

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

09059

DP/ID/SBR. A/201 19 October 1978 English

RESTRICTED

R) DEVELOPMENT OF TIMBER MAGINEERING INDUSTRIES.

DP/KDEM/75/027.

KENYA .

Technical report: Low-cost modular prefabricated wooden bridges

Prepared for the Government of Kenya by the United Nations Development Organization, executing agency for the United Nations Development Programme

000030

Based on the work of James E. Collins, expert in timber structures engineering

United Nations Industrial Development Organization Vienna

id.78-7335

Emplanatory notes

References to tons (t) are to metric tons.

Besides the common abbreviations and symbols, the following have been used in this report:

AASHOAmerican Association of State Highway OfficialsBSBritish StandardHNCequilibrium moisture contentkNkilonewton

Mention of firm names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

ABSTRAOT

In response to a request by the Government of Kenya to the United Nations Development Programme (UNDP) and the United Nations Industrial Development Organization (UNIDO), the services of a timber structures engineer were provided for the period 30 January 1975 to 15 October 1976 and from 3 January to 30 April 1977, and those of an associate expert in timber engineering from 6 October 1975 to 5 October 1978. The purpose of the missions was to assist and train employees of the Kenya Forestry Department in design and testing programmes for low-cost modular prefabricated wooden bridges and other timber-engineered products.

The present report is based on a manual on design, production and erection of timber bridges which was used by the team of experts during their work in Kenya. The approach to bridge building as described in the report has a number of objectives among which are the following:

(a) The utilization of the country's natural resources instead of relying on imported building materials;

(b) The provision for employment of unskilled local labour in developing areas, leading to a reduction in the outlay of foreign currency;

(c) The introduction of bridges which can be produced at low cost and with a minimum need for graduate engineers and site technicians;

(d) The provision of a simple solution in many instances where it is necessary to open up new areas of the country for development of its natural resources, these low-cost bridges being commensurate with the quality of the laterite roads for which they are built.

The low-cost modular prefabricated wooden bridges have the following technical characteristics:

(a) They are made up of triangular truss elements, 3 m long and about 1.5 m high;

(b) The maximum clear span is 30 m and the maximum designed live load is 40 tons;

(c) Elements are joined at two ends by a male and female metal plug, which is welded on to the metal gusset plates at each end. These are "iveted to the wooden frames of the elements;

(d) The timber used has cross sections of 50 mm x 150 mm, 50 mm x 200 mm and 50 mm x 250 mm respectively. These chors are nail laminated to make up 100 mm thicknesses where applicable. Nail laminations allow for visual quality control with respect to both spacing of nails and any bending in driving them in; (e) The readway is made up of planking ever the top of the composite transment;

(f) A minimum of two and a maximum of eight composite trusses made up of 3 m elements are used, depending on loading, span and characteristics and grade of the timber species used. These elements are braced;

(g) The abutments are either hollow core cement blocks, concrete or legs anchored in the embankment using embedded logs and cables;

(h) The launching of the bridge is done using a pair of tripods, pulleys and a set of cables, one of which is the catenary holding the elements and the other is the cable pulling the assembled elements over the chasm.

OCUTENTS

.

a

•

ų

•

Center			<u>Date</u>
	IN	ROSUOTION	9
I.	18 3	IGN	11
	A.	Basio dimensions and bracing elements	11
	B.	Design process	2 2
II.	PRO	CURIMENT OF NATERIALS AND ASSEMBLY	37
	٨.	Steel procurement	37
	B.	Timber procurement and treatment	37
	C.	Steel components	46
	D.	Panel assembly	58
III.			63
	۸.	Components and erection equipment	63
	В.	Wet-crossing method	63
	C.	Dry-crossing method	87
	D.	Concreting and earthworks	91

Annexes

1

I.	Proof test for timber panels	93
II.	Grading rules for timber	96
III.	Stress grades of common timber species	99
IV.	Photographs of site work on some bridges in Kenya by the project staff	108

Tables

1.	Number of trusses needed for a given span and loading	- 26
2.	Safe loads	30
3.	Live load bending moments and end reactions	32
4.	Deck design	36
5.	Quantities of steel required per panel	38
6.	Quantities of timber required per panel	39
7.	Components	65
8.	Wet-crossing equipment	69
9.	Launching data	69

Linco

he

1,	. Design with bridge deck placed across the top of the trusses	10
2,	Bridge Arrangements	11
3.		12
4.	Timber panel components	13
5.		14
6.	Fabrication of a panel	15
7.		16
8.	Chord designs	17
9.	Truss bracing for a two-truss bridge	17
10.	Truss bracing for four-, six- and eight-truss bridge	18
11.	Four-, six- and eight-truss bridge bracing	19
12.	Two-truss bridge bracing	20
13.	Truss and bracing arrangements	21
14.		22
15.		23
16.	Loadings	25
17.	Stacking procedure for air drying of timber	40
18.	Solar kiln	41
19.	Panel plate 1	47
20.	Panel plate 1A	48
21.	Panel plate 9	49
2 2.	Panel plate 9A	
23.	Ohords 2 and 2A	51
24.	Chord 6	52
25.	Chord 6A	53
26.	Panel plates 3, 4, 10 and 11	54
27.	Panel plates 8 and 13	55
28.	Panel plate 5	56
29.	Bearings	57
3 0.	Assembly jig-plan	59
31.	Assembly jig-elevations	5 7 60
32.	Jig for drilling holes through the plates	61
33.	Mailing template	62
34.	Foundation setting out	62 64

		Page
35.	Components and erection equipment (wet crossing)	70
36.	Shear legs	71
37.	System for the establishment of cable anchorage and assembly of trusses (wet crossing)	72
38.	Erection equipment for wet crossing showing shear legs and lifting harness	73
3 9.	Wet crossing erection system and lifting harness	74
40.	Launching of trusses (wet crossing)	76
41.	Launching of trusses - final stage	7 7
42.	Deck construction	79
43.	Launching of additional panels where the number of trusses exceeds four	8 0
44.	Sliding extra panel into position	81
45.	Applying temporary support of the panel to erected truss	8 2
46.	Handrail designs.	83
47.	Handrail detail	84
48.	Hand rail A - detail	85
49.	Hand rail B - detail	8 6
50.	Dry-crossing support	88
51.	Truss erection method (dry crossing) - first truss	8 9
52.	Truss erection method (dry crossing) - second truss	90
5 3•	Anchor bolts	91
54.	Jig for proof test of panels	94

.

,

é

this map do not imply

official endorsement or acceptance by the United Nations.

INTRODUCTION

In connection with the low-cost type bridge which had been devised in 1973 by James E. Collins, who was then working at the Kenya Forestry Department, government officials quickly recognized that the design could be used in many areas of the country and could also be applied in other developing countries.

٠

In 1974, because of its extreme interest in this seemingly flexible approach to bridge building, as well as the associated cost savings and substantial reduction in foreign exchange requirements in pursuing necessary expansion and upgrading of the road transport system, the Government of Kenya requested assistance from the United Nations Development Programme (UNDP) and the United Nations Industrial Development Organization (UNIDO) for the completion of the design and testing programmes, as well as for transforming the fabrication and erection of the bridges into a fully commercial venture. The services of James E. Collins were provided by UNIDO in the capacity of expert in timber structures engineering for the period from 30 January 1975 to 15 October 1976, and from 3 January to 30 April 1977, while the services of Svend K. Petersen, in the capacity of associate expert in timber engineering, were also provided over the period of 6 October 1975 to 5 October 1978. Both of these experts worked alongside their counterparts in the Department of Forestry, Ministry of Natural Resources, in the development of these bridges and other timber-engineered products.

While other departments of the Government, such as Agriculture and Ministry of Works, have been interested in making use of the prefabricated low-cost bridge, the main benefactor has been the Forestry Department, which continues to favour its use. The map shows the development of this system of bridge construction throughout Kenya: as of July 1973 a total of seven bridges had been completed, four were under construction and two were in the planning stage. Since the introduction of the system in Kenya, similar assistance has been provided to other developing countries through UNDP- or UNIDO-financed projects.

This technical report is based on a manual on design, production and erection of timber bridges which was used by the team of experts during their work in Kenya.

It describes bridges with spans up to 30 m. Designs are given for a number of load specifications including American (AASHO) and British (BS) loadings.

Any timber may be used given reasonable seasoning, strength and working properties and designs for a number of species may be obtained from the tables.

-9-

The basic element or module of construction is a timber panel of 3 mlength. A number of these are joined with light steel ohords to form a truss, the full length of which is a multiple of 3 m. Two or more trusses are used to make a bridge.

Pabrication and erection can be carried out with a minimum of skilled labour and the heaviest component can be lifted by four or six men, depending on timber species.

Chapter I, dealing with the design of the bridges, is intended for persons with an engineering background. However, the design method is simple and, with some training, persons without formal qualifications should be able to select an appropriate design.

Chapters II and III on procurement of materials, assembly and erection, are intended for trained technicians. Close supervision is important and emphasis is placed on the use of jigs and templates to achieve the required accuracy. In particular, weldings must be of good quality to ensure the working loads indicated in the design tables.

The proof test described in annex I serves to varify the stress grade for given timber. Annex II contains timber grading rules and annex III is a list of stress grades for most of the commonly utilised timber species. The photographs shown in annex IV illustrate the site work.

I, MISICH

A. Insic dimensions and bracing elements

It is assumed in the design of the bridges described in this report that each truss carries an equal share of any load. However, this is only true for single-carriageway bridges. Bridges with more widely-spaced trusses or having wider carriageways will require special consideration.

Camber is built into the bridge so that deflection will not prove a significant factor in design provided the indicated span limits are observed.

Figure 2. Bridge arrangements

- 12 -

4

2

!

Figure 5. Component sawing jig

Insic components

Modular panel

Modular panels are joined with pairs of chords to form a truss (see figure 6). They consist of 50 mm (2") sawn timber members connected with steel plates and dowels. At one end of the top chord there is a pin projecting in the direction of the span which locates in the hole of the next panel as shown in figure 7. At the bottom of the panel pins are projecting on each side at right angles to the plane of the panel to receive the chords. The pins are in two sizes depending on the timber used and the load carried. Where the light chord is used the bottom pins are 38 mm in diameter and where the heavy chord is required they have a diameter of 50 mm. The top pins are either 32 mm or 38 mm in diameter, the heavier pins being used with timbers whose stress grade is F 11 and above.

Chords

Chords have been designed in two basic sizes. The lighter size is generally used with timbers of stress grades F 8 or below and the heavier one for stronger timbers.

Trusses

The modular panels are assembled into trusses. The number of trusses needed for different loadings, species and spans is given in table 1.

Vertical bracing

There are two types of vertical bracings. In a two-truss bridge, the bracing is used to impart lateral stability to the panels and it does not act as a load sharing device.

The component consists of a simple 150 mm x 50 mm member with 6-mm $(\frac{1}{4}n)$ steel connector plates nailed to each end. These are bolted with 100 mm x 25 mm diameter (4" x 1" diameter) bolts into the bracing lugs on the panel.

