

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

16667

Distr. RESTRICTED

IO/R.66 27 January 1988

ENGLISH

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

ASSISTANCE TO THE EXPERIMENTAL CENTRE FOR APPLIED ENZYMOLOGY AND MICROBIOLOGY (ECARM)

UC/MON/87/126

MONGOLIA

<u>Technical report: Technological Profiles for Manufacture</u> of Biochemical Products*

Prepared for the Government of the Mongolian People's Republic by the United Nations Industrial Development Organization

Based on the work of Mr. Fryda Jan. Mechanical and Plant Engineer and Mr. Vavra Vladimir, Expert Technologist

Backstopping Officer: Dr. Zoltan Csizer, Chemical Industries Branch

276

* This document has been reproduced without formal editing.

V.88-20793

LIST OF CONTENTS

Introduction		3
Immediate Activities		4
Comments and recommendations		6
List of abbreviations used in tech	nnical work	9
Technical Part:		
A-01 Production of Peptone	- Technology	10
	- Specifications	12
	- Lay-out scheme	15
A-02 Production of Pepsin	- Technology	16
	- Specifications	17
	- Lay-out scheme	19
A-03 Production of Pancypsin,		
Trypsin and Chymotrypsin	- Technology	20
•• ••	- Specifications	22
	- Lay-out scheme	24
A-04 Production of Cholesterol	- Technology	25
	- Specifications	27
	- Lay-out scheme	29
A-05 Production of Pancreatin	- Technology	30
	- Specifications	31
	- Lay-out scheme	32
A-06 Production of Blood hydrolyz	ate- Technology	33
•••	- Specifications	34
	- Lay-out scheme	35
A-11 Solvent regeneration plant	- Technology	36
	- Specifications	37
	- Lay-out scheme	38
A-12 Production of demi-water	- Technology	39
	- Specifications	40
	- Lev-out scheme	41
	- Lay-out scheme	41

1

•

-

-

-

A-13 Engine room for steam,		
condensate and water supply	- Description	42
	- Specifications	43
	- Lay-out scheme	44
A-14 Neutralization plant	- Technology	45
	- Specifications	46
	- Lay-out scheme	47
A-15 Store for inflammable solvents	- Description	48
	- Specifications	49
	- Lay-out scheme	50
A-16 Central pressure air and		
central vacuum unit	- Description	51
	- Specifications	52
	- Lay-out scheme	53
A-17 Cooling plant	- Specifications	54
	- Lay-out scheme	55
A-18 Transformer station	- Description	56
	- Specifications	57
A-19 Ventilation in Ex-rooms		
and air-conditioner	- Description	58
	- Specifications	59
	- Lay-out schemes	61
A-20 In-process transportation	- Specifications	63
Annex I Summary of energies		64
Annex II Summary of investments		65

PROJECT

UC/MON/87/126

to any new technologies, developed at later stages.

Introduction

The work is a result of a logical continuation of the Project DP/MON/82/002"Assistance to the Experimental Centre of Enzymology and Microbiology /ECAEM/".During implementation of this Project it became quite clear, that no further development could be made in the present facilities of EACEM and it was decided by Mongolia Government to create an independent institution for developing of biochemical industry in Mongolia.This institution will be established in January 1988/Monenzym/ . For the purposes of establishing of the institution, the Project UC/MON/87/126 was implemented, to prepare all the necessary technological profiles, including specifications of equipment and essential services for the planed new production building. It was emphasized at this stage, that the architectural and engineering design should be flexible enough to be easily adapted

Immediate activities

Within the frame work of the Froject UC/MON/87/126, two experts from UNIDO were fielded to prepare all of the basic technological profiles required for the new building.of Monenzym .According to the needs of projecting of this experimental biochemical production building it was required to prepare the flow-charts for all the future planned production units, to select the sutable equipment with detailed specifications to determine the requirements for electricity, steam and water and to draw up the layout of the individual production units and essential services.

After arrival to the ACAEM in Ulan Bator the experts acquainted themselves with the production programme, planned by the Mongolian partner and with technologies Which would be utilized in the future institution. The whole technical documentation has been prepared, based on the data recieved from the Mongolian counterpart.

For preparation of individual chemical-engineerin specifications and flow-charts, the numeric code used in ECAEM for individual production units has been kept for numbering of the documents prepared. From this work several units has been excluded owing to different reasons: ~-07 Production of dry bile; this production unit is in operation in the premises of ECAEM and it is well equipped with all necessary equipment, including Anhydro film-evaporator and Anhydro spray-dryer. The available existing equipment shall be transferred to the new building and therefore no specifications are needed. However this production unit has been involved in the summary of energy consumption in Anex I.A-08 Manufacture of tablets; the tablet production is still in question since it has been emphasized several times, that final formulation of several biochemical substances from animal origin should be carried out in a pharmaceutical factory, already equipped with all necessary equipment-granulating machine, tray dryen tableting machine, coating machine and packing machine. The production capacity of a tableting machine can be never fully utilized by projecting biochemical drugs only. A-09 Manufacture of sterile substances; this unit is equipped

4

with a Rota filling line, which should be transferred to an aseptic suitable space in a pharmaceutical production for better utilization. The line is used for production of sterile enzymes in vials at about 15% of its capacity. The whole line is equipped with two freezedrying machine Leybold for drying of the final sterile products in vials, with the capacity of 4400/6 hours on both machines.

A-10-quality control laboratory; no technological specifications are required at the present stage.

The above technical work has been done without any further reference to the Feasibility Study 1981 and therefore changes in designing of the new building can be done according to the Mongolian projecting organisation needs and decisions.Documentation has been prepared in such a way, that it can be immediately utilized as a base of the detailed engineering documentation by any construction and engineering company specialized in projecting of chemical production plants.

5

Comments and recommendations.

With regard to the elaborated technical dokumentation the following recommendations and comments for starting of a projecting work in a project organisation have been prepared: l/The data for mechanical-technological part of project are laid out in technological schemes for individual production and auxiliary units. The equipment is designed in scale 1:100 and the arrangement follows the technological steps and corespond to supposed levels in the building.

The pipe connections between equipment and main pipe distributions, leading through the building, are specified with inside diameters of pipe, material used for the pipe and fittings and eventual heat insulation necessity.

Specification sheets contain all essential description of the equipment, including dimensions and weights, energy and water consuption and prices for year 1987. In prices for piping and fittings, stated in individual specification sheets the price for main distribution lines of all media into the building is not included.

All these data may be used for elaboration of the equipment layout in the projected building, for static calculations of floor constructions and auxiliary steel constructions and for elaboration for plans for pipe conduits.

The data should be used for contacting proposed manufacturers for getting more technical details of individual items of equipment necessary for starting of the project work. 2/For measuring and regulation needs the lay-out schemes are specified with international signs all the places, where it is proposed that needs for M+R are expected. The N+R system used is a combined electro-pneumatic system without central control-board room. For the pneumatic part of the system is one compressor unit equipped with automatic air-drying device installed.

3/For electrical installation of motors, values of installed electricity and number of motors are given in the specification sheets. In the summary/annex I/maximum contemporary electricity consumption perbour are introduced for all the production and auxiliary units.Out of these informations the main and subsidiary swichboards for instalation of electric motors should be designed.

For the auxiliary unit A-18 a transformer 630 kW is recomanded. This value corresponds to the expected consumption of electricity for production and auxiliary units A-01 to A-07 and A-11 to A-19 and to astimated electricity consumption for laboratories and building civil services.

4/Ventilation in Ex-rooms and air conditioning for sterile rooms are introduced in auxiliary unit A-19, where all necessary data are stated. Other possible claims for ventilation /in laboratories or civil services/ should be taken into the project of building.

5/For determination of sizes for main pipes for steam and water supply from outside into the building the data given in Annex I.should be used. In these data the consumption of laboratories and civil services is expected.

6/For the building construction it is recommended to use a reinforced-concrete skeleton with modul 6x6 m and with classical filling with bricks or similar material. For the production part of the building it is recommended to use conception of a hall, devided into separate parts for Ex-rooms and non-explosive rooms.

7/The cooling unit A-17, determined for raw material store, includes such equipment, that can be ordered only as a whole. The equipment is then delivered by the supplier with a detailed documentation. Therefore this unit shall be set up by a specialised subcontractor.

The cooling unit for raw material store will not be a part of the main building, but it should be adjacent to the store. 8/The ethanolic liquids used in processing are rather acid and corosive; therefore it is recommended to use acidoresistant piping/polypropylen pipes/and enameled vessels for etanol regeneration. The liquid waste of processing is also corro-

7

sive and therefore the piping between the processing unit and the neutralisation unit A-14 should be made of acido-resistant materials.

9/The specification for anamelled, steel and stainless steel vessels, chosen for production and auxiliary units, correspond to valid czechoslovak producers standarts No. ON 691104, PNC 69 8533 and PNC 69 8510.

10/If there is no experience in projecting of chemical production plants in Mongolia, experts recommend to contact a forein engineering company, specialized in this field to propose the detailed technical drawings. The preparation of such technical documentation in cooperation with any Mongolian construction company or company for civil works would provide the base for preparing the project documentation for the building construction. The period of time required for this phase would be approximately 8 month. At this phase close cooperation would be required with manufacturers of proposed equipment as it has already been mentioned in paragraph 1 of these recommendations. LIST OF ABEREVIATIONS, used for mechanical-technological schemes

•

S	-	Steam
CO	-	Condensate
CW	-	COoling water
C₩Q	-	Cooling water outlet
TW	-	Technological water
HW	-	Hot water
WW	-	Warn water
W	-	Water
D#	-	Destilled water
DEW	-	Demi-water
IN	-	Liquid waste
Sev	-	Sewage
Vid.	-	Vacuum
CV	-	Central vacuum
CC A	-	Central compressed air
DC A	-	Dry compressed air
N_	-	Nitrogen
cou	-	Condensate usable for steam production
MS	-	Main stream
RM	-	Ra w material
R	-	Reflux
ET	-	Sthanol
EtoR	-	Etanol to regeneration
ER	-	Etanol regenerated
EtV	-	Etanolic vapours
AC	-	Acetone
ACTO	R-	Acetone to regeneration
ÁcR	-	Aceton regenerated
0л	-	Oxalic acid
S	-	Steel
SS	-	Stainless steel
G	-	Glass
FF	-	Folypropyles
A	-	Out to atmosphere

A-O1 PRODUCTION OF PEPTONE-Technology

According to Mongolian Production Plan, production of 52 tons of Peptone per year is expected. The production shall be carried out in 3 shifts and it was decided to devide the dayly production into two batches so, that the capacity of production unit can be easily changed, according to existing demand and market possibilities, from 16 tons up to 32 tons per year. With this in respect the equipment has been chosen and it seems even adviseable to start the whole trial production in eas batch per day only, because of lack of experience on the side of Mongolian workers.

