TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org

400506

Prepared for the Government of the Lao People's Democratic Republic by the United Nations Industrial Development Organization

Based on the work of James E. Colling, expert in
timber structures engineering

Explianatory notes

References to tons (t) are to metric tons.
Besides the common abbieviations and symbols, the following have been used in this report:

AASHO	American Association of State Highway Officials
BS	British Standard
EMC	equilibrium moisture content
kN	kilonewton

Mention of firm names and commercial product:s does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

Wollowinf a request from the Government of the kinfolom of tan (now the (a) "enple's Demorratir Republic' to the 'nited Nations Development "rogramme ($\mathbb{N N} \cap$) and the 'nited Nations 'ndustrial l)evelopment rganization (INTD) in $197 ?$ for te hnı"al assistance to its wood processinf industries, $\mathbb{N} f i)$ has been "nntinunusly invalved since 1973 in providinf terhnical assistin e under the
 projerts usinf different sour es of finanino.
(ine particular facet of this assistance took place when in April 1976 UNIDO approved project KI, LAO 76.14 entitled "i) lot plant for the production of modular prefabricated bridges" and provided the services of Janes E. liollins, an expert in timber structures enfineering, durine the periods of 18 untober 1976 to 1^{R} January 1977 and 30 April 1977 to 26 Aupust 1977. "he second part
 ment of low-cost modular prefabricated wooden bridges". The purpose of the project was to introduce a new concept in bridpe buildinf, this being a modular prefabrıcated timber bridge which can be constructed at a minimum of cost and was first devised during 1973 in Kenya by the same expert, who then worked for the forest Department in that rountry. His services were later secured by $U \mathbb{N} \mathrm{IlO}^{\prime}$ to assist in transforming the fabrication and erection of the bridges into a fully commercial venture whereby their application could be made avallable to other developinf countries. This particular activity of the integrated Woodworkine "roject was financed from 'NNDO's Regular Programme of rechnical Assistance for the expert component and UNIDO's General "rust fund for the equipment and supplies to produce the prototype bridge.

The present report is based on a manual on design, production and erection of timber bridges which was used by the expert and his team during the work in the l,ao 'eople's Democratic Pspublic. The approach to bridge building as described in the report has a number of objectives, among which are the following:
(a) The utilization of the country's natural resources instead of relying on imported building materials;
(b) 'ihe provision for employment of unskilled local labour in developing areas leading to a reduction in the outlay of foreign currency;
(c) The introducticr of bridges which can be produced at low cost and with a minimum need for graduate engineers and site technicians;
(d) The provision of a simple solution in many instances where it is necessary to open up new areas of the country for development of its natural resources, these low-cost bridges being commensurate with the quality of the laterite roads for which they are built.

The low-cost modular prefabricated wooden bridges have the following technical characteristics:
(a) Whey are made up of triangular truss elements, 3 m lons and about $1.5 \mathrm{mhigh} ;$
(b) The maximuin clear span is 3 and the maximum designed live load 154 tons;
(0) Olements are joined at two ends by a male and female metal plug, which is welded on to the metal gusset plates at each end. "'hese are rivited to the wooden frames of the elements;
(d) The tamber used has cross sections of $5^{\prime \prime} \mathrm{mm} \times 150 \mathrm{~mm}, 5^{\prime \prime} \mathrm{mm} \mathbf{x}$ 20 mm and 5) $\mathrm{mm} \times 25 \mathrm{~mm}$. These chords are nail laminated to make up 1' $^{\prime} \mathrm{mm}$ thicknesses where applicable. Nail laminations allow for visual quality control, with respect to both spacing of nails and any bending in driving them in;
(e) The roadway is made up of planking over the top of the composite trusses;
(f) A minimum of two and a maximum of eight composite trusses of 3 m elements are used, depending on loadine, span and characteristics and grade of the timber species used. These elements are braced;
(g) The abutments are either hollow core cement blocks, concrete or logs anchored in the embankment using embedded logs and cables;
(h) "he launching of the bridge is done with a pair of shear legs, pulleys and a set of cables, one of which is the catenary holding the elements and the other is the cable pulling the assembled elements over the chasm.

CONTENTS

Chayiter Pige
INPRODUCTIOI ,
I. DESIGN. 11
A. Basic dimensions and bracing elements 11
B. Desien process. ??
II. PROCUREMPNT OF MATERIALS AND ASSHMBLY $3 i$
A. Steel procurement 37
B. Timber procurement and treatment 37
C. Steel components 46
D. Panel assembly 58
III. ERECTION. 63
A. Components and erection equipment 63
B. Wet-crossing method. 63
C. Dry-crossing method. 87
D. Concreting and earthworks 91
Annexes
I. Proof test for timber panels. 93
II. Grading rules for timber. 96
III. Stress grades of common timber species 99
IV. Classification of tao timbers 108
Tables

1. Number of trusses needed for a given span and loadine. 26
2. Safe loads 30
3. Live load bending moments and end reactions 32
4. Deck design. 36
5. Quantities of steel required per panel 33
6. Quantities of timber required per panel 39
7. Components 65
8. Wet-crossing equipment. 69
9. Launching data 69

Figures

1. Dersirn with bridre dock placed acoss the top of the trusses 10
? Brade a rancement. 11

- Γ and 1 12

4. Timber panel components. 13
J. Component :avinf; ji 14
5. Fatiricat: n nt a panel 15
6. Tus; assembly method. $1 E$
Chord le: ions 17
7. 'T uss b icint for a two-truss br dece. 17
8. Truss bracing for four-, six- and eight-truss bridge 1.3
9. Four-, six- and eirft-t:uns; b:idge b:acing. 19
10. . Two-tuss b idpo bracine 20
1:T uss and bracint arrangements 21
11. Bea inps locatod in the basic panel ends. 27
12. Desimproces: 23
13. Loadine: 25
14. Stacking procedure for air aying of timber 40
1: Golar kiln 41
1). Panel flate 1 47
?O. Panel flats 1 A. 4
'1. Panel blate 3 49
\therefore Panel plate 9A. 50
C. Chords \therefore and A. 51
15. Chord 6. 52
25 . Chord 6A 53
16. Fanel liates , 4, 10 and 11 54
17. Panel platos ; and 1 55
$?$ Panel plate 56
18. Bearines 57
O. Assemoly jig-plan. 59
19. Ascembly jig-elevations. 60
\therefore. Jig for drilling holes through the plates 61
Nailing template 62
;4. Foundation setting out 64
\therefore Components and erection equipment (wet crosuing) Page
20. Shear legs 71
21. System for the ostablishment of cable anchorar $;$ and assembly of trusses (wet crossing) 72
;. Election equipment for wet crossing showing shea legs and lifting harness. 73
22. Wet crossing erection system and lifting ha ness 74
23. Launching of trusses (wet crossing) 76
24. Launching of t usses - final stage 77
25. Deck const:uction. 73
4). Launching of aditional panels where the numbe of t usses exceeds four 30
26. Sliding extra panel into position. 31
27. Applying temporary support of the panel to erected truss.. 32
28. Handrail designs 33
29. Handrail detail 84
30. Hand rail A - detail 85
31. Hand rail B - detail 86
32. Dry-crossing support 3 3,
33. Truss erection method (dry crossing) - first truss. 69
34. Truss eiection method (dry c.ossing) - second truss. 90
5\%. Anchor bolts 91
35. Jig for proof test of panels. 94

INTRODUCTION

For the purpose of offering continued technical assistance in the development of the country's natural resources the United Nations Development Programe (UNDP) and the United Nations Industrial Development Organization (UNIDO) con tinue their programe of assisting the Government of the Lao Peoples' Democratic Repubiic through the project entitled "Integrated woodworking" (DP/LAO/74/010) as the result of the Government's request for technical assistance in 1972. In this oonnection UNIDO provided the services of James E. Collins, an expert in timber structures engineering for the periods 18 October 1976 to 18 January 1977 and 30 April 1977 to 26 August 1977, tc furnish technical training in design, construction and erection of a low cost modular prefabricated timber bridge. It is hoped that this bridge will act as the fore-runner for some twenty bridges of this type which Government intends to erect throughout the country over the next several years.

This particular aspect of the integrated woodworking project was financed from the Regular Programme of Technical Aasietance of UNIDO for the expert component (RP/LAO/76/010 and RP/LAO/77/001) and the General Trust Fund of UNIDO for the equipment and supplies to produce the prototype bridge (VC/LAO/76/027).

This technical report is based on a manaal which the expert used in designing, producing and erecting the bridge herein referred to. It describee bridges with a span of up to 30 m . Designe are given for a number of load apecifications including American (AASHO) and British (BS) loadinge.

Any timber may be used given reasonable seamoning, etrength and working properties and designs for a number of specien may be obtained from the tablea.

The basic element or modulc of construction is a timber pancl of 3 m length. A number of these are joined with light steel chords to form a tiuss, the full length of which is a multiple of 3 m . Two or more tus:c::; 3 u:r.l to make a bridge.

Figure 1. Design with bridge deck placed across the top of the trusses

Fabrication and erection can be carried out with a minimum of skilled labour and the heaviest component can be lifted by four or six men, deponding on timber species.

Chapter I, dealing with the design of the bridges, is intended for persons with an engineering background. However, the design method is simple and, with some training, persons without formal qualifications should be able to select an appropriate design.

Chapters II and III on procurement of materials, assembly and erection, are intended for trained technicians. Close supervision is important and emphasis is placed on the use of jigs and templates to achieve the requircd iccurac". In particular, weldings must be of good quality to ensure the workini luide: indicated in the design tables.

The proof test described in annex I serves to varify the strese ciade for given timber. Annex II contains timber E^{\prime} adine rules and annex III is a list of stress grades for most of the commonly utilized timbor spocios. Annex IV contains a classification of lao timbers.

I. DESIGN

A. Basic dimensions and bracing
 elements

It is assumed in the design of the bridges described in this report that each truss carries an equal share of any load. However, this is only true for single-carriageway buidges. Bridges with more widely-spuced tusses or having wider ca: rageways will require spec al consideration.

