



## OCCASION

This publication has been made available to the public on the occasion of the 50<sup>th</sup> anniversary of the United Nations Industrial Development Organisation.

TOGETHER

for a sustainable future

#### DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as "developed", "industrialized" and "developing" are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

### FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

### CONTACT

Please contact <u>publications@unido.org</u> for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org





# GHANA

AND DRYING OF AGRICULTURAL PRODUCTS

KOFORIDUA POLYTECHNIC SCHOOL



MARKET REPORT ON SOLAR THERMAL WATER HEATING

## **SOLtrain West Africa**

A program managed by ECOWAS Centre for Renewable Energy and Energy Efficiency



IMPRINT Ghana Market Report on Solar Thermal Water Heating and Drying of Agricultural Products

Ghana - October 2015

#### AUTHORS

Mr. Divine Atsu, Head of Department of Energy Systems Engineering Koforidua Polytechnic School, Ghana e-mail: atsud22@yahoo.com

Yankey Kwasi Isaac Lecturer of the department of Energy Systems Engineering, Koforidua Polytechnic

Mr. Ampaw Kofi Nyarko Lecturer of the department of Energy Systems Engineering, Koforidua Polytechnic

Mr. Parbey Joseph Lecturer of the department of Energy Systems Engineering, Koforidua Polytechnic

Mr. Okoh Agyemang Emmanuel Lecturer of the department of Energy Systems Engineering, Koforidua Polytechnic

#### **PROGRAM RESPONSIBILITY**

This study is part of the Program SOLtrain West Africa ECOWAS Solar Thermal Training and Demonstration Program managed by the ECOWAS Centre for Renewable Energy and Energy Efficiency - ECREEE www.ecreee.org Mr. Mahama Kappiah, Executive Director

Mr. Hannes Bauer, Program Manager Ms. Adeola Adebiyi, Program Assistant



#### **TECHNICAL ASSISTANCE**



Ines

Mr. Werner Weiss, Mr. Rudi Moschik National Institut of Solar Energy, France - INES Mr. Xavier Cholin, Mr. Philippe Papillon

FUNDED BY



AUSTRIAN DEVELOPMENT COOPERATION

Economic Community of West African States - ECOWAS Austrian Development Cooperation - ADC Spanish Ministry of External Affairs and Cooperation - AECID United Nations Industrial Development Organization

## **Table of Content**

| 1 |                                           | GENERAL ENERGY BACKGROUND                                                                                          |
|---|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|   | 1.1                                       | Energy Indicator                                                                                                   |
|   | 1.2                                       | Primary Energy Supply 10                                                                                           |
|   | 1.3                                       | Imports and Exports                                                                                                |
|   | 1.4                                       | Energy Prices                                                                                                      |
| 2 |                                           | SHARE OF RENEWABLES 15                                                                                             |
|   | 2.1                                       | Renewables for Heating15                                                                                           |
|   | 2.2                                       | Renewables for Electricity Production                                                                              |
|   | 2.3                                       | SOLAR THERMAL HEATING MARKET 16                                                                                    |
|   | 2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>2.3.5 | Installed Capacity (m² and kWth)16Systems in operation16Collector types used20Imported systems21Local production21 |
|   | 2.4                                       | Customers and Main Applications22                                                                                  |
|   | 2.5                                       | Cost                                                                                                               |
|   | 2.6                                       | Companies involved23                                                                                               |
|   | 2.6.1<br>2.6.2<br>2.6.3                   | Companies involved in the production or assembling                                                                 |
| 3 |                                           | POLITICAL SUPPORT MECHANISMS                                                                                       |
| 4 |                                           | TEST AND RESEARCH INSTITUTIONS                                                                                     |
| 5 |                                           | SOLAR DRYING MARKET                                                                                                |
|   | 5.1                                       | Systems in Operation                                                                                               |
|   | 5.2                                       | Main Applications                                                                                                  |
|   | 5.3                                       | Cost                                                                                                               |
|   | 5.4                                       | Customers                                                                                                          |
|   | 5.5                                       | Companies Involved                                                                                                 |
|   | 5.6                                       | Know-how on solar drying                                                                                           |
|   | 5.7                                       | Awareness and Incentives 40                                                                                        |
| 6 |                                           | SOURCES                                                                                                            |

