

OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at <u>www.unido.org</u>

United Nations Industrial Development Organization

interregional Petrochemical Symposium on the Development of the Petroclepical Industries in Developing Countries

Distribution LIMITED ID/3G.34/5 23 July 1969 ORIGINAL: ENGLISH

PET.SYMP. A/3

DEVELOPMENT OF THE PETROCHEMICAL INDUSTRY

IN THE ECAFL REGION

by

G. S. Apte Consultant Economic Commission for Asia and the Far dest (ECAFE)

id.69-3854

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

trated Nations Industrial Development Organization

Interregional Petrochemical Symposium on the Sovelopment of the Petrochemical Industries in Developing Countries

Join, USSR, 20 - 31 October 1969

SUMMARY

DEVELOPMENT OF THE PETROCHEMICAL INDUSTRY IN THE ECAFE REGION 1/

 b_{1}

G.S. Apte

Economic Commission for Asia and the Far East

After an introduction showing the world position and the part played by the countries of the region covered by the ECAFE, the demand for petrochemical products in the latter group of countries is discussed in some detail. Fetrochemical products are divided into monomers for plastics, fibres etc. general organic chemicals such as ethylene glycol, benzene, methanol etc, colvents such as toluene, acctone and chlorinated hydrocarbons.

In the next section, plastics and synthetic resin consumption is divided between countries and then between products. Synthetic fibre demands are next discussed followed by synthetic rubber requirements. Finally detergents, insecticides and carbon black are briefly mentioned,

1, 5**(**1) 3 20

1/ The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the secretariat of UNIDC. This document has been reproduced without formal editing.

id.69-4140

Distribution LIMITED ID/WG.34/5 SUMMARY 23 July 1969 ORIGINAL: ENGLISH

PET. SYMP. A/3

TABLE OF CONTENTS

.

. . . Pero

dalar Vəfat

*****

.

. :

1. 10 ...

. *≓€*

.

 $e^{i}e^{ik}$

÷ 4

. . .

.

į

.

i

e . . .

•

A training

100

1.	Introduction	3
11.	Demands for petrochemical products	
I II.	Survey of sources of raw materials for the petrochamical industry	ی (۲۵۵۵) ۲۰۰ 3 (۲۰ ۵۵) ۱۹۰۹ (۲۰۰۱)
IV.	Rate and pattern of growth	41
V,	Trade in major petrochemical products	55
VI.	Plens for expansion	63
VII.	Special features and factors initiating the petrochamical development and suggested solution	69 🗤
VIII.	Developm at prospects and investment needs in the petrochamical industry in the developing countries of ECATO region during 1970-1980	79

i Ser

· . . .

1. **11** 1. 11

6. may 1

ale and a local to

•

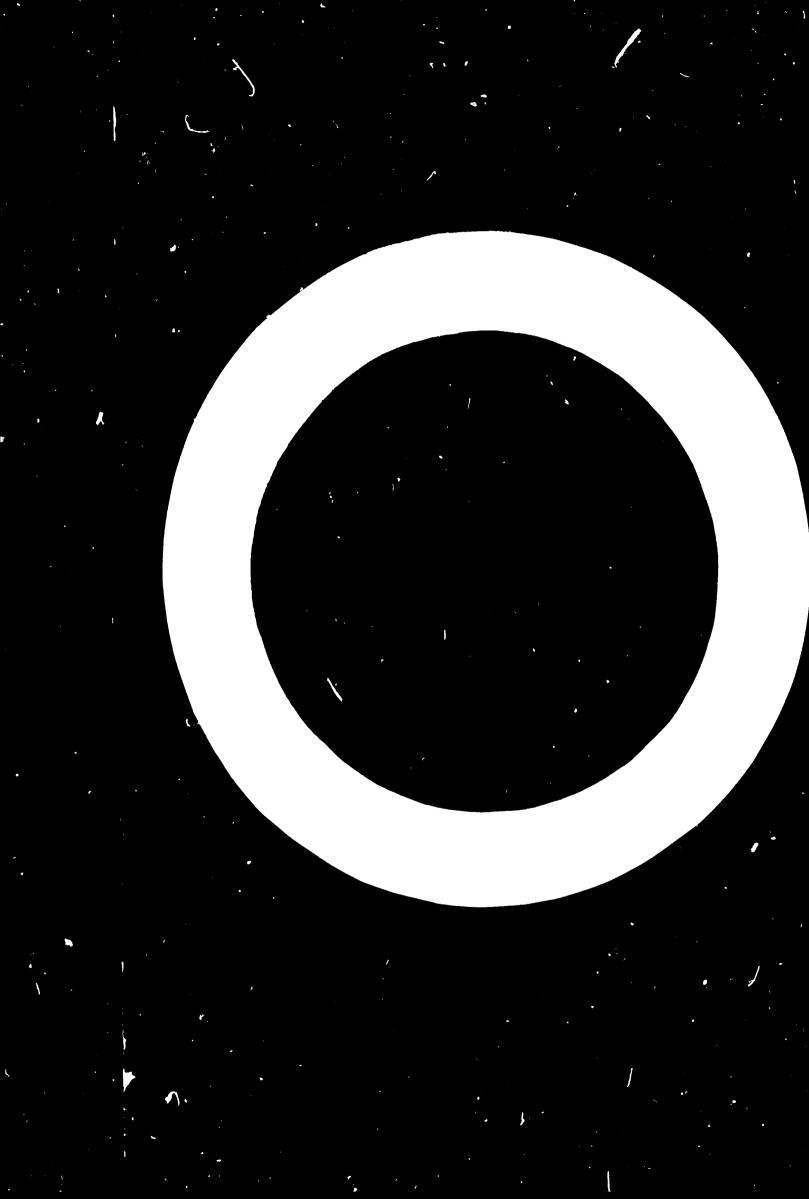
•

Second Land

• St. • • • •

.

2/11G.34/5 20-9 8


. . . . 1.1

i. ta.

ny 4

i . 4

.

The paper next deals with the sources of raw material, crude oil and natural gas - the position in each country of the region is discussed in some detail.

Production figures are next discussed, plastics, synthetic fibers and synthetic rubber production figures being given for those countries in the region producing them. Following this the number of plants as well as their expected in each country is given.

In the next section import and export figures for the more important countries in the region are given followed by a section detailing the plans for expansion where these have been announced.

The various factors affecting the development of petrochemicals are next discussed, demand for end products and the processing industries necessary, disposal of co-products, rew material availability, financial resources, engineering design, know-hew, training of personnel.

The rate of expansion of consumption of end products expected in the period 1970 - 1980 is next discussed and the new plants necessary to meet this growth are forecast together with the inticipated costs of production and investment necessary. Attention is given to the possibility of developing countries being cold to meet world prices for various petrochemical products. Grouping of the production of primary products at central locations is given consideration with some estimates of the transport costs involved.

Finally tables are drawn up for each country in the region showing the estimated demand in 1980 for the principal plastics, fibres and synthetic rubbers together with detergents and basic chemicals, capacity required by 1980, plant size, and number of plants. The possibility of joint ventures e.g. several countries sharing one plant is examined in detail and recommendations made.

I. Introduction

The world petrochemical industry has progressed very fast during the last few years and high growth rate has become synonymous with this newly developing industry. Having started from as and naphthe as raw materials and developed the conversion processes of high temperature cracking and separation of basic products like ethylene, propylene, butadiene, aromatics like benzene, petrochemical industry found itself in a position to product many groups of products like plastics, synthetic rubbers, synthetic fibres and organic chemicals is such lar or quantities and at competitive prices as compared to their production from other raw materials like fermestation alcohol, benuene from coal ste. These large production units were, however, beset with problems of disposal of a number of by-products simultaneously produced. Search for markets for these by-products was therefore pursued vicerously. The markets for many of the petrochemical products expanded rapially due to increased availability, low prices and The pressure of demand set the industry on a intensive market development higher pitch of activity of increasing plant sizes, improved productivity These and enabled it to offer larger quantities at more economic prices. cycles have repeated in the past and despite some periods of static demands the net result has been growth at a vary high rate in past few years and the indication for future point to wider horizons. Some of the indicators of the progress during the last four or five years are the growth of new petrochemical plants and repudly increasing production in the petrochemical sectors. The growth of petrochemical plants since between 1964 and 1967 may be seen in table I-1.

and the State of the State

Table I-1

,	19	064	19	67
Area/Country	Flante in operation	Fl. met	Fl nts in operation	Flanned
U.S.A.	(ii	rψ	551	.16
North America	585	95	554	74
Western Europe	216	97	294	107
Africa/Ciddle East	6	22	12	-21
isia/East	65	72	94	6 ÷
South America	42	25	65	32
Total	9 14	311	1,11_	307

World petrochemical plant construction

Source: World Petroleum - 1,64, 1968.

•

NORCE SHE

2 a **a** 14

. أم

. • . . . ² .

It will be seen that there has been intense activity in the plant construction during the last few years in almost all the regions.

1 1

6 14

192

The world growth in some of the major sectors of petrochemical and groduction may be seen from table I-2 below.

÷., (.

Sand & 2

Table I-2

World production of major petrochemical groups

	((Unit:	1,000	ton
--	---	--------	-------	-----

Major Groups	<u>1961</u>	1962	1563	1964	1965	1966
Synthetic resing	7,600	9,210	10,710	12,7,0	14,690	16 ,570
Synthetic Filres	F35	1,0%	1,330	1,690	2,045	2,470
Synthetic rubber	2,125	2,400	2,610	3,000	2,235	3 ,5 75

Source: United Nations Statistical Yearbook, 1967.

1.

The Asian developments have also moved along with the world trends in petrochemical manufacture and there have been substantial developments in this region. In this paper a brief outline of the progress and developments during the last few years in this region in the petrochemical field is given. Considerable data and information reparting developments in this connexion was supplied by the povernments of the various countries to the Asian Industrial Development Council Fast rinding Team on Petrochemicals in 1968. The team visited many of the countries and had discussions with petrochemical manufacture to programments of this paper. So far as Japan is concerned the data has been obtained from publications like Industrial Japan, Japan Plastics (orget of the Japan Plastics industry Association) and Japan Chemical Annual. Data in respect of Australia and the Republic of China has been based on the information given by the Government to the ECAFE Secretaria Since Japan is the only country in the region which has reached high level of petrochemical production comparable to developed countries a separate report on Japan is prepared and may be seen in Appendix I.

. B. 185

A State of the

a.

25

a she a she are a she a she

12.11.11.11.11.11.11.11

II. Demands for petrochemical products

The current demands of some of the major petrochemical groups are given below.

Nonomers

The current demand for monomers may be seen in table II-1.

In connexion with the data in table II-1 it may be mentioned that data in respect of monomer as such was not available from many countries and the estimates given by them for manufacturing of polymer covered the monomer demands also. In such cases, calculations were based on demands for polymer.

(2) Organic chemicals and solvents

Current demands of the major organic chemicals are given in table II-2. Data regarding consumption of solvents was available from only few countries and may be seen in table II-3.

Demond for monuments in countries of ECAFE region (Unit: 1,000 tons)

•	- Australia	India.	5. 5.		Corea	Pakristan	Thai-	pines	China
•	 65/éč	69/53	68//39		68	67/68	69	69	
Acryloni+rile		U U		4					
				, ' 				L 1 (
بیرا در در بر	•	:-	ŝ	2	14	5		C •2	55.3/
Lthylenc	•	212/		1,474					L
Pronvlete	E	122/		كارى					
Styreno	15•S	1,82		285	2		~~~~	Small	0.1
	100 -10-1						2.8		
Terphthilate	•	ى 	<u> </u>	- - -	 ,			emal]	
Vinyl Acotate	ית לא	~```	r-1	213	11				
Vinyl Chloride	i	22 52	1	7.0.1	e::+- 1			2	

Estimates hased on polymer/ord products Capacity of a plant started in 1968

Sources: . M.M.

Report of the ALEC Fact-Finding team on Petrochemical Industries Japan Chemical Meek, 1948 July 25, October 12 Data supplies by Australia and Rep. of China • ~**1**

Bulletin of Japan Petroleum Institute May 1968

Japan Chemical Annual 1967.

/WG.34/5

r r	
or organic	
c chemicals 14	Table II-2
Įğ.	1

. . . .

ŧ

•

untries of ECAFE region (Unit: tons)

•	Үеаг	Urea non- ferti- lizer use		Etny- lene Elycol	Propy- lene elycol	Pathall. Anhy- Any de	Porma I	and a second sec	5enzene	'ne	ene Xylene	
Australia 1965/66	1965/66	ч. - С	3,500			1 (- 1 (- 1		12,000 (65/96)	<u>း ဂ</u>		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>
China, Rep. of India	1968/69		660 10 ,000	612 2,500	ł	1,540 8,000	000 000 10 00 10 00	भूम्बर २. २. ब्रह्म	ĕ	ാറാപ്പോ		30 ₀ 000
Iran	1967/68			170		10	437		ن نی 25 10			
Japan	1967/68		110,600	130,600	20,065	135,600	1	1		643,200	643,200 193,900	643,200 193,900 295,000 010,000
Korea Rep. of	1968	(67) 2 . 503	614	18,501		r, 500	42,700	5	200	200	200	200 14,520
Pakistan	1967/68											
Philip- pines		▲ • • • • • •	- 1 0	75		700		•	,200	200	00	00
Singapore Thailand 1967/69	69/7 9 01	1,400	5 6	3			107	ينكة التقديد مريي	767	767	167	767

Sources: 1. Report of the AIDC Fact-Funding Team on Petrochemical Industrie

Japan Chemical Annual, 1967, Autumn Edition Fatan Chemical Meer, Necretary 25 Information mathematical opportunation.

500 34/2

Tatle II-J

Demaid for solvents in countries of ECAFE region

('Init: tons)

Torne	040 (10 (<u>1</u> 0	55 th 25 th 25 th 25 th	Carbon Tetra- chloride	Methylane Dichlo- ride	Chloreform	Hexane
	64	1	ł	ł	ł	1
~			•			
56.5E	, 617	·,11,2		I	353	ı
	394	906	15 0	I		
323,200	99 , 060	1	I	I	I	1
		53,000(k1)	ł	I	I	ł
	12,000	1	1	1	1	1
	-1+	I	I	ł	I	1
1,199	66	94(kl)	38	1	31	1
	Torne 5631/ 323,200		e 10-1342 Etha 40-1 99,050 12,000 12,000 58,0 66	e 10.0000 Ethanol 40.2 40.2 394 900 900 900 900 12.000 417 417 66 94(k1)	e 1947 2000 Ethanol Sarbon 452	e 1004000 Ethanol Sirbon Methylene 40.1 53,000(k1) - 40.7 40.

V Imports.

Sources:

4

5.8

₩ N F Information supplied by government Japan Chemical Week, 1966 July 25 Report of the AIDC Fact-Finding Study Team on Petrochemical Industries 1968.

> 10 DH/AT Ç,

(3) Plactics and synthetic resins

Synthetic resin demand started in many countries of the region with processing of thermosets, manufacturing of electrical goods and plywood. Polstyrene and PVC followed these and though polyethylene come later it has nonreached a high level of consumption in almost all the countries. Polyproplene had also now been proceeded and consumed in sizeable quantities espectally in Japan and the Republic of Ching. Apparent consumption of plastics and synthetic resing in the region may be seen in table II-4.

An evanination of the table 11-4 will show that consumption of synthese resins has increased from 1,046 million tons in 1963 to 2,294 million tons of 1966. This shows a 19.5 per cent growth rate. The consumption in developing countries has increased from .22 million in 1963 to .4 million in 1966. The 1966 consumption of developing countries was 17 per cent while Japan and Australia have accounted for 90 per cent of the regional consumption. Hong Kear, Republic of China, India, Philippin s, Republic of Kerea, Thallow and New Zealand consumer sum, 34.000 tens each. Twelve out of eighte countries in the region laye crossed 10,010 ten consumption levels in 1965.

The consumption of individual reside in 1965 and 1966 in Japan and the percentage consumption of some of the pejor reside may be seen in table II-:

1

Table II-4

Consumption/derand^a of plastics and synthetic resins in countries of the FCAFE region <u>b</u>/

Country	1963	1964	1965	1966	1967
k					1701
Burma	2,994	2,480	3,686	1,914	939
Cambodia	1,270	800	1,470	1,690	2,996
Ceylon	1,938	1,987	2,000	3,300	4,791
China,	1		•		
Rep. of	19,372	47,679	63,954	68,427	108,021
Hong Kong	69,782	111,170	85,300	98,090	
India	28,306 !	35, 394	43,020	46,154	57,300
indonesia	8,487	5,111	6, 340	2,967	9,350
Iran	7,100	12,100	15,000	19,800	
Korea, '					
Rep. of	14,180	17,780	23,300	39,400	57,300
Malaysia	4,677	12,569	5,410	6,550	15,766
Pakistan	9,481	17,213	15,009	16,890	19,400
Philippines	29,200	35,900	37,200	48,000	
Singapore	5,832		3,120	6.65%	11,380
Thailand	14,012	17,530	25,095	35, 33	1
Vietnam,					
Wep. of	5,017	7,502	, 8,°A.	11,41.	1,,721
Total		***********	· · · · · · · · · · · · · · · · · · ·		
Slveloping					1
Suntrier	221.648	325,001	257 660,	1.6,574	564
an sharada da ana ang ang ang ang ang ang ang ang an			: 		
Australia	1:0,5%	151,507	175,12	1 JA Cara	Ĩ
lan	1-52;		i s ≱ + 9 - 1 - 1 - 1 - 1	and the second	11, 18, 771
New Cealand	19,00.1		$(1, f \in \mathbb{R})$		
Total			an a		· · · · · · · · · · · · · · · · · · ·
Peveloped	•				
ncuntries	1.124.416.1	. A.A. J. Call	1 1 1 W 1 7 1	1,386,111	2 318 771
					<u></u>
Srana lotal	1,3:6,:42		1,221,016	2,25,2,715	2,622,135
\underline{t} / Plastics	consumption and synthetic	s sound an	dor Stic 58	1	· · ·
Sources: 1.	Report of the Industria		t-iinding f	eam on Fetr	ochemical
2.	UN Internatio	, ,	Statistion	1062-1466	
	UN Statistic			• ±)00-±)00	
4.	ECAFE, icrea			f tain and	
·† ●	the Far Ea		ASPERATER O	i rata and	
5.	OECD Commodi		Pressta 1	064 1067	
· · · · · ·	Janan Plasti	- 9061 - 1044	raports, 1	704 - 1701	

(Unit: tons)

Japan Plastics 1964, 1965 and 1967. 6.

Table II-5

Japan: Demand of principal plastics and synthetic resins

(Unit: tons)

	Doma	and	Consumption as percentage of
Type of resins	1965	1966	total consump- tion in 1966
Phenolics	75,743	37,1 37	5.0
Urea	249,853	291,392	14.5
Melamine	44,096	57,070	2.8
Polyester (unsat.)	37,188	45,850	2.2
Phthalic	50,993	59,537	2.8
Urethane	39,361	47,194	2.3
Polyvinyl chloride	478,142	488,032	24.4
Low-density polyethylene	301,824	439,702	21.9
High-density polyethylene	°6,295	122, 325	6.1
	1.7,565	198,585	9•9
Folystyrenc ABS	12,096	25,721	1.0

While the consumption thermosets have recorded slight increases during the last few years in Japan major strides have been made in high density and low density polyethylene, polyetyrche and polypropylene. In 1966, the consumption of major recins was (slyving) chloride 24.4 per cent, polyethylene 28 per cent, (slystyrone 9., per cent and uren 14.5 per cent.

Other countries of the region namely India, Iran, the Republic of Korea, Pakistan, Malaysia and Thailand showed differential trends of consumption in 1966/67. These data may be seen in table II-6.

Table II-6

Country	Year	Total plastic consump- tion (tons)	poly- ethylene (per cont)	FVC (per cent)	Folysty- rene (per cent)	Folŷpró- pylene (per cent)	Thermo- sets (per cent)
Hong Kong	1966	23 , 090	43.0	19.0	22.0	8.0	2.0
India	1967	57,300	33.0	32.0	13.0	2.8	14.0
Iran	1967/68	25,900	38.0	38.0	9.5	•••	4.6
Lorea, Rub. of	1967	57,300	23.0	22.0	2.4	2.0	50.0
Unlaycia	1967	15,760	36 . 0	13.0	7.0	6.0	30.0
Palistan	1967/68	19,400		27.4	16.0	10.6	14.0
Theiland	1966	:5,300	52.0	26	6	4	10

Demand of principal plastics and synthetic resins in selected DCAFE countries

It will be seen that the percentage consumption of thermosets is high in . values like Korea with a clubble production of plywood where these resins . o used as adhesives. In other countries the current demand for polyethylene, . VO, polyetyrene, etc. show out these mass produced plastics has now . carted coming up as principal products in market.

Information was available on the end-use pattern of various plastics in India and Japan. These my be of interest to the developing ECAFE coun-

India: End use pattern o' major plastics in 67/68 was as follows:

Polyethylene: Film for pulkaging of textiles, fertilizers, pestition, etc. 65 per cent, mouldal goods 20 per cent, pipes 5 per cent, tiofilaments and cane 8 per cent.

ID/WG.34/5 Page 15

ETC: Leather eleth #4 per cent, wire and cables ceating 14 per cent, footwear 33 per cent, unsupported sheets 14 per cent, rigid pipes, sheets, etc. 9 per cent.

<u>Polystyrene</u>: Textile components 17 per cent, electrical and engineering goods components 11 per cent, household goods such as combs, soap boxes, domestic ware, etc. 41 per cent, foam 15 per cent, miscellaneous uses 15 per cent.

Japan: The pattern of end uses of various major plastics in Japan in 1967 was as follows:

Low density polyethylene: Film consumption was 63 per cent, sheets 14 per cent, electrical cable coating 7 per cent, injection moulding 11 per cent, blow moulding 3 per cent, miscellaneous 2 per cent.

<u>High medium density polyethylone</u>. Injection moulding 32 per cent, blow moulding 32 per cent, textiles 19 per cent, film 13 per cent, stretch tape 9 per cent, miscellaneous 5 per cent.

<u>PVC</u>: Sigid products such as corrugated and plain sheets, pipes, joints drainage pipes, etc. (0.6 per cent. This was due to a high spurt in the construction and housing. Films for agriculture, film for packaging extruded pipes and other packaging material accounted for 30 per cent, cable coating 8 per cent, floor tiles 3 per cent, fibres 1.1 per cent and blow moulding 3 per cent.

<u>Polypropyione</u>: Injection moulding accounted for 40 per cent, film 22 per cent, textiles 18 per cent, flat yarn 10 per cent, extrusion 7 per cent and blow moulding 2 per cent.

<u>Phonolics</u>: Ninety per cent of the phonolics were consumed for production of electrical goods. IV sets, radios, etc. Tableware is now being made of phonolic in place of wood. It is also finding greater use as a grinding wheel adhesive. 10/WG.34/5 Page 16

<u>Urea</u>: Fifty-five per cent of the urea resins consumption was as adhesive for laminated wood and board. Urea moulding is mainly table ware, container lids and equipment parts, etc. Twenty-five per cent of urea resins are used in the textile for anti-shrink finishes and paper processing.

<u>Polyester</u>: Resins are being widely used with glass reinforcement for fabrication of boats, tanks, bath tubs and the use of reinforced polyester has now gone up from 35 to 55 per cent.