Camber is built into the bridre so that deflection will not prove a significant factor in design provided the indicated apan limits are obser"red.

$$
\text { Figure } \therefore \text { Bridge arrangements }
$$

Figure 4. Timber panel components

Figure . Component sawing j:g

Modular panel

Modular panels are joined with pairs of chords to form a truss (see figure 6). They consist of $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ sawn timber members connected with steel plates and dowels. At one end of the top chord there is a pin projecting in the direction of the span which locates in the hole of the next panel as shown in figure 7. At the botton of the panel pins are projecting on each side at :ight angles to the plane of the panel to receive the chords. The pins are in two sizes depending on the timoer used and the load carried. Where the light chord is used the bottom pins are 33 mm in diameter and where the heary chord is required they have a diameter of 50 mm . The top pins are either 32 mm or 33 mm in diameter, the heavier pins being used with timbers whose stress grade is F 11 and above.

Figure 6. Fabication of a panel

Figure 7. Truss assembly method

Chords
Chords have been designed in two basic sizes. The lighter size is generally used with timbers of stress grades F 3 or below and the heavier one for stronger timbers.

Trusses

The modular panels are assembled into trusses. The number of trusses needed for different loadings, species and spans is given in table 1.

Figure 3. Chord designs

Vortical bracing

There are two types of vertical bracings. In a two-truss bridge, the b.acing is used to impart lateal stability to the panels and it does not act a. a load ha ing device.

Figure 9. Triss bracing for a two-truss bridge

The component consists of a simple $150 \mathrm{~mm} \times 50 \mathrm{~mm}$ member with $6-\mathrm{mm}\binom{111}{4}$ steel connector plates nailed to each end. These are bolted with $100 \mathrm{~mm} \times 25 \mathrm{~mm}$ diameter ($4^{\prime \prime} \times 1^{\prime \prime}$ diamete) bolts into the bracing lugs on the panei.

In a bridge with four or more trusses the bracing is intended to give lateral stability and to share the load between the trusses thus connected.

Figure 10. Truss bracing for four-, six- and eight-truss bridge

They are bolted onto the bracing cleats with $25-\mathrm{mm}$ diameter (1") bolts with a $50-\mathrm{mm}$ (2") square washer under the nut on the timber face.

Deck bracing
The deck bracing consists of $150 \mathrm{~mm} \times 50\left(6^{\prime \prime} \times 2^{\prime \prime}\right) \mathrm{mm}$ members nailed diagonally to the underside of the trusses with 100 (4") mm nails driven into spacers inserted between the chords.

Deck

The deck is made from $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ wide timber nailed together in a depth which depends on the wheel loading (see table 4) and spanned across the trusses as shown in figures 9 and 10. Running boards are fixed on top of these members in the direction of the span which have an essential function in distributing wheel loads over several cross members and should not be omitted or reduced in size.
Figure 11. Four-, six- and eight- truss bridge bracing

Figure 13. Truss and bracing arrangements

Bealings

Male and fomale bearines are located in the ends of the basic panols (:arn firure 14). A 12 mm plate is used throughout, the off-cuts from the top cornc:i servin? as stiffencrs. The pin size depends on the pin used in the panels and will be either 32 mm or 38 mm .

Figure 14. Bearings located in the basic panel end:;

The sequence is indicated graphically in figure 15.

Selection of timber-species and stress grade

Tables of timber species from different parts of the world are given in annex III. This is not a comprehensive listing but it includes suitable timbers made known to the expert by about 50 national forest departments. Botanical names are given to avoid confusion when using trade or vernacular names.

Grading rules (see annex II) are uscd to classify timber from any particular species as being of grade $75 \%, 60 \%$ or 48%. These crades are then used in annex III to determine the stress grade for the brider dosim. It is obvious that a standird set of grading mules has to be used where standard designs; are involved. Local grading rules may be used provided that they are comparable with the standard set. It has to be ensured that the local grading rules include all the defects given for any grade in annex II, and that the maximum defect permitted is not exceeded.

If the stress grade for a timber which is not included in the list has to be determined, the stress grades applying to unidentified timber of that region should be used. It should be noted, however, that there are many timbers which by virtue of their durability, seasoning characteristics and working properties are unsuitable for bridge-building.

Figure 15. Design process

Another grading classification has been developed for the UNDP/UNIDO Integrated Woodworking Project by the Timber Research and Development Association (TRADA) as part of a subcontract given to them by UNIDO for the development of a wooden prefabricated community building system for Laos. It is given in annex IV which contains an assessment of 44 species of Lato timbers grouped in three categories for strength, durability and shrinkage. When choosing timber components for the Lao bridge this latter system was applied.

$\underline{\text { Loading }}$

Designs for 12 different load specifications are given in figure 16, including loadings H and $H S$ of the American Association of State Highway Officials (AASHO) and British Standard HA loadings. Typical truck and trailer configurations are also shown in figure 16 for comparison with the standard loadings.

Highway bridges, on which there is likely to be heavy truck loading, should normally be designed for a minimum load of H2O. Bridges for rural access roads can be designed for less heavy loadings but it should be remembered that there is a tendency in all countries for loads to increase. Bridges of a limited capacity should be protected against over-loading by height barriers or maximum load signs and when traffic loads increase considerably the capacity of the lridge should be augmented by the addition of extra trusses.

Determining the design (number of trusses)

After determination of the timber stress grade and selection of the loading applicable in a given situation, the design (number of trusses) can be read directly from table 1. For loads which are not indicated in table 1, the maximum live-load bending moment and the end-reactions haje to be determined first. Designs can then be read from table 3 which shows available live-load bending moments and end-reactions for different spans and timber stress; grades.

The safe load tables (table 2) give the maximum capacity of singlecarriageway bridges when supporting a single-tracked vehicle with its weight evenly distributed over 4 m .

Figure 16, Loadings

Table 1. Number of trusses needed for a given span and loading

A. Stress grade F4

$\text { Loading }^{\text {a/ }}$	Span (m)								
	6	9	12	15	18	21	24	27	30
H 10	4	4	4	4	6	6	3	-	-
H 15	4	6	6	6	3	-	-	-	-
H 20	4	6	6	6	8	-	-	-	-
HS 15	6	6	3	3	-	-	-	-	-
HS 20	6	6	8	3	-	-	-	-	-
2/3 HA	4	4	6	8	-	-	-	-	-
HA	6	8	-	-	-	-	-	-	-
Indian B	4	4	4	6	3	-	-	-	-
Trailer 1	6	6	6	6	8	-	-	-	-
Trailer 2	6	8	3	8	-	-	-	-	-
Truck 1	2	4	4	4	6	6	3	3	-
Truck 2	6	6	6	3	3	-	-	-	-

B. Stress grade F5

$\text { Loading }^{\text {a/ }}$	Span (m)								
	6	9	12	15	18	21	24	27	30
H10	2	2	2	4	4	6	6	3	
H15	4	4	4	6	6	3	-	-	-
H2O	4	4	4	6	6	8	-	-	-
HS15	4	6	6	8	8	-	-	-	-
HS ${ }^{\circ}$	4	6	6	8	-	-	-	-	-
2/3 HA	2	4	6	3	-	-	-	-	-
HA	6	6	8	-	-	-	-	-	-
Indian B	2	2	4	6	3	-	-	-	-
Trailer 1	4	4	6	6	8	-	-	-	-
Trailer 2	6	6	6	6	-	-	-	-	-
Truck 1	2	2	4	4	4	6	6	8	-
Truck 2	4	4	6	6	3	3	-	-	-

C. Stress grade F7

Loading ${ }^{\text {a/ }}$	Span (m)								
	6	9	12	$1{ }^{1}$	19	21	4	27	30
H 10	\checkmark	-	\checkmark	4	4	4	6	6	3
H 1	4	4	4	4	4	6	6	3	-
H 20	4	4	4	4	6	3	-	-	-
HS 1^{-}	4	4	6	6	3	3	-	-	-
HS 20	4	4	6	6	3	-	-	--	-
2/3 HA	2	\bigcirc	4	6	3	-	-	-	-
M	4	6	6	3	-	-	-	-	-
Indian B	2	?	4	4	6	8	-	-	-
Trailer ${ }^{\text {P }}$	4	4	4	4	6	3	-	-	-
Trailer ${ }^{\text {? }}$	4	4	4	6	3	-	-	-	-
Truck 1	?	2	2	2	4	4	6	6	3
Truck 2	4	4	4	4	6	3	J	10	-

D. Stress grade F3

Loading	Span (m)								
	6	9	12	15	13	11	24	$\bigcirc 7$	30
H 10	2	\cdots	?	2	4	4	4	6	6
H 15	2	2	4	4	4	6	6	3	3
H 20	2	4	4	4	4	6	3	-	-
HS 1	4	4	4	4	6	3	3	-	-
HS 20	4	4	4	4	6	3	-	-	-
2/; HA	?	2	4	6	6	3	-	-	-
HA	4	4	6	3	-	-	-	-	-
Indian B	?	2	2	4	4	6	3	-	-
Trailer 1	4	4	4	4	6	6	3	-	-
Traile: 2	4	4	4	4	6	3	-	-	-
Truck 1	2	2	2	2	4	4	4	6	6
T uck 2	4	4	4	4	4	6	6	3	-

E. Stress rade F11

Loading	Span (m)								
	6	9	12	15	18	21	24	27	30
H 10	2	2	2	2	4	4	6	6	8 6
H 15	2	2	4	4	4	6	6	8 6	6
H 20	2	2	2	4	4	6 4	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	6	8
H3 15	4	4	4	4	6 4	6	8 6	8	-
HS 20	2	4 2	4	6 4	6 4	8	6	8	8
2/3 HA	2	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	8	$\overline{8}$	-	-
H	2	4	4	6	6	8	-	-	-
Indian B	2	2	2	4	4	6	8	8	-
Trailer 1	2	2	4	4	4	6	8	8	-
Trailer 2	4	4	4	4	6	8	8	-	-
Truck 1	2	2	2	2	4	4	4	6	6 4
Truck 2	2	2	4	4	4	6 4	6	3	$\overline{8}$

F. Stresa_rede F14

Loading	Span (m)								
	6	9	12	15	18	21	24	27	30
H 10	2	2	2	4 2	$\stackrel{\cdot}{4}$	4	4	6 4	8
H 15	2	4	4	4	4	6 4	6 4	8 4	6
H 20	2	2	4 2	4	4	6 4	8	6	8
HS 15	4	4	4	4	6	6	8	6	8
HS 20	2	2	4	4	6	6	6	8	10
2/3 HL	2	2	4	6	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	8	-	-
H	2	4	4	6	6	8	-	-	-
Indian B	2	2	2	4	4	6	8	6	8
Trailer 1	2	2	4	4	6	6 4	8	6	8
Trailer 2	2	2	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6	8	10
Truck 1	2	2	2	2	4	4 2	4	6 4	6 4
Truck 2	2	2	4 2	4 2	4	6	8	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	6