#### ABBREVIATIONS

| ktoe             | kiloton of Oil Equivalent                              |
|------------------|--------------------------------------------------------|
| GWh              | Gigawatt-hour                                          |
| bbls             | Barrels                                                |
| GRIDCo           | Ghana Grid Company Limited                             |
| WAGP             | West African Gas Plant                                 |
| VRA              | Volta River Authority                                  |
| TOR              | Tema Oil Refinery                                      |
| NPA              | National Petroleum Authority                           |
| PURC             | Public Utility Regulatory Commission                   |
| AAF              | Automatic Adjustment Formula                           |
| LPG              | Liquefied Petroleum Gas                                |
| Rfo              | Residual Fuel Oil                                      |
| Мао              | Marine Gas Oil                                         |
| MŴ               | Megawatts                                              |
| kW <sub>th</sub> | Kilowatts thermal                                      |
| m <sup>2</sup>   | Squared meter                                          |
| E/R              | Eastern Region                                         |
| U/W              | Upper West region                                      |
| 1                | Litres                                                 |
| HP               | Horsepower                                             |
| RF               | Renewable Energy                                       |
| GoG              | Government of Ghana                                    |
| MoF              | Ministry of Energy                                     |
| FPA              | Environmental Protection Agency                        |
| GIPC             | Ghana Investment Promotion Centre                      |
| MoFA             | Ministry of Food and Agriculture                       |
| KNUST Kwame      | Nkrumah University of Science and Technology           |
| CREK             | Centre for Renewable Energy, Kumasi                    |
| UENR             | University of Energy and Natural Resources             |
| UCC              | University of Cape Coast                               |
| UDS              | University of Development Studies                      |
| UEW              | University of Education. Winneba                       |
| KITE             | Kumasi Institute of Technology. Energy and Environment |
| KITA             | Institute of Tropical Agriculture, Kumasi              |
| CSIR             | Centre for Scientific and Industrial Research          |
| GIZ              | German and International Development Cooperation       |
| SIDA             | Swedish International Development Cooperation          |
| CSRPM Centre     | for Scientific Research into Plant Medicine            |
| DANIDA           | Danish International Development Assistance            |
| GW               | Gigawatt                                               |
| kWh              | Kilowatt-hour                                          |
| MMBTUMillion     | British Thermal Unit                                   |
| MWh              | Megawatt-hour                                          |
| ECG              | Electricity Company of Ghana                           |
| GNPC             | Ghana National Petroleum Corporation                   |
| LCO              | Light Crude Oil                                        |
| NPA              | National Petroleum Authority                           |
| TOE              | Tonnes of Oil Equivalent                               |
| W/R              | Western Region                                         |
|                  | -                                                      |

## A/R Ashanti Region

## GHANA STANDARD FIGURES PETROLEUM

| Crude Oil                 | 1 Tonne                                | 1.01- 1.02 TOE |
|---------------------------|----------------------------------------|----------------|
| Gasoline                  | 1 Tonne                                | 1.05 TOE       |
| Kerosene                  | 1 Tonne                                | 1.03 TOE       |
| Jet Fuel                  | 1 Tonne                                | 1.03 TOE       |
| Diesel /Gas Oil           | 1 Tonne                                | 1.02 TOE       |
| Residual Fuel Oil         | 1 Tonne                                | 0.97 TOE       |
| LPG                       | 1 Tonne                                | 1.08 TOE       |
| 7 barrels of<br>crude Oil | 1 Tonne of<br>crude oil                |                |
| 1 cubic metre             | 6.29 barrels                           |                |
| 1 barrel                  | 36 imperial<br>gallons                 | 163.66 Litres  |
|                           |                                        |                |
|                           |                                        |                |
| 1 GJ of Natural<br>Gas    | 1.05 MMBTU                             | 1.07 Mscf      |
| 1 MMBTU of Gas            | 37.55 cubic<br>metres ( m3)            |                |
| 1 MMBTU of Gas            | 5.82 bbl of<br>crude oil<br>equivalent |                |

#### **CONVERSION FACTORS**

GHANA STANDARD FIGURES ELECTRICITY

| 1000 W   | 1 kW     |
|----------|----------|
| 1000 kW  | 1 MW     |
| 1000 MW  | 1 GW     |
| 1000 kWh | 1 MWh    |
| 1000 MWh | 1 GWh    |
| 1 GWh    | 86 TOE   |
| 1 GWh    | 3600 GJ  |
| 1 TOE    | 41.86 GJ |