(4) Synthetic fibres

From the time the synthetic fibres were first introduced in the market they caught the consumer appeal and preference which is growing. Some of the qualities of these films like water repellency, case with which they could be washed and cleaned, crease resistance made them attractive.

cability and relief from laundrying made the use of the fibre economic inspite of high cost. These fibres also found wide usage mixed with natural and cellulosic man-made fibres. The limited availability of natural fibres, variation in quality from source to source made demands on synthetics and in quite a few countries of the region the textile industry already operating with natural fibres adjusted their production facilities to the processing of synthetic and mixed fibres. Table II-7 shows the consumption/demand of synthetic fibres in various countries of the region.

Table II-7

Consumption/demandsa/of synthetic fibres in the countries of the ECAFE region

(Unit: tons)

a station	1963	1964	1965	1966	1967
Countries China, Rep. of Hong Kong India Indonesia Iran Korca, Hep. of Malaysia Pakistan Philippines Singapore Thailand Vietnam, Hep. of	1,683 1,405 3,463 60 1,415 7,014 - - -	2,509 1,860 2,900 2,696 5,559 247 1,200 2, 3 1,061 857	3,923 2,120 7,639 65 3,406 9,300 473 1,965 2,184 1,409 692	6,252 4,130 9,300 -	- 10,900 .76 10,118 33,291 165 5,000 5,780 172 2,804 1,563
Total Developing countries	15,71	21,004	33,176	55,556	69,869
Australia Japan New Zealand	223,000 1,219 1,219	17,710 197 - 100 1,500	20,860 275,000 3,000	22,600 <u>8</u> 350,600 7,729	27,600 456,400
Total Developed countries	en an	1. Sey . 16.	298,860	;80,929	484,000
Grand total	20 4 . P. 1	200,014	132,036	4,56,485	553,869

Apparent consultion - import - export

Synthetic fibre under SL C 266.2 and 691.6 Report of the MDC stat-Finding Study Feam on Petrochemical

<u>b</u>/ Sources: 1.

<u>a</u>/

Ind strike, DRA

UN Enternational Trade Statestics, 1963-1966 2.

UN Statistical YearSect, 1987 3.

4.

OECD - Sormodity Frade Report ECAFD Sminor of Boyalapment Prospects of the Man-Made Fibre Industry in Asia and the Far East, 1966 5.

Textile Crganon, 1968 6.

Date furnished by governments 7.

Including New Zooland. 8.

Here again the consumption has increased considerably and the 1966 consumption stands at 436,485 tons against the 1963 figures of 253,121 tons. This represents an increase of 183,364 tons over the 1963 production and the rate of growth was 20 per cent. Japan accounted for 82 per cent of the regional consumption. Australia, Korea, India and Iran have now crossed 10,000 ton levels and could expect larger demands in future. The demand for different types of synthetic fibres in 1963 and 1966-67 in some of the countries of the region may be seen in table II-8.

Table II-8

Demand for different crathetic fibres in solected gountries of ECAFE region

1	Country	Year	Nylon	Polyester	Acrylic	PVA
•	Japan	1963 1966	65,965 110,674	56,921 50,655	28,819 73,789	ан тр. С
7 - 1 - 1	India	1963 1967	2,320 4,380	1,140 3,5 3 0	306	
· • • •	Iran	1963 1967	8,000	- 1,000	1,000-	
	Korea, Rep. of	1963 1967	5,004 18,187	627 4,277	979 9,851	404 [.] 673
	Pakistan	1963 1967	3,200	- 1,500	300	
-	Philippines	1967	2,200	2,670	890	

(Unit: tons)

Sources: 1.

, lornsaport

5. 15

Report of the AIDC Fact-Finding Study Team on Petrochemical Industries, 1968

2. Industria: Japan, 1968.

Synthetic Rubber

ECAFE region has large resources of natural rubber. However, special properties of synthetic rubber enabled an increase in consumption inspite of easy availability of Latural rubber. The low temperature and enid resistance of chloroprene rubber, abrasion resistance of polytutadiene rubber, non-permeability of butyl and oil resistance of nitrile rubber gave these new materials special scope of the for specific product manufacturing. Constant quality and lowering prices also had an impact. The consumption of synthetic rubber in the region can be seen in table II-9.

<u>icble II-9</u>	h
Apparent consumption/domenda of synthetic	rubber
in countries of ECANE region (Unit:	tons)

Country	1563	1964	1965	1966	1967
Chine, Rep. of India Iran Korea, Rep. of Malaysia Pakistan Philippines Singapere Thailand	1,251 14,679 589 901 675 550 4,810 - 76	1,814 15:050 931 2,720 455 963 6,790 - 292	3,047 15,268 1,043 0,442 800 721 5,659 151 600	3,047 16,572 4,384 1,003 3,000 7,449 440 866	4,010 22,963 9,275 6,163 - 7,621 284 143
Total Developing countri '	(1,L))	29,526	32,731	36,761	41,184
Australia Japan	77,525 118,647	32,721 263,326	36, 336 180, 807	37,606 229,559	32,000 272,726
Total Developed countries		197,647	217,243	267,161	311,726
Grand total	197.557	225,175	249,974	303,922	352,910

Consumption = production + import - export aj

Year beginning lorch <u>b/</u>

1968 demands C/

Report of the ADC Fact-Finding Study Team on Petrochemical Sources: 1. Industrics, 1968

- 2.
- UN statistical leurbook, 1917 OECO Cormodity Frade: Exports, 1963-1966 3.
- Industrial Jopen 1967/1968 4.
- Industrial Bask of Japan Petrochemical Industries, 1968. 5.

ID/WG.34/5 Page 20

An examination of the above table will show that the demand for synthetic rubber has gone up from 197,957 tons to 352,910 tons over the period 1963 to 1967. This represents growth rate of 15.6 per cent. The major consumers have been Japan, Australia and India. Consumption is also now increasing to appreciable extent in the Republic of Korea, Philippines and Iran. In 1967 in Japan SER accounted for 65 per cent of the total demand for synthetic rubber and polybutadiens demand rose to 42,000 tons (14 per cent) whereas the demand for polypropylene remain more or less stationery at 31,000 tons. In India the major consumption was SER which represented more than 95 per cent of the synthetic rubber demand.

December .

Sut volt

32

St. .

The ourrent demand for detergents may be seen from table II-10 below.

Country -	Year	Demand
India	1967/68	18,000
Iran	1968	40,000
Corea, Rep. of	1968	5,100
alaysia	1968	12,000
Pakistan	1967/68	2,500
Philippines	1966	34,516
Singapore	1968	6,000
Thailand		16,000
Viet-Nam, Rep. of	r 1 96 7	1,059
Apetralia		100,000
Japan	1966	425,519

Table II-10

nd for detergents in countries of ECAFE region

Sources: 1.

. 14

Report of the AIDC Fact-Finding Study Team on Petrochemical Industries, 1968

2. Japan Chemical Annual, 1967.

1

Because of the problems in procurement of vegetable and animal fatty materials the soap is being replaced in a major way by the synthetic detergents in many developed countries. Similar trends are bound to come up in this region also and the demand of synthetic detergent is expected to rise quite steeply during the next 5 years.

Pesticides

Next to fertilizers, pesticides are now recognized as important inputs for intensive agricultural production and the pesticides demands for the region are likely to grow in the coming years. At the moment, Australia, India, Pakistan, Republic of China and Japan are the only producers of these chemicals and the demand of the ther countries of the region are being met by imports. An idea of the total imports of all these countries can be had from table II-ll given below.

Table II-11

Import of insecticides, fungicides, disinfectants into the ECAFE developing countries

0	19	55	1 967		
Country	Quantity	Value	Quantity	Value	
Afghanistan	244	126	-	-	
Burma	764	444	-	- 1	
Cambodia	478	492	-	-	
Ceylon	2,189	1,345	2,701	1,859	
China, Rep. of	2,385	2,840	2,818	3,797	
Hong Kong	1,316	975	1,121	· 888	
India	12,946	5,058	6,898	3,186	
Indonesia	1,515	1,349	4,772	7,073	
Tran	6,663	3,598	6,332	5,982	
Malaysia	709	1,994	1,562	1,639	
Pakistan	7,598	7,901	3,896	3,213	
Philippines	2,109	1,372	, 097 11,595	5,830	
Singapore	-		683	3.859	
Thailand	5,612	3,359	8,725	5,410	
Viet-Nam, Rep.		604	873	1,159	
Total	51,804	35,242	55,077	44,697	

(Quantity in metric tons, value in US\$1,000)

Source: OECD Commodity Trade: Exports.

ID/WG. 34/5 Page 22

The total demand of pesticide in the region is estimated at 130,000 - 140,000 tons.

Carbon black

Demand for carbon black comes mainly from rubber and printing ink industries. The growth of this may be seen in table II-12.

Second Second	· ··· -		(1	nit: tons) ,
Country	1963	1964	1965	1966	1967
China, Rep. of	955	1,245	1,800	2,10(2,988
India	1,484	1,309	12,081	26,773	29,619
Iran					4,500
Korea, Rep. of		2,626	2,306	3,401	4,255
Malaysia	1,457	1,730	2,430	2 , 9 2 5	° , 532
Philippines	4,008	5,501	3,558	4,412	- 4,601
Singapore			704	1,192	1,794
Australia					33,400
Japan			-	119,260	149,390

Table II-12

Consumption of carbon black in the ECAFE region

Sources: 1. - Report of the AIDC Fact-Finding Study Feam on Petrochemical Industries, 1968

1.

Japan Chemical Week 1967 September 14. 2.

III. Survey of sources of raw materials for the petrochemical industry

ECAFE region has sizable petrochemical raw material resources in the form of oil and natural gas. An idea of the oil and gas production in some of the countries of the region can be had from tables III-1 and III-2.

Table III-1							
Crude oil production in countries of ECAFE region (Unit: 1,000 tons)							
Country	1963	1964	1965	1966			
Burma	636	556	545	568			
China, Rep. of	3	5	19	32			
India	1,653	2,212	3,022	4,647			
Indonesia	22,275	22,915	23, 319	22,455			
Iran	73.557	84,612	94,126	105,445			
Australia	-	190	333	431			

Source: UN Statistical Jearbook 1967

Inble !II-2

Natural gas production in countries of the ECAFE region (Unit: million cu meter)

Country	1,)63	1964	1965	1966
Burma	16	-	-	-
China, hep. of	51	165	310	439
Ind mesia	2,708	2,731	2,446	1,601
Iran	1,130	1,192	1,230	1,386
Pakistan.	1,185	1,429	1,620	-
Australia	3	3	4	4
Japan	1,678	1,821	1,725	1,777

The natural gas and some light fraction of oil specially naptha available from refinery operation constitute essential and widely used feed stocks. The position of these raw materials in countries of this region is given below.

Australia

The Australian crude oil production in 1967 is estimated at 22,000 barrels per day against a 1966 production of 10,000 barrels per day according to the World Petroleum Report, 1968. Table III-3 gives the main sources of oil and the characteristics of the oil available from individual sources.

Table III-3

	Mconie _	Barrou Barrou Baland	Marlin*	Halibut*	Kingfish
Gravity		Y Mari - San Qinayan Kari Ang Kari - Sang Kari - S Sang Kari - Sang Kari - Sang Sang Kari - Sang	and a second		
Sũ	0.804	0.835	- 0.773	0.814	0.797
/PI	44.5	38.0	51.5	42.2	46.0
Sulphur Wt. <u>Por cent</u> Distillation Vol. <u>per cent</u>	0 .025	0.05	0.06	0.11	0.13
C ₄ and lighter	0.5	2.4	4.0	4.0	4.0
$^{\circ}5 - 375^{\circ}F$	39.1	37.4	45.5	32.4	39.8
$375^{\circ}F = 450^{\circ}F$	10.5	12.4	13.5	7.7	7.9
$450^{\circ}F = 600^{\circ}F$	19.4	25.2	26.0	19.4	17.5
500°F - 1000°F	23.0	21.0	10.0	34.0	28.9
Residue	7.5	1.6	1.0	2.5	1.9

4.16

efetre '

1413

Australia: Analysis of oil

 \mathbb{C}^{2q}

. :::::i

g car 🖾

Production from Moonie commenced in 1964, and from Barrow Island in 1967. Production from Bass Strait fields is likely to commence in 1969. Refining of future output is expected to give a range of products which could include some petrochemical feedstocks although present availability appears limited.

Natural gas

. Site

Gas is available at six locations and an analysis of this can be seen from table III-4 given below.

-	Australia: Analysis of natural gas					
Field	Mereenie	Palm Valley	Gidgealpa	Gilmore	Gippsland Shelf	Roma
N ₂ %	10	4	2	6	3	4
co ₂ %	0.5	0.5	16	2	1	1 .
сн ₄ %	73	83	76	89	93 -	86
с ₂ н ₆ %,	11	10	4	2	2	5
c ₃	4	2	1	0.5	0.5	2
c ₄	1	0.5	0.5	0.5	0.5	1
c ₅	0.5	0.5	. 0.5	0.5	0.5	0.5
c ₆	0.5	0.5	0.5	0.5	0.5	0.5
Sulphur	Sweet	Sweet	Sweet	Sweet	Sweet	Sweet
BTU/scf	1,290	1,310	1,020	1,210	1,280	- 1,280

Table III-4

The exploitation from Roma, Gidgealpa-Moomba and Gippsland Shelf is due to commence in 1969. A very small quantity of gas is used in Roma. Most of the gas is committed for supply to the cities of Brisbane, Adelaid and Melbourne.

China, Republic of

Natural gas reserves are estimated at 27,000 m. cu. metres and the present production is 2.7 m. cu. metre per day. The gas is used for manufacture of ammonia methanol and as fuel. The crude oil reserves are very limited. There is a refinery at Kap Hsing with a capacity of 120,000 BPSD using middle east crudes. The refinery products demand and supply pattern may be seen in table H1-5.

Table III-5

Republic of China: Production and demand of petroleum products (Unit: 1,000 kl)

		Prese	nt	Miture (1972)		
		Production	Production Demand		Demand	
: •	Fuel oil	1,300	1,800	2,700	3,700	
	Diesel	500	400	600	600	
•	Gasolene	400	400	600	600	
	Kerosene	26	30	20	20	

Availability of raw materials for further petrochemical manufacture appears to be limited. It is, however, understood that the naphtha requirements of cracker which has recently gone into production will be met by the refinery.

India

<u>0i1</u>

There are three major fields in Gujarat and four in Assam area. Crude reserve has been estimated at 141 million tons in 1967 and distributed between Assam fields and Gujarat field at 76 and 65 million tons respectively. The Indian crude meets 40 per cent of the demand and there is no possibility of surplus oil being used as a feedstock. Typical crude analysis is as follows:

ID/WG.34/5 Page 27

> mill: ton

1.1.1

assi (1) 	' <u>Indi</u>	<u>Table III-6</u> a: Analysis of cr	rude oil	section and a
		<u>Aujarat</u> (Ankleshwar)	<u>Assam</u> (Naharkətia)	s sí
	Gravity AFI Sp. Gravity	48 0.7868 -15 ⁰	32 0.8645 -30°	 •
	Pour point Sulphur, Wt. per cent	-15	-30 0.28	•

Refinery through put in 1967 was 14.43 million tons and the refining is being carried out in 8 refinerios. The production and demand pattern of various oil products is as per table III-7.

						-
Ta	ble	II	1-7	7		
			_			

India:	Production	and	demand	of	petroleum	products

	1967		. (Unit: 1972		
	Production	Demand	Production	Demand	
Light oil	2.5	1.6	4.3	5.3	
Kerosene	2.5	3.0	4.4	4.0	
Diesels	4.0	3.7	6.4	6.1	
Heavy ends	4.4	5.6	8.1	7.6	

At the present juncture there is a nephtha surplus but with heavy demand for fertilizer and petrochemical manufacturing, the surplus will be converted into deficit before 1972. The naphtha plan of consumption covers the petrochemical and fertilizer demand.

Sec.

1 11:0

-1H91.

De .

Gas

Associated and non-associated gas resources in India are estimated in 27 at 69 billion cubic metres. Mis is available from 2 fields in Sujarat and 3 in Assam. Freduction is 1,000 million cubic metres per year. The present production is committed for manufacturing of ammonia, domestic and power generation. Typical gas analysis is given below.

Table III-8

	Arlice for Anno inted	Combay Non-associated	Assam Lean	Assam Rich
l'thane	66.6-68.4	75.7	92.0	80.0
real ane	13.0-16.4	11.8	2.,	8.7
(inchere)	10.8-12.1	5.0	175	6.2
Datane (i)	2.0- 2.6	1.2	0,1	1.4
a the ne (n)	3 1.5	1.5	0.1	1.6
filter Hydrocarbons		∮ ∳ •~	0.1	0.9
	0.6-0.8	1.0	2.6	0.6
	• • • • • • •	· · · · · ·	0.8	0.6
ili value net -				1,144
//cu ft gross			.1,032	1,262

Indie: Analysis of natural gas

i noria

. <u>911</u> .

This country is a large producer of both oil and gas. Most important bills are Minas, Duri and Behazap in contral Sumatra and Rantan in north black. Oil production in Kelimantan mainly at Tandjung is large. Some balls has been produced in Yoya. Berides these new fields are being mored. The cil production internal refinery delivers and exports are to a in table III-9.

ID/WG.34/5 Page 29

10 g		(Unit: million tons)		
in a left le sty	Year	Production	Exports	Refinery deliveries
	1960	20.606	ار <mark>10،</mark> 10	9.748
	1961	21.287	11.828	9•459
	1962	22.747	12.623	10.124
•	1963	23.231	13.200	9.031
ана и Солонии и порти и Солонии и порти и Солонии и порти и порти и Солонии и порти	1964	26,851	17.728	9.123
· · ·	1965	27.055	17:937	10.018
дора 3 с на — — — — — — — — — — — — — — — — — —	1966	26.778	17.568	9.210

Indonesia: Production, export and refinery delivery of oil

An idea of the quality of crudes available can be had from the following analysis given in table III-10.

Table III-10

Indonesia: Analysis of oil

Source	APIO	Sp. gr.	Pom pt.	Sulphur
<u>North Sumatra</u> Jatan	48.5	0,7861	-30	0.5
Central Sumatra				
Minas	35.8	-	95	0.06
Duri	22.2	-	35	0.18 parafinic
Bekasap	31.3	0.8687	38	0.11 naphthani
Lirik	34.8	0.850	100	0.96
Kalimantan	40.2	0.824	105	0.20 parafinic

Table III-9

All Agencer : Sale of the

12/WG.34/5 Page 30

The Minas crude is very waxy and forms bulk of the export. There are 3 large refineries (2 government owned and one private Stanvac) with a capacity of 190,000 BPSD and three small cness with a capacity of 4,500 BPS aggregate. One more refinery of 150,000 BPSD is scheduled to go on stream by 1971 at Dumai. Production and demand for petroleum products in 1967 and 1972 has been assessed as per table III-11.

Toble III-11

Indonesia: Production and donard of refinery products

(Unit: 1,000 barrels)

		1967)	Domn nd. (1972)
	Aviation gasoline	1.28	182
	Motor gasoline	10,229	12, 5 99
	Aviation turbing	1,135	610
	Koresche	12,235	13 ,0 02
	Automotive diesel	6,400	8,001
2 **** *	Industrial diesel	2,421	7,403
	Fuel oil	** 13,273	7,303

It will be seen from the bove table that because of the high desired of gasoline compared to other products the naphtha is not likely to be surplus. It's price quoted is high for petrochemical operations.

Gas

There are number of gas d posits and redent disdoveries at Tjeribon Field are promising. Producti n in 1967 from the main areas may be seen from table III-12.

ID/WG.34/) Page 31

Table III-12

2 . Arta hara

1. 1. 1. 1. H. .

1.1

Indonesia: Natural gas production and reserves, 1967

(Unit: billion cubic feet)

	Production	Reserves non- associated	Associated
North Sumatra	9.3	-	-
Central Sumatra	8. 8	-	-
South Sumatra	82.6	443.2	475.3
Java	0.3	-	 '
Kalimantan	14.1	-	-
Total	115.1	443.2	475.3

A typical analysis of the Indonesian gas is given in table III-13.

Tatle III-13

	Gunung Kemala	Limau	Vest Java
°1	22. 0	62.3)	91.8
с ₂	18.5	6.4)	-
دع	31.8	4.5	0.9
c ₄	11.0	1.9,	2.3
с ₅	2.5	0.8	-
co ₂	14.2	24.2	0.8

Indonesia: Analysis of gas

The gas is likely to be used by the Palembang fertilizer plant. The reserves in Java field are being proved but it is probable that large quantities will be available. However, the reserves and prices will have to be properly estimated.

Iran

<u>0i1</u>

With a reserve of 5,200 million tons and an estimated production of 144 million tons in 1968 Iran is one of the world's largest producers of oil and could claim itself to have important sources of raw materials for petrochemical industry. A wide variety of oils are available from different sources in Iran and quite of few of these are light oils. However, as there is large availability of gas and naphtha it may not be necessary to use light oils as raw material.

Refineries

Refining capacity of the refineries at Abadan, Kermanshah and Tehran is about 524,000 barrels per day and the refineries use Ahwaz, Kage Safid, Lali and Naft-Shah crudes. By 1971-72 capacity will increase by 46,000 BPSD with commencement of production from Shiraz refinery and increase of capacity of Kermanshah. The Iranian demand for motor spirit is likely to be only a fraction of the total refinery capacity and the supplies of light fractions and maphtha may be considered high and would be able to sustain petrochemical production of a large magnitude... In view of the large surplus of light oil and naphtha the prices of nuphtha were low. Recently prices have gone up but they may settle down at \$15 per ton without discounts.

g ().

ЗĈ.

Gas

The associated gas availability is also very high in view of large oil production. The gas oil ratio varies from 480 to 1,000 cubic feet per barrel and 650 feet per barrel may be considered good average. Based on this associated gas production would be of the order of 1,700 m.cu.ft. per day. This will rise at the rate of 10-15 per cent per year with a proportionate yearly increase in the oil production. Thus by 1972 2,500 m.cu.ft. of gas may be available in Iran. The present gas consumption of 200 m.cu.ft. per day is expected to go up to 300 m.cu.ft. per day with various utilization schemes and proposals. An additional quantity of 600 to 1,000 m.cu.ft. per day will be supplied to Russia according to commitments already made. A pipe line of 1,100 km. is being laid to carry gas to Russia. In view of the above details it could be seen that Iran vill have 1,000 to 1,200 million cu.ft. per day if gas even after meeting the internal and contracted export demands.

The gas available for internal consumption and supply to the Soviet Union will have the following analysis as shown in table III-14.

New Jose St Martin Kow					
	Range (Volume per cent)	Analysis of gas to be supplied to USSR (Volume per cent)	Average gas analysis (Volume per cent)		
c ₁	67-85	83	80.3		
c ₂	7.23-11.43	12	9.73		
c ₃	3.40 - 5.0	3.5	4.4		
i-C ₄	0.34-5.0	1.5	0.47		
n-C ₄	0.90-1.50		1.17		
n-C ₅	0.24-0.38	-	0.29		
i-05	0.22-0.35	-	0.28		
с ₆	0.22-0.30	- *	0.25		
C ₇ plus	0.02-0.34	-	0.09		
co ₂	0.45-5.20	1.0 max.	3.45		

<u>Tatle III-14</u> Iran: Analysis of natural gas The supplies of natural gas to the Soviet Union would mean 96 m.cu.ft. of athana equivalent but would still leave 146 m.cu.ft. per day for use in the country on the basis of average analysis. Even after making allowance for change in composition and variation in production of gas 3,500 to 4,000 tons of ethane would be readily available as other for conversion to ethylene. Iranian gas could thereford form a very large source of ethylene at very competitive prices. It has been estimated that liquified ethylene could be produced and be made available CIF South East Asian ports at less than US5 cents per 1b.

