TOGETHER
for a sustainable future

OCCASION

This publication has been made available to the public on the occasion of the $50^{\text {th }}$ anniversary of the United Nations Industrial Development Organisation.

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.
For more information about UNIDO, please visit us at www.unido.org
R) inviopmat of thiber motmerimo industrins.

$$
\mathrm{DP} / \mathrm{LCm} / 75 / 027
$$

KINYA,

Technical report: loy-cost modular prefabricatod wooden bridges

Prepared for the Government of Kenya by the
United Nations Development Organization,
executing agency for the United Nations Development Programme

$$
000: 30
$$

Based on the work of James E. Collins, expert in timber st ruotures encineering

Vionna
id. 78-7335

Tropenatory noter
Doforonoes to tons (t) are to metric tons.
Besides the common abbreviations and symbola, the following have been used in thin reporti

MSHO Merioan Association of State Highway Offioials
BS British Standard
EmC equilibrium moisture content
kl kilonewton

Mention of firm names and commercial producti: toes not imply the endorsement of the United Nations Industrial Development Orgmi.sation (UNIDO).

abstruat

In response to a request by the dovernment of Kenya to the United Mations Development Programme (UNDP) and the United Nations Industrial Development Organization (UNIDO), the services of a timber structures engineer were provided for the period 30 January 1975 to 15 October 1976 and from 3 January to 30 April 1977, and those of an associate expert in timber engineering from 6 October 1975 to 5 October 1978. The purpose of the missions was to assist and train employees of the Kenya Forestry Department in design and testing programmes for low-cost modular prefabricated wooden bridges and other timber-engineered products.

The present eport is based on a manual on design, production and erection of timber bridges which was used by the team of experts during their work in Kenya. The approach to bridge building as described in the report has a number of objectives among which are the following:
(a) The utilization of the country's natural resources instead of relying on imported building materials;
(b) The provision for employment of unskilled local labour in developing areas, leading to a reduction in the outlay of foreign currency;
(c) The introduction of bridges which can be produced at low cost and with a minimum need for graduate engineers and site technicians;
(d) The provision of a simple solution in many instances where it is necessacy to open up new areas of the country for development of its natural resources these low-cost bridges being commensurate with the quality of the laterite cods for which they are built.

The low-cost modular prefabricated wooden bridges have the following technical characteristics:
(a) They are made up of triangular tiuss elements, 3 m long and about 1.5 m high;
(b) The maximum clear span is 30 m and the maximum designed live load is 40 tons;
(c) Elements are joined at two ends by a male and female metal plug, which is welded on to the metal gusset plates at each end. These are iveted to the wooden frames of the elements;
(d) The timber used has cross sections of $50 \mathrm{~mm} \times 150 \mathrm{~mm}, 50 \mathrm{~mm} \times 200 \mathrm{~mm}$ and $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ respectively. These chors are nail laminated to make up 100 mm thicknesses where applicable. Nail laminations allow for visual quality control with respect to both spacing of nails and any bending in driving them in;
(o) The rocimar is made up of plenking over thio top of the ocmpoeite trwases:
(f) a niaimum of two and a madmum of oicht oonpoaite trueses mile up
 ones of the timber apeoice used. Thele olemants are breood;
(s) The abutments are either hollow core coment blocks, oonorete or roge amohored in the mbankent uains ambodded loge and cables;
(h) The launching of the bridge is done using a pair of tripode, melleye and a cet of oables, one of whioh is the oatemary holding the olemente mint the other is the aeble pulling the accembled elements over the oham.

00^{0}

mer 59
IIrmontorion. 9
I. Insion. 11
A. Basio dimensions and bracins elementa. 11
B. Daticn proceas 22
 37
A. Steel proourement 37
B. Timber procurement and treatment. 37
C. Steel oomponents. 46
D. Pancl aasombly 58
III. EOTIOW. 63
A. Components and oreotion equipment. 63
2. Net-orossing method 63
C. Dry-crosains method 87
D. Conoretins and carthworise. 91
Arpares
I. Proof teat for timber panele. 93
II. Unading rulen for timber 96
III. strene crades of common timber epeoien 99
IV. Fiotographe of aite mork on mome bridgee in kenge by the pro jeot etaff. 108
2hble

1. Inmber of truasen needed for a given epan and loading. 26
2. Safe loede. 30
3. Live load bending moments and and reactione 32
4. Deak denicn. 36
5. Gmantities of ateel required per panel 38
6. Guantitiea of timber required per pancl 39
7. Components 65
8. Not-croceins equipment 69
9. Lamohing data. 69
PロットAn
1．Beaif with bridep dook placed sorose the top of the trusees 10
2．Dridse arrangemonts 11
3．Panel 12
4．Timber panel component． 13
5．Component sawing jig． 14
6．Pabrication of a panel 15
7．Truss assembly method． 16
8．Chord designs 17
9．Tiuss bracing for a two－truss bridge 17
10．Truse bracing for four－，six－and eight－truss bridge． 18
11．Four－，six－and eight－truss bridge bracing． 19
12．Two－truss bridge bracing 20
13．Truss and breoing arrangements 21
14．Bearings located in the besic panel ends 22
15．Design process． 23
16．Loadings 25
17．Stacking procedure for air drying of timber 40
18．Solar kiln． 41
19．Panel plate 47
20．Panel plate 1A． 48
21．Panel plate 9 49
22．Panel plate 94． 50
23．Ohords 2 and 2A． 51
24．Chord 6 52
25．Chord $6 A$ 53
26．Panel plates 3，4， 10 and 11 54
27．Panel plates 8 and 13 55
28．Panel plate 5 56
29．Bearinge 57
30．Aesembly jig－plan 59
31．Asaembly jig－elevations． 60
32．Jig for drilling holes through the plates 61
33．Mailing template 62
34．Poundation setting out 64
10. Components and erection equipment (wot orossing) P92
11. Shear legs. 71
12. System for the establishment of oable anchorage and assembly of trusses (wet crossing) 72
13. Erection equipment for wet crossing showing shear legs and lifting harness 73
14. Wet orcssing erection system and lifting harness 74
15. Launching of trusses (wet crossing) 76
16. Launching of tiruses - final stage. 77
17. Deck constiuction. 79
18. Launching of additional panels where the number of trusses exceeds four 80
19. Sliding extra panel into position. 31
20. Applying temporary support of the pantil to erected truss.. 82
21. Handrail designs 83
22. Handrail detail. 84
23. Hand rail A - detail. 85
24. Hand rail B-detail. 86
25. Dry-crossing suppurt. 88
26. Truss erection method (dry crossing) - first truss......... 89
27. Truss erection method (dry ciossing) - second truss......... 90
28. Anchor bolts 91
29. Jig for proof test of panels. 94
 this map do not imply official endorsement or aconptanoe by the United Nations.

IMTRODUCTIOM

In connection with the low-oost type bridge whioh had been devised in 1973 by Janes E. Collins, who was then working at the Kenya Fbrestry Department, government officials quickly recognized that the design could be used in many areas of the count y and could also be applied in other developing countries.

In 1974, because of its extreme interest in this seemingly flexible approach to bridge building, as well as the associated cost savings and substantial reduction in foreign exchange requirements in pursuing necessary expansion and upgrading of the road transport system, the dovernment of Kenya requested assistance from the United Nations Development Programme (UNDP) and the United Nations Industrial Development Organization (UNIDO) for the completion of the design and testing programmes, as well as for transforming the fabrication and erection of the bridges into a fully commercial venture. The services of James E. Collins were provided by UNIDO in the capacity of expert in timber structures engineering for the period from 30 January 1975 to 15 October 1976, and from 3 January to 30 April 1977, while the services of Svend K. Petersen, in the capacity of associate expert in timber engineering, were also provided over the period of 6 October 1975 to 5 October 1978. Both of these experts worked alongside their counterparts in the Department of Forestry, Ministry of Natural Resources, in the development of these bridges and other timber-engineered products.

While other departments of the Government, such as Agriculturt and Ministry of Works, have been interested in making use of the prefabricated low-cost bridge, the main benefactor has been the Forestry Department, which continues to favour its use. The map shows the development of this system of bridge construction throughout Kenya: as of July 1973 a total of seven bridges had been completed, four were under construction and two were in the planning stage. Since the introduction of the system in Kenya, similar assistance has been provided to other developing countries through UNDP- or UNIDO-financed projects.

This technical report is based on a manual on design, production and erection of timber bridges which was used by the team of experts during their work in Kenya.

It describes bridges with spans up to 30 m . Designs are given for a number of load specifications incluing American (AASHO) and British (BS) loadings.

Any timber may be used given reasonable seasoning, strength and working properties and designs for a number of species may be obtained from the tables.

The besic element or module of conetruction is a timber panel of 3 m length. A number of these are joined with licht steel ohords to form atrues, the full length of whioh is a multiple of 3 m . Two or more trusses are used to make a bridge.

Figure 1. Design with bridge deck placed across the top of the trusses

Fabrioation and erection can be carried out with a minimm of skilled labour and the heaviest component oan be lifted by four or six men, depending on timber species.

Chapter I, dealing with the design of the bridges, is intended for persons with an ongineering background. However, the design method is simple and, with some training, persons without formal qualifications should be able to select an appropriate design.

Chapters II and III on procurement of materials, assembly and erection, are intended for treined technioians. Close supervision is important and emphasis is placed on the use of jige and templates to achieve the required acouracy. In particular, weldings must be of good quality to engure the working loads indicated in the desien tables.