#### WOODFUEL

| Firewood/fuelwood                   | 1 Tonne | 0.30 - 0.36 TOE |
|-------------------------------------|---------|-----------------|
| Charcoal                            | 1 Tonne | 0.68 - 0.88 TOE |
| Sawdust/sawmill residues/wood chips | 1 Tonne | 0.20 - 0.30 TOE |

Low side reflecting average dry wood and corresponding Charcoal in the forest zones and the high side reflecting average dry wood and corresponding charcoal in the savannah zones of the country.

Charcoal production is based on the fact that between 4 - 5 units of wood have been used to produce one unit of charcoal in the country.

| Charcoal Source                                                | Average Weight (kg) o                    |                                          |                                                  |
|----------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| Charcoal Source                                                | Mini Bag                                 | Maxi Bag                                 | Moisture Content                                 |
| Sawmill residue<br>Savannah<br>Acacia plant<br>All other woods | 21 - 22<br>30 - 32<br>31 - 32<br>25 - 27 | 44 - 45<br>55 - 60<br>57 - 63<br>50 - 55 | Up to 40%<br>Up to 20%<br>Up to 20%<br>Up to 25% |

#### LIST OF TABLES

| Table 1: Energy indicators (2006-2014)                                            | 9    |
|-----------------------------------------------------------------------------------|------|
| Table 2: Primary Energy Supply (ktoe)                                             | . 10 |
| Table 3: Crude oil production (bbls)                                              | . 10 |
| Table 4: Share of electricity supply (GWh)                                        | . 11 |
| Table 5: Biomass supply (ktoe)                                                    | . 11 |
| Table 6: Crude Oil Imports (kilotonnes)                                           | . 12 |
| Table 7: Crude Oil Export                                                         | . 12 |
| Table 8: Electricity imports, export and net imports (GWh)                        | . 13 |
| Table 9: Charcoal export (kilotonnes)                                             | . 13 |
| Table 10: Average Electricity End User Tariff                                     | .14  |
| Table 11: Average prices of transport fuels                                       | .14  |
| Table 12: Renewable Energy consumption for heating purposes in 2014               | . 15 |
| Table 13: Share of Installed Renewable Grid Electricity Generation Capacity as of |      |
| September 2014 (MW)                                                               | . 15 |
| Table 14: Sector of application and capacities                                    | . 16 |
| Table 15: Thermosyphon systems in operation in Ghana                              | . 18 |
| Table 16: Pumped systems in operation in Ghana                                    | . 19 |
| Table 17 Customers and Main Applications of solar water heating systems           | . 22 |
| Table 18: Cost of a solar water heating system for a single family                | . 22 |
| Table 19: Companies involved in import of solar heating systems                   | . 23 |
| Table 20: Companies involved in the installation of solar heating systems         | . 25 |
| Table 21: Test, Research and Training Institutes                                  | . 30 |
| Table 22: Harvesting season for different crops in Ghana                          | . 36 |
| Table 23: Sector and users of solar dryers                                        | . 36 |
| Table 24: Organizations and companies using large scale solar dryers              | . 37 |
| Table 25: Production/ Assembly Organizations in Ghana                             | . 38 |
| Table 26: Companies involved in the importation of solar dryers and components in |      |
| Ghana                                                                             | . 38 |
| Table 27: Solar dryer installation companies in Ghana                             | . 39 |
| Table 28: List of institutions involved in research and technical training        | . 39 |

