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T H E  N E W  SUPE R C O N D U C T O R S

David Caplin

Physics Dept. Imperial College, Lo n d o n  SW7 2BZ, England

S U M M A R Y

R e c e n t  d e v e l o p m e n t s  I n  s u p e r c o n d u c t i v i t y ,  w h i c h  h a v e  p u s h e d  t h e  

s u p e r c o n d u c t i n g  t r a n s i t i o n  t e m p e r a t u r e  u p  a b o v e  t h e  b o i l i n g  p o i n t  

o f  l i q u i d  n i t r o g e n  ( - 1 9 6  C ) ,  a r e  d e s c r i b e d .  A t  f i r s t  s i g h t ,  t h e  

n e w  m a t e r i a l s ,  w h i c h  a r e  m e t a l  o x i d e s ,  l o o k  e x t r e m e l y  a t t r a c t i v e  

f o r  a p p l i c a t i o n s .  H o w e v e r ,  f a b r i c a t i n g  t h e m  i n  u s a b l e  f o r m  

p r e s e n t s  m a j o r  p r o b l e m s .

T h e  a p p l i c a t i o n s  o f  c o n v e n t i o n a l  s u p e r c o n d u c t o r s  t o  b o t h  

r e s i s t a n c e - l e s s  c u r r e n t  c a r r y i n g ,  a s  i n  s u p e r c o n d u c t i n g  m a g n e t s  

a n d  c a b l e s ,  a n d  t o  d e v i c e s ,  s u c h  a s  S O U I D s ,  a r e  d e s c r i b e d .  T h e  

p o s s i b i l i t i e s  f o r  t h e  r e p l a c e m e n t  o f  c o n v e n t i o n a l  s u p e i —  
c o n d u c t o r s ,  o r  o f  c o n v e n t i o n a l  c o n d u c t o r s ,  b y  t h e  n e w  m a t e r i a l s  

a r e  e x a m i n e d .  I t  m a y  w e l l  b e  t h a t  s u p e r c o n d u c t i n g  d e v i c e s  m a d e  

f r o m  t h e m  a r e  e a s i e r  t o  a c h i e v e  t h a n ,  f o r  e x a m p l e ,  h i g h  

t e m p e r a t u r e  s u p e r c o n d u c t i n g  m a g n e t s .  T h e s e  d e v i c e s  w o u l d  b e  a  l o t  

m o r e  p o r t a b l e  t h a n  t h o s e  u s i n g  c o n v e n t i c i a l  s u p e r c o n d u c t o r s ,  a n d  

c o u l d  f i n d  a p p l i c a t i o n  i n ,  f o r  e x a m p l e ,  m a g n e t i c  s u r v e y i n g .

A l t h o u g h  t h e r e  h a v e  b e e n  r e p o r t s  o f  s u p e r c o n d u c t i v i t y  a t  y e t  

h i g h e r  t e m p e r a t u r e s ,  n o n e  o f  t h e m  h a v e  s o  f a r  b e e n  s u b s t a n t i a t e d .

✓ 7 >
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1 1 I N T R O D U C T I O N

S i n c e  the e a r l y  m o n t h s  of 1987, the worl d ' s  n e w s p a p e r s  have 
c a r r i e d  h e a d l i n e s  p r o mising cheaper electricity, to be brought 
about by the n e w  b reed of superconductors. It is most cer t a i n l y  
true that the s c i e n c e  of s uperconductivity has taken a sudden, 
and totally unexpected, leap forward wit h  the d i s c o v e r y  of 
m a t e r i a l s  that retain their sup e r c o n d u c t i v i t y  to m u c h  higher 
temperatures than w e r e  previously thought possible. Indeed, In 
r e c o g n i t i o n  of this watershed, w h i c h  has stimu l a t e d  thousands of 
s c i e n t i s t s  in p r a c t i c a l l y  every c o u n t r y  of the w o r l d  to work on 
superconductivity, the 1987 Nobel P r i z e  for Physics wa s  awarded 
to G e o r g  B e d n o r z  and Karl MUller for their d i s c o v e r i e s  at the IB M  
L a b o r a t o r i e s  In ZUrlch.

S olid s tate physicists, who had thought that the fundamental 
scie n c e  of sup e r c o n d u c t i v i t y  was pr e t t y  well sorted out, have 
been p r e s e n t e d  with a n e w  and e x c i t i n g  problem: h o w  to understand 
what is g o i n g  on In these novel superconductors. But :he 
excitement has spread into industry and commerce too, where the 
prospect of e lectrical conductors without any electrical 
resis t a n c e  has led to claims of r e v o l u t i o n a r y  pro s p e c t s  for power 
generation, transport and so on.

The purpose of this article is to d e s c r i b e  what s u p e r c o n d u c t i v i t y  
is about, why it is intrinsically a low temperature phenomenon, 
to outl i n e  the progress of the last year, and to examine in some 
detail the p r o s p e c t s  for- technological a pplication of the n e w  
superconductors. 1

1 2 C O N V E N T I O N A L  SUPERCONDUCTORS

S u p e r c o n d u c t i v i t y  has been known for nearly eighty years. It was 
d i s c o v e r e d  d u r i n g  the systematic explor a t i o n  of the behaviour of 
matter at u l t r a - l o w  temperatures by the Dutch physicist 
K a merllngh Onnas. His work was c o n nected closely wit h  the prob l e m  
of l l q j e f a c t i o n  of gases, first oxygen and nitrogen, and later 
neon, hydrogen, and finally helium. At these l o w  temperatures, it
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is more natural to work w i t h  the a b s o l u t e  t emperature scale, 

denoted by K to c o m m e m o r a t e  the 19th c e n t u r y  p h ysicist Lord 
Kelvin. On the a b s o l u t e  scale, a b s o l u t e  z ero (which Is at -273 C 
on the Centi g r a d e  or C e l s i u s  scale) is 0 K, so that there are no 
negative temperatures; che ice point (0 C) becomes 273 K. The 
boiling points of some common g a s e s  are listed in T a b l e  I.

Kamerlingh O nnes had b een following the behaviour of the 
electrical resist i v i t y  of metals as the/ are cooled down. As is 
well known, the r e s i s t i v i t y  of pure metals is a p p r o x i m a t e l y  
linear in temperature at ambient t e m p e ratures (figure 1); when 
the temperature Is lowered, the thermal vibra t i o n s  of the atoms 
diminish, and so r e d u c e  the s c a t t e r i n g  of the c o n d u c t i o n  
electrons. At low e n o u g h  temperatures, onl y  s c a t t e r i n g  from 
chemical impurities and c r y s t a l l i n e  d e f e c t s  remains, and the 
r esistivity levels off to a constant v a l u e  (the residual 
resistivity). Thus, o r d i n a r y  copper con d u c t o r  that is used for 
electrical cable has a r e s i s t i v i t y  that drops from 1 . 7 X 1 0 “ 1*  o h m  m 
at roo m  temperature to 2xl0~'-s o h m  m at 77 K, and typically to 
2xl0~'° o h m  m  at 20 K or below. If e x t r e m e  care is taken in 
purifying the copper, the residual r e s i s t i v i t y  can be reduced by 
a further factor of 1 0 0  or so. Other metals, such as a l u m i n i u m  
and silver, sho w  similar behaviour.

Kamerlingh Onnes' d i s c o v e r y  in 1 9 1 1  was the e x t r a o r d i n a r y  one 
that the resistivity of mercury dropped sharply to z e r o  at 4.1 K 
(figure 2). Superconductivity, as it c ame to be called, was soon 
found to be widespread amongst the metallic elements, although 
the transition temperature T^ varies from a small fraction of a 
degree above absolute z ero to 9.2 K for niobium. However, some 
groups of elements never become superconducting: magnetic metals 
like iron ana nickel; the alkali metals sodium, potassium, etc.; 
the n oble metals copper, silver and gold. Thus, the g o o d  r o o m  
temperature conductors s uch as copper and alu m i n i u m  either fall 
to become s u p e r c o nducting or have low transition temperatures; on 
the other hand, the m e t a l s  with a high T «. are those, such as 
lead arid mercury, that h a v e  high r e s i s tivity at r o o m  temperature.
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T h e  reas o n s  for this correlation b e c a m e  apparent m a n y  years later 
(see 1  7).

H o w  l o w  is the resi s t a n c e  of a s u p e r c o n d u c t o r ?  K a m e r l l n g h  Onnes* 
experiments, which measured the v o l t a g e  drop along a wir e  
c a r r y i n g  current, s h o w e d  that it w a s  less than about a ten- 
thous a n d t h  of the r e s i s t a n c e  in the normal state (metals are 
d e s c r i b e d  as being either in the n o r m a l  state when they display 
their usual resistive behaviour, or in the s u p e r c o n d u c t i n g  
state). A more s e n s i t i v e  test is to In d u c e  a current in a 
s u p e r c o n d u c t i n g  ring, and monitor the mag n i t u d e  of the current 
u s i n g  the magnetic f ield it generates. In a normal metal, the 
elect r i c a l  r e sistance causes the I n d u c e d  current to d e c a y  in a 
f r a c t i o n  of a second. O n  the other hand, in a superconductor, 
these currents s h o w  no decay over a pe r i o d  of a year or more, 
w h i c h  implies that the resistivity in the s u p e r c o n d u c t i n g  state 
must be less than about 10~2S oh m  m.

Thus, s u p e r c o n d u c t i v i t y  is a r e m a r k a b l e  phenomenon; the current- 
c a r r y i n g  electrons proceed totally unimpeded! Even whe n  some 
i m p u r i t i e s  are added deliberately, the material u s u a l l y  remains a 
superconductor, a l t h o u g h  the transition temperature may be 
a l t e r e d  (figure 2). In its early years, the 1930*s and 40 * s, 
s olid state physics tended to focus on pure metals, leav i n g  the 
s tudy of alloys and lntermetallic c o m p o u n d s  (in an intermetalllc 
c o m p o u n d  the different atomic species h a v e  distinct sites within 
the c r y s t a l lographic structure) to the metallurgists, so it was 
not apprec i a t e d  until the mid-1950's that large n u m b e r s  of 
m e t allic alloys and lntermetallic c o m p u n d s  are superconducting, 
and some were then discovered that h ave substantially higher 
trans i t i o n  temperatures than the elemental s u p e r c o nductors 
(Table II). Until 1936, the record T c was 23 K for N b 3Ge.