For one batch 1200 kg of beef paunch and ventricals is used. The material is minced on mincing machine /3/ an divided into 4 jacketed vessels, equipped with anchor-stirrers/2/ so, that 300 kg of material comes into one vessel. Transport of the minced material is realized through worm-transporter/4/.with help of certain amount of water added, the amount of which is measured on installed volumeter. To the minced material in vessel water is then added up to the volume of 300 lt, the mixture is heated to boiling point and then cooled to the temperature of 40-45°C. To each vessel then 15 kg of previously minced and activated pancreas is added and pH of the mixture is adjusted to 8,0-8,5, with help of lime solution, from reservoir/17%. The hydrlolyze of protein now continues for 7 hours at constant temperature 40-45°C and constant pH 8,0-8,5. After 7 hours phosphoric acid from reservoir/16/ is added to adjust pH to 6,6-7,0 and the mixture is then through plate filter/5/ with help of piston pump filtered. About 400 kg of waste product is there from one batch of 1200 kg of raw material separated. The clear solution of peptone is in a vessel /7/ collected where from it is sucked into a vacuum film-evaporator /8/. The solution/about 2000 lt/ is to about 1/20 of the original volume concentrated and it is in a jacketed vessel-reservoir/ll/ collected. There it is to the prescribed concentration with demineralized water diluted, through plate filter/13/ filtered and with help of piston pump /12/ pumped into a collecting vessel/14/, from which it is continuously pumped through pump/19/ into a spray dryer/15/.The dry final product is collected and in barrels with plastic bags inside, packed.From one batch of 1200 kg of raw material about 70 kg of Peptone is obtained.

A - 01 PRODUCTION OF PEPTONE - Specification sheet

.

				k	W	St	eam	J JWE	ter	Price	/piece	Total,	price
No	Equipment	Manufacturer	Pie	inst	day	t/h	t/d				Rb1		<u> </u>
	1	<u> </u>	2	4		0	-	0		10		!2	12
1	Balance up to 1000kg	CHEPOS - CSSR	1		/	/			/				
2	Vessel jacketed,ena- melled,1000 lt,with anchor-stirrer D=1300mm,H=3225mm isolation covering w=2000 kg	CHEPOS-Chotěbořské strojirny – CSSR	4	4x 4,0	320	0,4	1,6	6	16,	16000	22400	•	89600
3	Mincing machine RM 1000, stainless steel, 1000kg/h L=1095mm, W=758mm, H=1072mm w=350 kg	Strojarne potravin. priemyslu-Bratislava CSSR	1	7,5	18	1	1	/	/	2500	3500		3500
4	Worm-transporter for minced meat, stainless steel	Transporta-Chridim CBSR	1	3	7					1780	2500		2500
5	Plate and frame press filter, autom. frames 630x630mm, thickness 45mm, filter surface 24m ³ pressure 0,9mPa electric drive L=4200,W=1200mm, H=1100mm	T _e chmashimport Moscow, USSR	1	0,3		1				32140	45000		45000
6	Piston pump PAX 64 stainless steel, max.pressure 2mPa 700 lt/h	VEB-SALZWEDEL, GDR	1	1,7	13,6	1		1	1	1210	1700		1700
7	Vessel collecting, without stir.stein- less steel,1000 lt, D=1000mm,H=1930mm w=550 kg	CHEPOS-FEROX Déčin CSSR	2	2x 4,5	9,0					5900	8200	 	16400

.

.