G. Stress grade F17

Loading ${ }^{\text {a/ }}$	-			Span (m)					
	6	9	12	15	18	21	24	27	10
H 10	2	2	2	2	4 2	4 4	4	6 4	9 4
H 15	2	2	4	4	4	6 4	6 4	8 4	$\overline{6}$
H 20	2	2	4 2	4 2	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8 4	6	8
HS 15	2	2	2	4 2	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8 4	6	6
HS 20	2	4 2	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	6	8	3
2/3 HA	2	2	4 2	6 4	6 4	6	8	8	-
Hu	2	4	6	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	6	8	-	-	-
Indian B	2	2	2	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6	-
Trailer 1	2	2	4 2	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	$\overline{6}$	$\overline{9}$
Trailer 2	2	2	4	4	6 4	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	6	8	10
Truok 1	2	2	2	2	4	4	4	6 4	8 4
Truck 2	2	2	4	4	6 4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6	6

H. Stress crades F22, 27 and 34

Loading	Span (m)								
	6	9	12	15	18	21	24	27	30
H 10	2	2	2	2	4 2	4	6 4	6	8 4
H 15	2	4	4	4	4	6 4	6 4	8 6	6
H 20	2	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	6 4	8 4	6	8
HS 15	4	4	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	8	6	8
HS 20	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6	δ	8
2/3 Hi	2	2	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	6	6	8	8	-
Hu	2	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	6	8	-	-	-
Indian B	2	2	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	6 4	8	6	8
Trailor 1	2	2	4	4	6	6	8	6	8
Trailor 2	2	2	4	4	6	8	6	8	-
Truck 1	2	2	2	2	4	4	6	6 4	8
Truck 2	2	2	4 2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	6	8	6	$\overline{6}$

a) Por detaile see figure 16.

Table 2. Safe loads
(Tons)
A. Two-trues construction

St ress grade	$\operatorname{Span}(\mathrm{m})$								
	6	9	12	15	18	21	24	27	30
F4	5.3	4.4	3.9	2.7	2.2	1.6	1.2	0.8	0.5
F5	6.7	5.5	4.9	3.4	2.3	2.0	1.4	0.9	0.6
F 7	9.1	7.0	6.3	4.5	3.7	2.8	2.1	1.5	0.8
F 3	10.9	9.0	8.1	5.3	4.7	3.6	2.6	2.0	1.4
			3.6	6.0	4.9	3.7	2.8	2.1	1.5
F 11	13.8	11.)	10.4	7.4	6.1	4.7	3.7	2.9	2.1
		13.0	8.4	5.8	4.7	3.5	2.6	1.9	1.3
F 14	17.0	14.1	12.8	9.7	7.9	6.2	5.0	3.9	3.0
		12.8	8.2	5.5	4.5	3.3	2.4	1.6	1.0
F 17	10.8	13.9	12.6	10.0	8.2	6.4	5.0	4.0	3.0
F $22 \quad 27$		12.6	7.9	5.1	4.3	3.0	2.1	1.3	0.4
and 34	10.7	13.7	12.3	9.6	3.0	6.1	4.7	3.7	2.7

B. Four-truss construction

$\begin{aligned} & \text { Stress } \\ & \text { grade } \\ & \hline \end{aligned}$	Span (m)								
	6	9	12	15	13	21	24	27	30
F 4	${ }^{5} .5$	4.6	4.1	3.0	2.3	1.6	1.2	0.3	0.5
F9	6.9	5.7	$5 . ?$	3.3	3.0	2.1	1.6	1.1	0.9
F 7	8.9	7.3	6.7	4.9	3.7	?. 3	2.2	1.6	1.1
F3	10.7	9.4	3.6	6.4	4.3	3.7	2.9	2.2	1.6
			9.1	6.6	5.0	3.8	2.9	$2 . ?$	1.6
F 11	14.1	11.9	10.9	8.1	6.2	4.8	3.3	3.0	2.3
		13.5	9.0	6.5	4.8	3.6	2.7	3.0	1.3
F 14	17.4	14.6	13.4	10.4	8.0	6.3	5.0	4.0	3.1
		13.4	8.9	6.3	4.6	3.4	2.5	1.7	1.0
F 17	17.3	14.7	13.3	10.3	8.3	6.5	5.1	4.0	3.1
		13.2	8.7	6.1	4.4	3.1	2.2	1.3	0.6
and 34	17.2	14.4	13.1	10.6	8.1	6.2	4.8	3.7	2.7

C. Six-truss construction

Stress grade	Span (m)								
	6	9	12	15	13	21	4	7	30
F 4	5.6	4.6	4.2	3.1	2.3	1.3	1.	1.0	0.7
F 5	7.0	5.3	\therefore ?	3.9	3.0	2.	1.3	1.3	1.0
F 7	- 9	7.4	6.3	5.1	3.9	. 0	2.4	1.9	1.4
F 3	11.3	9.5	8.7	6.5	5.0	4.0	3.2	. 5	2.0
			9.3	6.3	5.2	4.1	3.?	2.6	2.0
F 11	14.3	12.6	11.0	8.3	6.4	5.1	4.1	*	2.7
		13.6	9.2	6.7	5.1	4.0	3.1	2.4	1.3
F 14	17.6	14.8	13.6	10.6	8.3	6.6	5.4	4.4	3.6
		13.6	9.1	6.6	5.0	3.3	2.9	2.2	1.5
F 17	17.5	14.8	13.5	11.1	3.6	6.9	5.5	4.5	3.6
F 2227		13.4	9.0	6.4	4.8	3.6	2.6	1.9	1.2
and 34		14.6	13.4	10.9	3.4	6.7	5.	4.2	3.1

D. Eight-truss construction

Stress grade	Span (m)								
	6	9	12	15	13	21	24	27	30
F 4	5.6	4.7	4.4	3.2	2.4	1.3	1.4	1.0	0.3
F 5	7.0	5.9	5.4	4.0	3.1	2.4	1.9	1.5	1.1
F7	8.9	7.5	6.9	5.1	4.0	3.1	2.5	2.0	1.6
F 8	11.3	9.6	8.8	6.6	5.1	4.1	3.3	2.7	2.1
			9.4	6.9	5.4	4.3	3.4	2.7	2.2
F 11	14.3	12.1	11.1	3.4	6.6	5.3	4.3	3.5	2.9
		13.7	9.3	6.8	5.3	4.1	3.3	2.6	2.0
F 14	17.6	14.9	13.7	10.7	3.4	6.8	5.6	4.6	3.3
		13.6	9.2	6.6	5.1	4.0	3.1	2.4	1.8
F 17	17.5	14.8	13.6	11.2	8.8	7.1	5.8	4.7	3.9
		13.5	9.1	6.6	5.0	3.8	2.9	2.2	1.5
$\text { F } 22 \quad 27$ $\text { and } 34$	17.4	14.7	13.5	11.1	8.6	6.9	5.6	4.5	3.6

Table 3. Live load bending moments and end reactions
A. Stress grade F. 4

Numuer of trusses		Span (m)								
		6	9	12	15	13	21	24	27	30
2	a	71	68	64	61	56	54	5	47	-
	b	226	214	196	173	145	111	73	29	-
	c	226	214	196	173	145	111	73	29	-
4	a	147	142	138	133	129	124	120	115	111
	b	460	444	420	389	352	308	257	200	135
	c	460	444	420	389	352	303	257	200	135
6	a	223	217	212	206	200	195	139	194	179
	b	694	673	644	606	5,60	505	442	370	290
	c	694	673	644	600́	5,60	50	442	370	290
8	a	299	292	285	279	272	265	259	25,2	245
	b	923	903	867	822	767	702	626	549	44^{5}
	c	92.3	90 :	367	322	767	702	626	5,41	445,

B. Stress grade F 2

Number of t,russes		Span (m)											
			6		9		12	15	13	21	24	27	30
2	a		39		35		21	73	74	70	66	62	58
	b		233		263		243	$27 ?$	190	153	109	60	5
	c		233		26.3		249	222	190	153	109	60	5
4	a		134		179		174	169	164	159	134	. 149	145
	b		¢,74		5.55		523	495	453	404	347	283	211
	c		574		555		529	49	453	404	347	283	211
6	a		27.3		272		266	260	25;	247	241	235	229
	b		965		341		309	767	716	655	536	506	413
	c		365		341		809	767	716	65.5	586	506	418
3	a		373		366		354	351	343	346	329	321	314
	b	1	155		128		$0 \div 9$	1039	979	906	324	730	624
	c	1	15		128		089	1039	979	906	324	730	624

C. Stress grade F $]$

Number of trusses		Span (m)								
		6	9	12	15	18	21	24	27	30
2	3	114	110	105	101	96	92	88	83	79
	b	360	344	320	291	254	211	161	105	42
	c	360	344	320	291	254	211	161	105	42
4	a	234	229	223	217	212	206	200	195	189
	b	729	703	679	640	593	53.3	474	401	320
	c	729	703	679	640	593	533	474	401	320
6	a	355	348	341	334	327	320	313	306	299
	b	1099	107	1037	990	932	364	786	697	593
	c	1099	1073	1037	990	932	364	786	697	598
3	a	475	467	459	450	442	434	426	418	409
	b	1469	1438	1395	1339	1271	1191	1093	993	375
	c	1469	1433	1395	1339	1271	1191	109.3	993	875

D. 3tress grade F 3

Number of trusset	Span (m)								
	6	9	12	14	16	21	24	27	30
\cdots	146	141	136	131	126	120	11^{5}	110	105
	4.9	440	413	79	337	237	230	165	93:
	49	440	413	379	337	237	230	165	93
4	$2 y 3$	$2 x^{3}$	286	230	273	267	260	${ }^{21} 4$	247
	93	104	470	127	773	710	637	555	463
) 2	904	370	227	773	710	637	555	463
$\begin{array}{rl}6 & b \\ & c\end{array}$	42	444	437	429	421	413	405	397	2.39
	$139{ }^{2}$	1369	1329	1275	1209	$113:$	1045	944	42
	143	1369	1323	1275	1209	1133	104	944	832
c	696	5,96	531	4.73	5,69	259	\cdots	541	5,32
	1-13\%	133:	1735	1722	1646	$15,5,6$	14.2	1334	1202
	16	1.33	1735	1722	1646	155,6	1452	1334	1202

