortfalls in externally furnished

components
• Real-time performance shortfalls
• Straining computer science capabilities

'~ Risk Estimation." .
• Recall that

Hazard ? Problem ? Risk
• Risk estimation is to assess the

likelihood and impact of each hazard
• Risk exposure (risk value)

• It is the importance of the risk
Risk exposure = risk likelihood x risk

impact
'Sdlw .. __

IS
Sdlw ... __

26

.~ Risk Estim.~tio~..(cont'd)
• Risk likelihood

•. The probability that a hazard is going to
occur

• Risk impact
• The effect of the problem caused by the

hazard

.~ Risk Estimatio.~.<cont'd)
• Advantages

• The only way to compare or rank the risks
• To have a good quantitative estimate, the

extra effort can provide a better
understanding of the problem

II Disadvantages
• Estimation is difficult, subjective, time-

consuming and costly
Sdlw .. __

21 28

".sk Risk Esti'!1.,~~iC?~Techniques
i:l ,

• Risk likelihood
• Rank from Low, Medium to High
• Rank from 1 (least likely) to 10 (most

likely)
• Risk Impact

• Rank from 1 to 10

,~;~ Risk Ev~I~~~i~~
• Ranking the risks
• Determining the corresponding risk

aversion strategies

Sdlw ... __

• 47 •

,~ Ranking Risks _
• Ranking the risks based on their risk

exposures
• Ranking shows the order of importance
• In practice, also consider factors like

• Confidence of the risk assessment
• Compound risk
• The number of risks
• Cost of action

Risk Reduction Leverage
~ (RRL) .

• RRL is used to determine whether it is
worthwhile to carry out the risk
reduction plan .

• The higher is the RRL value, the more
worthwhile is to carry out the risk
reduction plan .

RRL REid,,", - REIlfICT
risk reduction cost

)1)1

~. Risk Manag~!!.!~nt
• Risk planning
• Risk control
• Risk monitoring
• Risk directing
• Risk staffing

'~ Risk Contr.~.I_. .
'-::

• Minimizing and reacting to problems
arising from risks throughout the
project

""~ Risk Planning _.
• Making contingency plans
• Where appropriate, adding these plans

into the project's overall task structure

~ Risk Monit~r.~~g
• It is an ongoing activity throughout the

whole project to monitor
• the likelihood of a hazard; and
• the impact of the problem caused.

J5

. 48 .

J6

:~bRisk Directing .~nd Staffing
• These concerns with the day-to-day

management of risk.
• Risk aversion strategies and problem

solving strategies frequently involve the
use of additional staff and this must be
planned for and should be considered.

.~ Risk Reduction.?trategies
• 5 different types in a generic sense

• Hazard prevention
• Likelihood reduction
• Risk avoidance
• Risk transfer
• Contingency planning

• Distinctions among them are fuzzy

37 38

4 Hazard pre~~~tion
• Prevent a hazard from occurring or

reduce its likelihood to an insignificant
level
• Lack of skilled staff can be prevented by

employing staff with appropriate skills
• Unclear requirements specification can be

prevented by using formal specification
techniques

,~ Likelihood re~~ction
• Reduce the likelihood of an unavoidable

risk by prior planning
• Late change to the requirements

specification can be reduced by using
prototyping

39

~ Risk av()_~~~~~~
• Some hazards cannot be avoided but

their risks may
• A project can be protected from the risk of

overrunning the schedule by increasing
duration estimates.

.~ Risk transfer~ ,.f
C ,-., --- .

• The impact of the risk can be
transferred away from the project by
contracting out or taking out insurance
a The risk of shortfalls in external supplied

components can be transferred away by
quality assurance procedures and
certification, and contractual agreements .

.,
• 49 .

.,

''4 Contingency _p~anning
• Contingency plans are needed to

reduce the impact of those risks that
cannot be avoided
• The impact of any unplanned absence of

programming staff can be minimized by
using agency programmer

,.:~ References _..._
• Boehm, B. (1989) Tutorial on Software

Risk Management, IEEE es Press
• Hughes, B., and Cotterell, M. (1999)

Software Project Management, 2nd

edition, McGraw-Hili
• pfJeeger, S.L. (1998) Software

Engineering: Theory and Practice,
Prentice Hall

Software __
43

• 50 •

..

~_s_o_ftw_a_re_p_ro_1_ectManagement

Lecture 6
Resource Allocation

i:What is Res~!:J!ceAllocation
• After the activities have been identified

using various techniques and tabulated
into a Work-Break-Down the resource
need to be allocated to complete the
identified tasks. This process is
considered resource allocation.

-:;1:: Result o~.~~~C?urceAllocation
• Reflected in many schedules,

• Activity Schedule.
• Resource Schedule.
• Cost Schedule.

• Changes to these schedules are very
much interrelated and require domain
experience to "get it right".

. 51 .

Software Project Management

i Lecture Overvi~w
• Resource Identification
• Resource Distribution
• Resource Scheduling

SoltwareProjectM~

-~ Who allocate~.resources?
• Project Manager.

• Concentrate on resource where there is.a
possibility that, without planning they might not
be suffiCiently available when required.

• Senior Software Developers are the hardest to find
- these need to be very carefully planned for in
advance.

• Developers do not like to wait for work, they
prefer to be busy with activities and tasks that
show clear progress .

.,~ Resource..~~!~9ories
• Labour (Even the project manager) •
• Equipment (Coffee Machine?) .
• Materials (Consumed items - floppy disks) .
• Space (Rooms, Cubicles).
• Services (Telecomm, Cleaning services) .
• Time (The most rigid item of all).
• Money (Secondary resource).
Note: These are broad categories only .

'~ Resource Org~~~~~.tion
• A program organization chart is

essential to allocate staff effectively,
• Develop the hierarchical program

organization.
• Identify Roles and Responsibilities.
• Plan for number of staff in each role (at a

high level).
• Establish Teams.

Software Project Management

Resource Requirement'lk Identification=,~

• For each activity identify,
• Work amount required (in work units)
• Basic Skill level required (to even

undertake the task)
• Complexity of the task (this will help to

determine the experience required)
• Task Category (Unskilled, skilled,

leadership, expert, management)

So......... ;ea_

.~_ ResourceSche.9~ling
• After all the required resources have

been identified, they need to be
scheduled effectively.

• The earliest start dates, last start dates
will need to be taken into account to
schedule resources efficiently.

• Resources should be balanced through
out the project.

Resource Requirement
Identification - 2

.. Example.
• Activity - Install Network Hardware

for 20 computers.
• Work units - 20.
• Basic Skill - Bachelors Degree in

related field.
• Task Complexity: 5.
• Task Category: Skilled (other categories

may be Management, Leadership, Expert)so......... ;ea_
o

PIO;ea
.0

.

"4 Resource?~~~9uling - 2
• Human resource scheduling issues,

• Planned Leave, Public Holidays .
• Possible Sick leave (random, subjective at

best and hard to predict).
• General motivation and enthusiasm for the

task allocated (If they dislike the task, it
, will flow through into the output).
• Work load and stress in project.
• Stress outside work.

i Resource ~!~~owams
• Commonly used during planning to

indicate possible problem areas,
• People (by category) Vs Week Number
• For each individual - estimated number of

tasks (including complexity) over weeks
• This helps in redudng work load some times to

help the individual recover from any heavy
load •

, • Category Vs Week
So......... ;ea_

II

• 52 •

PIO;ea
12

~ External Depende~cies

• When planning any resources that rely
on external factors need to be planned
with associated risks involved.

Software Project Management

~ Parallel, Seque.!l.!ial_Tasks

• Tasks run both in parallel and
sequentially.

• Depending on the activity network and
critical path, resource allocation needs
to be planned effectively .

• Competing tasks need to be prioritised
with risk before resource allocation.

u '4

.~ Prioritisation T~~~"niques

• Total Float Priority
• Ordered List Priority

• There are many others that refine on
top of these, but broadly these cover
the general cases well.

:~ Total Float Pri0r.~~_.

• Ordered according to their total float.
• Smallest total float has highest priority .
• Activities are allocated resources in

ascending order of total float.
• Changes to plan will require re-

calculation.

15

'TI" Ordered Li~~.~~!~r.ity
~,

• Activities that can proceed at the same time
are ordered according to a set of simple
criteria.

• Burman's priority list takes into account
activity duration as well as total float:
• Shortest critical activity.
• Critical activities.
• Shortest non-critical activity.
• Non-crltical activity with least float.
• Non-crltical activities.

• Note: Other ways of ordering is also allowed.
SortwarcPro):l:lM~ 11

. 53 .

~ Critical Pat~~_ ..
• Resource scheduling will almost always

change the activity network.
• The changes often result in changes to the

critical path.
• Delaying an activity due to lack of correct

resources will cause that activity to become
critical after Is uses up all Its slack time.

• These changes are often experienced after
the project has started which will require
adapting during the project (this is normally
much harder in practice).

.8

. 7,,117' Cost of Resources"'f'"" .- .
• All projects concentrate on completing it

in the shortest time span with minimum
resources (in planning stage) .

• However, once the project starts - all
un-planned for issues and any risks will
cause some strain on the cost.

Software Project Management

Software ProjeCt Manaoemert 19 Soltware Project Managernert 10

,~I~tCost Scheduling
~,~;: v_v

• Broad Categories,
• Staff.
• Overheads (Office Space, Interest charges,

Travel Costs, Insurance and so on).
• Usage charges (for external resources or

contractors, leased/rental equipment).

,;:.ti" b Scheduling in Practice

• It should always be in the project planers
mind, right from the start of the project.

• During the resource scheduling and allocation
phase of the planning activity - a lot of the
plan will change .

• Most of the issues with respect to resource
allocation and scheduling arise after the
project starts (normally after about 30% of
the activities are complete).

II II

-~~ Summary
• Identify all resources required.
II Arrange activity start/end dates to

minimise variations in resource levels
over the duration of the project.

II Allocating resources to competing
activities in a rational order of priority.

II Critical/High-Risk activities should be
backed up the experienced staff.

..i Reference~
""

• Hughes. B and Cotterell. M, Software
Project Management, 2nd Edition,
McGraw Hill 1999.

• Cantor. M. R, Object Oriented Project
Planning with UML, Wiley 2000.

Software Project MaNgemert Il

• S4 •

Software Project Managemeft 24

f Software prOje~"Management

Lecture 7
ISO 9000

:i"'l Overview (c~~~,~d)
II Satisfying ISO 9000
II Introduction of ISO 9000-3
II Assumptions of ISO 9000-3
II Overview of ISO 9000-3
II TickIT Initiative
II Why comply with ISO 9001
" Potential problems of ISO 9001

ISO 9000 Family of
,~ Standar ..~~.(~~:mt'd)

II Applies to the quality management
system and the process used to
produce a product

II Ensures that the process can
consistently produce products that meet
the expectation of the customers

~., Overview ..
II ISO 9000 family of standards
II Overview of ISO 9001
II Three levels of quality assurance
II Manufacturing industry versus software

industry
II Twenty quality elements in ISO 9000
II Characteristics of an ISO 9000 quality

system

.c~ ISO 9000 Fa~ ..~l,yof Standards
II A series of international quality

standards developed by the
International Organization for
Standardization

II Originally developed for two-party
contractual situations, mainly for the
manufacturing environment

ISO 9000 Family of Standards
.~I.,.(cont'd)
~--,----,--,-""",-,,,,,,,,,,,, ...