1	2	3	4		5	6	17	8	9		11	12	13	•	
Vacuum film-evapora- tor FRO 4-P, stainless steel, 368kg evap.wate: per hour D=750mm, H=5100mm,	CHEPOS-KSB Brno CSSR r						, , ,								
w=2200kg		1	10	1;	20	0,42	2 5.0			25000	35000		35000	•	
Condenser horizontal stainless steel, F=10m ³ D=600mm,L=4000mm	CHEPOS-FEROX Decin CSSR	4	•						108	8500	12000		12000		
w=750kg									100	6900	12000		12000		
Barometrical seal, steel,100 lt, D=500mm,H=870mm w=253 kg	CHEPOS-KSB Brno CSSR	1	l i							1080	1500		1500		
Vessel jacketed, stainless steel, with stirrer 250 lt D=700mm,H=2050mm w=490 kg	CHEPOS-FEROX Decin CSSR	2	2x 1		2			0,15	Q, 15	6050	8460		16920		
Piston pump PAX 32 with safety valve, stainless steel, max.pressure 2mPa 180 lt/h	VEB-SALZWEDEL, GDR	1	1,8	2 9	9,6			 		12101	1700		1700		
Plate and frame press filter, autom., frames 315x315mm, thickness 25mm, filter surface 5,6m ³ work pressure 1,1mPa frame volume 70 lt L=2480mm, W=750mm H=590mm	TECHMASHIMPORT Moscow, USSR	1	0,2						1	20000	28000		28 000		
	Vacuum film-evapora- tor FRO 4-P, stainless steel, 368kg evap.wate: per hour D=750mm, H=5100mm, w=2200kg Condenser horizontal stainless steel, F=10m ³ D=600mm, L=4000mm w=750kg Barometrical seal, steel, 100 lt, D=500pm, H=870mm w=253 kg Vessel jacketed, stainless steel, with stirrer, 250 lt D=700mm, H=2050mm w=490 kg Piston pump PAX 32 with safety valve, stainless steel, max.pressure 2mPa 180 lt/h Plate and frame press filter, autom., frames 315x315mm, thickness 25mm, filter surface 5, 6m ³ work pressure 1, 1mPa frame volume 70 lt L=2480mm, W=750mm	12Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kgCHEPOS-KSB Brno CSSRCondenser horizontal stainless steel, F=10m3CHEPOS-FEROX Decin CSSRD=600mm, L=4000mm w=750kgCHEPOS-KSB Brno CSSRBarometrical seal, steel, 100 lt, D=500mm, H=870mm w=253 kgCHEPOS-KSB Brno CSSRVessel jacketed, stainless steel, with stirrer, 250 lt D=700mm, H=2050mm w=490 kgCHEPOS-FEROX Decin CSSRPiston pump PAX 32 with safety valve, stainless steel, max.pressure 2mPa 180 lt/hVEB-SALZWEDEL, GDRPlate and frame press filter, autom., frames 315x315mm, thickness 25mm, filter surface 5, 6m3 work pressure 1, ImPa frame volume 70 lt L=2480mm, W=750mmTECHMASHIMPORT Moscow, USSR	123Vacuum film-evapora- tor FR0 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm,H=5100mm, w=2200kg1Condenser horizontal stainless steel, D=600mm,L=4000mm w=750kgCHEPOS-FEROX Decin CSSRCondenser horizontal stainless steel, m=750kgCHEPOS-FEROX Decin CSSRBarometrical seal, steel,100 lt, w=253 kgCHEPOS-KSB Brno CSSRVessel jacketed, w=490 kgCHEPOS-FEROX Decin CSSRVessel jacketed, with stirrer, 250 lt D=700mm,H=2050mm w=490 kgCHEPOS-FEROX Decin CSSRPiston pump PAX 32 with safety valve, stainless steel, max.pressure 2mPa 180 lt/hVEB-SALZWEDEL,GDRPlate and frame press filter,autom., filter surface 5,6m3 work pressure 1,1mPa frame volume 70 lt L=2480mm, W=750mm1111	1234Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg110Condenser horizontal stainless steel, F=10mCHEPOS-FEROX Decin CSSR110Condenser horizontal stainless steel, D=600mm, L=4000mm w=750kgCHEPOS-FEROX Decin CSSR1Barometrical seal, steel, 100 lt, w=253 kgCHEPOS-KSB Brno CSSR1Vessel jacketed, stainless steel, cSSRCHEPOS-FEROX Decin CSSR2Piston pump PAX 32 w=490 kgVEB-SALZWEDEL, GDR1Plate and frame press filter, autom., hickness 25mm, filter surface 5, 6m3 work pressure 1, 1mPa frame volume 70 lt L=2480cm, W=750cm10,2	1234Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg1101D=750mm, H=5100mm, w=2200kg110110Condenser horizontal stainless steel, F=10m3CHEPOS-FEROX Decin CSSR1101D=600mm, L=4000mm w=750kg11011Barometrical seal, steel, 100 lt, D=500gm, H=870mm w=253 kgCHEPOS-KSB Brno CSSR11Vessel jacketed, stainless steel, CHEPOS-FEROX Decin cSSR122Vessel jacketed, stainless steel, cSSRCHEPOS-FEROX Decin CSSR22Piston pump PAX 32 with safety valve, stainless steel, max.pressure 2mPa 180 lt/h11,2Plate and frame press filter, autom., hickness 25mm, filter surface 5, 6m3 work pressure 1, 1mPa frame volume 70 lt L=2480mm, W=750mm10,2	1 2 3 4 5 Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour Da750mm,H=5100mm, w=2200kg 1 10 120 Condenser horizontal stainless steel, P=10m ³ CHEPOS-FEROX Decin CSSR 1 10 120 Condenser horizontal stainless steel, W=750kg CHEPOS-FEROX Decin CSSR 1 1 120 Barometrical seal, steel, 100 lt, D=500pm,H=870mm CHEPOS-KSB Brno CSSR 1 1 1 Vessel jacketed, stainless steel, with stirrer, 250 lt D=700mm,H=2050mm CHEPOS-FEROX Decin CSSR 2 2x 2 Piston pump PAX 32 VEB-SALZWEDEL,GDR 1 1,2 9,6 Plate and frame press filter, autom., hoscow, USSR 1 1,2 9,6 Plate and frame frame volume 70 lt TECHMASHIMPORT Noscow, USSR 1 0,2 Ha590mm 1 0,2 1 0,2	123456Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm,H=5100mm, w=2200kg1101200.42Condenser horizontal stainless steel, D=600mm,L=4000mm w=750kgCHEPOS-FEROX Decin CSSR1101200.42Barometrical seal, steel, 100 lt, D=500pm,H=870mm w=253 kgCHEPOS-KSB Brno CSSR110200.42Vessel jacketed, stainless steel, D=700mm,H=2050am w=490 kgCHEPOS-FEROX Decin CSSR12222Piston pump PAX 32 Nstainless steel, max.pressure 2mPa 180 lt/h11,29,611,29,6Plate and frame remes 315x315mm, thickness 25mm, filter surface 5,6m3 work pressure 1,1mPa frame volume 70 lt L=2480mm,W=750mm10,210,2	1 2 3 4 5 6 7 Vacuum film-evapora- tor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 Condenser horizontal stainless steel, F=10m ³ CHEPOS-FEROX Decin stainless steel, D=600mm, L=4000mm 1 10 120 0.42 5.0 Condenser horizontal stainless steel, Steel, 100 1t CHEPOS-FEROX Decin cSSR 1 1 10 120 0.42 5.0 D=600mm, L=4000mm 1 CSSR 1 1 1 1 1 Barometrical seal, steel, 100 1t CSSR 1 1 1 1 1 D=500pm, H=870mm 1 CSSR 1 1 1 1 1 Wessel jacketed, stainless steel, with stirrer, 250 1t CSSR 2 2x 2 1 Piston pump PAX 32 VEB-SALZWEDEL, GDR 1 1,2 9,6 With safety valve, stainless steel, max.piressure 2mPa 1 1,2 9,6 Plate and frame press filter, sutom., hickness 25mm, filter surface 5, 6m ³ work pressure 1, 1mPa 1 0,2 1 Frame volume 70 1t 1 0,2 1 1	12345678Vacuum film-evapore- Cor FRO 4-P, stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg1101200.425.0/Condenser horizontal stainless steel, D=600mm, L=4000mm w=750kg1101200.425.0/Condenser horizontal Steel, 368kg evap.water D=600mm, L=4000mm w=750kg1101200.425.0/Condenser horizontal Steel, 100 1t, CSSRCHEPOS-FEROX Decin CSSR19Barometrical seal, Steel, 100 1t, CSSRCHEPOS-KSB Brno CSSRD=500gm, H=870mm w=253 kgVessel jacketed, CHEPOS-FEROX Decin CSSRStainless steel, CSSRWith stirrer, 250 1t D=700mm, H=2050mmPiston pump PAX 32 VEB-SALZWEDEL, GDRWith safety valve, stainless steel, max.pivessure 2mPa 100 1t/hTECHMASHIMPORT hoscow, USSRTECHMASHIMPORT hoscow, USSRFrame yolume 70 1t L=2480mm, W=750mm10,22240,21ECHMASHIMPORT hoscow, USSRTECHMASHIMPORT hoscow, USSRFrame yolume 70 1t L=2480mm, W=750mm110,22	1 2 3 4 5 6 7 8 9 Vacuum film-evapora- CHEPOS-KSB Brno OF TOW 4-P, stainless CSSR steel, 368kg evap.water per incur D=750mm,H=5100mm, Mage: 200kg 1 10 120 0,42 5,0 / / Steel, 368kg evap.water per incur D=700mm,H=5100mm, steel, 368kg evap.water D=600mm,H=3000mm SSR PERON Decin SSR PEROS-FEROX Decin SSR PEROS-FEROX Decin SSR PEROX DECIN <td colsp<="" td=""><td>1 2 3 4 5 6 7 8 9 10 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P,stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m² CHEPOS-FEROX Decin CSSR 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m² CHEPOS-FEROX Decin CSSR 1 9 108 8500 Barometrical seal, steinless steel, D=500pm, H=870mm CHEPOS-FEROX Decin CSSR 1 1080 1080 Vessel jacketed, stainless steel, CHEPOS-FEROX Decin stainless steel, stainless steel, max.pressure 2mPa 1 1,2 9,6 12101 Plate and frame press filter.autom., frames 315x315mm, thickness 25mm, filter surface 5,6m³ TECHMASHIMPORT Moscow, USSR 1 1,0,2 20000 H=590mm 1 0,2 20000 20000 20000</td><td>1 2 3 4 5 6 7 8 9 10 11 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 250000 35000 Condenser horizontal stainless steel, F=10m CHEPOS-FEROX Decin cSSR 1 10 120 0.42 5.0 / / 25000 35000 Barometrical seal, steel, 100 lt, D=500mm, H=870mm CHEPOS-KSB Brno cSSR 1 9 108 8500 12000 W=253 kg 1 1080 1500 1500 1500 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 1 1080 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 2 2 0.15 0.15 6050 8460 Piston pump PAX 32 VEB-SALZWEDEL, GDR 1 1.2 9.6 12101 1700 Plate and frame frames 315x315mm, thickness 25mm, frames volume 70 ht L=2480mm, wor50mm 1 0.2 20000 20000 20000</td><td>1 2 3 4 5 6 7 8 9 10 11 12 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P.stainless CSSR steel, J66Kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 Condenser horizontal stainless steel, F=10m 1 10 120 0.42 5.0 / / 25000 35000 D=750kg 1 10 10 0.42 5.0 / / 25000 35000 D=500gm, L=4000mm 1 9 108 8500 12000 12000 w=750kg 1 9 108 8500 12000 12000 m=253 kg 1 9 108 8500 12000 1500 w=250 kg 1 0.50 1000 1500 1500 1500 With stirver, 250 it D=700mm, H=200mm 2 2 0,150,15 6050 8460 w=490 kg 1 1,2 9,6 12101 1700 Plate a d frame TECHMASHIMPORT</td><td>1 2 3 4 5 7 8 9 10 11 12 13 Vacuum film-exporta- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evp.water per hour D=750em, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 35000 Condenser horizontal stainless steel, D=500pm, L=4000mm CSSR 1 10 120 0.42 5.0 / / 25000 35000 35000 35000 35000 12000</td></td>	<td>1 2 3 4 5 6 7 8 9 10 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P,stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m² CHEPOS-FEROX Decin CSSR 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m² CHEPOS-FEROX Decin CSSR 1 9 108 8500 Barometrical seal, steinless steel, D=500pm, H=870mm CHEPOS-FEROX Decin CSSR 1 1080 1080 Vessel jacketed, stainless steel, CHEPOS-FEROX Decin stainless steel, stainless steel, max.pressure 2mPa 1 1,2 9,6 12101 Plate and frame press filter.autom., frames 315x315mm, thickness 25mm, filter surface 5,6m³ TECHMASHIMPORT Moscow, USSR 1 1,0,2 20000 H=590mm 1 0,2 20000 20000 20000</td> <td>1 2 3 4 5 6 7 8 9 10 11 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 250000 35000 Condenser horizontal stainless steel, F=10m CHEPOS-FEROX Decin cSSR 1 10 120 0.42 5.0 / / 25000 35000 Barometrical seal, steel, 100 lt, D=500mm, H=870mm CHEPOS-KSB Brno cSSR 1 9 108 8500 12000 W=253 kg 1 1080 1500 1500 1500 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 1 1080 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 2 2 0.15 0.15 6050 8460 Piston pump PAX 32 VEB-SALZWEDEL, GDR 1 1.2 9.6 12101 1700 Plate and frame frames 315x315mm, thickness 25mm, frames volume 70 ht L=2480mm, wor50mm 1 0.2 20000 20000 20000</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P.stainless CSSR steel, J66Kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 Condenser horizontal stainless steel, F=10m 1 10 120 0.42 5.0 / / 25000 35000 D=750kg 1 10 10 0.42 5.0 / / 25000 35000 D=500gm, L=4000mm 1 9 108 8500 12000 12000 w=750kg 1 9 108 8500 12000 12000 m=253 kg 1 9 108 8500 12000 1500 w=250 kg 1 0.50 1000 1500 1500 1500 With stirver, 250 it D=700mm, H=200mm 2 2 0,150,15 6050 8460 w=490 kg 1 1,2 9,6 12101 1700 Plate a d frame TECHMASHIMPORT</td> <td>1 2 3 4 5 7 8 9 10 11 12 13 Vacuum film-exporta- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evp.water per hour D=750em, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 35000 Condenser horizontal stainless steel, D=500pm, L=4000mm CSSR 1 10 120 0.42 5.0 / / 25000 35000 35000 35000 35000 12000</td>	1 2 3 4 5 6 7 8 9 10 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P,stainless CSSR steel, 368kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m ² CHEPOS-FEROX Decin CSSR 1 10 120 0.42 5.0 / / 25000 Condenser horizontal stainless steel, P=10m ² CHEPOS-FEROX Decin CSSR 1 9 108 8500 Barometrical seal, steinless steel, D=500pm, H=870mm CHEPOS-FEROX Decin CSSR 1 1080 1080 Vessel jacketed, stainless steel, CHEPOS-FEROX Decin stainless steel, stainless steel, max.pressure 2mPa 1 1,2 9,6 12101 Plate and frame press filter.autom., frames 315x315mm, thickness 25mm, filter surface 5,6m ³ TECHMASHIMPORT Moscow, USSR 1 1,0,2 20000 H=590mm 1 0,2 20000 20000 20000	1 2 3 4 5 6 7 8 9 10 11 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 250000 35000 Condenser horizontal stainless steel, F=10m CHEPOS-FEROX Decin cSSR 1 10 120 0.42 5.0 / / 25000 35000 Barometrical seal, steel, 100 lt, D=500mm, H=870mm CHEPOS-KSB Brno cSSR 1 9 108 8500 12000 W=253 kg 1 1080 1500 1500 1500 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 1 1080 1500 1500 Vessel jacketed, stainless steel, me30 kg CHEPOS-FEROX Decin cSSR 2 2 0.15 0.15 6050 8460 Piston pump PAX 32 VEB-SALZWEDEL, GDR 1 1.2 9.6 12101 1700 Plate and frame frames 315x315mm, thickness 25mm, frames volume 70 ht L=2480mm, wor50mm 1 0.2 20000 20000 20000	1 2 3 4 5 6 7 8 9 10 11 12 Vacuum film-evapora- CHEPOS-KSB Brno tor FRO 4-P.stainless CSSR steel, J66Kg evap.water per hour D=750mm, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 Condenser horizontal stainless steel, F=10m 1 10 120 0.42 5.0 / / 25000 35000 D=750kg 1 10 10 0.42 5.0 / / 25000 35000 D=500gm, L=4000mm 1 9 108 8500 12000 12000 w=750kg 1 9 108 8500 12000 12000 m=253 kg 1 9 108 8500 12000 1500 w=250 kg 1 0.50 1000 1500 1500 1500 With stirver, 250 it D=700mm, H=200mm 2 2 0,150,15 6050 8460 w=490 kg 1 1,2 9,6 12101 1700 Plate a d frame TECHMASHIMPORT	1 2 3 4 5 7 8 9 10 11 12 13 Vacuum film-exporta- CHEPOS-KSB Brno tor FRO 4-P, stainless CSSR steel, 366kg evp.water per hour D=750em, H=5100mm, w=2200kg 1 10 120 0.42 5.0 / / 25000 35000 35000 Condenser horizontal stainless steel, D=500pm, L=4000mm CSSR 1 10 120 0.42 5.0 / / 25000 35000 35000 35000 35000 12000

5

A - 01

•

.