E. Stress grade F 11

Number of trusses	$\operatorname{Span}(\mathrm{m})$								
	6	9	12	15	18	21	24	27	30
2	184	179	173	167	161	155	150	144	138
	483	461	430	390	343	233	220	146	63
	578	557	526	4.7	439	52	17	242	15,9
4	378	370	363	356	348	341	334	326	319
	973	950	912	362	802	730	647	554	449
	1170	1143	1104	1054	994	922	340	746	641
6	571	562	553	544	535	527	5,18	r,09	500
	1473	1440	1393	1334	1260	1174	1074	961	855
	1762	1723	1682	1622	1549	1462	1362	1249	1123
$8 \quad \mathrm{a}$	764	754	743	733	722	712	702	691	681
	1969	1930	1875	1305	1719	1618	1501	1368	1220
	2353	2314	2260	2189	2104	2002	1335	1753	1605

F. Stress grade F 14

Number of trusses	Span (m)								
	6	9	12	15	18	21	24	27	30
2	227	220	213	206	200	193	186	180	173
	479	455	420	374	319	25,3	178	92	-
	734	708	674	628	573	508	432	347	251
4	463	455	446	438	430	421	413	404	396
	975	943	899	843	773	692	597	490	371
	1483	1451	1408	1351	1282	1200	1105	998	879
6	700	690	680	670	660	649	639	629	619
	1470	1432	1379	1311	1228	1130	1016	838	744
	2232	2194	2141	2073	1990	1892	1 779	1650	1507
$8 \quad \begin{gathered}\text { a } \\ \\ \\ \\ \\ c\end{gathered}$	936	925	913	901	889	878	866	854	842
	1965	1921	1859	1779	1682	1568	1435	1286	1118
	2981	2937	2875	2796	2699	2584	2452	2302	2134

G．Strens ander 17

Numbe：， t！ux：	Opm（m）																	
		\％		3		12		1		1		$\therefore 1$		34		？ 7		0
1		$\therefore{ }^{\text {a }}$		319		（1）		$\therefore 0^{\prime}$		$1 \cdot 4$		$1 ;$		19		11		194
3		41		44		40		319		244		$\therefore 13$		1 ！		3t，		0
c		109		140		700		043		\because		： 11		4．＂		［．＇．		1．）
1		469		$4^{\prime} \cdot 1$		$44 ?$		43：		423		414		404		4		\because
4 b		侶		$3 \cdot 5$		6				（4i）		$\therefore 1$		4.		$1 ;$		
c	1	$1:$	1	$\because 0$	1	470	1	406	1	ふ＂		2\％	1	1%	1	007		7
1		697		63		675		$66:$				6.11		6．）		51		$67 ?$
1）	1	466	1	A2	1	64	1	247	1	194	1	O；		9：		$\cdots 1$		1343
c	＂		\therefore	2） 3	2	240	＇）	16	2	070	1	物）	1	$\therefore 4$	1	$6 \cdot 7$	1	，？
a		14		120		307		94		$\bigcirc 1$		6		\cdots		41		\cdots
\because b	1	ye0	1	911	1	A．？	1	7	1	644	1	1，1：	1	160	1	1.$)$	1	010
c		$12 \ldots$		07		010	$?$	920	\therefore	10	$?$	\％．	\because	$\therefore 4$	\therefore	360		17

11．Streas grade： F 2 a ， F and 34

Key：a．Available shear $(k N)$
b．Available bending moment light chord（kN m）
c．Available bending moment heavy chord（ $k N \mathrm{~m}$ ）

Design of the deck

Table 4 indicates recommended sizes for deck members for different wheel loads and timbers of various stress grades. If timbers are used that are likely to wear quickly, a harder or denser species should be used for the running boards. This will probably be the case with most timbers of stress grade F11 and below. An alternative is to fix a chequer pate on top of the boards which acts as a wearing surface.

Taule 4. Deck deisign
(depth of deck required in mm)
A. Two-truss bridges

$10+4$$(t)$	Stre3s grade									
	F4	F5	F7	F3	F11	F14	F17	F22	F27	F34
1	100	100	75	75	75	75	15	75	75	75
2	125	125	100	100	100	75	75	75	$7{ }^{\text {c }}$	75
3	150	150	125	125	100	100	100	75	75	75
4	-	-	150	125	125	100	100	100	75	75
5	-	-	-	150	125	125	100	100	100	75
6	-	-	-	-	150	125	125	100	100	100

B. Four-, six- and eight-truss bridges

| Wheel
 load
 (t) | F4 | F5 | F7 | F8 | F11 | F14 | F17 | F22 | F27 | F34 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 1 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
| 2 | 100 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
| 3 | 100 | 100 | 100 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
| 4 | 125 | 100 | 100 | 100 | 75 | 75 | 75 | 75 | 75 | 75 |
| 5 | 150 | 125 | 100 | 100 | 100 | 75 | 75 | 75 | 75 | 75 |
| 6 | 150 | 125 | 125 | 100 | 100 | 100 | 75 | 75 | 75 | 75 |

II. PROCUREMEANT OF MATERTALS AND ASSEBMLY

A. Steel procurement

It is assumed that steel with a maximum tensile strength of $435-494 \mathrm{~N} / \mathrm{mm}^{2}$ ($28-32 \mathrm{t} / \mathrm{in}^{2}$) and a minimum yield stress of $236 \mathrm{~N} / \mathrm{mm}^{2}\left(15.25 \mathrm{t} / \mathrm{in}^{2}\right)$ is used. Mild steel from the majority of producers will comply to this standard; sub-standard steel should not be used. In case of doubt government or private materials testing laboratories should be consulted regarding the quality of the steel in question. In some places difficulties have been experienced in obtaining supplies of bars of a larger diameter. If they are not available from stuructural steel merchants, mechanical engineering suppliers may have shaft steel of the required size on stock. Shaft steel is usually made of an alloy different from steel and has to be welded with special rods, depending on its composition.

The quantities of steel required per panel are given in table 5 .

B. Timber procurement and treatment

Procurement

Timber of the species and stress grade foreseenfin the design should be ordered and the timber should be allowed to dry. The actual time required for drying will depend on the species, the method of drying, and the climate.

It is an advantage to order timber in such lengths that pieces can be cut with a minimum of wastage. Even if a premium is charged on orders for specific lengths, this will normally still be cheaper than having a high rate of wastage when cutting from random lengths.

A check should be made on dimension and green timber must be sawn oversize to allow for shrinkage during drying. The actual amount of oversize will again depend on the species.

Gutting to size

The dimensions of the panel components are given in figure 4. The jigs shown on figure 5 can be used for cutting to size. Timber can be sawn green; this will be necessary if the diffusion method of treatment is used.

Table 5. Quantitic of steel required per panel

(Weights and surface areas of steel plates include drill holes and bevel offouts)

The $h-m m$ diametri holes can ve d illed at this btage, although it is nomarnie to to the attor the armombly, provided that the holes amo inlydually tomat with prerervative.

A tolorance of mm can bo regated accoptable for pre-awn timber component: Overiae components will not fit the assembly jig. Quantities of t, mbe: "quired fer fanel are giva in table b.

Table ú. Quantities of timber required per panel

Member ${ }^{\text {a }}$	Size (mm)	Length ordered (m)	Number pe: panel	Volunie (m')
1 T	30×5	-	$?$	0.0
:" Γ	$\bigcirc 00 \times 10$	$\bigcirc 4$	4	0.0960
T	11.0×1.0	1.7	2	0.021,
4 T 40 tal	100×0	1.	2	$\begin{aligned} & 0.01: 0 \\ & 0.2170^{\mathrm{b}} \end{aligned}$

a/ See tifyure 4.
b) Net volume in assembled panel $=0.191 \mathrm{~m}^{3}$.

Drunc

It is outside the scope of this report to describe fully all methods of timber reason!ng. The design calls for timber dried to within $\%$ of the equilibrium moisture content (EMC). EMC is the value which would be attained in service and which depends on the humidity of the air and the tropical region. The following may be used as a rough guide:

EMC (\%)

Hot dry region (desert, savannah or	
scrub land)	$10-12$
Tropical highland (above $1,500 \mathrm{~m}$)	$12-14$
Tropical coast and rain forest	$14-18$

The moisture content is most conveniently measured by using a moisture meter. Ensure that the probes are long enough to reach the centre of the timber. Steep moisture gradients are found in some timbers and measurement at the surface may give a false impression of the moisture content of the whole piece.

Most moisture meters are calibrated for species from the temperate zone; therefore officers of the National rorest Departments should be asked for calibration data required for local timbers.

> Air drying

For air drying, which is the most common method, timber should be stacked under cover on a well-drained surface, clear of the ground, as shown in figure 17.

Where a concrete base is not practicable the soil under the stack should be poisoned with an appropriate insecticide solution having long activity to prevent possible termite attack.

Figure 17. Stacking procedure for air-drying of timber

The thickness of the stickers will usually be about 13 mm . For timbers known to be difficult to season 12 mm-stickers should be used. The stickers should be placed directly under one another.

The time required for seasoning will depend on the species and the climate. Some softwoods in tropical climates require only 6 weeks while some of the denser hardwoods need at least 25 weeks.

The ends of members tend to dry more quickly than the other part and should be covered with polythene or painted with bitumen to prevent splitting. This is particularly important for dense hardwoods.

Solar kilns

Figure 18 shows a solar kiln based on a design developed for the Uganda Forest Department. ${ }^{1 /}$ In this type of kiln air is heated in the roof cavi' J and then circulated around the timber stack by one or more fans. With this method the time required to dry hardwoods could be reduced by up to 50% and it would clearly be attractive where plain air drying presents difficulties.

Figure 13. Solar kiln
A. View from the rear with fans
above the absorber

[^0]
B. Front view showing absorbers and method of powe:ing fans

The mours of vint used, the stacking arranfoments and the volume of air flow will depend on the spec:es beinu dried and some experimenting will be needed to detormine these. Experience with the original kilns indicated that, the air flow chould be reduced in the naly stages of drying, when high moisture gradients are to be avoided, but can be greatly increased later.