G i v e n  a material of zero resistance, the natural q u e s t i o n  to ask 
of a superconductor is h o w  much curr e n t  can it carry? 
Unfortunately, it turns out that a b o v e  a certain current, the 
critical current, there is a reversion from the supe r c o n d u c t i n g  
to the normal state, and in the elemental superconductors, these
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critical currents are too l o w  to be useful. Furthermore, magnetic 
fields also suppress s u p e r conductivity, and again for the 
elemental superconductors the criti c a l  field B* Is too small to 
hav e  any practical a p p l i c a t i o n  (Table II, the earth's magnetic 
field is about 10“ *  Tesla, that of a conventional l a b o r a t o r y  
electromagnet Is about 1 Tesla).

However, the s u p e r c o nducting a l l o y s  and compounds that were 
d i s c o v e r e d  around 1960 i n c l u d e d  materials, such as Nb-Ti and 
Nb3 Sn, that retained their s u p e r c o n d u c t i v i t y  and s ubstantial 
c u r r e n t - c a r r y i n g  capacity to v e r y  h igh magnetic fields. It is 
these materials that have b e e n  d e v e l o p e d  over the last two 
decades, and have found q u i t e  w i d e  application.

1 3 T H E  N E W  S U P E R C O N D U C T O R S

S ince 1960 or so, most s olid s t a t e  physicists had c o n v i n c e d  
themselves that the f u n d a m e n t a l s  of superconductivity w ere well 
understood, and that no s i g n i f i c a n t  improvement in transition 
t e m p e rature above 30 K c o u l d  be expected. For this reason, 
interest and activity In the fundamental aspects of 
superco n d u c t i v i t y  declined steeply. However, a small m i n ority 
were not satisfied that all h a d  been explained, and took the 
e x a m p l e  of the metallic o xide Ba (Pb-BI >0-, to heart. T h i s  compound 
had bee n  shown In 1975 to be s u p e r c o n d u c t i n g  at about 13 K - by 
no m e a n s  a world record, but u n e x p e c t e d l y  high for a material of 
that c omposition and structure. It was by exploring this avenue 
that early in 1986 Bednorz an d  Mül l e r  came across the ternary 
o xide (La-Sr)CuO,*, which a p p e a r e d  to become s u perconducting at 
about 35 K. The parent bi n a r y  o x i d e  LaCuO* is not 
superconducting, but partial re p l a c e m e n t  of La by Sr, Indicated 
In the chemical formula by ( L a - S r >, yields the s u perconducting 
phase. By the end of the year, this result was confirmed 
Indep e n d e n t l y  by a number o', o ther laboratories, and immediately 
the r a c e  was on to find even h i g h e r  transition temperatures. In 
J a n u a r y  1987, Chu's group in H o u s t o n  discovered that a mixture of
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yttrium, b a r i u m  and copper oxides produ c e d  material wit h  
s u p e r c o n d u c t i n g  behaviour at 92 K, and a fe w  weeks later the 
s u p e r c o n d u c t i n g  phase was Identified as the oxide Y B a sC u 3 07 , 
whose str u c t u r e  is s h o w n  in figure 3. It is a c o n c o m i t a n t  of a 
h igh Tc that the m a t erial has also a hig h  critical field, and 
that is ce r t a i n l y  the case for both <I_a-Sr >CuO„ and Y B a 2C u 307 
(see T a b l e  I I ) .

Naturally, in the year since Chu's discovery, l i t erally thousands 
of o xide mixtures h a v e  been made and tested, but at the time of 
writing, there are n o  c o n firmed materials that hav e  a n y  higher 
t r ansition temperatures. Certainly, there have been d o z e n s  of 
repo r t s  of higher t e m p e rature superconductivity, s o m e  of them In 
newspapers, and o c c a s i o n a l l y  In scientific journals, but so far 
none of them satisfy the test of true stable superconductivity.
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1 4 C R Y O G E N I C  A S P E C T S

The c o n v entional superconductors, those known prior to 1986, all 
used liq u i d  h e l i u m  for cooling even If they had tran s i t i o n  
temperatures a bove the boiling point of hydrogen. T h e  r e a s o n  is 
that the p e r f o r m a n c e  of a superconductor, In p a r t i c u l a r  the 
critical current dens i t y  (the current per unit c r o s s - s e c t i o n a l  
area of con d u c t o r  at w hich the materia? ceases to be 
s u p e r c o n d u c t i n g ) , deteriorates rapi d l y  as the t r ansition 
temperature T c is approached, so the operating temperature is 
usually h e l d  at 0.7T.. or less. Li q u i d  he l i u m  is expensive, 
typically not less than 42 per litre in large q u a n t i t i e s  in 
i n d u s t r i a l i s e d  countries, and, b e c a u s e  it has to be ail— freighted 
in fragile and c o s t l y  storage vessels, ten or twenty times higher 
in p r i c e  in small q uantities in le s s - i n d u s t r i a l i s e d  regions. 
Furthermore, some specialist training is needed if it is to be 
used efficiently.

E v e n  without any further advance, a crucial barrier for the wider 
a pplication of superco n d u c t i v i t y  has n o w  been crossed, because 
the YBa^Cu-sO^ superconductor c a n  be usefully cooled with liquid 
nitrogen. T h e  s u p e r c o nductive pe r f o r m a n c e  is less g o o d  than that 
at lower temperatures, 'because 77 X is only about 0.8T,_, but it 
can be e n h anced by r e d ucing the liquid nitrogen temperature to 
about 65 K < 0 . 7  T..) by pumping on it with a simple rotary pump. 
Liquid n i t rogen is very widely available, being used in tonnage 
quantities, and the price can be as low as SO.05 per litre; 
equally important, it can be transported in simple and robust 
storage containers, and can be handled with little training.

Both h e l i u m  and nitrogen are inert cryogenic liquids, so that 
safety precautions are simple; this is in contrast to liquid 
hydrogen and liquid oxygen (the latter is particularly 
dangerous).

Although the use of a cryogenic liquid is usually the cheapest 
and easiest means of cooling, with the n e w  s u perconductors it is 
possible to use instead closed-cycle refrigerators that can
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provide c o o l i n g  down to 10 or 20 K. T hese m a c h i n e s  r e q u i r e  o nly 
electrical power, and small ones, with a c o o l i n g  p ower of several 
Watts at 20 K, cost about S10,000.

1 5 F A B R I C A T I O N  O F  T H E  NEW S U P E R C O N D U C T O R S

A l t hough the s u p e r c o n d u c t i v e  properties of the n e w  m a t e r i a l s  are 
closely a n a logous to those of conventional superconductors, the 
means of making them are very different. Above all, CLa-Sr)CuOA 
and Y B a - C u 3 0 7 are ceramics, and the whole range of c e r a m i c s  
technology, both traditional and modern, can be a p p l i e d  to them. 
Fortunately, related compounds such as LaCuO« and LaNlO*. have 
been stud i e d  e x t e n sively over the last ten years or so; they have 
been of Interest to the oxide chemists, and hav e  found wide 
ap p l i c a t i o n  as c a t alysts in organic chemistry. Also, m a n y  of 
these oxides are oxygen fast-ion conductors, that is, the ox y g e n  
ions are sufficiently m o b i l e  to contribute quite hig h  ionic 
conduct i v i t i e s  at temperatures of 300 or 400 C.

Thus, the first of the n e w  superconducting mat e r i a l s  wer e  mad e  
with a simple ceramics "mix, grind and fire" approach, which is 
readily a c cessible with only rather limited facilities. Although 
a couple of trials are usually enough to obtain material that is 
superconducting, its properties are almost invariably poor. In 
particular, the critical current density tends to be e x tremely 
low. To focus on Y B a 2Cu-307 , a number of m a terials problems have 
n o w  become apparent:

(i) The reaction of the mixed oxides of Y, Ba and Cu to
form the ternary oxide must be carried out b elow 950 C, 
for otherwise the ternary oxide decomposes. At this 
temperature, all the components are solid, and solid 
state reactions are notoriously slow. Therefore, the 
starting m a terials have to be mixed very thoroughly, 
preferably on an extremely fine (sub-micron) scale.

(11) T here are several common contaminant phases, such as 
silica from the grinding process, alumina from
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crucibles, an d  so on. T h e r e  are also p h a s e s  that ma y  be 
formed by r e a c t i o n  with a t m o s p h e r i c  m o i s t u r e  and/or 
carbon d i o x i d e  that are s t a b l e  at the fi r i n g  
temperature. Any or all of these phases tend to m i g r a t e  
to grain bounaarles, an d  f o r m  e l e c t r i c a l l y - i n s u l a t i n g  

layers.

Ciii) The phase that forms at the firing temperature is 
actually Y B a - C u ^ O e , (the " g r e e n  phase"), w h i c h  Is 
semiconducting rather than metallic, and c e r t a i n l y  not 
superconducting. Furthermore, its structure Is 
tetragonal instead of o r t h o r h o m b i c . In order to obtain 
superconducting material, ann e a l i n g  in o x y g e n  at 
considerably lower t e m p e ratures is required, as 
Illustrated In the phase d i a g r a m  of figure 4. T h e r e  Is 
very st r o n g  evidence that the occupancy of the oxygen 
sites s h o w n  In figure 3 Is crucial to the 
superconductivity. Both the structural phase 
transformation and the I n s e r t i o n  of oxygen cause the 
lattice p a r a m e t e r s  to alter- significantly, so that at 
the boundary between two g r a i n s  of different crystal 
orientation, substantial st r a i n  develops, perhaps 
enough to c a u s e  microcracks. The phase trar.sfcrmation 
itself i n v a r i a b l y  i ntroduces large numbers of twin 
boundaries; whether these affect superconductivity is 
not yet established.