	1	1 2	13	14	5	6	17	8	9	10	11	12	1 13	-
14	Vessel collecting stainless steel 250 lt D=600mm,H=840mm w=350 kg	CHEPOS-FEROX Decin CSSR	, 1		1	1		I	ļ	28 00	4000		4000	
15	Spray-dryer URS-20 20 lt/h,stainless steel L=2500mm,W=2800mm, H=2066mm electrical heating	VVZ-Nove Mesto nad Vahom CSSR	1	37	740	•				28500	40000		40000	
16	Glass vessel with outlet, 100 lt D=560mm,H=850mm	Kavalier,Sazava CSSR	1		ì					107	150		150	-
17	Glass vessel with outlet, with stirrer, 100 lt D=560mm, H=1050mm	Kavalier, Sazava CSSR	1	0,125	0,5					178	250		250	-
18	Glass-pump with teflon piston	Kavalier, Sazava CSSR	1	0,3	0,15	;				10 7	150		150	
19	Piston-pump PAX 32 with safety valve, stainless steel, 0-180 lt/h	VEB-SALZWEDEL, GDR	2	2x 1,2	24					1210	1700		1700	-
		TOTAL		90,7	1265	9,82	6,6	15	124				300070	-
				Pip Reg Ele	ings ulati otrio	and .on a al i	fitti nd me nstal	ngs i asur: lati(mount ing,m on fo	ing incl ounting r motors	luded incl. 3		66000 15000 16000	
				AUX	.111aI	y st	19T Q	onst:	ructl	ons		-		-

A-01 TOTAL 402070

.

.

A-O<-PRODUCTION OF FERSIN-Technology

The Mongolian Production Plan expects the production of 1CO kg of Fepsin for medical use and 1000 kg of Pepsine for food industry/for clotting milk in cheese production/.Such equipment, which can be utilized for both technologies, which do not greatly differ has been chosen for the production unit.According to the given technologies the production processes differ only in the purification step, where for the production of Pepsin for medical use precipitation with ethylalcohol is used, while Pepsin for food industry is from the solution with salt salted out. For the planned production of 100 kg of pharmaceutical Pepsin will be 5,5 tons of pig stomach mucose processed in an year.

100 kg of this raw material will be processed daily. This raw material is minced on a mincing machine /2/ and placed into one of the three vessels /3/,where it is with 100 lt of water and 3,6 lt of hydrochloric acid mixed togeather. The autolyse of the tissues now takes place for 48 hours at the temperature of 40° C, with slow stirring over day period only. After that the obtained solution is sieved and transported into a vessel/6/, where the impurities are with ethylalcohol precipitated. The precipitate is filtered off on the press-filter /9/ and the solution goes into the second vessel/6/, where the final product is by increasing the ethanol concentration up to 85% precipitated. It is them filtered and separated on the press-filter /9/, put on stainlesssteel trays and dried in the vacuum trydryer /7/ at the temperature of 60° C. The dry product is finally ground on a vibrating mill /8/, sieved and stored in glass or plastic containers.

For the production of Pepsin for food industry 100 kg of cattle stomach mucose is used daily, and the autolyse with hydrochlorid acid is done without addition of water. After 48 hours of autolyse the obtained solution is filtered through the vacuum filter /4/ and finally dried in a vacuum-dryer /7/. The dry product is ground on a mill /8/ and after sieving is stored in containers with plastic bags inside. For the expected production of Fersin for food industry about 20 tons of raw material should be processed.

A - OZ PRODUCTION OF PEPSIN - Specification sheet

.

•

ų

			Pie		CW.	Ste	8.m	Vat	er	Price/	piece	Total price
No	Equipment	Manufacturer	Ces	inst	day	t/h	lt/d	m-/h	m2/d	\$	<u></u>	Rb1
	1	2	3	4	5	6	7	8	9	10	11	12 13
1	Balance up to 1000kg	CHEPOS - CSSR	1				1	•		5 7 0	800	800
2	Nincing machine RM 100A L=740mm,W=330mm, H=400mm,w=60kg	Strojarne potravin. priemyslu Bratislav CSSR	a 1	0,75	0,75			÷		320	450	450
3	Vessel jacketed,ena- melled,250 lt,with anchor-stirren,w=680kg D=600mm,H=2200mm	CHEPOS-Choteborské strojírny CSSR	3	3x 1,2	86	0,03	Q 06			8000	11300	33900
4	Vacuum filter, stain- less, steel, D=600mm, H=800mm	Produced by Mongoli	an s 2	Lde,	8000	rding	to	the t	ransf	erred d	rawings	
5	lass-vessel with outlet and stirrer and auxiliary constr. 1001t.D=800mm.H=850mm	K avalier Sazava CSSR	2	2 x 0,12	0,5				; ; ;	360	500	1000
6	Vessel enamelled, with stirrer, 1600 lt, D=1200, H=3225mm w=1600kg	Chepos-Choteborské strojírny CSSR	2	2x 2,2	4,4		1	•		10000	14000	28600
7	Vacuum tray-dryer, with steam-stream va- cuum device, 5m ² L=2500mm, W=1500mm H=2000mm, w=cca 1000kg	VEB-Vakuumtechnik Sangerhausen, GDR	1			0,1	2,4			20000	28000	28000
8	Vibrating mill VCM 3	Labora, CSSR	1	1,5	4,5					1330	1850	1850

•

,

- 17 -

2

•

A - 02

•

.

1	2	3	4	5	6	7	8	9	10	11	12	13
9 Press-filter SA,cata- log number S 21, without jacket,100 lt D=800mm,H=1200mm	Lampart, Hungary	1	•	, 					8500	12000		12000
	TOTAL		10,5	96,15 0	,13 2	2,46						106000
			Pipi	ings a	nd f:	itrin	gs,	moun	ting in	ncluded		19000
			Regi	latio	n and	d mea	suri	.ng,	mounti	ng incl.		3000
			Elec	trica	l ind	stall	atio	ns 1	or mot	ors		7200
			Auxi	liary	stee	1 00	nstr	ucti	on#			1600
										A-02	TOTAL	136800

- 18 -

• •

...

.

.

•

٠

1-03 FRODUCTION OF PLNCYFSIN, TRYPSIN, CHYMCTRIPSIN-Technology

The Mongolian Production plan for the three enzymatic products expects production of 87,5 kg of Pancypsin, 12 kg of Trypsin and 20 kg of Chymotrypsin per year. For this production 38 tons sheep and goat pancreas and 20 tons of beef pancreas in one year will be processed.

Production of the enzymes shall be on one equipment performed, because the first production steps, extraction, purification and salting of crude proenzymes are similar for all mentioned products.

In one day 200 kg of raw material shall be elaborated. The material is into two vessels devided, each containing 100 kg of raw material. 100 kg of pancreas is on the mincing machine/1/minced and into one of the vessels/2/ transferred, where the extraction with cold water for 5 hours at the temperature 10-15°C proceeds. Then the mixture is through stabless steel seaves sieved and the extract is in one of the vessels/4 A, B/ collected. The obtained tissues from the siew/3/are once again in the same extraction vessel/2/ extracted/one hour/and after second seaving the extracts are in vessel/4 A.B/geathered.The impurities are from the extract by addition of calculated amount of ammonium sulfat salted out and the precipitate of impurities is then on the separator /5/ separated. The clarified extract coming from the separator is again on vacuumfilters /6 A, B/filtered and the clear filtrate in one of the vessels/6 A.B/ collected.After collecting off all the solution, the crude product of proenzymes is from the collected solution by further addition of calculated amount of ammonium sulfat solted out. After over night sedimentation and decantation is the product by filtration on stainless steel vacuum filters /5C,D/collected. The obtained product of crude proenzymes is then transfered for laboratory treatment , where the purification and finalisation take place. The laboratory is with refrigerators /7/ and all necessary glass equipment equipped. For the purification of enzymes distillated water is used. This is on apparatus /10/ produced. The final enzym products

- 20 -

are obtained on freeze-drying machine Lyovac-Leybold /9/ by drying. The location of that machine has not been decidedyet, therefore it has not been involved into mechanical-technological scheme drewings.

A - 03 PRODUCTION OF PANCYPSIN, TRYPSIN AND CHYMOTRYPSIN - Specification sheet

نه ۲

•

.

			Pie		CW .	1 St	am	Vat	er.	Price/	biece	Total p	rice	
No	Equipment	Manufacturer	ces	inst	day	t/h	t7d	mh	m>'d	\$	Rbl	\$	Rbl	-
	1	2	3	4		6	7	8	9	10	11	12	13	
1	Mincing machine RM-1000, stainless st. L=1095mm, W=758mm H=1072mm, w=350kg	Stroj arne potravin. priemyslu,Bratislava CSSR	1	7,5	2,0		 			2500	3500		3500	_
2	Vessel jacketed with stirrer, stainless st. 630 lt D=800mm, H=2825mm w=830kg	CHEPOS-FEROX Decin CSSR	8	2x 8,5	30	· · ·	1 + -	0,24	24	9480	13260		26560	-
3	Stainless steel sieves	Produced by Mongol	lan	aide	1	,		i :						
4	Vessel pressure-less stainless steel,with stirrer,400 lt D=700mm,H=2100mm 450kg	CHEPOS-FEROX Decin CSSR	4	4x 1,5	6,0					5780	8100		32400	- 22 -
5	Separator Alfa-Laval K 212, stainless stee D=900mm,H=1200mm w=g50kg	Alfe-Laval,Sweden	1	22	132					178 000		178 000		
6	Vacuum filter, stain- less steel D=800mm, H=800mm	Produced by Mongolis	n s 4	ide a	ccord	ling	to ti	ransf	s rre (i drawing	<u>za</u>			
7	Refrigerator Calex 600 lt	Labora, CSSR	2	2x 0,5	8,0					1070	1500		3000	
8	Glass vessel with outlet, with stirrer and auxiliary constr. 100 lt	Kavalier Sazava CSSR	3	3x Q,12	0,5					360	500		1500	

.