The proof test described in annex I serves to varify the strese grade for Aven timber. Annex II contains timber grading rules and annex III is a list of stress grades for most of the commonly utilised timber apecies. The photographe chown in annex IV illustrate the aite work.

I. mastem

A. Paia dimplion and braping elmante

It is asoumed in the design of the bridges described in thie roport that each truas oarriea an equal share of any load. However, thit it only true for eimgle-oarriageway bridges. Bridges with more widely-spaced trusses or havins wider oarriageways will require special consideration.

Omber is built into the bridge so that deflection will not prove a sigifiont factor in design provided the indicated span limits are obeerved.

Figure 2. Bridge arrangements

\bullet

Figure 5. Component sawing jig

Mic eomporats

Moctular panel

Modular pancle are joined with paire of chorde to form a truse (see figure 6). They oonsiat of 50 ($2^{\prime \prime}$) anm timber membere conneoted with ateel plates and dowels. At one end of the top chord there is a pin projecting in the direction of the span whioh looates in the hole of the next panel as shown in figure 7. At the bottom of the panel pins are projecting on each side at right angles to the plane of the panel to receive the ohords. The pins are in two aizes depending on the timber used and the load carried. Where the light ohord is used the bottom pins are 38 mm in diameter and where the heavy chord is required they have a diameter of 50 mm . The top pina are either 32 mm or 38 min diameter, the heavior pine being used with timbers whose stress grade is F 11 and above.

Frure 6. Rabrication of a panel

Brare 7. Imace ascombly mothot

Cmords

Oords have been deaigned in two besic aises. The lichter sise it genorelly ueed with timber of strean graden $F 8$ or below and the heavier one for etronser timbers.

Truaser

The modular panels are asecmbled into truesen. The mimber of truese meoded for difforent loedings, epeoien and apans is civen in teble 1.

Mamm CHOROS

... 150 mm CHOROS

Vertical bracing

There are two types of vertical bracinge. In a two-truss bridge, the bracing is used to impart lateral stability to the panels and it does not act as a load sharing device.

Figure 9. Trusa brecing for a tro-truss bridese

The component conaiate of aimple 150 man 50 mm member with $6 \mathrm{~mm}\left(\mathrm{f}^{n}\right)$ ateel conncotor plates nailed to ceoh end. These are bolted with $100 \mathrm{~mm} \times 25 \mathrm{~m}$ diameter ($4^{\prime \prime} \times 1^{\prime \prime}$ diameter) bolte into the bracing luge on the panci.

In a bridee with four or more truese the brecing in intended to five latersl stability and to shere the load between the trusses thus conneoted.

Pigure 10. Trues breoins for four, aix- and oight-tzuee bridse

They are bolted ontc the bracing cleats with 25 -manameter (9") bolta with a 50 -min ($2^{\prime \prime}$) square washer under the nut on the timber face.

Deck bracing
The deck bracing consists of 150 min $\times 50\left(6^{\prime \prime} \times 2^{n}\right)$ mamberv nailed diaconally to the undervide of the trusses with $100\left(4^{\prime \prime}\right)$ manils driven into epeoors incerted between the chords.

Deok

The deck is made from 50 (2^{n}) wide timber nailed together in a depth which depends on the wheel loading (see table 4) and apanned acrose the trussen as shown in figures 9 and 10. Running boards are fixed on top of these members in the direction of the span which have an essential funotion in distributing wheel lcads over several cross members and should not be omitted or reduood in aise.

Figure 12. Svertwe bridy breeins

Bearing

Alle and famale bearinga are loouted in the onds of the besic panels (see figure 14). A 12 plate is used throughout, the off-cuts from the top oorners serving ate stiffeners. The pin sise depende on the pin used in the panels and will be either 32 mm or 38 mm .

Pigure 14. Bearinge located in the basic panel ende

The sequence 18 indioated graphically in figure 15.

Selection of timber-speoies and stress grade

Tables of timber species from different parts of the world are given in annex III. This is not a comprehensive listing but it inoludes suitable timbers made known to the expert by about 50 national forest departments. Botanioal names are given to avoid confusion when using trade or vernacular names.

Grading rules (see annex II) are used to classify timber from any partioular species as being of grade $75 \%, 60 \%$ or 48% These grades are then used in annex III to determine the stress grade for the bridec design. It is

Higure 15. Doeign procese

obvious that atandard set of greding rules has to be used whore standard designt are involved. Local grading rules may be used provided that they are comparable with the standard set. It has to be ensured that the local grading rules include all the defects given for any grade in annex II, and that the maximum defect permitted is not exceeded.

If the stress grade for a timber which is not included in the list has to be determined, the stress grades applying to unidentified timber of that region should be used. It should be noted, however, that there are many timbers which by virtue of their durability, seasoning characteristics and working properties are unsuitable for bridge-building.

In doubt refer to the local forest departments.

Loading

Designs for 12 different load specifications are given in figure 16 , includins loadings H and HS of the American Association of State Highway Officials (AASHO) and British Standard HA loadings. Typical truck and trailer configurations are also shown in figure 16 for comparison with the standard loadings.

Highway bridges, on which there is likely to be heavy truck loading, should normally be designed for a minimum load of H 2 O . Bridges for rural access roads can be designed for less heavy loadings but it should be remembered that there is a tendency in all countries for loads to increase. Bridges of a limited capacity should be protected against over-loivding by height barriers or maximum load signs and when traffic loads increas' considerably the capacity of the bridge should be augmented by the addition of extra trusses.

Determining the design (number of trusses)

After determination of the timber stress grade and selection of the loading applicable in a given situation, the design (number of trusses) can be read directly from table 1. For loads which are not indicated in table 1, the maximum live-load bending moment and the end-reactions hare to be determined first. Designs can then be read from table 3 which shows available live-load bending moments and end-reactions for different spans and timber stress grades.

The afe load tables (table 2) give the maximum capacity of singlecarriageway bridges when supporting a single-tracked vehicle with ite weight evenly distributed over 4 m.

Pigure 16. Loding:

suble 1. number of trueces needel for a given apen and lowlime
A. Brmerenter

Londine	Spen (m)								
	6	9	12	15	18	21	24	27	30
H 10	4	4	4	4	6	6	8	-	-
M 15	4	6	6	6	8	-	-	-	-
H 20	4	6	6	6	8	-	-	-	-
1815	6	6	8	8	-	-	-	-	-
1820	6	6	8	8	-	-	-	-	-
2/3 m	4	4	6	8	-	-	-	-	-
m	6	0	-	-	-	-	-	-	-
Imaion 8	4	4	4	6	8	-	-	-	-
Treiler 1	6	6	6	6	8	-	-	-	-
Trailer 2	6	0	8	8	-	-	-	-	-
Truck 1	2	4	4	4	6	6	8	8	-
Truck 2	6	6	6	8	8	-	-	-	

3. Ermennlans

loaling	Spen (m)								
	6	9	12	15	18	21	24	27	30
H10	2	2	2	4	4	6	6	3	-
015	4	4	4	6	6	8	-	-	
meo	4	4	4	6	6	8	-	-	-
5015	4	6	6	8	8	-	-	-	-
$\cdots \geq 0$	4	6	6	8	-	-	-		-
2/3 m	2	4	6	8	-	-	-	-	-
10	6	6	8	-	-	-	-	-	
maical	2	2	4	6	3	-	-	-	-
Prailer 1	4	4	6	6	8	-	-	-	-
Trailer 2	6	6	6	6	-	-	-	-	-
Truok 1	2	2	4	4	4	6	6	0	-
Truek 2	4	4	6	6	8	8	-	-	-

0. Ameremele

moeding	Span (m)								
	6	9	12	15	18	21	34	27	30
176	2	2	2	4	4	4	6	6	3
M 15	4	4	4	4	4	6	6	3	-
H 20	4	4	4	4	6	3	-	-	-
1815	4	4	6	6	3	3	-	-	-
me 20	4	4	6	6	8	-	-	-	-
2/3 ma	2	2	4	6	3	-	-	-	-
m	4	6	6	3	-	-	-	-	-
Indian B	2	2	4	4	6	8	-	-	-
Prailor 1	4	4	4	4	6	3	-	-	-
Trailer ?	4	4	4	6	8	-	-	-	-
Truok 1	2	2	2	2	4	4	6	6	3
Truok 2	4	4	4	4	6	3	3	10	-

B. Atrag cradere

Loading	Span (m)								
	6	9	12	15	13	21	24	$? 7$	30
H 10	2	2	2	2	4	4	4	6	6
H 15	2	2	4	4	4	6	6	8	3
H 20	2	4	4	4	4	6	3	-	-
แ8 15	4	4	4	4	6	8	3	-	-
H8 20	4	4	4	4	6	3	-	-	-
2/3 M	2	2	4	6	6	3	-	-	-
m	4	4	6	8	-	-	-	-	-
Indian 8	2	2	2	4	4	6	8	-	-
Prailer 1	4	4	4	4	6	6	8	-	-
Prailer 2	4	4	4	4	6	3	-	-	-
Truok 1	2	2	2	2	4	4	4	6	6
Twok 2	4	4	4	4	4	6	6	8	-

E Breatmamil

$\text { hoding } y$	$\operatorname{span}(\mathrm{m})$								
	6	9	12	15	18	21	24	27	30
- 10	2	2	2	2	4	4	6	6	8 6
I 15	2	2	4	4	4	6	6	8	6
120	2	2	2	4	4	4	8	6	8
m 15	4	4	4	4	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	6	8	8	-
m 20	2	4	4	6	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6	8	8
2/3m	2	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	6	8	$\overline{8}$	-	-
m	2	4	4	6	6	8	-	-	-
mica 1	2	2	2	4	4	6	8	8	-
meniler 1	2	2	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	4	4	6	8	8	-
grailer 2	4	4	4	4	6	8	8	-	-
Preok 1	2	2	2	2	4	4	4	6	6
Preok 2	2	2	2	4	4	6	6	a 6	8