Conventional kiln drying

This method will only prove economical when production of the bridges is linked to the manufacture of other products requiring dried timber.

Low-cost hot air kilns using oil drums or similar means should be employed with caution as severe degrade has been experienced with this type of driers.

Treatment

The heartwood of most of the hardwoods listed in annex III can be regarded as durable. Where sapwood, softwoods or non-durable hardwoods are used some method of chemical teatment will be necessary. Of the two methods described hereunder - diffusion and pressure treatment - the former has the advantage of requiring little capital expenditure but is not suitable in cases where timber is continually wet.

The diffusion process

A concentrated solution of suitable chemicals is applied to the outer surface of green timber; the solution diffuses into the interior of the material by molecules moving down a concentration gradient. The chemical usually applied in this process is known as BFCA and is a borofluoride-chrome-arsenic-compound which is highly termiticidal. Fungal growth is prevented by adding 1% sodium pentachlorophenate. The chemical is soluble in cold water, and a solution of 30% by weight in water is recommended.

The minimum moisture content required in the timber is 50% which means that the treatment should be carried out within a week or two after felling. By this method the precut pieces are simply dipped in the solution (alternatively a spray race may be used), then stacked closely and wrapped in plastic sheeting. The timber is left for four to eight weeks depending on the spec es and then stacked to searon in the usual way.

The derth of penotration may be tested by using the following test reagents:
(a) Solution A: Ad 10 g of turmeric powder to 100 ml of 95% methanol/ alcohol and bo!l the mixture for one hour under a reflux condensor. Cool and filter the solution. This solution should be prepared freshly every two months;
(b) Solution B: Add 20 ml concentrated hydrochloric acid to 30 ml of 95% ethanol/methanol and saturate the colution with salicylic acid. Allow solution to stand and filter offexcoss solids. This solution will not spoil.

Control flec of 1 m length are treated with the standard components. After + matment thin biscuits (10 mm thick) are cut, at least 200 mm away from the end of the plecn. The slices arn died if not already seasoned. Then solution A is sprived uniformly across the entire surface of a piece. After five minutes solution β is evenly sprayed on, takime care to saturate the wood. The samples should then be allowed to stand for 10 minutes.

A red colour indicates: $0 . \%$ boric acid equivalent. [n general a $9-m m$ depth of penetration of 0.3% treatment can be regarded as satisfactory. If the depth is less than 9 mm , a larger diffusion time is required.

It is important to remember that the salts are poisonous and dangerous both in diy form and as a solution. All persons handling the material should wear protective clothing and wash their face and hards before breaks and at the end of the day.

Pressure treatment

Two processes are in general used, one called the "full-cell" process and the other the "empty-cell" process. In the full-cell process water-borne preservatives are applied while for the empty-cell process - except in cases of very severe exposure - oil-borne preservatives are used. The standard preservatives are:

Preservative oils and oil-borne preservatives

Creosote
Creosote-coal-tar solutions
Creosote-petroleum solutions
Pentachlorophenol
Copper naphthanate

Water-bcrne preservatives

Chromated zinc chloride (CZC)
Copperized chromated zinc chloride (CCZC)
Tanalith (Wolman salts)
Acid copper chromate (Celcure)
Chromate copper arsenate (ASCU, Greensalt, Endalith) (CCA)
Zinc meta arsenite (ZMA)
Ammonical copper arsenite (Chemonite)
Chromated zinc arsenite (Boliden salt)

The choice of the preservative to be used depends on its availability and its cost. All preservatives are reported to be effective against termite attack; for use in tropical climates it is recommended to add to the pentachlorophenol at least 1% of a persistent chlorinated hydrocarbon insecticide such as Lindane or Aldrin.
(a) The full-cell process: Use timber which has been seasoned to near its final moisture content.

1. Seal the timber in the treatment cylinder and apply a vacuum to remove the air from the cylinder and, as much as possible, from the wood.
2. Heat the preservative to slightly above treatment temperature and feed it into the cylinder without admitting air. Treatment temperatures for oil-borne and most water-borne solutions should be between $88^{\circ} \mathrm{C}$ and $93^{\circ} \mathrm{F}$ and $200^{\circ} \mathrm{F}$); those for chromium salts should be about $70^{\circ} \mathrm{C}\left(160^{\circ} \mathrm{F}\right)$ to avoid precipitation of the preservative.
3. When the cylinder is filled, apply pressure until the required retention of oil has been achieved. (Recommended retentions are given below) The pressure and the time of treatment required to achieve these retentions degends on the species and the pressure used, ranging from 7 to $14 \mathrm{~kg} / \mathrm{cm}^{2}\left(100\right.$ to $\left.200 \mathrm{lb} / \mathrm{in}^{2}\right)$. Many softwoods are sensitive to high temperatures and pressures and damage may occur at pressures above $10 \mathrm{~kg} / \mathrm{cm}^{2}\left(140 \mathrm{lb} / \mathrm{in}^{2}\right)$.
4. Withdraw the preservative from the cylinder.
5. Apply a short final vacuum to remove excess preservative.
6. Leave the timber to dry until it reaches service moisture content.
(b) The empty-cell process: Two empty-cell processes are in common use, the Rueping and the Lowry process. The following is the general procedure for the Rueping process:
7. Seal the timber into the treatment cylinder and introduce air under pressure. The pressure used and the time of applicatign varies according to the species. Usually pressures of 2 to $14 \mathrm{~kg} / \mathrm{cm}^{2}\left(35\right.$ to $\left.200 \mathrm{lb} / \mathrm{in}^{2}\right)$ are applied for about 10 minutes or less.
8. Pump the preservative into the cylinder and allow the air to escape while maintaining the initial pressure. This is achieved by using an equalizing tank.
9. When the cylinder is full of preservative increase the pressure and maintain it for a sufficiently long time to give the required retention, Pressures will vary between 10 and $14 \mathrm{~kg} / \mathrm{cm}^{2}$ (140 and $200 \mathrm{lb} / \mathrm{in}^{2}$) with softwoods being treated at the lower pressures.
10. Apply a final vacuum to remove surplus preservative from the cylinder.

The Lowry process is similar to the Kueping process, the only difference being that no initial air pressure is used and that the air expelled from the cylinder by the introduction of preservative is at atmospheric pressure.

Recommended retentions for bridges

Net retention

	$\mathrm{kg} / \mathrm{m}^{3}$	$\frac{1 \mathrm{~b} / \mathrm{ft}^{3}}{}$
Creosote	96	6
Creosote-coal-tar solutions	96	6
Creosote-petroleum solutions	112	7
Pentachlorophenol	96	6
Copper naphthanate	96	6

	- $45-$	Netretention
Celcure	$\frac{\mathrm{kg} / \mathrm{m}^{3}}{8}$	$\frac{\mathrm{lb} / \mathrm{ft}^{3}}{0.5}$
Chemonite	5	0.3
Chromated zinc chloride	12	0.75
Tanalith	6	0.35
Boliden salt	8	0.50
Chromated copper arsenate	3	0.50

Facilities for checking the net ratention usually exist in most government materials laboratories.

C. Steel components

Gutting and drilling

Dimensions of steel components are shown in figures 19-29. All components except the chordi may be flame cut provided the tolerances of $\pm 1 \mathrm{mn}$ for chords ani ± 1 mor for ill other iteel componento we not exceeded. Drill holes should be set out by centre-punching through templates made from 24-gauge steel sheets.

In some countries the standard length of the $100 \mathrm{~mm} \times 6 \mathrm{~mm}$ strip f om which the iteel chords are made is 6 m . This means that there is considerable wastage if the standart chord $M_{k} 2$, which is 3.1 m long, is cut f om a standurd st ip. In such cases it is p.eferable to use the ilternative chords 2 A and 6 A shown in figures 23 and 25 .

Weldine

When testing steel components, most failures have been found in welds. It is important, the efore, to follow the drawings in regart to weld si:e rigourously, particularly when a p in is inserted though a hole in a plate and welded on the reverse side, such as in panel plates 1 and 9 .

Unde no circumstances should components be made up by welding together shorter or smaller pieces of steel except whe e specifically indicated on the drawings.

Where steels of different composition are to be welded together the remarks made under seotion A "steel procurement" of chapter II apply.

Figure 19. Panel plate

Byure :O. Panel plate 1A

Fisure 2\%. Chorde 2 and 2A
Figure 24. Chord 6

Figure 25. Chord 6A

Figure 27. Panel plates 8 and 13

BRACIMG CLEAT 13

Figure 29. Bearings

D. Panel assembly

The assembly jig is shown in figures 30 and 31. The truss 1 is assembled in sh halver, each consiating of one piece mark 1 T , two pieces mark 2 T , one ifece murk $\cdot T$ ind tiwo fueces mark 4 T .
 :hould have been carried out after cutting.

The two $200 \mathrm{~mm} \times 10 \mathrm{~mm}(" \mathrm{x} 2 ")$ diagonals mark 2 T ase placet in the Jig with thoir ungel edges hrainst the liagonal guides and the strut ma.k T is

 and made. Theie momber: are then fixed in position with i 100 mm (4") nail at axh int ergect: ion.

Plite: and 1 or $1 \mathrm{~A}(\hat{y}$ or for heavi conist uction forlaced in poition. One half of the panel is ascombled using plate 1 (or), the other nalf using blate 1 A (or AA) su that the completed panel will have a bracing cleat on one side only. Use the loose template, as shown in figure ${ }^{20}$, to position plates: 1 or 9.

A hole of a diameter equal to that of the pin plus 6 mm and having a depth of 6 mm is then dralled or cut in the members mark 2 T to allow plate 1 or 9 to lie flat. All plates are centered using the marks on the jig and fixed in position with $50-\mathrm{mm}\left(2^{\prime \prime}\right)$ nails in the $3-m m\left(1 / 3^{\prime \prime}\right)$ holes provided. Drill $12-\mathrm{mm}$ holes through the plates into the timber using a stop on the drill as shown in figure 32 to give a hole of 50 mm (2') depth where the hole is over a single member and of 100 mm depth where the 200 mm x 50 mm diagonal crosses the $250 \mathrm{~mm} x .0 \mathrm{~mm}$ chord. Insert in all holes dowels of a length equal to the depth of the hole by tapping with a light (1 kg) hammer.