<iv) As far as o b t a i n i n g  a g o o d  superconductor is concerned, 
a dense material, free of voids 3nd cracks, is 
required. O n  the other hand, in a dense material the 
insertion of oxygen is limited by the bulk diffusion 
rate. A l t h o u g h  this d i f f u s i o n  rate is relatively high - 
as mentioned earlier, the m a t erials are fast-ion 
conductors - the rate does d i m inish exponentially with 
temperature. Thus, in o rder to ensure that the oxygen 
stoichiometry Is as close as possible to 7, it Is 
necessary to anneal b e l o w  about 400 C for long periods.
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(v) T h e r e  ma y  be a mor e  f u n d a mental l i m i t a t i o n  a s s o c i a t e d  
with g r a i n  boundaries a n d  free surfaces: the actual 
structure, Interatomic distances, o x y g e n  stoichiometry, 
and so on, at a b o u ndary or a s u r f a c e  will be s l i g h t l y  
different from those of bulk material. D e p e n d i n g  upon 
the crystallographic o r i e n t a t i o n  of the b o u ndary or 
surface, the structure c h a n g e  may he enha n c e  or 
d i m inish superconductivity.

<vi> There is the question of the c o m p a t i b i l i t y  of the
s u p e rconductor to other materials, as at the junction 
to o r d inary copper conductor, or at the interface 
between a thin fil m  and its substrate. Thi s  q u e s t i o n  
has both chemical and physical dimensions: Is there a 
chemical reaction or c h a n g e  in s t o i c h i o m e t r y ?  Does 
d i f f e rential thermal e x p a n s i o n  c a u s e  the 
s u p e r c o nducting material to crack? Is there good 
electrical contact b e t w e e n  the two m a terials? Are there 
electrochemical effects w h e n  c u r r e n 1 Is passed f r o m  one 
to the other?

<vil) Finally, there are s e e m i n g l y  mundane, but all- 
important, questions about the material: Its 
resi s t a n c e  to atmospheric corrosion, mechanical 
strength, brittleness, toxicity, and so on.

This list is c e r t a i n l y  long, and at first sight a depr e s s i n g  one. 
However, it is important to a p preciate that many of the problems 
have been e n c o u ntered before by the ceramicists. In other 
materials, appro a c h e s  have been found that o v e r c o m e  these 
problems, and n o w  a great deal of routine systematic work is 
being done on Y 3 a 3Cu-,0T, trying out those techniques, and if they 
do not succeed, exploring new ones.

For fundamental studies of YBa2C u 30 7 and (La-Sr)CuOA , single 
crystals are needed, m m  in size or larger. Over the last few

4
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months, several l a b o r a t o r i e s  have s u c c e e d e d  In g r o w i n g  such 
crystals, and rapid I m p r o v e m e n t s  h a v e  b e e n  m ade In their degree 
of perfection, m e a s u r e d  for example by the temperature and width 
of the s u p e r c o n d u c t i n g  transition.

When on e  looks In detail at potential applications, It becomes 
apparent that the n e w  materials will be needed In a nu m b e r  of 
different forms:

<a) Bulk p o l y c r y s t a l l i n e  material, with emphasis on clean 
grain b o u n d a r i e s  and high density, and perhaps also 
with some d e g r e e  ot texturing (preferential alignment 
of c r y s t a l l i t e  orientations). Th e  preparative routes 
that are b e i n g  investigated h e r e  ai m  at a c h i e v i n g  
h omogeneity on a microscopic s cale by chemical or 
physical means, rather than by mechanical m i x i n g  and 
grinding. T h e y  include: C o - p r e c i p l t a t l o n  f r o m  aqueous 
or organic s o l u t i o n  of Y, Ba and Cu salts, such as 
nitrates a n d  citrates. Fr e e z e  drylrg of such solutions. 
C o - d e c o m p o s i t i o n  of mixed Y, Ba and Cu organometalllcs. 
Mist pyrolysis, in which m i x e d  precursors are sprayed 
into a hot zone. These techniques aim also at producing 
the stoichi o m e t r i c  powder m i x t u r e  in very tine (sub­
micron) particles, so that the sintering stage can be 
accomplished at lower temperatures.

A novel tec h n i q u e  has been reported recently by Bell 
Laboratories, but full deta i l s  are not yet available. 
The stoichiometric mixture is heated and cooled 
extremely rapidly, and produces bulk material that has 
s i g n ificantly higher critical current density than that 
of other bulk materials (figure 3).

(b) Tapes, cables, wires and filaments for use as
conductor, probably with a substantial degree of 
crystallite texturing, and again having clean grain 
boundaries and high density. Preliminary attempts have
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b e e n  m a d «  to fabricate w i r e s  using m e t h o d s  ana l o g o u s  to 
t hose that hav e  been successful w i t h  Nb-Tl and Nb3Sn 
superconductors: Bulk YBa^-Cu^O,. material Is crushed, 
an d  then packed into a silver tube; the tube Is swaged 
d o w n  a n d  annealed in ox y g e n  (to which si l v e r  is 
p e r m e a b l e  at high temperatures). Most a t t empts have 
p r o d u c e d  w ire that is superconducting, but wit h  
e x t r e m e l y  l o w  critical currents; recently, however, 
Hitachi hav e  reported fabrication of a w i r e  with J.. 
g r e a t e r  than about 10*9 amps m - i . An a p p r o a c h  perhaps 
be t t e r  suited to the n e w  materials is to u s e  the 
p r o p r i e t a r y  processes that have been d e v e l o p e d  over 
m a n y  y e a r s  to make filaments of other ceramics; 
c e r t a i n l y  .his route Is b eing attempted, but little 
i n f o r m a t i o n  has been published.

<c> T h i n  f ilms for electronics and devices. Here, the many 
t e c h n i q u e s  that have been developed for s e m iconductors 
are b eing tried out: Co - e v a p o r a t i o n  of the metals and 
s i m u l t a n e o u s  oxidation. Sputt e r i n g  in all its forms. 
M o l e c u l a r  b eam epitaxy. Metal organic chemical vapour 
deposition. So far, it seems that one of the simplest 
techniques, laser ablation, works the best. Here, a 
h i g h  power laser pulse is used to ablate a traget of 
the correct composition, and the ablation products are 
c o n d e n s e d  on a nearby substrate. As with all thin film 
processes, the subsequent thermal and oxygen annealing 
of the thin film are crucial. St r o n t i u m  titanate 
appe a r s  to be the most satisfactory substrate, in that 
there is less chemical reaction with the film than 
o c c u r s  with quartz or sapphire substrates; however, the 
cost of strontium titanate, typically $200 per cm-2, is 
a m ajor problem.
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V 6 A P P L I C A T I O N S

V  6.1 B a c k g r o u n d

A l t h o u g h  It is important to re m a i n  open to totally n e w  ideas for 
a r e a s  in w h i c h  the n e w  s u p e r c o n d u c t o r s  may find a use, one should 
first of all examine those applications w here conventional 
s u p e r c o nductors have been considered, and in some cases, are 
a c t u a l l y  used. Thus, in relation to conventional superconductors, 
the n e w  materials may extend their range of application, or g i v e  
e n h a n c e d  performance, or they may move sup e r c o n d u c t i v i t y  into 
totally n e w  areas.

In the space of this short article, it is not p o s s i b l e  to 
d e s c r i b e  \ jtential a p p l i c a t i o n s  and their f e a s i bility in m o r e  
than brief outline; however, some more detailed stud i e s  are 
a v a i l a b l e  (see the B i b l i o g r a p h y ) , and as the material param e t e r s  
become better defined, the economic benefits can be costed more 
precisely.

Most of the media p u b l i c i t y  has been directed at the high current 
s ide of potential applications: magnets, g enerators and motors, 
transmission cables and so on. However, there is another, 
electronic, side to s u p e r c o n d u c t i v i t y  that has d e v eloped with 
conventional supe r c o n d u c t o r s  over the last 20 years, and in which 
the n e w  materials may well make an earlier contribution.

t 6.2 Power Applications
Here, the supercon d u c t i v e  property that is being used is that of 
b eing able to carry a high current, often in a high magnetic 
field, without dissipation. These applications c ame about only 
with the advent of the h i g h  critical field conventional 
supe r c o n d u c t o r s  such as Nb-Ti and Nb^Sn nearly thirty years ago. 
Almost all the c o m m e r c i a l l y  available superconductors are 
m a n u f a c t u r e d  from these two materials, and their performance has 
been Improved c o n s i derably over the years. Although there are 
c o m p o u n d s  such as Nb9 Ge that have higher T c 's, the metallurgical
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d i f f i c u l t i e s  of p r e p a r i n g  them In w i r e  or tape f o r m  h a v e  
Inhibited their use.

The reader will have n o t i c e d  froa T a b l e  II that the v e r y  h i g h  
critical fields of the alloy s u p e r c o n d u c t o r s  ar e  s o r e  than w o u l d  
be e x p ected from the elenental s u p e r c o n d u c t o r s  b y  s i m p l y  s c a l i n g  
wit h  T^; the reason Is that s o m ething rather dif f e r e n t  is 
happening In these mat e r i a l s  when a field Is applied, c o m p a r e d  
wit h  an elemental superconductor like Pb. Whe n  a m a g n e t i c  field 
Is a p p l i e d  to a superconductor (figure 5a), the m a g n e t i c  flux Is 
unable to penetrate the material because, as r e q u i r e d  by 
Faraday's L a w  of Electromagnetic Induction, scr e e n i n g  c u r r e n t s  
are set up In a surface layer that e x c l u d e  It. T h i s  flux 
e x clusion Is analogous to the skin effect In o r d i n a r y  conductors, 
w here altern a t i n g  magnetic fields and c u r r e n t s  a r e  c o n f i n e d  to 
the surf a c e  layer for the same reason; however, in a n  o r d i n a r y  
conductor, the finite resistance ca u s e s  the eddy c u r r e n t s  to 
decay w ith time, so that s t e a d y  c u r r e n t s  and fields do e v e n t u a l l y  
penetrate uniformly. In a superconductor, the e ddy currents, 
usually called s c r eening currents in this context, pers i s t  
i n d e f l n i t e l y .