In a bridge with four or more trusses the bracing is intended to give lateral stability and to share the load between the trusses thus connected.

They are bolted onto the bracing cleats with 25-mm diameter (1") bolts with a 50-mm (2") square washer under the nut on the timber face.

Deck bracing

The deck bracing consists of 150 mm x 50 (6" x 2") mm members nailed diagonally to the underside of the trusses with 100 (4") mm nails driven into spacers inserted between the chords.

Deck

The deck is made from $50 \text{ mm}(2^n)$ wide timber nailed together in a depth which depends on the wheel loading (see table 4) and spanned across the trusses as shown in figures 9 and 10. Running boards are fixed on top of these members in the direction of the span which have an essential function in distributing wheel loads over several cross members and should not be omitted or reduced in size. Figure 11. Four-, six- and eight- trues bridge breeing

- 19 -

Figure 12. Two-trues bridge breeing

ţ

Bearings

Male and female bearings are located in the ends of the basic panels (see figure 14). A 12 mm plate is used throughout, the off-cuts from the top corners serving as stiffeners. The pin size depends on the pin used in the panels and will be either 32 mm or 38 mm.

Figure 14. Bearings located in the basic panel ends

The sequence is indicated graphically in figure 15.

Selection of timber-species and stress grade

Tables of timber species from different parts of the world are given in annex III. This is not a comprehensive listing but it includes suitable timbers made known to the expert by about 50 national forest departments. Botanical names are given to avoid confusion when using trade or vernacular names.

Grading rules (see annex II) are used to classify timber from any particular species as being of grade 75%, 60% or 48%. These grades are then used in annex III to determine the stress grade for the bridge design. It is

Figure 15. Design process

٠

obvious that a standard set of grading rules has to be used where standard designs are involved. Local grading rules may be used provided that they are comparable with the standard set. It has to be ensured that the local grading rules include all the defects given for any grade in annex II, and that the maximum defect permitted is not exceeded.

If the stress grade for a timber which is not included in the list has to be determined, the stress grades applying to unidentified timber of that region should be used. It should be noted, however, that there are many timbers which by virtue of their durability, seasoning characteristics and working properties are unsuitable for bridge-building.

In doubt refer to the local forest departments.

Loading

Designs for 12 different load specifications are given in figure 16, including loadings H and HS of the American Association of State Highway Officials (AASHO) and British Standard HA loadings. Typical truck and trailer configurations are also shown in figure 16 for comparison with the standard loadings.

Highway bridges, on which there is likely to be heavy truck loading, should normally be designed for a minimum load of H2O. Bridges for rural access roads can be designed for less heavy loadings but it should be remembered that there is a tendency in all countries for loads to increase. Bridges of a limited capacity should be protected against over-loading by height barriers or maximum load signs and when traffic loads increase considerably the capacity of the bridge should be augmented by the addition of extra trusses.

Determining the design (number of trusses)

After determination of the timber stress grade and selection of the loading applicable in a given situation, the design (number of trusses) can be read directly from table 1. For loads which are not indicated in table 1, the maximum live-load bending moment and the end-reactions have to be determined first. Designs can then be read from table 3 which shows available live-load bending moments and end-reactions for different spans and timber stress grades.

The safe load tables (table 2) give the maximum capacity of singlecarriageway bridges when supporting a single-tracked vehicle with its weight evenly distributed over 4 m.

- 24 -

ł

,

Table 1. Number of trusses needed for a given span and loading

•/				3	pan (m))			
Loading	6	9	12	15	18	21	24	27	30
H 10	4	4	4	4	6	6	8	-	-
H 15	4	6	6	6	8	•	•	-	-
H 20	4	6	6	6	8	-	-	-	-
NS 15	6	6	8	8	-	•	-	-	-
NS 20	6	6	8	8	-	-	-	-	-
2/3 HA	4	4	6	8	-	-	-	-	-
XA	6	8	-	-	-	-	-	•	•
Indian B	4	4	4	6	8	-	-	-	-
Trailer 1	6	6	6	6	8	•	•• •	-	-
Trailer 2	6	8	8	8	-	-	-	-	-
Truck 1	2	4	4	4	6	6	8	8	-
Truck 2	6	6	6	8	8	-	•	-	-

A. Stress made P4

•

B. Birnes grade Po

Londing	Span (m)									
	6	9	12	15	18	21	24	27	30	
H 10	2	2	2	4	4	6	6	3	-	
H 15	4	4	4	6	6	8	-	-	-	
120	4	4	4	6	6	8	-	-	-	
NE 15	4	6	6	8	8	-	-	-	•	
18 .20	4	6	6	8	-	•	-	•	-	
2/3 NA	2	4	6	8	•	-	•	•	-	
HA.	6	6	8	-	•	•	•	•	-	
Indian D	2	2	4	6	3	•	-	•	-	
Trailer 1	4	4	6	6	8	-	•	•	•	
Trailer 2	6	6	6	6	-	-	•	-	-	
Truck 1	2	2	4	4	4	6	6	8	•	
Truck 2	4	4	6	6	8	8	-		-	

		Span (m)									
Loading	6	9	12	15	13	21	24	27	30		
N 10	2	2	2	4	4	4	6	6	3		
N 15	4	4	4	4	4	6	6	3	-		
N 20	4	4	4	4	6	3	•	-	-		
HB 15	4	4	6	6	3	3	-	-	-		
NS 20	4	4	6	6	8	-	-		-		
2/3 NA	2	2	4	6	3	-	-	•	-		
NA.	4	6	6	3	-	-	-	-	-		
Indian B	2	2	4	4	6	8	-	•	-		
Trailer 1	4	4	4	4	6	3	-	-	-		
Trailer 2	4	4	4	6	3	-	-	•	-		
Truck 1	2	2	2	2	4	4	6	6	3		
Truck 2	4	4	4	4	6	3	3	10	-		

0. Stress grade 27

٠

٠

.

D. Stress grade P8

Loading	Span (m)									
	6	9	12	15	13	21	2 4	? 7	30	
H 10	2	2	2	2	4	4	4	6	6	
H 15	2	2	. 4	4	4	6	6	8	3	
н 20,	2	4	4	4	4	6	3	•	-	
HS 1 5	4	4	4	4	6	8	3	-	-	
HS 20	4	4	4	4	6	3	-	-	-	
2/ 3 NA	2	2	4	6	6	3	-	-	-	
HA	4	4	6	8	-	-	-	-	-	
Indian B	2	2	2	4	4	6	8	-	-	
Trailer 1	4	4	4	4	6	6	8	-	-	
Trailer 2	4	4	4	4	6	3	-	•	-	
Truck 1	2	2	2	2	4	4	4	6	6	
Tauck 2	4	4	4	4	4	6	6	8	-	

.

•

Londing #	•			8	ipan (m)				
	6	9	12	15	18	21	24	27	30
H 10	2	2	2	2	4	4	6	6	8
H 15	2	2	4	4	4	6 4	6 4	8 6	6
N 20	2	2	2	4	4	6 4	8 6	- 6	8
88 15	4	4	4	4	6 4	6	8 6	-	-
NB 2 0	2	4 2	4	6	6	8 6	- 6	 8	- 8
2/3 MA	2	2	42	6 4	6 6	8 8	- 8	-	-
	2	4	4	6 4	6	8	-	-	-
Indian D	2	2	2	4	4	6	8 6	8	-
Prailer 1	2	2	4 2	4	4	6	8 6	8	-
Frailer 2	4	4	. 4	4	6	8 6	8	-	-
Presk 1	2	2	2	2	4 2	4	4	6 4	6
Truck 2	2	2	4	4	4	6	6	6 6	- 8

R. Birnes grade 711

7. Bress grade 714

landing				S p	an (a)				
	5	9	12	15	18	21	24	21	3
II 10	2	2	2	4	•4	4	4	6 4	
E 15	2	4	4	4	4	6 4	6 4	8	
1 20	2	2	4 2	4 2	4	6 4	8 4	- 6	į
18 15	4	4	4	4	6	6 4	8 6	- 6	
80	2	4 2	4	4	6	- 6	- 6	8	-
√3 m .	2	2	4	6 4	6	8	8	•	-
	2	4	4	6 4	•	ē	-	•	•
ndian 3	2	2	2	4 2	4	6	8 6	- 6	
vailer 1	2	2	4	4	6 4 .	6	8	•	
Tailer 2	2	t	4	4	6	8	•	8	10
Yuak 1	2	2	2	2	4	4	4	6 4	
ruck 2	2	. 2	4	4	4	6	8	8	

•	29	•

Londing		•		8	pan (n)				
		,	12	15	18	21	24	27	30
H 10	2	2	2	2	4	4	4	6	
N 15	2	2	4	4	4	6	6 4	8 4	
N 20	2	2	4	4	4	6	8	- 6	į
HB 15	2	2	2	4	6 4	6	8	6	
III 20	2	4	4	4	6	8	-	8	8
1/ 3 m	2	2	4	6	6	-	8	8	•
M	2	4	6	8	•	-	-	-	-
Indian 3	2	2	2	4 2	4	6 4	8	- 6	-
Pailer 1	2	2	4	4	4	6	8 6	-	
Dailor 2	z	2	4	4	6	8		-	10
Prante 1	2	2	2	2	4	4	-	6	8
hvok z	2	2	4	4	6	6	8	- 6	-

H. Mrsss grades 722, 27 and 34

Londing				Sep.	en (s)				
	7	,	12	15	18	21	24	21	34
H 10	2	2	2	2	4 2	4	6 4	6	8
N 15	2	4	4	4	4	6 4	6	8 6	·
N 20	2	8	4 2	4	4 2	6	8 4	i	8
IB 15	4	4	4	4	6	8	8 6	6	i
	2	4	4	6	6	· 8 6	•	8	ė
¥3 MA	2	8	4	6	6	6	6	8	
N.	2	4	6	8	ē		•	•	-
initan 3	8	8	2	4	6	6	8	•	
vailer 1	8	2	4	4	6	6	8 6	-	
hailer 2	2	2	4	4	6	8	•	•	
ruak 1	2	8	2	2	• 4	4	6	6	8
ruok 2	2	2	4	4	6	6	8	- 6	

y For details see figure 16.

.