II Provides a framework for improving
business processes

II Does NOT provide for leading-edge
quality, but does provide a strong
quality foundation upon which a
company can build

. ss .

ISO 9000 Family of Standards
~."".'(cont'd) _...".
d~

• Provide a generic model of the quality
process; must be instantiated for each
organization

• Describe what, at the minimum, must
be done; does NOT specify how things
are to be done

Sollwarc Project Manaocmert

Standards used
for certification

Guidelines to
standards

ISO 9000 Family of Standards
:;14' (cont'~2__, ",

ft;_l

• ISO 9002 and ISO 9003 are subsets of
ISO 9001
• ISO 9002 applies when there is no design
• ISO 9003 applies when there is neither

design nor production

ISO 9000 and Qualityi:Managemen~,_.

supports
Software Project Managemerc-

ISO 9000 Family of Standards
.~ (cont'd)_

• ISO 9000-1 is a general guideline which
gives background information about the
family of standards

• ISO 9001, ISO 9002, and ISO 9003 are
standards in the family, containing
requirements on a supplier

ID

ISO 9000 Family of Standards
~-;;< (cont'd) .""""""

• ISO 9004 is a comprehensive guideline to the
use of the ISO 9000 standards

• For software development, ISO 9001 is the
standard to use

• ISO 9000-3 is a guideline on how to use ISO
9001 for software development

• ISO 9004-2 is a guideline for the application
of ISO 9001 to the supply of services
(including computer centers and other
suppliers of data services)

II

• 56 •

12

Relationship of ISO 9000
,~ standards _ .

II

-~4:Overview o~_.!SO9001 (cont'd)
• ISO 9001 focuses on management

instead of products
• Two basic requirements of ISO 9001

• All operations influencing quality shall be
under control

• This control shall be visible (i.e. requires
that plans, procedures, and organization
be documented, and important activities be
recorded)

~ Overview of I?9 9001
• The first version of ISO 9001was published in
1987

• Versions of ISO standards are defined by the
year of publications (e.g. ISO 9001:1994)

• Since software production is largely a
question of design, ISO 9001 is the standard
to use

• Its title is "Quality systems - Model for quality
assurance in design, development, production,
installation, and servicing"

..

~. Overview of I~9 9001 (cont'd)
• ISO 9001 expects a fairly strict organization,

where managers have the responsibility and
authority to control the work of their
subordinates (hence, self-organizing groups
are difficult to fit into ISO 9001)

• Because ISO 9001 is written for the
manufacturing industry, some interpretation
is required to apply it to software
development

IS .6

Applicalilln of ISO 9001 Standard to the Manufacturing and
Ocvclllpmcnl Processes

Software Development vs'
\':~bManufa~~ri~9 .

~.:f... •

IUlall

Son.... "
l)enlupnwnl
p"o(css

~bi"""lIlA1lU
&ul'\'i~'~

Three Levels of Quality
.,~ Assurance

,..,' - -., .

• ISO 9001 Quality systems - Model for quality
assurance in design/development, production,
installation, and servicing
• If the software development organization designs

the product It develops, then ISO 9001 will apply
• ISO 9002 Quality systems - Model for quality

assurance in production and installation
• If the software development organization

implements products from a design that is
provided to it, then ISO 9002 will apply

So~eProjectM~ '7

• 57 .

.8

Manufacturing Industry vs
~. Software I~9.~stry

• Prudu(.'aion Ö Funclionalily

I Three Levels of Quality
~'SIG", Assurance (cant/d)"""", ' ,."".,, .

• ISO 9003 Quality systems - Model for
quality assurance in final inspection and
test
• If the organization is a test organization,

then ISO 9003 will apply
• Because ISO 9001 covers more aspects

of development, more elements of the
standard apply to ISO 9001 than to ISO
9002 and ISO 9003

Manufacturing

IIiL
• Delign

Software

.111
19 20

Manufacturing Industry Vs
;~ Software I~~~stry (cant/d)

• Manufacturing
• Design is a relatively minor activity (e.g. ball pens)
• Production cost for each manufactured item is

notable
• Software development

• Nearly 100% design
• Production cost for each copy of the software is

insignificant
• The functionality of software is of orders of

magnitude as compared to other ordinary
appliances

Twenty Quality Elements in
~ ISO 9000 _

• 1. Management responsibility
• You must clearly define the general responsibilities

of a company's management, In terms of: (i)
quality policy, (ii) organization, and (iii)
management review

• 2. Quality system
• You must establish, document, implement, and

maintain a quality system that conforms with ISO
9000

21 12

Twenty Quality Elements in~hISO 900.9.(cont'd)
a 3. Contract review

• You must have procedures for ensuring that what
is expected from you is adequately defined and
documented and that you have the capability to
satisfy the requirements

• 4. Design control
• You must have procedures for controlling and

verifying the design output to ensure that
specified requirements will be met

Twenty Quality Elements ini ISO 9000 (cant/d)
:'3 --~"".""""""'"''''''''

• 5. Document control
• You must have defined procedures to

control all documents, including review,
approval, and change, and to ensure that
the right level of information is available to
the right people at the right time

• You must also maintain a master list of
current documents

Software Pro~ Hanagemert 23

• 58 •

SottwareProjectH~ 24

Twenty Quality Elements in
"~ ISO 9000 (~~~t'~)

• 6. Purchasing
• You must ensure that parts, obtained from

elsewhere, used in the product or in the
production of the product, meet their specified
requirements

• 7. Customer-supplied products
• You must have procedures for verification, safe

storage, and maintenance of products, or parts,
provided by the customer to be included in the
product

Twenty Quality Elements in
~ ISO 9000 (conX~)

• 8. Product identification and traceability
• Where appropriate, you must have procedures for

identifying and tracing the product during all
stages of production, delivery, and installation

• 9. Process control
• You must carry out production under controlled

conditions, including monitoring progress,
approval of processes and equipment, etc.

Sol'twareProjectM~ 25 2'

Twenty Quality Elements in...-i ISO 9000 (c~nt'd)
• 10. Inspection and testing

• You must have procedures for all levels of
inspection and testing that you have identified as
being required

• You are also required to maintain records of test
activity

• 1l.Inspection, measuring, and test
equipment
• You must control, calibrate, and maintain

inspection, measuring, and test equipment

Twenty Quality Elements in
~. ISO 9000 (cC?"~.~'d)

• 12. Inspection and test status
• You must be able to identify the test status

of the product throughout the process
• 13. Control of nonconforming products

• You must have procedures for controlling a
product that does not conform to its
specified requirements

Sot'tware ProjeCtMa~ " SoltwareProjeC:tH~ "

Twenty Quality Elements in
~~, ISO 9000 (cont'd)~: - ' ..

• 14. Corrective action
• You must have procedures for investigating the

causes for nonconforming products and ensuring
corrective actions to prevent recurrences

• 15. Handling, storage, packaging, and
delivery
• You must have a good system for storing and

controlling the various parts that will compose
your product during product development and
through product delivery

Twenty Quality Elements in
,~'" ISO 900g.(~c:>nt'd)

~J:."

• 16. Quality records
• You must identify and keep records to

demonstrate achievement of product quality and
effective operation of your quality system

• 17. Internal quality audits
• You must plan and carry out internal quality audits,

by qualified individuals, to verify you are doing
what you say you are doing and to determine the
effectiveness of your quality system

2'

.59 .

3D

Twenty Quality Elements in
..~ ISO 9000 (~~~t'd)

• 18. Training
• You must identify the training needs of your

people, provide the required training, and keep
records of the training

• 19. Servicing
• You must have procedures for servicing your

product when this requirement is specified in the
contract

• 20. Statistical techniques
• You must show that any statistical techniques that

you use are correct

JI

Characteristics of an ISO 9000
..~ Quality Syst~.rn(cont'd)

• Controlled
• Every aspect of what is done during the

development process must controlled
• Effective

• It the the means by which you measure whether
your quality system is really working for you

• Auditable
• ISO 9000 requires that systematic internal audits

of your quality system be conducted

Characteristics of an ISO 9000
.~ Quality Syst~~_..

• Quality objectives
• The company should have a quality policy

that states its quality goals and objectives
and the strategy it will use to achieve them

• Commitment, involvement, and attitude
• All employees and managers must be

committed to the quality objectives and
involved in achieving the objectives_ProJO<t_

Characteristics of an ISO 9000
"'-i:.Quality Sys~~_rn_.(cont'd)

• Documented quality system
• Your quality system, induding your processes and

procedures, should be documented to the extent
that, if you had to replace all of your employees,
you could do it and still continue your business

• Continual improvement
• ISO 9000 requires that your quality system be

continually monitored and reviewed for
weaknesses and that improvements be identified
and implemented

JJ '3.

-:1'-le," Satisfying ISO 9000"'I""' .
• Quality policy

• You must have a quality policy in written form
• Quality manager

• You must assign a management representative,
reporting at a high level, to be responsible for
your quality system and for assuring ISO 9000
conformance

• Quality manual
• ISO 9000 requires that your quality system be

documented

:;b Satisfyin~,!~O 9000 (cont'd)
• Documented processes and procedures

• You should document all procedures that would be
needed to continue your operation if all of your
people were replaced

• Project plan
• For software development, this means planning

the steps and activities that will be performed in
transforming the product requirements into a final
product

Software ProjeCt Minegemctt 35

• 60 •

16

..~ Satisfying IS<?_.~~OO(cont'd)
• Build plan

• It should specify what parts have to come
together to create the total product, in what order,
when, and it should specify their
interdependencies

• Test plan
• Every project should have a test plan that is

established at the beginning of the project and
updated as the project progresses

.c~ Satisfying ISO_.~OOO (cont'd)
• Service plan

• Every product should have a service plan stating
the planned maintenance activities that will be
performed after the product is delivered and who
will perform the activities

• Quality records
• Quality records are kept so that you can show that

you have done what you said you were going to
do

'7 ,.

iSatisfying 152._9000 (cont'd)
• Training records

• ISO 9000 requires that you are able to show that
you assign qualified people to various tasks and
that you identify and provide required training to
your employees

• Internal quality system audits
• Periodic planned internal audits of your quality

system should be conducted by qualified
personnel for the purpose of determining the
effectiveness of your quality system and ensuring
that planned activities and procedures are being
followed