Refinery gases are also available in large quantities containing propane, ethane and ethylene. These dould also form another raw material source but it may not be necessary to turn to this in view of natural gas and naphtha availability.

Japan

Crude oil production in Japan dropped slightly during 1963 to 1966 from .875 million tons to .786 million tons in 1966. The proved reserves have also gone down. The gas production increased from 1,209 m.cu.m. in 1963 to 1,826 m.cu.m. in 1966. Due to limited availability from internal sources Japan has imported progressively larger quantities of crude oil for refining. Imports in 1966 were 101 million kilo litres. The crude oil imports are expected to increase at 9.6 per cent and may reach 167 million kilo litres by 1971. Imports of naphtha to cover the gap between projected domestic production and consumption is envisaged.

Korea, Rep. of

There are no oil or gas deposts - only petrochemical raw material available is naphtha from refinery.

There is one refinery at Ulsan. Froduction of various petroleum products and demand in 1968 and 1972 may be seen in table III-15.

Table III-15

Koreat Production and demand of oil products

(Unit: 000 barrels)

	Production	Den	nand
	1968	1968	1972
Gasoline	5,100	4,879	7,936
Treated naphtha	156	90	120
Untreated naphtha	1,550	3,613	9,865
Kerosene	2,490	2,895	4,141
Diesel	9 ,5 00	9,693	10,867
LRFO	3,170	2,102	2,772
Bunker-A	133	216	600
Bunker-C	16,10 0	23,409	68,682

A naphtha cracker, an aromatic plant and ammonia production has already been planned and their requirements of naphtha may not be adequately covered from available naphtha. The cracker is planned near Ulsan refinery and expected to give ethylene, propylene, butadiene benzene and cyclohexane for further processing.

Malaysia

V MARK MINT

87548 (S. 1

-1. P.

There are no oil or gas resources. There are 3 refineries with (two She and one ESSO) a combined capacity of 120,000 BPD. There is a heavy gasoline consumption and naphtha surplus limited to availability from ESSO (at present exported) which is committed for supply to an ammonia plant.

Pakistan

011

Oil is available only in West Pakistan near Attork in Potwar Basin. Oil production has been as follows.

ID/WG.34/5 Page 36

943⁴

150

S. Same Parks

200 - 12 - F

· · · 19091.0

In CRAL

Pable III-16

kistan: Production of oil (Unit: barrels)

Year	Production
1962	2,922,070
1963	3,137,731
1964	3, 379, 870
1965	2,489,895
1966	3,252,920
1967	3,178,782

The present production wir considered adequate to meet 15 per cent of the countries' demends. -- Kecently oil even blue introduce and oil from new fields of Kot Sarang, but and Mayal finds could mean a higher percentage of indegeneous supplies. The total sil production even with these new finds will still be inadequate to meet the demand.

The present aggregates refinery signality is 61,000 BPD. A lube oil plant of 550,000 tons/year capacity is teamy expanded to a 1.7 million rs/year capacity refinery. A refinery of 1.5 million tons has recently gone in production at Chittagong in East Lakiston. With these planned expansions a refinery capacity of 4 to 4.5 million tons by 1970 are expected in West Fakistan and 1.5 metric tons in Edst Fakiston. The maphtha availability after taking into consideration demand for motor spirit blending JP-4 fuel blending and platforming will be of the order of 120,000 tons per annum and this could increase to Pur,000 tons by 1970/71. Against this availability the requirements of naphtha for proposed petrochemical complex of Karachi would be, 70,000 fors by 1972 and this may go up to 135,000 tons by 1975. Some naphtha will be required as fuel in East Pakistan and the surplus of naphtha will only be murginal.

ID/WG.34/5 Page 37

Pakistan gas fields are rich and the gas resources are estimated at 20 million/million cu.ft. (600,000 million Nm³). Against this the consumption is 300 m.cu.ft/day of 0.1 million/million cu.ft. per year. Thus there is scope for greater utilization of this gas as a feed stock. Price of the gas has been fixed by the government at 10.5 US cents per million BTUs purified ex Sui gas field in West Pakistan and Extitas field in East Pakistan. Analysis of gas from major fields and availability is as per tables III-17 and III-18.

Table III-17

East Pakistan: Analysis of natural gas

	2.1.			(†
	Rasidper	Titus	Habi Gan j	Kailas Tila
Reserves 10 ¹² cu.ft.				
balance as at 1 July 1968	1.06	2.25	1.28	0.6
c ₁	98.2	97.2	97.8	95•7
c ₂	1.20	1.8	1.5	2.6
c ₃	0.2	0.5	-	0.9
C ₄ and higher	0.1	0.5	-	0.4
Nitrogen	0.3	-	0.7	0.2
co ₂	- 0	-	-	0.2
Hydrogen Sulphide Grains/100 cu.ft.	_	_		
Mervaptan Sulphur Grains/100 cu.ft.	_	_	-	-
Gross heating value BTU/cu.ft.	1,014	1,039	1,020	1,050

Gas

/WG.34/5

Table III-18

Nest Pakistan: Analysis of natural gas

	Sui	Mari	Uch.	Khairpur
Reserves 10 ¹² cu.ft.				
balance as at 1 July 1968	5.86	3.90	2.50	1.00
c ₁	88.52	66.2	27.3	12.2
c ₂	- 0.8 9	σ.2	· 0.7	0.2
c ₃	-0-26	-	0.3	0.1
C ₄ and higher	0.37	-	0.3	-
Nitrogen	2.46	19.5	25.2	16.9
c o ₂	-	0.3	44.7	46.2
Hydrogen Sulphide grains/100 cu.ft.	92.2	-	33.5	2.0
Mercapten sulphur grains/100 cu.ft.	3.8	-	10.2	46.0
Gross heating value BTU/cu.ft.	933	674	308	130

The analysis, however, shows large availability of gases high in methane and low in C_2 + and these may be suitable for methanol, acetylene manufacture.

Philippines

There is a small oil field in Cebu which has not been commercially exploited yet. Supply of gas from IPIL field near Manila has been earmerked for local use. There are 4 refineries with an aggregate capacity of 180,000 BPD of atmospheric distillation and 44,800 BPD of vacuum distillation. The demand and supply position of crude oil may be seen from table III-19 below.

Table III-19

Philippines: Production and demand of petroleum products (thousand barrels)

	Production	Demand
Fuel oil	16,607	17,600
Diesel oil	9,426	9,500
Kerosene	2,862	3,000
Motor spirit/naphtha	13,911	15,700
Refinery gas	450	600
Others	657	1,300
'fotal	43,913	47,700

Singapore

There are no oil or gas deposits. There are, however, 4 refineries (2 by Shell, 1 by Mobil and 1 by BP). Large quantities of bunker oil are supplied to ships and there is a considerable surplus of naphtha (as may be seen from table III-20). The naphtha is being supplied to Viet-Nam but may become spare under normal conditions as a feed stock around US\$17 per ton. This may be a good naphtha source in the region. E.S.

Table III-20

Singapore: Production and demand of petroleum products

	Present		duture / 1972	
	Production Demand		Production	Demand
Fuel oil	3.0	20	50	30
Diesel	7.0	4.5	16	6
Kerosene	1.0	0.6	4	0.8
Gasolene	0.8	3.0	- 17	4
LPG	0.5	0.4	1	0.6

Some refinery gas may be available but may be expensive as a feed stock.

Thailand

4

١.

4

There are two small deposits in Thailand but no gas field - oil deposits are at Mae Soon and Boh Ton Khan but only one is exploited since the refinery is designed to use asphaltic crude and produce heavy products according to the demand pattern.

Naphtha - 4 refiners (2 small and 2 big) with an aggregate capacity of 62,000 BPS are in production. Demand pattern data is not available with naphtha surplus is likely to be limited.

.

÷

198.3

 ΔV_{ij}

18.1

4 <u>X</u>

¹⁰ ≵Ωτουριά ¶ αφαλλαφοριατό αφορογιατό.

> stati Stati

> > State of the

IV. Rate and pattern of growth ----

1. Production -

• • • • • • • • • • • •

Having examined the current consumption of various petrochemicals in th region it would be interesting to get an idea of the growth of production in the region and analyse trends in production into different groups of petrochemical products.

....

Plastics and synthetic resins

Production during the last four years may be seen in table IV-1 below.

Pable IV-1

Production of plastics in countries of ECAFE region

			(Un	iit: tons)	•
Country	1963	1964	1965	1966	1967
China, Rep. of India Philippines	16,800 24,800 11,600	22,309 31,100 14,000	25,500 40,400 14,700	45,600 39,400 16,200	63,40 47,70 18,20
Total Developing Countries	53,200	61,400	80,600	101,200	129.30
Australia Japan	86,500 1,061,800	100,300 1,367,700	107,900 1,601,300	123,600 1,989,800	145,40 2,675,40
Total Developed	1,148,300	1,468,000	1,709,200	2,113,400	2,820,80
Grand Total ECAFE	1,201,500	1,535,400	1,789,800	2,214,600	2,950,1 00

Sources: 1. Ja

Japan Plastics - 1964/65, April 1967.

2. Statistical Yearbook, 1968, United Nations.

3. Data supplied by government.

4. Rubber and Plastics Age International, June 1968.

ID/WC. 34/5

An examination of the above table will show the production of plastics in the region has risen quite fast and the growth rate during-1963-1966 was 23 per cent. The Jäpanese production has almost doubled during the period 1963-1966. In 1966, the Japanese share of the total regional production was 88 per cent. The growth rate between 1963 and 1967 is 26 per cent and the 1967 production has shown once more a big jump in Japan. Data regarding production of different plastics and resins was available only in respect of Japan, India, and Republic of China. The production of major thermoplastic and resins in the region may be seen from table IV-2 and thermosetting resins in table IV-3.

Table IV-2

Production of thermoplastic resins in the ECAFE region

	Japan	India	Rep. of China	Ko rea	Total
<u>1963</u>					
Polyethylene Polyvinyl-	223,400	7,923	-		231,323
chloride Pclystyrene Polypropylene	348,900 68,800 21,200	3,906 5,515 -	16,751 - -		369,557 74,315 21,200
<u>1964</u>					
Polyethylene Polyvinyl-	20,,400	9,057	-		298,457
cnloride Polystyrene Polypropylene	473,800 100,400 39,500	9,204 4,815	23,198 -		506,202 105,215 39,500
<u>1965</u>					
Polyethylene Polyvinyl-	306,300	13,508	-		409,808
chloride Polystyrene Polypropylend	483,000 125,500 07,500	12,179 5,646	25,305 192		520,484 131,338 57,500
<u>1966</u>					
Polyette tene Polyvingi-	551,204	14,129	-	-	565,329
chloride Polystyrene Polypropylene	489,700 199,000 98,500	10,796 5,791	44, 175 1,450	218 -	544,889 206,241 98,500
<u>1967</u>					
Polyethylene Polyvinyl-	141,764	9,751	-	-	757,515
chloride Polystyrene Polypropylene	697,907 278,011 192,318	14,000 5,591	61,775 1,579	7,000	780,742 285,181 192,318

Sources:

1.

· 한국 문화 문화 문화 문화

.....

1.2.2 S

Japan Plastics, 1964/66.

2. Monthly Statistics of Japan Bureau of Statistics, Office of the Prime Minister.

3. Information supplied by governments.

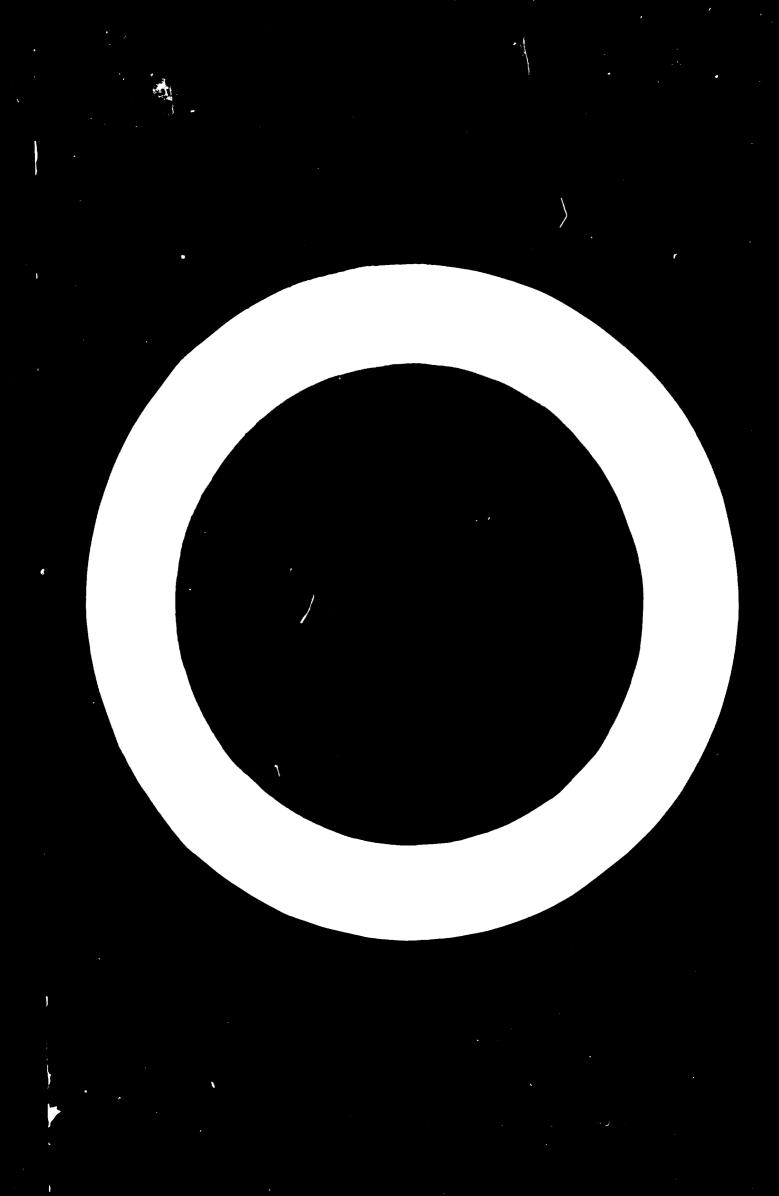
4. Report of the AIDC Fact-Finding Study Team on Petrochemical Industries 1968. .

Table IV-3

Production of thermosetting resins in the ECAFE region

(Unit: tons)

	Japan	EIKA 170	Rep. of China	Potal
<u>1963</u>				
Urea Phenolic Melamine Unsat. Polyester	208,600 6.,600 27,800 27,000	4,330 2,880 -		213,130 67,480 27,800 27,800
1964 Urea Phenolic Melamine Unsat. Polyeste	242,500 77,800 33,900 33,100	4,803 3,225 -	22,885 372 	270,188 81,397 33, 3 00 33,400
<u>1965</u> Urea Phenolic Molamine Unsat. Polyester	249.100 76,100 44,000	9,52 3,360 -	24,55) 708 -	279,166 30,468 44,000 37,500
1966 Urea Pherolia Melamine Unsat. Polyester	1	6.00 (3 , 125	27,602 1,448 -	324,817 103,871 57,700 46,100
<u>1967</u> Urea Phenolic Metaine Unsat. Polyoster	1971-05 12971-1 7711-1 9719-2	3,750	28,500 1,600	367, 505 130,751 74,981 57,969


Sources: 1.

2. 3.

Jap n Hartico 1967 April. Information rapplied by governments.

Report of the Fact-Finding Study Team on

Petrochemical Industries 1968.

₩**G.3**4/5 45

ł

Synthetic rubber production has increased from 115,400 tons to 328,432 tons in 1967. The growth rate has been 26 per cent in this period. However, the number of countries producing rubber is only three. Japan accounted for 86 per cent of the 1967 production. Data regarding production of synthetic rubber is shown in table IV-4.

Table	<u>IV-4</u>
-------	-------------

Production of synthetic rubber in the ECAFE region (Unit: tons)

Country	1963	1964	1965	1966	1967
Indie	7,000	11,800	15,700	15,600	21,843
Total Developing Countries	j.,(O)	11,800	15,700	15,600	21,843
Australia Japan	17,40° 102,600	18,500 128,000	31,100 161,304	30,1999 202,190	26,000 284,589
Total Developed Countries	12	140, 1900	182,400	296,100	30€ , 589
Grend Total	127,000	154, 3(1)	138,100	201,100	328,432

Sources:

UN Statistical

l. Bureau of Statistics of Prime Minister, 2. Monthly Statistics 1968, September.

Out of three rubber producing countries India produces only SER rubber. Japan produces a wide range of synthetic rubber. Data regarding production of these during the last four years may be seen in table IV-5.

Table IV-5

Japan: Production of synthetic rubbers by types

(Unit: tons)

	1963	1954	1965	1966	1967 (Jan-June)
High styrene	6,231	6,069	9,571	10,464	5,762
SBR Crumbs (oil Ext. excl.)	27,978	25,737	39,493	47 017	24,000
Oil Ext.	43,917	50,634	63,291	47,217 88,401	24,229 53,183
Latex	13,030	21,810	13,43 <u>3</u>	22,091	14,744
NBR .	4,238	5,4.6	6,053	8,151	4,884
Polypropylene, Polybutadiene	Egine.	12,240	29,464	16,3 7 1	30, 887
Total	102,574	123,050	161,320	232,695	153,689

Source: Reported in Trivotrial Jopan, 1958, quarterly Spring Special New? - .**.**..

Synthetic fibres are now produced in all countries, the production performance of the empy be coon in trille IV-C.

Toble IV-6

..

Production of synthetic lime is counteins of the ECAFE region

(Unit: tons)

Country	+	1974	1965	1966
China, Rep. of	23)	-130	1,640	3,100
India	730	1,100	2,860	1.,470
Korea, Rep. of	(C);	1.410	1,830	5,230
Pakistan			50	140
Australia	5 11 0	7,710	10,660	13,380
Japan	268. 300	255,000	387,000	454,000
Total	2,5. 0	32,720		.77,320

2. ECALE : .ninem on Bowelepment Prospects of Non-J de Fibre Industry in Asia and the Far . apt, 1966.

Textile Organon. 3.

The synthetic fibre production has increased at 22 per cent during 1963-1966. In this field also the major share of production is from Japan which accounted for 95 per cent of the regional production in 1966. The " synthetic fibre production in all other countries is at present based on imported monomers.

Production of major synthetic fibres in Japan may be seen from table IV-7:

Trble IV-7

Jepan: Production of major synthetic fibres (Unit: tons)

	1963	1564	1945	1966	1967 (Jan-June)
Nylon	80,052	119,121	117,992	146,022	89,128
Polyester	62,205	39,513	51.32	120,755	70,657
Acrylic	95,015	51 324	8+2070	1994 a.C.	59,713
Vinylon	=1,376	44.270	19,057	54,105	29,629

Source: Delestrial Japan, 1967.

In India in 1965 and 1966 polyester production accounted for 45 per cent and 57 per cent of the total production.

2. Production depended in correction and undermay

During the last operation years a few countries nave installed substantial production committee for reput sturing of different types of petrochemicals. There can stict are not getting on stream and in the next year or two will reflect in represed production from these countries. Details regarding present installed capacities in different countries and expansion of these facilities and away is given hereafter.

Australia

Existing capacities for manufacture of petrochemcial products are as follows:

Plastics and synthetic res	ins No. of plants	<u>Total capacity</u> (tons per year)	
Polyethylene	3	57,000	
PVC	2		
Polystyrene			
UF resin	\mathbf{r}		
PF resin	•		Vir de Servir
Synthetic fibres			
Nylon 66		13,400	
Polyester)		4,500	
Nylon tyre cord		1,600	
Synthetic rubber	2	60,000	
Carbon black	3	62,500	
Detergents	122		e
Organic chemicals			
Vinyl chloride	2	35,000-40,000	•
Vinyl acetate	1	5,000	
Phenol	- 2	11,000	

Capacities for manufacturing of ethylene oxide, ethylene glycol, ethylene glychloride, butadiene, phthalic anhydride, methanol and formaldehyde have been established.

L

「「ない」

China, Republic of

Production capacities of various petrochemical products are as follows: Synthetic resins and plastics No. of plants Total capacity (tons per year) PVC 75,000 4 1,600 Polystyrene 1 Urea formaldehyde 2 -----Phenol formaldehyde 1 Synthetic fibres 2,640 Polyester 1 6,640 Nylon 330 Acrylic **50**0 Carbon black

India

Synthetic resins

Installed capacities for manufacturing of different resins and expansions approved and being implemented are as follows:

<u>Resins</u>	No. of units	Total production capacity (tons per year)
Polyethylene	4	46,000
PVC	4	19,000 (expansion to 80,000 tons approved and being implemented)
Polystyrene	. 2	15,000 (expansion to 21,500 tons_approved_and being_implemented)
Polyvinyl acet		±
Urea	17	14,600
Phenol	4	3,330
Melamine	7	730
Unsaturated Polyesters	1	600 (to be expandëd to 1,200 tons)
Epoxy	(plant under erectio	n) 600

Solvents and plasticizers

The following capacities have already been installed and the production would be available from the four companies which have already started production.

Solvents		Total production	
		(tons per year)	
Acetone		17,000	
Diacetone alcohol		4,800	
Butyl alcohol		11,000	
Butyl acetate		2,800	
Ethyl acetate		600	
Ethyl hexanol		1,600	
2 - Ethyl hexanol		8,000	an pille an tr
Ethylene dichlorid	e	3,000	
Isoprophnol		1,500	
Methyl isobutyl ke	tone	3,700	. · · · ·
Benzene	an a	47,000	e ²
Voluenc		14,000	÷
Plasticizers (Phth	alate type)	Total production	<u>1</u>
	er of units	(tons per year)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
numbe	4	8,100	4 - 14 4
	•}	0,100	
Synthetic fibres			.*
Fibre	Number of units	Total production capacity	<u>n</u>
Nylon	8	12,230	
Polyester	· 1	4,500	
Acrylic	2	6,500	(91 27
Sunthatic nubber	•		turn i 🕅

Synthetic rubber

Number of units

1

Total production capacity (tons per year) 30,000

ID/WG.34/5 Page 51

Synthetic Detergents

Number of units

6

Total production capacity (tons per year)

18,000 (expansion to 22,000 tons/year approved and being implemented)

Pesticides

	Capacities installed	Under implementation	Total
B.H.C. 13 per cent	11,800	14,850	26,650
Lindane			
$D_{\bullet}D_{\bullet}T_{\bullet}$	2,800	1,400	4,200
Endrine	هه مين . ∕سيني مسلم	3,500	3,500
Parathion	700	2,500	3,200
DDVP		280	280
Carbaryl		•	
Thiocarbamat	es 4,300	1,220	5,520

Petrochemical complexes

Two naphtha crackers, with naphtha through put of 60,000 tons and 225,000 tons each have already been installed and gone into production in 1967 and 1968 respectively. The output of the first cracker at full capacity will be about 20,000-22,000 tons of ethylene and 10,000-12,000 tons of propylene and proportionate quantities of aromatics and other products. The ethylene from this cracker is being used for production of H.P. polyethylene in the same plant, whereas the propylene and aromatics are contracted for supply to other companies for manufacture of phenol and other products. The factories also produce solvents.