T here Is one further subtle aspect of a superconductor: if the 
magnetic field we*~e to be applied b e f o r e  the material was cooled 
Into Its s u p e r c o n d u c t i n g  state (figure 5b), and the flux had 
penetrated fully, the eddy current argument would suggest that 
the flux w ould be stuck there when the material became 
superconducting. In fact, on going through the s u p e r c o n d u c t i n g  
transition, the magnetic flux Is e x p e l l e d .  In practice this flux 
expulsion, which Is k nown as the M e i s s n e r  effect, is never total, 
because Invariably the sample contains some defects that trap, or 
"pin", the flux lines. However, o bservation of at least a partial 
Meissner effect is an Important diagnostic test of true 
superconductlvlty.

Most elemental superconductors exclude magnetic flux f r o m  their 
interior until the applied field exce e d s  the critical field B c ; 
equally, they show a more or less c o m p l e t e  Meissner effect up to
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this fisld. T hsss ars known as T y p a  I suparconductors. H o w e v e r , 
tha tachnlcally usaful T y p a  II s u p a r c o n d u c t o r s  b a h a v a  ra t h a r  
d i f f e r e n t l y  (figure 6): at tha l o w e r  critical flald Be ,, m a g n e t i c  
flux begins to penetrate the m a t e r i a l  to form a m i x e d  s t a t e  ; It
Is only at a substantially h i g h e r  field, tha u pper critical field 

that reversion to the normal s t a t e  is complete. B e c a u s e  
exclusion of magnetic flux c osts m a g n e t o s t a t i c  e n e r g y  (the flux 
lines can be thought of as b e i n g  elastic, and as figure 5 shows, 
flux exclusion requires the flux l i n e s  to be stretched), the 
mixed state reduces this cost, an d  thereby allows a Typ e  II 
material to retain its s u p e r c o n d u c t i v i t y  to muc h  higher appl i e d  
fields. It has been w e l l - e s t a b l i s h e d  that both (La-Sr)CuO* and 
YBa^UsOr- are extreme T y p e  II superconductors, w h e r e  the r a t i o  of 
upper to lower critical fields is huge, 103 or more.

There are two Important c o n s e q u e n c e s  to the p e n e t r a t i o n  of 
magnetic flux inside the t e c h n i c a l l y  useful materials:

(1) When a current is carried, there is the usual Lorentz 
force between it and the m a g netic flux, as shown in 
figure 7. T his force a c t s  on the flux lines (in a 
direction perpendicular to bot h  field and current), 
and, unless pinned, the flu x  lines move. T h i s  process 
is known as flu x  creep. M o v i n g  flux, by F a r a d a y ' s  L a w  
of Induction, sets up a v o l t a g e  which appe a r s  a long the 
length of the conductor, a n d  so Introduces J o u l e  
heating. Flux pinning is strongest at l o w  temperatures, 
and flux moves much m o r e  f <rslly as the t emperature 
approaches T ^ , causing to drop sharply. It is this
effect which is probably responsible for the poor 
performance of YBa^Cu^O^ conductors at 77 K (figure 8).

A great deal of m a terials development effort has g one 
into the conventional s u p e r c o nductors Nb-Tl and Nb^Sn 
so as to maximise the d e n s i t y  of pinning cent r e s  for 
the flux, and thereby i n c r e a s e  Jc . Useful pinning 
centres Include fine-scale precipitates of other 
phases, grain boundaries, dislocation tangles, etc- The
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s u c c e s s  of this work in Imp r o v i n g  the c r i tical current 
d e n s i t y  as a f u n c t i o n  of magnetic f i e l d  is I n d i c a t e d  In 
figure 8. T h e  n e w  m a t erials are b e i n g  i m p r o v e d  rapi d l y  
too, but there Is still an e n o r m o u s  amount to be done 
b e f o r e  usable, r e l iable condu c t o r s  a r e  available. In 
particular, n o  specific flux p i n n i n g  c e n t r e s  h a v e  yet 
been Identified.

(11) Fo r  most power applications, AC o p e r a t i o n  Is g r e a t l y  to 
be p r e ferred to DC. Consider a T y p e  II conductor, In 
the c ase that the only magnetic field Is the s e lf-field 
(figure 9); e v e r y  half-cycle, the d i r e c t i o n  of the 
current, and therefore of the a s s o c i a t e d  field, 
reverses. T h e  magnetic flux p e n e t r a t e s  the material 
(because the s e l f - f i e l d  Is well a b o v e  B c l >, but Is 
p a r t i a l l y  pinned, and this again leads to dissipation. 
T h e s e  AC los s e s  have been a major b a r r i e r  to the use of 
conventional s u p e r c o nductors for AC purposes; some 
succ e s s  has b een obtained with c a b l e s  c o m posed of 
thousands of u l t r a - f i n e  filaments of m i c r o n  diameter, 
and a similar approach will be n e e d e d  w i t h  the n e w  
materials.

Let us then look at a r a n g e  of applications, p r o g r e s s i n g  from 
those that are t echnically least stringent, for example low 
current and l o w  applied field, to those that are most demanding:

11 6.2.1 F l u x  t r a n s f o r m e r s

All conventional transformers work only at AC; however, there are 
circu m s t a n c e s  w here DC transformers are useful, transforming 
signal rather than power, as Indicated in figure 10. Both current 
levels and applied magne t i c  fields are ex t r e m e l y  low, mllllAmps 
and mlll l T e s l a  or less. Signal transformers of this kind wound 
from conv e n t i o n a l  s u p e r c o n d u c t i n g  wires h ave been used 
e x t e n sively with SQUID sensors (see * 6.3.3); reliable flux
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transformers sad« f r o m  Y B a z C u s O ,  s h o u l d  s o o n  be available, an d  
c ould e x t e n d  the u s e f u l n e s s  of the S Q U I D  sensors themselves.

T 6 . 2 . 2  M a g n e t i c  S h i e l d i n g

It is som e t i m e s  I m portant to c o n t a i n  the s tray magnetic f i e l d  of 
l a r g e - s c a l e  magnetic machinery; for example. In h o s p i t a l s  the 
s tray fields of MRI s c a n n e r s  (see 1 5.2.5) can be a problem. Th e  
usual s o l ution Is to s u r r o u n d  the m a g n e t i c  source wit h  s h e e t s  of 
soft Iron, but the s h e e r  weight of the iron is a difficulty. Th e  
Idea of using thick films of the n e w  superconductor, perhaps 
plasma sprayed, as a magnetic shield, is an attractive one 
p a r t i c u l a r l y  If the m a g n e t i c  s o u r c e  a l r e a d y  has some c r yogenic 
c o o l i n g  associated w i t h  it. T h e  s h i e l d i n g  Is them p r o v i d e d  by the 
(persistent) s c r e e n i n g  c u r r e n t s  In the superconductor d e s c r i b e d  
earlier. Th e  c o n verse problem, of p r e v e n t i n g  stray fields 
entering, is also of l a boratory a n d  medical interest (see 
1 6.3.3); h e l i u m - c o o l e d  s u p e r c o n d u c t i n g  lead shields h ave q u i t e  
o f t e n  bee n  used In labo r a t o r y  work, a n d  are extremely effective. 
For these shielding applications, the a p p l i e d  fields are always 
rather low; the current densities o b v i o u s l y  depend upon the 
m a g n i t u d e  of the field to be s c r e e n e d  and the thickness of 
supe r c o n d u c t i n g  film. Thick films, p e r h a p s  on the order of 1 mm, 
might be needed.

V 6 .2.3 S u p e r c o n d u c t i n g  i n t e r c o n n e c t s

In hig h  speed digital devices, as used in very fast computers, 
the propogatlon d e l a y  along the c o n d u c t o r s  between chips is 
beg i n n i n g  to become important. As g a l l i u m  arsenide devices, which 
are several times faster than silicon, come into use (largely for 
m i l i t a r y  applications, w here the s ubstantial additional cost is 
not an inhibitory factor), this d e l a y  beco m e s  more significant.
In principle, some g a i n  can be a c h i e v e d  with superconducting 
Interconnects, and the prospect of c o o l i n g  the entire board to 
liquid nitrogen temperatures is q u i t e  an attractive one, as many 
s e m i conductor devices p e r f o r m  better at those temperatures. As
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far as tha s u p e r c o n d u c t o r  Is concarnad, tha appl l a d  f l a l d s  ara
m

n e g l i g i b l y  small, but tha currant d a nsltlas as usad at prasant 
w i t h  c o p p e r  I n t e r c o n n e c t s  are rather high, up to 10* A m p s  m~*.
Th a  p r o b l e m s  h e r e  ar e  likely to those a s sociated w ith 
m i c r o c i r c u i t  p r o c e s s i n g  and c o m p a t i b i l i t y  between materials, 
rather than the superconductor itself. It has to be b o r n e  in mind 
a lso that, if a cryogenic approach is envisaged, the use of 
o r d i n a r y  c o p p e r  con d u c t o r  at 77 K g i v e s  a substantial g a i n  anyway 
(figure 1).