~~. Satisfying l~g.9000 (cont'd)
• Library control system

• ISO 9000 requires proper and safe storage
of the parts being developed

m The library control system should also be
used to store and control project and
quality system documentation including,
documented processed and procedures

40

Essentials Vs Standards~hElements
ISO 9000 SlandIrds BementJ

x •

x x x x

x x

x x x x
x xx xx

x x

xxxx xxxxxxx X)(XX X

Trllningrecords X X X

ltUmIt quIOty system adts

Ubrr, cantrot System

Essentials Vs Standards..i Elemen~__(~<:>~t'd)
ISO !iIOOO StIncSardlI EIcmcnb

bMntlal.tocontonn.nc. I l J" 5 6 71 9 tDIIUll14151617t81920

~~~.~ xxx x xxxx xxxxxxxx

)( x x x X)(

xx xxxx xx

1 2 J .. 5 6 7 a 9 10 II U U 14151617 11119 20

X x

• x
x x x x
x •

• •

Quabtyo.jeaNes
CoI1Yldmor<, __ ...........c__

E""","-Doa.wntfUd quality systemConlInuIl_
QuIlIty-

QuIlIty~

QuIl............

. 61 .



..

"i Introductio~_<?,fISO 9000-3
• ISO 9001 is generic and many IT

people feel it difficult to interpret and
apply

• ISO 9000-3 is a set of guidelines that
helps interpret and apply ISO 9001 for
software development

• Since it is NOT a standard, companies
are still assessed against ISO 9001

Product Items
.Internally Must be
developed partS .contrOlled

:=Ution .ldenti~c
-Included software _Traceable
.Sutxontrarted pattS .VtrinCd/\lalidattd.,Software ProJ«1; Managemert

~"'" 1509000 confo..r.ming Quality System
'':':' ':it' for Software Development

, .... -, """, . uality System

''i}~l;;;i Assumptio,,!~.~f ISO 9000-3
oll,,'"

• Each development project is associated
with a life cycle with phases

• The software product produced is the
result of a contractual agreement
between a purchaser and a supplier

~;~,Overview of ISO 9000-3
• It consists of 22 clauses that do not

correspond directly with the 20 clauses of ISO
9001

• These 22 clauses are grouped into three
major sections:
• Section 4: Quality system - Framework
• Section s: Quality system - Ufe cycle activities
• Section 6: Quality system - Supporting activities

..

'.'

I Cross-reference 1509000-3 to
o,~q,ltfI 1509001

"'lU" .

ClauseIn ISO 9000-3 ClauseIn ISO 9001

4.1 Management responsibility 4.1

4.2 Quality system 4.2

4.3 Internal quality system audits 4.17

4.4 Corrective action 4,14

.

I. Cross-referenc~ 1509000-3 to
"",:b 150900 1 (cant d)

dt~ . ,.......

ClauseIn ISO 9000-3 ClauseIn ISO 9001
5.2 Contract review 4.3

5.3 Purchaser's requirements speclftcation 4.3, 4.4
5.4 Development planning 4.4
5.5 Quality planning 4.2, 4.4
5.6 Design and implementation 4.4, 4.9, 4.13
5.7 Testing and validation 4.4, 4.10, 4.11, 4.13
5.8 Acceptance 4.10, 4.15
5.9 Replication, delivery, and instaliatlon 4.10, 4.13, 4.15
5.10 Maintenance 4.13, 4.19

. 62 .



Clause In ISO 9001
4.4, 4.5, 4.8, 4.12, 4.13
4.5
4.16
4.20
4.9, 4.11

4.9, 4.11
4.6
4.7
4.18

Cross-reference1509000-3 to
,,~ 1509001 (con~'~)

Clause In ISO 9000-3
6.1 Configuration management
6.2 Document control
6.3 Quality records
6.4 Measurement
6.5 Rules, practices, and conventions
6.6 Tools and techniques
6.7 Purchasing
6.8 Induded software product
6.9 Training

.~ TickIT Initiati~~.
• A system for certifying software

development organizations to ISO 9001
• Led by the TickIT project office of the

UK Department of Trade and Industry,
and supported by the' British Computer
Society

'9 Sol\ware Project Manaoemttt 50

,~=TickIT Initiati~~ (cont'd)
• Objectives of TickIT:

• To ensure that the ISO 9000 series of
standards is applied appropriately to
software

• To ensure consistency of certification
within the IT industry

• To enable mutual recognition of
registration across the IT industry

~hTickIT Initia.~"~~(cont'd)
• TickIT scheme requires auditors to use the

TickIT Guide (which is based on ISO 9000-3)
• The" TickIT Guide tends to suggest more of

how to implement an ISO 9000 conforming
quality system than do the standards

• Under the TickIT scheme, auditors are
required to pass a rigid set of criteria to
become TickIT accredited

Sortware Project Managemcrl 51 52

.~~. TickIT I~~~i~~iye(cant'd)
• TickIT auditors use ISO 9000- 3 as a

guide to check the quality system
implemented in an organization

• If any discrepancy between the quality
system and ISO 9000-3 is found, then
these auditors will require explanations
as to how the standards are being
satisfied

.~ Why Com.pIYY."ithISO 9001?
• Provide a foundation for a quality system

which is needed for quality software
• Increase productivity and reduce costs

because development is done right the first
time under control

• Ensure consistency of software quality
• Stay competitive by keeping up with market

standards
• Fulfil software contractual requirements
• Improve corporate image

5J

• 63 •

Software Project MIl'WIQefTlCtt 5'



Potential Problems of ISO
'~[; 9001

• Creating rules and formality to fulfill
ISO 9001:
• Too many rules result in bureaucracy
• Too few rules result in insufficient control

over quality \lU.li.y r n_.,~

.-isummary
• Quality is an elusive topic; we have problems:

• defining it
• achieving it
• measuring It

• ISO 9000 provides an internationally
mandated attempt to define and provide for
(software) product quality in the customer-
supplier relationship

FunnllilY, (lilperwurk 5S Software ProjeCt MaNQemeI't 56

~LSummary (~~:mt'd)
• Three important things about ISO 9000:

• It is a tool for buyers, not builders
• It is about what, not how
• It provides necessary, but not sufficient,

direction

-i References
• Oskarsson, Ö., and Glass, R. L. (1996) An ISO

9000 Approach to Building Quality Software,
Prentice Hall.

• Schmauch, C. H. (1994) ISO 9000 for
Software Developers, ASQC Quality Press,
Wisconsin •

• Dalfonso, M. A. (1996) ISO 9000: Achieving
Compliance and Certification 1996
Supplement, Wiley.

"

• 64 •

58



f Software Project Management

Lecture 7A
SEI - Capability Maturity Model

1~History __,...._.
• In the 1980s, realization about the inability to

manage the software process
'. Projects late, over budget, or plain failures

• 1986-1987: Software Engineering Institute
(SEI)
• Began developing a process maturity framework

• 1991: CMM-SW 1.0
• 1993: CMM-SW 1.1

e'i What is a I~E<?~e~s?
• A process provides a framework to work in:

• Most developers take pride in their work and want to deliver
quality output

• Wrong tools that do not fit Into the process can end up as
shelfware

• Procedures and Methods that do not support people will
cause resistance - not ideal

• A good process resolves these issues and is flexible
• Processes are not there just to be followed, they are

supposed to help deliver a better product (at lower
cost)

~overview
'~: _._._ ~.

• A short history
• Software Process
• What is CMM - a detailed introduction
• Differences from ISO 9001

Sortware ProjeCt Managemenr.

~ What is aH~<?~ess?...
• It can be seen as a method that can be used to focus

the efforts of a development team tQwardsa desired
result

; ;

• A process integrates: , '
• People (with Knowledge, Skßls, ,Trci1ning, Moilvaiiorij
• Tools and Equipment ,,' , "
• Procedures and Methods defining thEi relationship or, tasks

• A good process will provide dear,guidan~, is
disciplined and constantlyrefine<t' ti~ on '
experience

""\jb How is a pr<?~e~sused? @
• Help ensure production of high-quality User Needs

software matching the needs of the ~
end-users " .,'

• Enhance team productiVityf1~~
• Make purchase/hiring/management decisions
• Control schedule and budget Software
• Put software development best practices System

inaction ~
A well understood "Process Model" is ~,,'
used to communicate the details Visually~

. 65 .



produce
Artlfa.qt~

end with
Release

,4Mature q!.9_~~izations
• Mature Organization:

• Well-defined and well-followed processes that are updated
when necessary (Process changes are formal)

• Well-defined roles and responsibilities (Reduces confusion)
• Product and process quality are monitored
• Schedules are realistic (refined estimation process)
• Partidpants understand value of the process (Staff are fully

trained In the company process, expectations)
• The deliverables from these organizations take longer, but

the output Is stable and predictable
• long term costs are low

.,~ What is C~_~?.~.
Capability Maturity Model (CMM) Is a framework that describes
the key elements of an effective software process.
It describes an evolutionary improvement path from an ad hoc,
Immature process to a mature, disciplined process.
Covers practices for:
• Planning ._<.,n""
• Engineering " "',, ". ~,,'
• Managing software development and.ki~~~.': '. \ :,r ~ .......",..,.,./,' ..

When followed, these key practices ImP.iWe the;all!lIty of" ,
organlllltions to meet goals for cost, schedule, fu[1Ctlonality,.
and product quality. ' ", .,' " Y'

.~~ Immat~!.~Q~Qanizations
0.' w

• Immature Organization:
• A defined/documented process may not exist
• If Processes exist they are improvised (as

required), not rigorously followed
• Managers react to crises only (fire fighting)
• Ad-hoc project planning (poorly documented)
• Schedules/budgets are rarely met (poor

estimation)
• Product quality is difficult to predict or judge
• Difficult to maintain the products in the long term
• Has a high tum-over of employees

ProcessManagement - A
~premiSe

• "Improvements in process will improve qualityn
• This has been proven to work when the process is tuned to

work wlth the people, tools, domain.
• The process has to be defined within the context of available

resources [people and money] as well as the deadline.

• Total Quality Management principles have been
shown to provide great benefits in manufacturing and
service industries

• Software is different, but some principles have been
shown to work - CMM was built on top of these

,.

'~ What is CM~_~",
• Establishes a yardstick against which it

is possible to judge, in a repeatable way,
the maturity of an organization's,
software process and cOmpare-it to~e
state of the practice of the industry "
[Kitson92] ~\ '

_ore __
"" v .~ ...

11

• 66 •

_ore __



ion
e stages through which
ons evolve as they define,

re, control, and improve
esses
g process improvement
ating:
rrent process capabilities
issuesmost critical to software
improvement

~; Software P!.<?_~~ssCapability
• Software process capabi/itydescribes the

range of expected results that can be
achieved by following a software process.

• The software process capability of an
organization provides one means of
predicting the most likely outcomes to be
expected from the next software project the
organization undertakes.

• A software process can be defined as a set of
activities, methods. practices, and transformations
that people use to develop and maintain software
and the associated products
• E.g., project plans, design documents, code, test cases, and

user manuals.
• As an organization matures, the software process

becomes better defined and more consistently
implemented throughout the organization.

f;': 1'\ Softwa r~ro.~~ss
~Uj

Definitions from the CMM
.~ Specification ~~. CMM - D~~~~~. ~.'-"-'---" ,,~

• We shall look at the definitions of: • A description of th
• Capability Maturity Model (CMM) software organizati
• Software process implement, measu
• Software process capability their software proc

• Software process performance • A guide for selectin

• Software process maturity strategies by facilit

• All definitions are quoted from the SEI • determination of cu
• identification of theCMM v1.1 Specifications. quality and process

Sotlwart Pro)ect MaNQetTlctlC II SoftwlreProjeCt~