Second cracker will produce 60,000 tons of ethylene and 35,000 tons of propylene, 7,000 tons of butadiene, and 14,000 tons of benzene. Ethylene is being used for manufacturing PVC as well as for supply to an allied factory for production of high-density polyethylene. Production of solvents and - petrochemical intermediates has already been started. ID/WG.34/5 Page 52

Iran

A plant with production capacity of 60 tons a day for manufacture of PVC is already under construction at Abadan, production would be based on natural gas. Similarly, a urea plant with a capacity of 500 tons a day based on natural gas and a dodecyl benzene plant with a capacity of 30 tons a day based on imported benzene are also under construction.

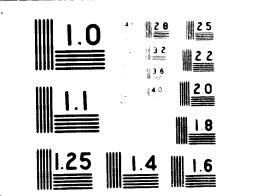
A plant for manufacture of 53 tons per day of polyethylene based on rofinery off-gas has been ordered.

Japan

. . .

The capacity installed of the major petrochemcials in Japan in 1967 and 1968 and the operation rate may be seen from table IV-8.

Petrochemical		roduction capacity Rate of increase (ton/month) (pcr cent)				
i e ui oonomi our	Mar.1967 ·	Mar.1968	1967/1966	1968/1967	Mar.1967	Mar.1968
Ethylen.	114,969	1_0,209	125.9	. 113.3		107
Propylene	80,526	93,206	128.5	115.7	110	114
Styrene monomer		28,876	115.2	118.8	109	104
Butadieno	15,423	36,323	103.4	105.8	112	121
Polyuthylene	47,890	70,627	120.5	147.5	126	99
Polystyrene	25,715	51,505	142.8	122.5	85	83
Pelypropylene	9,680	(),300	152.7	209.7	127	94
Ethylene oxide	14,220	14,220	208.5	100.0	97	90
Ethylene glycol	12,720	12,720	201.9	100.0	101	78
Fropylene oxide		7,642	103.5	103.8	74	71
Pelypropylene						
glycel	6,140	6,470	98.6	105.4	53	62
Acelone	7,651	5,651	119.8	126.1	109	9 3
Octano1	4,123	5,123	100.0	124.3	107	- 92
Butanol	7,850	9,100	101.3	103.2	103	80
Phthalic			1			
anhyrido	13,265	15,885	122.7	119.8	87	81
erophthalic	• •					
acid	10,340	17,900	106.3	134.4	108	103
Benzene	27,470	46,790	100.1	170.3	98	93
Toluene	17,761	24,231	102.9	136.4	109	107
Xylene	12,296	22,356	110.3	181.8	107	111
Synthetic						
rubber	25,203	29,803	104.0	118.0	98	93


Table 1V-8

Source: Industrial Bank of Jopan - Petrochemicals, 1968.

4.4.572

• 57 L)

.

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

ø

.

ID/NG, 34/5 Page 53

40

Korea, Republic of

Synthetic resins

Capacities installed for manufacturing of petrochemicals are given below.

•

Synthetic resins and plastics in-

	No. of u	nits <u>Present capacity</u> (tons/year)	Capacity under expansion	Pinal capacity
PVC	5	44,600	15,900	60 ,50 0
Urea Formaldehyde	, 7	26, 64 0	· · · ·	- 26,640
Polystyrene	1	3,000	5,000	. 8,000

Synthetic fibres

K Storale	No. of units	Present Capacity	Under con- struction	Under planning expansion	Total
Nylon	3	7,175	1,575	1,750	10,500
Polyester	6	2,100	7,000	16,100	25,200
-		4,725	8,750	19,600	33,075
•	D.a. 1	700	1,750	-	2,450
Synthetic detergents	5~	17 ,50 0		۱ •	17,500

Philippines

The present production capacities are: 6,000 tons of PVC resin, 8,200 tons carbon black, 41,500 tons of urea formaldehyde resin and 37,000 tons of synthetic detergents. A nylon plant with a capacity of 2,500 tons a year is under construction and is expected to go stream by 1969.

ID/WG.34/5 Page 54

Pakistan

. <u>A-</u>

Present position regarding capacities installed is as follows:

دي. هوي هيدينين مريد الارديني ال

1995 - M.

Synthetic resins

Capacity installed for manufacturing of polyethylene is 5,000 tons/ year. Capacity of the urea resin manufacture is adequate to meet the current demand.

Synthetic fibres

Two plants together have a capacity of 1,200 tons/year. This is being expanded to 4,000 tons/year by 1970. A further 2,000 tons/year capacity has been licenced.

Pesticides

.0 -

4.1

54 <u>19</u>

Two plants for manufacture of BHC (12 per cent game isomer) and three for manufacture of DDT have total capacities of 3,500 tons and 7,500 tons/ year respectively.

Singapore

The present petrochemical capacity in existence is in the sphere of urea formaldehyde resins 4,800 tons and phenol formaldehyde resins 1,200 tons There is also a detergent capacity to the extent of 6,000 tons per year.

 $\mathcal{O}_{\mathcal{O}}$

÷ .

4.

++1 - 1 - 1

. .

Marken and

V. Trade in sajor petrochemical products

With the development of petrochemical industries in Japan, Australia and other countries of the region and growth of processing industries in many countries of the region trade in petrochemical products increased in volume. An idea of the trade in major petrochemical products is given below.

Plastics and synthetic resins

3S+14

.

• (*

Table V-1 shows the pattern of import trade in plastics and synthetic resins.

· · · · ·

1 41.

Table V-1

• · • · · · · · ·	
import of synthetic plastics and	resing in countries of ECAFE region
	A COLLEG TH COMMITTER OF POALE LEKION

• •

(Unit: tons)

Country	1963	1964	1965	1966	1967
Burma Cambodia Ceylon China, Rep. of Hong Kong India Indonesia Iran Korea, Rep. of Malaysia Pakistan Philippines Singapore Thailand Vietnam, Rep. of	2,994 1,270 1,938 7,165 69,886 12,700 8,487 7,100 13,091 4,677 9,481 17,600 	2,480 800 1,987 9,405 121,930 16,300 5,111 12,100 13,050 12,569 17,213 21,900 - - 292 8,200	3,686 1,470 2,000 19,597 97,140 15,943 6,340 15,000 14,051 17,700 15,009 22,500 151 600 9,550	1,914 1,690 3,300 24,892 108,560 15,834 2,967 19,800 17,234 11,423 16,890 31,800 440 866 11,412	939 2,996 4,791 44,680 30,640 9,350 21,796 13,594 17,286 30,840 284 143 19,721
Total Developing countries	162,077	243,337	240,737	269,022	197,060
Australia Japan New Zealand	34,051 35 ,80 0	62,108 44,900 27,300	78,102 23,400 35,600	78,034 27,900 34,800	83,942 33,621 -
Total Developed countries	69,851	134,308	137,102	140,734	117,563
Grand Total	231,928	377,645	377,839	409,756	314,623

Sources: 1. UN Int

UN International Trade Statistics.
Commodity Trade Exports - OECD.

3. Data supplied by governments.

4. Japan Plastics 1967.

5. Foreign Trade Statistics of Asia and the Far East, 1963.

÷

.

TEDLO V-2

Export of synthetic resins from countries of ECAFE region

(Unit: tons)

			and the second se		ومقروب المقروف المتعاول المتعاول
Country	1963	1964	1965	1966	- 1967
China, Rep. of Hong Kong	4,593 1,104	8,181 10,760	6,406 11,840	31,140 10,470	30,513
Total Developing countries	5,697	18,941	18,246	41,610	30, 513
Australia Japan	112,750	10,900 141,800	10,550 251,000	4,990 361,000	390,250
Total Developed countries	112,750	152 ,7 00	261,550	365,990	390,250
Grand Total	118,447	171,641	279,796	407,600	420,763

Sources:

1.

Japan Plastics Annual, 196 Includes re-export. 2.

An examination of the above tables would show that by 1966 the exports for the region as a whole were already at par with imports. The total imports increased from 231,928 tons in 1963 to 409,756 tons in 1966 whereas the exports increased from 118,447 tons in 1963 to 407,600 tons in the same year. The major importers were: Hong Kong 28 per cent, Japan 7 per cent, New Zealand 9 per cent, Philippines 8 per cent, China 6.5 per cent, and Australia 20 per cent. The major exporter of the region was Japan and in 1966 exports from Japan constituted 88 per cent of the total export.

Pattern of imports of plastic in Hong Kong in 1966 showed 36 per cent polyethylene, 17 per cent PVC, 19 per cent polystyrene, 7.5 per cent polypropylene and 4.5 per cent urea resins.

In the Republic of China in 1966 52 per cent of polyethylene, 17.5 per cent of PVC, 7.5 per cent of polystyrene and 6.6 per cent of polypropylene was imported.

Japan imports consisted of 5 per cent polyethylene, 6 per cent PVC, 10 per cent polystyrene, 5 per cent acrylics and 10 per cent of thermosets (UF and PF) while a number of other materials were imported in smaller quantities.

Australian imports in 1966 of the poly condensation and addition products (thermosets like urea and phenolic resin) formed 30 per cent of imports, the polymerisation and copolymerisation products formed 52 per cent, callulosic plastic 15 per cent and other 1.5 per cent, Polyethylene imports were 11 per cent and PVC 13.5 per cent of the total.

Item-wise details of the export from Japan may be seen from table V-3 below.

Table V-3

		(Unit:	tons)	
	1964	19 65	1966	1 967
Polyvinyl chloride resin	33,600	71,207	59,295	58,911
PVC film PVC sheet	11,000 14,800			
PVC leather PVC pipe	16,200 3,900	56,280	68,042.	72,886
PVC plate PVC others	6,400	a sub-		
Polyethylene	25,100	75,273	155,605	167,633
Polystyrene Polyvinyl acetate	2,000		15,584 3,893	
Polymethyl methacrylate	1,200	2,297 2,264	1,958	4,116
Polyvinyl alcohol	4,700	5,553	10,071	17,896
Others	4,200	10,728	11,731	16,530
Thermoplastics total	125,900	228, 327	336,179	363,713
Melamine resin	1,800	1,668	1,956	2,949
Melamine decoratives laminates		2.9m.sq.m		4.8m.sq.m.
Unsaturated Polyester resin	2,500	6,002	7,033	5,532
Phenolic resin	500	1,026	1,160	1,257
Urea resin	500	306	551	1,078
Others .	1,600	3,412	4,624	5,285
Thermosetting total Others	8,500	12,414	15,324	15,101
	7,400	10,222	9,635	10,438
Grand Total	141,800	250,963	360,138	390,252

Japan: Plastics erport by material

Source: Japan Plastics, Vol. 1, No.1 April 1967. Rubber and Plastic International 1968.

ID/WG.34/5 Page 59

ŧ

. . . . Japanese polyethylene was the biggest export item from the region in 1966 and accounted for 37 per cent of the export while PVC from the Republic of China and Japan was the next biggest item in quantity accounting for 24 per cent. 1

Synthetic fibrer

sufficient Exports and imports of synthetic fibres may be seen in tables V-4 and V-5. 1.15

Table V-4

Import of synthetic fibres

Country	196 3	1964	1965	1966	1967
China, Rep. of Hong Kong India Indonesia Iran Kores, Rep. of Malaysia	2,074 1,405 60 1,415 6,526	3,451 1,860 2,700 - 2,696 -4,175 247	4,250 2,120 6,500 6,500 3,406 7,496 473	5,686 4,130 5,900 6,565 12,144 517	- 8,060 10,377 4,830 76 10,118 28,671 165
Philippines Singapore Thailand Vietnam, Rep. of	-	2,113 1,061 857	2,184 - 1,409 692	5,526 154 2,537 1,202	5,780 172 2,804 1,563
Total Developing countries	11,480	19,160	28,595	44,361	72,616
Australia. Japan New Zealand	7,700 2,000	7,000 1,000 1,500	10,200 1,000 1,500	600 800	68 0
Total Developed countries	9,700	9,500	12,700	1,400	68 0
Grand Total	21,180	28,660	41,295	45,761	73,296

(Unit: tone)

Year ending June.

1/ Year on Sources: 1. Information supplied to AIDC Fact-Finding Study Team on Petrochemical Industries.

- Seminar on Development Prospects of the Man-made Fibre 2. Industry in Asia and the Far East, Tokyo, 1966.
- International Trade Statistics. 3.
- 4. Information supplied by governments.

1D/NG.34/5 Page 60

The region has remained throughout the period exporter of synthetic fibres because of large exports from Japan. The imports in the region increased from 20,996 in 1963 to 55,805 in 1966 but the experts during the period also registered an increase from 47,614 tons to 106,534 tons. Japan and the Republic of China were the only exporting countries and in 1966 Japan accounted for 98 per cent of the export. Major fibres exported from Japan in 1966 were nylon 29 per cent, polyester 24 per cent, acrylic 22 per cent and vinylon 2 per cent.

St. Sec.

	Table	<u>V-5</u>
--	-------	------------

Export of synthetic fibres from ECAFE region

			(Unit: tons)			
Country	1963	1964	1965	1966	1967	
China, Rep. of	614	1,352	1,967	2,534	3,984	
Japan	47,000	68,000	113,000	104,000	112,900	
Total	- 47,614	69,352	114,967	106,534	116,884	
Total	- 47,614	69,352	114,907	100,534		

Source: 1. Textile Organon June 1968.

2.

3.

9.770

. . .

•

aln 1

a la carrier

A. 542. .

4.

AP TO A MELLINGTON POPULA

Data furnished by government.

Data submitted at ECAFE Seminar on Development Prospects of Man-Made Fibre Industry, Tokyo, 1966.

Junit and and

1.

Trends in synthetic rubber - imports and exports - may be seen in tables $V_{\rm inf}$ and $V_{\rm -7}$ below.

ł

. Balanti

Table V-6

Imports of synthetic rubber

(Unit: tons)

Country	1963	1964	1965	1966	1967
China, Rep. of	1,135	1,674	2,500	3,863	5,000
		• • • • • • • • • • • • • • • • • • •	de		(esti- mate) [
India.	5,738	3,752	975	990	
Iran	-		, , , , , , , , , , , , , , , , , , , 	-	9,275
Korea, Rep. of	-	2,729	5,442	4,384	6,163
Malaysia	675	460	822	1,003	
Pakistan	550	963	721	6,247	2,229
Philippines	4,814	6,790	5,659	7,449	7,621
Singapore	·	eri arabi i T	304	584	511
Thailand	78	292	600	903	143
Total Developing countries	12,990	16,660	17,023	25,423	32,068
Austrelia	10,421	13,821	15,336	17,506	17,682
Jepan	54,460	57,201	49,830	47,855	49,672
Total Daveloped countries	64,881	71,022	65,166	65,361	67,354
Grand Total	77,871	87,682	82,189	90,784	99,422

Sources: 1. Information supplied by governments to AIDC Fact-Finding Study Team on Petrochemical Industries, 1968. 2. UN International Trade Statistics.

OECD Commodity Exports. 3.

.

Foreign Trade Statistics.

4.

5. Information supplied by governments.

1/ 1968 imports.

1967/1968 data. 2/

Table V-7

moort of erathetic rubber

	Country	1963	1964	1965	1966	1967
•	Japan	8,417	15,875	30,323	•50,300	57,535

Source: MITI as reported in

. . . .

It may be observed that import of synthetic rubber has increased by 21,000 tons over the period while exports have increased by 49,000 tons during the same period. In spite of a large production of synthetic rubber, Japan is the principal importer accounting for 49 per cent of the regional imports. Australia with 17,680 tons accounts for 17.5 per cent of the imports followed by Philippines and China. Iran has also imported large quantities in 1968.

In 1966 import of SBR polybutadiene and butyl rubber was 34 per cent and 43 per cent respectively in case of Japan. In Australia in 1966 special types of SBR like latex, high styrene and general purpose SBR accounted for 40 per cent of import, polybutadiene for 19 per cent, butyl for 9 per cent and chloroprene rubber for 13 per cent. In Tran in 1968 SBR imports were 70 per cent, polybutadiene 24 per cent and butyl 6 per cent.

. . .

VI. Plans for empendion

Apart from the capacities already installed, licensed and under implementation or construction, the following plans for creating additional capacity for production of petrochemicals are under active consideration of the various countries.

Australia

Production of 5 million 1bs. ABS plastics and styrene butadiene later has been planned. Plans are expected to go into production by 1969.

India

Plans for the establishment of public sector naphtha oracker in Gujarat with a through put of 323,000 tons per year has reached an advanced stage. It is estimated that the project will be in operation by 1972-1973.

The following products would be available for sales to the units to be set up in private sector:

1.	Ethylene (polymer grade)	100,000 tons
2.	Propylene (polymer grade)	17,000 tons
3.	Propylene (92 per cent)	33,200 tons
4.	Benzene about	20,000 tons
5.	Butadiene	37,000 tons

Proposals for manufacture of petrochemicals from these primary products have been worked out in detail, with a number of firms and these will go in operation along with the naphtha cracker. The details of the products to be produced in the units is as follows:

a the state to be a set of the set	tons/year
Polyethylene (high pressure)	45,000 (to be expanded to 60,000 tons in second phase)
Styrene	30,000
Polyethylene (intermediate pressure)	27,000
Vinyl acetate	30,000
Acetaldehyde (by-products)	15,000
Polypropylene	15,000
Acrylonitrile	16,000
Stereo regular polybutadiene and butadiene-styrene synthetic rubber	25,000

.....

It is also planned to supply 12,000 tons of butadiene from this cracker to an existing SBR plant.

The Government of India had concluded a technical know-how agreement with a German firm for establishing an aromatic project at Koyali, Gujarat. The following products will be manufactured:

Product	Tons/year
Ortho-xylene	21,000
Para-xylene	17,000
Mixed xylenes	2,500
Dimethyl Terphthalate	24,000

This project was expected to be on stream by 1970/1971.

A private sector plant for manufacture of caprolactum of 21,000 tons a year is in advanced stage of planning and is expected to be on stream by 1971.

<u>Indenesia</u>

A proposal for manufacture of 2,300 tons of PVC compound at the first stage and 8,000 tons of PVC resin three years thereafter has been submitted by a foreign company.

A project for manufacture of carbon black is being planned in north Sumatra which would take up 20 million SCF a day of LPG. This is planned in conjunction with 30 million SCF a day of LPG production.

Iran

Steps have been taken to acquire license and know-how for a 15,000 tons per year of carbon black plant.

Projects for manufacture of 25,000 DMT and 10,000 tons of TEL and/or TML are under consideration.

A feasibility study for manufacture of ethylene from associated gas have been carried out. If the project is taken up on a national basis the plant capacity will be of 100,000 tons per year of ethylene. There is a possibility of this being increased on the basis of joint venture with an international company. A 70,000 tons per year capacity ethanol plant would also be a part of the project.

Feasibility studies are being undertaken for a 600 tons a day methanol and 300,000 to 400,000 tons per year aromatic projects.

Plans for 20,000 to 25,000 T/Y capacity caprolactam plants are under consideration.

Korea, Republic of

The first naphtha cracker in the Republic of Korea will be established at Wulsan. It is expected that the project will be on stream in 1970. A list of products to be produced and production capacity for each are as follows:

12.WG.34/5 Page 66

Item	Production Capacity (tons/year)	Remarks
Ethylene	66 ,00 0	Expandable to 100,000-150,000 tons/year
Polyethylene	50,000	
Vinylchloride	40,000	
Polystyrene	6 ,00 0	•
Ethylene oxide and ethylene glycol	12,000	έ. •
Acetaldehyde	26,000	
Polypropylene	20,000	
Alkyl benzene	- 6 ,800	Expandable to 10,000 tons/year
S.3.R.	. 15,000	
Caprolactam	33,000	
Acrylonitrile	26,700	Expandable to 52,000 tons/year
Methanol	45,000	, crrs´

It is understood that with the exception of alkyl bensene and methanol, the production of other petrochemicals will be undertaken by joint-venture companies.

Pakistan

ί.

. .

In West Pakistan a petrochemical complex having a capacity of 25,000 tons of ethylene, 10,000 tons of polyethylene, 15,000 tons of PVC, 5,000 tons of polypropylene and 5,000 tons of DDB are in advance stage of implementation. This complex will be based on naphtha. A complex based on natural gas to produce $15_{\pm}000$ tons of PVC resins and polyvinyl alcohol fibre is planned for East Pakistan.

ĥ

A polyester fibre plant with a capacity of 7,000 tons of chips and 5,000 tons per year of fibre as a joint venture between Iran, Pakistan and Turkey is planned. This plant will be in operation in 1971/1972.

r

A joint venture plant between Iran and Pakistan for production of 5,000 tons per year of acrylic fibre is being planned. This will operate by 1972. Both the fibre plants will be based on imported intermediates.

A plant for manufacture of 10,000 tons a year of polybutadiene rubber is planned for Karachi. The production for this would cover the Pakistan requirement and some quantity will be available to Iran against some polyisoprene imports.

A detergent plant of 3,000 tons per year capacity in existence is being expanded to 5,000 tons a year. Additional new capacity for the total production of 20,000 tons a year to coincide with the DDB plant is being planned.

A BTX unit is being built at the national refinery. This will meet the toluene and xylene demands of the country but the benzene will not be adequately available from internal sources.

Philippines

The Board of Investment has approved a methanol plant with a capacity of 18,000 tons per year. A 2,500 T capacity nylon plant is expected to go on stream in 1969.

A formaldehyde plant with a capacity of 16,500 tons with provision for producing resins is under planning.

Setting up of a polyester fibre plant with a capacity of 4,700 tons per year is being considered.

China, Republic of

Future plans for expansion or creation of fresh manufacturing capacity have been indicated below.

D/16.34/5 Page 68

Synthetic fibres

Nylon - 22,600 T/A capacity is under planning for 1970.

Acrylic - A plant for manufacture of 3,300 T/A has been recently completed and 16,500 T/A capacity is under planning for 1970.

Polyester - 27,000 T/A capacity is planned for 1970.

20,000 T/A, plant is planned for 1974.

Primary petrochemicals

11

Ethylens - 55,000 T/A has been completed recently.

al e

Bensene - 20,000 T/A is being engineered for completion by 1969.

Toluene - 25,000 T/A is being engineered for completion by 1969.

Xylene - 24,000 T/A is being engineered for completion by 1969.

· 51* · · · ·

. . . .

1.11

olt

4.

Sincapore

1110

A PVC resin plant with a capacity of 3,000 tons a year using imported * EDC as raw material is being planned.

VII. Spocial features and factors initiating the provident development and suggested solution

There are certain special characteristics of the petrochemical industry which have to be taken note of in order to examine the special features and factors affecting the growth of these industries. They are briefly enumerated here.

The petrochemical manufacture needs large initial investments and is highly capital intensive. In $1964^{1/2}$ investment of a naphtha cracker with 285 thousand ton naphtha throughput and a production of 80 thousand tons of ethylene was estimated at 15 million US dollars. There had been a tendency all over to construct larger units, and now 300,000 tons per year ethylene plants are being erected in Japan, Europe and United States. In a recent forecast^{2/} for ethylene production and usage in the period 1970-1980 it has been estimated that the capacity of ethylene plants will go up from 225,000 tons in the sixties to 450,000 tons in the seventies. The cost of 450,000 tons per year capacity plants based on naphtha has been estimated at 35 million dollars.

The conversion of a composite feed stock consisting of several hydrocarbons is not selective and a number of other products are obtained along with ethylene. The economic working of the plants depend, to a large extent, on full utilization of all the products available.

The primary products available from the cracking reactions like ethylene, propylene are generally liquids and gases which are inflammable, explosive and difficult to transport. Their storage and transport is expensive. It is therefore economical and profitable to locate units consuming these primary products in close proximity to the main production centre.