7. Armasmap14

cenisay	$\operatorname{span}(\mathrm{m})$								
	6	y	12	15	16	21	24	21	30
10	2	2	2	4	$\stackrel{4}{4}$	4	4	4	8
1 15	2	4	4	4	4	6	6	8	6
180	2	2	4	4	4	6	8	6	8
15	4	4	4	4	6	6	6	6	8
480	2	4	4	4	6	6	6	0	10
2/3	2	2	4	6	6	6	0	-	.
$\underline{1}$	2	4	4	4	6	0	$\stackrel{-}{\square}$	-	-
matam	1	2	2	4	4	6	6	6	0
grealer 1	2	2	4	4	6	6	6	6	8
Fresler 2	2	2	4	4	4	6	6	0	10
Cumel 1	2	2	2	2	4	4	4	6	6
Truat 2	2	2	4	4	4	6	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	8	6

a. Mrnanalarlt

valing	- $\quad \operatorname{man}(\mathrm{m})$								
	5	5	12	15	16	21	44	17	30
\% 10	2	2	2	2	2	4	1	6	8
15	2	2	4	4	4	6	6	8	6
- 80	2	2	4	2	4	6	8	6	8
m is	1	2	2	2	6	6	8	6	6
58	2	4	4	4	6	4	6	8	8
4 3	2	8	2	6	6	6	8	8	-
皿	2	4	4	8	6	8	-	-	-
Inice	2	8	1	2	4	6	4	6	-
Sracier 1	2	8	4	4	4	6	6	6	8
Eratier 2	1	8	2	4	6	6	-	0	10
Prutil	1	2	2	2	4	4	4	6	0
Strun 2	2	2	4	4	6	6	8	6	6

renating	man (m)								
	5	y	12	15	15	21	14	27	30
- 10	2	2	2	2	4	4	6	6	8
(15	2	4	4	4	4	4	4	8	6
180	2	2	4	4	2	6	8	6	8
me is	4	4	4	4	4	8	6	6	8
± 20	1	e	4	4	6	6	6	8	8
$43 m$	2	2	2	6	6	6	0	8	-
m	2	4	6	0	6	0	-	-	-
Inmen 8	1	8	1	8	4	4	6	0	8
grelle 1	2	t	1	4	6	4	6	6	8
Suelser 2	2	2	4	4	4	6	6	0	-
Frut 1	2	8	2	2	1	4	4	6	8
Srum 2	t	2	e	4	6	6	8	6	6

Tuble 2, Sinfe loade
A. neompua oonatruction

St reas crede	6 Span (0)								
	6	9	12	15	18	21	24	27	30°
14	5.3	4.4	3.9	2.7	2.2	1.6	1.2	0.8	0.5
5	6.7	5.5	4.9	3.4	2.8	2.0	1.4	0.9	0.6
17	8.1	7.0	6.3	4.5	3.7	2.8	2.1	1.5	0.8
78	10.9	9.0	8.1	5.8	4.7	3.6	2.6	2.0	1.4
F 11	13.8	11.5	8.6	6.0	4.9	3.7	2.8	2.1	1.5
			10.4	7.4	6.1	4.7	3.7	2.9	2.1
114	17.0	13.0	8.4	5.8	4.7	3.5	2.6	1.9	1.3
		14.9	12.8	9.7	7.9	6.2	5.0	3.9	3.0
F17	16.8	12.8	8.2	5.5	4.5	3.3	2.4	1.6	1.0
		13.9	12.6	10.0	8.2	6.4	5.0	4.0	3.0
$\begin{aligned} & 2227 \\ & \text { and } 34 \end{aligned}$	16.7	12.6	7.9	5.1	4.3	3.0	2.1	1.3	0.4
		13.7	12.3	9.6	8.0	6.1	4.7	3.7	2.7

B. Punmetruas oonstruation

Stress rede	Span (m)								
	6	9	12	15	18	21	24	27	30
74	5.5	4.6	4.1	3.0	2.3	1.6	1.2	0.3	0.5
5	6.9	5.7	5.2	3.8	3.0	2.1	1.6	1.1	0.8
77	8.8	7.3	6.7	4.9	3.7	2.8	2.2	1.6	1.1
78	10.7	9.4	8.6	6.4	4.8	3.7	2.9	2.2	1.6
-11	14.1	11.9	9.1	6.6	5.0	3.8	2.9	$2 . ?$	1.6
			10.9	8.1	6.2	4.8	3.8	3.0	2.3
F 14	17.4	13.5	9.0	6.5	4.8	3.6	2.7	3.0	1.3
		14.6	13.4	10.4	8.0	6.3	5.0	4.0	3.1
P17	17.3	13.4	8.9	6.3	4.6	3.4	2.5	1.7	1.0
		14.7	13.3	10.8	8.3	6.5	5.1	4.0	3.1
$\text { and } 34^{27}$	17.2	13.2	8.7	6.1	4.4	3.1	2.2	1.3	0.6
		14.4	13.1	10.6	8.1	6.2	4.8	3.7	2.7

a. 3izotruse construgtion

Strese ereade	Span (m)								
	6	9	12	15	18	21	24	37	30
14	5.6	4.6	4.2	3.1	2.3	1.8	1.3	1.0	0.7
F 5	7.0	5.8	5.3	3.9	3.0	2.3	1.3	1.3	1.0
57	8.9	7.4	6.8	5.1	3.9	3.0	2.4	1.9	1.4
F 8	11.3	9.5	8.7	6.5	5.0	4.0	3.2	2.5	2.0
-11	14.3	12.6	9.3	6.8	5.2	4.1	3.2	2.6	2.0
			11.0	8.3	6.4	5.1	4.1	3.3	2.7
F14	17.6	13.6	9.2	6.7	5.1	4.0	3.1	2.4	1.8
		14.8	13.6	10.6	8.3	6.6	5.4	4.4	3.6
F 17	17.5	13.6	9.1	6.6	5.0	3.3	2.9	2.2	1.5
		14.8	13.5	11.1	8.6	6.9	5.5	4.5	3.6
$\text { and } 34^{27}$		13.4	9.0	6.4	4.8	3.6	2.6	1.9	1.2
		14.6	13.4	10.9	3.4	6.7	5.3	4.2	3.3

D. Bent-trues oonstruction

Stressgrade	Span (m)								
	6	9	12	15	18	21	24	27	30
14	5.6	4.7	4.4	3.2	2.4	1.8	1.4	1.0	0.3
F 5	7.0	5.9	5.4	4.0	3.1	2.4	1.9	1.5	1.1
57	8.9	7.5	6.9	5.1	4.0	3.1	2.5	2.0	1.6
F 8	11.3	9.6	8.8	6.6	5.1	4.1	3.3	2.7	2.1
F11	14.3	12.1	9.4	6.9	5.4	4.3	3.4	2.7	2.2
			11.1	8.4	6.6	5.3	4.3	3.5	2.9
F14	17.6	13.7	9.3	6.8	5.3	4.1	3.3	2.6	2.0
		14.9	13.7	10.7	3.4	6.8	5.6	4.6	3.3
-17	17.5	13.6	9.2	6.6	5.1	4.0	3.1	2.4	1.8
		14.8	13.6	11.2	8.8	7.1	5.8	4.7	3.9
$\text { and } 34^{27}$	17.4	13.5	9.1	6.6	5.0	3.8	2.9	2.2	1.5
		14.7	13.5	11.1	8.6	6.9	5.6	4.5	3.6

Tuble 3. Live load bending momente
and and reactions
A. Streas crade I 4

Mumber of trunces		Span (m)								
		6	9	12	15	18	21	24	27	30
	2	71	68	64	61	56	54	51	47	-
2	b	226	214	196	173	145	111	73	29	
	c	226	214	196	173	145	119	73	29	-
	2	147	142	138	133	129	124	120	115	119
4	b	460	444	420	389	352	308	257	200	135
	c	460	444	420	389	352	308	257	200	135
	a	223	217	212	206	200	195	189	184	178
6	b	694	673	644	606	560	505	442	370	290
	-	694	673	644	606	560	505	442	370	290
	a	299	292	285	279	272	265	258	252	245
8	b	928	903	867	822	767	702	626	541	445
	c	928	903	867	822	767	702	626	541	445

B. Stress crade F 5

Jumber of trusees		Span (m)								
		6	9	12	15	18	21	24	27	30
	a	89	85	81	78	74	70	66	62	58
2	b	283	268	248	222	190	153	109	60	5
	-	283	268	248	222	190	153	109	60	5
	a	184	179	174	169	164	159	154	. 149	145
4	b	574	555	528	495	453	404	347	283	211
	0	574	555	528	495	453	404	347	283	211
	a	278	272	266	260	253	247	241	235	229
6	b	865	841	809	767	716	655	586	506	418
	0	865	841	809	767	716	655	586	506	418
	a	373	366	358	351	343	336	329	321	314
8	b	1155	1128	1089	1039	979	906	824	730	624
	0	1155	1128	1089	1039	979	906	824	730	624