,. ""'"

15 '6

.~ Software Pr<?..~~ss Performance
• Software process petformance

represents the actual results achieved
by following a software process.

• Software process performance focuses
on the results achieved, while software
process capability focuses on results
expected.

.~:; Software Pr<?~essMaturity
• Software process maturity is the extent to

which a specific process is explicitly defined,
managed, measured, controlled, and
effective .

• Maturity implies a potential for growth in
capability and indicates both the richness of
an organization's software process and the
consistency with which it is applied in projects
throughout the organization.

17 ..

. 67 .



~, Structure of CMM
-", ',-', "" M_ _••••••••••

• The CMM is composed of five maturity levels.
• Each maturity level is composed of several

key process areas (except Levell).
• Each key process area is organized into five

sections called common features .
• The common features specify the key

practices that, when collectively addressed,
accomplish the goals of the key process area.

19

.-. Maturity L~y-~I~
• A maturity level is a well-defined evolutionary

plateau toward achieving a mature software
process.

• CMM provides for 5 top-levels:
• Initial
• Repeatable
• Defined
• Managed
• Optimizing

'~ Maturity Le~~ls
• Initial

• No process, Ad-hoc response

• Repeatable
• Disciplined Process

• Defined
• Standard, Consistent Process

• Managed
• Predictable Process

• Optimizing
• Continuous Improvements

21 22

:~bMaturity Lev~ls- Initial
• No stable environment for developing and

maintaining software
• Difficulty making commitments that the staff can

meet
• Crises are common
• Projects typically abandon planned procedures and

revert to coding and testing
• Success depends entirely on exceptional managers

and seasoned, effective software team
• Capability is a characteristic of thel"iin'd"iv"'"'id'u'al-s,-np'-tt

the organization ,'-- --'I

• 68 •

<~8 Maturity LeY'~!s- Repeatable
• Polides for managing a software project exist
• Procedures and Standards are defined
• Planning and managing new projects is based on

experience with similar projects
• Basic software management controls exist
• Realistic project commitments based prior knowledge
• The software project managers track costs, schedules,

and functionality; problems in meeting commitments
are identified when they arise

,.



iMatu~!!y_.~~y~I~~Defined
• Based on a common, organization-wide

understanding of the activities, roles, and
responsibilities in a defined software process

• The organization exploits best practices
• Special group responsible for software process
• Defined software process integrating engineering and

management processes
• Management has good insight into technical progress

on all projects
• Cost, schedule, and functionality are under control,

and software quality is tracked l,-_ _ __ J

c~ Maturitt~~y~l~- Managed
II Use of quantitative quality goals for both

software products and processes
II Strong use of software/process metrics
II Organization-wide software process database

is used
II Allows prediction of trends in process and

product quality
II Process is both stable and measured
II Software products are of predictably high

quality
25 26

:-;b Maturity ~~y'~I~- Optimizing
II Organization level focus on continuous

process improvement
II Innovations that exploit the best software

engineering practices are identified and
transferred throughout the organization

II Software processes are evaluated to prevent
known types of defects from recurring

II Technology and process improvements are
planned and managed as ordinary business
activities

27

;I~Key Process Area
• Each maturity level is composed of key process

areas.
• Each key process area identifies a duster of related

activities that, when performed collectively, achieve a
set of goals considered Important for establishing
process capability at that maturity level.

• The key process areas have been defined to reside at
a single maturity level.

• For example, one of the key process areas for Level 2
is Software Project Planning.

,i. 'f Level 1 - K~y_!,rocessAreas
..u

II None that can be observed

. 69 •

'"



.,~C'\ Level 2=..~~yProcess Areas
~;""r'

• Software configuration management
• Software quality assurance
• Software subcontract management
• Software project tracking and oversight
• Software project planning
• Requirements management

"";~ Level .~_.=m~~yProcessAreas
• Peer reviews
• Inter-group coordination
• Software product engineering
• Integrated software management
• Training program
• Organization process definition
• Organization process focus

31 32

~[ Level 4__-_~~yProcess Areas
• Quality management
• Process measurement
• Software quality management
• Quantitative process management

-4 Level 5 - __~~y_Process Areas
• Process change management
• Technology change management
• Defect prevention

I

33

3'

• 70 •

"'~8Goals
• The goals:

• Summarize the key practices of a key process area
• Can be used to determine whether an organization

or project has effectively implemented the key
process area

• Signify the scope, boundaries, and intent of each
key process area

• E.g. : a goal from the Software Project
Plannin ke rocessarea:
• "Software estimates are documented for use i.. . "

36,



Common Feature -
T~ Commitme~~_~~p'erform

• Describes the actions the organization
must take to ensure that the process is
established and will endure.

• Typically involves establishing
organizational policies and senior
management sponsorship.

':74: Common Features-/.,...: ,"~ _.__ .~.-.._ .._ "' ..

• The common features are attributes that Indicate
whether the implementation and institutionalization
of a key process area is effective, repeatable, and
lasting.

• The key practices are divided among five Common
Features sections:
• ActIvIties Performed (DescrIbes Implementation ActlvltleS)
• Commitment to Perform (Organizational culture)
• AbIlity to Perform (Institutionalization factor)
• Measurement and Analysis (Organization culture)
• Verifying Implementation (Institutionalization factor).

Common Feature - Ability to
;~ Perform "_,,.

• Describes the preconditions that must
exist in the project or organization to
implement the software process
competently .

• Involves resources, organizational
structures, and training.

..

Common Feature - Activities
I~, Performed _~,_,

• Describe the roles and procedures necessary
to implement a key process area

• Cover what MUST be implemented to
establish a process capability

• Typically involve:
• Establishing plans
• Procedures
• Performing the work
• Tracking it
• Taking corrective actions as necessary.

Common Feature -~bMeasurem~~~ & Analysis
• Describes the need to measure the

process and analyze the measurements .
• Typically includes examples of the

measurements that could be taken to
determine the status and effectiveness
of the Activities Performed.

.. "

. 71 .



Common Feature - Verifying.1b Imple~~~~_~~i()n
• Describes the steps to ensure that the

activities are performed in compliance
with the process that has been
established .

• Typically encompasses reviews and
audits by management and software
quality assurance.

<3

'1rJ Key Pr~~~~~_~
~:?&

• Each key process area is described in terms of key
practices that, when implemented, help to satisfy the
goals of that key process area.

• The key practices describe the infrastructure and
activities that contribute most to the effective
Implementation and institutionalization of the key
process area.

• For example, one of the practices from the Software
Project Planning key process area is ''The project's
software development plan is developed according to
a documented procedure."

Software Prc)ect Managemert

Software Maturity - An~InOverview ...
l;;.'C

• Just to sum up again:
• Initial (No process, Ad-hoc response)
• Repeatable (Disciplined Process)
• Defined (Standard, Consistent Process)
• Managed (Predictable Process)
• Optimizing (Continuous Improvements)

..

"~bISO 9001 V~CMM
• Almost all concems raised by ISO 900 1 are

encompassed by CMM.
• ISO 9001 describes the minimum criteria for

adequate quality management systems - rather than
process improvement. CMM address process
improvement as well as prOVides a clear path to
achieving it.

• CMM provides more detailed guidance and greater
breadth provided to software organizations.

• Building competitive advantage should be focused on
improvement, not on achieving a score (which is the
primary focus of ISO 9001).

• 72 •

ISO 9001 Certification Vs CMM
~~; Levels

• An ISO 9001-compliant organization would
not necessarily satisfy all of the level 2 key
process areas, it would satisfy most of the
level 2 goals and many of the level 3 goals

• It is possible (in theory) for a level 1
organization to receive ISO 9001 registration

• A level 3 organization would have little
difficulty in obtaining ISO 9001 certification

• A level 2 organization would have significant
advantages in obtaining certification.

...



~ Quality I~E~~~~ment Notes
• Enabling quality improvement is a management

responsibility
• Quality Improvement focuses on fixing the process,

not the people:
• However, the best chefs use the best Ingredients

• Quality improvement must be measured:
• All measurements must be "Goal" driven

• Rewards and Incentives are necessary to establish
and maintain an Improvement effort:
• Should fit Into the organizations culture

• Quality Improvement is a continuous process
• Not all problems are technical

SoftwarePro)ctt~

,~ __R_e_fe_r_e_n_c«:.~._
• Software Engineering Institute Website -

htto://www.sel.cmu.edu
• Paulk, M.C., Curtis, B., Chrissls, M.B., and Weber, C.V.

(1993a)"The Capability Maturity Model for Software,
Version 1.1", SEI Technical report CMU/SEI-93-TR-
024 .

• Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B.,
and Bush, M. (1993b) "Key Practices of the Capability
Maturity Model SM, Version 1.1", SEI Technical report
CMU/SEI-93-TR-025.

50

• 73 .

http://htto://www.sel.cmu.edu


f Software proje~" Management

Lecture 8
Software Project Performance

Tracking and Monitoring

Importance of tracking and~~kmonitoring .._._
"'*

• Make sure the project
• Can be delivered on time and within

budget
• Is of good quality
• Meets client's needs

Planning, Tracking and'12 MonitoE~~9 .
• Planning

• Know where we want to go
• Tracking

• Know where we are

• Monitoring
• How to go from where we are to where we

want to go

. 75 .

~overview
• Importance of tracking and monitoring
• Creating a management framework
• Tracking the performance
• Monitoring the progress and resource
• Getting project on the right track

Sottwart:ProjcctM~

What can go wrong in
.~ product? .__.

I:: ")

• Inadequate functionality of a product
• Related to SRS

~ Poor quality of a product
• Related to quality management

• Late delivery of the product
• Overly exceeding the budget

;;fi;lq, Tracking
"'lW.

• Finding out what is happening
• Need a plan and schedule
• To collect data

Softwarepro;ea~



1~;;;:l Monitoring
Ji1

• Comparing the current status with the
targets

• Need a plan, a schedule, collected data
• To exercise control over the project
• To ensure the targets are met
• To devise contingency plans

A suggestion framework'i(cont'd) __..
Monitor the progress

Publish Take
revised remedial

plan action

gather compare
project progress
info. vs targets

-i.A suggeste<!framework

Publish Monitor
initial the
plan progress

.~ Tracking th~..p~rformance