1 6 . 2 . 4  H i g h  P o w e r  C a b l e s

D e t a i l e d  s t u d i e s  w e r e  mad e  in the 1960's and 70* s of the 
e c o n o m i c s  of u n d e r g r o u n d  s u p e r c o nducting cables, an d  p r o t o t y p e  
ca b l e s  w e r e  constructed. The cost a d v antage that ha s  to be 
c o n s i d e r e d  is that over undergound co p p e r  cables, p o s s i b l y  cooled 
w i t h  li q u i d  n i t r o g e n  to reduce their resistivity (figure 1). With 
con v e n t i o n a l  superconductors, some cost advantages w e r e  visi b l e  
for c a b l e s  of v e r y  h i g h  power, thousands of MV A, as m ight be used 
in the most d e n s e l y  industrialised regions. For s u p e r c o n d u c t o r s  
to be of interest, current densities of about 10* Amps m-2 are 
needed, and the magnetic fields are very modest, b e i n g  just the 
self-field. P e r h a p s  because of uncertainties about reliability, 
p a r t i c u l a r l y  u nder fault conditions, n o  s u p e r c o nducting c a b l e  has 
ever been put int o  service. G iven that the cost a d v a n t a g e  is 
likely to be n' more than marginal, that the range of a p p l i cation 
is limited, and that reliability is a prime factor in electrical 
d i s t r i b u t i o n  systems, the widespread incorporation of the ne w  
s u p e r c o n d u c t o r s  into electrical transmission would s e e m  to be a 
long way off.

o

V 6.2.5 G e n e r a t o r s  a n d  M o t o r s

A l arge nu m b e r  of motor and generator configurations, both AC and 
DC, hav e  been c o n s i d e r e d  for incorporation of (conventional) 
s u p e r c o n d u c t i n g  windings, almost always in a manner to d i m inish
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the AC c u r r a n t s  and flalds in tha s u p e r c o n d u c t o r  Itself. A  l arga 
(2 MW) l o w-speed DC motor w a s . c o n s t r u c t e d  In the 1960's, and 
v a r i o u s  prototype generators hav e  been, and are being built. T h e  
e l i m i n a t i o n  of resistive losses c o n t r i b u t e s  only a small e c o n o m i c  
gain; the Indirect advantages of the use of the superconductor, 
s u c h  as the greater compactness of the machine, and consequent 
s a v i n g s  in construction and I n f r a s t r u c t u r e  costs, appear to be 
the m o r e  Important. A great deal m o r e  n e e d s  to be known about the 
n e w  m a t e r i a l s  before the p r o s p e c t s  for their use In these 
m a c h i n e s  can be assessed reliably.

1  6 . 2 . 6  M a g n e t s

It Is c o nvenient to divide c o n s i d e r a t i o n  of magnets into l o w  a n d  
h i g h  precision, where the p r e c i s i o n  re f e r s  to h o w  tightly the 
f ield must be controlled. For l o w  fields ( < 1 Tesla) the 
c o m p e t i t i o n  Is with iron-cored electromagnets, for higher fields 
a n d  l arge volumes, it Is w i t h  watei— co o l e d  solenoids. The J o u l e  
h e a t i n g  In a solenoid of Interior vo l u m e  V nr* (Internal cross- 
s e c t i o n  times length) wound fro m  copper conductor and g e n e r a t i n g  
a f ield B T e s l a  is of order 10* B2 V Watts; not only must this 
e l ectrical power be paid for, but It must be removed effici e n t l y  
f r o m  all parts of the winding so as to prevent runaway ovei—  
heating.

L o w - p r e c i s i o n  m a g n e t s  Magnetic separation is a widely
d i s p e r s e d  Industrial technique, used to clean magnetic Impurities 
f r o m  other minerals (e.g., r a re-earth contaminants from china 
clays, pyrites from coal), and more s o p h isticated extensions have 
been considered, for example to separ a t i o n  of red cells (which 
ar e  weakly magnetic because of the iron they contain) from blood. 
P r o t o t y p e  machines using conventional s u perconductors have been 
built, and it would seem likely that this Is an area w h e r e  the 
n e w  m a terials could make an early Impact, once good wire or tape 
con d u c t o r  becomes available. The a d v a n t a g e s  of simplified cool i n g
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(V 4) w ould make It m u c h  easier to s i t e  m a g n a t l c  s a p a r a t o r s  closa 
to production sltas.

H i g h - p r e c i s i o n  m a g n e t s  It is in this a r e a  that the advant
of Nb-Ti and Nb3 Sn superconductors ha s  m a d e  Its mark. In r e s e a r c h  
laboratories, s t e a d y  fields above 1 T e s l a  are n o w  almost always 
obtained using h e l i u m - c o o l e d  supe r c o n d u c t i n g  solenoids, w hich are 
av a i l a b l e  for fields up to 15 Tesla, an d  an Internal b ore of 
100 m m  or more. At these high fields, an iron c o r e  m a k e s  almost 
no contribution to the field, and is n e v e r  used. N o t e  that a 
15 Tesla copper s o l e n o i d  of 100 mm bore w ould c o n s u m e  electrical 
power of order 1 MW, and so would requ i r e  also a m a j o r  investment 
in the c o o l i n g  circ u i t  (pumps, filters, deionisers, etc.). 
Furthermore, in a s o l e n o i d  the wind i n g  c a n  be t a i lored to provide 
a  v ery exacting s p e c i f i c a t i o n  on the field profile, for e x a m p l e  
unif o r m i t y  to 1 part per million or be t t e r  over small regions, 
w h i c h  is needed for the nuclear magnetic r e s o n a n c e  (NMR) magn e t s  
use d  in chemical and biochemical research. Frequently, these 
laboratory s u p e r c o n d u c t i n g  magnets are u sed in p e r s i s t e n t  m o d e  
(figure 11) by short- c i r c u i t i n g  the w i n d i n g  with a 
s u p e r c o nducting switch; this mode of o p e r a t i o n  not o n l y  saves on 
c o o l i n g  (because it eliminates the J o u l e  h e a t i n g  in the current 
leads, a n d  indeed e n a b l e s  these leads, w h i c h  conduct substantial 
amounts of heat into the cryogenic fluid, to be p h y s i c a l l y  
withdrawn), but it p r o v i d e s  a field of great stability, far 
grea t e r  than is a t t a i n a b l e  with a current supply.

T h e  greatest commercial impact of these s u p e r c o n d u c t i n g  magnets 
has been in the medical field, where s o lenoids of very large 
volume, up to 1 m  bore, and 1 to 2 T e s l a  field are use d  in whole- 
body nuclear magnetic resonance scanners, n o w  known as Magnetic 
Resonance Imaging (MRI) scanners; well over a thousand scanners 
hav e  been built world-wide. The other large-scale a p p l i c a t i o n  has 
been to magnets for particle accelerators, where p r o v i s i o n  for 
some s u perconducting magnets has been Included in m a c h i n e s  that 
ar e  n o w  being built.
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In most of these applications, wher-i the magnets a r e  b e i n g  use d  
In a sophisticated and comp l e x  environment, the a d v a n t a g e s  of 
liquid n i t rogen cooling over that w i t h  liquid h e l i u m  ar e  
marginal, so that YB a sC u 90 7 will not ea s i l y  repl a c e  N b - T l  and 
N b 9 Sn. T h e  higher critical f ield of the n e w  m a t e r i a l s  s u g g e s t s  
that they c ould be useful above the 15 T esla a v a i l a b l e  w i t h  
conventional superconducting magnets. However, at these h igh 
fields the Lorentz force betw e e n  the field and the c u r r e n t -  
c a r r y i n g  conductor becomes very large, so that the m e c h a n i c a l  
strength of the superconductor b e c o m e s  the limiting factor. So 
far, the mechanical behaviour of the n e w  supe r c o n d u c t o r s  is poor, 
and limits severely their p o s s i b l e  application.

This discu s s i o n  is Intended to be illu s t r a t i v e  of the p r o b l e m s  
that arise w ith applying superconductors, and of the l i k e l y  
Impact of the ne w  materials, rather than to be exhaustive. O ther 
applications that are being a s s e s s e d  Include: l a r g e - s c a l e  en e r g y  
storage systems, levitation m a g n e t s  for trains, power 
transformers, fault current l i m i t e r s  in electrical d i s t r i b u t i o n  
systems, and magnets for compact X - r a y  synchrotrons. Th e  reader 
is referred to the relevant papers listed in the B i b l i o g r a p h y  for 
further information.
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% 6 . 3 Electronic and quantum aspects of 
superconductivity and their application

As we shall discuss In T  7, s u p e r c o n d u c t i v i t y  Is m o r e  than simply 
the a b s e n c e  of elec t r i c a l  resistivity. O t h e r  facets of 
sup e r c o n d u c t i v i t y  h a v e  led to the de v e l o p m e n t  of several families
of devices.

1 6.3.1 G l a e v e r  J u n c t i o n s

To a limited degree, s u p e r c o n d u c t o r s  r e s e m b l e  semiconductors, in 
that their electron e n e r g y  s p e c t r u m  c o n t a i n s  an e n e r g y  g a p  A; the 
size of the gap Is r e l a t e d  to the s u p e r c o n d u c t i n g  t r ansition 
temperature .Te by th e  r e l a t i o n s h i p  2e 4  = a  kB T el w h e r e  e Is 
the e l ectronic charge, kB Is Bo l t z m a n n ' s  constant, and a  Is a 
number equal to about 4 for the c o n v e ntional superconductors, and 
perhaps as large as 8 for the h e w  materials. Thus, Jun c t i o n s  
between a s u p e r c o n d u c t o r  a n d  a normal metal, or b e t w e e n  two 
pieces of superconductor, s e parated by a thin layer ( a couple of 
nm) of insulator, s h o w  h i g h l y  non-linear v o l t a g e -current 
char a c t e r i s t i c s  (figure 12a). With conventional superconductors, 
these Glae v e r  J u n ctions h a v e  been known for nearly 30 years. For 
example, a Nb to Nb Junction, with a T c of 9 K, has a gap of 
3xl0_:3 eV (electron Volts), which corres p o n d s  in terms of photon 
energy to frequencies on the order of 500 GHz. Consequently, the 
n o n-linear ch a r a c t e r i s t i c  of these Junctions can be used for 
det e c t i o n  and mixing of micro w a v e s  up to similar frequencies, 
that is, to w a v e l e n g t h s  of 1 mm or less. Where low noise is at a 
premium, as in radio astronomy, these Junctions have been much 
used.