.

Α.	- 0	3
----	-----	---

I

• •

		2	3	4	1-5	6		8	T9		·····	1 -19		-
9	Lyovac GT-20 with Lyo Process-control unit, L=600mm, W=450mm, w=900kg +hydraulic drive incl. L=1860mm, W=1050mm, H=1980mm, w=2480kg	- LEYBOLD - West Germany	1	16,5	80			0,6	5	133000		133000		-
10	Glass-apparatus for production of destil. water, with fuse-case W=500mm_H=1500mm	KAVALIER-Sazava CSSR	1	20	60			0,5	1,5	2850	4000		4000	
		TOTAL	<u></u>	78,36	318	;	# 8	1,34	30,5			311000	70960	_
				Pip Reg Ele Aux	ings ulat otri ilia	and ion a cal i ry si	fitt: and mo lnsta: teel o	ings, basur llati bonst	moun ing, ons ruct	ting inc mounting for moto ions	luded incl. rs		12600 200 12000 3000	- 23 -
										A - 03	TOTAL	311000	9876 0	1 -4

.

2

• •

Ĩ

A-C4 PRODUCTION OF CHCLESTERCL -Technology

According to the technology given by Mongolian side,15 kg of dry spinal cord will be processed daily and for the planmed year production of 700 kg of cholesterol about 18 tons of fresh beef spinal cord from slaughterhouses is needed.

The raw material, the spinal cord, is first minced on a mincing machine/l/, put onto stainless-steel trays and dried in vacuum tray-dryer /2/, at max. temperature 80°C. The dry product is then stored in paper bags for the following processing. For the production of cholesterol itself, 15 kg of dry raw material will be processed daily. The material is into extraction vessel /3/ transferred and by means of 45 lt of aceton extracted. The aceton is taken from the reservoir /8/. The extraction takes place for 3 hours under slow stirring; after that time the mixture is on the press-filter filtered and the extract is in the vessel /5/ collected.After collecting that extract from 6 batches/representing 90 kg of dry raw material/the extract is pumped through a pump /6/on the film-evaporator /7/, where it is thickened to about 1/10 of the original'volume. The thickened product goes into the vacuum-blade-dryer /9/, where it is dried. The vapours of aceton from the film-evaporator are condensed in a cooler /7/ and aceton obtained returns to the reservoir /8/.

The dried product from the drier /9/in amount of about 20 kg is into a vessel /10/ transferred, where the extraction by means of 75 kg of ethanol proceeds. Simultaneously is 6 kg of sulphuric acid added. The extraction proceeds for 5 hours at the temperature of 80° C. The hot extract is then filtered through a heated pressfilter /12/ and is in the vessel /13/ collected. Here the crystallization of the product takes place during constant cooling with water in the vessel jacket. The obtained product is filtered off on a pressfilter /14/ and is once again recrystalized on the same equipment. At the end the final product is dried on the vacuum tray dryer /pos.7, scheme A-O2/.

The ethanol, used during the production is at the plant A-11

- 25 -

regenerated; aceton used in the production is just circulated from the evaporator /7/ into the reservoir /8/ from which it is taken once again into the production.

-

A - 04 PRODUCTION OF CHOLESTEROL - Specification sheet

. .

No	Equipment	Manufacturer	Pie	k	W	St	am	Wat	OT.	Price/	piece	Total price
	• •		Ces	inst	day	t/h	t/d	m/h	m >/d	\$	Rb1	S Rbl
	1	2	3	4	5	6		8	9	10	11	12 13
1	Mincing machine RM 100A L=740mm, W=330mm, H=400mm, w=60kg	Strojarne potravin. priemyslu Bratislav CSSR	1	0,75	1,5		1	!		320	450	450
2	Vacuum tray-dryer, with steam-stream va- cuum device, 5m ² L=2500mm, W=1500mm, H=2000mm, w=oca1000kg	VEB-Vakuumtechnik Sangerhausen, GDR	1			0,1	2,4			20000	28000	28 000
3	Vessel jacketed 100 ls stainless steel, with stirrer D=500mm, H=1795mm, w=320kg	CHEPOS-FEROX Becin GSSR	1	0,75	4,5			0,1	0,6	4114	5760	5760
4	Press-filter SA,cata- logue number S 21, without jacket,100 lt D=800mm,H=1200mmw~4504	LAMPART, Hungary	1			:	i			8500	12000	12000
5	Vessel collecting, 400 lt, stainless steel D=800mm, H=1330mm, W=400kg	CHEPOS-FEROX Decin CSSR	1			•	1			5140	7 200	72 00
6	Piston-pump PAX 32 stainless-steel 0-180 lt/h	VEB-SALZWEDEL, GDR	1	1,2	7,2		;			1210	1700	1700
7	Film-evaporator, FO = 03,60 lt/h, without oll-pump, 1640mm,W=1140mm, H=3000mm,w=400kg	PIS-SPOFA, Prague CSSR	1	0,5	2,5	9,07	0,35	1,6	8	7850	11000	11000
8	Vessel collecting, steel,630 lt, L=1690mm,D=800mm w=450kg	CHEPOS-KSB Brno CSSR	1							1920	2700	2700

· · ·

A - 04

· ·

	1	2	3	4	5	6	7	8	9	10		12	13
9	Vacuum blade-dryer, 0,5m ³ , with condenser, and vacuum-pump 1200mm, W=800mm, H=1200mm	VEB-Vakuumtechnik Sangerhausen, GDR	1	1,3	7,0	0.05	0,25	0,2	1	85 00	12000		12000
10	Vessel jacketed,ena- melled,250 lt,with stirrer anchor, D=600mm,H=2200mm, w=680kg	CHEPOS-Choteborské strojirny,CSSR	1	1,2	6,0	0,1	0,16			8000	11300		11300
11	Reflux condenser for item 10,F=5m ² D=324mm,L=1100mm w=260kg,stainless stee	CHEPOS-FEROX Decin CSSR	1		:			1,5	7,5	1300	1820		1 ₈ 20
12	Press-filter, jacke ted SA, S-21, enamelled 100 lt D=1000mm, H=1200mm	LAMPART, Hungary	1			0,03	0.06			10000	14000		14000
13	Vessel jacketed,ena- melled,with stirrer 250 lt, D=600mm,H=2200mm, w=680kg	Chepog-Choteborské strojirny CSSR	: • 1	1,2	8			0,5	2,5	8000	11300		11300
14	Press-filter, enamelied D=800mm, H=1000mm	, LAMPART, Hungary	1		1	;				5700	8000		8 000
15	Piston-pump PAX 32 see item 6	VEB-SALZWEDEL, GDR	1	1,2	1,2	Ĩ				1210	1 7 00		1700
		TOTAL	•	8,1	37,9	0,35	3,22	3,9	19,6				128930
					Pip	ings	and :	fitti	.ngs.,	nounting	include	t	28360
					Reg	ulati	on a	nd me	asuri	ing, moun	ting inc	1.	2500
					Ele	ctrio	al i	nstal	latic	ons for	motors		8000
					Aux	iliar	y ste	el d	onsti	ructions	_		2000
							-		ł	1-04 T	OTAL -		169790

- 28 -

1 I

SCALE ~ 1: 100

A-05 FRODUCTION OF PANCREATIN -Technology

The Mongolian Production Flan expects the production of 3 tons of pancreatin in one year, and for this amount 30 tons of pancreas from goats and sheep will be elaborated. The production of pancreatin will be realized according to the technology prepared in ECAEM.

100 kg of pancreas are minced on the mincing machine /1/ and transferred into the extraction vessel /2/,where it is by means of 200 lt of water extracted, with addition of 2,5 kg matrium bicarbonate. The extraction takes place for 3 hours at the temperature 20°C. Then the mixture is put through a stainless steel sieve /3/ and the extract is collected in a vessel /4/,where pancreatin is by adding a calculated abount of acetome/about 500 lt/ precipitated. After 10 minutes of stiring the precipitate is collected on the pressfilter /5/. The obtained wet product from the filter is transfered into the vessel /6/,where it is mixed with about 50 lt of fresh acetone and them the mixture is once again filtered through the press-filter /5/. The final product is then put onto stainless steel trays and dried in the tray dryer /pos. 7, scheme A-02/. About 10 kg of pancreatim are obtained from the said amount of raw material.

4 RC 4

* -	· · · · · · · · · · · · · · · · · · ·		Pie	k	W	Ste	em	Water	Price	for piece	Total	price
<u>No</u>	<u>equipment</u>	Manufacturer	Ces	inst	day	t/h	t/d	m ² /h m ² /d	\$\$	Rbl	\$	Rbl
	1	2	3	4		6		89	10	11	12	13
T	Nincing machine RM 100A	Strojarne potravin. ngiemvalu Bratislava						•				
	L=740mm, W=330mm,	CSSR	1	0.75	1.5	} .		1	320	450		450
	H=400mm, w=60kg			415		<u> </u>		• •		450		4,70
2	Vessel stainless steel 400 lt with stirrer,	CHEPOS-FEROX Decin CSSR						:	1			
	$w=490\log$		1	2,5	7,5	:			560 0	7800		7800
3	Sieve stainless steel	Produced by Mongol	ian	aide		•				,		
4	Vessel stainless steel with stirrer, jacks ted, 1000 lt	CHEPOS-FEROX Decin CSSR								:		
-	D=1000mm, H=2400mm, w=1220kg		1	3,2	3,2				14800	20740		20740
5	Press-filter SA, S21,	LAMPART, Hungary				•						
	D=800mm,H=1200mm, w~450kg		1	1		<u>.</u>			8500	12000		12000
6	Vessel stainless-steel with high-speed stirr,	CHEPOS-FEROX Decin CSSR	•	•		•	i	i i				
	100 lt, D=500mm,H=1740mm, w=250kg	1	1	1,1	1,1			· · ·	3200	4500		4500
		TOTAL		7,55	13,3							45490
				Pipi r	uga au	nd fi	ttin	gs,mountin	ng incl	uded		69 00
				Regu]	atio	n and	mea	suring, mou	unting	incl.		1200
				Elect	rica	l ins	tall	ations for	r motor	8		3200
				Auxil	iary	stee	1 00	nstruction	18			500

A - 05 PRODUCTION OF PANCREATIN - Specification sheet

. .