1/ Petrochemical Industry and the Possibilities of its Establishment in Developing Countries - C. Mercier.

2/ Hydrocarbon Processing, 1969 January.

The research development efforts put in this industry have been very high and this has given rise to problems of obscelence of technology equipment and processes. Continuously newer raw materials and better processes are replacing the older ones making fresh investments necessary.

For the development of petrochemical industries it will be necessary to find markets for the following groups of products: (1) Synthetic resins and plastics: (2) synthetic fibres; (3) synthetic rubber; and (4) detergents.

The main markets which have been found for various groups in developed countries are:

Plastics: packaging materials - films, sheets, bags, plastic coated paper, plastic foam containers, injection and blow moulded containers and bottles.

Building materials: and components such as tiles, pipes, sheets (plain and corrugated) fittings, and others used in construction and housing.

Components or parts of radios, TV sets, electric fans, washing machines household appliances and other durable consumption articles.

Components of automobiles, scooters, bicycles and transport vehicles.

Agriculture - film sheets etc. used in agriculture, canal lining, storage of grains, fertilizers and other products.

Synthe	tic r	ubber:	•	1-10	Tyres and tubes of cars, true	ales, motor
		•	1.		ovcles, bicycles etc.	
ta an ann a				Ŧ	Cable and wire goating	· • • •
		•	· 4	2 54	Hoses, pipes, belting	
*** 		and and a second	•	٠.	Noulded mode	lag di san
	•	. t•	• •	-		
,	127		**	_	Foam rubber oushions and matt	

0

Synthetic detergenter

- Replacement of loundry shaps for textile washing.
- Cleaning composition for industrial household and hospital use.

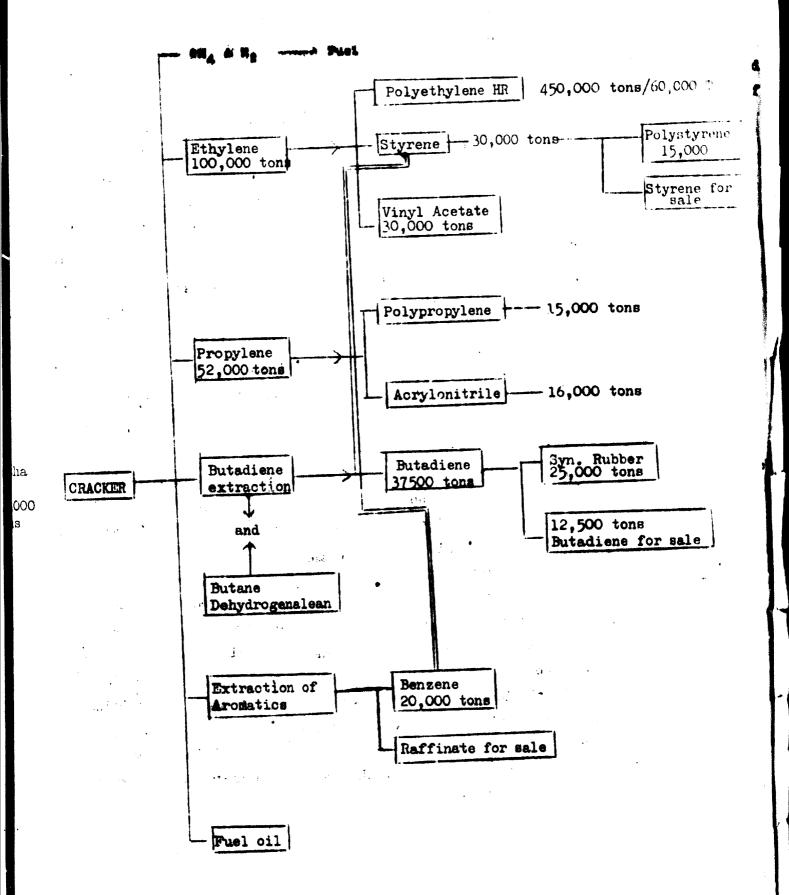
Synthetic fibres:

- Apparel, cloth, knitted garments - fishing nets, ropes and industrial uses.

In the light of the above characteristics of the petrochemical industry the special problems of the region may be detailed as follows:

Demands:

The demands in the developing countries of the region for the petrochemical products are quita low. Limited per capita income has kept the consumption of many of the product groups at low levels. Because of large rural population and limited use of small packages for consumer articles, the packaging demands have not yet come up in large quantities. The use of other traditional materials like paper, glass is also common due to the cost consideration. The housing construction is proceeding at a slow pace because of the low income level. The use of materials like bricks, wood and metals, is more common due to a lack of adequate information regarding these new products and also due to the higher cost of these. The use of plastics in the construction field would require intensive marketing and extension work and the prices of the plastic materials would have to be competitive vis-à-The acquisition of vis other traditional materials available in the market. durable consumer goods like radios, refrigerators, air conditioners, automobiles etc. depends to a large extent on the availability of these goods at competitive prices as well as the requisite purchasing power. In many of the developing countries the manufacture of a number of these products is in the initial stage and the demands are small. These will have to come into market as mass produced items at competitive prices to ensure large sales. The demand for the plastic material as components would shoot up once these products find larger markets.


The major factors pending the growth of synthetic fibre demands are the high prices and the lack of processing facilities in some countries of the region. The region as a whole is short of the fibres and had to depend on imports. In 1966, it imported about 1.2 million tons of cotton alone. With the future growth of processing facilities and reduction in the cost of synthetic fibres, there should be no difficulties in finding bigger markets for synthetic fibres.

There is a large production of natural rubber in the region and the growth of synthetic rubber demand would affect the natural rubber industry unless both become complementary to each other and the use of rubber increases with larger production of rubber products.

The demands for synthetic detergents may go up. Availability of vegetable and animal fats for soup production will be limited because of demand for edible use; and soap may be replaced by detergents as in developed countries.

Finances

The financial outlay and investment required for petrochemical manufacture are very high even for individual units of production and since it is necessary to plan the production of petrochemicals around the basic facilities and the use of all the products, the investment becomes much larger because of the number of production units which will have to come up simultaneously. An idea of the production units which may have to be components of a complex and the financial outlays that may be necessary may be had from an outline of a new complex planned in the near future in one of the developing countries.

Investment for the cracker and the various downstream units listed above would be of the order of 130-135 million dollars and of this, a sizable portion (40 to 45%) would constitute the cost of imported equipment.

These investments are not inclusive of utilities which are being provided from existing facilities. Power, water and effluent disposal systems are already available and the land adjacent to a refinery has been developed for construction of the complex. Naphtha will be drawn from the refinery and all the products will be fed to the sown stream units with only limited storage facility investments.

Acrylonitrile and vinyl acetate will be further processed into actylic and PVA fibres respectively in plants for which separate and additional investments are planned.

Above details may give an idea of the magnitude of the investment involved. The financial problems likely to be encountered in the starting up of such a complex would fall in two broad groups.

Due to the lower level of industrialization there are very few industrialists or industrial organizations who might be able to muster and get the necessary finance on their own even for starting individual units for manufacture of petrochemicals. The development of joint stock companies in many countries of the region is not advanced enough and even in such countries where the joint stock companies are functioning the present capital formation may not be adequate for raising of the required funds for construction of such complexes. A large percentage of the necessary finance may have to come from financial institutions like banks, insurance companies and the government lending institutions. In view of the limitation of individual finances it may become necessary for a group of industrialists or organizations to pool their resources for starting a petrochemical complex and many problems of marketing, pricing of raw materials, sharing of utilities etc. will have to be sorted out to ensure the smooth working of the complex.

Table V-6

Imports of synthetic rubber -----

.

معمومها والمعام والمعام والمعام والمعارية والمراجع والمعار

Un	17	•	τ	ons	

	•		•			_
Country	1963	1964	1965	1966	1967	
China, Rep. of	-1,135	1,674	2,500		5,000	
					(esti- mate)	
India	5,738	3,752	9 75	990	1,126	
Iran di di di di di di		-	-	-	9,2751/	
Korea, Rep. of	-	2,729	5,442	4,384	6,163	
Malaysia Curr	675	460	822	1,003		
Pakistan	550	963	721	6,247	2,229	
Philippines	4,814	6,790	5,659	7,449	7,621	1.20
Singapore	-	-	304	·584	511	1 94.07
Thailand	.78	292	600	903	143	
Total Developing	a diyan					1
o countries	12,990	16,660	17,023	25,423	32,068	
Australia	10,421	13,821	15,336	17,506	17,682	
Japan	54,460	57,201	49,830	47,855	49,672	
Total Developed countries	64,881	71,022	65,166	65,361	67,354	
Grand Total	77,871	87,682	82,189	90,784	99,422]

Information supplied by governments to AIDC Fact-Sources: 1. Finding Study Team on Petrochemical Industries, 1968.

2. UN International Trade Statistics.

3.

CECD Commodity Exports. Foreign Trade Statistics. 4.

Information supplied by governments. 5.

1968 imports. 1/

1967/1968 data. 2/

Table V-7

reddyn of grathetic rubber

Country	1963	1964	1965	1966	1967	
 Jepan	8,417	15,875	30,323	50,300	57,535	

Source: MITI as reported in

1-15

73-4

It may be observed that import of synthetic rubber has increased by 21,000 tons over the period while exports have increased by 49,000 tons during the same period. In spite of a large production of synthetic rubber, Japan is the principal importer accounting for 49 per sent of the regional imports. Australia with 17,680 tons accounts for 17.5 per cent of the imports followed by Philippines and China. Iran has also imported large quantities in 1968.

In 1966 import of SBR polybutadiene and butyl rubber was 34 per cent and 43 per cent respectively in case of Japan. In Australia in 1966 special types of SBR like latex, high styrene and general purpose SBR accounted for 40 per cent of import, polybutadiene for 19 per cent, butyl for 9 per cent and chloroprene rubber for 13 per cent. In Iran in 1968 SBR imports were 70 per cent, polybutadiene 24 per cent and butyl 6 per cent.

....

.

Γ,

1.18

VI. Plane for smansion

Apart from the capacities already installed, licensed and under implementation or construction, the following plans for creating additional capacity for production of petrochemicals are under active consideration of the various countries.

Australia

Production of 5 million 1bs. ABS plastics and styrene butadiene later has been planned. Plans are expected to go into production by 1969.

India

Plans for the establishment of public sector naphtha cracker in Gujarat with a through put of 323,000 tons per year has reached an advanced stage. It is estimated that the project will be in operation by 1972-1973.

The following products would be available for sales to the units to be set up in private sector:

1.	Ethylene (polymer grade)	100,000 tons
2.	Propylene (polymor grade)	17,000 tons
3.	Propylene (92 per cent)	33,200 tons
4.	Bensene about	20,000 tons
5.	Butadiene	37,000 tons

Proposals for manufacture of petrochemicals from these primary products have been worked out in detail, with a number of firms and these will go in operation along with the naphtha cracker. The details of the products to be produced in the units is as follows:

ID/11G.34/5 Page 64

	tons/year
Polyethylene (high pressure)	45,000 (to be expanded to 60,000 tons in second phase)
Styrene	30,000
Polyethylene (intermediate pressure)	27,000
Vinyl acetate	30,000
Acetaldehyde (by-products)	15,000
Polypropylene	15,000
Acrylonitrile	16,000
Stereo regular polybutadiene and butadieno-styrene synthetic rubber	25,000

It is also planned to supply 12,000 tons of butadiene from this cracker to an existing SBR plant.

The Government of India had concluded a technical know-how agreement with a German firm för establishing an aromatic project at Koyali, Gujarat. The following products will be manufactured.

. . .

4 1

Product	Tons/year
Ortho-xylene	21,000
Para-zylene	17,000
Mixed xylenes	2,500
Dimethyl Terphthalate	24,000

This project was expected to be on stream by 1970/1971.

A private sector plant for manufacture of caprolactum of 21,000 time a year is in advanced stage of planning and is expected to be on stream by 1971.

Independent

A proposal for manufacture of 2,300 tons of PVC compound at the first stage and 8,000 tons of PVC resin three years thereafter has been submitted by a foreign company.

A project for manufacture of carbon black is being planned in north Sumatra which would take up 20 million SCF a day of LPG. This is planned in conjunction with 30 million SCF a day of LPG production.

Iran

Steps have been taken to acquire license and know-how for a 15,000 tons per year of carbon black plant.

Projects for manufacture of 25,000 DMT and 10,000 tons of TEL and/or TML are under consideration.

A feasibility study for manufacture of ethylene from associated gas have been carried out. If the project is taken up on a national basis the plant capacity will be of 100,000 tons per year of ethylene. There is a possibility of this being increased on the basis of joint venture with an international company. A 70,000 tons per year capacity ethanol plant would also be a part of the project.

Feasibility studies are being undertaken for a 600 tons a day methanol and 300,000 to 400,000 tons per year aromatic projects.

Plans for 20,000 to 25,000 T/Y capacity caprolactam plants are under consideration.

Korea, Republic of

The first naphtha cracker in the Republic of Korea will be established at Wulsan. It is expected that the project will be on stream in 1970. A list of products to be produced and production capacity for each are as follows:

1D.WG.34/5 Page 66

	ف	•
Item	Production Capacity (tons/year)	Remarks
Ethylene	66,000	Expandable to 100,000-150,000 tons/year
Polyethylene	50,000	
Vinylchloride	40,000	•
Polystyrene	6,000	
Ethylene oxide and ethylene glycol	12,000	
Acetaldehyde	26,000	· · · · · · · · · · · · · · · · · · ·
Polypropylene	20,000	
Alkyl benzene	6,800	Expandable to 10,000 tons/year
S.B.R.	15,000	
Caprolactane an	33,000)
Acrylonitrile	26,700	Expandable to 52,000 tons/year
Methanol term	45,000	

32. 2.4

· · · ·

It is understood that with the exception of alkyl benzene and methanol, in the production of other petrochemicals will be undertaken by joint-venture companies.

1.00

Pakistan

In West Pakistan a petrochemical complex having a capacity of 25,000 tons of ethylene, 10,000 tons of polyethylene, 15,000 tons of PVC, 5,000 tons of polypropylene and 5,000 tons of DDB are in advance stage of implementation. This complex will be based on naphtha. A complex based on natural gas to produce 15,000 tons of PVC resins and polyginyl alcohol fibre is planned for East Pakistan.

A polyester fibre plant with a capacity of 7,000 tons of ohips and 5,000 tons per year of fibre as a joint venture between Iran, Pakistan and Turkey is planned. This plant will be in operation in 1971/1972.

A joint venture plant between Iran and Pakistan for production of 5,000 tons per year of acrylic fibre is being planned. This will operate by 1972. Both the fibre plants will be based on imported intermediates.

A plant for manufacture of 10,000 tons a year of polybutadiene rubber is planned for Karachi. The production for this would cover the Pakistan requirement and some quantity will be available to Iran against some polyisoprene imports.

A detergent plant of 3,000 tons per year capacity in existence is being expanded to 5,000 tons a year. Additional new capacity for the total production of 20,000 tons a year to coincide with the DDB plant is being planned.

A BTX unit is being built at the national refinery. This will meet the toluene and xylene demands of the country but the benzene will not be adequately available from internal sources.

Philippines

The Board of Investment has approved a methanol plant with a capacity of 18,000 tons per year. A 2,500 T capacity nylon plant is expected to go on stream in 1969.

A formaldehyde plant with a capacity of 16,500 tons with provision for producing resins is under planning.

Setting up of a polyester fibre plant with a capacity of 4,700 tons per year is being considered.

China, Republic of

Future plans for expansion or creation of fresh manufacturing capacity have been indicated below.

. .

N N	lylon -	-# 22,60			is under j			·
					ure of 3,	-		
					T/A capac			•
		for 1			-/		wider pr	CHITT T TR
P	olyestei	r - 27.00		apacity	is planned	1 for 19	°u 7∩.	•1
	ynthetic		-,				1	in the state of t
		1	• <u>•</u>					
					1974 •			n an grant an s ata An an an
<u>P</u> 1	rimary 1	petrochem	icals	÷.,			• :	·
			-		completed	•		· · · · · · · · · · · · · · · · · · ·
B	enzene	- 20,000) T/A in	being (engineered	for co	mpletion	by 1969.
Тс	oluene	- 25,00) T/A .ie	being (engineered	for co	npletion	by 1969.
Xj	ylene	- 24,000) T/A is	being (mgineered	for co	mpletion	by 1969.
14 - L A	• .	•						· ·
Singapo	ore				 			eren i ge
•					y of 3,000		-	imported
					W:12	۰£.	* .	to the g al the second
•.			• • •	• •	n in Arts	ារ ជីវីអារីស្	а ⁻	• s y
								en en la
				•			42 	. 123
n ng≹d€	0 0	2 1 0	2 <u>7</u>	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	n narođeorija	a Es a n Mari		the second of the
n n ut at		v 185	12 1 -	•	n na stan sera			a series Angel - Angeland Angel - Angeland Angel - Angeland Angel - Angel - An
2		2 Ng.	49. – T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tt deg €ogenø			a series Angel - Angeland Angel - Angeland Angel - Angeland Angel - Angel - An
1					to de ser provi			a series Angel - Angeland Angel - Angeland Angel - Angeland Angel - Angel - An
्र ् _र ≹्र		- •• -			n de de jeu			a series Angel - Angeland Angel - Angeland Angel - Angeland Angel - Angel - An
		**		•	in de geografie			a series Angel - Angeland Angel - Angeland Angel - Angeland Angel - Angel - An

.

> d f

VII. Special features and factors initiating the propositional development

There are certain special characteristics of the petrochemical industry which have to be taken note of in order to examine the special features and factors affecting the growth of these industries. They are briefly enumerated here.

The petrochemical manufacture needs large initial investments and is highly capital intensive. In $1964^{1/}$ investment of a naphtha cracker with 285 thousand ton naphtha throughput and a production of 80 thousand tons of ethylene was estimated at 15 million US dollars. There had been a tendency all over to construct larger units, and now 300,000 tons per year ethylene plants are being erected in Japan, Europe and United States. In a recent forecast² for ethylene production and usage in the period 1970-1980 it has been estimated that the capacity of ethylene plants will go up from 225,000 tons in the sixties to 450,000 tons in the seventies. The cost of 450,000 tons per year capacity plants based on naphtha has been estimated at 35 million dollars.

The conversion of a composite feed stock consisting of several hydrocarbons is not selective and a number of other products are obtained along with ethylene. The economic working of the plants depend, to a large extent, on full utilization of all the products available.

The primary products available from the craoking reactions like ethylene, propylene are generally liquids and gases which are inflammable, explosive and difficult to transport. Their storage and transport is expensive. It is therefore economical and profitable to locate units consuming these primary products in close proximity to the main production centre.

1/ Petrochemical Industry and the Possibilities of its Establishment in Developing Countries - C. Mercier.

2/ Hydrocarbon Processing, 1969 January.

The research development efforts put in this industry have been very . high and this has given rise to problems of obscelence of technology equipment and processes. Continuously newer raw materials and better processes are replacing the older ones making fresh investments necessary.

For the development of petrochemical industries it will be necessary to find markets for the following groups of products: (1) Synthetic resins and plastics; (2) synthetic fibres; (3) synthetic rubber; and (4) detergents.

The main markets which have been found for various groups in developed countries are:

Plastics: packaging materials - films, sheets, bags, plastic coated paper, plastic foam containers, injection and blow moulded containers and bottles.

Building materials: and components such as tiles, pipes, sheets (plain and corrugated) fittings, and others used in construction and housing.

Components or parts of radios, TV sets, electric fans, washing machines household appliances and other durable consumption articles.

Components of automobiles, scooters, bicycles and transport vehicles. Agriculture - film sheets etc. used in agriculture, canal lining, storage of grains, fertilizers and other products.

Synthetic rubber:

- Tyres and tubes of cars, trucks, motor quoles, bicycles etc.
- Cible and wire coating
- Hoses, pipes, belting
- Moulded goods
- Mootwear

- Foam rubber cushions and mattresses

d

f

)ኪ

-

Synthetic Actorgente:

. . . .

- " Replacement of launday scape for testils washing.
- Cleaning composition for industrial household and hospital use.

Synthetic fibres:

· · · · · ·

and the group of the second

- Apparel, clcth, knitted garments - fishing nets, ropes and industrial uses.

In the light of the above characteristics of the petrochemical industry the special problems of the region may be detailed as follows:

Demands:

The demands in the developing countries of the region for the petrochemical products are quite low. Limited per capita income has kept the consumption of many of the product groups at low levels. Because of large rural population and limited use of small packages for consumer articles, the packaging demands have not yet come up in large quantities. The use of other traditional materials like paper, glass is also common due to the cost consideration. The housing construction is proceeding at a slow pace because of the low income level. The use of materials like bricks, wood and metals, is more common due to a lack of adequate information regarding these new products and also due to the higher cost of these. The use of plastics in the construction field would require intensive marketing and extension work and the prices of the plastic materials would have to be competitive vis-àvis other traditional materials available in the market. The acquisition of durable consumer goods like radios, refrigerators, air conditioners, automobiles etc. depends to a large extent on the availability of these goods at competitive prices as well as the requisite purchasing power. In many of the developing countries the manufacture of a number of these products is in the initial stage and the demands are small. These will have to come into market as mass produced items at competitive prices to ensure large sales. The demand for the plastic material as components would shoot up once these products find larger markets.

The major factors pending the growth of synthetic fibre demands are the high prices and the lack of processing facilities in some countries of the region. The region as a whole is short of the fibres and had to depend on imports. In 1966, it imported about 1.2 million tons of cotton alone. With the future growth of processing facilities and reduction in the cost of synthetic fibres, there should be no difficulties in finding bigger markets for synthetic fibres.

There is a large production of natural rubber in the region and the growth of synthetic rubber demand would affect the natural rubber industry unless both become complementary to each other and the use of rubber increases with larger production of rubber products.

The demands for synthetic detergents may go up. Availability of vegetable and animal fats for soup production will be limited because of demand for edible use; and soap may be replaced by detergents as in developed countries. • • and an end

• 1 .

and the second

·...-

-7

. . * .

Finances

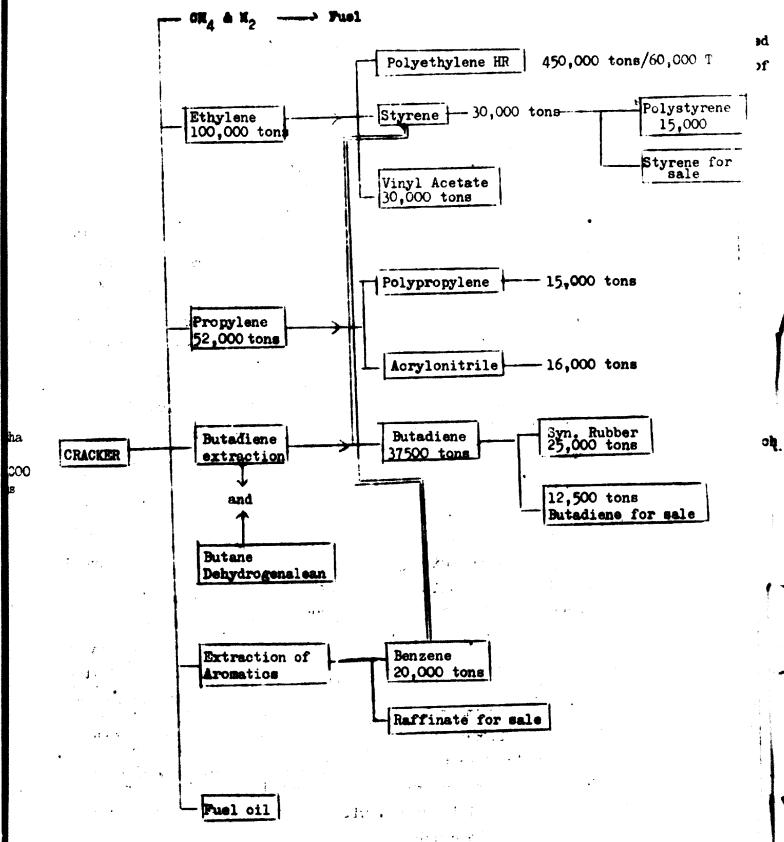
.