A Glaever junction b a s e d  on YBa^Cu-^O-r. should, because of the much 
larger ene r g y  gap, be u s a b l e  to frequencies on the order of 
10 THz, or wavelengths of 100 y m  or less, i.e. the fai— infra-red 
region of the spectrum. Th e  applications would be in radio- 
astronomy, and, to a far larger extent, in military 
communications, sensors, etc. Whether a useful Glaever junction 
can be manufactured f r o m  the n e w  materials is still unknown.
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1  6 . 3 . 2 Josephson Junctions

O n e  of the most remar k a b l e  f e a tures of s u p e r c o n d u c t i v i t y  Is that, 
as J o s e p h s o n  p r e d i c t e d  In 1962 (work for which h e  was later 
awar d e d  a Nobel P r i c e ) , a s u p e r c u r r e n t  can flo w  through the 
Insulator of a superconductor— s u p e r c o n d u c t o r  Giae v e r  J u n c t i o n  
(figure 12a), a l t h o u g h  the m a g n i t u d e  of the critical curr e n t  Is 
very small, typically pAmps. S i m i l a r  behaviour Is o b s e r v e d  If the 
two pieces of superco n d u c t o r  are c o n n e c t e d  through a n a r r o w  
bridge, a. m i c r o n  or less in width, of superconductor. O n e  
Important a p p l i c a t i o n  uses the p o s s i b i l i t y  of feeding a Jos e p h s o n  
J u n c t i o n  w i t h  a constant current, and s w i t c h i n g  It f r o m  the zero 
v o l t a g e  s t a t e  to the dissip a t i v e  state. With c o n v entional 
superconductors, this s w itching c a n  be very fast and invo l v e  l o w  
power dissipation. On this basis, d u r i n g  the 1970's I B M  developed 
a s u p e r c o n d u c t i n g  computer, a l t h o u g h  it was a b a ndoned a f e w  years 
ago b e c a u s e  of the d ifficulty of e n s u r i n g  reliab i l i t y  of vast 
n u m b e r s  of Junctions. Crude J o s e p h s o n  Junctions have been made 
wit h  the n e w  materials, but beca u s e  of fabrication d i f f i culties 
and o ther m o r e  fundamental reasons, It seems unlikely that they 
will be used In logic devices for a long time to come.

When a J o s e p h s o n  Junction Is Irra d i a t e d  with electrom a g n e t i c  
r a d i a t i o n  of f r equency v, the volt a g e - c u r r e n t  ch a r a c t e r i s t i c  
d e v elops str u c t u r e  (figure 12b) at v o l t a g e  Intervals SV given 
pr e c i s e l y  by the J o s ephson rel a t i o n s h i p  h v = n 2 e 5V, w here h 
Is P l a n c k ’s constant and n Is an Integer; numerically, the 
r e l a t i o n s h i p  co r r e s p o n d s  to 484 MHz irradiation g i v i n g  structure 
at 1 pVolt Intervals. Because freque n c i e s  are easy to measure 
with high precision, this AC J o s e p h s o n  effect is now utilised in 
many national s t andards laboratories to provide a voltage 
standard. G i v e n  some development of Junction fabrication with 
Y B a 3Cu^,07 , we can anticipate that such voltage s t andards will 
be c o m e  rather mor e  widely available and portable; however, there 
s eems to be little need for them ever to become commonplace.
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1  6 . 3 . 3  S u p e r c o n d u c t i n g  Q U a n t u a  I n t e r f e r e n c e  D e v i c e s  ~

S Q U I D s

O n e  further f e a t u r e  of s u p e r c onductivity that r e f l e c t s  Its 
q u a n t u m  n a t u r e  is that a ring of s u p erconductor threaded by 
m a g n e t i c  flux forces that flux to be q u a n t i s e d  (magnetic flux Is 
field times area, or m o r e  strictly, the Integral of the field 
over the area) In units of h/2e, which is equivalent to 
2 . 0 7 x l 0 _i s  Weber. The e a r t h ’s magnetic field is about lO- '* Tesla, 
so that the f l u x  q u a n t u m  corresponds to the earth's field through 
a loo p  of a r e a  2xl0-11 m*, or soy 5 urn in diameter. 
S u p e r c o n d u c t i n g  devices, SQUIDs, have b e e n  d e v e l o p e d  over the 
last 20 years, mostly u s i n g  n i o b i u m  as the superconductor, that 
a l l o w  this q u a n t i z a t i o n  to be used In measur e m e n t  (figure 13). In 
principle, S Q U I D s  could be used to monitor the ambient magnetic 
field, but In practice they are constr u c t e d  inside a magnetic 
shield, and the signal is fed Into a small coll that alters the 
m a g n e t i c  flux see n  by the s u perconducting ring. SQUIDs can be 
use d  to m o n i t o r  minute changes in magnetic field, electrical 
current, voltages, etc. For fifteen or m ore years, SQUIDs have 
bee n  a v a i l a b l e  commercially, and no w  cost, c o m plete w ith the 
a s s o c i a t e d  e l e c t r o n i c s  55,000 to 510,000.

A r e a s  in w h i c h  SQUID sens o r s  have found applic a t i o n  include: 
U l t r a s e n s i t i v e  l a boratory measurements of electrical and magnetic 
properties. G e o m a g n e t i c  surveying for minerals, arch ological 
searches, and (by the military) submarine detection. On e  rapidly 
d e v e l o p i n g  f ield is biomagnetism, where the magnetic fields 
a s s o c i a t e d  w i t h  muscular and nervous activity are extremely 
small, but l a r g e  enough to be monitored using SQUIDs (figure 11). 
T h i s  t e c h n i q u e  co m p l e m e n t s  the monitoring of physiological 
e l e c t r i c  fields, as in an electro c a r d i o g r a m  (ECG) or lr. an 
e l e c t r o e n c e p h a l o g r a m  ( E E G ) , by providing a magneto c a r d i o g r a m  
(MCG) or a m a g n e t o e n c e p h a l o g r a m  (MEG), and may be particularly 
useful for c e r t a i n  kinds of neurological disorder, such as 
epilepsy.
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SQUID devi c e s  utilising the n e w  s u p e r c o n d u c t o r s  and o p e r a t i n g  at 
liquid n i t rogen temperatures have a l r e a d y  been demonstrated, and 
several g r o u p s  are a t t e m p t i n g  to p r o d u c e  r e l iable S Q U I D s  using 
thin f i l m  techniques. Here again, the o u t s t a n d i n g  p r o blems are 
m a terials ones. Because of the higher o p e r a t i n g  temperature, 
YBa^Cu^O^. SQUIDs have a n o i s e  level s i g n i f i c a n t l y  g r e a t e r  than 
that of SQUIDs constructed from c o n v e ntional superconductors, but 
they are of course still extremely sensitive. The main advantages 
of liquid nitrogen temperature op e r a t i o n  are these of 
portability, so one can forsee that a r apid expansion In the use 
of SQ U I D s  for magneltlc surveying. In s o p h i s t i c a t e d  medical 
applications, such as magnetoencephalography, sensit i v i t y  really 
Is at a p r e m i u m  (figure 14) and the a d ditional cost of liquid 
h e l i u m  Is a less Important factor, so that ceramic S Q U I D s  may not 
be useful here. However, hybrid systems with a YBa2C u 3 0 7 flux 
transformer (see 1 6.2.1) having one end at 77 K, and the other 
end coup l e d  Into a n l o b u m  SQUID at 4 K m a y  have advantages: the 
relaxed cooling c onstraints at 77 K m e a n  a much smaller thickness 
of thermal shielding, and by allowing a closer approach to the 
magnetic source, help to locate its p o s i t i o n  more precisely.

In almost all situations where SQUIDs are used, their extreme 
sensit i v i t y  to magnetic fields requires that they be carefully 
screened from ambient field fluctuations ( which arise from power 
lines, electrical machinery, passing vehicles, e t c . , and 
typically have magnitude 10~7 Tesla). Magnetic screening with 
superconductors, as d e scribed in If 6.2.2, is often used, and the 
n e w  materials could play a role here.

1 7 SUPERCONDUCTORS, PAST, PRESENT AND FUTURE
Are we about to see r o o m  temperature superconductors? Obviously, 
if we were to do so, the economic i m p l i cations would be enormous. 
However, a Tc of 300 K w ould be insufficient, because to obtain 
r e asonable performance, the operating temperature should be no 
more than about 0.7 T,_ (see * 4); thus for room temperature
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applications, a Tc above about 400 K w ould be required. We 
d i s c u s s  h e r e  what is known about the m e c h a n i s m  of supei—  
c o n d u c t o r s  and what limits the tran s i t i o n  temperature Te .

It took m ore than forty years f r o m  the discovery of 
su p e r c o n d u c t i v i t y  to understand it at a microscopic level. It 
b e c a m e  c lear gra d u a l l y  that the s u p e r c o nducting s t a t e  Is a 
distinct phase in the true thermodynamic sense (as solids, 
liquids and gases are distinct p h a s e s ) , and that the conduction 
el e c t r o n s  that carry the electrical current in a normal metal 
c o n d e n s e  Into a mor e  ordered s t a t e  In the superconductor. Th e  
a b i l i t y  of the condu c t i o n  electrons to move through the crystal 
l a t t i c e  without d i s s i pation Is a r e flection of their o r d e r e d  
state.