Stress	Span (m)											
grade	6	9	12	15	18	21	24	27	30			
P 4	5.3	4.4	3 •9	2.7	2.2	1.6	1.2	0. 8	0,5			
P 5	6.7	5. 5	4.9	3.4	2.8	2.0	1.4	0.9	0,6			
P 7	8.1	7.0	6.3	4.5	3.7	2.8	2.1	1.5	0,8			
7 8	10.9	9.0	8.1	5.8	4.7	3.6	2.6	2.0	1.4			
P 11	13.8	11.5	8.6	6.0	4.9	3.7	2.8	2.1	1.5			
			10,4	7•4	6.1	4.7	3.7	2 •9	2.1			
P 14	17.0	13.0	8.4	5.8	4.7	3.5	2,6	1.9	1.3			
	1110	14.1	12,8	9•7	7•9	6.2	5.0	3.9	3.0			
P 17	16.8	12,8	8,2	5•5	4. 5	3.3	2.4	1.6	1.0			
		13 .9	12.6	10. 0	8.2	6.4	5.0	4.0	3.0			
7 22 27	46.2	12.6	7•9	5.1	4•3	3.0	2.1	1.3	0.4			
and 34	16.7	13.7	12.3	9.6	8.0	6.1	4.7	3•7	2.7			

A. Two-truss construction

B. Four-truss construction

Stress				Spa	n (m)				· · · · · ·
grade	6	9	12	15	18	21	24	27	30
P 4	5 •5	4.6	4.1	3.0	2.3	1.6	1.2	0.3	0.5
P 5	6.9	5•7	5.2	3.8	3.0	2.1	1.6	1.1	0.8
₽7	8.8	7.3	6.7	4.9	3•7	2.8	2.2	1.6	1.1
78	10.7	9.4	8.6	6.4	4.8	3.7	2 .9	2.2	1.6
P 11	14.1	11.9	9.1	6,6	5.0	3.8	2.9	2.2	1.6
• • • •		1107	10.9	8.1	6.2	4.8	3.8	3.0	2.3
F 14	17.4	13•5	9.0	6. 5	4.8	3.6	2.7	3.0	1.3
* 14	1104	14.6	13.4	10.4	8.0	6.3	5 .0	4.0	3.1
P 17	17.3	13.4	8.9	6.3	4.6	3.4	2.5	1.7	1.0
• • • •		14.7	13.3	10. 8	8.3	6.5	5.1	4.0	3.1
P 22 27	17.2	13.2	8.7	6,1	4.4	3.1	2.2	1.3	0,6
and 34	, 1 0 ⊄	14.4	13.1	10,6	8.1	6,2	4.8	3.7	2.7

- 30 -

Stress				Span	(m)				
grede	2	9	12	15	18	21	24	<u>5</u> 7	30
F 4	5.6	4.6	4.2	3.1	2.3	1.8	1.3	1.0	0.7
P 5	7.0	5.8	5•3	3.9	3.0	2.3	1.8	1.3	1.(
₽ 7	8 .9	7.4	6. 8	5.1	3.9	3.0	2.4	1.9	1.4
p 8	11.3	9 •5	8.7	6. 5	5.0	4.0	3.2	2.5	2.0
P 11	14.3	12,6	9.3	6. 8	5 .2	4. 1	3.2	2.6	2.0
			11.0	8.3	6.4	5.1	4.1	3•3	2.1
P 14	17.6	13.6	9.2	6.7	5.1	4.0	3.1	2.4	1.8
* 14	1100	14.8	13.6	10.6	8.3	6.6	5•4	4.4	3.0
p 17	17.5	13.6	9.1	6.6	5 .0	3.3	2.9	2.2	1.
	1103	14.8	13.5	11.1	8.6	6.9	5•5	4•5	3.0
P 2 2 27		13.4	9.0	6.4	4. 8	3.6	2.6	1.9	1.
and 34		14.6	13.4	10.9	3.4	6.7	5.3	4.2	3.

C. <u>Siz-truss construction</u>

D. <u>Bight-truss</u> construction

Stress				Span	(m)					
grade	6	9	12	15	18	21	24	27	30	
74	5.6	4.7	4.4	3.2	2.4	1.8	1.4	1.0	0.8	
₽ 5	7.0	5.9	5•4	4.0	3.1	2.4	1.9	1.5	1.1	
P 7	8.9	7•5	6.9	5.1	4.0	3.1	2•5	2.0	1.0	
7 8	11.3	9.6	8.8	6.6	5.1	4.1	3.3	2.7	2.1	
	44.3	44.3		9.4	6.9	5.4	4.3	3.4	2.7	2.2
p 11	14.3	12.1	11.1	8.4	6.6	5.3	4.3	3.5	2.9	
-		13.7	9.3	6.8	5.3	4.1	3.3	2.6	2.0	
P 14	17.6	14.9	13.7	10.7	8.4	6. 8	5 .6	4.6	3.8	
		13.6	9.2	6.6	5+1	4.0	3.1	2.4	1.8	
P 17	17.5	14.8	13.6	11.2	8.8	7•1	5.8	4•7	3.9	
F 22 27		13.5	9.1	6.6	5.0	3.8	2.9	2.2	1.	
and 34	17.4	14.7	13.5	11.1	8.6	6.9	5 .6	4.5	3.0	

.

.

1

٠

•

•

Table 3. Live load bending moments and end reactions

	er of	Span (m)										
trus		6	9	12	15	18	21	24	27	30		
	8	71	· 6 8	64	61	56	54	51	47	-		
2	Ъ	226	21 4	196	173	145	111	73	29	-		
	C	226	214	196	173	145	111	73	29	-		
		147	142	138	133	129	124	120	115	111		
4	Ъ	460	444	420	38 9	352	308	257	200	135		
	c	460	444	420	38 9	352	3 0 8	2 57	200	135		
	a	223	217	21 2	206	200	195	189	184	178		
6	ъ	694	67 3	644	606	5 60	50 5	44 2	370	29 0		
	C	694	67 3	644	60 6	5 60	505	442	370	29 0		
		2 9 9	292	285	279	272	265	2 58	25 2	24 5		
8	b	92 8	90 3	8 6 7	822	767	702	626	541	44 5		
	с	9 28	90 3	8 6 7	822	767	702	62 6	541	445		

A. Stress grade 7 4

B. Stress grade F 5

Numb	or of				S	pan (m)				
tru		6	9	12	15	18	21	24	, 27	30
	8,	89	85	81	78	74	70	66	62	58
2	b	2 83	26 8	2 4 8	222	190	153	109	60	5
	c	2 83	26 8	2 4 8	222	190	153	109	60	5
		184	179	17 4	169	164	15 9	154	149	145
4	ъ	574	555	528	4 95	453	404	347	283	211
	c	574	5 55	528	49 5	4 53	404	347	283	211
		27 8	272	266	260	25 3	247	2 4 1	235	2 29
6	ъ	8 6 5	841	8 09	7 67	716	6 55	58 6	5 06	41 8
	C	8 6 5	841	8 09	767	716	6 55	58 6	5 06	41 8
	8	373	3 66	358	3 51	343	33 6	3 29	321	314
8	ъ 1	155	1 128	1 089	1 039	979	9 06	824	730	624
	o 1	155	1 128	1 089	1 039	979	906	824	730	624

Hun b	er of				5	pan (m)				
tru	889 8	6	9	12	15	18	21	24	27	30
	a	114	110	105	101	9 6	92	88	83	79
2	b	360	344	320	291	254	211	161	105	42
	C	360	3 44	320	291	254	211	161	105	42
		234	229	223	217	212	2 06	200	19 5	189
4	b	729	70 8	679	640	59 3	538	474	401	320
	o	72 9	7 0 8	679	640	59 3	538	474	401	320
	8	355	348	3 41	334	327	320	313	3 06	299
6	b	1 099	1 07 3	1 037	99 0	9 32	8 64	78 6	69 7	5 9 8
	c	1 099	1 07 3	1 037	990	9 32	8 64	78 6	697	5 9 8
	a	475	467	4 59	4 50	4 42	434	426	418	409
8	b	1 469	1 438	1 3 9 5	1 33 9	1 271	1 191	1 09 8	99 3	875
	с	1 469	1 438	1 39 5	1 3 39	1 271	1 191	1 09 8	99 3	875

.

C. Stress grade F 7

- 33 -

D. Stress grade F 8

Numbe	r of				Sj	o an (m)				
tru	16 6 5	6	9	12	15	16	21	24	27	30
	a	146	141	136	131	126	120	115	110	105
2	b	459	440	413	3 79	337	287	230	16 5	93
	٥	4 59	440	413	37 9	337	287	23 0	16 5	9 3
	a	299	29 3	286	28 0	273	267	260	25 4	247
4	ъ	92 8	9 04	870	8 27	773	710	637	555	46 3
	o	92 8	904	870	827	773	710	637	555	46 3
	a	452	444	437	429	421	41 3	40 5	3 9 7	38 9
6	b	1 398	1 3 69	1 328	1 275	1 209	1 133	1 04 5	944	832
	c	1 398	1 3 69	1 328	1 27 5	1 2 09	1 133	1 04 5	944	832
	8,	60 6	5 96	581	578	5 69	5 59	55 0	541	532
8	ъ	1 8 6 8	1 833	1 785	1 722	1 646	1 556	1 452	1 334	1 202
	C	1 86 8	1 833	1 785	1 722	1 646	1 556	1 452	1 334	1 202

Mumber						Sp a n (m)				
t russ	9 8	6	9	12	15	18	21	24	27	30
	a	184	179	173	1 67	161	155	150	144	138
2	b	483	461	430	3 90	3 4 3	2 83	220	146	63
	0	578	5 57	5 2 6	4 8 7	43 9	382	317	242	- 159
	a	378	370	3 6 3	356	3 4 8	341	33 4	326	319
Ļ	b	97 8	950	9 12	862	802	730	647	55 4	449
	C	1 170	1 143	1 104	1 054	9 94	922	840	746	641
	a	5 71	5 6 2	553	5 44	535	527	5 1 8	5 09	5 0 0
5	Ъ	1 473	1 440	1 3 9 3	1 334	1 260	1 174	1 074	961	835
	٥	1 762	1 728	1 682	1 622	1 5 49	1 4 62	1 362	1 249	1 123
	a	764	754	74 3	7 33	722	712	702	691	681
•	b	1 969	1 930	1 8 7 5	1 805	1 719	1 618	1 501	1 368	1 220
	0	2 353	2 314	2 26 0	2 189	2 104	2 002	1 885	1 753	1 605