11

The financial outlay and investment required for petrochemical manufacture are very high even for individual units of production and since it is necessary to plan the production of petrochemicals around the basic facilities and the use of all the products, the investment becomes much larger because of the number of production units which will have to come up simultaneously. An idea of the production units which may have to be components of a complex and the financial outlays that may be necessary may be had from an outline of a new complex planned in the near future in one of the developing countries. • • •

. . .

10.


•

• 5,

• •

Ł

1D/WG.34/) Page 73

5

Investment for the cracker and the various downstream units listed above would be of the order of 130-135 million dollars and of this, a sizable portion (40 to 45%) would constitute the cost of imported equipment.

These investments are not inclusive of utilities which are being provided from existing facilities. Power, water and effluent disposal systems are already available and the land adjacent to a refinery has been developed for construction of the complex. Naphtha will be drawn from the refinery and all the products will be fed to the sown stream units with only limited storage facility investments.

Acrylonitrile and vinyl acetate will be further processed into actylic and PVA fibres respectively in plants for which separate and additional investments are planned.

Above details may give an idea of the magnitude of the investment involved. The financial problems likely to be encountered in the starting up of such a complex would fall in two broad groups.

Due to the lower level of industrialization there are very few industrialists or industrial organizations who might be able to muster and get the necessary finance on their own even for starting individual units for manufacture of petrochemicals. The development of joint stock companies in many countries of the region is not advanced enough and even in such countries where the joint stock companies are functioning the present capital formation may not be adequate for raising of the required funds for construction of such complexes. A large percentage of the necessary finance may have to come from financial institutions like banks, insurance companies and the government lending institutions. In view of the limitation of individual finances it may become necessary for a group of industrialists or organizations to pool their resources for starting a petrochemical complex and many problems of marketing, pricing of raw materials, sharing of utilities etc. will have to be sorted out to ensure the smooth working of the complex. Many of the petrochemical projects require complicated and specialized equipments and it will be necessary to import from other evantrice that portion of the equipment of the complex. The requirements of imports may vary from country to country but generally these may be estimated to range between 35-60% of the total project cost. Paising of external finances or the necessary foreign exchange for purchases of this imported part of the equipment could be one of the major problems in planning of the petrochemical complexes due to balance of payment problems in many developing countries. The foreign exchange in many cases may have to be obtained in the form of loans or as foreign investments and the terms of repayment, rate of interest and many other details have to be worked out before the imports can be arranged.

Technology and engineering design facilities

Due to the lack of the technical knowledge for the detailed production processes and engineering design facilities in many countries, these will have to be obtained from outside licensing and engineering firms having the necessary know-how. At present many petrochemical plants and processes for each of the products are available from a number of licensing and engineering firms in developed countries. It would therefore be necessary for prospective manufacturers in the individual countries to evaluate the merits and demerits of each of the processes and to select the most suitable for the specialized needs of the country. Agencies for evaluation and detailed feasibility studies of projects before investments are made are necessary. Lack of suitable organization for this work would mean delays or faulty decision which may hamper growth along right lines.

The fabrication of equipment and designing of petrochemical plants require engineering skills and fabrication facilities and the extent to which these are available, the building of petrochemical complexes becomes more economical. The import of heavy equipments if not available locally also involves payment of freight and insurance charges which increases the plant cost. The engineering skills are required for subsequent operation of the plant and looking after the maintenance of the equipment installed. nd of

כ¢ר

A number of processes and plants are now available from the process licensers did engineering companies as two-key jobd and if there is evailability of requisite foreign exchange it is possible to start up the manufacturing units. However, it would be for every manufacturer to develop his own research facilities in order to keep pace with the modern developments. The necessary research facilities and skills have to be developed in most of the countries.

Training of personnel

The training of personnel to look after the production, engineering, management and marketing is necessary. The facilities for such training are not likely to be available in developing countries due to the lack of necessary industrial development. It would therefore be necessary to ensure that adequate training facilities are arranged so that the petrochemical units will be iun efficiently and smoothly once they are set up.

Processing industries

The petrochemical products by themselves serve as raw materials to many other industries and reach consumer only after they have been processed further. Markets for many petrochemical products will have to be developed and stimulated by intensive work in product development application, research and extension work for the processing industries. Inadequate facilities and skills in conversion industries may affect the growth of petrochemical industries.

The synthetic fibres have to be spin, woven or knitted into cloth or other articles of apparel or converted into industrial products like fishing nets, ropes etc. These conversion units are developed in some of the developing countries of the region. In other cases the development of, these facilities will have to be ancouraged so that they can take up the fibres which may be available and convert them into various end products. In the plastic processing industry the conversion of the resins into different articles is carried out by processes such as extrusion, injection moulding, coating etc. The development of these processing industries

depends on the evailability of necessary machines, raw materials, moulds and dies and the required skills. In many countries the machines and raw materials may-not be available in adequate quantities for developing markets. It will therefore be necessarv to plan for development of the processing industries in individual countries of the region so as to ensure progressively higher consumption of the plastic materials. Production of films, pipes, footwear, electric groups etc. has started on a limited scale in many countries but a sustained effort on the part of all the agencies, like the government departments, the entrepreneurs, the resin manufacturers is necessary to ensure the rapid growth. To develop markets for products made from many new resins the import of the resins themselves will be necessary since these will not be available in the countries. The foreign exchange problems may make such imports difficult. It would therefore be necessary to find ways and means of getting initial quantities of resins for development of processing industries and for oreating the markets initially.

The rubber industry in many countries finds major markets in production of tyres, tubes and these are connected with the transport development in the country. Production of other rubber goods like footwear, belting, moulded goods etc. would be at different stages of development in many countries. The use of synthetic rubber will depend on the availability of natural rubber and the prevailing prices of both categories of rubber. The development of the processing industry in this case also is essential to ensure greater consumption.

Some of the problems and features which may affect the development of petrochemical industries have been listed above. The problems are complicated and definite solutions may be difficult to suggest. Some ideas and suggestions to resolve these may be considered along the following lines:

(1) The development of petrochemical production should be taken up in the form of integrated complexes in such countries where the demands of individual products would justify setting up of such a complex. Location may be carefully chosen to get the advantages of raw materials and to avoid cost of inland transport of heavy equipment. əd >f

5h

5

(2) In such cases where the markets are limited in the initial stages the petrochemical production may be taken by a group of countries as a joint venture so that the economic sized units can be set up and these can cater to the demands of the concerned countries.

(3) Suitable organization for choice of the most useful process from those offered by different process licensing and engineering firms and preparation feasibility studies to decide on the pattern of development may be evolved. Experts from some of the developing countries where petrochemical industries have come up may be able to assist other countries in the region due to their knowledge of local problems and conditions.

(4) The development of processing industry consuming the petrochemical products is necessary. Integrated efforts to develop these industries in individual countries which have limited current markets should be taken care of immediately so as to ensure larger markets for the products to be manufactured.

(5) To enable processing industry to be developed co-operation between the developing and the developed countries for import of the equipment and loan of products necessary for ordating markets may be considered.

(5) The foreign exchange component of the plant and machinery could form a sizable amount in any petrochemical plant. Suitable arrangements for financing this either as joint ventures or loans from the developing countries may be considered.

110

(7) In view of the considerable cost of and essential needs to foster research and development, the developing countries could consider planning joint research programmes thereby reducing the cost and sharing the benefits of the technological improvements.

(8) On the same basis as joint research, the manufacture of heavy and complicated machinery could be planned and considered.

(9) Training of personnel in technology, engineering, research management and marketing may be possible only in developed countries and may be an important and purposeful field of mutual co-operation between the developed and developing countries.

be of

⊃ħ_

VIII. Development prospects and investment needs in the petrochemical industry in the developing countries of ECAFE region during 1970-1980

Demand estimates for the period 1970-1980

The petrochemical demands during the next decade will depend on a number of factors such as population, national income growth rate and production in each country as well as special characteristics and properties of individual petrochemical products or product groups concerned. The factors which would normally influence demands of products in any country or area may be briefly montioned as under:

- Purchasing power in the past, at present and in the period for which estimation is sought to be made.
- Volume of imports.
 - Competitive position of the products. An assessment of the alternative products available in the market. Extent to which substitution of these by products under consideration is possible and likely. An extent of captive market.
 - Current and future price trends of products. Influence of proteotive or restrictive duties taxes, import and export restrictions
 and such other factors.

An assessment of the estimated demand would be possible by an understanding and examination of the above factors.

The petrochemical markets have grown very fast in USA, Europe and Japan. Some of the important factors which have been responsible for the high growth rates are mentioned below:

- High income elasticity of demands for a number of petrochemical products.

1.

Å.

 Substitution of traditional products like wood, metals, paper with
petrochemical products like plastics has contributed to their market growth. Similarly substitution of natural rubber by synthetic
rubber and natural fibres by synthetic fibre and soaps by detergents

A 126

<u>____</u>

·* 31

has been responsible for the fast growth of these petrochemical sectors partially at the cost of traditional items mentioned above.

- Improvement in the properties of the newer products which substistuted older. Thus for instance qualitatively and quantitatively detergents achieve better results as compared to scap.

- Introduction of new products with specialized properties suitable for specific end uses.

- Extensive promotional activities and application research for the benefit of industrial users and consumers.
- A gradual declining price in absolute terms also as well as in comparison to the prices of the materials which were being substituted.

It is quite likely that these factors and characteristics of petroohemical demand growth will evince themselves in the future years in Asian markets as has happened in the case of developed countries. However, the data in respect of various factors mentioned above being available to a very limited extent in different countries of the region, the demand ertimates have been made on the basis of past trends in individual countries, taking into consideration the growth of demands of these products vis-A-vis gross national product. The estimates have been made in the following manner:

Equation given below has been used for estimating future demand in individual countries:

For the constant of $D_n \neq D_o$ (1 + Ng)ⁿ

In the above equation N is the regression coefficient representing elasticity of demand of individual product groups with respect to growth of gross national product and this is assumed as constant. The connotion of individual terms in the above equation is as under:

.....

1

 e^{-i}

servers ,

5 55 See

'5

ød

٦f

cų.

 D_n = Demand in the year of projection (1980)

D - Demand in the base year (1965)

N = Coefficient of elasticity

S = Annual rate of growth of gross national product in sach country

n - Humber of years between the base and projection year.

Section 4

The growth rates of gross national product in the period 1960-1980 used for projections are given in table 1 below: Ma

Table 1 Growth rates of gross national product of the countries in the ECAFE region, 1950-1980

Rate of Growth Country (*) 4.0 Barne Cambodia¹ 4.0 3.6 Ceylon 6.0 China, Rep. of 3.5 India 2.5 Indonesia 5.0 Iren 5.0 Korea, Rep. of 3.5 Malaya, Fed. of 3.0 Pakistan . Br. 140 4.5 Philippines . Phal 6.25 Singapore 1/ Palent Levi 5.0 Thailand Viet-Nam, Rep. of 4.9 . Pr.

1/ Current rates assumed for future.

Sources: 1. ECAFE Seminar - Development Prospects of Man-Made Fibre Industry in Asia and the Far East.

2. OECD -

\$

Sector Sector

The elapticity exceptions of Longon I was obtained for three major product groups namely, plastics, synthetic fibres and synthetic rubber from the growth rates of demand of these products and the growth rate of gross national product in the base years for the developing countries in the region and the value of N in each group has been determined.

The coefficients were on the high side and this is attributed to the high growth rates of these products as compared to gross national product when the demands were building up. This is likely to effect the projection figures and give them on the high side in many cases. Comments in respect of the observed future demand estimates of each group have been given separately. The apticipated demand in these three groups is given belows

Plastics

The 1980 demand for plastics may be seen in table 2 below.

•	Table 2	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Project. of t	ed demand for plastics and synt he countries in the SCAPE region	on in 1980
•		(Unit: tons)
Country Burma Cambodia Ceylon China, <u>Republic</u> of India Indoneeia Iran Korea, Republic of Malaysia Pakistan Philippines Singapore Thailand Viet-Nam, Republic of	<u>Demand</u> 34,000 15,000 16,000 1,750,000 325,090 223,000 358,000 358,000 41,000 87,000 352,000 134,000	(440,000-460,000)* (620,000)*

Ref. - Comments on page 83.

The following comments are offered in respect of the above demand estimates.

<u>China</u>

The demand estimates obtained are very much on the high side. This is attributed to the high growth rate of gross national product and high demand in the base year. On the basis of the highest per capita consumption in the region as observed in Japan, it is felt that the Chinese demand is likely to be around 440,000 tons to 460,000 tons.

India

The estimates are on the low side because of low gross national product growth rate as well as the base year demand. According to the information available from the report of the Asian Industrial Development Council Study Team on Petrochemical Industry, 1968, by 1978-1979 the demand has been estimated by the Indian Government at 620,000 tons. These are probably based on more detailed information at the national level and therefore have been accepted instead of the observed figures.

Synthetic fibres

The demand estimates for 1980 for synthetic fibres may be seen in table 3 given below.

. 1.	Demand	estimates for ay		ibres in 1	1980
		in the ECA		*****	(Ufit: tons)
Country	٠	,	•	Demand	en e
China, Republic India Iran	of ·	1 iv 1 34	an ^a r benedi Berlind	141,000 80,000 64,000	(186,000)*
Korea, Republic Pakistan Philippines Thailand		n an	to nya gan Konstrationatia	186,000	

* Ref. - Comments as follows:

Table 3

ch.

of

•d

/5

The following are observations in respect of the above estimates. India

The observed figures are on the low side as in the case of synthetic resins. The national estimates for $1978-1979^{1/2}$ are 186,000 tons and this has been taken to represent 1980 demand instead of the observed figures.

Synthetic rubber

The synthetic rubber demand requirements are only limited to only a few countries. In many countries the use of this was very small. The data for 1980 demands for the rubber may be seen in table 4 given below.

Table 4

Anticipated demand for synthetic rubber in 1980 of selected countries in the ECAFE region

Country		•	Demand	(Unit: tons)
China, Republic o India Korea, Republic o Pakistan Philippines		an The second	38,000 69,000 (20 44,000 10,200 38,000	95,000)*

* Ref. - Comments below.

India

The national demand estimates $\frac{1}{}$ for 1979-1980 are represented at 205,000 tons and have been accepted.

•

Synthesic detergents

The information available regarding current consumption of this group is very limited and on that basis it will be very difficult to estimate the demands. However, it has been observed that in countries like the Philippines and Thailand where the detergents usage has now caught up, the per capita demands are approaching 1 kg per annum. Since the

1/ Report of the AIDO Study Team on Petrochemical Industry, 1968.

ID/WG.34. ... Page 85

availability of other washing materials like soap is likely to be postploted because of the lack of vegetable and animal fats in many countries, it is assumed that by 1980 the per capita demand would be around 1 kg in the countries of the region and estimates of requirements have been made on that basis.

Pesticides

The current requirements of pesticides have already been earlier indicated. Pesticides form an important agricultural input along with fertilizers. In developed countries the pesticides use has increased with modern agricultural techniques and use of high yielding seed varieties, high inputs of fertilizers and better water management. Since considerable emphasis is given on agricultural developments in the region the demand for pesticides would go quite high. These can be assessed by detailed examination of various features such as soil conditions, crops under consideration, type of diseases etc. The demand for specific insecticides can be determined thereafter. It is guite likely that demand may double and may be of the order of 300,000 tons by 1980. Detailed study is called for to enable an exact assessment of individual pesticide demands.

Necessity of further studies of dehand estimates

The above demand estimates have been made on the basis of very limited information and data and these require to be followed in depth in order to arrive at an accurate and specific idea of the demand in individual spheres.

Plastics constitute major product group among petrochemicals and these are used as materials for further conversion before they reach the consumer. The estimation of demands has to be based on a close examination and analysis of the industries which use these materials. The major plastic demands in developed countries have come up in the field of packaging materials, as parts and components of construction and housing and as components of many machines like automobiles, refrigerators and other durable consumer articles. The market survey of plastic demand therefore requires an intimate knowledge ch

ť

ed.

of

of the trends in production and demand in these consuming industries as also the trends in the use of plastics in individual items produced. Such a study would require a continuing effort both at national and regional level but the data which would be available will be of enormous interest and would enable proper planning and development of this product group on a scientific basis. It is therefore felt that the demand estimates should be studied in depth by study of end use pattern at regional levels to refine the very broad estimates which have been arrived at so that more clear indications are made available for planners and producers in the petrochemical field. Similar studies may be very useful in synthetic fibres, rubber and detergent fields also.

Availability of raw materials

Detailed position regarding availability of raw materials in each of the countries of the region has been discussed under survey of sources of raw materials earlier. An examination of the data shows the following position.

Iran has both oil and natural gas available in large quantities as raw materials for petrochemical manufacturing. The natural gas in Iran contains ethane and propane and is suitable for manufacture of ethylene and petrochemicals. The Iran naphtha will also be a source of raw material for manufacture of various petrochemical products. Both gas and maphtha prices are likely to be competitive.

Pakistan has a considerable availability of gas rich in methane which could be used for manufacture of acetylene, methanol and ammonia. Availability of naphtha is enough for the cracker planned.

In <u>India</u> and <u>Republic of China</u> naphtha provisions have been made to cover the planned production of petrochemicals. There is availability of gas in both countries. This is mainly used for production of ammonia in Thdia and ammonia and methanol in the case of China. The Korean requirement of naphtha is likely to be partly met from the internal production. Singapore will have a large surplus of naphtha which could form a major source of raw material for petrochemical manufacture in the Southeast Asian region.

In other countries of the ECAFE region, petrochemical production may have to be based on imported feed stock according to the current information of gas and naphtha availability.

First generation intermediates

These may be considered as products directly produced from gas and naphtha and which act as building blocks or primary products for further conversion into secondary intermediates. In some cases certain end products like polyethylene can be made from the first generation intermediates also. In many other cases these are converted into secondary intermediates. The main products in these categories are:

Acetylene

This was initially produced from calcium carbide. Recently many other methods of manufacture are in vogue. The more important of these are: thermal cracking by Wulff process; partial oxidation of methane by flame process and arc process. These are intricate processes worked under vigorous conditions and large size plants of 30,000 to 45,000 tons oapacity are installed in developed countries to ensure economic production. Due to complex process of manufacture elaborate recovery systems necessary for separation and purification of acetylene and high wear and tear, even with 30,000 to 45,000 tons capacity plants acetylene has been found to be expensive as a raw material and is being gradually replaced by ethylene. The major uses of acetylene of interest in this region are manufacture of vinyl chloride, aorylonitrile and vinyl acetate. All these products are now made more economically from ethylene and propylene as starting materials which are replacing acetylene. The development work for manufacture of acetylene by plasma process could reinstate acetylene as a petrochemical raw material provided the cost can come nearer to 3-4 cents per 1b level.

ed of

ch -

Ethylene, propylene and butadiene

Ethylene is produced by pyrolysis of natural gas containing ethane and higher hydro carbons. Naphtha and light oils can also be used as feed stock for the manufacture of these products. In all cases high temperature non-catylic cracking is the main reaction involved in the manufacture. Except in USA the recent trend is in the direction of use of naphtha as a major feed stock. The ethylene propylene yields vary with the source of raw materials used. The recent tendency has been to operate under conditions which give maximum production of ethylene as this is main material required for many subsequent processes. The yields for different sources are as under:

Feed stock	Ethylene (%)	$\frac{\operatorname{Propylens}}{(\mathcal{R})}$
Ethane	80-85	1-2
Propane	40-45	15–20
Naphtha	27-30	12-16

These yields have been improved recently to the extent of 10 per cent by computer control of furnace operation, decoking of tubes and hydrogeneration of acetylene. The ethylene to propylene ratio can vary from 1:1 to 3:1 depending upon the degree of severity of cracking. Butadiene is also obtained as a co-product from the naphtha cracking. Conditions which give high yield of ethylene also improve the butadiene yield and 10-12 per cent of butadiene yield based on ethylene could be obtained.

Naphtha orackers of different size have been in operation right from 20,000 tons to 450,000 tons. The recent tendency however, has been to use large size crackers and operate them at the 100 per cent capacity. At this full utilization the cost of ethylene could vary from 7.5-12 cents per kg depending upon the oracker size, the price of naphtha, value of the by-products realized and several other factors. The oracker investments may vary from 8 to 35 million dollars.

1

Paraffins

Straight chain paraffins of C_{12} range available in the gas and oil fractions now constitute an important source of raw material for manufacture of soft detergents alkylates. They are replacing in many countries, the propylene tetramer because of the ability to give biodegradable foams. Molecular sieves using vapour or liquid phase absorption and recovery systems are used. The isolated paraffins are chlorinated and are used for manufacture of alkylates. Plant costs are estimated at 2.2 million dollars for a 40,000 tons a year plant for separation of C_{12} straight chain paraffin.

Secondary intermediates

These can be described as products which are obtained from primary or first generation intermediates by subsequent processing or chemical reactions. The size of the economic unit for manufacture of these will vary from location to location and several factors like raw material availability, finished product prices which can be obtained with duty protection etc. will have a bearing on the size of minimum economies. However, the scale of manufacture of intermediates and the prices at which these are made available for the manufacture of end products will considerably influence the cost of marketed petrochemicals. One of the major growth factors in petrochemicals has been progressively reducing prices at which these are offered for sale. These lower prices of end products can be achieved only if primary and secondary intermediates are available at cheap and competitive prices. For the development of petrochemicals markets it will therefore be necessary that these primary and secondary intermediates are available at as competitive prices as possible and the choice of production units, location and all other relevant factors should be given most detailed consideration. Although small sized plants could be considered economic in protected markets with high duty structure such units may not be able to help the industry in marketing end products in large quantities and at lower prices. It may therefore be worthwhile to install optimum sized units for manufacture of these key products to ensure sound long-term growth. Some observations regarding the size of units for manufacture of secondary intermediates are as follows:

1/ D 1

ted of

٧

1ch

Plastics and synthetic resins:		Styrene
	•	Vinyl chloride
•	-	Methanol
Synthetic fibres:	-	DMT
· · · · · · · · · · · · · · · · · · ·	-	Caprolactam
:	-	Acrylonitrile
' 	-	Vinyl acetate
·· · · · · · · · · · · · · · · · · · ·	-	Ethylene glycol
Synthetic rubbers:	-	Styrene
	-	Butadiene
Detergents:	-	Dodecyl benzene
1	-	Soft alkylates

The plant size which could give intermediates at comparable to prevailing world prices are given below.

Styrene

According to the recent data furnished $\frac{1}{a}$ a 24,000 ton per year plant in the region would be able to produce styrene at 11-12 cents per 1b. The prices of styrene in developed countries are around $8-9^{2}$ cents per 1b.