Th e  effect of temperature Is always to cause disorder, and when 
the thermal fluctuations are large enough, there is a phase 
trans i t i o n  from the m o r e  ordered state, e.g. a solid, to a less 
o r d e r e d  one, e.g. a liquid. The stronger the b o n d i n g  in the 
o r d e r e d  state, the higher the temperature of the transition. Thus 
s t r o n g l y  bonded solids, such as diamond, melt at muc h  higher 
t e m p e ratures than w e a k l y  bonded materials, such as ice. In the 
c ase of a conventional superconductor, the "glue" that keeps the 
c o n d u c t i o n  electrons together in the superconducting state is an 
intera c t i o n  between those electrons and the vibrations of the 
atoms in the crystal. This is the electron-phonon i n t e r action of 
the Bardeen-Coopei— Schrieffer (generally abbreviated to BCS) 
theory of 1957, and Is the same interaction that is responsible 
for the resistivity of a metal at ambient temperatures; hence t.ie 
c o r r e l a t i o n  (see If 2) between high resistivity at r oom 
temperature and a hiph superconducting transition temperature.
One of the vital pieces of direct evidence that poin t e d  to the 
Involvement of atomic vibrations In conventional 
sup e r c o n d u c t i v i t y  was the Isotope effect: In general, different 
Isoto p e s  do have almost identical chemical and physical 
properties; however, It was discovered 40 years ago that the 
s u p e r c o n d u c t i n g  transition temperatures d o  depend on Isotopic
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The electronic structure of normal me t a l s  Is n o w  u n d e r s t o o d  in 
great detail, as is the n a t u r e  of the lattice vibrations, and 
also the basis of the e l e c t r o n - p h o n o n  interaction. Thus, in 
principle, and to a large degree in practice, the s u p e r c o n d u c t i n g  
T«. can be calculated for an element or a c o m p o u n d  w i t h  a fair 
degree of accuracy. Conversely, the q u e s t i o n  can be posed, and 
answered, of what is the m a x i m u m  a t t a i n a b l e  IV with the BCS 
electron - p h o n o n  mechanism; the an s w e r  s eems to be not m u c h  above 
30 K. Thus the discovery b y  B e d n o r z  an d  Mtlller of 
s uperconductivity at 35 K in (La— SrlCuO,* raised the q u e s t i o n  
immediately of whether the sam e  m e c h a n i s m  was at work as in 
conventional superconductors; the t r a n s i t i o n  t emperature of 92 K 
in Y B a 2C u 30 7 gav e  even g r e a t e r  s t i m u l u s  to the search for other 
mechanisms. However, the s t r u c t u r e  of these oxides (figure 3> 
suggests that the c o nduction e l e c t r o n s  are con c e n t r a t e d  around 
the Cu-0 bonds, so that there m ight be an e x c e ptionally large 
e l ectron-phonon coupling inv o l v i n g  the vibra t i o n s  of the 0 atoms 
(at any g iven temperature, the lighter the ato m  the larger the 
amplitude of vibration; in both (La-Sr)CuO* and Y B a =C u 3 0 7 , the 0 
atoms are four times lighter than the next heaviest atoms). Thus, 
a more direct test of the rel e v a n c e  of the elec t r o n - p h o n o n  
m e c h a n i s m  was provided by a search for the Isotope effect in the 
new materials. It turns out that when "*0 is s ubstituted for '*0 
in ( La-Sr>CuO*, Tc is lowered, but three or four times less than 
would be predicted by the BCS theory. In YBa2C u 30 7 , the effect is 
proportionately even smaller. The present situation therefore is 
that most physicists beli e v e  that som e  mec h a n i s m  other than the 
BCS interaction has to h ave the p rime responsibility for 
superconductivity in the n e w  materials, perhaps one involving 
electron-electron Interactions of the kind that in many metal 
oxides are responsible for p r o d u c i n g  magnetic ordering.
Certainly, the chemistry of the n e w  mat e r i a l s  is Important, and a

mass M to„. For a given element, separated Isotopes have T..'s
that scale as SM±on.
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number of s u g g e s t i o n s  hav e  been m a d e  as to w h y  it Is that c o p p e r  

oxides are the cruc i a l  component.

Th e  search for m a t e r i a l s  with yet h i g h e r  *s has b een g o i n g  on 
for a year or so; s o m e  of it totally empirical, and at the lowest 
level c o n s i s t i n g  of n o  more than p r e p a r i n g  h u n d r e d s  of mixtures 
of metal oxides. O t h e r  work Is be t t e r  focussed, l o o k i n g  perhaps 
for oxides w here the o x y g e n  environment of the co p p e r  has some 
particular configuration, or fol l o w i n g  some other lin e  of 
reasoning.

What about the r e p o r t s  of higher trans i t i o n  t e m p e r a t u r e s ?  They 
are too n u m e r o u s  a n d  too well d o c u m e n t e d  to be s i m p l y  dismissed. 
However, ail the r e p o r t s  share several features: T h e  transition 
that is o b s erved r e f e r s  amost a l w a y s  to a su d d e n  d r o p  In 
resistance, but b e c a u s e  the m e a s u r i n g  currents are small 
(otherwise the p h e n o m e n a  disappear), the r e s i s t i v i t y  c o u l d  still 
be q uite large. No labor a t o r y  has r e p orted o b s e r v a t i o n  of a true 
Meissner effect (see U 6.2), w hich is the acid test of 
superconductivity, at any temperature above about 95 K. The 
effects tend to be transient, l a s t i n g  only for a few h o u r s  or 
days, and difficult to reproduce e ven wi t h i n  a batch of samples. 
In general, the s a m p l e s  that s h o w  these effects are of rather 
poor quality, perh a p s  deviating f r o m  the Intended c o m p o s i t i o n  or 
c o ntaining c o n t a m i n a n t  phases. Thus, there Is no e v i d e n c e  so far 
of true, bulk, s u p e r c o n d u c t i v i t y  at any higher t e m p e r a t u r e  than 
about 95 K. Perh a p s  what has been observed is a s s o c i a t e d  with 
grain boundaries or w i t h  other phases, with a trans i t i o n  in that 
material from a r e s i s t i v e  state to one of much lower resistivity, 
but which is not n e c e s s a r i l y  superconducting.

Because we do not yet have any micros c o p i c  theory of 
supercon d u c t i v i t y  In the ne w  m a t e r i a l s  that Is totally 
convincing, there are no clear sig n p o s t s  of the aven u e s  that 
should be explored. We can be almost sure that In 1986 Bednorz 
and Müller did Indeed discover an example of a n e w  m e c h a n i s m  of 
superconductivity; wit h i n  a matter of weeks only, and without 
any substantial c l u e s  to the m e c h a n i s m  Involved, T c had been
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raised to 92 K. It w o u l d  indeed be u n k i n d  of Nature, but not 
Impossible, if this w e r e  to be the h i g h e s t  trans i t i o n  t emperature 

that will ever be.

Of course, we cannot preclude the p o s s i b i l i t y  that yet another 
n e w  c lass of s u p e r c o n d u c t o r s  will be d i s c o v e r e d  w i t h  even higher 
T«'s; but unl e s s  that happens, almost all the s c i e n t i f i c  effort 
will be d e v o t e d  toward u n d e r s t a n d i n g  the ma t e r i a l s  we n o w  have, 
and to the slow, unglamorous, process of learning h o w  to mak e  
them into useful condu c t o r s  and devices.

V 8 CONCLUSIONS
The n e w  o x i d e  supercon d u c t o r s  Y B a 2Cu-s07 and (La-Sr)CuO« do 
represent a m ajor leap forward for the s c i e n c e  of 
superconductivity. It is one that is not well u n d e r s t o o d  
microscopically, and that lack of u n d e r s t a n d i n g  perh a p s  Inhibits 
the develo p m e n t  of s u p e r c o nductors w i t h  transition temperatures 
signif i c a n t l y  above 90 K.

The s c o p e  for a p p l i cations of the n e w l y  d i s c o v e r e d  m a terials is 
c o n s t rained by the difficulties of m a k i n g  them in s u i t a b l e  form. 
Certainly, the earliest a p p l i cations will be to r e l a t i v e l y  simple 
devices that do not need to carry large currents. Whether the 
oxide s u p e r c o n d u c t o r s  will ever be used to replace conventional 
conductors or superconductors in electrical machines, magnets and 
so on, is a q u e s t i o n  that awaits the s o l u t i o n  of major problems 
in mat e r i a l s  preparation.
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C. Kittel I n t r o d u c t i o n  t o  S o l i d  S t a t e  P h y s i c s

J ohn Wiley; M e w  York.

More d e t a i l e d  d i s c u s s i o n s  are provided in a number of graduate- 
level texts, including:

M. T l n k h a m  I n t r o d u c t i o n  t o  S u p e r c o n d u c t i v i t y

McGraw-Hill; N e w  York <1975).

D .  R. T i l l e y  S u p e r f l u i d i t y  a n d  S u p e r c o n d u c t i v i t y

9t J . T i l l e y  A d a m  Hllger; Bristol <1986).

A h i g h l y  readable and conc i s e  survey of s u p e r c o n d u c t i v i t y  in 
r e l ation to the n e w  m a t e r i a l s  is:

P. Campbell A  s u p e r c o n d u c t i v i t y  p r i m e r

Nature, 330. 21-24 <1987).

The B r i t i s h  Journal N a t u r e  and the US Journal S c i e n c e  have both 
followed d e v e l o p m e n t s  closely, and beca u s e  they are published 
weekly, they provide up-to-date and Informed news in their 
editorial pages. T h e y  publish also some reports of research 
conferences, and a number of technical papers of more general 
i n t e r e s t .