E. Stress grade F 11

- 34 -

F. Stress grade F 14

Number of		Span (m)																
tru	8 8 68	6	ير ورونه ال	9		12		1 5		18		21		24		27	وديون المتحدر	30
	a	227		220		21 3		206		200		193		186		180		173
2	Ъ	479		45 5		420		374		3 19		253		17 8		92		•
	C	734		7 0 8		674		6 2 8		57 3		5 0 8		4 32		3 47		251
	a	46 3		45 5		44 6		438		430		421		413		404		3 9 6
4	Ъ	9 75		94 3		899		843		77 3		6 92		5 97		4 90		371
	C	1 483	1	451	1	40 8	1	351	1	282	1	200	1	105		998		879
		700		690		680		670		660		649		63 9		629		619
6	Ъ	1 470	1	432	1	379	1	311	1	22 8	1	130	1	016		838		744
	O	2 232	2	194	2	141	2	07 3	1	99 0	1	8 9 2	1	7 79	1	6 50	1	
	٠	9 36		9 25		91 3		90 1		889		878		8 66		85 4		842
8	b	1 96 5	1	921	1	85 9	1	779	1	6 82	1	5 6 8	1	435	1	286	1	118
	٥	2 9 81	2	9 37	2	8 7 5	2	796	2	699	2	584		452	2	3 0 2		134

	er of		Span (m)																
trusses			6		9		12		15		18		21		24		27		30
			22 5		217		209		202		194		186		179		171		164
2	b		477		448		40 8		357		2 94		219		133		36		0
	٥		769		7 4 0		70 0		649		58 6		511		4 25		328		219
			461		451		44 2		43 3		423		4 14		404		39 5		385
4	b		97 2		936		886		322		7 4 4		6 51		544		4 23		283
	0	1	555	1	5 20	1	470	1	406	1	328	1	235	1	128	1	007		372
			697		6 86		67 5		6 63		6 52		641		629		61 8		607
6	b	1	466	1	4 23	1	364	1	287	1	194	1	0 83		9 55		811		649
	C	2	342	2	2 9 9	2	2 4 0	2	16 3	2	070	1	959	1	831	1	6 87	1	5 2 5
			934		920		907		8 94		8 31		8 6 8		85 4		841		828
8	b	1	960	1	911	1	842	1	7 53	1	644	1	5 1 5	1	366	1	19 8	1	010
	c	3	128	3	079	3	010	2	920	2	312	2	6 83	2	53 4	2	366	2	178

G. Stress grade F 17

H. Stress grades F 22, 27 and 34

Manber of			Span (m)																
tru	14 65		6		9		12		15		18		21		24		27		30
	æ		222		213		20 5		196		187		1 78		169		160		151
2	Ъ		4 73		440		3 94		334		261		174		74		0		0
	0		7 6 5		732		6 86		626		553		466		367		254		12 8
			458		447		436		4 25		414		4 03		3 9 3		382		371
4	р		967		926		8 69		79 5		7 0 5		5 9 8		47 5		33 6		180
	0	1	55 1	1	5 10	1	4 53	1	3 79	1	28 9	1	182	1	059		920		764
	۹.		694		681		66 8		6 55		64 2		62 9		616		603		5 90
6	b	1	461	1	412	1	344	1	2 56	1	1 4 9	1	022		ರ 76		710		52 5
	C	2	337	2	288	2	2 0 0	2	132	2	0 25	1	89 8	1	7 52	1	58 6	1	401
			9 30		915		900		885		8 70		855		83 9		82 4		8 09
8	b	1	95 5	1	89 8	1	819	1	717	1	5 93	1	446	1	277	1	0 85		870
	0	3	123	3	066	2	987	2	885	2	761	2	614	2	445	2	25 3	2	038

Mag: a. Available shear (kN)

.

.

b. Available bending moment light chord (kW m)

c. Available bending moment heavy shord (kH m)

Design of the deck

Table 4 indicates recommended sizes for deck members for different wheel loads and timbers of various stress grades. If timbers are used that are likely to wear quickly, a harder or denser species should be used for the running boards. This will probably be the case with most timbers of stress grade F11 and below. An alternative is to fix a chequer plate on top of the boards which acts as a wearing surface.

1

Table 4. Deck design (depth of deck required in mm)

Wheel	Stress grade												
load (t)	F 4	35	71	51	p 11	P14	P 17	P 22	F 27	P 34			
	100	100	75	75	75	75	75	75	75	75			
1			100	100	100	75	75	75	75	75			
2	125	125		125	100	100	100	75	75	75			
3	150	150	125	125	125	100	100	100	75	75			
4	-	•	150		125	125	100	100	100	75			
5		-	-	150		-	125	100	100	100			
6	-	-	-	-	150	125	12)						

A. Two-truss bridges

ithee 1		Stress grade													
1004	M	15	7	96	p 11	P14	117	722	121	934					
<u></u>		75	75	75	75	75	75	75	75	75					
1	75	75 75	75	75	75	75	75	75	75	75					
2	100	75			75	75	75	75	75	75					
3	· 100	100	100	75				75	75	75					
4	125	100	100	100	75	75	75		75	75					
5	150	125	100	100	100	75	75	75							
6	150	125	125	100	100	100	75	75	75	75					

B. Four-, sim- and eight-trues bridges

II. PROCUREMENT OF MATERIALS AND ASSEEDLY

A. Steel procurement

It is assumed that steel with a maximum tensile strength of $435-494 \text{ N/mm}^2$ (28-32 t/in²) and a minimum yield stress of 236 N/mm² (15.25 t/in²) is used. Mild steel from the majority of producers will comply to this standard; sub-standard steel should not be used. In case of doubt government or private materials testing laboratories should be consulted regarding the quality of the steel in question. In some places difficulties have been experienced in obtaining supplies of bars of a larger diameter. If they are not available from stuructural steel merchants, mechanical engineering suppliers may have shaft steel of the required size on stock. Shaft steel is usually made of an alloy different from steel and has to be welded with special rods, depending on its composition.

The quantities of steel required per panel are given in table 5.

B. Timber procurement and treatment

Procurement

Timber of the species and stress grade foreseen, in the design should be ordered and the timber should be allowed to dry. The actual time required for drying will depend on the species, the method of drying, and the climate.

It is an advantage to order timber in such lengths that pieces can be cut with a minimum of wastage. Even if a premium is charged on orders for specific lengths, this will normally still be cheaper than having a high rate of wastage when cutting from random lengths.

A check should be made on dimension and green timber must be sawn oversize to allow for shrinkage during drying. The actual amount of oversize will again depend on the species.

Outting to size

The dimensions of the panel components are given in figure 4. The jigs shown on figure 5 can be used for outting to size. Timber can be sawn green; this will be necessary if the diffusion method of treatment is used.

-37 -

Figure Plate number				Weight (kg)			Length of round bar (m)				•					
3400 D-02		6 mm	9 mm	12 mm	15 mm	6 mm	9 mm	12 mm	15 mm	32 mm	ø	3 8 i	nm ý	0 50		ø
19	1		0.086				6.05				0	0 55				
20	14		0.094				6.64					055				
23	2 chord	0.325				15.27	- •				•	رر پ				
23	2A chord	0.268	0.054			12.59		5 .07								
26	3		0.017	0.017				1.64								
26	4		0.017	0.017				1.64		0.055						
28	5	0.056	0.012			2.64	0.84	•••								
24	6 chord	0 •4 85	0 .0 15			21.85	1.05									
25	6A chord	0 .4 02			0.077	18.88			9.2 8							
27	8	0.022				0.32			-							
21	9		0.086				6.05						0	• 06		
22	9 A		0 •094				6.64							•06		
26	10		0.017				1.64							•••		
26	11		0 .01 7				1.64									
27	13		0 .01 2				0.84									
29	Bearing (male)			0.091				8 •5 5		0 .05 5	(0.0) 55)	/			
29	Bearing (female)			0.091				8.55				- 1) [

Table 5. Quantities of steel required per panel

(Weights and surface areas of steel plates include drill holes and bevel offcuts)

A Heavy duty.

Dowels per panel

68 pos 58 mm long; 48 pos 100 mm long; Length of 12 mm β round bar: approx. 8.2 m

Mails or panel

100 mm x 4.88 mm \$ approx. 1.1 kg

Bolts per panel

12 mm ø 2 pos 150 mm long 25 mm ø 1 pos 150 mm long 25 mm \$ 2 pos 250 mm long, with 2.75-mm washers

> • •

> > .

The 27-mm diameter holes can be drilled at this stage, although it is permissible to do this after the assembly, provided that the holes are individually treated with preservative.

A tolerance of 2 mm can be regarded as acceptable for pre-sawn timber components. Oversize components will not fit the assembly jig. Quantities of timber required per panel are given in table 6.

lember a/	Size (mm.)	Length ordered (m)	Number per panel	Volume (m ³)
1 T	250 x 50	3•3	2	0.0825
2 T	2 00 x 50	2.4	4	0.0960
3 T	150 x 50	1.7	. 2	0.0255
4 T	100 x 50	1.3	2	0.0130
Total				0,2170 ^b /

Table 6. Quantities of timber required per panel

b/ Net volume in assembled panel = 0.191 m^3 .

Drying

It is outside the scope of this report to describe fully all methods of timber seasoning. The design calls for timber dried to within 5% of the equilibrium moisture content (ENC). ENC is the value which would be attained in service and which depends on the humidity of the air and the tropical region. The following may be used as a rough guide:

ENC (%)

Hot dry region (desert, savannah or sorub land)	10-12
Tropical highland (above 1,500 m)	12-14
Tropical coast and rain forest	14-18

The moisture content is most conveniently measured by using a moisture meter. Ensure that the probes are long enough to reach the centre of the timber. Steep moisture gradients are found in some timbers and measurement at the surface may give a false impression of the moisture content of the whole piece. Nost moisture meters are calibrated for species from the temperate sone; therefore officers of the National Forest Departments should be asked for calibration data required for local timbers.

Air drying

For air drying, which is the most common method, timber should be stacked under cover on a well-drained surface, clear of the ground, as shown in figure 17.

Where a concrete base is not practicable the soil under the stack should be poisoned with an appropriate insecticide solution having long activity to prevent possible termite attack.

Figure 17. Stacking procedure for air-drying of timber

The thickness of the stickers will usually be about 18 mm. For timbers known to be difficult to season 12 mm-stickers should be used. The stickers should be placed directly under one another.

The time required for seasoning will depend on the species and the climate. Some softwoods in tropical climates require only 6 weeks while some of the denser hardwoods need at least 25 weeks.

1

The ends of members tend to dry more quickly than the other part and should be covered with polythene or painted with bitumen to prevent splitting. This is particularly important for dense hardwoods.

Solar kilns

Figure 18 shows a solar kiln based on a design developed for the Uganda Forest Department.¹ In this type of kiln air is heated in the roof cavity and then circulated around the timber stack by one or more fans. With this method the time required to dry hardwoods could be reduced by up to 50% and it would clearly be attractive where plain air drying presents difficulties.

Figure 13. Solar kiln

A. View from the rear with fans above the absorber

^{1/} For further information see "Solar kilns - their suitability for developing countries" by R.A. Plumptre (ID/WG.151/4).

B. Front view showing absorbers and method of powering fans

The amount of vent used, the stacking arrangements and the volume of air flow will depend on the species being dried and some experimenting will be needed to determine these. Experience with the original kilns indicated that the air flow should be reduced in the early stages of drying, when high moisture gradients are to be avoided, but can be greatly increased later.

Conventional kiln drying

This method will only prove economical when production of the bridges is linked to the manufacture of other products requiring dried timber.

Low-cost hot air kilns using oil drums or similar means should be employed with caution as severe degrade has been experienced with this type of driers.

Treatment

The heartwood of most of the hardwoods listed in annex III can be regarded as durable. Where sapwood, softwoods or non-durable hardwoods are used some method of chemical treatment will be necessary. Of the two methods described hereunder - diffusion and pressure treatment - the former has the advantage of requiring little capital expenditure but is not suitable in cases where timber is continually wet.