• Setting check points
• Collecting data

Review
the

project

.0

'':il~Check Point";b: -----
• Based on regular time intervals

• Can be weekly or monthly or quarterly
• Depend on what to check and how to

• Based on a particular event
• At the end of each activity
• In the middle of a critical activity

~bCheck Poi~~.(~ont'd)
• Should be set before the plan was

published
• Make sure everyone knows when and what

the check points are

Software ProJCCt Manaoemert: 11

• 76 .

11



~g Collecting da~ ...
• Partial completion report
• Risk report

-,,~ Partial completi~n report
• Indicate the work done by the

personnel and the time spent on the
work

• Optional items
• likelihood of failing to complete the task by

the scheduled date
• Estimated time of completion

IJ

Partial completion report -
~ Example .~.....

Time Sheet
Slatl: £jjjl Week ending: ~

Rocharpable houra
IProject 1Aa. code Oesc. Hours % done ISch. date IEst. date

Ip20 1A267 Codemod A7 24 90 101/06199120/05/99
!P35 18397 Testing mod88 12 30 124/06199124/06/99

Total 36
Nonarochargeabl. houra

ICode IDese. IHours IComments and Authorization
1L90 Ihours In U"" I 4 IAuthorized by Peter

I Totall 4 I

So......... j<Ct"_ IS

"'-it The traff.i£:=_li9~tmethod
For assessing a product
• Identify the key (first-level) elements
• Break them into smaller components
• Assess each component by

• Green as 'on target'
• Amber as 'not on target but recoverable'
• Red as 'not on target and recoverable only

with difficulty'

17

• 77 •

.~ Risk reporting ..
• Indicate the likelihood of meeting the

scheduled target date
• Instead of asking the estimated completion

date
• Use the traffic-light method

16

The traffic-light method
~I~(Cont'd)~-=--_-:....._._ .

• Assess the key-level element based on
the assessments of their components

• Assess the overall product based on all
the assessments (key elements and
their components)

,.



'~k
The traffic-light method -
Example

Activity Assessment Sheet
Staff: Z2Ild
Rel:loE/P/IOG Actlvlty: Code end _ module A

IWeek number 13 14 15 16
IActivity summary G A R

Component Comments

Screen handling procedures G G A
File updating G A R
Compilation G G A
Run lesl data G A A

soow ...... J«t_ "

,~, Monitoring ~~~.time
• Tools for visualizing the progress

• Presenting the collected data in a way that
is easy to understand

• Help to easily identify the problem
activities or areas that need to be taken
care of

c~ Monitoring th~progress
• Need to monitor time
• Need to monitor cost

10

'~bVisualizing T~~~,niques
• The Gantt chart

• A static picture showing the current
progress of the project

• The TImeline
• A dynamic picture showing the progress of

the project and how the project has
changed through time

::~bThe Gan~,~~art (C~nt'd)
Planned lime <week number) ~

12 la 14 15 18 7 18 1. 2D

,;;;I:n The Gantt Chart
• An activity bar chart showing

• the activities, their scheduled dates and
duration

• the reported progress of the activities;
• 'today cu rsor'

soow ...... J«t_

21

2'

• 78 •

Kelvin
modul.F

Paul
modul.C

Peler
moduleS

Zobel
module A

soow ...... J«t_

22

14



,,~ The Slip Chart_ ..
• Add a slip line on the Gantt chart
• The slip line indicates those activities

that are either ahead or behind the
schedule

• Too much bending indicates a need for
rescheduling of the overall plan

')~ The Slip Cha~J~on~'d)
Planned time (week number) ~

12 13 14 IS IS 7 IS Ie zo

Kelvin
moduleF

Peul
modul.C

Pel.
moduleS

lobel
module A

25 26

~ The Timeline_..
• A plot of the elapsed time against the

planned time of the activities indicating
• the actual progress of the activities;" and
• the rescheduled activities by the end of

each week

• show where and when the targets have
changed through the life of a project

~. The Timeline (~ont'd)
Timellne chart al week 7

Planned tme (week number)
o 1 2 3 4 5 8 1 8 g to

o
.. ~ 1Hz
I~:
~ 5

~ 6
oe 7••

• 0

27

~~. The Timeline (cont'd)~ L;. ~ , " ,.", .

• Can show the slippage of the activities
through the life of the project
• The Gantt chart cannot

• Help to analyze and understand the
trends and reason for changes
• to avoid slippage in future projects

.~ Monitori~9~~~Cost
• Earned Value Analysis

• A cost monitoring technique recommended
by 000 of US and Australia

19

• 79 •



:-~ Earned Val~.~~nalysis
• Produce a baseline budget from the

project plan
• Calculate the earned value of each activity
• Earned value = time for an activity / total

time for the project
• E.g. earned value = number of days for an

activity I number of days for the project

~ Earned Val~~Analysis (cont'd)
• Monitor the earned value

• Once an activity is completed, its elapsed
time is recorded and its earned value (EV)
is accumulated to the cumulative EV

),

'~6 Earned Val~e:~nalysis (cont'd) ":;6 Earned Val~~.:Änalysis (cont'd)
Task Budgeted Scheduled Cumulative % cumulative

week: completion weeks earned value

Specify overall system 6 6 6 20.0%

Specify module A 3 9 9 30.0%

SpecIfy module 8 2 11 11 36.7%

Check speclrlCation 1 12 12 40.0%

Design module A 3 15 15 50.0%

Oesign module 8 . 2 17 17 56.7%

Code and test module A 6 23 23 76.7%

Code and test module 8 4 27 27 90.0%
System Integration 1 28 28 93.3%
System Testing 2 30 30 100.0%

100.0

l ::~ä 70.0
u 60.0
~ 50.0
~ 40.0
~ 30.0
:I 20.0
U 10.0

0.0
o '0 15 20 25 30 35

week nuntler

-Bas.I"e
budg.'

_earned
v ....

" Software Proj«t ManaQement "

'''t"l\~l
~~

Earned Value Analysis (cont'd)

Earned Velua Tracking Chart

- - Earned
value
18CWP)

-BaseUne
Budget
(SeWS)

-Actuajcoll
tod'IO

' ....l 10 15 20
Wed; number

.i Earned 'y~lue:Analysis (cont'd)
• Budget variance

• = Actual cost to date - Baseline budget
• Indicates how actual cost differs from the

planned cost

Software Projctt Manarpnert 35

• 80 •

16



'i Earned Val~~_~nalysis (cont'd)
• Schedule variance

• = Earned Value - Baseline budget
• Indicates how the actual schedule differs

from the planned schedule
• Schedule performance index

• = Earned Value / Baseline budget
• SPI > 1 means "better than planned"
• SPI < 1 means "slower than planned"

-~ Earned Valu~._~nalysis(cont'd)
• Cost variance

• = Earned Value - Actual cost to date
• Indicates how the planned cost differs from

actual cost
• Cost Performance index, CPI

• = Earned Value / Actual cost to date
• CPI > 1 means "better than planned"
• CPI < 1 means "slower than planned"

Software Projea Managemert

~:: Prioritizing MC?nitoring
• Priority list of activity to monitor

• Critical activities
• Non-critical activities with no free float
• Non-critical activities with less than a

specified float
• High risk activities
• Activities with critical resources

),

).

Sortware Project Managernerc

Bringing the Project Back to
..~ Target __.

• You are now behind the schedule
• Possible actions:

• Reschedule the target date
• Reschedule other activities with shorter

duration
• Reorder the activities

.~"" Shorten the Critical Activities\~J' ..-- " "'"
• Putting pressure on the personnel
• Increasing the resources

• Personnel work longer hours
• Additional analysts to interview users
• Competent programmer to code modules

in the critical activity

~ Reorder_t~.~~~tivities
"" .

• Relax the constraints on the start of an
activity before the completion of the
previous one

• Subdivide the components of an activity
so that they can be done in parallel

Software Project Managemcrt

. 81 .

.2



.'iReferences ._....
• Hughes, B., and Cotterell, M. (1999)

Software Project Management, 2nd ed.,
McGraw Hill.

• Down, A., Coleman, M., and Absolon, P.
(1994) Risk Management for Software
projects, McGraw Hill.

4)

• 82 •



> Software Project Management

lecture 9
Software Configuration

Management

'4overview
• In this lecture we shall cover,

• Software evolution (types of changes)
• Configuration management (need for it)
• Facets of SCM
• Change control board
• Change management
• Auditing and status accounting

~ Software Evol~tion
• Software evolves over a

period of time
• Many different items are produced ~

over the duration of the project
• Different versions are produced
• Teams work in parallel to deliver the final product

• Software evolution implies a constantly
changing system

~ Introduction.._,,_> >
• Ideal:

• Software is developed from stable/frozen
requirements

• The concept is that it is easier to hit a stationary
target than a moving target -• Reality: i @)• Not applicable for most real-world
systems -• The only constant is "CHANGE"

• An effective software project need to have a
strategy to tackle "CHANGE"

SoftwftProject~ )

"~6How SO~~E~~hanges ...
'" .'

• The four aspects of software evolution
are: I-I- -';-7

• Corrective changes ~
• Adaptive changes ..
• Perfective changes,-----

• Preventive chaoges ~

~ Corrective ~~~~ges
• Required to maintain control over the

system's day-to-day functions
• These changes are made as faults (or) bugs

are found during the development time
• Some changes may be long-term and

fundamental, some may be patches to keep
the system in operation (emergency fixes)

. 83 .



~J Adaptive C~~~ges
• Essentially maintaining control over

system modifications
• As one part of the system changes,

other impacted areas will need to be
updated

• Examples
• Database upgrades
• Use of a new compiler or development tool

iPreventive ~~anges
• Preventing the system performance from

degrading to unacceptable levels
• Involves alterations made to ensure that the

system has a defense against potential
failures

• Example:
• Adding extra redundancy modules to ensure that

all transactions are properly logged

'i,Perfective ~~9_nges
• Perfecting existing acceptable functions
• The domain of Refactoring designs falls into

this category
• Perfective changes are done to increase the

long-term maintainability or elegance of the
solution
• Involves changes to design or data structures for

better efficiency
• Updates to documentation to improve their quality
• Enhancing the code to make it more readable

Software Project MaMgemCtt

~. Types of C~~~ges
• The typical distribution of these changes is

(from Lientz & Swanson 1981):
• Pe~ective(50o/Q)
• Adaptive (25%)
• Corrective (21%)
• Preventive (4%)

• These figures will change depending on the
system and project .

10

12

~

'. ;:

' ..:I...,.
.... u

-~~Change~~~gControl .
• If changes are not controlled in a project -

things can and will get out of hand '
• The issue of change management is even

more important when multiple people work
on a project as well as on the same
deliverable .

• Without proper strategies and mechanisms to
control changes - one can never revert back
to an older more stable copy of the software
• lmp'ortant as every change introduces riskiinto the

project
Software Project ManagemerI: 11

. 84 .

~2 So what i~!heanswer??
• The facts:

• Change is unavoidable in
software

• Changes needs to be controlled
• Changes need to be managed

• The solution
• Software configuration management (SCM)



.~ Configuration ~anagement...
• This is the discipline that applies a

rigorous approach to ensure
• Different items produced in software

systems are all identified and tracked
• Changes to the various items are recorded

and tracked
• Completion and proper integration of all

the various modules

,.,~ Configuration_~_anagement
• SCM can help determine the impact of

change as well as control parallel
development

• It can track and control changes in all aspects
of software development
• Requirements
• Design
• Code
• Tests
• Documentation

Soltwarc Project MaMgemert Il ,.