O. Streas srede PI

Muber of trumees		Span (m)								
		6	9	12	15	18	21	24	27	30
2	2	114	110	105	101	96	92	88	83	79
	b	360	344	320	291	254	211	161	105	42
	0	360	344	320	291	254	211	161	105	42
4	a	234	229	223	217	2.12	206	200	195	189
	b	729	708	679	640	593	538	474	401	320
	-	729	708	679	640	593	538	474	401	320
6	2	355	348	341	334	327	320	313	306	299
	b	1099	1073	1037	990	932	864	786	697	598
	0	1099	1073	1037	990	932	864	786	697	598
8	a	475	467	459	450	442	434	426	418	409
	b	1469	1438	1395	1339	1271	1191	1098	993	875
	c	1469	1438	1395	1339	1271	1191	1098	993	875

D. Stress grade F 8

Mumber of truses		Span (m)								
		6	9	12	15	16	21	24	27	30
2	a	146	141	136	131	126	120	115	110	105
	b	459	440	413	379	337	287	230	165	93
	0	459	440	413	379	337	287	230	165	93
4	a	299	293	286	280	273	267	260	254	247
	b	928	904	870	827	773	710	637	555	463
	0	923	904	870	827	773	710	637	555	463
6	a	452	444	437	429	421	413	405	397	389
	b	1398	1369	1328	1275	1209	1133	1045	944	832
	-	1398	1369	1328	1275	1209	1133	1045	944	832
8	a	606	596	581	578	569	559	550	541	532
	b	1868	1833	1785	1722	1646	1556	1452	1334	1202
	c	1868	1. 833	1785	1722	1646	1556	1452	1334	1202

F. Stress arade F 11

Thmber of trueses		Span (m)											
		6	9	12		15		18	21		24	27	30
	a	184	179	173		167		161	155		150	144	138
2	b	483	461	430		390		343	283		220	146	63
	0	578	557	526		437		439	382		317	242	159
	a	378	370	363		356		348	341		334	326	319
4	b	978	950	912		862		802	730		647	554	449
	-	1170	1143	1104	1	054		994	922		340	746	641
	a	571	562	553		544		535	527		518	509	500
6	b	1473	1440	1393	1	334	1	260	1174	1	074	961	835
	0	1762	1728	1682	1	622	1	549	1462	1	362	1249	1123
	2	764	754	743		733		722	712		702	691	631
8	b	1969	1930	1875	1	805	1	719	1618	1	501	1368	1220
	-	2353	2314	2260	2	189	2	104	2002	1	835	1753	1605

F. Stress grade F 14

Thumbor of t ruese		Span (m)														
		6	9	12		15		18		21		24		27		30
2	a	227	220	213		206		200		193		186		180		173
	b	479	455	420		374		319		253		178		92		-
	0	734	708	674		628		573		508		432		347		251
4	a	463	455	446		438		430		421		413		404		396
	b	975	943	899		843		773		692		597		490		371
	0	1483	1451	1408	1	351	1	282		200	1	105		998		879
6	0	700	690	680		670		660		649		639		629		619
	b	1470	1432	1379	1	311	1	228		130	1	016		838		744
	-	2232	2194	2141	2	073	1	990		892	1	779	1	650	1	507
8	a	936	925	913		901		889		878		866		854		842
	b	1965	1921	1859	1	779	1	682		568	1	435	1	286	1	118
	0	2981	2937	2875	2	796	2	699		584	2	452	2	302		134

a. Atrascrade Y 17

Mumber of trueses	Span (m)											
	6	9	12	15		18		21	24	27		30
a	225	217	209	202		194		186	179	171		164
2	477	448	408	357		294		219	133	36		0
0	769	740	700	649		586		511	425	328		219
a	461	451	442	433		423		414	404	395		385
4 b	972	936	886	322		744		651	544	423		283
-	1555	1520	1470	1406	1	328	1	235	1128	1007		372
4	697	686	675	663		652		641	629	618		607
6	1466	1423	1364	1287	1	194	1	083	955	811		649
-	2342	2299	2240	2163	2	070	1	959	1831	1687	1	525
2	934	920	907	894		831		868	854	841		828
8 b	1960	1911	1842	1753	1	644	1	515	1366	1198	1	010
0	3128	3079	3010	2920	2	312	2	683	2534	2366	2	178

H. Stress prades F 22,27 and 34

Member of truanes		Span (m)															
			6	9	12		15		18		21		24		27		30
2	a		222	213	205		196		187		178		169		160		151
	b		473	440	394		334		261		174		74		0		0
	-		765	732	686		626		553		466		367		254		128
4	-		458	447	436		425		414		40.		393		382		371
	b		967	926	869		795		705		598		475		336		180
	-	1	551	1510	1453	1	379	1	289	1	182	1	059		920		764
6	-		694	681	668		655		642		629		616		603		590
	b	1	461	1412	1344	1	256	1	149	1	022		376		710		525
	c	2	337	2288	2200	2	132	2	025	1	898	1	752	1	586	1	401
8	-		930	915	900		885		870		855		339		824		809
	b	1	955	1898	1819	1	717	1	593	1	446	1	277	1	085		870
	0	3	123	3066	2987		885	2	761	2	614		445	2	253	2	038

Trat a. Aveileble eheer (kN)
b. Available bending moment light ohorid (k II m)

- Aveileble bendin moment heavy ohord (kill m)

Daim of the deck

Thble 4 indicates recommended sizes for deck members for different wheel loads and timbers of various stress grades. If timbers are used that are likely to woar quickly, a harder or denser species should be used for the running boards. This will probably be the case with most timbers of stress grade F11 and uelow. An alternative is to fix a ohequer plate on top of the boards which sots as a wearing eurface,

Table 4. Deck design (depth of dook required in min)
A. Two-trual bridaes

$\begin{gathered} \text { Logat } \\ (\mathrm{t}) \end{gathered}$	Stress grade									
	14	15	1	78	811	P14	71	52	727	F34
1	100	100	75	75	75	75	75	75	75	75
2	125	125	100	100	100	75	75	75	75	75
3	150	150	125	125	100	100	100	75	75	75
4	-	-	150	125	125	100	100	100	75	75
5	-	-	-	150	125	125	100	100	100	75
6	-	-		-	150	125	125	100	100	100

$\begin{aligned} & \text { wheel } \\ & \text { loed } \\ & (1) \end{aligned}$	Atreen crede									
	14	15	7	73	P11	74	F17	72	Y'1	134
1	75	75	75	75	75	75	75	15	75	75
1	100	75	75	75	75	75	15	75	75	75
3	100	100	100	75	75	75	75	75	75	75
4	125	100	100	100	75	75	15	15	15	75
5	150	125	100	100	100	75	75	75	75	75
6	150	125	185	100	100	100	75	15	75	75

II. proculener of matraials aid asseme

A. Stenl progurement

It is assumed that steel with a maximum tensile strength of $435-494 \mathrm{~N} / \mathrm{mm}^{2}$ ($28-32 \mathrm{t} / \mathrm{in}^{2}$) and a minimum yield stress of $236 \mathrm{~m} / \mathrm{m}^{2}\left(15.25 \mathrm{t} / \mathrm{in}^{2}\right)$ is used. Wild steel from the marity of produoers will comply to this standard; sub-atandard steel should not be used. In oase of doubt government or private materials testing laboratories should be consulted regarding the quality of the steel in question. In some pleces difficulties have been experienced in obtaining eupplies of bars of a larger diameter. If they are not available from stuructural steel merchants, mechanical ongineering suppliers may have shaft stecl of the required size on stock. Shaft steel is usually made of an alloy different from steel and has to be welded with special rods, depending on its composition.

The quantities of ateel required per panel are given in table 5.

B. Tirber propureant and treataent

Porpuremat

Thmber of the apeoies and stress grade foreseenfin the design should be ondered and the timber should be allowed to dry. The actual time required for drying will depond on the apeoies, the method of drying, and the olimate.

It is an advantage to order timber in auch lensthe that pieces oan be out with a minimum of wastage. Even if a premium is oharged on ordere for apeoific leasthe, thie will normally atill be ohoaper than having a high rate of wastage when outting from random lengthe.

A oheok should be made on dimension and green timber muat be sawn overize to allow for shrinkage during drying. The actual amount of ovorizize will again dopend on the apecies.

gittipe to eige

The dimensions of the panel components are given in ficure 4. The jige shown on figure 5 oan be unod for outting to size. Timber can be sam greons this will be neceseary if the diffuaion method of treatment is usod.

Tuble 5. guantitice of ateel required per panel
(Weights and surface areas of steel plates inolude drill holes and bevel offcuts)

[^0]The 27 -mm diameter holes oan be drilled at this atage, although it is permissible to do this after the assembly, provided that the holes are individually treated with preservative.

A tolerance of 2 mm can be regarded as acceptable for pre-sawn timber

Drying

It is outside the soope of this report to describe fully all methods of timber sessoning. The design oalls for timber dried to within 5% of the equilibrium moisture content (EMC). ENC is the value whioh would be attained in servioe and whioh depends on the humidity of the air and the tropical region. The following my be used as a rough guides

M(\$)

$$
\begin{array}{ll}
\text { Hot dry region (desert, savanmah or } \\
\text { sorub land) } & 10-12 \\
\text { Tropical highland (above } 1,500 \mathrm{~m} \text {) } & 12-14 \\
\text { Tropical ooset and rain forest } & 14-18
\end{array}
$$

The moisture content is most conveniently meaeured by using a moisture meter. Enoure that the probes are long enough to reach the oentre of the timber. . Steep moisture gradients are found in some timbers and measurement at the surface may give afalse impression of the mointure content of the whole pieoe.

Host moisture metera are oalibrated for opeoien from the temporste sonel therefore offioers of the limtionil Forent Depertmente mould be ceked for oalibretion dat required for looal timber.