The diffusion process

A concentrated solution of suitable chemicals is applied to the outer surface of green timber; the solution diffuses into the interior of the material by molecules moving down a concentration gradient. The chemical usually applied in this process is known as BFCA and is a borofluoride-chrome-arsenic-compound which is highly termiticidal. Fungal growth is prevented by adding 1% sodium pentachlorophenate. The chemical is soluble in cold water, and a solution of 30% by weight in water is recommended.

The minimum moisture content required in the timber is 50% which means that the treatment should be carried out within a week or two after felling. By this method the precut pieces are simply dipped in the solution (alternatively a spray race may be used), then stacked closely and wrapped in plastic sheeting. The timber is left for four to eight weeks depending on the species and then stacked to season in the usual way.

The depth of penetration may be tested by using the following test reagents:

(a) <u>Solution A</u>: Add 10 g of turmeric powder to 100 ml of 95% methanol/ alcohol and boil the mixture for one hour under a reflux condensor. Cool and filter the solution. This solution should be prepared freshly every two months;
(b) <u>Solution B</u>: Add 20 ml concentrated hydrochloric acid to 30 ml of 95% ethanol/methanol and saturate the solution with salicylic acid. Allow solution to stand and filter off excess solids. This solution will not spoil.

Control pieces of 1 m length are treated with the standard components. After treatment thin biscuits (10 mm thick) are cut, at least 200 mm away from the end of the piece. The slices are dried if not already seasoned. Then solution A is sprayed uniformly across the entire surface of a piece. After five minutes solution B is evenly sprayed on, taking care to saturate the wood. The samples should then be allowed to stand for 10 minutes.

A red colour indicates 0.3% boric acid equivalent. In general a 9-mm depth of
penetration of 0.3% treatment can be regarded as satisfactory. If the depth is
less than 9 mm, a larger diffusion time is required.

It is important to remember that the salts are poisonous and dangerous both in dry form and as a solution. All persons handling the material should wear protective clothing and wash their face and hands before breaks and at the end of the day.

Pressure treatment

Two processes are in general used, one called the "full-cell" process and the other the "empty-cell" process. In the full-cell process water-borne preservatives are applied while for the empty-cell process - except in cases of very severe exposure - cil-borne preservatives are used. The standard preservatives are:

Preservative oils and oil-borne preservatives

Creosote Creosote-coal-tar solutions Creosote-petroleum solutions Pentachlorophenol Copper naphthanate

Mater-borne preservatives

Chromated zinc ohloride (CZC) Copperized chromated zinc ohloride (CCZC) Tanalith (Wolman salts) Acid copper chromate (Celcure) Chromate copper arsenate (ASCU, Greensalt, Indalith) (CCA) Zinc meta arsenite (ZMA) Ammonical copper arsenite (Chemonite) Chromated zinc arsenite (Boliden salt)

The choice of the preservative to be used depends on ite availability and ite cost. All preservatives are reported to be effective against termite attack; for use in tropical climates it is recommended to add to the pentachlorophenol at least 1% of a permistent chlorinated hydrocarbon insecticide such as Lindane or Aldrin.

(a) The full-cell process: Use timber which has been seasoned to near its final moisture content.

- 1. Seal the timber in the treatment cylinder and apply a vacuum to remove the air from the cylinder and, as much as possible, from the wood.
- 2. Heat the preservative to elightly above treatment temperature and feed it into the cylinder without admitting air. Treatment temperatures for cil-borne and most water-borne solutions should be between 88°C and 93°F and 200°F); those for chromium salts should be about 70°C (160°F) to avoid precipitation of the preservative.

- 3. When the cylinder is filled, apply pressure until the required retention of oil has been achieved. (Recommended retentions are given below.) The pressure and the time of treatment required to achieve these retentions depends on the species and the pressure used, ranging from 7 to 14 kg/cm² (100 to 200 lb/in²). Many softwoods are sensitive to high temperatures and pressures and damage may occur at pressures above 10 kg/om² (140 lb/in²).
- 4. Withdraw the preservative from the cylinder.

.

.

.

.

5. Apply a short final vacuum to remove excess preservative.

6. Leave the timber to dry until it reaches service moisture content.

(b) The empty-cell process: Two empty-cell processes are in common use, the Rusping and the Lowry process. The following is the general procedure for the Rusping process:

- 1. Seal the timber into the treatment cylinder and introduce air under pressure. The pressure used and the time of application varies according to the species. Usually pressures of 2 to 14 kg/cm² (35 to 200 lb/in²) are applied for about 10 minutes or less.
- 2. Pump the preservative into the cylinder and allow the air to escape while maintaining the initial pressure. This is achieved by using an equalizing tank.
- 3. When the cylinder is full of preservative increase the pressure and maintain it for a sufficiently long time to give the required retention. Pressures will vary between 10 and 14 kg/cm² (140 and 200 lb/in^2) with softwoods being treated at the lower pressures.
- 4. Apply a final vacuum to remove surplus preservative from the cylinder.

The Lowry process is similar to the Rueping process, the only difference being that no initial air pressure is used and that the air expelled from the cylinder by the introduction of preservative is at atmospherio pressure.

Recommended retentions for bridges

	Bet ret	ention
	ke/n ³	<u>16/ft</u> ³
Orecsot e	96	6
Greesote-coal-tar solutions	96	6
Greesote-petroleum solutions	112	7
Pentachlorophenol	96	6
Copper nephthemate	96	6

	- 46 - N e	t retention
	<u>kg/m³</u>	1b/ft ³
Celcure	8	0.5
Chemonite	5	0.3
Chromated zinc chloride	12	0.75
Tanalith	6	0. 35
Boliden salt	8	0.50
Chromated copper arsenate	8	0.50

Facilities for checking the net retention usually exist in most government materials laboratories.

C. Steel components

Outting and drilling

Dimensions of steel components are shown in figures 19-29. All components except the chords may be flame cut provided the tolerances of ± 1 mm for chords and ± 1 mm for all other steel components are not exceeded. Drill holes should be set out by centre-punching through templates made from 24-gauge steel sheets.

In some countries the standard length of the 100 mm x 6 mm strip from which the steel chords are made is 6 m. This means that there is considerable wastage if the standard chord Mk 2, which is 3.1 m long, is cut from a standard strip. In such cases it is preferable to use the alternative chords 2A and 6A shown in figures 23 and 25.

Welding

When testing steel components, most failures have been found in welds. It is important, therefore, to follow the drawings in regard to weld size rigourously, particularly when a pin is inserted through a hole in a plate and welded on the reverse side, such as in panel plates 1 and 9.

Under no circumstances should components be made up by welding together shorter or smaller pieces of steel except where specifically indicated on the drawings.

Where steels of different composition are to be welded together the remarks made under section A "steel procurement" of chapter II apply.

Figure 19. Panel plate 1

.

Figure 20. Panel plate 1A

Parts 22. New york 2

Pigure 24. Chord 6

- 52 -

.

*

•

MACING CLEAT TO

1

ļ

Figure 28. Panel plate 5

- 57 -

D. Panel assembly

The assembly jig is shown in figures 30 and 31. The truss is assembled in two halves, each consisting of one piece mark 1T, two pieces mark 2T, one piece mark 3T and two pieces mark 4T.

Preservative treatment by one of the methods previously described should should have been carried out after cutting.

The two 200 mm x 50 mm (8" x 2") diagonals mark 2T are placed in the jig with their upper edges against the diagonal guides and the strut mark 3T is positioned between them and centred. The 250 mm x 50 mm (10" x 2") chord mark 1T is placed across the diagonals and centred on the marks shown on the end guides. These members are then fixed in position with a 100 mm (4") nail at each intersection.

Plates 5 and 1 or 1A (9 or 9A for heavy construction) are placed in position. One half of the panel is assembled using plate 1 (or 9), the other half using plate 1A (or 9A) so that the completed panel will have a bracing cleat on one side only. Use the loose template, as shown in figure 30, to position plates 1 or 9.

A hole of a diameter equal to that of the pin plus 6 mm and having a depth of 6 mm is then drilled or cut in the members mark 2T to allow plate 1 or 9 to lie flat. All plates are centered using the marks on the jig and fixed in position with 50-mm (2") nails in the 3-mm (1/8") holes provided. Drill 12-mm holes through the plates into the timber using a stop on the drill as shown in figure 32 to give a hole of 50 mm (2") depth where the hole is over a single member and of 100 mm depth where the 200 mm x 50 mm diagonal crosses the 250 mm x 50 mm chord. Insert in all holes dowels of a length equal to the depth of the hole by tapping with a light (1 kg) hammer.

Assemble the second half of the panel in the same way. Now lift the half panel with plate 1 (or 9) and place it in the jig, face down, i.e. with the connector plates against the jig bed. Place the other half with 1A (or 9A), face up, on top of its and centre all plates again on the centre marks. Drill the two diagonals with 4-mm (5/32") holes using the template shown in figure 33 and nail with 100-mm (4") nails. It has been assumed that 100 mm nails will be 4.88 mm (SWG 6) thick.

÷

1

Figure 32. Jig for drilling holes through the plates

Insert two fillets mark 4T between the chords mark 1T and drill and nail with 100 mm (4") nails at 150 mm (6") centres. Then drill and fix with two 12 mm # bolts using 50 mm square washers, 3 mm thick on each side.

Lift the panel out, turn it over and nail fillets mark 4T from the other side ensuring that nails are staggered by 75 mm (3"). Stack vertically ready for welding.

The dowels are tack-welded first. Insure that the welds do not project from the face of the plate by more than 2 mm (1/16"). Now weld plate 3 (or 11) at one end and plate 4 (or 12) at the other, each in the centre of the vertical faces of plates 5 and 5A. Insure that a full-length 6-mm (1/4") weld is made on all vertical edges.

•

Complete the panel by fitting two 275-mm (11") bolts in the chord with washers on the unprotected timber faces and one 175-mm (7") bolt in the bottom of the strut. One bracing cleat 13 is fitted at this stage. Do not attempt to force the bolts through the holes; they should be inserted by tapping with a light hammer.

III. ERECTION

Concrete or hollow-block foundations are not described in this report; it is assumed that these will have been prepared beforehand. The distances required between the faces of the abutments are indicated in figure 34 together with details assumed at the bearings. $\frac{2}{}$

A. Components and erection equipment

Table 7 lists all components required for constructing a bridge according to the instructions given in this report.

Erection equipment for wet crossing

Table 3 lists the equipment required for a crossing where intermediate supports cannot be used. The winches are of the "Tirfor" type and while these are not essential they have been found to be very satisfactory in use. In all cases the maximum load per cable - when the dimensions in table 9 are applied - is 1.6 t (except where noted).

Prection equipment for dry crossing

The dry-crossing method does not require the purchase of special equipment such as winches etc. and is preferable if continuous intermediate support is available under the span.

B. Wet-crossing method

Preparation

Erect shear legs on either bank (see figure 35). These are made from 130 mm (6") diameter timber poles or 100 mm (4") steel tubes (see figure 36).