Assemble the second half of the panel in the same way. Now lift the half panel with plate 1 (or 9) and place it in the jig, face down, i.e. with the connector plates against the jig bed. Place the other half with 1A (or 9A), face up, on top of its and centre all plates again on the centre marks. Drill the two diagonals with $4-\mathrm{mm}\left(5 / 32^{\prime \prime}\right)$ holes using the template shown in figure 33 and nail with $100-\mathrm{mm}$ (4") nails. It has been assumed that 100 mm nails will be 4.88 mm (SWG 6) thick.
Figure - O. Assembly jig-plan

Figure 31. Assembly jig-elevations

Figure 32. Jig for drilling holes though the plates

Insert two fillets mark 4 T between the chords mark 1 T and drill and nail with $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ nails at 150 mm ($6^{\prime \prime}$) centres. Then drill and fix with two 12 mm \emptyset bolts using 50 mm square washers, 3 mm thick on each side.

Lift the panel out, turn it over and nail fillets mark $4 T$ from the other side ensuring that nails are staggered by 75 mm ($3^{\prime \prime}$). Stack vertically ready for welding.

The dowels are tack-welded first. Ensure that the welds do not project from the face of the plate by more than 2 mm ($1 / 16^{\prime \prime}$). Now weld plate 3 (or 11) at one end and plate 4 (or 12) at the other, each in the centre of the vertical faces of plates 5 and 5A. Ensure that a full-length $6-\mathrm{mm}\left(1 / 4^{\prime \prime}\right)$ weld is made on all vertical edges.

Complete the panel by fitting two $275-\mathrm{mm}$ (11") bolts in the chord with washers on the unprotected timber faces and one $175-\mathrm{mm}$ ($7^{\prime \prime}$) bolt in the bottom of the strut. One bracing cleat 13 is fitted at this stage. Do not attempt to force the bolts through the holes; they should be inserted by tapping with a light hammer.

III. ERPCPION

Concrete or hollow-block foundations; are not descrjbed in this report; it is assumed that, these will have been prepared befor hand. Ihen distances required between the faces of the abmementa are indicated in [ifure 34 together with details assumed at the bearings.
A. Components and e ection equ iment

Table 7 dists all components requirod for constlucunt; a u adge accor lime; to the instructions given in this report.

Frection equirment for wet crossing

Table 8 lists the equiment required for a crossint where intermediate supports cannot be used. The winches are of the "Tirfor" type and while these are not essential they have been found to be ve y satisfactory irn use. In all cases the maximum load per cable - when the dimensions in table 9 are applied - is 1.6 t (except where noted).

Erection equinment for dry c:ossing

The dry-crossing method does not require the purchase of special equipment such is winches etc. and is preferable if continuous intermediate support is available under the span.

B. Wet-crossing method

Preparation

Erect shear legs on either bank (see figure 35). These are made from $130 \mathrm{~mm}\left(6^{\prime \prime}\right)$ diameter timbe. poles or 100 mm (4') steel tubes (see figure 36).

Establish anchors on the line of the shear legs for cable anchorage. This is made by burying a log with a steel rope attached in a trench as shown in figures 37 and 39. Ensure that the rope is led through the side of the trench by cutting a sroove as shown in the drawing. Alternatively a tree growing in a suitable location may be used.

A standing cable is inserted between the shear legs as shown in figure 35 and attached to winch No. 1 which is in turn shackled to an anchor on the far side. Adjust the slack in the wire to give the required length hanging between pulleys (see table 9).

Table 7. Components

A. Two-truss bridge

Component	Span (m)														
	6	9	12		15		13		21		24		27		30
Panel	4	6	8		10		12		14		16		13		20
Chord	4	8	12		16		20		24		23		32		36
Vertical bracing	4	6	8		10		12		14		16		13		20
Bracing bolts (each with? nuts 1 washer)	3	12	16		$\because 0$		24		28		32		36		40
Horizontal bracing	2	3	4		5		6		7		8		9		10
$\begin{aligned} & \text { Decking, } \frac{a}{} \\ & \text { excluding waste } \\ & (\mathrm{m}) \end{aligned}$	456	684	912	1	140	1	368	1	596	1	324	2	052	2	230
$\begin{aligned} & \text { Running strips, }{ }^{\text {excluding waste }} \\ & \text { ex } \\ & (\mathrm{m}) \end{aligned}$	43	54	72		90		108		126		144		162		130
$\begin{aligned} & \text { Kerb, } \frac{a}{\text { / excluding }} \\ & \text { minte }(m) \end{aligned}$	12	18	24		30		36		42		48		54		60
Bearings	4	4	4		4		4		4		4		4		4
Be ring bolts (arch with 1 nut)	8	8	8.		8		8		3		8		3		3
$\begin{aligned} & 150-\mathrm{mm}(6 \mathrm{in}) \\ & \text { nails }(\mathrm{kg}) \end{aligned}$	14	22	30		37		44		52		60		67		74
$\begin{aligned} & 100-\mathrm{mm}(4 \mathrm{in}) \\ & \text { nails }(\mathrm{kg}) \end{aligned}$	53	78	104		130		155		180		205		232		258
Temporary erection bracing (m)	20	30	40		50		60		70		30		30		100

B. Four-truss bridge

C. Six-truss bridge

D. Eight-truss bridge

a) For sizes see table 4 and figure 42.

Table 3. Wet coossins equipment

Tirfor winches or similar 1.6 t or $3 t$ (see tablc 9) 4
Double-sheaved blocks safe working load $3 \mathrm{t} \quad 2$
Single-sheared block, safe working load 3 t 1
Bow snackles, safe working load 2 t
Anchor wires (see figure 37) 2
Suspension wire with safety hook, $1=30 \mathrm{~m}^{\mathrm{a}} / 1$
Rear and forward haul wires with safety hooks, $1=15 \mathrm{~m}$ a/ 2
Rear and forward harness (see figure 39) 2

```
Shear legs
```

Temporary horizontal bracing (100×50) See table 7
Nails for the above
a/ $1=$ hanging length between pulleys (see table 9). Table 9. Launching data

	Length (1) hanging between vertical shear legs (m)	Maximum permissible sag (h) in cable between shear legs (m)	Maximum wieght of panel when using $1.6-\mathrm{t}$
Span (m)	winch a/		
6	12.4	4	$(\mathrm{~kg})$
9	12.4	4	-
12	15.5	4	-
15	19.0	4.5	-
18	22.5	5	240
21	26.0	5	240
24	28.3	5.5	240
27	32.3	5.5	200
30	35.1		190

a) For heavier panels use 3-t winches.

	Approximate weight of panel (kg)
F4	108
F5	118
F7	131
F9	147
F11	165
F14	186
F17	208
F22, 24, 27	237

Figure 36. Shea: legs

Figure 37. System for the establishment of cable anchorage

Figure 33. Erection equipment for wet crossing

Initial assembly

The thuses haring ve"tical bracing between them are erectod first. Ascemble two faire of panels together with the chords unde: the cent of one Ghei: ler, with de manent ve:tical bracing and temporary horizontal bracinf in position as shown in figure 37. Secure the chords with Gum pins or nails and nail $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ fillets between them. Note that one truss is nve:sed to all:)w the bracing lugs to face inwards. Attach the lifting hamess shown in figure 33 to the front of the leading panels.

Shackle snatch block to the harness and attach it to the standing cable. Shackle winch no. 1 to anchorage, lead the rope through the double sheave block and attach it to the front harness as shown in figure 7 .

Initial launch

Use winch no. 2 to pull the assembly out onto the span using timber levas to ease the bottom of the panels over obstructions. It is important that the bottom chords aye always in tension and initially it may be necessary to use winch 1 to ensure this.

Succesilive launches

Attach a further pair of panels to the assembly together with the pe:manent vertical and temporary horizontal bracing. Use winch no. 2 to pull the assembly out onto the span as shown in figure 40. Repeat the process until all the panels in the span have been assembled.

Final stage

Shackle winch no. 3 to its anchor. Use winches 2 and 3 to bring the ends of the assembled truss over the bearings. Before lowe ing the truss, attach it to the end panels and secure it with nails in holes. Lower the assembled truss onto the bearings using winches 2 and 3 and slackening winch 1 at the same timc. While lowering, the trusses can be moved easily sideways by using levers at each end (see figure 41).
Figure 40. Launching of trusses (wet crossing)

Decking

The decking is fixed as shown in figure 42. The temporary horizontal bracing is removed from one bay at a time and the deck, together with the permanent horizontal bracing, is fixed in position. A new bay can be started when the previous one has been completed.

Erect the decking on the first bay when all ext:a trusses have beer fixed in bay 2. Repeat this procedu efor the remaining bays, erecting the deck progressively one bay in arrears.

Ext a trusses

The method described above can be used satisfactorily for bridges with two or four trusses. Fror more than four trusses the additional panels are launched one at a time before the pe manent horizontal bracing and decking is fixet. The standing cable and winches 1 and 2 are used to carry the panels to thei:r final location.

Attach the first panel with a wire sling to the snatch block on the standine cable, and use winches 2 and 3 to t ansport it to the first position (see frigure 43). Flace two $100 \mathrm{~mm} \times 100 \mathrm{~mm}\left(4^{\prime \prime} \times 4^{\prime \prime}\right.$) bea.er:; of 4 m length ac os: the erected truvis: and lower the panel into them with the bottom facing is. final location (see figure 44). Slide the panel into vertical position using the winches and bearers as leyers and locate it in bearing. Lerel the top of the panel with the srected trusses and secure temporarily with the support :hown in figure 4 .

Elect the remaining panels in the first bay using the same means. Place staring ac:oss chords of erected trusses in the first and second bays. Foisition the panel in bay 2 using the same procedure as for bay 1 and at ach the chort to first and second nanels. Remove the temporary support by slightly aising the panels and use it to support the second panel. Repeat for all panels in bay 2 , and for all remaining bays.

Completion

Complete the bridge by adding kerbs, handrail and running strips (see figures 42 and 46 to 49).
Figure 42. Deck construction

sectien

Figure 45. Applying tempora: y support of the panel to the erected truss

C. Drycrossins method

Erect ion frames

Frame: of the type shown in figure 50 should be prepared. Only two are $\because r q u i r e d$ for spans up to 15 m and three for spans longer than this. The heinht should be the maximum distance between the stream bed and the underside of the panel top chords plus 300 mm (12").