More than a thousand scientific papers have already been 
p u blished on the n e w  superconductors, in Journals such as 
P h y s i c a l  R e v i e w  L e t t e r s ,  P h y s i c a l  R e v i e w  B ,  J a p a n e s e  J o u r n a l  o f  

P h y s i c s ,  Z e i  t s c h r i  f t  f U r  P h y s i k ,  J o u r n a l  d e  P h y s i q u e ,  J o u r n a l  o f  

P h y s i c s  C A P ,  S o l i d  S t a t e  C o m m u n i c a t i o n s .
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Recant c o n f e r e n c e  proceedings that c o n t a i n  large n u m b e r s  of 
relevant papers Include:

P r o c e e d i n g s  o f  t h e  1 8 t h .  I n t e r n a t i o n a l  C o n f e r e n c e  o n  L o w  

T e m p e r a t u r e  P h y s i c s ,  p u blished as a supplement to J a p a n e s e  

J o u r n a l  o f  A p p l i e d  P h y s i c s  26 (1387).

N o v e l  S u p e r c o n d u c t o r s ,  ed. S. A. Wolf & V.Z. Kresln. P l e n u m  Press; 
N e w  York <1987).

A s  far as applications are concerned, a number of r e p o r t s  have 
bee n  w r i t t e n  In recent months, p r i m a r i l y  directed at power 
e n g i n e e r i n g  aspects. Naturally, as the available m a t e r i a l s  
Improve, or difficulties emerge, their conclusions will need to 
be reconsidered.

F. Schauer, F.P. JUngst, P. Komarek and W. Maurer
A s s e s s m e n t  o f  P o t e n t i a l  A d v a n t a g e s  o f  H i g h  - S u p e r c o n d u c t o r s

f o r  T e c h n i c a l  A p p l i c a t i o n  o f  S u p e r c o n d u c t i v i t y

Kernfttrschungs KarlsrUhe (W. Germany) Report No. KfK 4308
(September 1987)

C. V è r i é  L e s  N o u v e a x  S u p r a c o n d u c t e u r s  e t  l e u r s  i m p a c t s

t e c h n o l o g i q u e s  e t  e c o n o m i q u e s  p o t e n t i e l s  

OEC D  Report No. DSTI/SPR/87.30, Paris (September 1387)

J.K. H u l m  et al.
R e s e a r c h  B r i e f i n g  o n  H i g h - T e m p e r a t u r e  S u p e r c o n d u c t i v i t y  

C o m m i t t e e  on Science, Engineering and Public Policy; National 
Acad e m y  of Sciences, National A c a d e m y  of Engineering, and 
Ins t i t u t e  of Medicine. Washington, D.C., U.S.A. (September 1987)
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TABLE I

COMMON CRYOGENIC O A S E S

Ga s  B o l l i n g  point (at 1 atmosphere)

C X

H e l i u m  -259 4.2

H y d rogen -253 20

N i t r o g e n  -196 77

Oxygen -183 90
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TABLE II

TYPI C A L  S U P E R C O N D U C T O R S

“f*
k 3 -

K T esla

Metallic e l e a e n t s

w 0.012 1x10— *

Zn 0 .88 5.3x10-^

A1 1. 18 1.0x10-=*

Sn 3.72 3 . l x 10-2

Hg 4. 15 4. Ixl0~=*

Pb 7.2 S . O x l O - 2

Nb 9.2 2 . 0 x 1 0 - ’

Al l o y s  a n d I n t e rmetallie c o m pounds

Nb-Ti 9 14

N b 3 Sn 18 24

N b 3 Ge 23 38

Metal o x i d e s

Ba <Pb-Bi >03 13 6

<La-Sr)CuOA 35 50?

Y B a 2C u 3OT 92 100?

T h e  l i s t e d  c r i t i c a l  f i e l d  i s  t h e  m a x i m u m  f i e l d ,  f o r  T  <  TV, a t  

w h i c h  s u p e r c o n d u c t i v i t y  i s  s u s t a i n e d .  I n  T y p e  I I  s u p e r c o n d u c t o r s ,  

i t  i s  t h e  u p p e r  c r i t i c a l  f i e l d  B . z S .
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F I G U R E  C A P T I O N S

Fig u r e  1. T h e  electrical r e s i s t i v i t y  of c o p p e r  b e l o w
r o o m  t e m p e r a t u r e  (300 K > . Not e  that at liquid n i t r o g e n  
temperatures (77 K ) , the r e s i s t i v i t y  has fallen by a factor of 
about 8. At the lowest temperatures, the residual r e s i s t i v i t y  
Pr-Mio Is c o n t r o l l e d  by the level of Impurities; In c o m m e r c i a l  
h i g h - p u r i t y  c o p p e r  It Is less than the r oom t e m p e rature v a l u e  by 
a factor of t y p ically ICO. O t h e r  pure xetals such as aluminium, 
•zinc, silver, etc. be h a v e  similarly.

Fig u r e  2. T h e  s u p e r c o n d u c t i n g  trans i t i o n  in lead.
N o t i c e  that the d i f f e r e n c e  b e t w e e n  a relat i v e l y  p ure s a m p l e  (a) 
and an Imp u r e  o n e  (b) Is In the m a g n i t u d e  of p r n t d ; the 
Impurities do not c o n t r i b u t e  any resist i v i t y  In the 

s u p e r c o n d u c t i n g  state, a l t h o u g h  they may affect the t r a n s i t i o n  
temperature.

Figure 3. T h e  crystal s t ructure of the o xide supei—
c o n ductor Y B a 2C u 3 0 7 . T h e  material loses oxygen p r e f e r e n t i a l l y  
from the a r r o w e d  s i t e s  when h e a t e d  above about 400 C. Material 
that has less than about 6.5 a t o m s  of oxygen per formula unit 
never b e c o m e s  superconducting.

Figure 4. T h e  oxygen stoic h i o m e t r y  x of Y B a =Cu-,0.„ as a
function of temperature; the d ata presented are for 1 a t m o s p h e r e  
oxygen pressure. N o t i c e  that at typical s i n tering t e m p e ratures of 
800 C or more, the material Is In Its tetragonal form, and is 
highly def i c i e n t  in oxygen.

Figure 5. (a) A s u p erconductor (shaded) excludes flux
when a magnetic field Is applied, as would a perfect conductor, 
but also (b) a material that Is cooled In a magnetic field and 
t h a n  becomes superconducting, ex p e l s  flux, which a perfect 
conductor w o u l d  not do. This flux expulsion from a s u p e r c o n d u c t o r  
Is known as the M e i s s n e r  effect, and Is a key test of true supei—  
conductivity.
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F i g u r e  6. T ype II s u p e r c o n d u c t o r s  s h o w  a m o r e
c o m p l i c a t e d  behaviour In a magnetic field. At l o w  fields, they 
e x c l u d e  flux, as do the T y p e  I s u p e r c o n d u c t o r s  of figure 5. 
However, above the lower critical field B c1 flux starts to 
penetrate; this mixed s tate persists to the upper critical field 
Bc5:, w h e r e  supercon d u c t i v i t y  Is destroyed. In the c o m m e rcially 
useful conventional superconductors, suc h  as Nb-Ti and N b 3 Sn,
Is about 100 times grea t e r  than Bc ,.

Fi g u r e  7. Current J flowing through a T y p e  II super­
con d u c t o r  in a magnetic field B. T h e r e  Is a Lorentz force F on 
the flux lines, and If they move, energy is dissipated.

F i g u r e  8. Critical current d e nsities J c in YBa2C u 30,.
in dif f e r e n t  forms. At 4 K, Je Is e x t r e m e l y  h i g h  In single 
c r y s t a l s  and thin films, but at 77 K JV In bulk material Is much 
smaller, and drops rapidly wit h  a p p l i e d  field. Th e  best materials 
r e p o r t e d  so far are those from Bell and Hitachi. For comparison, 
the pe r f o r m a n c e  of the conventional supe r c o n d u c t o r s  Nb-Ti and 
N b 3Sn at 4 K is shown, and also that of o r d inary copper conductor 
at r o o m  temperature.

F i g u r e  9. Magnetic flux Inside a Typ e  II superconductor
c a r r y i n g  an AC current. F lux motion again leads to d'ssipation.

Fi g u r e  10. Schematic supe r c o n d u c t i n g  flux transformer.
C h a n g e s  In field In the prim a r y  induce a persistent current which 
alters the field In the secondary. The primary and s e condary can 
be well separated, and their areas and number of turns optimised 
to suit the specific application.

Fi g u r e  11. S u p e r c o n d u c t i n g  magnets are often equipped
with superconducting switches. To energise the magnet, the short- 
circuit Is heated above Its supe r c o n d u c t i n g  transition 
temperature, so that current fro m  the power supply passes through 
the magnet winding. When the required current has been reached, 
w hich may be 100 Amps or more, the short circuit Is allowed to 
cool and become superconducting. The current then circulates 
through an entirely supercon d u c t i n g  circuit, and the power supply
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can be disconnected; furthermore, the copper leads (which conduct 
a lot of heat Into the cryogen) can be physically removed, so as 
to cut cryogenic losses.

Figure 12. (a) Th e  c u r r e n t - v o l t a g e  characteristic of a
J u n ction between twc pieces of superconductor, s e parated by a 
thin layer of I n s u l a t i n g  oxide. At zero voltage, a small supei—  
current can flow. Cb) W hen the Junction is irradiated wit h  
microwaves, steps appear at regular and very precisely known 
voltage intervals 5V: this phenomenon is n o w  used as the basis of 
national voltage standards.

Fi g u r e  13. Pri n c i p l e  of a SQUID. The n i o b i u m  rin g  .with
Its J u n c t i o n  r e s p o n d s  In a periodic fash i o n  to the m a g netic flux 
coup l e d  to It by the signal coil. T h e  flux period Is only 
2 . 0 7 x l 0 - 1 * Webers, m a k i n g  the device e x tremely sensitive. The 
magnetic shield p r o t e c t s  the SQUID f r o m  extraneous magnetic 

disturbances.

Fig u r e  14. Th e  magnitudes of physiological magnetic
fields. Notice that they are much smaller than typical ambient 
fluctuations, and cannot be seen by e ven the most s e n sitive non- 
s u p e r c o n d u c t i n g  device, which is a flux-gate magnetometer.
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