Establish anchors on the line of the shear legs for cable anchorage. This is made by burying a log with a steel rope attached in a trench as shown in figures 37 and 39. Ensure that the rope is led through the side of the trench by cutting a groove as shown in the drawing. Alternatively a tree growing in a suitable location may be used.

2/ Under the new project "Development of new timber products" (DP/KHN/77/007) timber abutments will be tested and their design and production will be the subject of a separate technical report supplementing the present one.

Figure 34. Poundation setting out

A standing cable is inserted between the shear legs as shown in figure 35 and attached to winch No. 1 which is in turn shackled to an anchor on the far side. Adjust the slack in the wire to give the required length hanging between pulleys (see table 9).

1

				Span	(=)				
Jon pon ent	6	9	12	15	18	21	24	27	30
Panel	4	6	8	10	12	14	16	18	20
Chord.	4	8	12	16	20	24	28	32	3 6
Vertical bracing	4	6	8	10	12	14	16	18	20
racing bolts (each with 2 nuts 1 washer)	8	12	16	20	24	28	32	3 6	40
Horisontal bracing	2	3	4	5	6	7	8	9	10
Decking, ^a / excluding waste (m)	456	684	912	1 140	1 3 6 8	1 5 96	1 824	2 052	2 280
Amning strips, ²⁴ excluding waste (a)	4 8	54	72	90	108	126	144	162	180
Kerb, de excluding waste (m)	12	18	24	30	3 6	42	4 8	54	60
Bearings	4	4	4	4	4	4	4	4	
Bearing bolts (each with 1 mut)) 8	8	8.	8	8	8	8	8	8
150-mm (6 in) nails (kg)	14	22	30	37	44	52	60	67	74
100-mm (4 in) nails (kg)	5 3	78	104	130	155	180	205	232	258
Temporary erection bracing (m)	20	30	40	50	60	70	80	30	100

Table 7. Components

.

A. Two-truss bridge

Component	_				Span	(m)			
www.posters.c	6	9	12	15	18	. 21	24	27	30
Panel	8	12	16	20	24	2 8	32	36	40
Chord	8	16	24	32	40	48	5 6	64	72
Vertical bracing	8	12	16	20	24	28	3 2	36	40
Bracing bolts (each with 2					·		52	50	40
nuts, 1 washer) 16	24	32	40	48	5 6	64	72	8 0
Horizontal bracing	4	6	8	10					
Decking, a/	4 456	58 4		10	12	14	16	18	20
excluding waste (m)	-	504	912	1 140	1 3 6 8	1 596	1 62 4	2 052	2 280
Running strips	, s/								
excluding Maste (m)	48	54	72	90	108	126	144	162	18 0
(erb, ² / excluding maste (m)	12	18	24	30	36	42	48	54	60
Bearings	8	8	8	8	8	8	8	8	8
Bearing bolts each with 1 mut)	16	16	16	16	16	16	16	16	16
50 mm (6 in) mails (kg)	14	22	30	37	44	52	5 0	57	74
00-mm (4 in) mils (kg)	53	78	104	130	155	180	205		
Amporary prection		10		VCI	55	100	20 5	232	258
precing (m)	24	36	48	60	72	84	96	10 8	129

.

B. Pour-truss bridge

	Span in metres												
bmponent	6	9	12	15	18	21	24	21					
Panel	12	18	24	30	36	42	48	54	60				
hord	12	24	36	4 8	60	72	84	96	108				
Vertical bracing	8	12	16	20	24	28	32	36	40				
Bracing bolts (each with 2 nuts, 1 washer)	16	24	32	40	48	56	64	72	80				
Horizontal bracing	4	6	8 ·	10	12	14	16	18	20				
Decking, excluding waste (m)	45 6	684	912	1 140	1 388	1 5 96	1 824	2 052	2 280				
Running strips <u>a</u> excluding waste (m) Kerb ^a	4 8	54	72	90	108	126	144	162	180				
excluding	12	18	24	30	3 6	42	4 8	54	6				
waste (m) Bearings	12	12	12	12	12	12	12	12	1;				
Bearing bolts (each with 1 nut)	24	24	24	24	24	24	24	24	2				
150 mm (6 in) nails (kg)	14	22	30	37	44	52	60	67	7				
100 mm (4 in) mails (kg)	53	78	104	130	155	180	2 06	232	25				
Temporary erection bracing (m)	24	36	48	60	72	84	96	1 0 8	12				

C. Siz-truss bridge

	Span (m)											
Component	6	2	12	15	18	21	24	27	30			
Panel	16	24	32	40	48	5 6	64	72	80			
Chord	16	32	48	64	80	96	112	128	144			
Vertical bracing	8	12	16	20	24	28	32	36	40			
Bracing bolts (each with 2 nuts, 1 washer)	16	24	32	40	48	56	64	72	80			
Horisontal bracing	4	6	8	10	12	14	16	18	20			
Decking, ²⁴ excluding waste (m)	456	684	912	1 140	1 36 8	1 596	1 824	2 052	2 280			
Running strips	4 8	54	72	90	108	126	144	162	180			
Kerb ^a excluding waste (m)	12	18	24	30	36	42	48	54	60			
Bearings	16	16	16	16	16	16	16	16	16			
Bearing bolts (sich with 1	32	32	32	32	32	32	32	32	32			
150-mm (6 in) nails (kg)	14	22	30	37	44	52	60	67	74			
100-an (4 in) nails (kg)	53	78	104	130	155	180	205	232	258			
Temporary erection bracing (m)	24	36	48	60	72	84	96	106	120			

3. Bight-trues bridge

.

Por sizes see table 4 and figure 42.

- 67 -

Table 8. Wet crossing equipment

Item	Mumber required
Tirfor winches or similar 1.6 t or 3 t (see table 9)	4
Double-sheaved blooks safe working load 3 t	2
Single-sheared block, safe working load 3 t	1
Bow shackles, safe working load 2 t	8
Anchor wires (see figure 37)	2
Suspension wire with safety hook, $1 = 30$, 1
Rear and forward haul wires with safety hooks, $1 = 15$	2
Rear and forward harness (see figure 39)	2
Shear legs	2
Temporary horizontal bracing (100 x 50)	See table 7
Mails for the above	

1 = hanging length between pulleys (see table 9).

Table 9. Launohing data

0.	Length (1) hanging between vertical shear legs (m)	Maximum permissible sag (h) in cable between shear legs (m)	Maximum wieght of panel when using 1.6-t winch <u>a</u> / (kg)
6	12.4	4	-
9	12.4	4	-
12	15.5	4	-
15	19.0	4.5	240
	22.5	5	240
18	26.0	5	240
21	28. 8	5	200
84	32.3	5•5	190
27 30	35.1	5+5	160

Por heavier panels use 3-t winches.

Marsha athle	Approximate weight of	
P4	108	
F 5	118	
M	131	
178	147	
p 11	165	
P14	186	
2 17	208	
F 22, 24, 27	237	

- 71 -

, **é**

Figure 37. System for the establishment of oable anchorege and assembly of trunces (net crossing)

- 73 -

- 74 -

Initial assembly

The trusses having vertical bracing between them are erected first. Assemble two pairs of panels together with the chords under the centre of one shear leg with permanent vertical bracing and temporary horizontal bracing in position as shown in figure 37. Secure the chords with 6-mm pins or nails and nail 100 mm x 100 mm fillets between them. Note that one truss is reversed to allow the bracing lugs to face inwards. Attach the lifting harness shown in figure 39 to the front of the leading panels.

Shackle snatch block to the harness and attach it to the standing cable. Shackle winch no. 1 to anchorage, lead the rope through the double sheave block and attach it to the front harness as shown in figure 37.

Initial launch

Use winch no. 2 to pull the assembly out onto the span using timber levers to ease the bottom of the panels over obstructions. It is important that the bottom chords are always in tension and initially it may be necessary to use winch 1 to ensure this.

Successive launches

Attach a further pair of panels to the assembly together with the permanent vertical and temporary horizontal bracing. Use winch no. 2 to pull the assembly out onto the span as shown in figure 40. Repeat the process until all the panels in the span have been assembled.

Final stage

.

Shackle winch no. 3 to its anchor. Use winches 2 and 3 to bring the ends of the assembled truss over the bearings. Before lowering the truss, attach it to the end panels and secure it with nails in holes. Lower the assembled truss onto the bearings using winches 2 and 3 and slackening winch 1 at the same time. While lowering, the trusses can be moved easily sideways by using levers at each end (see figure 41).

- 77 -

Decking

The decking is fixed as shown in figure 42. The temporary horizontal bracing is removed from one bay at a time and the deck, together with the permanent horizontal bracing, is fixed in position. A new bay can be started when the previous one has been completed.

Erect the decking on the first bay when all extra trusses have been fixed in bay 2. Repeat this procedure for the remaining bays, erecting the deck progressively one bay in arrears.

•

Extra trusses

The method described above can be used satisfactorily for bridges with two or four trusses. For more than four trusses the additional panels are launched one at a time before the permanent horizontal bracing and decking is fixed. The standing cable and winches 1 and 2 are used to carry the panels to their final location.

Attach the first panel with a wire sling to the snatch block on the standing cable, and use winches 2 and 3 to transport it to the first position (see figure 43). Place two 100 mm x 100 mm (4" x 4") beavers of 4 m length across the erected trusses and lower the panel into them with the bottom facing its final location (see figure 44). Slide the panel into vertical position using the winches and bearers as levers and locate it in bearing. Level the top of the panel with the erected trusses and secure temporarily with the support shown in figure 45.

Erect the remaining panels in the first bay using the same means. Place staging across chords of erected trusses in the first and second bays. Position the panel in bay 2 using the same procedure as for bay 1 and attach the chord to first and second panels. Remove the temporary support by slightly raising the panels and use it to support the second panel. Repeat for all panels in bay 2, and for all remaining bays.

Completion

Complete the bridge by adding kerbs, handrail and running strips (see figures 42 and 46 to 49).

- 78 -

.

- 79 -

1

SETION

- 81 -

۲

.*

- 83 -

Pigure 47. Bundrad] detail

l

Figure 49. Handrail B - detail

1

C. Dry-crossing method

Erection frames

Frames of the type shown in figure 50 should be prepared. Only two are required for spans up to 15 m and three for spans longer than this. The height should be the maximum distance between the stream bed and the underside of the panel top chords plus 300 mm (12").

Levelling

Stretch a line across the span close to the final position of the outermost truss. It should be at the level of the top of the panel at the nearside end and 10 mm per metre of span higher at the far end to allow for camber in the trusses. This means that only the first bay of panels will be level with the stringline and that the remaining ones will be successively below this level.

Truss erection

As with the wet-crossing method the pairs of trusses with vertical bracing are erected first.