VC monomer

A 48,000 tons plant³ using ethylene as a raw material would be able to produce VC at 12 to 13 cents per kg and with 100,000 tons plant the VC cost would come to 11 cents per kg. This is based on 11.1 cents per kg of ethylene and 5 cents per kg of chlorine cost. Depending upon other factors VCM units should be of this order to ensure economic manufacture. In some cases an integrated PVC/VCM plant may have to be considered if the imported cost of monomer at a location is likely to be very high or there are other factors which may require such a choice.

- 1/ Report of the AIDC Fact-Finding Team on Petrochemical Industries.
- 2/ European Chemical News, October 1968.
- 3/ "Petroohemical Industries", M. Honda, September 1966.

Methanol

The minimum economic plant size is 45,000 tons per year. However, since methanol is a low boiling liquid with difficulties involved in transportation smaller capacity plant of 30,000 ton size in specific area of limited consumption may have to be considered.

DMT

The world prices are around $20-21^{1/2}$ cents per 1b and plant size smaller than 20,000 tons per annum may not be able to produce material competitively.

Caprolactam

In the manufacture of caprolactam a substantial quantity of ammonium sulphate is obtained as a by-product. The prices of both ammonium sulphate and caprolactam have been showing a downward trend and a 20,000 ton per annum plant will be required to offer material at these declining prices of, for example, around 22-24 cents per 1b of caprolactam.

Vinyl acetate

The manufacture is now based on ethylene by one step conversion to vinyl acetate and a 30,000 ton per year plant would be required in order that vinyl acetate may be offered at competitive prices around 12 $cents^{2/2}$ per lb.

Dodecyl benzene

The estimated cost of dodecyl bensene from a projected plant in the region is around 12.3 cents per 1b which is slightly on the high side as compared to the cost in USA of 10 cents per 1b.

Linear alkylates

The present cost of soft alkylates is 10-12 cents per 1b in developed countries and to be able to produce the soft alkylates at comparable price a plant of 10,000 tong per year capacity would be necessary:

- 1/ European Chemical News, October 1968.
- 2/ Report of the AIDC Fact-Finding Study Team on Petrochemical Industries, 1968.

ted of

.ch

Manufacture of monomers at central location

The cost of monomer manufacturing plant as well as cost of the monomer itself shows a definite downward trend with increasing plant size. This is now accepted as a general principle but the benefits of these have been mostly derived by developed countries where plants serve large markets. Effect of cost on different sizes of vinyl chloride¹ and styrene plants given below will serve as a guide:

Styrene monomer:

Plant size	12,000	24,000	48,000	96,000
Investment (million US dollars)	3.34	5.0	7.5	11.1
Styrene monomer cost (US cents per kg)	18.16	16.38	16.0	
(Ethylene cost 8.3 and benzene cost 6.95 cents/kg)		10, 30	15.0	14.3
Styrene cost (Ethylene cost 11 cents and bensene cost 9.73 cents/kg)	21.35	19.55	18.25	17.26
In case of vinyl chloride the data	WER ER	under:		
Plant size	48,000	100,000	•••)	:
Investment (million US dollars)	3.6	5.64	м	
VC monomer cost (based on ethy-				• • • •9
lene cost 11 cents and ethane cost 5 cents/kg)	12.1	11.0	• • · · · ·	- 5, 1 . 4. 4 *

The transport cost of monomer like sthylened by ship has been setimated as under:

· · · ·

1/

e a state de la seconda

.

Petrochemical Industries - Honda (ECAFE), 1966 June.

..

unger entry type to

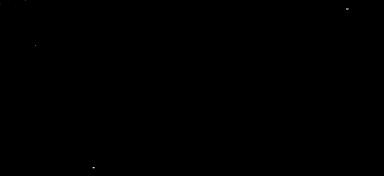
nam tra transformation

ich

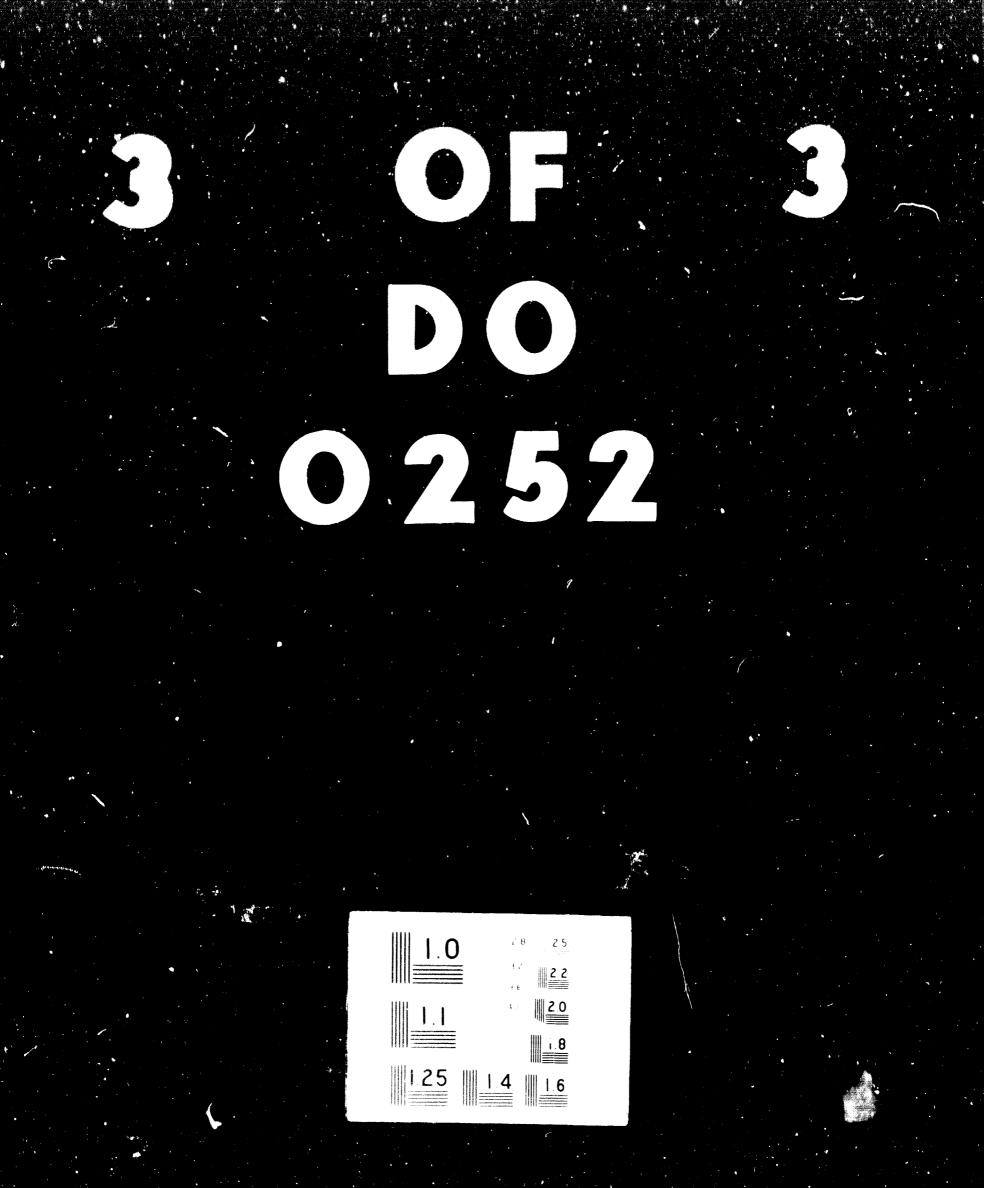
Distance to be transported	(1001)	50	S nn	2,600	
Pressure tanker	jo	30 kg/sq.cm.	Medium pressure	l atmos. pressure	ted
Temperature	-	— 13 or medium	medium to low	very low	of
Quantity transported	60	100 ton/ship ,000 ton/year	310 tons 60.000 ton/w	20,000 ton/ship 200,000 ton	
Cost of ship required to transport (US dolla		•33 million	1 million	9.2 million	
Transportation cost (US cents)	• 	0.56 cent/kg	1.47 cent/k	5	

Ethylene, vinyl chloride and styrene can be transported by ship and monomers produced at a central plant of large size could be made available for polymerization in comparatively small sized plant in individual countries. A compromise of 20,000 ton vinyl chloride¹ and PVC plant costs have been estimated at 7 million dollars and the PVC cost at 15 cents per 1b in a recent study. The cost of 5 such units would therefore come to 35 million dollars. Costs of 5 polymerization plants and one central monomer plant will however come to 21 million dollars. Similar economies in the cost of the styrene and polystyrene are also likely. It may therefore be worthwhile considering a central plant to manufacture vinylchloride and styrene for a number of countries in the region and only polymerization plants in individual countries.

Investment for petrochemical plants


The cost of plant required for manufacture of petrochemical and products as well as intermediates would vary depending on the location, available infrastructural facilities, degree of industrialization already achieved and other factors. Generally a new plant in an industrial area where facilities are already developed would be less costly than a plant where these facilities have to be simultaneously provided for. Since the position

Report of the AIDC Fact-Finding Study Team on Petrochemical Industries, 1968.


of this will vary from individual acuatry to country and also from specific areas of each country, it would be difficult to estimate the investments without adequate background information regarding the exact conditions in each case. The cost of the process units and plant and equipment necessary for the manufacture of each project in US dollars has therefore been given in the data below. Apart from the cost of plant and machinery, other investments which are likely to be involved are given as a general guide only. Based on the plant and machinery cost at 100 the general magnitude of these costs in a developing country would be of the following order:

Plant and machinery	100
Export packing for plant and machinery, freight and insurance	12
Erection supervision	5
Off sites (storage tanks, services)	40
Financing	15
Miscellaneous	8
	180

The total investment for a plant including facilities in a developing country may be of the order of 180 per cent of the cost of plant and machinery. The investment normally described as "inside battery limits costs" in a developed country for the same plant may be 120-125 per cent of the process units investment. The investment requirements in a developing country would therefore be about 45-50 per cent higher than those of a similar plant constructed in a developed country. To illustrate the costs as an example a nylon plant with a 5,000 ton per year capacity may be considered. Cost of process units have been given at 3,100 dollars per ton of annual capacity. The total investment for plant and machinery would come to 15.5 million dollars. The battery limit cost of such a plant in a developed country would be 19.4 million dollars (125 per cent of 15.5) whereas the cost would come to 28 million dollars in a developing country. In the above calculation no provision has been made for local expenses such as customs duties,

4. 4. 72

We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, even though the best possible copy was used for preparing the master fiche.

inland freight and such other costs which would vary materially from one country to another. The financing cost included in the above calculation may not be necessary where borrowed capital is not required. Similarly where services are available to an appreciable extent the off site cost could be lower.

The process units cost of variou types of petrochemical plants are given as under:

Na	ne of the product	Capacity ton/year	Cost in US\$ per ton of annual capacity
I.	Plastics		
	Polyethylene	16,000	458
		32,000	340
		50,000	306
	PVC	6,000	336
	PVC (polymeriza- tion only)	20,000	
	PVC (with vinyl chl chloride and chlorine manu- facturing)	20,000	180
	Polystyrene		610
	. Polypropylenė	7,500	256
	Polypropylene	15 ,000 20 ,00 0	945 870
II.	Synthetic fibres		
	Nylon	1,650	6,050
		5 ,000	3,100
		10,000	2,420
	Polyester	1,000	3, 380
		5,000	2,180
		10,000	1,750
	Aorylio	50,000	2,000
	•	120,000	1,115

continued

ted of

.ch

(D/WG.34/5) Page 96

.1: 6 3	of the product	Capacity ton/year		Cost in US\$ per ton of annual capacity	`
LII.	Synthetic rubber	•			
		15,000		5 65	`•
		30,000		434	
	⁴	60,000	• • • • •	370	
IV.	Synthetic detergents				× .
		1,000		124	* .•
		10,000		82.5	
		65,000	۰. ۲. ۲.	36,0	
V.	Intermediates				
	Vinylchloride	48,000		90	
		100,000	•	66.5	
	Styrene	24,000		254	
		48,000	÷ Č	188	
	Acrylonitrile	30,000	· · ·	499	
	Caprolactam	20,000		650	
	DMT	10,000		1,200	
	DIT (with xylene separation				•
	plant)	24,000		778	
	Ethylene (propylene)	100,000		99 •5	
	Butadiene recovery	16 ,000		155	
	Ar omat ic (benzene extraction) toluene	30,000 100,000		97	
	Methanol	45,000		95	
	Butadiene (butane butene/dehydro-				
	generation)	40 ,000	n Sala Sala	236	

•

.

Investment needs for petrochemical industries in countries of the ECAFE region

On the basis of estimated demand by 1980 and on the basis of the plant cost data, the investment estimates in respect of countries are given below. Following general comments are made in respect of these:

- While arriving at the estimate of production the capacity in operation and under implementation has been taken into consideration and provision has been made for such balance capacity as may be necessary to achieve the above estimated targets of production. Unless otherwise stated in individual cases the estimates are for new plants.
 - The estimates are demand based in the sense that they represent investment requirements to fulfil the demands as anticipated. They do not take into consideration the financial limitations that may be involved in raising the necessary internal or external funds or any other problems for construction of the abovementioned plants.
- In certain cases more than one plant of the same capacity has been considered. The demand for individual products is likely to build up gradually over the decade and it may be necessary to build two plants of smaller size to meet the demands as they grow. A large size plant to cover the full 1980 demand installed earlier may have to be worked at capacities lower than economic presumably in the initial period of the lower demands. It is also felt that investments at different periods may be easier though slightly costlier.

For the purposes of estimating investments in the plastic groups a broad assessment of the demands of major individual plastics of each country has been made. This is based on the data available regarding the current demands in countries where this was available. For other countries

х÷.

ted of

.ch

Hlywid. Syn Fryge yr

the product pattern is based on average current demand in the countries of the region. On the basis of the product demands the investment estimates have been calculated. It is however quite likely that the internal demands for each product may be at variance in some countries with those expected, in which case there may be changes in the investment and in the light of these the investment may only be considered to represent the broad order of magnitude of estimates.

The synthetic fibre demands have **also** been calculated on the basis of current and anticipated demands in individual countries where this data was available. In other countries the product pattern is based on the regional demands with due reference to the needs of areas depending on climatic condition and other factors.

The synthetic rubber demand has been considered only in respect of SBR and investment figure has been arrived at. In cases where different types of rubber are to be produced investments may change.

It has been estimated $\frac{1}{2}$ that for every dollar invested in the synthetic fibre industry an equivalent investment is required in the textile sphere for conversion of these fibres. It is beyond the scope to go into the textile regional investment in these calculations. This broad indication has been given since this may be of interest for future planning.

It has been assessed on the basis of experience in few countries that investment for the conversion cost of plastic into end products ranges between 60-80 dollars per ton of conversion capacity. In very broad terms this may come to 20-25 per cent of the investment required for construction of polymer plant cost. Estimates for conversion equipment for each country have been indicated.

The investment needs of individual countries of the region are given . as follows:

<u>J</u>/-

Seminar on the Development Prospects of Man-Made Fibre in Asia and the Far East, 1966.

TALTINA

- - The demand for petrochemicals in Durma during the past few years has ted been fluctuating and limited. The demand for different petrochemical groups of and the plants size is given in table 6 below:

Table 6

BURMA: Petrochemical domands capacities and plants required

Name of the products	1980 Demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of plants
Plastics and Synthetic Resins					· ·
Polyethylene Polyvinyl-	11,500	-	11,500	-	-
chloride	10,600	~~	10,600	6,000	2
Polystyrene	2,400	-	2,400	-	-
Synthetic Fibre	8				
Nylon	1,650	-	1,650	1,650	1
Synthetic Detergents	a • • ·				
	31,000	1. A	31,000	.13,000	3
Intermediates/ Monomers				• ,	-
Vinylchloride Caprolactam Fodecyl Benzene	13,000 1,815 6,000		. · ·		

Taking into consideration the limited demand of individual major plastics and the minimum economic plant sizes, two polyvinyl chloride plants of 6,000 ton capacity have been considered. ich 10/WG.34/5 Pape 100

The AemanA for synthetic fibres has been limited but it is considered that during the seventies at least one plant for the manufacture of nvlon will be established. Similarly three plants for the manufacture of synthetic detergents have been considered. The monomers in all cases will be obtained from outside.

The investment requirements for the above plants are estimated as under.

US million dollars

Plastics	· · · · · · 7 · · ·	
Synthetic fibres	10	
Detergents	2.5	الاستانية المراجع المر مراجع المراجع ال
Plastic processing machiner	y 21.5	

Cambodia

.

The petrochemical demands for different groups are mentioned in table 7 given below.

Table 7

CAMBODIA: Petrochemical demands capacities and plants required

Name of the products	1980 Demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tong	No. of plant s
Plastics and Synthetic Resins		9			
Polyethylene Polyvinylchloride Polystyrene	5,000 4,400 1,200	- - ·	5,000 4,400 1,200	6.,000	1
Synthetic Fibres	·	•		× .	
Nylon	1,650	-	1,650	1,650	1
Synthetic Detergents Intermediates/Monomer	7,000	- . •	7,000	10,000	1
Vinylchloride Caprolactam Dedecyl Benzene	6,500 1,815 2,000	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	ت ک بر مورد	× •	

TD WALAS (* Page 191

In view of the limited demands for individual products and the minimum economic size, only one plant for polyvinyl chloride, one for nylon and one for synthetic detergents have been considered. The manufacture will be based on monomers/intermediates to be obtained from an outside plant.

The estimated investments are as under:

	US million dollars
Plastics	3.5
Synthetic fibres	10.0
Synthetic detergents	0.8
Plastic processing machinery	1

Ceylon

The anticipated demands for petrochemicals are limited and may be seen in table 8 given below.

T	B,	b	1	•	-ξ	3

CEYLON: Petrochemical demands capacities and plants required

Name of the products	1980 Demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant sise in tons	No. of plant
Plastics and Synthetic Resins	an a				
Polyethylene Polyvinylchloride Polystyrene	5,200 4,640 1,280	- -	5,200 4,640 -	6,000	- 1 -
Synthetic Fibres					
Nylon	1 ,6 50	-	1,650	1,650	1
Synthetic Detergents Intermediates/Monomers	19,000	-	19,000	10,000	5
Vinylchloride Caprolactam Dodecyl Benzene	6,500) 1,815) A1 4,000)	l to be importe	be		

ted

of

i ih

10/NU. 34/5 Page 102

In view of the small quantities required one plant for polyvinyl chloride resin manufacture has been considered. Similarly one plant for manufacture of nylon and two for manufacture of detergents have been included. The monomers/intermediates will be obtained from outside.

The total investment required will be as under:

	US million dollars
Plastice	3.5
Synthetic fibres	10. 0
Detergents	1.7
Plastic processing machinery	0. 9

China, Republic of

.

The Chinese petrochemical demands have grown very fast during the last few years. The internal consumption as well as exports have grown considerably during this period. Substantial steps for erecting petrochemical manufacturing capacity have been taken recently. The detailed estimated demand, capacity in operation or under implementation and the new capacity required for meeting the demands by 1980 may be seen in table 9 given below.