A-05 TOTAL 57290

1 1

- 31 -

A- 05- PRODUCTION OF PANCEEATIN - MECHANICAL -TECHNOLOGICAL SCHEME

- 32

۲

A-O6 FROCUCTION OF BLOOD HYDROLYSATE -Technology

The blood hydrolysate is expected to be used in Mongolia as an additative to child's nourishment products. According to the Froduction Plan 1860 kg of the product should be produced per year. According to the transferred Mongolian technology, 90 tons of beef blood should be processed to obtain the above mentioned amount of the figul product.

The production should be performend in a two shift working process with processing of 175 kg of blood in one shift, which means, that 350 kg of blood will be elaborated daily. 175 kg of blood is transferred into jacketed vessel /l/,where it is mixed to 175 lts of water and 3,5 lts of sulphuric acid. The mixture is then hydrolyzed at the temperature of 120°C and a pressure corresponding to that temperature. The process lasts 3 hours, then the mixture is cooled and neutralized by means of lime milk from the reservoir /2/. The slurry is then filtered on a vacuum stainless steel filter /3a/ and the filtrate is cooled in the collecting vessel /4/. There some amount of oxalic acid is added and the solution is once again filtered on the vacuum filter /3b/ and collected in the collecting vessel /5/. From there the filtered solution is sucked into the vacuum film-evaporator /6/, where it is thickned to about 1/20 of its original volume. The obtained product, in amount about 30 lts in one day, is stored in plastic cans in a cooling box; after collecting of a sufficient amount for further processing it is dried on the spray-dryer /pos. 15., scheme A-O1/. The obtained product is collected in plastic bags.

A - O6 PRODUCTION OF BLOOD HYDROLYSATE - Specification sheet

•

.

			P1		V	St	a .m	Wa	Ter	Price/	piece	Total	price
No	<u>Bquipment</u>	Manufacturer	00	Inst	day	1 t/h	t/d	1m2/h	m2/d	<u>S</u>	Rbl		Rbl
	1	2		4	5	6	-7	8	9	10	11	12	13
1	Vessel jacketed, ename led, with stirrer, 630 1 D=1000mm, H=2650mm, w=1250kg	▶ CHEPOS-Chotĕbořské t, strojírny CSSR	1	1,5	9	0,1	0, 3	0,6	1,2	12800	18000		18 000
2	Glass vessel with out let and stirrer 100 1 D=560mm,H=1050mm	- KAVALIER Sazava t CSSR	1	0,125	0 ,35					107	150		150
З .,В	Vacuum filters, stain- less steel D=600mm, H=800mm	Produced by Mongol	ian 2	side	A CGOI	ding	to t	he t	ransf	erred d	rawings		
4	Vessel,630 lt,stain- less steel with stirr D=800mm,H=2780mm w=560kg	CHEPOS-FEROX Děčín CSSR	1	1,5	1,5					7200	10000		10000
5	Vessel stainless stee 630 lt,without stirre D=800mm,H=1830mm, w=430kg	1 CHEPOS-FEROX Děčín r CSSR	1							5500	7 7 00		77 00
6	Vacuum film-evaporator with condenser, 120 lt/ FO-07.3 L=1800mm, W=1650mm, H=3833mm, w~350kg	r PIS-SPOFA, Prague h CSSR	1	3,5	28	Q,13	1	4	32	10700	15000		15000
7	Piston pump PAX 64, stainless-steel 0-1790 lt/h	VEB-SALZWEDEL,GDR	1	1,7	1,7		1	1	.	1210	1700		1700
		TOTAL		8.3	40, 5	0.23	13	4.6	33.2				52550
				. P1	pings	and	fitt	inga	moun	ting in	cluded		11560
				Re	gulat	ion	and m	wasu	ring.	mountin	g incl.		5800
				คา	ectri		ingte	llat	ions	for mot	OTH		4800
				<u>ـ</u> د. ۱۱		177V 81	teel	cons	truct	iona			900
										A	- 06	TOTAL	75610

- 34

1

. .

A-06 PRODUCTION OF BLOOD HYDROLYSATE - MECHANICAL FECHNOLOGICAL SCHEME

A-11 REGENERATION OF ETHANOL AND ACETONE-Technology

The capacities of the equipment for regeneration unit have been chosen so that the regeneration can be completed during one, at most during two working shifts.Spare capacity of the equipment is therefore available in case of any change of the production programme.

The solvent regeneration units are technologically connected with A-15-undergroundinflumable solvent store, where the solvents are collected and stored and from where solvents for regeneration are transported through pumps /pos.2b,3b/scheme A-15, into vessels /3/ for ethanol and /4/ for acetone. The pumps are switched on and off automatically from the minimum-maximum level control unit, placed in the vessels. From the vessel /3,4/ are the solvents determined for regeneration pumped on the rectification columns /1 or 2/, where regeneration of ethanol or acetome continually proceeds. The condensed purified solvents are collected in glassvessels, which are part of the equipment, and from there they are distributed to the solvent store /A-15/into reservoirs for pure solvents.

Capacities of the rectification units are 80-170 lt/h of the solvent mixtures fed into the columns.

- 30 -

A - 11 SOLVENT REGENERATION PLANT - Specification sheet

•

,

			Ple		W	St	eam	Wat	er.	Price/	piece	Total	price
No	Equipment	Manufacturer	œs	inst	day	t/h	t/d	P/h	mp/d	\$	Rbl	Ş	RPI
1	Glass rectification column for ethanol regeneration, 150 lt/r with interreservoirs, coolers, condensers and glass-pump with teflon piston. Filling Rashig rings 18x20mm L=5000mm, W=2500mm, H=12500mm, reservoirs including. *	KAVALIER, Sázava, CSSR	1	0,3	2,4	0,34	2,7	10	80	12850	18000		1 8 000
2	Glass rectification column for acetone regeneration, 150 lt/h dtto as item 1*	KAVALIER, S é_{za}va , CSSR	1	0,3	2,4	0,34	2,7	10	80	12850	18000		18000
3	Vessel collecting,en- amelled, 250 lt, for ethanol regeneration D=600mm,L=1170mm, w=380kg	CHEPOS, Choteborské strojírny, CSSR	1							3570	5000		000ر
4	Vessel collecting, steel, 250 lt, for acetone regeneration D=600mm,L=1170mm, w=280kg	CHEPOS, KSB Brno, CSSR	1							1200	1680		1680
		TOTAL		0,6	4,8	0,68	5,4	20	160				42680
	*NOTE: regulation of f must be ordered with M + R, for both colu		Pi Re El	ping gula ectr	s and tion ical	fit [:] and i insta	tings measu allat	,moun aring, ion f	ting in mountimor moto:	cluded ng incl. rs		670 4000 1200	

A-11 TOTAL

48550

. .

- 37 -

A-12 PRODUCTION OF DEMI-WATER -Technology

Tap water is coming through reduction valve into the upper part of the column /lA/,filled with cation-exchanger in H cycle and flows downwards through the column.After leaving the column the water comes into the upper part of the second column/lB/, filled with anion-exchanger in OH⁻ cycle and also flows downwards through the column.At the outlet from the anion-exchanger, conductivity of demi-water coming from the columns is measured continuously.Demi-water is collected in the reservoir /2/,from which it is led to individual places in production units. The level of demi-water in the reservoir is measured automatically and displayed on the attached connected digit. When the maximum or minimum level of demi-water in the reservoir is reached the flow of tap water into the demi-station is either stopped or started .

When the prescribed conductivity of demi-water at the outlet from the columns is overpassed, which means, that the ion-exchangers are exhausted, the water from the outlet is automatically led to the sewage, the work of the demistation is stopped and exhaustion of ion-exchangers is signalized from the controlpannel. The regeneration of both ion-exchangers must take place. The process of regeneration is controlled with press-buttons from the control-pannel. The column with cation-exchanger is regenerated by means of previously prepared 10% hydrochlorid acid solution from the reservoir /1C/, connected with the column, the column with anion-exchanger is regenerated by means of 10% sodium hydroxyde solution from the reservoire /lD/.After the regeneration the columns are washed with water in upward flow and after reaching the prescribed conductivity of wasching water the domi-water production can take place. Note: When ordering the demi-station it is necessary to enclose an analytical test of the water which will be used for the production of demi-water.

A - 12 PRODUCTION OF DEMI-WATER - Specification sheet

• •

-

			pie	k	W	Ste	am	Water	Price/	piece	Total	price
No	Equipment	Manufacturer	Ces	inst	day	t/h	t/d	m7h m7d	\$	Rbl	\$	Rbl
1	Demineralization-sta- tion,type D 400 PP, for interrupted run, automatically running capacity 400 lt/h. L=1400mm,W=16C0mm, H=2600mm,W=660kg	Kawalier,Sazava CSSR	1	0, 15	0,3				11400	160 00		16000
2	Vessel stainless- steel,horizontal, D=800mm,L=1330mm, w=400kg	CHEPOS-FEROX,Děčín CSSR	1						4570	6400		6400
		TOTAL		0,15	0,3							22400
			Pipings and fittings, mounting included Measuring and regulation, mounting incl.									
										A-12 T	OTAL	27 100

- 40 -

• •

A-13 ENGINE ROOM FOR STEAM, CONDENSATE AND WATER SUPPLY

l/Condensate from the production and from social services of the building is collected in the reservoir /l/,where also the water for production needs is preheated.By means of a pump /4/the condensate is pumped out for steam production .The pump /4/ is switched on or off automatically by the max.or min. level contolunit placed in the reservoir /l/.

2/Steam 0,8 MPa, from the cutside main connection is led to the steam distribution unit, where it is reduced to 0,4 MPa for production needs. Other piping from the steam distribution unit is used for steam which is used for another purposes of the building.