## LIST OF FIGURES

| Figure 1: a) Pumped systems with backups at Royal Senchi Resort b) Pumped system        |    |
|-----------------------------------------------------------------------------------------|----|
| with backups at HPW                                                                     | 16 |
| Figure 2: Pumped system with internal heat exchangers a) at Anita Hotel, Ashanti. b) a  | at |
| African Reagent Hotel, Accra. c) at Airport View Hotel                                  | 17 |
| Figure 3: Pumped system with a central backup at Tema International Hotel, Tema         | 17 |
| Figure 4: Thermosyphon systems for domestic uses                                        | 18 |
| Figure 5: Types of solar collectors used in Ghana a) Flat Plate b) Evacuated tubes      | 21 |
| Figure 6: Share of imported solar thermal systems by country of origin                  | 21 |
| Figure 7: Design of the MoFA Top Vent solar Dryer (Source: TECA (http://teca.fao.org)   | )  |
|                                                                                         | 33 |
| Figure 8: a) Mixed mode solar dryer at Koforidua Polytechnic, b) Direct solar dryer and | Í  |
| c) indirect solar dryer                                                                 | 34 |
| Figure 9: Different solar dryers for smallholder farmers                                | 34 |
| Figure 10: Large scale maize solar dryer by MoFA- inside and outside view               | 35 |
| Figure 11: a) Tent type solar dryer at Sekyedumase and b) house solar dryer at          |    |
| Mampong                                                                                 | 35 |
| Figure 12: Test solar air collector dryer at Silwood farms-Pokoase                      | 35 |
|                                                                                         |    |

## **1 GENERAL ENERGY BACKGROUND**

The main energy sources consumed in Ghana are primarily petroleum products, natural gas, biomass, hydro and solar. Wind energy and tidal energy are being investigated by the Government of Ghana and other foreign investors at various locations.

## 1.1 Energy Indicator

Table 1 below shows the energy indicators from 2006 to 2014. It is observed from the table below that the use of biomass has decreased whiles petroleum products have increased.

| Energy Indicator                  | Unit | 2006     | 2007     | 2008     | 2009     | 2010      | 2011      | 2012      | 2013      | 2014     |
|-----------------------------------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------|
| Total Final Energy Consumed       | ktoe | 5,176.90 | 5,274.10 | 5,209.80 | 5,731.70 | 5,670.20  | 6,192.10  | 6,556.90  | 6,889.00  | 7016.4   |
| Total Electricity Generated       | GWh  | 8,430.00 | 6,978.00 | 8,324.00 | 8,958.00 | 10,167.00 | 11,200.00 | 12,023.80 | 12,870.00 | 12,963.0 |
| Total Electricity Consumed        | GWh  | 7,361.90 | 6,440.50 | 7,219.40 | 7,452.40 | 8,317.40  | 9,186.60  | 9,258.00  | 10,583.20 | 11,081.3 |
| Total Petroleum Products Consumed | ktoe | 1,872.60 | 2,126.60 | 2,071.30 | 2,597.70 | 2,491.10  | 2,826.60  | 3,317.50  | 3,422.30  | 3,377.5  |
| Total Biomass Consumed            | ktoe | 2,671.30 | 2,593.70 | 2,517.80 | 2,493.30 | 2,463.90  | 2,575.60  | 2,588.80  | 2,676.00  | 2,791.7  |

Table 1: Energy indicators (2006-2014)

NB: Total Electricity Consumed include commercial losses

Source: Energy Commission (Energy Statistics, 2015)

## 1.2 Primary Energy Supply

Table 2 shows the primary energy supply of the country from 2005 to the end of 2014. From the table, it can be seen that, wood in the form of firewood and charcoal was the most extensively used source of energy until 2012. Even though there are industrial uses for wood, it is mainly used in the domestic sector for cooking and heating purposes. About 90% of the primary energy supply is from biomass and oil (World Bank Group & CIF, 2014). Natural gas is normally used in the Thermal Plants for electricity generation since it is cheaper than crude oil. Hydro play an important role in the energy sector since it is the main source of electricity production in the country.

| Year        | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Oil         | 2,140 | 2,815 | 3,017 | 2,672 | 2,316 | 2,744 | 2,820 | 3,870 | 4,011 | 4,177 |
| Natural gas | N/A   | N/A   | N/A   | N/A   | 5     | 394   | 769   | 390   | 292   | 621   |
| Hydro       | 484   | 483   | 321   | 533   | 592   | 602   | 650   | 694   | 708   | 721   |
| Wood        | 3,174 | 3,100 | 3,066 | 3,068 | 3,124 | 3,206 | 3,370 | 3,408 | 3,553 | 3,628 |
| Total       | 5,798 | 6,398 | 6,404 | 6,273 | 6,036 | 6,946 | 7,609 | 8,362 | 8,564 | 9,147 |

Table 2: Primary Energy Supply (ktoe)