Air dryins

For air dryinc, whioh in the mont common method, timber should be atsoked under oover on well-dreined surfsoe, olear of the ground, se show in figure 17.

Where a concrete base is not practicable the soil under the stack mould be poisoned with an appropriate insectioide solution having lons activity to prevent possible termite attack.

Figure 17. Stacking prooedure for air-drying of timber

The thioknese of the atiokere will umisily be about 18 min. For timbere known to be diffioult to season 12 minetiokere should be usod. The stiokore ehould be plaoed directly under one anothor.

The time required for meaconing will depend on the apeoien and the olimate. Some coftwoode in tropioal olimaten require only 6 wecks while some of the deneer hardwoode need at leent 25 woeks.

The ende of members tend to dry more quiokly than the other part and should be covered with polythene or painted with bitumen to prevont aplitting. This is partioularly important for dense hardwoode.

Soler kilna

Figure 18 shows a solar kiln based on design developed for the Uganda Foreet Department. I/ In this type of kiln air is heated in the roof cavity and then circulated around the timber stack by one or more fans. With this method the time required to dry hardwoods could be reduced by up to 50% and it would clearly be attractive where plain air drying presents difficulties.

Figure 13. Solar kiln
A. Viow from the rear with fans above the absorber

[^1]
B. Pront view showing absorbers and method of powering fans

The amount of vent used, the stacking arrangements and the volume of air flow will depend on the species being dried and some experimenting will be needed to determine these. Experience with the original kilns indicated that the air flow should be reduced in the early stages of drying, when high moisture gredients are to be avoided, but can be greatly increased later.

Convent ional kiln drying

Thi method will only prove economioal when production of the bridges is linked to the manufacture of other products requiring dried timber.

Low-oost hot air kilns using oil drums or similar means should be employed with ountion as severe degrade has been experienced with this type of driers.

7reatment

The heartwood of most of the hardwoods listed in annex III can be regarded as durable. Where sapwood, softwoods or non-durable hardwoods aie used some method of chemioal treatment will be neoessary, of the two methods described hereunder - diffusion and pressure treatment - the former has the advantage of requiring little capital expenditure but is not auitable in oases where timber is contimually wet.

The diffuaion prooess

A concentrated solution of suitable chemioals is applied to the outer surface of green timber; the solution diffuses into the interior of the material by molecules moving down a conoentration gradient. The chemical usually applied in this process is known as $A F C A$ and is a borofluoride-chrome-arsenic-compound which is highly termiticidal. Fungal growth is prevented by adding 1% sodium pentachlorophenate. The chemical is soluble in cold water, and a solution of 30% by weight in water is recommended.

The minimum moisture content required in the timber is 50% which means that the treatment should be carried out within a week or two after felling. By this method the precut pieces are simply dipped in the solution (alternatively a spray race may be used), then stacked closely and wrapped in plastic sheeting. The timber is left for four to eight weeks depending on the species and then stacked to season in the usual way.

The depth of penetration may be tested by using the following test reagents:
(a) Solution A: Add 10 g of turmeric powder to 100 ml of 95% methanol/ alcohol and boil the mixture for one hour under a reflux condensor. Cool and filter the solution. This solution should be prepared freshly every two months;
(b) Solution B: Add 20 ml concentrated hydrochloric acid to 30 ml of 95% ethanol/methanol and saturate the solution with salicylic acid. Allow solution to stand and filter off excess solids. This solution will not spoil.

Control pieces of 1 m length are treated with the standard components. After treatment thin biscuits (10 mm thick) are cut, at least 200 mm away from the end of the piece. The slices are dried if not already seasoned. Then solution A is sprayed uniformly across the entire surface of a piece. After five minutes solution B is evenly sprayed on, taking care to saturate the wood. The samples should then be allowed to stand for 10 minutes.

A red colour indicates 0.3% boric acid equivalent. In general a $9-\mathrm{mm}$ depth of penetration of 0.3% treatment can be regarded as satisfactory. If the depth is less than 9 mm , a larger diffusion time is required.

It is important to remember that the salts are poisonous and dangerous both in dry form and as a solution. All persons handing the material should wear protective clothing and wash their face and hands before breaks and at the end of the day.

Preagure troatment

Two procesee are in general ueed, one oelled the "full-cell" procese and the other the "cmpty-cell" prooess. In the full-oell procese water-borne preservatives are applied while for the empty-cell process - oxoept in oases of very eevere expomure - oil-borne preservitives are used. The standard preservatives are:

Prampative oily and oil-borme presematiyes

Creosote
Oreosotecoal-ter solutions
Creosote-petroleum solutions
Pentachlorophenol
Copper naphthanate

Her-borme preservatives

Curomated zinc ohloride (CZC)
Oopperized chromated zinc ohloride (0020)
Tanalith (Wolman ealts)
Lid oopper chromate (Celoure)
Curomate oopper aremate (ASGU, Oreanasit, Indmlith) (oon)
Zino meta arsenite ($\pi \sim$)
Amonical oopper arsenite (Chemonite)
Chromated zinc arsenite (Boliden alt)

The choioe of the preservative to be used depends on ite availability and ite cont. All preservativen are reported to be offeotive armingt termite attack; for uee in tropical climaten it is recomended to add to the pentachlorophenol at least i\% of a pereistent ohlorinated hydrooserbon ineeotioide ouch as. Lindane or Aldrin.
(a) Thenll-onil progese: Uee timber whioh has been seaconed to near ite final moisture content.

1. Sall the timber in the treatment oyiinder and apply a vacuva to ramove the air from the oylinder and, as much as posaible, from the mood.
2. Heat the preservative to elightly above treatment temporature and feed it into the oylinder without admitting air. Treatment temperature for oil-bgrne and mot water-borne solutione should be between $88^{\circ} \mathrm{C}$ and $93^{\circ} \mathrm{F}$ and $200^{\circ} \mathrm{F}$); thone for chromium alts ebould be about $70^{\circ} \mathrm{C}\left(160^{\circ} \mathrm{F}\right)$ to avoid precipitation of the preservetive.
3. When the cylinder in filled, apply preesure until the required retention of oil hae been achieved. (Beoomended retentions are given below) The preasure and the time of treatment required to achieve these retentions depends on the apecies and the pressure used, ranging from 7 to $14 \mathrm{~kg} / \mathrm{cm}^{2}\left(100\right.$ to $200 \mathrm{lb} / \mathrm{in}^{2}$). Hany softwoods are sensitive to high temperatures and presgures and damage may occur at pressures above $10 \mathrm{~kg} / \mathrm{om}^{2}\left(140 \mathrm{lb} / \mathrm{in}^{2}\right)$.
4. Withdraw the preservative from the oylinder.
5. Apply a ahort finsl veouven to remove excese preservative.
6. Leave the timber to dry until it reaches service moisture content.
(b) The empty-cell procesis: Two empty-cell prooesses are in common use, the moping and the Lowry process. The following is the general procedure for the mopins process:
7. Seal the timber into the treatment cylinder and introduce air under preseure. The pressure used and the time of applioatign varies acoord- 2 ing to the species. Usually pressures of 2 to $14 \mathrm{~kg} / \mathrm{cm}^{2}\left(35\right.$ to $200 \mathrm{lb} / \mathrm{in}^{2}$) are applied for about 10 minutes or less.
8. Pump the preservative into the cylinder and allow the air to escape while maintaining the initial presaure. This is achieved by using an equalizing tank.
9. When the cylinder is full of preservative increase the pressure and mintain it for a sufficiently long time to give the required and mantain it for antion. Presures will very between 10 and $14 \mathrm{~kg} / \mathrm{cm}^{2}(140$ and $200 \mathrm{lb} / \mathrm{in}^{2}$) with softwoode being treated at the lower pressures.
10. Apply a final veculm to remove surplus preservative from the cylinder.

The Lowry procese in similar to the Rueping proceas, the only difference beins that no initial air preasure is used and that the air expelled from the oylisder by the introduction of preservative in at atmonpherio pressure.

Pos maded metentiong for bridin

1.t ratention

	$\mathrm{ra} /$	$\underline{1 H} / t^{3}$
Creosote	96	6
Creosote-cosl-tar solution	96	6
Oreocote-petrolun solution	112	7
Pentcohlorophenol	96	6
Copper raphthamate	96	6

Ret retention

Celoure

$\frac{2 b / f t^{3}}{0.5}$
0.3
0.75
0.35
0.50
0.50

Pacilities for checking the net retention usually exist in most government materials laboratories.

C. Steel components

Quttine and drilling

Dimensions of steel components are shown in figures 19-29. All components except the chords may be flame cut provided the tolerances of $\pm 1 \mathrm{~mm}$ for chords and $\pm \uparrow \mathrm{mm}$ for $a l l$ other steel components are not exceeded. Drill holes should be set out by centre-punching through templates made from 24-gruge steel sheets.

In some countries the standard length of the $100 \mathrm{~mm} \times 6 \mathrm{~mm}$ strip fom which the steel chords are made is 6 m . This means that there is considerable wastage if the standard chord lak 2 , which is 3.1 m long, is cut f :om a standard strip. In such cases it is preferable to use the alternative chords 2 A and 6 A shown in figures 23 and 25.

Helding

When testing steel components, most failures have been found in welds. It is important, therefore, to follow the drawings in regard to weld size rigouroumly, particularly when a pin is inserted though a hole in a plate and welded on the reverse side, such as in panel plates 1 and 9.

Unde no circumstances should components be made up by welding together shorter or smaller pieces of steel except where specifically indicated on the drawings.

Where steels of different composition are to be welded together the remarike made under section A "eteel proourement" of ohapter II apply.