,~~ Need for?c;fv1.~'~"" .
• As softwareeV9lves-iTiany resoUrces make changes

to the system ...•... , .'.
• CM'prevents avoidable erfors that a~sefrom conflicting

changes . 1./''':'':'' ?~.~)
• Often many versiOns of the, Software are released

and'reguire support:" " .,"; ;; ';
• CM aUows a team to:supP!lrt many versions.
• Öl a~ws changes in sequential vers,iOns .to be propagated

• CM alloWsdeveloPEirs~fO,track changeS and reverse
any falp,l chil,nges to,taj<e a so(tWa,rf system back to
its last known safe state. ," ••

'. .-,l' .,.

~ Need for SC~ .
• Good SCM increases confidence that we are:

• Building the right system
• Testing the system enough
• Changing it correctiy and carefully

• It also:
• Restrains non-essential changes
• Ensures that decisions and changes are traceable
• Increases accountability
• Improves overall software quality
• Provides a fall back position when things do not

work
IS "

.~~:-;.Facets of SCM'J ..-_.
• The four core aspects of SCMare:

• Configuration identification
• Configuration control and change

management
• Configuration auditing
• Status accounting

,.~ Configur~!i(?~Identification ...
• A large number of items are part of the

software development process:
• Source and binary modules
• Hardware and operating systems
• Documentation

• Requirements
• Design

• Test cases
• Etc: ..

• Key is to identify the items that need to be
under SCM

"

. 85 .

So-..Pn>jcct_ I•



~? Configurati~~}dentification ...
• Configuration identification is the process of

establishing a baseline from which system
changes are made - allows for control.

• So what needs to be under SCM?
• Items where changes need to be tracked and

controlled
• If in doubt, add It Into the inventory of Items

under SCM
• Common items under SCM are:

• Source code, documentation, hardware/OS
configuration

Software ProJeCt Managemcrt

,~ Terminolo~y. Review - 2
Baseline

':4 specification or product that
has been formally reviewed and agreed to

by responsible management, that thereafter
serves as the basis for further development,

and can be changed only through
formal change control proceduresH

[Bruegge]

,~ Terminolog_y_Review- 1
• Configuration items - any single atomic

item for which changes need to be tracked
• Source code file
• The project plan
• The documentation standard

• Baseline - A product that has been formally
approved, and consists of a well-defined set
of consistent configuration items

20

";t Baseline TYe~s
• As the system is developed a number of

baselines are created:
• Developmental baseline (RAD,. SOD, integration

test, ... ).
• Goal: COOIdinate engineering activities.

• Functional baseline (prototype, technology
preview, alpha, beta release).

• Goal: obtain customer experiences with functional
system.

• Product baseline (GA with a version - win9S,
word 2000) •

• Goal: COOIdinate sales and customer support.

21 22

~;7 Managed Directories, 'w. -~_ "" .
• Programmer's directory (IEEE: dynamic library).

• Ubrary for holding newly created or modlfled software
entitles. The programmer's workspace is controlled by the
programmer only.

• Master directory (IEEE: controlled library).
• Manages the current baseline(s) and for controlling changes

made to them. Entry is controlied, usually after verlflcation.
Changes must be authorized.

• Repository (IEEE: static library).
• Archive for the various baselines released for general use.

Copies of these baselines may be made available to
requesting organizations.

..~. Configur~!ig~ Identification
• A few notes ...

• Starting too early can add too many Items that may really
not require fUli conflguration management.

• Starting too late will result in a disaster
• It is common to have 1000+ items under SCM

• A good start
• Place ali documents under SCM
• Add code as It starts to be avaliable
• Remove older Items and archive them
• Remove items where the changes are minor, rare and need

not be under the purview of a complete SCM

So......... ject"_ 2J

. 86 •



,~ Version Alloca~!.<?n...
• Once a configuration item (CI) has been

identified - a proper version number
must be allocated

• The best option is to start with a major-
minor versioning scheme
II Major version numbers are between 0 - n
II Minor version numbers should be between
0-100

.~ Version Allocation ...
II Examples:

• Report.Java (version 1.23)
• Major version: 1.0 .
• Minor version: 23 (Indicative of number of revisions to

this ftle)
• Project plan (version 6.34d)

• Majorverslon: 6
• Minor versiOn: 34
• The "d' Is Indicative of "draft.

II Versioning scheme is developed by the
company to suite their needs

Z5 "

.~ Version Alloca~ion ...
• Often many companies prefix the

configuration item based on its type.
II Documentation may be prefixed "doc"
II Source code can be "src"
II Example: doc-pmp-2.34

• Project management plan document (version
2.34)

..~ Version Alloc.~~~on
• New versions of software can be:

II Maintenance releases
. II Minor upgrades

II Technology refresh or major upgrades
II Technology insertion

_ ... Projca ___
27

,,;~Ic\Baseline Levels
"'1--' .

II The software system can be tagged at
various stages of its evolution with a baseline
number
• Development baseUne "n" (where the on' can be

Indicative of the 10% of functionality Implemented)
• Testing baseline (where a spedftc build Is created tor the

spednc purpose of testing) ..
• Release baseline (where the software Is built for GA)

II There is no rule on when to baseline - but a
good guideline is to have one a week

.:~:::Termino!9._9yReview - 3
II Version - an initial release or re-release of

a configuration item (ideally different
versions should have different functionalitY)

II Revision - minor changes to a version that
correct errors in the design/code (typically
revisions do not affect expected
functionalitY)

II Release - the formal distribution of a
baseline

29

. 87 .

JO



Configuration Control andr:~bChange Ma~~g~ment
• Review of change activity can highlight what

is changing and what is not.
• Impact of change can be measured over time

• Issues to consider are:
• Keeping track of changes (deltas or separate files)
• Allows for parallel development on a single item

(many developers updating the same file)

~ Deltas Vs Sep~!"ate Files
• After the initial baseline has been established

- the item is said to be under SCM.
• Changes can be tracked as:

• Deltas: only the changed portion is stored
• Separate file: changes are stored in a new file

• Deltas work best for text files
• Separate files is a good idea for binary file

formats.

Software Pro)tCl Managemctt 11 32

~~ Parallel De~~.lopment
• Many members can often work on the same item:

• Two developers update the same code file (working on
different functions)

• A number of engineers may be wor1clng on a single word
document containing the specifications

• Changes are tracked by each user and often merged
regularly to create a synchronized version:
• Merge conflicts are resolved via normal channels of

communications
• Effective management can reduce merge conflicts

i Change Ma~,~9.ement- 1
• For best results changes should be handled

formally
• A change -control board (CCB) is necessary

• CCS consists of all key stakeholders
• Customers
• Developers
• Designers and architects
• Management
• Business strategists and financiers

Software Pro)«t Manaoemert " Software ProjeCt Managemrer1

,~,: \i7,-, Change .~~q~est
.. ~

• Changes are required because:
• A problem is discovered (bug?)
• An enhancement is required

• Once a change-is required - a "change
request" is raised

• A change request (CR) will outline:
• Current operation, nature of

problem/enhancement, expected operation after
system is changed

~2 Change C9.~~~olBoard - 1
• All change requests (CR) are reported to the

CCS for review
• CCS discusses all open CRs at regular

meetings (frequency is determined by nature
of project)

• CCS determines if CR identifies a "problem"
or an "enhancement"
• This is done to identify who "pays. for the change

Software Pro)ett MWIagCn1Cft 35

88 .

36



~] Change Contr9J..~oard - 2
• Once the change has been categorized, it is

discussed in detail,
• Probable source of problem
• Impact of the change
• TIme and resource requirements (estimates)

• CCB will assign a priority and severity for all
CRs (CRs may also be rejected)

• The CRs are assigned to development
management for further action

,.~ Impact Analys~?
• Before changes are made often a deep or

shallow impact analysis is performed
• Impact analysis makes full use of software

metrics
• Managers often track

• Increases in complexity measures as system
evolved over a period

• Trend analysis is performed based on
modules and change requests to ensure
flexibility

Software Proiea Hanaoemer« 37 Soltwlre Project Hanaocmert 3•

."~~ Change Man~_9.~ment- 2
• Development managers will assign a CR to a

developer (or a team)
•. The requested change is made as per the

plan and a full regression test suite is
executed

• Configuration manager reviews the changed
system
• Ensures that all required documentation is

changed
• Ensures that the impact does not exceed

estimates (too much)
Softwart ProjeCt Managemert

~~i Change ~~~~gement - 3~_.
• Changes will need to be modified or cancelled

• This is required if the team assigned the change
request need more resources and time than
estimated

• These decisions are delegated to CCB with
the extra information added along with the
CR.

• A CR can be assigned, deferred, rejected,
closed.

• All changes are reviewed and modified

...,~,Confjgurati~~..~anagement
• To ensure proper tracking the following

information needs to be collected:
• Whet) was the change made
• Who made the change
• What was changed (items modified)
• Who authorized the change and who was notified
• How can this request be cancelled
• Who is responsible for the change
• Priority and severity
• How long did the change take (vs estimate)

..

~ Change ~~~!~olBoard - 3
• The complexity of the change management process

varies with the project
• Small projects can perform change requests

informally
• Complex projects require detailed change request

forms and the official approval by one or more
managers

• For safety critical projects - change management is
very rigorous
• Example: software changes to an airplane avionics system

• Change request management is supported by robust
software packages

Sol'twareProjectM~

. 89 .

Software Project MJnaQemefC '2



~ Change Ma~.~9~ment - 4
• To ensure effective change

management:
• Each working version is assigned an

identification code
• As a version is modified, a revision code or

number is assigned to each resulting
changed component

• Each component's version and status as
well as a history of all changes are tracked

'~ Configurati<?_~.~uditing- 1
• Key philosophy Is "trust by verify"
• Configuration auditing Is a process to:

• Verify lhatthe baseline Is complete & accurate
• Check that changes made and recorded
• Documentation reflects updates

• Audits can be rigorous, or on a random set of
conflguration items

• A regular audit is required to ensure that SCM is
working effidentiy:
• Can reveal weaknesses In processes, tools, plans as well as

resources

43 44

,b.Configurati~~.,~uditing - 2
• The two main types of audit are:

• Physical audit: are all identified items
have a correct version and revision, this
helps us remove old and unnecessary
items.

• Functional audit: verifies that the items
under SeM satisfy defined specifications.

.,~ Status Acco_~~~i.ng