N/A means Not Available

Source: Energy Commission (Energy Statistics, 2015)

Table 3: Crude oil production (bbls)

| Year                | 2005   | 2006    | 2007    | 2008    | 2009    | 2010      | 2011       | 2012       | 2013       | 2014       |
|---------------------|--------|---------|---------|---------|---------|-----------|------------|------------|------------|------------|
| From Saltpond Field | 82,447 | 160,457 | 189,378 | 213,730 | 173,444 | 97,642    | 75,731     | 105,464    | 98,289     | 97,301     |
| From Jubilee Field  | N/A    | N/A     | N/A     | N/A     | N/A     | 1,267,700 | 23,757,695 | 28,831,136 | 36,760,348 | 37,201,691 |
| Total               | 82,447 | 160,457 | 189,378 | 213,730 | 173,444 | 1,365,342 | 23,833,42  | 28,936,60  | 36,858,63  | 37,298,99  |

Source: Ghana National Petroleum Corporation & Petroleum Commission

The oil production from the Salt pond field has been on the descendent since 2012 suggesting the wells are drying up (see Table 3). The production of crude oil increased substantially after the discovery of the Jubilee field in the Gulf of Guinea. As shown in Table 3 above, the production levels reached the million barrel mark after the Jubilee field became operational in mid-December, 2010. In 2014, the daily oil production was 105, 935 barrels which is close to its daily target of 120,000 barrels (Energy Commission, 2015).

Electricity is generated locally using different energy sources including hydro, natural gas, crude oil and recently solar. The total installed capacity stood at 2831MW as of 2014 with hydropower making up 55% of the share (Energy Commission, 2015). The breakdown of electricity generated is shown in Table 4 below. The country's electricity demand is augmented with power imports from neighbouring countries.

| Plant                  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010   | 2011   | 2012   | 2013   | 2014   |
|------------------------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| Hydro Generation       | 5,629 | 5,619 | 3,727 | 6,195 | 6,877 | 6,996  | 7,561  | 8,071  | 8,233  | 8,387  |
| Thermal Generation     | 1,159 | 2,811 | 3,251 | 2,129 | 2,081 | 3,171  | 3,639  | 3,953  | 4,635  | 4,572  |
| Renewables (VRA Solar) | N/A   | N/A   | N/A   | N/A   | N/A   | N/A    | N/A    | N/A    | 3      | 4      |
| Total                  | 6,788 | 8,430 | 6,978 | 8,324 | 8,958 | 10,167 | 11,200 | 12,024 | 12,870 | 12,963 |

Table 4: Share of electricity supply (GWh)

Source: GRIDCo

Table 5: Biomass supply (ktoe)

| Year                                                         | 2004                 | 2005                 | 2006                 | 2007                 | 2008                 | 2009                 | 2010                 | 2011                 | 2012                 | 2013                 |
|--------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Wood for charcoal<br>Wood for firewood<br>Other <sup>1</sup> | 1,219<br>2,017<br>40 | 1,268<br>1,873<br>37 | 1,325<br>1,742<br>35 | 1,391<br>1,644<br>33 | 1,474<br>1,566<br>31 | 1,577<br>1,520<br>30 | 1,687<br>1,490<br>30 | 1,805<br>1,535<br>31 | 1,859<br>1,520<br>30 | 1,989<br>1,535<br>30 |
| Total Wood Supply                                            | 3,277                | 3,178                | 3,102                | 3,068                | 3,070                | 3,127                | 3,207                | 3,371                | 3,409                | 3,554                |

<sup>1</sup>include saw dust, sawmill residue etc. Source: Energy Commission (Energy Statistics, 2014)

The consumption of biomass has been decreasing over the years after the discovery of oil and natural gas (see Table 1.1). However, its supply has been on the ascendency as shown in Table 5above. The discovery of oil and natural gas has therefore not discouraged the production of biomass in the country.