Figure 20. Panel plate ia

Fighre 246

Finure 25. Mons 6

Nome 27. Reol plater 8 ent 13

gacie OfAl

- 56 -

- 97 -

D. Penel aseenbly

The ascembly jic is shom in figures 30 and 31. The truss in assembled in two halves, each oonsisting of one piece mark $1 T$, two pieces mark $2 T$, one piece mark $3 T$ and two pieces mark 4T.

Preservative treatment by one of the methods previously described should uhould have been oarried out after outting.

The two $200 \mathrm{~mm} \times 50 \mathrm{~mm}\left(8^{\prime \prime} \times 2^{\prime \prime}\right)$ diagonals mark $2 T$ are placed in the jig with their upper edges against the diagonal gaides and the strut mark $3 T$ is positioned between them and centred. The $250 \mathrm{~mm} \times 50 \mathrm{~mm}(10 " \times 2$ ") chord mark $1 T$ is placed across the diagonals and centred on the marks show on the end guides. These members are then fixed in position with a 100 mm (4") nail at each intersection.

Plates 5 and 1 or 1A (9 or 9A for heavy construction) are placed in position. One half of the panel is assembled using plate 1 (or 9), the other half using plate 1 A (or 9A) so that the completed panel will have a bracing oleat on one side only. Use the loose template, as shown in figure 30 , to position plates 1 or 9.

A hole of a diameter equal to that of the pin plus 6 mm and having a depth of 6 mm is then drilled or cut in the members mark 2 T to allow plate 1 or 9 to lie flat. All plates are centered using the marks on the jig and fixed in position with $50-\mathrm{mm}\left(2^{\prime \prime}\right)$ nails in the $3-\mathrm{mm}\left(1 / 8^{\prime \prime}\right)$ holes provided. Drill $12-\mathrm{mm}$ holes through the plates into the timber using a stop on the drill as shown in figure 32 to give a hole of 50 mm (2") depth where the hole is over a single member and of 100 mm depth where the $200 \mathrm{~mm} \times 50 \mathrm{~mm}$ diagonal crosses the $250 \mathrm{~mm} \times 50 \mathrm{~mm}$ chord. Insert in all holes dowels of a length equal to the depth of the hole by tapping with a light (1 kg) hammer.

Assemble the second half of the panel in the same way. How lift the half panel with plate 1 (or 9) and place it in the jig, face down, i.e. with the connector plates against the jig bed. Place the other half with 1A (or 9A), face up, on top of its and centre all plates again on the centre markn. Drill the two diagonals with $4-\mathrm{mm}\left(5 / 32^{\prime \prime}\right)$ holes using the template show in figure 33 and nail with $100-\mathrm{mm}\left(4^{\prime \prime}\right)$ nails. It has been assumed that 100 mm naile will be 4.88 mm (SNG 6) thick.
Figare 31. haembly jic-aloutiona

Frape 32. Jic for diviling mole threnth the plates
smert two fillete mark 47 between the ohorde mark iT and drill and nail with 100 m ($4^{\prime \prime}$) naile at 150 mm ($6^{\prime \prime}$) ountres. Then drill and fix with two 12 man p bolte using 50 m equare machers, 3 mint thiok on eech aide.

Lift the panel out, turn it over and nail fillets mark 45 from the other aide onouring that naile are ataceored by 75 mm (3"). Staok vertioally ready for melding.

The dowela are tack-welded first. Bnsure that the welde do not project from the face of the plate by more than $2 \mathrm{~mm}\left(1 / 16{ }^{\prime \prime}\right)$. Now weld plate 3 (or 11) at one end and plate 4 (or 12) at the other, each in the centre of the vertical faces of plates 5 and 5A. Enoure that a full-length 6 -man $\left(1 / 4^{\prime \prime}\right)$ weld is made on all vertical edees.

Figare 33. Hilime template

Complete the panel by fitting two 275 - (11") bolts in the chord with wahers on the unprotected timber faces and one 175 -min ($7^{\text {n }}$) bolt in the bottom of the strut. One bracing cleat 13 is fitted at this stage. Do not attempt to force the bolts through the holes; they should be inserted by tapping with a light hamer.
III. BREOTION

Conorete or hollow-blook foundations are not described in this report; it is assumed that these will have been prepared beforehand. The distances required between the faoes of the abutments are indioated in figure 34 together with details assumed at the bearings. $2 /$

A. Components and ecection equipment

Table 7 lists all components required for constructing a bridge according to the instructions given in this report.

Arection equipment for wet crossing

Table 3 lists the equipment required for a crossing where intermediate supports cannot be used. The winches are of the "Tirfor" type and while these are not essential they have been found to be very satisfactory in use. In all oases the maximum load per cable - when the dimensions in table 9 are applied - is 1.6 t (exoept where noted).

retion eruipment for dry crossing

The dry-crossing method does not require the purohese of special equipment such as winches etc, and is preferable if oontimous intermediate support is available under the span.

B. Yet-orgneine method

Prepretion

Erect shear legs on either bank (see figure 35). These are made from 130 mm ($6^{\prime \prime}$) diameter timber poles or 100 mm ($4^{\prime \prime}$) steel tubes (see figure 36). Etablish anchors on the line of the shear legs for oable anchorage. This is made by burying a log with a steel rope attached in a trenoh as shown in figures 37 and 39. Ensure that the rope is led through the side of the trenoh by cutting a groove as shown in the drawing. Alternatively a tree growing in a cuitable location may be uned.

2/ Under the now project "Dovelopment of new timber producte" ($\mathrm{IP} / \mathrm{K} / \mathrm{I} / 77 / 007$) timber abutment will be tested and their decign and produotion will be the subject of a separate technioal repost oupplementing the present one.

A atanding oable is ineorted between the nhear loge as shown in figure 35 and atteched to winch 10. 1 which in in turn aheoklod to an anchor on the far side. dajuat the slack in the wire to give the required length hanging betwoen palleys (see table 9).

Table 7. Component:
A. Tuontrus brida

Component	Span (m)								
	6	9	12	15	18	21	24	27	30
Panel	4	6	8	10	12	14	16	18	20
Chord	4	8	12	16	20	24	28	32	36
Vortical bracins	4	6	8	10	12	14	16	18	20
$\begin{aligned} & \text { prajing boita } \\ & 1 \text { wathor) } \\ & 1 \text { muts } \end{aligned}$	8	12	16	20	24	28	32	36	40
Horizontal braoins	2	3	4	5	6	7	8	9	10
Dooking, ${ }^{2 /}$ excluding wante (m)	456	684	912	1140	1368	1596	1824	2052	2280
mming etripe, 9 cacluding mate (\quad)	48	54	72	90	108	126	144	162	180
$\begin{aligned} & \text { Xerb, ozoluding } \\ & \text { waste }(m) \end{aligned}$	12	18	24	30	36	42	48	54	60
Bearing	4	4	4	4	4	4	4	4	4
Bearing bolts (seoh with 1 mat)	8	8	8.	8	8	8	8	8	8
$\operatorname{lig}_{\text {naile }}^{150-\operatorname{lng})}(6 \mathrm{in})$	14	22	30	37	44	52	60	67	74
$\begin{aligned} & 100-\operatorname{man}(4 \\ & \operatorname{nnile}(\mathrm{in}) \end{aligned}$	53	78	104	130	155	180	205	232	258
Temporary -rootion breoing (a)	20	30	40	50	60	70	80	30	100

Bo Ruratruas bridre

Component	Span (m)								
	6	9	12	15	18	29	24	27	30
Panel	8	12	16	20	24	28	32	36	40
Chord	8	16	24	32	40	48	56	64	72
Vortioal bracing	8	12	16	20	24	28	32	36	40
Bracing bolts (anch with 2 muts, 1 washor)	16	24	32	40	48	56	64	72	80
Horizontal bracing	4	6	8	10	12	14	16	18	20
Dooking, ${ }^{\text {a/ }}$ excludins waste (m)	456	584	912	1140	1368	1596	1624	2052	2280
muning stripa, oxcluding waste (m)	48	54	72	90	108	126	144	162	180
Xorb, ${ }^{(/ /}$ excluding maste (m)	12	18	24	30	36	42	48	54	60
Boaring	8	8	8	8	8	8	8	8	8
poaring bolt, (emoh with 1 nut)	16	16	16	16	16	16	16	16	16
$\begin{aligned} & 150 \text { min }(6 \mathrm{in}) \\ & \text { nmile } \end{aligned}$	14	22	30	37	44	52	50	57	74
${ }_{n i l l}^{100-m}(4 \mathrm{in})$	53	78	104	130	155	180	205	232	258
Tumporary creotion breoing (m)	24	36	48	60	72	84	96	108	129

C. Shatryar bride

B. Pintrinalrian

Tmble 8. Wet crosaing equipment

Tirfor winches or similar 1.6 t or 3 t (aee table 9)4

Double-sheaved blooks eafe working load 3 t 2

Singlemsheared block, safe working load 3 t 1
Bow shmokles, saie working load $2 t$ 8

Anchor wires (see figure 37) 2
Suspension wire with safety hook, $1=30$ m/ 1

Iear and forward haul wires with asfety hooke, $1=15$ m 2
Rear and forward harnese (see figure 39) 2
Shear legs
Temporary horizontal bracing (100×50)
See table 7
rails for the above
d 1 = hanging length between pulley (see table 9). Table 9. Launohins data

(0)	$\begin{aligned} & \text { Length (1) } \\ & \text { hanging } \\ & \text { betwoen } \\ & \text { vertiosl } \\ & \text { ehear leg. } \\ & (\mathrm{B}) \end{aligned}$	Taximun pormineible sas (h) in asble between shear lege (m)	Maximum wieght of panel when using 1.6-t winch a/ (kg)
6	12.4	4	-
9	12.4	4	
12	15.5	4	
15	19.0	4.5	240
18	22.5	5	240
21	26.0	5	240
8	28.8	5	200
81	32.3	5.5	190
30	35.1	5.5	160

d For heavior panele uee 3 -t wimohes.