• Simple record that can identify all items

under SCM
• Locati~n of the component, who placed it under

SCM etc
• The current version
• Revision history (change log)
• Pending CRs
• Impact analysis trends

• Status accounting is vital to enable control
and effective management

45 ..

.~ Roles an_~~«:sponsibilities...
• Configuration manager

• Responsible for approving configuration items
• Responsible for development and enforcement of

procedures
• Approves STM (ship to manufacture) level release
• ResponSible for monitoring entropy

• Change control board
• Approves and prioritizes, or rejects change

requests

~ Roles an~ ..~e~ponsibilities ...
• Software engineers

• Responsible for identification and
versioning of configuration items

• Create promotions triggered by change
requests or the normal activities of
development.

• Update the items to incorporate requested
changes - they also resolve any merge
conflicts

47

. 90 •



'~ Standards
• Approved by ANSI:

• IEEE 828: software configuration
management plans

• IEEE 1042: guide to software configuration
management

'":~6Outline of the SC~P (IEEE 828-1990)

• 6 main sections:
• Introduction
• Management
• Activities
• Schedule
• Resources
• Maintenance

•• so

Conformance to the IEEE,i;Standard 8?~.~}990...
• A document titled "software configuration

management plan" is required.
• Minimum required sections are:

• Introduction
• Management
• Activities
• Schedule
• Resources
• Plan maintenance

Conformance to the IEEE'iStandard 82~,=.~,990
• Quality guidelines:

• All activities defined in the plan must be assigned
• All configuration items should have a defined

process for establishing the baseline and change
control

• If these criteria are met, the SCMP can state:
"This SCMP conforms with the requirements of IEEE

Stet 828-1990 .•

51 50"-<'''*''_ 52

~_~_O_O_IS_'__ .
• A large number of tools are available
• Examples:

• RCS - pessimistic locking control system,
no support for parallel development

• CVS - based on RCS, allows concurrent
working using optimistic locking

• Star team - multiple servers, process
modelling, policy check mechanisms.

~ Repositori.~?
• All items under configuration are placed

into a repository
• This repository is controlled by a tool

like RCS or CVS
• A CVS(RCSas well) repository can

handle both binary and text files
• Changes are stored as deltas for text files
• Separate files are stored for binary files

53

. 91 .

54



'J~Functions of~ ,Repository
• Access to repository is controlled by a

security policy (in CVS/RCS a
username/password)

• After a user is logged into the repository they
can:
• Check-out a file for use
• Check-in a changed file back into the repOSitory
• Tag the repository at a certain date/time
• Place a new file into the repository

~"1 File Check-<?_~!
• Check-out:

• The repository marks the file as checked-out
• In concurrent systems (like CVS), a list of all users

that have checked out the file is maintained
• In locking systems (like RCS), only one user can

check-out a file at a time. In essence the file is
locked for future use

• CVS can work in both locking and concurrent
modes

55 56

\~ File Check-~_~:..
• Check-in:

• The file is modified and the changed version is
checked back into. the repository

• If the file was locked - then only the user that
checked it out can unlock it by checking In the
same file (verified on file name only)

• In a concurrent system - the first user to check in
will cause the system to enter a conflict resolution
mode

,~ File Check- I_~...
• In a concurrent versioning system:

• Users can potentially work on the same file at the
same time

• If two users change the same sections of the file
then when checking in, the system will flag a
merge conflict

• Merge conflicts have to be resolved before the file
can be placed into the repository _

• This allows more flexibility, however it can be
more dangerous as well when used without
sufficient training

57 50

'~i FiIe Check-In
'~."._r ._._ .

• Most companies have procedures that
will outline the steps to take before a
file is checked back into the repository

• All changes made to the file are
documented in a "status log" during the
check-in process
• Some procedures require the change

request number to be stated after a certain
date

:;<1'~ Ensurin~_.~~ild.Consistency
• When developers check-in source code with

modifications - the changes may cause more bugs
• To ensure that new changes do not cause

unexpected failures many techniques are used by
developers:
• Regression tesUng
• Compile &. link verification
• Static audits
• Metrics trends

• This aspect of development is one of the most
important and requires careful monitoring

So"""eP<ojc<t_ 5.

• 92 •

60



~. What is Regression Testing?
• Simply put, it is repetition of existing tests

• Usually done after minor changes are made to
code

• It does not apply for enhancements
• Before checking in the changes into a repository

• It can be seen as selective testing
• Intention is to show that modifications have

not caused unintended effects
• Verifies that the system still complies with its

speCified requirements

Minor
Modflcdlons

Sol\ware Proje(t fill..,..,. 6. 62

"~ Regression ~~~tingLimitations
• Regression test suite does not contain tests

for new or changed capabilities
• When a primary test suite is promoted to

become a regression test suite, it is no longer
effective as a primary test suite
• Once a version has passed all of its test cases, the

test suite has revealed all the bugs that it can and
must be changed to look for new changes

6)

'~ Static Au~i~
• Applicable to source code
• Before check-in the changed code is passed

through a static code verification tool
• Any violations or failure to meet company

standards are picked up by this tool
• All issues are resolved before check-in
• This step can ensure that the overall quality

of the code in the repository is higher
• Does not detect functional bugs or errors that

can be caused at runtime.

~ Compile and ~i~kVerification
• This process is applied mainly to source code

before checking it into a repository
• The changed copy is built locally on the

developers workspace
• The aim is to ensure that there are no

compiler errors, warnings or link failures
when integrated with the existing set of code
as mirrored on the repository

• This is the simplest form of check, and
increases confidence - this does not check for
bugs.

SortwftProjecl~ 64

,~ Metrics "Ir_~_~~~
• This step is another step to ensure that poor

quality code does not enter the repository
• Company can define a global standard on the

size of methods, allowed complexity etc, ..
• If changes have caused a deviation from the norm,

then it required approval from the team leader
before being checked into the repository

• The code is analyzed over a period to ensure
that over time the code does not deteriorate.

65

• 93 •

66



'iTagging a ~~f>_ository...
• As software evolves the files that make up the

system are all at different version levels
• Example (from an o/s can be)

• Text editor v3.0
• Intemet explorer vS.S
• Kernel build 1885
• Wind owing system build 23
• Ete..,

• Before the above configuration is released - we need
to note down these numbers. That process is known
as tagging the repository

• 7

~~ Tagging a Repository
• Once a repository is tagged

• We can revert back to this level even if a large
number of changes are made

• The tag number can be Issued to the quality and
testing teams for verification.

• Repository is tagged at regular intervals,
• Weekly is typical early In the life cycle
• Daily towards the end or If the process calls for

high-frequency integration

..

.~summary
• SCM is an insurance policy .
• Effective SCM can ensure:

• Rework cost is reduced
• Effort put into development is not wasted
• There is no loss of control as software

evolves

,16 Keywords _ .
• Configuration item
• Version
• Baseline
• Release
• Revision
• Change management
• Configuration management

Sol'twafe Projett ManagernM ., Software ProjeCt Managemert 70

~ References
• Ghezzi, c., Jazayeri, M., and Mandrioli, D. (1991)

Fundamentals of Software Engineering, Prentice Hall
• Horch, J. W. (1996) Practical guide to software

quality management, Artech House .
• Bruegge, B., and Teubner, G., Object-oriented

software engineering: conquering complex and
changing systems

• IEEE standard 828-1990
• Uentz, B. P., and Swanson, E. B. (1981) "Problems in

application software maintenance", Communicaöons
of the ACM, 24(11):763-769.

71

. 94 .



Lecture 10
Project Team

Management & Organization

~ Projects - Te.~porary Nature
• The temporary nature of projects

means that the personal and
organizational relationships will
generally be both temporary and new.
The project management team must
take care to select techniques that are
appropriate for such transient
relationships.

,~ Maslow's Hie.~~Echy- 1
• Proposed a more "active" model of

motivation.
• Redefined motivational theory.
• He argued that all people were driven

or motivated by a hierarchical set of
needs.

~. Lecture Overview
~"4 : :,q' _ : ..

• Motivation
• Organizational Behaviour Theory
• Organizational Planning
• Team Formation and Development
• Roles in Software Development

-..---

.~. Motivation -:...l.?~finition
motivate I-v 1. Supply a motive to; be

the motive of 2. cause (a person) to act
in a particular way 3. stimulate the
interest (of a person in an activity) -
The Oxford Dictionary of Current
English

,~ Maslow's Hier_a.rchy- 2

Maslow's model places
motlvatlon as somethfng
within a person rather than
something provided by
another person

Security (of survival)

Survival (Food, Water, Shelter)

. 9S •



,""4 Herzberg's Theory - 1
. ";.,' ~~"'M"M''''''''''"""""""""",,,,,,, ...

• More focussed in organizations
• Two sets of motivational factors:

• De-motivators or dissatisfiers
• Higher Performance Motivators

Software ProjeCt Management

1b;. Herze..~~9..'~Theory- 2
r:.:;.....:.

• Examples of De-Motivators:
• Company Benefits or Culture
• Job Security
• Work Conditions
• Salary [or perceived inequity of]
• Interpersonal or Team relations

• Absence of de-motivating factors meant
that people did "a fair days work".

~~. ContemP9!.~ryTheory
• Many variations and extensions to the work

by Maslow and Herzberg have been made,
but the fundamental validity remains
unchallenged.

II Most contemporary motivation theory agrees
that there are intrinsic and extrinsic
motivation factors which align with Maslow's
and Herzberg's initial work.

,~~ Herzberg'~_!~eory- 3
'" .J

• Examples of Higher Performance Motivators:
• Opportunity for growth
• Natu re of work. tasks
• Responsibility
• Recognition
• A sense of achievement
• Autonomy

II These factors are some of the most crucial,
however depending on experience and
industry these have been shown to change.

Software Project Management ,.

':";1:3 Motivation ~yLeaders

Software Project Manlgemert II

. 96 .

~". Hackman & Oldham Theory-l
• Hackman and Oldham analysed the

intrinsic motivation impact of job and
job tasks.

-. They provided a structured model for
improving intrinsic motivation .

• Proposed that each job contains a
number of core job dimensions.

Software Project Manaoement



<~ Job Dia~~g_~!i~.t."1odel- 1
• States that positive outcomes occur when employees

experience meaningfulness in their work.
• Meaningfulness occurs through:

• Skill variety -- a person needs to use a number of different
skills and talents.