## **1.3 Imports and Exports**

Crude oil is mainly imported for electricity production and the transportation sector. A look at 2014 values of imports in Table 6shows a sharp decrease in the total crude oil imported. This is as a result of using more natural gas inflow from the WAGP and Atuabo gas plants.

| Year                       | 2004    | 2005    | 2006    | 2007    | 2008    | 2009  | 2010    | 2011    | 2012    | 2013    | 2014  |
|----------------------------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|-------|
| Total Import               | 1,976.9 | 1,967.5 | 1,712.8 | 2,053.7 | 1,975.8 | 982.8 | 1,661.6 | 1,531.6 | 1,209.5 | 1,302.3 | 693.2 |
| For Refinery               | 1,813.5 | 1,645.5 | 962.2   | 1,242.5 | 1,396.7 | 441.4 | 961.1   | 1,274.2 | 505.8   | 374.4   | 70.1  |
| For Electricity Generation | 163.4   | 322.0   | 750.6   | 811.2   | 579.1   | 541.4 | 700.5   | 257.4   | 703.7   | 927.8   | 623.1 |

Table 6: Crude Oil Imports (kilo tonnes)

Source: VRA, TOR, NPA

According to Bank of Ghana, the average price of crude oil sourced by Ghana in 2014 was \$99 per barrel as compared to \$109 per barrel in 2013. This explains the reason why in 2014, the money value decreased even though production levels increased (see Table 7).

#### Table 7: Crude Oil Export

| Year                 | 2005   | 2006    | 2007    | 2008    | 2009    | 2010   | 2011       | 2012       | 2013       | 2014       |
|----------------------|--------|---------|---------|---------|---------|--------|------------|------------|------------|------------|
| Quantity (bbls)      | 82,447 | 160,457 | 189,378 | 213,730 | 173,444 | 97,642 | 24,731,475 | 26,430,934 | 36,048,290 | 37,702,873 |
| Value (million US\$) | N/A    | N/A     | N/A     | N/A     | N/A     | N/A    | 2,779      | 2,976      | 3,885      | 3,585      |

Source: Energy Commission, Bank of Ghana

12

Table 8 shows share of electricity exports and charcoal exports respectively. A negative net electricity import depicts that there were more exports than imports in that particular year.

|            | 2005 | 2006 | 2007 | 2008 | 2009 | 2010  | 2011 | 2012 | 2013 | 2014 |
|------------|------|------|------|------|------|-------|------|------|------|------|
| Import     | 815  | 629  | 435  | 275  | 198  | 106   | 81   | 128  | 27   | 51   |
| Export     | 639  | 754  | 246  | 538  | 752  | 1,036 | 691  | 667  | 530  | 522  |
| Net Import | 176  | -125 | 189  | -263 | -554 | -930  | -610 | -539 | -503 | -471 |

Table 8: Electricity imports, export and net imports (GWh)

Source: Energy Commission (Energy Statistics, 2015)

The trend in charcoal exports has been irregular with the highest export in 2005 and the lowest in 2011 and 2013.

Table 9: Charcoal export (kilo tonnes)

| Year            | 2004 | 2005 | 2006  | 2007 | 2008  | 2009 | 2010  | 2011  | 2012  | 2013  |
|-----------------|------|------|-------|------|-------|------|-------|-------|-------|-------|
| Quantity        | 4.6  | 5.7  | 2.9   | 3.6  | 2.9   | 4.3  | 1.4   | 0.8   | 2.0   | 0.8   |
| Growth Rate (%) | 0.0  | 23.9 | -49.1 | 24.1 | -19.4 | 48.3 | -67.4 | -42.9 | 150.0 | -61.4 |

Source: Energy Commission (Energy Statistics, 2015)

## 1.4 Energy Prices

The Public Utility Regulatory Commission (PURC) is responsible in determining the tariffs of electricity in consultation with key stakeholders within the regulated electricity market based on the rate-setting provisions of PURC Act 538. Electricity tariffs in Ghana have gone up over 90% across all customer categories in the last 3 years, in an effort to allow the utilities recover their cost and operate in a

sustainable manner without recourse to any form of government subsidies. With the application of the Automatic Adjustment Formula (AAF), electricity tariffs have gone up by 6.54% in the fourth quarter of 2014. Table 10 shows the prices of end user tariffs from 2004-2013. Table 11 also depicts the prices of the various transportation fuels used in the country from 2008-2014.

| Year                                     | 2004  | 2005 | 2006  | 2007 | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  |
|------------------------------------------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|
| Exchange Rate<br>(GHS/US\$) <sup>1</sup> | 0.9   | 0.91 | 0.92  | 0.97 | 1.2   | 1.43  | 1.45  | 1.55  | 1.88  | 1.97  |
| Average End<br>User Tariff<br>(US\$/kWh) | 0.082 | 0.08 | 0.084 | 0.1  | 0.123 | 0.104 | 0.145 | 0.158 | 0.124 | 0.156 |