3 Approxinate woight of
namp (re)

108

5
15
118
T
131
18 147
F19 165

$P 14$
186

717 208
F22, 24, 27 237
Frown 35. Composente and oreotion aqipment (wot oromeing)

Figure 37. Srate for the eatablighemt of oable anokoseng

$-\quad-$

Initial assembly

The trusses having vertioal bracing between them are erected first. Assemble two pairs of panels together with the chords under the cent ef one shear leg with peimanent vertical bracing and temporary horizontal bracing in position as shown in figure 37. Secure the chords with $6-m m$ pins or nails and nail $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ fillets between them. Note that one truss is :eversed to allow the bracing lugs to face inwards. Attach the lifting harness shown in figure 39 to the front of the leading panels.

Shaokle snatch blook to the harness and attach it to the standing cable. Shackle winch no. 1 to anchorage, lead the rope through the double sheave blook and attach it to the front harness as shown in figure 37.

Initial 1aunch

Use winch no. 2 to pull the assembly out onto the span using timber levers to ease the bottom of the panels over obstructions. It is important that the bottom chords are always in tension and initially it may be necessary to use winch 1 to ensure this.

Sugoessive launches

Attach a further pair of panels to the assembly together with the permanent vertical and temporary horizontal bracing. Use winch no. 2 to pull the assembly out onto the span as show in figure 40 . Repeat the process until all the panels in the span have been assembled.

Pinlatare

Shackle winoh no. 3 to its anchor. Use winohes 2 and 3 to bring the ends of the assembled truss over the bearings. Before lowering the truss, attach it to the end panels and secure it with nails in holes. Lower the assembled truss onto the bearings using winches 2 and 3 and slackening winch 1 at the same time. While lowering, the trusses can be moved easily sideways by using levert at each end (see figure 41).

- 77 -

Peokipe

The deoking is fixed as shown in figure 42. The temporary horizontal bracing is removed from one bay at a time and the deck, together with the permanent horizontal bracing, is fixed in position. A new bay can be started when the previous one has been completed.

Brect the decking on the first bay when all extra trusses have been fixed in bay 2. Repeat this procedue for the remaining bays, erecting the deok progressively one bay in arrears.

Phat a trusses

The method described above can be used satisfactorily for bridges with two or four trusses. For more than four trusses the additional panels are launched one at a time before the peimanent horizontal bracing and decking is fixed. The standing cable and winches 1 and 2 are used to carry the panels to their final location.

Attach the first panel with a wire sling to the snatch block on the standing cable, and use winches 2 and 3 to tiansport it to the first position (see figure 43). Place two $100 \mathrm{~mm} \times 100 \mathrm{~mm}\left(4^{\prime \prime} \times 4^{\prime \prime}\right.$) bea ers of 4 m length across the erected trusses and lower the panel into them with the bottom facing its final location (see figure 44). Slide the panel into vertical position using the winches and bearers as levers and locate it in bearing. Level the top of the panel with the erected trusses and secure temporarily with the support shown in figure 45 .

Erect the remaining panels in the first bay using the same means. Place staging across chords of erected trusses in the first and second bays. Position the panel in bay 2 using the same procedure as for bay 1 and attach the chord to first and second panels. Remove the temporary support by slightly raising the panels and use it to support the second panel. Repeat for all panels in bay 2 , and for all remaining bays.

Completion

Complete the bridge by adding kerbs, handrail and running strips (see figures 42 and 46 to 49).

serime

Fure 45. Applying temporary umport of the panel to the ervoted trues

Fineo 47. Emicail tatall

- $85-$

C. Dry-orossinc Eethod

Prection fremen

Prames of the type shown in figure 50 should be prepared. Only two are required for spans up to 15 m and three for spans longer than this. The height should be the maximum distance between the stream bed and the underside of the panel top chords plus $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$.

hevelling

Stretch a line across the span close to the final position of the outermost trass. It should be at the level of the top of the panel at the nearside end and 10 mm per metre of span higher at the far end to allow for camber in the trusses. This means that only the first bay of panels will be level with the stringline and that the remaining ones will be successively below this level.

Truas orection

As with the wet-ciossing method the pairs of trusses with vertioal bracing are oreoted first.

Plaoe one female and one male bearing on the foundation and fit two panels onto them with the other ends supported by an erection frame (see figure 51). Position both panels level with the stringline by moving the bottom of the frame in the line of the span and by adjusting the folding wedges. Attach the permanent vertioal bracing and permanent horizontal bracing ab shown in figure 39.

Repeat the process using a second erection frame on another pair of panels as show in figure 52. When $\mathbf{a l l}$ bracing has been fixed remove the first frame. Sucoessive framer, up to a maximum of five pairs, are then added in a similar manner.

When the span is longer than 15 m leave one frame in position as a teaporary support and oontinue the process using one additional frame.

Find atage in truss erection

When the last bay has been erected place the bearings at the ond of eaoh panel. If these do not touch the foundation, folding wedges have to be placed under eaoh bearing before the temporary staging is removed. These may be knopiced out when the structure is free.

$$
1_{E}^{4}
$$

-•

Ereot the remaining tirsses in the same way. Single trusses may be erected uaing the same scaffolding frames but each panel must be attached at both ends to a fully-braced pair after erection.

When all the trusses have been erected complete the structure as described for the wet-crossing method (p.78).

D. Conoretipe and earthworks

Place holding-down bolts in the pockets provided and grout with a $1: 3$ cement mortar (see figure 53). Backfill foundation to finished road level.

Soil poisoning should now be carried out where termite attack is endemic: An area of about $5 \mathrm{~m} \times 5 \mathrm{~m}$ should be exoavated to a depth of 300 mm and the soil heaped. Mix the heaped soil with 100 litres of one of the following water emalsions: aldrin 0.5\%; dieldrin 0.5\%; chlordane 1.0\%; or benzene hexachloride 0.8%. Replace the soil and compact as usual.

Complete the bridge by concreting behind the bearings to give a level running surface.

Pigure 53. Anchor bolt

Amex I

PROO TEAF FOR THA: PAELS

This teat is not intended to cive an aboolutely reliable proof of bridge etiensth but chould be used to determine or verify the oorreot strese grade of a given timber. The test is suitable up to grade F 14; above thia grade failure in the eteel dowels is to be expected.

Speoifically the test is to procf the etrength of the diaponals in tension; this is considered a good overall indioation, as timber strencth tende to be more variable in tenaion than under other loadinge.

For the test prooeed as follows:

Place a panel in the rig shown in figure 54 and support it on two standard bearinge. Renove the 250 mim through bolts from the top chord together with any nails used at this intersection for temporary fixing. The $150 \mathrm{~mm} \times 50 \mathrm{~mm}$ central strut is etrengthened by the addition of two 150 mm 50 mm members, 0.75 m lons, niled on either side with 100 mm nails at 150 mm contres. Insert a mild 25 m 75 mm steel kay of 150 mm length in the atrut to rest on the top of the lower plates (1 or 9) to give a stronger connection at this point. Place a hardwood loading pad on top of the strut and ensure that the pad is clear of all members and able to pass between them. Pinally place dial gacues calibratod to read 0.1 ma at each ond of the panel in the positions shown in figure 54.

Two teste are oonsidered necessary.

Dusim load tent

Depending on the stres gede of the panel to be tested, the following desich loads should be applied:
strear rade
$P 4$
5
7
18
M1
F4

Besiph load (1)9.7
12. 3
15.6
19.6
24.8

Figure 54. Jig for proof test of panels

Apply the load over a period not exceeding 15 minutes and then maintain it for 24 hours. Take readings of each geuge 15 mimutes after application of the load and later at one hour intervals. The load is then released and a final reading taken 15 minutes later.

The panel is regarded as satisfaotory when:
(a) The rate of inorease of deflection during the 24 hours of the tent Is the highest at the beginning and decreases towards the end of the test;
(b) The residual deflection is not more than 2 ma.

Minate load test
The panel should now be loaded to destruction over a period not exoeeding 30 minutes. The following minimum ultimate loads are regarded as satiofaotorys Minimum $u(t)$ mate load
Stress mede
19.5
24.2
30.7
39.0
49.0
62.0

$1-499$

81.05 .27

$$
0
$$

OF

09059

Amer II
 GMDIN MLES FOR TIHE

Enoh piece of timber should be truly sam and be free from deony, shakes, eplite, fraotures and ocoluded branch stubse.

The following imperfeotions are permitted for the three gradee under consideration, mbject to the indicated limite.

154 ax.de

1. Marimum knot Eise:

Dopth of section	Prot nise (ra)	
	Qnfret	On odre
250	40	12
200	30	12
150	20	12
100	15	12

The overall dimension of knots in groups mould not exceed these values.
2. The slope of the grain should not exoeed 1 in 15.
3. Seasoning ohecks should not exoeed 400 mm in length and 3 man in widh and must not extend from one ourface to another.
4. The following maximu permissible values (in man for apring, bow and twist should be obeerved:

5. Ro wane or mapwood susceptible to insect attack should be permitted.
6. Fisaures admitting a feeler gauce of 0.15 mintherses should not be longer than 15 mm in $50-\mathrm{mm}$ wide members and 30 mm in 100 -man wide memberl.