Levelling

Stretch a line across the span close to the final position of the outermost truss. It should be at the level of the top of the panel at the nearside end and 10 mm per metre of span higher at the far end to allow for cumber in the trusses. This means that only the first bay of panels will be level with the atringline and that the remaining ones will be successively below this level.

Truss erection

As with the wet-c ossing method the pairs of trusses with vertical bracing a:e erected first.

Place one female and one male bearing on the foundation and fit two panels onto them with the other ends supported by an erection f:ame (see figure 51). Position both panels level with the stringline by moving the bottom of the frame in the line of the span and by adjusting the folding wedges. Attach the permanent vertical bracing and permanent horizontal bracing as shown in figmare 39.

Repeat the process using a second erection frame on another pair of panels as :hom in figure 52. When all bracing has been fixed remove the first frame. Successive frames, up to a maximum of five pairs, are then added in a similar manner.

When the span is longer than 15 m leave one frame in position as a temporary support and continue the process using one additional frame.

Final stage in truss erection

When the last bay has been erected place the bearings at the end of each panel. If these do not touch the foundation, folding wedges have to be placed under each bearing before the temporary staging is emoved. These may be knocked out when the structure is free.

Figure 50. Dry-crossing support

Eroc the remining t usses in the same way. Single trusses may be arected usirte the sams :caffolding, framee but each panel must be attached at both end: to a fully-braced pair after orection.

When 111 the trussec have been enected completer the st ucture an de:cribed for the we:coseing method (t. 7\%).

D. Concreting and earthworks

Place holdine-down bolt: in the pocketa provided and erout with a $1:$ cement mortar (see ficme) Backfill foundation to finished roud ievel.

Woil refonime should now he carried out wher amite attoc: is andemic: An arta of about $4 \mathrm{~m} x 5 \mathrm{~m}$ should be excavated to a denth of 300 mm and tho soil heapnd. Mix the heayed : mil with 100 liten of one of he following ater emulato : aldrin 0.5% dioldrin 0.5% chlordanc 1.0%; or benzene hexachinride 0. \% Replace the soil and compact as usual.

Complot, the hrider by concoting behind the beting:s to pive a level

Annex I

PROOF TEST FOR TIMBER PANELS

This test is not intended to give an absolutely :eliable proof of bridge st ength but should be used to determine or verify the correct stress grade of a given timbe?. The test is suitable up to grade F 14; above this grade failure in the steel dowels is to be expected.

Specifically the test is to proof the strength of the diagonals in tension; this is considered a good overall indication, as timber strength tends to be more variable in tension than under other loadings.

For the test proceed as follows:

Place a panel in the rig shown in figure 54 and support it on two standard bearings. Remove the 250 mm through bolts from the top chord togethe ${ }^{\prime}$ with any nails used at this intersection for temporary fixing. The $150 \mathrm{~mm} \times 50 \mathrm{~mm}$ cent al strut is strengthened by the addition of two $150 \mathrm{~mm} \times 50 \mathrm{~mm}$ members, 0.75 m long, nailed on either side with 100 mm nails at 150 mm centres. Insert a mild $25 \mathrm{~mm} \times 75 \mathrm{~mm}$ steel key of 150 mm length in the strut to rest on the top of the lower plates (1 or 9) to give a stronger connection at this point. Place a hardwood loading pad on top of the strut and ensure that the pad is clear of all members and able to pass between them. Finally place dial gauges calibrated to read 0.1 mm at each end of the panel in the positions shown in figure 54.

Two tests are considered necessary.

Design load test

Depending on the stiess grade of the panel to be tested, the following design loads should be applied:

Stress gade	Design load (t)
F4	7.8
F5	9.7
F7	12.3
F8	15.6
F11	19.6
F14	24.8

Apply the load ove a period not exceeding in minutes and then maintain it for 24 hours. Take nadings of each gauge 15 minutes after aprlication of the load and later at one hour intervals. The load is then released and a final readinf taken 1^{\prime} minutes late.

The panel is regartol in isfactory when:
(a) The rate of increase of deflection during the 24 hours of the test is the highest at the beginning and decreases towards the end of the test;
(b) The residual deflection is not more than 2 mm .

Ultimate load test
The panel should now be loaded to destruction over a period not exceeding 30 minutes. The following minimum ultimate loads are regarded as satisfactory:

Stress grade

F4
19.5

F5
24.2

F7
30.7

F3
39.0

F11
49.0

F14
62.0

$G=51$

$$
0
$$

OF

09081

Annex II

GRADITG RULES FOR THGBER

Each piece of timber should be truly sawn and be free from deoay, shakes, splits, fractures and occluded branch stubs.

The following imperfections are permitted for the three grades under consideration, subject to the indicated limits.

754 grade

1. Maximum knot size:

Depth of section		
(mm)	Knot aize (mm)	
	On face	On edze
250	40	12
200	30	12
150	20	12
100	15	12

The overall dimension of knots in groups should not exceed these values.
2. The slope of the grain should not exceed 1 in 15.
3. Seasoning checks should not exceed 400 mm in length and 3 mm in width and must not extend from one surface to another.
4. The following maximum permissible values (in mm) for spring, bow and twist should be observed:

Yembor	Spring	Bon	Twist
1 T	5	20	10
$2 T$	6	15	10
3%	3	10	5
45	3	5	5
Yertionl	63	10	5
Dook	12	20	5

5. No wane or sapwood susceptible to insect attack should be permitted.
6. Fissures admitting a feeler gauge of 0.15 mm thickness should not be longer than 15 mm in $50-\mathrm{mm}$ wide members and 30 mm in $100-\mathrm{mm}$ wide members.
7. Gum pockets or overgrowths of injury should not exceed 300 mm in length or 12 mm in width on one face of the timber. Where a pocket extends from one face to another the width should be less than 6 mm .

60% grade

1. Maximum knot size:

Depth of section (mm)		Knot size (mm)	
	On face	On edge	
250		20	
200	50	20	
150	35	20	
100	25	20	

The overall dimensions of knots in groups should not exceed these values.
2. Slope of grain should not exceed 1 in 10.
3. Seasoning checks should be not longer than 400 mm .
4. Spring, bow and twist should not exceed the values given for 75% grade.
5. Wane or sapwood susceptible to insect attack should be maximally $\frac{1}{4}$ of the width of the face being considered.
6. Fissures admitting a feeler gauge of 0.15 mm thickness should not be longer than 20 mm in $50-\mathrm{mm}$ wide members and 40 mm in 100 mm wide members.
7. Gum pockets or overgrowths of injury should not exceed 300 mm in length or 20 mm in width on the face of the timber. Where a pocket extends from one face to another the width should be less than 6 mm .

43% grade

1. Maximum knot size:

Depth of seotion (mm)	Knot size (mm)	
On face	On edze	
250	75	25
200	60	25
150	45	25
100	30	25

The overall dimensions of groups of knots shall not exceed these values.
2. Slope of grain should not exceed 1 in 8.
3. Seasoning checks should not be longer than 600 mm .
4. Spring, bow and twist should not exceed the values given for 75% grade. 5. Wane or sapwood susceptible to insect attack should be maximally $\frac{1}{4}$ of the width of the face being considered.
6. Fissures admitting a feeler gauge of 0.15 mm thickness should not exceed 25 mm in $50-\mathrm{mm}$ wide members and 50 mm in 100 -mm wide members.
7. Cum pockets or overgrowths of injury should not exceed 300 mm in length or 25 mm in width on the face of the timber. Where a pocket extends from one face to another the width should be less than 9 mm .

Annex III

STRESS GRADES OF COMMON TIMBER SPECIES

A. Indian timbers
\bullet

B. South and oentral American timbers

Species	Strength group	Visual gradea/		
		48\%	60\%	75\%
Dicornynia guianenis	S3	F11	F14	F17
Clathrotropis spp.	S2	F14	F17	F22
Bagassa guianenis	S2	F14	F17	F22
Manilkara bidentata	S1	F17	F22	F27
Oootaa rubra	S5	F7	F8	F11
Ocotea rodiaei	S1	F17	F22	F27
Qualea rosea	S3	F11	F14	F17
Coupia glabra	S3	F11	F14	F17
Eachweilera longipes and E. aubglandosa	S1	F17	F22	P27
Symphonia globulifera	S3	F11	F14	F17
Mora excelsa	S2	F14	F17	F22
Terminalia amazonia	S2	F14	F17	F22
Pinus caribaea	S4	F8	F11	F14
Peltogyne spp	S2	F14	F17	F22
Colophyllum spg.	S4	F8	F11	F14
Hieronyma gig.	S3	F11	F14	F17
Diplotropis purpurea	S1	F17	F22	F27
Humiria gpps	S3	F11	F14	F17
Toctone grandis	S4	F8	F11	F14
	S1	F17	F22	P27

C. Weat African timbers

D. Timbers from the Pacific region

Species	Strength group	Visual grade ${ }^{\text {a/ }}$		
		48\%	60\%	75\%
Calophyllum kajewski	S4	F8	F11	F14
Pometia pinnata	S4	F8	F11	F14
Intsia bijuga	S2	F14	F17	F22
Intsia palembica	S3	F11	F14	F17
Pterocarpus indicus	S4	F8	F11	F14
Eucalyptus deglupta	S7	F4	F5	F7
Homalium foptidum	S2	F14	F17	F22
Hopea papuana	S2	F14	F17	F22
Hopea forbesii	S3	F11	F14	F17
Hopea iriana	S1	F17	F22	F27
Hopea glabrifolea	S1	F17	F22	F27
Tectona grandis	S4	P8	F11	F14
Eucalyptus tereticornis	S3	F11	F14	F17
Manilkara kanosiensis	S1	F17	F22	F27
Heritiera littoralis	S3	F11	F14	P17
Palaquium gornei	S3	F11	P14	F17
Terminalia spp.				
$\left.\begin{array}{l}\text { T. brasei, To kaernbeohif } \\ \text { T. faveolata }\end{array}\right\}$	57	74	5	F7
$\left.\begin{array}{l}\text { T. catappa, T. microcarpa } \\ \text { T. canaliculata, T. complanata } \\ \text { T. calamanaanii }\end{array}\right\}$	S5	$F 7$	F8	F11
T. solomonensis, T. cepercerem T. capelandi	(86	5	7	18
Syzygium spp.	33	711	714	F 17
Araucaria suntetoinit	96	F5	7	F8
Cleiatcoalyx app.				
(greboliow) Ayptus spp. (exoept those	\$2	P14	517	122
Cloistocalyx myrtoidos	S4	F8	19	F14
(ampo (A_{0} mortoidee)				