Place one female and one male bearing on the foundation and fit two panels onto them with the other ends supported by an erection frame (see figure 51). Position both panels level with the stringline by moving the bottom of the frame in the line of the span and by adjusting the folding wedges. Attach the permanent vertical bracing and permanent horizontal bracing as shown in figure 39.

Repeat the process using a second erection frame on another pair of panels as shown in figure 52. When all bracing has been fixed remove the first frame. Successive frames, up to a maximum of five pairs, are then added in a similar manner.

When the span is longer than 15 m leave one frame in position as a temporary support and continue the process using one additional frame.

Final stage in truss erection

When the last bay has been erected place the bearings at the end of each panel. If these do not touch the foundation, folding wedges have to be placed under each bearing before the temporary staging is removed. These may be knocked out when the structure is free.

Name 52. Shun avetian method (dry creasing) - second trues

Breat the remaining trusses in the same way. Single trusses may be erected using the same scaffolding frames but each panel must be attached at both ends to a fully-braced pair after erection.

When all the trusses have been erected complete the structure as described for the wet-crossing method (p. 78).

D. Concreting and earthworks

Place holding-down bolts in the pockets provided and grout with a 183 cement mortar (see figure 53). Backfill foundation to finished road level.

Soil poisoning should now be carried out where termite attack is endemic: An area of about 5 m x 5 m should be excavated to a depth of 300 mm and the soil heaped. Mix the heaped soil with 100 litres of one of the following water emulsions: aldrin 0.5%; dieldrin 0.5%; chlordane 1.0%; or benzene hexachloride 0.8%. Replace the soil and compact as usual.

Complete the bridge by concreting behind the bearings to give a level running surface.

Annex I

PROOF TEST FOR TIMER PARELS

This test is not intended to give an absolutely reliable proof of bridge strength but should be used to determine or verify the correct stress grade of a given timber. The test is suitable up to grade F 14; above this grade failure in the steel dowels is to be expected.

Specifically the test is to proof the strength of the diagonals in tension; this is considered a good overall indication, as timber strength tends to be more variable in tension than under other loadings.

For the test proceed as follows:

Place a panel in the rig shown in figure 54 and support it on two standard bearings. Remove the 250-mm through bolts from the top chord together with any nails used at this intersection for temporary fixing. The 150 mm x 50 mm central strut is strengthened by the addition of two 150 mm x 50 mm members, 0.75 m long, nailed on either side with 100 mm nails at 150 mm centres. Insert a mild 25 mm x 75 mm steel key of 150 mm length in the strut to rest on the top of the lower plates (1 or 9) to give a stronger connection at this point. Place a hardwood loading pad on top of the strut and ensure that the pad is clear of all members and able to pass between them. Finally place dial gauges calibrated to read 0.1 mm at each end of the panel in the positions shown in figure 54.

Two tests are considered necessary.

Design load test

.

Depending on the stress grade of the panel to be tested, the following design loads should be applied:

Stress ginde	Design load
P4	7.8
35	9•7
F1	12.3
P 8	15.6
p 11	19.6
P14	24.8

- 93 -

Apply the load over a period not exceeding 15 minutes and then maintain it for 24 hours. Take readings of each gauge 15 minutes after application of the load and later at one hour intervals. The load is then released and a final reading taken 15 minutes later.

The panel is regarded as satisfactory when :

(a) The rate of increase of deflection during the 24 hours of the test is the highest at the beginning and decreases towards the end of the test;

(b) The residual deflection is not more than 2 mm.

Ultimate load test

The panel should now be loaded to destruction over a period not exceeding 30 minutes. The following minimum ultimate loads are regarded as satisfactory:

Stress grade	Ninimum ultimate load (t)
74	19•5
15	24.2
\$ 7	30.7
7 8	39.0
P 11	49.0
P14	62.0

-499

81.05.27

//

MICROCOPY RESOLUTION TEST CHART NATIONAL GENERATION CONTANTS TO A

24×

×

Annez II

GRADING HULES FOR TIMBER

Each piece of timber should be truly sawn and be free from decay, shakes, splits, fractures and occluded branch stubs.

•

.

The following imperfections are permitted for the three grades under consideration, subject to the indicated limits.

75% grade

1. Maximum knot sise:

Depth of section	of section Knot sise (nm)	<u>5e (mm)</u>
(m)	On face	<u>On edre</u>
250	40	12
200	30	12
150	20	12
100	15	12

The overall dimension of knots in groups should not exceed these values.

2. The slope of the grain should not exceed 1 in 15.

3. Seasoning checks should not exceed 400 mm in length and 3 mm in width and must not extend from one surface to another.

4. The following maximum permissible values (in mm) for spring, bow and twist should be observed:

Manber	Spring	Bow	Twist
1 T	5	20	10
21	6	15	10
3 T	3	10	5
47	3	5	5
Vertical	bracing 3	10	5
Deck	12	20	5
		3 m of length	

5. No wane or sapwood susceptible to insect attack should be permitted.

6. Fissures admitting a feeler gauge of 0.15 mm thickness should not be longer than 15 mm in 50-mm wide members and 30 mm in 100-mm wide members.

7. Oum pockets or overgrowths of injury should not exceed 300 mm in length or 12 mm in width on one face of the timber. Where a pocket extends from one face to another the width should be less than 6 mm.

60% grade

1. Maximum knot size:

Denth of mention	Knot siz	size (mm)
Depth of section (mg)	On face	<u>On edge</u>
250	60	20
200	50	20
150	35	20
100	25	20

The overall dimensions of knots in groups should not exceed these values.

2. Slope of grain should not exceed 1 in 10.

3. Seasoning ohecks should be not longer than 400 mm.

4. Spring, bow and twist should not exceed the values given for 75% grade.

5. Wane or sapwood susceptible to insect attack should be maximally $\frac{1}{4}$ of the width of the face being considered.

6. Fissures admitting a feeler gauge of 0.15 mm thickness should not be longer than 20 mm in 50-mm wide members and 40 mm in 100-mm wide members.

7. Gum pockets or overgrowths of injury should not exceed 300 mm in length or 20 mm in width on the face of the timber. Where a pocket extends from one face to another the width should be less than 6 mm.

48% grade

1. Maximum knot size:

.

Depth of section	Knot size (mm)		
	On face	On edge	
250	75	25	
200	60	25	
150	45	25	
100	30	25	

- 97 -

The overall dimensions of groups of knots shall not exceed these values.

2. Slope of grain should not exceed 1 in 8.

3. Seasoning checks should not be longer than 600 mm.

4. Spring, bow and twist should not exceed the values given for 75% grade.

5. Wane or sapwood susceptible to insect attack should be maximally $\frac{1}{4}$ of the width of the face being considered.

6. Fissures admitting a feeler gauge of 0.15 mm thickness should not exceed 25 mm in 50-mm wide members and 50 mm in 100-mm wide members.

7. Gum pockets or overgrowths of injury should not exceed 300 mm in length or 25 mm in width on the face of the timber. Where a pocket extends from one face to another the width should be less than 9 mm.

Annex III

STRESS GRADES OF COMMON TIMBER SPECIES

Species	Strength		Visual grade ^a /			
	group	48%	60%	759		
Pterocarpus marsupium	S 4	F 8	F 11	F 14		
Soymida febrifuga	S 2	F14	F 17	F 22		
Xylia xylocarpa (<u>syn</u> . X. dolabriformis)	S1	F17	F 22	F 27		
Pterocarpus dalbergioides	S 3	F11	F 14	F1 7		
Tectona grandis	S4	F 8	F11	F12		
Albizia lebbeck	S 4	F 8	F 11	· F 14		
Lagerstroamia lanceolata	S4	F 8	F 11	F 1		
Kingiodendron pinnatum	54	F 8	₽11	F 14		
Xylocarpus granatum	S 5	F 7	F 8	P1		
(<u>syn</u> . Carapa granatum)						
Albizia odoratissima	S 2	F14	F 17	F 2		
Madhuca longifolia <u>var</u> latifolia	S 5	F7	F 8	F 1		
Dalbergia sisoo	S4	F 8	F11	F 1		
Dalbergia latifolia	S4	F 8	F 11	F 1		
Cedrus deodara	S5	F 7	P 8	F 1		
Ougeinia oojemeimensis	S 5	F7	F 8	F 1		
Dysoxylum malabaricum	S4	F 8	P11	P 1		

.

A. Indian timbers

1

•

•

Species	Strength		Visual grade ^a /		
	group	48%	60 %	759	
Dicornynia guianenis	S 3	F11	F14	F17	
Clathrotropis spp.	S2	F14	F1 7	F 22	
Bagassa guianenis	\$ 2	F14	F1 7	F 22	
Manilkara bidentata	S1	F1 7	F 22	₽27	
Ocotes rubra	S 5	F 7	F 8	F11	
Ocotea rodiaci	S1	F1 7	F 22	F 27	
Qualea rosea	S 3	F11	F 14	F17	
Goupia glabra	S 3	F 11	F14	F17	
Eschweilera longipes and E. subglandosa	S 1	F 17	F 22	F 27	
Symphonia globulifera	S 3	P11	F 14	F 17	
Nora excelsa	S 2	F 14	P1 7	₽22	
Terminalia amazonia	S 2	F 14	F 17	₽22	
Pinus caribasa	54	F 8	P11	F 14	
Peltogyne <u>spp.</u>	\$ 2	F 14	F1 7	₽22	
Calophyllum <u>spp</u> .	54	F 8	F 11	F14	
Hieronyma <u>spp</u> .	· \$3	F 11	F 14	F 17	
Diplotropis purpures	S1	₽17	F 22	₽27	
Humiria <u>sop</u> .	S 3	F1 1	F 14	₽17	
Tectona grandis	54	F 8	F 11	F 14	
Beruk spp.	S1	F1 7	72 2	₽27	

B. South and central American timbers

•	1			
U.	HOUT	African	TIMDERS	

- .	Strength group	Visual grade ^A			
Species		48%	60%	757	
Pericopsis elata (<u>syn.</u> Afrormosia elata)	S 3	p 11	F 14	₽17	
Afzelia africana	S 3	P1 1	F 14	F 17	
A. bella					
A. bipindensis					
🛦 pachy lo ba					
A. quansonsis	84	F11	F14	F1 7	
Aningeria <u>sop</u> .	S 6	₽5	F 7	F 8	
Baillonella <u>Spp</u> .	S4	P11	F 14	F 17	
Autranella congolensis	S 2	P14	F1 7	F 22	
Burkea africana	S 2	P14	F 17	F 22	
Chlorephora excelsa	8 5	F 7	P 8	P1 1	
Coula edulis	S 2	P14	₽17	F 22	
Cryptosepalum staudtii	8 2	P14	₽17	F 22	
Piptadenia gabunensis	S 2	P14	F 17	F 22	
(<u>syn</u> . Cylicodiscus gabunensis)					
Distemonanthus denbthamianus					
benthamianus	54	P 11	P14	P 17	
B ucalyptus paniculata	S 1	₽17	P2 2	F 27	
Bucalyptus propinqua	S 2	P14	P1 7	P 2	
Quarea cedrata	8 5	₽7	7 8	P1 '	
Quibourtia <u>app</u> .					
G. arnoldiana	83	p1 1	F14	17	
G. coleosporma	8 5	P 7	7 8	P1 *	
G. demousei	83	P1 1	P14	P1	
G. ehie	81	P17	P 22	P 2	
G. pellegriniana	81	P 17	F 22	P 2	
G. tessmanii	82	P14	₽17	7 2	
Khaya gap.					
K. anthoteon					
K. ivorensis	86	P5	P 7	7 8	
K. nyasica					
K. grandifolia					
K. senegalensis	54	P 8	p 11	P1	

.