485 reade

1. Maximun knot sizes

Dopth of section
(r)

The overall dimensions of groups of knots shall not exceed these values.
2. Slope of grein should not exceed 1 in 8 .
3. Seasoning cheoks should not be longer than 600 mm .
4. Spring, bow and twist should not exceed the values given for 75% grade.
5. Wane or sapwood susceptible to insect attack should be maximally $\frac{1}{4}$ of the width of the face being considered.
6. Fissures admitting a feeler gauge of 0.15 mm thickness should not exceed 25 in 50 -nm wide members and 50 in 100 men wide members.
7. Cum pockets or overgrowths of injury should not exceed 300 mm in length or 25 man in width on the face of the timber. Where a pocket extends from one face to another the width should be less than 9 mm .

Annex III

Species	Strength group	Visual gradoa		
		48\%	60\%	75\%
Pterocarpus marsupium	54	F8	F11	F14
Soymida febrifuga	52	F14	F17	F22
$\begin{aligned} & \text { Xylia xylocarpa } \\ & \text { (gyn. X. dolabriformis) } \end{aligned}$	S1	F17	F22	F27
Pterocarpus dalbergioides	S3	F11	P14	F17
Tectona grandis	54	F8	F19	F14
Albizia lebbeck	S4	F8	F11	F14
Lagerstroamia lancoolata	S4	F3	F11	F14
Kingiodendron pinnatum	S4	F8	F11	F14
Xylocarpus granatum (ayn. Carapa granatum)	55	F7	P8	F11
Albizia odoratissima	S2	F14	P17	F22
Madhuca longifolia var. latifolia	55	F7	F8	F11
Dalbergia sisoo	S4	F8	P11	F14
Dalbergia latifolia	S4	F8	F11	P14
Cedrus deodara	S5	$F 7$	P8	F19
Ougeinia oojemeimensis	S5	F7	P8	F11
Dyeoxylum malabaricum	S4	F8	F11	F14

B. South end central Amerioan timbers

Specios	Strength group	Visual grado ${ }^{\text {a/ }}$		
		-48\%	60\%	75\%
Dicormynia guianonie	S3	F11	F14	F17
Clathrotropis gpp.	S2	F14	F 17	F22
Bagaesa guianonis	S2	F14	P17	F22
Manilkara bidentata	S1	F17	F22	F27
Oooten rubra	35	F7	P8	$F 11$
Oooten rodiaei	S1	F17	F22	F27
Qualoa rosea	S3	F11	F14	F17
Coupia glabra	S3	F11	F14	F17
Enchwoilera longipes and E. subglando ma	S1	F17	722	P27
Symphonia globulifera	33	P11	P14	F17
Hore excelsa	s2	F14	P17	722
Torminalia amazonia	S2	F14	P17	$\mathbf{7 2 2}$
Pimua caribeea	54	P8	P11	F14
Poltogye gpper	S2	F14	F17	F22
Culophyllum gpp.	S4	P8	711	F14
Hieconyme gip.	S3	F11	F 14	P17
Diplotropis purpuren	S1	$\mathbf{P 1 7}$	F22	527
Humiria npp.	S3	P11	F14	$F 17$
Tcotome crendia	94	F8	P 11	F14
Eperua app	S1	517	722	F27

C. Hest African timbers

Species	Strength group	Visual grade		
		48\%	60\%	75\%
Lophira spp.	S2	F14	F17	F22
Mammea africana	S4	F8	F19	F14
Manilkara lacera	S1	F17	F22	F27
Mansonia altissima	S4	F8	F11	F14
Microberlinea brazzavillenenis	S4	F8	F11	F14
Mimusops gpp.				
M. callophilloides M. oboyata M. djare (ayn. Baillonella toxisperma) M. congolensis syn. (syn. Autronella congolensis) M. heckeli (syn. Tieghemella heokeli) M. africana (syn. Tieghemella africana)	S3 S2 S S S S4	F11 F14 F7 F8	F14 F17 F8 F19	F17 F22 F11 F14
Morus mesozygia	S1	$F 17$	F22	P27
Hauclea spp.	S4	F8	F11	F14
Nesogordonia papaverifera	S3	911	F14	F17
Oxystigme oxyphyllum	S4	F8	F11	F14
Dacryodes edulis	S4	F8	F11	F14
Pinus gpp. Low density (below $600 \mathrm{~kg} / \mathrm{m}^{3}$) High density (above $600 \mathrm{~kg} / \mathrm{m}^{3}$)	S7 S5	F4 F7	F5 F8	F1 $F 11$
Prosopsie africana	S3	F11	F14	F17
Pterocarpus angolensis	S5	F7	F8	F11
Pterocarpus eriaceus	S3	F11	F14	F17
Pterocarpus soyauxii	S4	F8	F11	F14
Sacoglottis gabonensis	S2	F14	P17	P22
Strombosia spp.	S2	F14	F17	F22
Heritiera utilis (syn. Terrietia utilis)	S5	F7	F8	F11
Terminalia ivorensis	55	P	P8	F11

D. Timbers from the Paoific region

Species	St rength group	Visual grade ${ }^{\text {a/ }}$		
		48\%	60\%	75\%
Calophyllum kajewski	S4	F8	F11	F14
Pometia pinnata	S4	F8	F11	F14
Intsia bijuga	S2	F14	F17	F22
Intsia palembioa	S3	F11	F14	F17
Pterocarpus indicus	S4	F8	F11	F14
Eucalyptus deglupta	S7	F4	F5	F7
Homalium foptidum	S2	F14	F17	F22
Hopea papuana	S2	F14	F17	F22
Hopea forbesii	S3	F19	F14	F17
Hopea iriana	S1	$\mathrm{Fl7}$	F22	F27
Hopee glabrifolea	S1	F17	F22	F27
Teotona grandis	S4	F8	F11	F14
Eucalyptus tereticornis	S3	F19	F14	F17
thnilkara kanosiensis	S1	P17	F22	P27
Heritiera littoralis	S3	F19	F14	P17
Palaquium gornei	S3	P1	F14	P17
Terminalia spp.				
$\left.\begin{array}{l}\text { T. bresil, To kermbeohil } \\ \text { T. faveolata }\end{array}\right\}$	S7	F4	5	77
T. catappa, T. microcarpa T. canmliculata, T. complanata T. Calamansanii	S5	F	18	P11
T. solomonensia, T. esparecrea T. oapelandi	86	5	7	78
Sysygiv spp.	83	511	F14	717
Araucaria suntateindi	86	55	7	P8
Cleintocaly spp.				
(rap Aoioalyptus appe (exoept those	82	P14	197	722
Cleistocaly myrtoides	84	P8	$F 11$	P14

$\left.\begin{array}{llllll}\hline & \text { Strensth } \\ \text { Species } & \text { Croup }\end{array}\right)$

E. South-Fast Asian Timbers

Species	Strength group	Visual gradear		
		43\%	60\%	75\%
Conystylus spp:	S4	F	F11	F14
Sindora spr.				
Capaifera spp.	S4	F8	F11	F14
(sym. Peturlozindora inpr.)				

F. East African timbere

Species	Strength group	Visual gradea/		
		43\%	60\%	75\%
Capressos lusitamica	S6	F5	F7	F3
Pinus spp.	S7	F4	F5	Fl
Podocarpus spp.	55	F'	F	F11
Juniperus procera	S5	$\mathrm{F}^{\prime} 7$	Fs	F11
Brachylaena hutchinsii	54	Fs	F11	F14
Celtis soyaluxi	34	F3	F11	F14
Entandrophragma utile	55	F?	i	F11
Entandrophragma cylindricum	57	F4	F5	F7
Eucalyptus paniculata	33	F11	F14	F1?
Eucalyptus caligna	55	F7	F*	F11
Khaya anthotheca	S6	F5	F7	F:
Olea hochstetteri	S3	F11	F14	F17
Prunus africanus	S4	F8	F11	F14
Vitex keniensis	s7	F4	F5	F7

a) See annex II.

Arnex IV

PHOTOQRAPHS OF SITE WORK ON SOME BRIDGES IN KENYA BY THE PROJECT STAFF

1. Stwia\& if eawr timber
2. Treatment by dipping into preservative solution

3. Assembly of sawn components onto jig

4. Assembly detall of apex of protitramated element
5. Bolting metal gusset plate on apex of element

6. Nail lamination of pre-
fabricated element
7. Welding uf metal component for assombling two adjacert elements

8. Welding of lugs for fixine of cross bracing*
9. Completed clements prior to shipment to site

10. Erection of tower supporting the able used for laurohing
11. Disging of trench to anchor the cable used for launching

12. Anchor of cable used for launching (in position in trench)

13. Filling up of trench

14. Inserting cable used for launching block

15. Assembly of two elements showing permanent cross bracing and temporary studs for aligrment

16. Inside of bridge showing decking construction and incomplete railing

17. View of bridge with incomplete and complete railings

[^2]19. Detail of completed railing

20. Detal of trusses supporting decking

22. Completed bridse, showing construction of abutments

23. Completed bridge in use

$\square-499$

正

－
81.05 .27

[^0]: $100 \operatorname{men} \times 4.88 \mathrm{mapprox} 1.1 \mathrm{~kg}$

[^1]: 1/ For further information see "Solar kilns - their suitability for developing countries" by $R_{0} A_{0}$ Plumptre (ID/WG.151/4).

[^2]: a' Thie photorraph was taken on a different project site. In this case the tower used for