• Task variety -- thelr worl< Involves completing a "whole" and
Identifiable piece of worl<.

• Task significance -- the wor1< has a substantial Impact on the
lives or work of other people.

• Autonomy -- the person has freedom In accomplishing the
tasks.

• Feedback -- the Job provides some built-In feedback or
reward.

~ Job Dia9..~.~~!i~t."1odel- 2
• Their Job Diagnostic Survey consists of a

series of questions that employees answer
anonymously. Some questions are:
• How much independence and freedom do you

have in the way your carry out your work
assignments?

• How effective Is your manager in providing
feedback on how well you are performing your job?

• To what extent does your job require you to use a
number of complex or high-level skills?

1l

-~ Hackma~._~gI9ham Theory-2
• If the core job dimensions are improved then

the person undertaking the job develops an
internal belief in the meaningfulness of the
job, responsibility for and understanding of
the relationship between their effort and the
results.

• These internal states lead to improved
personal and work outcomes such as high
intrinsic motivation, high quality work and so
on.

15

:'~kMotivational ~p'proaches
• Simple approaches that work:

• Share the client
• Share the project vision
• Share the skills and knowledge
• Share the success
• Deliver early and often
• Raise the team profile

Motivational Approaches for IT
~ Projects', ...

"" • 3 levels of intrinsic motivation that
apply for computer and other creative
teams:
• Technical Excellence
• Client Partnership
• Adding Value

,.

"~1 Some rewar~s..:.
~j

• Rewards that work in IT:
• researrh and development "time-outs"
• feedback from the business management
• be there when it works
• actively support extra-curricular activities
• encourage fun and play
• arrange for rotation
• ask your team what rewards matter to them

17 I•

• 97 •



~ Workpl~.~~J?~ilosophies
• Management approaches:

• Taylorism, 'Scientific Management'
• Human Relations School

• Counter positions:
• Braverman School
• Human-Centred School

\9 I

~. Taylorism
":', , _._ ~.....•....

• Assumes that people work only for
anticipated extrinsic benefits ...
Individual rewards:
• Detailed breakdown of the labour process

into minute detail
• Separation of conception from execution
• Progressive destruction of craft skills
• No autonomy over pace, order, timing of

tasks

10

~ Human Rel~!ignsSchool
• People have a need for moral satisfaction in

their work ... Group rewards:
• Allow and encourage sociability among workers

and work groups
• Semi-autonomous work groups deciding:

• how tasks are organlsed
• who does what
• when/how wori< Is rotated
• pace of work

~~. HRversus T~ylorism
• HR claims that Taylorism is not effective,

and that
• HR is more efficient for work under any

economic system
• work is compatible with private ownership
• ownership of means of production is not an

issue
• work autonomy is central

21 22

'~bBraverman School
• Taylorism is the 'managerial ideology of

advanced capitalism', but
• Taylorism is the most effective form of class

control over labour in the work place
• Equate economic triumph of capitalism with

triumph of Tayloristic control
• Work can only be rewarding under socialist

regime

~ Human-Cen~~~dSchool
• Want to overturn Taylorist orthodoxy in

design of work and technology
• Retain centrality of human skills and

intuitive knowledge
• People should see the entire production

process from end to end
• Commitment comes from pride in skill and

competence

Software Project M~ ZJ

. 98 .

24



.~ Summa~_g!~pproaches - 1
II Taylorism advocates extreme division of

labour, works under capitalism
II Human Relations seeks to accommodate

human need for moral solidarity
II Braverman sees liberated workers only under

socialism
II Human-Centred School contemplates work

reforms under any system

.~ Summary~!.~pproaches - 2
"Until recently, employers have concentrated
on gaining clerical productivity increases
through Taylorization .... The idea seems to
have been that if you tidy up work so that
certain people only do certain operations
there should be efficiency gains"

Smith (1989)

25

~bSummary of~pproaches - 3
"Staff must be permitted to float up to their
own levels of ability, rather than be rigidly
pre-categorised according.to formal
educational qualifications and recruitment
tiers.... All this points towards a much more
imaginative approach to systems design and
technical agreements than we have seen to
date."

Smith(1989)

,,~ Monitoring p~ople at work
II Many studies show that monitoring can lead

to a decrease of worker autonomy and an
increase in stress, particularly when used for
performance evaluation (long, 1989)

II Others find that "workers appear to be less
resentful of errors unambiguously attributable
to them than being blamed for those
committed by others" (Rothwell, 1984)

Softw.,.eProject~ 27 28

~ Monitoring ...
II Before technology II After technology

• Done by people • Done Increasingly by
• EpisodIC machines
• Workers knew when they • Offices as well as

were watched factories
• Umlted by sensory • Workers may not know

capabilities when they are watched
• Direct, personal • Can be done any time

• ..from distant locations

,~ Privacy
II Privacy is an essential component of

individual autonomy and dignity
II The notion of privacy is changing
II boundaries between what is acceptable

and what is not are blurred
II Intrusions that were unacceptable are

now commonplace

29

• 99 •

lO



'lk, What _~~!:l..y.9.~do to protect it?
• Ask why your company wants to

monitor people:
• what data will be collected
• how they will be collected
• how they will be used
• what feedback will be provided to those

who are being observed

What can you do to protect
'~'It?-d- .. ~, ,_.;" ; ••••

•• ~ ~l ....... _ •.• _ ••••••.••.•

• You can encourage:
• visible monitoring
• users/customers to agree in writing to being

monitored
• that customers agree in writing to use the

software only for quality control

• You can refuse to be part of a project that
compromises basic human privacy values

" '2

'~6Team Ma~~_~~ment
;..Jo'

• Involves the following main activities:
• Organisational Planning
• Staff Acquisition
• Team Development

"

,,J;s, Organizational Planning - 2
""P-'" -., .....

• Outputs:
• Role and Responsibility Assignments
• Staffing Management Plan
• Organizational Chart
• Supporting Detail

.~. Organizati0.!:l.~1Planning - 1
• Inputs:

• Project Interfaces
• Staffing Requirements
• Constraints

• Tools and Techniques:
• Templates
• Human Resource Practices
• Organizational Theory
• Stakeholder Analysis

• Inputs:
• Staffing Management Plan
• Staffing Pool OescrIptlon
• Recruitment Practlces

• Tools and Techniques:
• Negotiations
• Pre-assignment
• Procurement

• Outputs:
• Staff Asslgned
• Team Directory

,.

"

. 100 .

,.



.~. Team l?_~y~lgp~ent- 1
• Inputs:

• Allocated Staff
• Project Plan
• Management Plan
• Performance Appraisal Reports{fechniques
• External Feedback

.~ Team ~~y~lgPrnent - 2
• Tools and Techniques:

• Team Building Activities
• General Management Skills
• Reward and Recognition systems
• Collation
• Training

37 38

.~: Team ~ev~!~Prnent - 3
s

• Outputs:
• Performance Improvements
• Inputs into Performance Appraisals

~ Project Intet!~_~~s
• They fall into three categories:

• Organizational Interfaces - Among
different organizational units (Finance,
Sales and Information Systems) .

• Technical Interfaces - Formal and
informal reporting between teams (eg.
Hardware and Software Engineers) .

• Interpersonal Interfaces - normally
among different individuals in the team.

39 «>

T: c~ Staffing Requirements
ct'i -- ... -

• What kind of skills are required?
• What type of individuals are required?
• What is the ideal group structure?
• Time frame available for staffing.
• Staff form a subset of overall resource

requirements identified during resource
planning.

.'iConstraints __
• Factors that limit the project team's

options:
• Team structure may be dictated by

organizational culture (or procedures) •
• Unions and employee groups impose some

constraints.
• Educational qualifications (may be similar

level but from different universities).

'2

. 101 .



~ Templates",' . J: _ ~ .

• Using a common template will help in
developing the required documentation.

• Templates can be patterns that have
worked before (like an organizational
structure, documentation structure,
reporting structure etc ...).

iStakeh~.~9~~~nalysis
• Stakeholders are more often than not

part of the overall team:
• Political issues have to be carefully

managed.
• Needs vs wants of the stakeholders should

be carefully understood.
• Ideally it should be very formal.

.3 ..

Roles/Responsi bil ity
~ Assignment

, .... ' _ .... H __ ••••••• _.~ •••••••

• Who does what?
• Who decides what?
• A RAM (Responsibility Assignment

Matrix is often used, see next slide).
• In large projects RAMs may be

developed at various levels.

.~ RAM - ~xa~ple

. eOpf~:;;A, ., 'e J;>""~Q
Requirements S RAP P
Analysis S A
Design S A
Implementation/Build R S S

. Legend: P = Participant, A = Accountable, R =
Review Required, I = Input Required, S =
Sign-Off Required

c;~ Staffing Ma~.9gement Plan
• Describe when and how human

resources will be brought onto and
taken off the teams in a project.

• Often include resource histograms
(Resource/Skill usage over
Months/Weeks) depending on the
measurement/tracking granularity.

-...--

.5

.,

~hOrganization,Chart
• A graphical display of project reporting

relationships (with Names and Roles).
• Should be formal (on smaller projects

this may be communicated informally,
but it achieves best results when
formally presented).

• A spedalised role and responsibility
detail should be made available.

. 102 .



Clark Kenl
Software Architect

Lucy Lu
Creative Team Leader

-~ Organi~~~,ig~~~a.rt-Limitations
• The main problem is that it does not capture

and convey all the dimensions in which a
team works•

• Only the reporting, problem escalation chain
is represented.

• In practice seniority, skill and depth of
knowledge create people of higher influence
on the project. But they may be shown lower
on the organisational chart.

so

~ References - 1
, ' ~--_ ~,- ..

• Forester, T. (ed) (1989) Computers in the human
context: /nfonnation technology, productivity and
people, Basil Blackwell.

• Franke, R. H., Technological Revolution and
productivity decline: The case of US banks.

• Smith,S., Information technology In bank:
Taylorizatlon or human centred systems?

• Marx, G. T., and Sherizen, 5., Monitoring on the job.
• PMI Standards Committee (1996) A Guide to the

Project Management Body of Knowledge.

~ References ~.,?
• Grudin, J. (1993) "Obstacles to participatory design in

large product development organizations", In D.
Schuler and A. Namioks (ed.), Partidpatoty Design:
Prindples and Practices, Ertbaum. '

• Llndgaard, G. (1995) "Cementing human factors Into
product design: Moving beyond polides", Proceedings
iHFT'95/ntemational Human Factors in
Telecommunications, Melbourne, 1995.

• Cougar, J.D., and Zwackl, R.A. (1980) Managing and
Motivating Computer Personnel, Addison-Wesley.

51 52

""~, References ~_.~,,
• Hackman, J. R., and Oldham, G. R. (1980) W",*

Redesign, Addison-Wesley .
• Thomsett, R. (1993) T11ird Wave Project Management,

Prentice-Hall .
• Thomsett, R. (1990) "Building Effective Project

Teams", American Programmer, Summer 1990 .
• Vroom, V. H., and Decl, E. I. (1978) Management

and Motivation, Penguin.

"

. 103 .