-

14

.

Species	Strength group	Visual grade		
	Browp	48 %	60 %	75%
Lophira spp.	\$2	F14	F17	F 22
Nammea africana	S 4	F 8	F11	F14
Manilkara lacera	S1	F17	F 22	F 27
Mansonia altissima	S4	F 8	F11	F14
Nicroberlinea brazzavillenenis	S4	F 8	F11	F14
limusops spp.				
N. callophilloides				
N. oboyata N. djare (syn. Baillonella toxisperma)	S }	F11	F14	F1 7
M. congolensis syn. (<u>syn</u> .Autronella congolensis) M. heckeli	S2	F14	F17	F 22
(<u>syn</u> . Tieghemella heokeli) N. africana	S5	F 7	F 8	F11
(<u>syn</u> . Tieghemella africana)	S 4	F 8	F11	F14
orus mesozygia	S1	F 17	F 22	F 27
Naucles spp.	S4	F 8	F11	F14
Vesogordonia papaverifera	S 3	F11	F14	F 17
)xystigma oxyphyllum	S 4	F 8	F11	F14
Dacryodes edulis	S4	F 8	F11	F14
Pinus <u>spp</u> . Low density (below 600 kg/m ³)	S 7	F4	F 5	F7
High density (above 600 kg/m ³)	S 5	F7	F 8	F11
rosopsis africana	S 3	F11	F 14	F 17
terocarpus angolensis	3 5	F 7	F 8	F11
terocarpus eriaceus	S 3	F 11	F14	F1 7
terocarpus soyauxii	S4	F 8	F11	F14
acoglottis gabonensis	S2	F14	F 17	F 22
Strombosia spp.	S 2	F14	F17	F 22
feritiera utilis	S5	F7	F 8	F 11
. <u>syn</u> . Terrietia utilis) Terminalia ivorensis	S 5	F 7	F 8	F11

Species	Strength	Visual grade ^{a/}		
	group	48%	60%	75%
Ga lophyllum kajewski	S4	F 8	F11	F14
Pometia pinnata	S 4	F 8	F11	F14
Intsia bijuga	S 2	F14	F1 7	F 22
Intsia palembica	S 3	F11	F14	F17
Pterocarpus indicus	S4	F 8	F11	F14
Eucaly ptus deglupta	S 7	F4	F 5	F7
Homalium foptidum	S 2	F14	F17	F 22
Hopea papuana	S 2	F14	F17	F 22
Hopea forbesii	S 3	F11	F14	F17
Hopea iriana	S1	F1 7	F 22	F 27
Hopea glabrifolea	· 51	F1 7	F 22	F 27
Tectona grandis	S4	F 8	F11	F 14
Bucaly ptus tereticornis	S 3	F11	F14	F17
Manilkara kanosiensis	S1	F 17	F 22	F 27
Heritiera littoralis	S 3	F11	F 14	F 17
Palaquium gornei	S 3	P1 1	F 14	F 17
Terminalia <u>spp</u> .				
T. brassi, T. kaernbachii T. faveolata	5 7	P4	15	F 7
T. catappa, T. microcarpa T. canaliculata, T. complanata T. calamansanii	\$5	F 7	F 8	F 11
T. solomonensis, T. ggparggrea T. capelandi	\$ \$6	15	₽7	1 8
Sysygium spp.	8 3	F 11	P14	F 17
Araucaria guntsteinii	96	F 5	F 7	₽8
Cleistocalyx spp.				
(<u>syn. Acicalyptus spp.</u> (except those below)	8 2	P14	P 17	F 22
Cleistocalyx myrtoides	84	₽8	P 11	F 14
(ever (), evertaidee)				

.

(gyp. (A. myrtoides)

1

٠

.

٠

D. Timbers from the Pacific region

Species	Strength group	Visual grade		
		48%	60%	75%
Alstonia scholaris	S 7	F 4	F 5	F 7
Amoora cucullata	S 6	F 5	F 7	P 8
Anisoptera polyandra	S 5	F 8	F11	P 14
Anthocephalus chinensis	S 7	F 4	₽5	F 7
Campnosperma brevipetiolata	S 7	F 4	₽5	F 7
Dracontomelum puperulum	S 5	F 8	F 11	F 14
Elmerrillia papuana	S 6	F 5	F 7	F 8
Endospermum medullosum	S 7	F 4	F 5	F 7
Eucalyptus deglupta	S4	F 8	F11 *	F 14
Vitex coffassus	S 7	F4	F 5	₽7
Agathis dammara	S 7	F 4	F 5	F 7
(<u>avn</u> . (A. alba))				
Fagraea gracillpes	S1	F17	F 22	F 27
Nyristica spp.	S 6	F 5	₽7	₽8
Podocarpus neriifolius	54	F 8	F11	₽14
Garcinia myrtifolia	S 3	F1 1	F14	F17
Conystylus punctatus	S 3	F11	F1 4	F17
Heritiera ornithocephala	S 3	P 11	F 14	° ₽ 17
Sevianthes myriademia	S 5	F 7	F 8	F11
Dacrydium intricatus	S 6	F 5	F 7	F 8
Agathis vitiensis	8 5	F7	F 8	F 11

•

Species	Strength		Visual grade	
	group	48%	60%	75 9
Hopea plagata	S1	F 17	F22	F 27
Hopea phillippinensis	S 2	F14	F 17	F 22
Vatica mangachapoi	S2	F 14	F 17	F 22
Intsia bijuga	S 2	F14	F1 7	F22
Ctenolophon philippinensis	S 2	F14	F 17	F22
Fagraea fragrans	S 3	F 11	F14	F17
Eusideroxylon zwageri	S1	F1 7	F 22	F 27
Ma dhuca utilis	S1	F17	F 22	F27
Palaquium ridleyi	S 3	F11	F14	F 17
Palaquium stellatum	S 3	F11	F14	F1 7
Balanocarpus gheimii	S1	F17	F 22	F27
Vatica <u>spp</u> .	\$3	F11	F14	F17
Dipterocarpus <u>spp</u> .	S 3	F11	F14	F17
Dryobanalops <u>spp</u> .	\$3	F11	F 14	F17
Koompassia malaccensis	S 2	F14	F 17	F27
Hopea acuminata	S 2	F14	F1 7	F27
Shorea <u>spp</u> .				
S. glauca				
S. maxwelliana				
S. seminis	balau S1	F1 7	F 22	F 27
S. laevis				
S. albida (heavy variety)				
S. collina				
S. guiso				
S. kunstleri r	ed balau S3	F 11	F14	F1 7
S. ochrophloia				
S. pauciflora				
S. curtisii	3 5	F *7	F 8	F1 '
S pachphylla	rk red			
S. platyclados	ranti			

E. South-East Asian Timbers

1

	S	Strength	Visual grade			
Species		group		60%	75%	
S. albida 🔵					· · · · · · · · · · · · · · · · · · ·	
S. argentifolia						
S. leptoclados						
S. rugosa						
S. acuminata	light	S 6	F 5	F 7	F 8	
S. leprosula	red meranti					
S. macroptera						
S. ovalis						
S. parvifolia						
S. smithiana						
S. assamica						
S. bracteolata						
S. hypochra	white	S 4	F 8	F11	F14	
S. resinosa	merant i					
S. sericeiflora						
S. faguetiana						
S. gibbosa		S 5	F 7	F 8		
S. hopeifolia	yellow				F 11	
S. multiflora	merant i					
S. resina-nigra						
S. acuminatissima 🕽						
horea and parashorea sp	<u>P</u> •					
P. malaanonan 7						
S. almon	Philippine	S 5	F 7	F 8	F11	
S. sqamata	light red mahogany					
P. plicata						
Penacme conforta						
horea <u>spp</u> .						
S. nogrosensis	Philippine					
S. polysperma	red mahog a ny	S 5	F 7	F 8	F11	
eritiera spp.		S 4	F 3	F11	F 14	
		S 6	F 5	F7	F 8	

•

ł

Strength group	Visual grade ^a /		
	4 3%	60%	75 %
S4	F 8	F11	F14
S4	F 8	F11	F14
	group S4	group 43%	strength 60% sroup 43% 60% S4 F8 F11

F.	Ea st	African	timbe r s

Species	Strength group	Visual grade ^a /			
		43%	60%	75%	
Ca p re ssos lusitamica	S6	F	F 7	F B	
Pinus spp.	S7	F4	F'5	F 7	
Podocarpus spp.	S 5	Fγ	\mathbf{F}	F11	
Juniperus procera	S5	F '7	Fð	F11	
B rachylaen a hutchinsii	S4	FS	F11	F14	
Celtis soyanxii	34	F∋	F11	F14	
Entandrophragma utile	\$5	F 7	Po	F 1 1	
Entandrophragma cylindricum	S7	F4	F 5	F 7	
Eucalyptus paniculata	S 3	F11	F14	F1 7	
Eucalyptus caligna	S 5	F 7	$\mathbf{F}_{\mathbb{N}}^{\mathbb{N}}$	F11	
Khaya anthotheca	S 6	F 5	F7	F	
Olea hochstetteri	S3	F11	F14	F1 7	
Prunus africanus	S 4	FS	F11	F14	
Vitex keniensis	S7	F4	F 5	F7	

a/ See annex II.

٠

1. Storage of sawn timber

.

2. Treatment by dipping into preservative solution

3. Assembly of sawn components onto jig

- 108 -

4. Assembly detail of apex of prefabricated element

5. Bolting metal gusset plate on apex of element

6.Nail lamination of prefabricated element 7. Welding of metal component for assembling two adjacent elements

.

8. Welding of lugs for fixing of cross bracing

9. Completed elements prior to shipment to site

10. Erection of tower supporting the cable used for launching

 Digging of trench to anchor the cable used for launching

12. Anchor of cable used for launching (in position in trench)

13. Filling up of trench

4

14. Inserting cable used for launching block

15. Assembly of two elements showing permanent cross bracing and temporary studs for alignment

16. Launching of a pair of trusses a

ţ

17. Inside of bridge showing decking construction and incomplete railing

18. View of bridge with incomplete and complete railings

 \underline{a}' This photograph was taken on a different project site. In this case the tower used for

19. Detail of completed railing

20. Detail of trusses supporting decking

21. Completed bridge, side view

22. Completed bridge, showing construction of abutments

23. Completed bridge in use

.

-499

81.05.27