Species	Strensth croup	Vieual grade		
		48\%	60\%	75\%
Alstonia scholaris	S7	F4	P5	$F 7$
Amoora cucullata	S6	F5	$F 7$	F8
Anisoptera polyandra	S5	F8	F11	F14
Anthocephalus chinensis	S7	F4	Fs	M
Campnosperma brevipetiolata	57	${ }^{5} 4$	P5	F7
Dracontomelum puperulum	S5	F8	F11	F14
Elmerrillia papuana	S6	F5	F7	F8
Endospermum medullosum	57	F4	P5	F7
Eucalyptus deglupta	S4	F8	F11	F14
Vitex coffassus	57	F4	F5	F7
Agathis dammara	S7	F4	F5	F7
(gyn. (A. alba))				
Fagraea gracillpes	S1	F17	F22	F27
Mristica spp.	S6	F5	F7	P3
Podocarpus neriifolius	54	F8	F11	F14
Garcinia myrtifolia	S3	F11	F14	F17
Conystylus punctatus	S3	$F 11$	F14	F17
Heritiera ornithocephala	S3	F11	F14	F17
Sevianthes myriademia	S5	F7	F8	F11
Dacrydium intrioatus	S6	F5	F7	F8
Asathis vitiensis	S5	F7	F8	F11

E. South-Rast Asian Timbers

| Species | Strength
 group | Visual grade | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | 48% | 60% | 75% |

Shorea and parashorea spp.
P. malaanonan
S. almon

S. Bqamata \begin{tabular}{lllll}
Philippine \& S5 \& F7 \& F8 \& F11

light red
mahogany

\end{tabular}

P. plicata

Penacme conforta
Shorea spp.

$\left.\begin{array}{l}\text { S. nogrosensis } \\ \text { S. polygperma }\end{array}\right\}$	Philippine red mahogeny	S5	F7	P8	F11
Horitiera spp.		S4	F3	F11	F14
Anisoptera gpp.		S6	F5	F7	F8

Species	Strength group	Visual grade ${ }^{\text {a/ }}$		
		48\%	60\%	75\%
Gonystylus spp.	54	F3	F11	F14
Sindora spp. Capaifera spp. (sym. Pseudosindora ing.)	S4	F8	F11	F14

F. East African timbers

Species	St rength group	Visual grade		
		43\%	60\%	75\%
Capressos lusitamica	S6	F5	F7	F3
Pinus spp.	57	F4	F5	F7
Podocarpus spp.	55	F7	P3	F11
Juniperus procera	S5	F7	F3	F11
Brachylaena hutchinsii	S4	F8	F11	F14
Celtis soyrauxii	S4	F8	F11	F14
Entandrophragma utile	55	F7	F)	F11
Entandrophragma cylindricum	57	F4	F5	F7
Eucalyptus paniculata	S3	F11	F14	F17
Eucalyptus saligna	55	F7	F8	F11
Khaya anthotheca	S6	F5	F7	F8
Olea hochstetteri	S3	F11	F14	F17
Prunus africanus	'S4	F8	F11	F14
Vitex keniensis	S7	F4	F5	F7

a/ See annex II.

Annex IV

CLASSIFICATION OT LAO TIMBFRS

Dry grade stresses and moduli of elasticity for grouped Lso timbers
($\mathrm{N} / \mathrm{mm}^{2}$)

Timber group	Bending	Tension	```Compression parallel to grain```	```Compression perpendicular to grain```	Shear parallel to grain	Mean	Minimum
A	27.5	22.0)	20.5	9.0	2.05	18500	12500
B	17.0	14.0	13.0	6.6	1.45	14000	9100
\bigcirc	11.0	8.6	8.3	4.1	1.05	10500	6900

These stresses apply to seasoned timber, subjected to conditions in which the average moisture content of the timber over a 12 -month period is not expected to exceed $15^{\prime \prime}$. The stresses are appropraite for designs following the recommendations of British Standard Code of Practice on 112, part 2, 1971. They correspond to a standard structural grade as defined in part 3 of the report by TRADA entitled "Grouping of Lao timbers".

Natural durability

Clase A
Very durable or durable
in ground under
tropical conditions

Bassia pasquicri
Fagraea fragrans
Garcinia fagracoides
llopea ferrea
Ilopea Picrrei
Mesua ferrea
Pterocarpus pedatus
Shorea obtusa
Vatica Dycri
Xylia dolabriformis

Clase B
Moderately durable in ground under tropical conditione

Clase C
Not durable in ground under tropical conditions

Adina sessilifolia
Aglaia gigantea* Anisoptera cochinchinensiscanariun gpp.
Cassia siamca
Chukrasia tabularis
Dialium cochinchinensis*
Erythrophlocun Fordii*
Ilopea odorata*
Lagerstrocmia spp.*
Melanorrhoca laccifera
Pahudia cochinchinensis*
Shorea cochinchinensis
Shorea vulgaris
Sindora cochinchinensis
Vitex pubescens*

Artocarpus integrifolia*
Calophyllum spp.*

Castanopsis indica
Dipterocarpus alatus*
Dipterocarpus intricatus*
Dipterocarpus obtusifolius*
Dipterocarpus tuberculatus*
Litsca vang*
Melia spp.
Parashorea stcllata*
Peltophorum dasyrachis
Pinus Merkueii
Quercus gpp.
Sandoricum indicum
Stercospermum fimbriatum
Talnuma Gioi*
Tarrictin cochinchisensis
Toona febrifuga

* Indicates that the avorage natural durability may fall in the next highor clase. The reason may either be that the claseification has been based upon the least durable of the epecies that may be upplied together as one timber, or that the classification is cautious due to lack of ground test data.

Group A Low shrinkage (coefficient of volumetric shrinkage less than or equal to 0.35^{1})	Group B Moderate shrinkage (Coefficient of volumetric shrinkage between 0.35^{\prime} and 0.55 .')	Group : High shrinkage (Coefficient of volumetric shrinkage greater than or equal to 0.55 .)
Fagraea fragrans Melanorrhoca laccifera Paludia cochinchinensis Sandoricum indicu	Adina scssilifolia Aglaia gigantea Artocarpus integrifolia Canarium spp. Castanopsis indica Chukrasia tabularis Hopea ferrea Hopea odorata Hopea Pierrei Lagerstrocmia ${ }^{\text {enp }}$ Litea vang Meliu spp. Parashorea stellata Peltophorum dasyrachis Pterocarpus pedatus Shorea cochinchinensis Shorea obtusa Shorea vulgaris Sindora cochinchinensis Stercospermum fimbriatum Talawna Gioi Tarrictia cochinchinenyis Vitex pubescens	Anisoptera cochinchinens Bassia pasquicri Calophyllum spp. Cassia siamea Dialium cochinchinensis Dipterocarpus alatus Dipterocarpus intricatus Dipterocarpus obtusifolis Dipterocarpus tuberculatas Erythrophlocum Fordii Garcinia fagracoides Mesun ferrea Pinus Merkusii quercus spp. Toona febrifuga Vatica Dyeri Xylia dolabriformis

Grouping of Lao timbers

| (Scientific and vernacular nane) | Speries | Natural durability |
| :--- | :--- | :--- | :--- |
| classification | | |

$\begin{gathered} \text { Species } \\ \text { (Scientific and vernacular name) } \end{gathered}$		Strength group	Natural durability classification	Shrinkage group
Melanorrhoea laccifera	Mai Nam Kieng	B	B	λ
Melia spp-	Mai Lieng	C	C	B
Niesua ferrea	Mai Kathang	1	A	C
Mai Mi	Artocarpus integrifolia	C	C*	B
Mai Mam Kieng	Melanorrhoea laccifera	B	B	A
Mai Mang	Dipterocarpus alatus	B	C*	C
Mai Mhom	Toona febrifuga	C	C	C
Mai Noc Coc	Aglaia gigantea	C	B*	B
Pahudia cochipchinensis	Mai Kha	B	B*	A
Parashorea stellate		B	C*	B
Mai Pec	Pinus Mertonsii and P. Mhasya	c	C	C
Peltophorum dasyrachis	Mai Salcham	c	C	B
Pinus Merkusii and P. Mhasya	Mai Pec	C	C	C
Pterocarpus pedatus	Mai Dou	B	A	B
Sai Puay	Lagerstroemia spp.	C	B*	B
Puercus spp.	Mai Co	C	C	C
Yai Sabeng	Dipterocarpus intricatee	B	C*	C
Mai Suham	Peltophorum dasyrachis	C	C	3
Sindoricur indicum	Yai Tong	C	C	A
Mai Sat	Dipterocarpue obtusifolins	B	C*	C
Storea cochinchisenaie	Mai Kıanhwm	B	B	B
Siorea obtusa	Mai Chich	A	A	B
Shorea vulgaris	Mai Sy Khao	B	B	B
$\because \mathrm{Xi}$ Si Den:	Vatica Dyeri	B	A	C
Sixioza cochinchinensis	Mai Te	B	B	B

Species(Scientific and vernacular nano)		Strength group	Natural durability classification	Shrinkage group
Stercosperma fimoriatum	Mai mee Poy	c	c	B
Sai Sy thao	Shoree valgarie	B	B	B
Talauma gioi	Mai Hom	c	c*	B
Tarrictia cochimehimenais	Mai leo	B	c	B
Yai Te	Sindore cochinchimenais	B	B	B
Mai thou	vitex pubescens	B	B*	E
Mai Tong	Sandoricum indicum	c	c	A
Toona febrifaga	Mai Mhom	c	c	c
Vatica Dyeri	Mai Si Deng	B	A	c
Vitex pubesceas	Mai Thom	B	B*	B
Sai Xathone	Cassia siemes	B	B	c
xylia dolabriforads	Stai Deng	\wedge	\wedge	c

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards. even though the best possible copy was used for preparing the master fiche

81.05 .27

[^0]: 1) For furthe! information see ".3olir kilns - their suitability for devioring countries" by R.A. Plumptre (1D/WG. $1 / 1 / 4$).