11. WO. 44 **Page 10**3

Table 2

REFUELIC OF CHINA: Petrochemical demands capacities and plants required

Name of the products	1980 Demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of plants
Plastics			an a Charlen ann ann an Ann		
Polyethylene	100,000	20,000	80,0 00	50,000 32,000	1
Polyvinylchloride	240,000	75,000	165,000	20,000	1 6
Polystyrene	18,000	1,600	16,400	7,500	2
Polypropylene	10,000		20,000	20,000	2
ynthetic Fibres	,				•
Vylon	53,000	28,600	24,400	10,000	2
Polyester	35,000	29,600	5,400	5,000	ī
lerylie '	53,000	23,100	29,900	10,000	3
ynthetic Rubber	38,000	20,000	-	Exp. to	30,000
vnthetic Detergents	20,000	-	20,000	10,000	2
Intermediates/Monomers			ને નવ્યુ		
linyl chloride	260,000	110,000	150,000	100,000	1
	·	•	i i i i i i i i i i i i i i i i i i i	48,000	1
tyrene	24,600		24,600	24,000	ĩ
ithylene*	190,000	55,000	135,000 >	100,000	1
Propylene*	12,700	25,000	112,000)	exp. of a	sisting
(crvlonitrilerna a)	52,000	-	52,00 0	30,000	2
'aprolactam	57,000	-	57,000	20,000	3
)imethyl Terephthalate - Tethanol	38,500	~	38,500	24,000	8
utadiene*	45,000	16,500	28,500	expension	
odecyl bensene*	19,000	-	19,000	17,500	2
Sthylene Glycol	4,000	-	4,000	10,000	1
Benzene	14,000	•	14,000	20,000	1
~~~ II & G I IQ	80,000	-	<b>80,00</b> 0	20,000	2

. Recent of the second

- 63 💊

a c¹

*

* From naphtha oracker.

.

ted

11/WG.34/5 Fage 104

The requirements of ethylene will be met by expansion of cracker which has recently gene into operation as well as by setting up a new cracker when necessary. The butadiene requirements will be obtained by extraction of the available by-products from the cracker.

The investment requirements for creation of the new capacities mentioned above are as under.

	US million dollars	
Plastics	⁷³ 93	
Synthetic fibres	87	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Synthetic rubber	15	· · · · · · · · · · · · · · · · · · ·
Synthetic detergents	1.7	
Intermediates and monomers	157	ist termine name in an article
Plastic processing machinery	27.6	

••,...

. **.** '

. ... .

4241°

¥.,

### India

.....

•

......

. . . . .

The Indian petrochemical demands during the sixties were depressed due to severe restriction on imports and limited domestic availability. With the production of a number of petrochemicals within the country and development of processing capacity for a number of end products, the demands are now fast growing. A sustained effort to increase the petrochemical production is being made. The objectives of these efforts are presumably full utilization of petrochemical feed stock likely to be available. The petrochemicals are also expected to augment supplies of many products or materials like fibres, rubber, leather etc. by partial substitution or as complementary materials to be used in conjunction with other available materials. The position in respect of petrochemical demands and requirements of capacity may be seen in table 10 below.

مرین کرد. مربع میں در مربع المربع

Table 10

÷ --

- -

,

~ ~ · ~ ~ ~

Name of the products	1980 demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Flant size in tons	No. of •plants
lastics					
olyethylene	210,000	46,000	165,000	50,000 exp. of plant	3 one
olyvinylchloride	200,000	80 <b>,00</b> 0	120,000	20,000	6
olystyrene	70,000	21,500	48,500	24,000	2
plypropylene	25,000		25,000	20,000	1
ynthetic Fibres					
ylon	70,000	12,000	58,000	10,000	4
,	101000	,000	50,000		existing
•			÷	-	to 5,000
, ,	2	· · ·		tons	•
lyester	76,000	12,000	54,000	10,000	5
rylic	18,000	6,500	11,500	5,000	2
thers	22,000	-	22,000	14,000	
nthetic Rubber	205,000	30,000	175,000	8,000 60,000	) 1 3
ynthetic detergents	150,000	22,000	128,000	65,000	2
· · · · · · · · · · · · · · · · · · ·	1)0,000	<b>८८ , ०००</b>		0,000	-
ntermediates/Monomers					
inylchloride	216,000	80,000	136,000	100,000	1
	·	·		480,000	1
tyrene	<b>94,00</b> 0	30,000	64,000	24,000	3
thylene	360,000 -	<b>92,00</b> 0	268,000	107,000	2
	380,000	_	280/-		f existing
ropylene	70,000	20,000	50,000	•	rackers)-
aprolactam	77,000	-	77,000	20,000	4
ime <b>thyl</b> Te <b>rephthalate</b>	. 84,700	-	84,700	24,000 exp. of plant	3 fonc
Acrylonitrile	24,000	-	24,000	30,000	1
Cthylene Glycol	30,000	12,000	18,000	20,000	1
Butadiene	127,000	7,000	120,000	12,500	3 2
				40,000	
Soft Alkylates	30,000	-	30,000	30,000	1
ie thanol	45,000	33,000	12,000	/ · · · · ·	•
Benzene	1 <b>60,00</b> 0	53,000	108,000	20,000	4

1 '5 .

h

Part of the requirements of beareas and mutadiens will be mat by setting up recovery units with each of the crackers. Additional quantities of butadiene will be made available by setting up two dehydrogeneration units as the demand develops. The unit for manufacture of DNT will include facilities for manufacture of para-xylene required. It is presumed that the requirements of ethylene will be met by expansion of the existing crackers as well as by erection of two new crackers of 100,000 tons capacity. It is understood that soft detergents alkylates may be produced by cracking of slack wax. It is presumed that requirement of additional quantity of methanol will be obtained by extension of an existing plant.

The investment estimates for the different petrochemical production capacity which will be required are as under.

US million dollars

1. 5.

Plastics and synthetic resins	97.0	
Synthetic fibres	268	
Synthetic rubber	67	
Synthetic detergents	4.7	- ⁶ ,
Intermediates and monomers	23.7	
Plastic processing machinery	37.2	میں محمد دور کر

# Indonesia

19 A.

- 14

The current demands have been limited. The estimated 1980 demands for different groups and the capacities required to meet this demand may be seen from table 11.

പ്പുറ

Table 11

Name of the products	1980 demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of plants
lastics	· · · · · · · · · · · · · · · · · · ·		· · · ·		• • ·
<b>lyethylene</b> C	9,250 8,100		9,250 8,100	6,000	-
nthetic Fibres		• ,			
lon	1,650		1,650	1	1,650
nthetic Detergents	50,000	6,000	44,000	10,000	4
termediates/Monomers					
ylchloride lecyl Benzene prolactam	6,500 10,000 1,815	- - ) .		10,000	1

Taking into consideration the minimum economic size plants one unit of polyvinyl chloride resin and nylon and four units for the manufacture of detergents have been recommended. It will be assumed that production based on monomors will be obtained from outside, except DDD which may be produced from LPG when adequate demand develops.

Investment requirements for the different petrochemical production capacity are as under.

## US million dollars

Plastics	3.5
Synthetic fibres	10.0
Synthetic detergents	3.3
Plastic processing machinery	- 1 <b>.7</b>

In case a joint-venture for caprolactam is considered the investment will be \$13 million.

### Iran

The petrochemical demands have grown rapidly in Iran during the recent years. With large availability of petrochemical feed stocks developments could be sizeable. In idea of the demands and the capacity required to cover these may be seen from table 12. •

l 1ch

v

_____

# Table 12

44 M

¥. .

IRAN: Petrochemical demands, capacities and plants required

Name of the products	1980 demand estimate in tons	Capacity in operation/ under imple- mentation	Additional capacity required to meet 1980 demand in tons	Plant size in tons	No. of plants
		ton/yr.	ton/yr.	ton/yr.	
Plastics					·····
Polyethylene	85,000	18,000	67,000	. 50,000	. 1
Polyvinyl Chloride	85,000 .	19,000	66 <b>,000</b>	20,000	3
Polystyrene	21,000	<b></b>	21,000	7,500	3
Synthetic Fibres		an ann an 1999	<b></b>		
ylon	51,200		51,200	10,000	5
Polyester	6,400		6,400	5,000	1.
Acrylic	6,400	-	6,400	5,000	1
Synthetic Detergents	35,000	-	35,000	10 <b>,000</b>	3
Intermediate/Monomers	х <i>х</i>			,	
Vinyl Chloride	92,000	20,000	72,000	48,000	1
Sthylene*	100,000	18,000	82,000	100,000	1
Styrene	22,000	-	24,000	Ŧ	1
Caprolactam	56,000	-	-	20,000	3
Dimethyl Terephthalate	7,000	<b></b>	j	24,000	-
Dode <b>cyl Benze</b> ne	10,000		10,000	-	1
Ethylene Glycol	2,500	-	-	-	-

* From a naphtha or ethane propane cracker.

A. . .

. . . A

* May cover Pakistan and other countries' needs.

<u>,</u> .

...

S. Carolina de

### Table bà

KOREA: Petrochemical demands capacities and plants required

Name of the products	1980 Demand estimate in tons		Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of plants	
Plastic	• • • • • • • • • • •			· .		
	96.000	50,000	36,000	32,000	1	•
Folyethylene	86,000° 83,000	60,000	73,000	20,000	1	
Polyvinylchloride	9,000	8,000	1,000	-	-	
Polystyrene Folypropylene	20,000	20,000	-	-	-	
Smthetic Fibres				10.000		
Tylon	52,000	10,500	41,500	10,000	<b>4</b> 2	
Polyester	48,000	25,200	22,800	10,000 20, <b>00</b> 0	2	
Acrylic	75,000	33,000	42,000	•		
Synthetic Rubber	14,000	15,000	29,000	30,000	1	
Synthetic Detergents	42,000	17,500	24,500	10,000	2	
Intermediates					• •	
Vinylchloride	. 88,000	40,000	, 48,000	48,000	1	
, byrene	18,000	-	18,000	24,000	1	
Ethylene	146,000	66,000	76,000	expens: cracke:		existin.
		ac 700	48, <b>30</b> 0	30,000		
forylonitrile	75,000	26,700	40 <b>9 300</b>	expans: cracke	ion of	existin
•	57.000	2 	57,200	50,000		
Ceprolactam	57,200		52,800	21,000		
Dimethyl Terephthlat	e 52,800 20,000	12,000	-	•		
Ethylene Glycol	28,000		28,000	18,000	1	· • •
<u>Putadiene</u> Nathanol	15,000	45,000	-	-		
Propylene	140,000	35,000	110,000	45,000		
Dodecyl Benzene	10,000	10,000				
Dongo's tourous		•				

The ethylene requirements is assumed to be covered by expansion of the crackers from the initial capacity of 66,000 tons to 150,000 tons. It is essumed the acrylonitrile demands will be met by initially expanding the plant under construction and when additional demand requires the production will be obtained from a new plant. Butadiene will be obtained by extraction

It is anyoned that the viryl chloride requirements will be not by expansion of the existing plant as well as by setting up of a new plant.

The investment estimates for the above capacities are as under.

	US million dollars
Plastics	36.5
Synthetic fibres	141.9
Synthetic detergents	2.5
Intermediates	84.5
Plastic processing machinery	13.4

### Republic of Korea

The Korean petrochemical industry has been developing rapidly to cater to the increasing internal and export demands. A number of petrochemical plants are being constructed and are underway and future demands would be met from these us well as new capacities which may have to be constructed. Idea of the demands and the capacities required may be seen from table 13.

af the available quantities of by product from the cracker. The thermosetting resin production in Korea is likely to be substantial. The requirements of methanol for this could be of the order of 65,000 - 70,000 tons and these can be met by expansion of the methanol plant when necessary.

The investment requirements for the above capacities are as under.

		US million dollars	
	Plastics	14.3	
· • • • •	Synthetic fibres	177.8	•
88 10 00 10	Synthetic rubber	13	٤.
	Synthetic detergents	1.7	* 1933
	Intermediates and monomers	126	
	Plastic processing machinery	21.5	

1980 demands and capacities required in Malaysia may be seen in table 14 below.

Table 14

MALATSIA: Petrochemical demands capacities and plants required

Name of the products	1980 Demaild estimate in tons	Capacity in Operation/ Under imple- montation	Additional capacity required to moet 1980 demand	Plant size	No. of plants
		ton/yr.	ton/yr.	ton/yr.	
Plastic and Synthetic Resins	/- சுவைக்பல், மக்கைக்கைக்கு கொடுக்குவன் க	1999 - 49-69 - 49-6 marchar anno 1994 - 6 dan	9-9-9-10-10-10-10-10-10-10-10-10-10-10-10-10-		
Polyethylene Polyvinylchloride Polystyrene	13,500 900 3,300		13,500 11,900 3,300	16,000 6,000	1 2 -
Synthetic Fibres			-,-		
Nylon	1,650	-	1,650	1,650	1
Synthetic Detergents	13,000	12,000	-	_	
Intermediates		·			
Ethylene Vinyl chloride Dodecyl Eenzene Caprolactam	17,300) 13,000) 2,500) 1,815	to be im <b>ported</b>			

.

34./5 11

!

i

у

1

1

Joh

The requirements of athylene may be obtained from Singapore crachers. The investments in different groups are estimated as under.

•

NOLO

l I

I

I

F

S M H A

S

S

Į

S I

H

	US million dollars
Plastics	140
Synthetic fibres	100
Plastic processing machinery	2.5

### Pakistan

1 F

atai

**.** 

The petrochemical products demands are growing and capacities for certain types of products are being set up. The demands and requirements for capacities to meet this are given in table 15.

an an an the state of the state

	e 1. marine 1. av merine	s i anna cart	، و ب براهه د درست	and a second and a second and and a second and	n n n n n n n n n n n n n n n n n n n
					Do satur
	фанка в С	rt Carlos de Carlos d	CARLES STREET	The second second second	The second
•	et y	n ng kan sa	an a		•
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		• 8	ung manganan sa kawang terupakan terupakan kenangan kenangan kenangan kenangan kenangan kenangan kenangan kenan

٠.,

i de la companya de l

.

•	•	1 1 4 <b>1</b> 4 <b>1</b> 1	17 <b>*</b>		•
- energieste sont sont sont	and the first of the second	and the second s	n n Marina galangan na ja	an an thair a second and	ու է անդաման դիներին է հետությանը ստանախությանը հայտանան է է հետությունների հայտանան է է է է է է է է է է է է է
•			n yang yang yang yang yang yang yang yan		1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -
بالأهام والمسارح	🐅 🖘 🖕 - 1912	la k €t i	4 - 1 - 1 - <b>1</b>		
	1968 (A)		. <b>•</b>		و کې د کار خونه د کې د د
•				1	elvino in a dela
**	•	16 E - E	•••s	. ÕC, 🥈	$\mathbf{f}_{\mathbf{y}} = \mathbf{f}_{\mathbf{y}} + \mathbf{f}_{\mathbf{y}} + \mathbf{f}_{\mathbf{y}}$
	1°., +	an a			
	transfer and a start of the st				(12.5)
	,		.80,ŠI	3. J. J. J. J.	Concerns of Missioner?
					مەرىمەر بەر بەر مەرىپە بەر بەر مەرىپەر مە ^ر ىمە
	•	• *		с. С. <b>Б</b>	
			same etc.		●あたか 「おっ」とcm+注「
•				1 1 J A	Care to the second second second
				ate is	er lande Carron
ան նշանն անքող,պատ		and a second as the second	- Maria Managara		

Name of the products	1980 Demand estimate in tons	Capacity in operation/ under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of plants
Plastic					
Polyethylene Polyvinylchloride	25,600 24,800	15,000 30,000	10,000	-	expansion
Polystyrene	14,000	-	14,000	7,500	2
Synthetic Fibres					
lylon	70,000	4,000	3,000	1,650	2
Folyester	3,500	-	5,000	5,000	1
Acrylic	4,200	-	5,000	5,000	1
ynthetic Rubber	102,000	10,000	-	15,000	-
Synthetic Detergents	50 <b>,00</b> 0	25,000	30,000	10,000	3
Intermediates/Monomers					,
Vinvlohloride	26,800	30,000	-	-	
'thylene**	35,000	25,000	-		-
Butadiene**	11,000	-	<del>.</del> ,	12,500	1
dtvrene Dimethyl Terephthalate	14,500* 3,85 <b>0</b> *		-		-
Coprolactam	7,700*				
logionitrile	4,200*				
Dodecyl Benzene**	10,000	15,000	5,000	-	erpansion
Methanol	45,000	4,500		-	
Ethylene Glycol	1,400	-	-		-

Table 15

* to be obtained from outside

** from the naphtha cracker

n fin

61

s of

у 1

uch

n

1D/WG.34/9 Page 114

The capacities being set up for ethylene and vinyl chloride would be adequate to meet the requirements of the respective polymers. The buildiene requirements are expected to be obtained by extraction of the available byproducts from the cracker. Some of the intermediates/monomers may be obtained from outside.

The investment requirements for various groups are as under.

	US million dolla	are
Plastics	5.8	re bays i
Synthetic fibres	40.9	
Synthetic rubber	8.5	
Synthetic detergents	2.5	¥∾ 5€
Intermediates and monomers	4.0	1 - 2
Plastic processing machinery	- / 5.2	الارد به در در الراد به های در در در به هم در در های در در

F

F

N

F

S

S I

y

E

Ē

D

С

E E S M

dt.

h

· . •

and the states of

nfilman - in Bestin

testan reitan inter

## Philippines

The anticipated demands for various products and capacities required for meeting these may be seen in table 16 given below.

ant gatter and the setter

pression register i se

ID/WG. MAK Page 115

PHILIPPINES: Petrochemical demands, capacities and plants required					
Name of the products	1980 demand estimate in tons	Capacity in operation/ under imple- mentation	Additional capacity required to meet 1980 demand in tons	Plant Bize in tons	Ne. of plants
· · · · · · · · · · · · · · · · · · ·		ton/yr.	ton/yr.	ton/yr.	
Flastics					
l'oi <b>yethyle</b> ne	106,000	-	106,000	<b>50,0</b> 00	2
Folyvinyl Chloride	70,000	6 <b>,00</b> 0	86,000	20,000	4
Polypropylene	40,000	-	40,000	20,000	2
Synthetic Fibres					
Nylon	17,000	2,500	14,500	10,000 5,000	1 1
Polyester	17,000	-	17,000	10,000	2
Synthetic Rubbers	38,000	-	38,000	30,000	1
Synthetic Detergents	46,000 .	37,000	9 <b>,00</b> 0	10,000	1
Intermediates/Monomers					
Tinyl Chloride	90,000		9 <b>9,00</b> 0	100,000	1
Ethylene	160,000		160,000	100,000	2
dutadiene	19,000	-	19,000	18 <b>,00</b> 0	1
Propylene	44,000	-	<b>40,00</b> 0		1
Dimethyl Terephthalate	18,700	-	18 <b>,70</b> 0	24,000	1
Caprolactam	18,700	-	18 <b>,70</b> 0	20,000	1
Dodec <b>yl Benzene</b>	10,000	-	10,000	10,000	1
Benezene	<b>22,00</b> 0	-		20,000	1
Ethylene glycol	7,000				
Styrene	6,000				
Nethanol	<b>45,00</b> 0	-	45,000	45,000	1

# Table 16

Et

•

њ 🌡

sted

e of

į

·,y 1

uch

n

The current demand for thermosetting resins has been substantial and requirements of methanol to meet these on the present basis may be of the order of 65,000-75,000 tons. This could be met by expansion of the methanol plant capacity at a later date when required. It is expected that the requirements of ethylene will be met by installation of a 100,000 ton of naphtha cracker and its expansion to 166,000 tons as the demand syclops.

The investment requirements for the above are estimated as under.

ահանձն անգերները։ Ա.ս.	··· ·	US million dollars			
• • • • • • • • •	Plastics	79.4	• • •	an ann an staitean an staine an staitean an stàitean an stàitean an stàitean an stàitean an stàitean an stàite An stàitean an s	
	Synthetic fibres	74.7	t sa sheetaa y	ander af ander Bris er sammer i sam og som	
	Synthetic rubber	13.0			
	Synthetic detergents	0.8	•		
	Intermediates and monomers	63.1		· · · · · · ·	
	Plastic processing machinery	27.8		, <b>1</b> .	

# Singapore

The estimated demands for the petrochemical products may be seen in table 17 as follows:

ID/WG.34  $\cong$ Page 117

Table 17

SINGAPORE: Pet	rochemical de	mands, cazacit	ties and plants r	equired	
Name of the products	1910 demand estimate in tons	oper titr/	• additional cap. required to meet 1980 decode in tons	size	Ne. of Flants
Plastics	an a sua an				
Folyethylene Polyvinylchloride Polystyrene	33,500 17,000 6,000	- - -	33,50° 17,000 6,000	50,000 20,00) 7,500	1 1 · 1
Synthetic Fibres	1,650	-	1,650	1,650	1
Synthetic Detergents	3,000	-	-	-	حمدي
Intermediates/Monome:	rs				
Vinylchloride Ethylene* DDB* Caprolactan	18,300 78,000 10,000 1,815	-	18,300 80,000 10,000	48,000 100,000 10,000	1

From a Inaphtha cracker,

** It appeared as a joint venture for supply of vinyl chloride.

*** 17,400 tons of ethylene may be supplied to Halaysia and Republic of Viet-Nam for polyethylene manufacture in these countries.

The investment requirements for the petrochemicals are estimated as under:

	US million dollars
Plastics	20.7
Synthetic fibres	10
Intermediates and monomers	17.7
Plastic processing machinery	7.3

### Thailand

The demands for various petrochemical groups especially have been increasing rapidly. The demand by 1980 and the production capacities required for meeting this may be seen from table 18. sted

31 12

21

B of

у 1



1

# Table 18

Name of the products	1980 demand estimate in tons	Capacity in operation/ under inplem mertation	Additional capacity required to meet 19°0 demand	Flan <b>t</b> size	No. of plants
<u> </u>		tor/yr.	tor/yr.	ton/yr.	
Plastics 352000	an a an	n allaf vir als die ist voor wate antagenaar aan			
Polyethylene	184,000	-	184,000	50,000 32,000	
Polyvinyl chloride	92,000	· · ·	92,00r	20,000	
Folystyrene	21,000	-	21,000	7,500	-
Synthetic Fibres 2980			,	(1)	9
Nylo. Polyest∈r Acrylic	12,000 17,000 800	2,000	10,000	10 <b>,0℃</b> 10,000	1 2
Synthetic Detergents	52,0 <b>00</b>	16,000	36,000	10,000	4
Intermediates/Nonomers		• 	- <b>,</b>	•	·
Vinyl Chloride Ethylene* Styrene Dimethyl Terephthalate Caprolactam	100,000 250,000 23,000 16,700 13,200	-	100,000 250,000 23,000 18,700	100,000 100,000 24,000 24,000	1 2 1 1
Dodecyl Benzene#	10,000	-	13,200 10,000		1 1

# THAILAND: Petrochemical demands, capacities and plants required

* From a naphtha cracker.

The investment requirements for the petrochemicals are estimated as under:

p m

·	US million dollars
Plastics Synthetic fibres	8 <b>C</b>
Synthetic detergents	59
Intermediates and monomers	60
Flastic processing machinery	21

# Viet-Nam Report

The estimates of demands and capacities required may be seen in table 19.

## Table 12

REPUBLIC OF VIET-NAM:	Petrochemic	al demands, ca	pacities and pla	ents req	uired
• • •					
Name of the products	1980 demand estimate in tons	Capacity in operation- under imple- mentation	Additional cap. required to meet 1980 demand in tons	Plant size in tons	No. of Plants
Flastics	-				
Folyethylene	43,000	-	43,000	16,000	1
Folyvinylchloride	39,000	-	39,000	20,000	1
Polystyrene	10,000	-	10,000	7,500	T
Synthetic Fibres					
Lylor.	1,650	-	1,650	1,650	1
Intermediates/Noromers					
Sthylone	17,100*		-	-	-
Vylylolloride	20,800	-	-	-	-
Styrone	7,800		-		
Cuprolactem	1,815		مند . است برای برای این است برای برای این این این این این این این این این ا	ند. <del>:</del>	خت الاليسية، المناب من المانية اليورين

* To be obtained from Singapore cracker.

Due to uncertain conditions it is expected that investments in the initial periods may be as given in the table. The requirements of monomers and intermediates are anticipated to be met from outside.

The investment requirements for the above plant are estimated as under:

	US million dollars
Plastics	12.7
Synthetic fibres	10
Flastic processing machinery	8.2

у 1

i

uch

1

34 × 21

sted

s of

14. (* * * * Fra * * 14. *

# Possibilities of joint ventures

In order to make monomers available at economic prices it may be advantageous to produce them at central locations to cater to the needs of a number of plants producing end products. These plants have clready been indicated in countries with limited demands in the field of plastics and synthetic fibres. The requirements of monomers for some of these plants are as under.

## Caprolactam

Based on the proposed nylon varn plants in different countries, requirements of caprolactam of such countries are as under.

Country	Demand (tons)
Burma.	1,815
Cambodia	1,815
Cevlon	1,815
Indonesia	1,815
Malaysia	1,815
Pakistan	7,700
Singapore	1,815
Viet-Nam, Republic of	1,815
Thailand	13,200

The total requirement works out to 33,000 tons. It has been proposed  $\frac{1}{2}$  that a plant to produce 20,000 tons per annum of caprolactam to cater to the demand of the countries in the region may be located in Indonesia. This suggestion is based on the likely markets for ammonium sulphate available as a by-product from caprolactam manufacture. This proposal could perhaps be followed up and the joint venture idea worked out in detail. The capacity of the plant could be expanded at a suitable time when the demand goes up.

1/ Report of the AIDC Fact-Finding Study Team on Petrochemical Industry, 1968.

1

# Vinyl Chloride

In a number of countries polyvinyl chloride plants have been suggested based on monomer to be purchased from outside sources. The requirements of vinvl chloride monomer in these countries may be seen below.

Country	Demand
	(tons)
Burma	13,000
Ceylon	
Cambodia	6,500
Malaysia	6,500
	13,000
Indonesia	6,500
Singapore	18,300
Viet-Nam, Republic of	
, sobrett ()	21,600

The requirements of monomer could be met by a joint venture plant having substantial capacity. In the initial period a plant with a capacity of 48,000 tons could be set up and this could be expanded as the additional demand builds up. Singapore or Thailand could be possible locations for such a joint venture. However, detailed studies regarding the suitable location should be undertaken if the proposal to manufacture vinyl chloride monomer at a central plant and to carry out polymerization in units in different countries is considered.

### Styrene

The requirements of styrene monomer of different countries may be seen below.

Country		Demand
		(tons)
Iran		
Pakistan		22,000
		14,500
Philippines	$\epsilon$ , $\epsilon$ , $\epsilon$ , $\epsilon$	6,000
Singapore		7,800

It has been proposed that styrene should be manufactured at a central plant in Iran as a joint venture. This could be followed up by an agreement between the consuming countries and the capacity of the monomer plant increased when the demand goes up.

Methanol

According to the current consumption pattern in a number of countries in the region the demand for thermosetting resins has been estimated at approximately 20 per cent of the total plastics and synthetic resins demand. Total consumption of plastics and synthetic resins may be seen below.

Country	Total plastic and synthetic resins demand by 1980 (tons)
Burma	34,000
Cambodia	15,000
Cevlon	16,000
Indonesia	28,000
Malaysia	41,000
Viet-Nam, Republic of	134,000
Singapore	87 <b>,00</b> 0
	352,000

Consumption of thermosetting resins at 20 per cent of the above would amount to 70,000 tons. Taking into account the consumption of thermosetting resins in Thailand which was estimated to be of the order of 35,000 tons, the total demand would be about 110,000 tons. This would be equivalent to a demand of about 40,000 tons of methanol in the above countries which do not have production facilities. A methanol plant of 45,000 tons is proposed in Fakistan to cater to the requirements of a number of countries in the region. This plant may therefore be able to look after the demand of these countries.