3/kater, from the main outside connection, with the approx. temperature os 5 to 15° C, comes to the distribution unit, from which it is led through the coil in the reservoir /l/ into the reservoir /2/. There the water is heated with steam to temperature 55° C and is led to the production units, to laboratories and for social services. The supply of water to reservoir /2/ is carried out automatically according to the level in the reservoir. A pump is installed in case of interrupted circulation of water in hot water system/3/.Cold water is distributed to the production, laboratories and social services by means of indipendent pipe distribution.

The total consumption of water is measured on the mains outside. /Connection to the building/.

- 42 -

A - 13 ENGINE ROOM FOR STEAM, CONDENSATE AND WATER SUPPLY - Specification sheet

•

		\$	Pie	k	W	Steam	Water	Price	/piece	Total price
No	Equipment	Manufacturer	Ces	inst	day	t/h t/d	m-/h m-/d	\$	R61	8 Rb1
1	Vessel-reservoir for condensate, steel, 1600 lt D=1200mm, H=1810mm, w=640kg	CHEPOS-KSB Brno, CSSR	1	·			· · · ·	2740	3800	38 00
2	Vessel-reservoir for hot water, steel, 2500 lt D=1200mm, H=2500mm, w=780kg	CHEPOS-KSB Brno, CSSR	1			0,2 0,6	· · · · · · · · · · · · · · · · · · ·	3340	4680	4680
3	Pump for hot water circulation,Type: PICO for centralhea- ting, steel	KOVOSLUZBA, CSSR PRAHA	2	2x 0,3	7,2	÷	.	145	160	320
4	Pump centrifugal, type META, capacity 5m ³ /h working height 30m of water column, steel class 11.	SIGMA, Olomouc CSSR	1	1,5	6			360	500	500
		TOTAL		2,1	13,2	0,2'0,6			• • • • • • • • • • • • • • • • • • •	9300
				Pi; Re, El(ping gulat ectri	and fitti ion and m	ing, mountir measuring, m allation fo	ng inclu nounting or moto:	uded g incl. ra	2 3 00 2000 2 4 00
								A-1	3 TOTAL	167.0

.

1

• •

<u>ٹ</u>

A-14 NEUTRALIZATION FLANT

Liquid waste from production units and laboratories, designed for neutralisation flows to the vessel /l/where it is continuously homogenized with a stirrer. Then it flows to the neutralization-vessel /2/, which is devided into two sections by a partition. In the first section, where the coming liquid is intensively stirred, neutralization takes part either with sulphuric acid solution or with calcium hydroxyd solution, according to the pH of the waste liquid, which is measured automatically. The neutralization proceeds _ automatically and the neutralized liquid pH 6,5-7,5 overflows to the second section of the vessel /2/ from which it goes to the sewage.

For preparing neutralization solutions two glasswessels are designed. The vessel /3/ is used for preparing 20% calcium hydrcxyd/lime/, the vessel /4/, with the coolingcoil, for preparing 20% sulphuric acid. Neutralisation solutions are prepared manually, their content in glass-vessels is controlled by min.level control units and the necessity of preparing a new solution is signalized either optically or by sound.

A - 14 NEUTRALIZATION PLANT - Specification sheet

ъ **•**

			Pie	k	W	St	e am	Water	Price/	piece	Total	price	1
No	Equipment	Manufacturer	008	inst	. day	t/h	t/d	m ² /h m ² /	d \$	Rbl	\$	RPI	Ī
1	Vessel horizontal, enamelled,with stir- rer, 2500 lt D=1600mm,L=2040mm, w=1600kg	CHEPOŞ, Chuteborské strojirny, CSSR	1	2,7	54				78 00	11000		11000	
2	Vessel horizontal, with partition, for neutralization, with stirrer, stainless- steel, 1000 lt D=1000mm, L=1810mm, w=750kg	CHEPOS, Ferox, Decín, CSSR	1	2	40				8500	12000		12000	
3	Glass-vessel, 100 lt, with outlet and stir- rer D=800mm,H=850mm	KAVALIER, Sázava, CSSR	1	0,12	Q, 5				360	500		500	
4	Glass-vessel, 100 lt, with cooling coil, with outlet and stir- rer D=800mm, H=850mm	KAVALIER, Sázava, CSSR	1	0,12	0,5				430	600		600	
		TOTAL		4,94	95							24100	
					2300								

.

Measuring and regulation, mounting incl. 6000

Electrical installations for motors 1200

A-14 TOTAL 33600

.

• •

• •

. .

A-15 STRORE FOR INFLAMABLE SOLVENTS

The underground store serves for storage of fresh, concentrated solvents in vessels/la,2a/, for storage of solvents, determined for regeneration in A-11 unit in vessels/lb,2b/and for storage of regenerated solvents in vessels/lc,<c/.

For regeneration purposes the solvents to be regenerated are pumped to A-11 unit into vessels /3.,4 ,scheme A-11/ through pumps /jb,3c/.

These pumps are switched on and off automatically by maximum-minimum control units placed in vessels /3,4, scheme A-11/. Pumps /3a, 3d/transport pure solvents into production units.

- 48 -

A - 15 STORE FOR INFLAMMABLE SOLVENTS - Specification sheet

. .

]	Pie		CV	Ste	e.m	, Wa	ter	Price	/piece	Total	price
No	Equipment	Manufacturer	008	Ina	.day	t/h	t/d	ī/h	m / d		Rbl		Rbl
1 a	Vessel, steel cl. 11, for fresh acetone, 10000 lt.	CHEPOS, KSB Brno CSSR											
	D=2000mm, L=3920mm, w=2750kg		1							11780	16500		16500
16	dtto, for aceton for regeneration	11	1							11780	16500		16500
10	dtto, for regenerated acetone	11	1							11780	16500		16500
20	Vessel, steel cl. 11, 10000 lt, for fresh ethanol	CHEPOS, KSB Brno CSSR											
	D=2000mm,L=3920mm, w=2750kg	1	1						i	11780	16500		16500
20	dtto, for regenerated ethanol	99	1							11 78 0	16500		16500
59	Vessel, enamelled, 10000 lt, for ethanol before regeneration D=2000mm, L=4260mm,	CHEPOS, Choteborské strojírny, CSSR								29500	40000		40000
	w=4000kg		<u> </u>	_		ļ	<u> </u>			20300	40000		40000
3 a,b o,d	Centrifugal pump, type META-HC Q=2m ³ /h. workH=30m w.q	SIGMA-Olomouc, CSSR	4	4x 1,5	3					714	1000		4000
		TOTAL			126500								
					14700								
				Re	gulat	ion a	nd m	asu	ring,	nounting	incl.		11000
				El	otri	cal i	.nsta	llati	Lon fo	or motor	8		3600

A-15 TOTAL

155800

• •

A-16 CENTRAL PRESSURE AIR AND CENTRAL VACCUM UNIT

For compressed air production of 0,7-0-9 MPa are three piston compressors /la,b,c/ designed.One of these compressors will be used for production and laboratory needs,the second one/lc/ for measuring and regulation needs.The compressed air for M + E must be on a silicagel automatic dryer/3/ dried.The dryer works fully automatically.The third compressor/lb/ is a spare one and serves for both previously mentioned needs in case of any disorder.The capacity of each compressor is 75 Nm³/hour.

For central vacuum 20 kPa are two centrifugal vacuum pumps /2a,b/ designed,one of them being a spare one.The central vacuum will be used for production and laboratory needs.

A - 16 CENTRAL PRESSURE AIR AND CENTRAL VACUUM UNIT - Specification sheet

• •

			Pie	k	W	Steam	Wa	ter	Price/	piece To	tal price	
No	Equipment	Manufacturer	Ces	inst	day	t/h t/	d_m2/h	m/d	\$	Rb1 \$	Rb1	
1	Piston compressor, type 3 JSK-75-S,with compressed air reser- voir;max.pressure Q9MH capacity 75m ² /h volume of reservoir 500 lt. L=1650mm,W=790mm, H=1990mm,w=500kg	PRAGOINVEST, Praha CSSR	3	3x 15	180	· .			570	1200	3600	
2	Centrifugal vacuum- pump,type: 65-SZO-224-80 LC-00 Capacity:120m ³ /h,at 20kPa. L=405mm,W=360mm, H=620mm,without base, w=70kg	SIGMA-Závadka CSSR	2	2x 3,3	17		0 , 55	5	1470	2070	4140	
3	Silicagel dryer,auto- matically working, for pressure 0,7MPa, type AS 630 L=2000mm,W=500mm, H=2000mm,W~150kg	CHEPOS, Mor. Budějo- vice, ČSSR	1		•				3500	5000	5000	
		TOTAL		51,6	197		0,55	5			12740	
				Pipings and fittings,mounting included Electrical installation for motors								
										A - 16 TO	TAL 19240	

- 52 -

н н

A - 17 COOLING PLANT - Specification sheet

·		Pie	k	W	Ste	e.m	We	ter	Price	/piece	Total	price	١
No Equipment	Manufacturer	Ce 8	inst	day	t/h	t/d	m-7/h	m/d	\$	Rbl	\$	Rbl	
1 Compressor-cooling station NC2-250, consist	ČKD-Choceň * CSSR				, , }			- -					
of: 1A-2 pieces of compress- sors UKM 812, capacity 290kW, for temper20°C regulation possibility upto 75% of capacity L=4710mm, W=1550mm H=3050mm 1B: Vessel-condenser	*ordering the equip ment it must be ex pected, that the ma- nufacturer is sen- ding equipment to- gether with elabo- rated project for instalment.	-	2 x 100	240 0			i						
1CaLow-pressure collecto	r	I	2x										
1D: Ammoniac pumps 2 pice	8		3	72									
15:Buffer The system includes all measuring and regulation	n units.	1							535 00	75000		75000	1 UI
2 Cooling tower SV-24 for water flow 30-130m ³ /h, with ventilator and two	r Armabeton, Praha CSSR		2x 11	264			4	96					-
and collecting vessel vol.960 lt		1	2x 15	360					7570	10600		10600	
	TOTAL		258	3096			4	96				85600	
										The prid	e inclu	des moun	tin
			E	leoti	rical	inst	al]s	tion	for mot	ors		64 00	• • • • •
										A-17 /	LOTAL	92000	

• •

The A-17 Cooling plant serves for cooling of raw material store to the temperature -20°C and must be pituated near the store.

• •

A - 17 GOOLING PLANT (RAW MATERIAL STORE EQUIPMENT ROOM)

+ 13,8m

.

•

			ROOM, NECE SOARY FOR THE COOLII MACHINERY EQUIPHENT, WITH RI TO THE SPECIFICATION SHEET A	6 :GARD - 17
T MT NECESSARY FOR TH VINERY EQUIDMENT, W WE SPECIFICATION SM	NE ODOLING ITH REGARD EET A-17			
	T NT HECESSARY FOR TH VINERY EQUIDMENT, W THE SPECIFICATION SM	T NT NECESSARY FOR THE ODOLING VINERY EQUIPHENT, WITH REGARD THE SPECIFICATION SHEET A-17	T NT HECESSARY FOR THE COOLING VINERY EQUIPHENT, WITH REGARD THE SPECIFICATION SHEET A-17	T T MT NECESSARY FOR THE COOLING WINERY DOWNHINT, WITH REGARD THE SPECIFICATION SHEET A-17

•

.

ŝ

A-19 TRANSFORMER STATION AND THE MAIN SWITCHBOARD-ROOM

The electricity consumption balance for production and auxiliary units, according to the summary /Anex I/, taken from all specified units papprox.476 kWh.With regard to the coefficient of maximum simultaneity of contemporarily running equipments 0,8, this represents maximum consumption of 381 kWh/476x0,8/ for all the units.

The supposed consumption of electricity for the illumination of the building/representing space of about 40000 m^3 / and for other purposes represents about 137 kWh.These values together give the maximum expected electricity consumption of 511 kWh.

Two air-cooled transformers /1/ 630 kW,35/04 kV will supply the electricity, one of them being a spare one. For high-tension side is needed a room of 6 x 7 m, for the low tension side 2 x 4 m.

The main switchboard room for low-tension station /2/, for electricity distribution for motors in production and auxiliary units will have 16 fields type UNIBLOK and the station needs a room of 6 x 3 m.

Distribution of electricity to sockets and illumination of the rooms in the whole building is not discussed here, being a part of the building construction project.

- 56 -

A - 18 TRANSFORMER STATION AND MAIN SWITCHBOARD ROOM - Specification sheet

-

		[Pie	k		Stea	un i	Water	Price	/piece	Total	price
No	Equipment	Manufacturer	Ces	Inst	day	t/h	t/d	m-//h/m-//d	\$	Rbl	\$	Rbl
1	Transformer station: Transformer air-cooled 35/0,4 kV, 630kW. High-tension side Low-tension side	Elektromont, Bystřeny,CSSR	2						28500 5000	40000 7000		80000 14000
2	Low-tension switch- board room for approx. 120 elmot., 14 fields UNIBLOK	Elektromont, Praha, CSSR	1						14300	20000		20000
3		TOTAL										114000
						•				A-18 TO	TAL	114000

•

- 57 -

.

.

٠

A-19 VENTILATION IN EX-ROOMS AND AIR CONDITIONING FOR STERILE ROOMS

In Ex-rooms, where work with inflamable solvents is performed on the equipment with the character of open equipment, it has been recommended to use a compulsory ventilation with 6 air-changes in a hour, without circulation. Intake of fresh air is performed through 6 preheting units THA 122 /1/, which are hanged on walls, and air exhoust is done through ventilation units NDA 92 /2/, placed on the roof of the building and connected with air-ventilation tubings through tube-openings. The unit ZHA 122 heat up only the air coming throug them and do not compensate possible heat looses caused through building construction, which must be compensated by an indipendent heating device.

The capacities of individual units are stated in specification sheet and the number of units has been estimated for a space of 2000 m^3 . In case that the production rooms have different dimensions it will be necessary to adapt the number of installed units.

Beside this general ventilation of Ex-rooms it is necessary to ensure the exhaust of solvent vapours from individual equipment with character of open one equipment. This is realized by means of flexible hoses/pipes/, which are connected onto the main ventilator tubes, leading to ventilation units RNE 250 /3/, placed on the roof.

For possible sterile rooms, not yet exactly defined, air conditioner unit BKC-4 /4/, has been proposed, which is filtrating , mixing, and heating the air , working in two stages. The unit produces a small overpressure in the rooms and it fulfills the requirements for air-filtration: The number of dust-particles not larger than $0.5 \,\mu$ m-less than $3.5 \,\text{mil/m}^3$ and the number of nonpathogenic microorganisms-less than $200/\text{m}^3$. The unit works wit 80% recirculation of air, mixing it with 20% of fresh air from the outside. The unit must be placed in a separate room, the sizes of which are stated on scheme A-19.

Ventilation of all other rooms of the building is part of the whole building construction project.

A - 19 VENTILATION IN EX-ROOMS AND AIR CONDITIONING FOR STERILE ROOM - Specification sheet

. .

			Pie	1	W	Ste	am	Water	Price/	piece	Total price
No	Equipment	Manufacturer	008	ina	day	t/h	t/d	m7h m7/d	\$	Rbl	Rb1
1	Unit for air-intake, heated with hot water 110/90, 0,3MPa, without air-circulati	VZZ Rudé Letnice, Radétin, CSSR		1	ł						
	on, type: ZHA 122 PL 127209 capacity=2000m ³ /h, At= -20+20°C =40°C (to be hanged on wall)	•	6	6x 0,8	115	*	•		285	400	2400
2	Unit for air exhaust from ex-room, type: NDA-92 PL 127320 (to be placed on roof) capacity=8000m ³ /h.	VZZ Rude Letnice Radotin, CSSR	2	2x 2,2	52,8				430	600	1200
3	Local exhaust of sol- vents vapours from opened equipments: ventilator RNE 250 No.PK 123158.40 capacity=900m ³ /h (with flexible tube)	V2Z Rudé Letnice, Radotin, CSSR	3	3x 0,75	13	1			285	400	1200
4	Air-conditioner for sterile room type: BKC 4 capacity=4000m ³ /h. The unit works with 80% air-circulation, with two-steps air- filtration; dust particles 0,5µm max.3,5mil/m ³ , non-pathogen.organ. max. 200/m ³	VZZ Rudé Letnice, Radotin, CSSR	1	3 1,5	36	ŧ			4280	6000	6000
_		TOTAL		15,95	216,8	}				<u></u>	10800

*NOTE- see page 2

• •

A - 19

TOTAL from first page

10800

Electrical installation for motors 7000 Regulation and measuring, mounting incl. 4000 A-19 TOTAL 21800

* NOTE: The equipment is heated with hot water 110/20, with consumption of 8m³/hour (for six units No.1) and 1m³/hour for unit No.4. In case the hot water is not available, equipment can be heated with low pressure steam with consumption of 300 kg/hour for six units No.1 and 30 kg/hour for unit No.4.

- 60 -

2

A - 19 VENTILATION IN BX-ROOMS - MECHANICAL - TECHNOLOGICAL SCHEME

.

Α.	- 20	IN-PROCESS	TRANSPORTATION -	Specification	sheet
----	------	------------	------------------	---------------	-------

• •

			Pie.	<u>k</u> v		Steam	Wa	ter	Price/	plece :	Total	price
No	Equipment	Manufacturer	008	inst	day	t/h t/d	m-7/h	m-7d	\$	Rbl	S	Rbl
1	High-lift truck, accumulator-powered, hand-drived, type: EV 210.1 max.load 630 kg lifting height 3300mm, L=666mm,W=870mm, H=2200mm,w=700kg	AGROZET-Brne CSSR	2						2740	3840		7680
2	Accumulator-loading apparatus, type: Kt 3424/60 ypu	Elektropřístroj, Rokytnice,CSSR	1				1 • •		1210	1700		1700
		TOTAL										9380

•

TOTAL 9380

A-20

~•

.

60 -

ELECTRICITY, STEAM AND WATER SUPPLY - Summary

Production unit		Electricity	······	Steam	Water	Hot water	
(Auxiliary unit)	Nr.of motors	inst.kW	max.kW/h	max.t/h	max.m ³ /h	max.m ³ /h	
A-01 Production of Peptone	18	90,7	73	0,82	15,0		
A-02 Production of Pepsin	9	10,5	8	0,13	2,0	ł	
A-03 Production of Pancypsin, Trypsin and Chymotrypsin	17	78,36	40				
A-04 Production of Cholesterol	8	8,1	4	0,20	2,5		
A-05 Production of Pancreatin	4	7,55	6	ł			
A-06 Production of Blood hydrolyz.	6	8,3	4,5	0,13	4,0		
A-07 Production of Dry bile	6	51,89	51,89	0,06	1,5		
A-11 Solvent regeneration plant	2	0,6	0,6	0,68	16,0	1	
A-12 Production of demi-water	1 1	0,15	0,15	1			
A-13 Engine room for steam, condensate and water supply	3	2,1	1,5	0,20			
A-14 Neutralization plant	2	5,0	5,0				
A-15 Store for inflammable solvents	4	6,4	2,2	[(
A-16 Central pressure air and central vacuum unit	5	51,6	33,3		0,55		
A-17 Cooling plant	8	258,0	229,0		4,00		
A-18 Transformer station		1					
A-19 Ventilation and air-conditioning	15	17,45	17,45	0,30		8	
TOTAL	108	596,70	476,59	2,52	45,55	8	

NOTE: For vessels with view-through glasses has to be reckoned with ilumination (24V or 220V)

.

Annez I

INVESTMENT	Cost	-	SUN
------------	------	---	-----

ANNEX

H

MARY

Piping and Regulation+ Electrical Auxiliary Production unit Equipment fitting measuring installation construction Rb1 Rb1 **Rb1** Rbl (Auxiliary unit) Rb1 A-01 Production of Peptone A-02 Production of Pepsin A-03 Production of Pancypsin, Trypsin and chymotrypsin A-04 Production of Cholesterol A-05 Production of Pancreatin A-06 Prod.of Blood hydrolygate A-11 Solvent regeneration plant A-12 Production of demi-water A-13 Engine room for steam, condensate and water supply A-14 Neutralization plant A-15 Store for inflammable solvents A-16 Central pressure air and central vacuum unit A-17 Cooling plant A-18 Transformer station A-19 Ventilation and air-conditioning A-20 In-process transportation

TOTAL ...

.