Table 10: Average Electricity End User Tariff

<sup>1</sup>Bank of Ghana. Source: Energy Commission, Bank of Ghana

|      |           | Premium  |          |          |          |          |           |          |
|------|-----------|----------|----------|----------|----------|----------|-----------|----------|
| Year | Exch Rate | Gasoline | Gas Oil  | Kerosene | Lpg      | Rfo      | Mgo Local | Premix   |
|      | GHS/US \$ | US \$/Lt | US \$/Lt | US \$/Lt | US \$/Kg | US \$/Lt | US \$/Lt  | US \$/Lt |
| 2008 | 1.044     | 1.026    | 1.056    | 0.982    | 0.930    | 0.563    | N/A       | N/A      |
| 2009 | 1.408     | 0.711    | 0.728    | 0.564    | 0.519    | 0.376    | 0.603     | 0.339    |
| 2010 | 1.431     | 0.817    | 0.825    | 0.636    | 0.586    | 0.469    | 0.683     | 0.378    |
| 2011 | 1.513     | 1.002    | 1.012    | 0.602    | 0.695    | 0.551    | 0.811     | 0.359    |
| 2012 | 1.792     | 0.955    | 0.964    | 0.508    | 0.728    | 0.468    | 0.849     | 0.303    |
| 2013 | 1.956     | 1.048    | 1.061    | 0.639    | 1.023    | 0.523    | 0.924     | 0.370    |
| 2014 | 2.890     | 1.026    | 1.015    | 0.993    | 1.040    | 0.505    | 0.914     | 0.482    |

Table 11: Average prices of transport fuels

Source: NPA

\_\_\_\_\_14

## **2 SHARE OF RENEWABLES**

#### 2.1 Renewables for Heating

There is little known data on the share of renewable energy sources for heating purposes. As shown in Table 12, the only data available is on biomass. Biomass is predominantly used in domestic households for cooking and hot water preparation.

Table 12: Renewable Energy consumption for heating purposes in 2014

| Source of energy | ktoe  |
|------------------|-------|
| Biomass          | 2,792 |
| Solar (PV)       | N/A   |
| Wind             | N/A   |
| Hydro            | N/A   |
| Geothermal       | N/A   |
| Solar (Thermal)  | N/A   |

Source: Energy Commission, 2015

## 2.2 Renewables for Electricity Production

As of September 2014, excluding large hydro, 8.22 MW of installed grid electricity generation was from renewable energy plants (see Table 13). This accounts for only 0.3% of the total installed generation capacity (World Bank Group & CIF, 2014).

Table 13: Share of Installed Renewable Grid Electricity Generation Capacity as of September 2014 (MW)

| Renewable Energy Plants                         | Installed Capacity<br>(MW) | Share (%) |
|-------------------------------------------------|----------------------------|-----------|
| VRA (PV)                                        | 2.5                        | 30.4      |
| Noguchi (PV)                                    | 0.72                       | 8.8       |
| Juabeng Oil mill (Biomass)                      | 1.2                        | 14.6      |
| Solar thermal power                             | N/A                        | N/A       |
| Wind                                            | N/A                        | N/A       |
| Geothermal                                      | N/A                        | N/A       |
| Others (off-grid & net-metered<br>installations | 3.8                        | 46.2      |
| Total                                           | 8.22                       | 100.0     |

Source: World Bank Group & CIF, 2014

## 2.3 SOLAR THERMAL HEATING MARKET

### 2.3.1 Installed Capacity (m<sup>2</sup> and kW<sub>th</sub>)

As at the end of July, 2015, the total installed capacity of solar water heating systems is estimated to be 1018.48kW<sub>th</sub> (1454.97 m<sup>2</sup>). During the market survey, the capacity captured was 725.9 kW<sub>th</sub>. Table 14 shows the various categories that make up the capacity captured. The difference between the estimated and captured capacities (292.58 kW<sub>th</sub>) was based on the information from the installers that were not captured during the survey.

| Sector       | Capacity (m <sup>2</sup> ) | Capacity(kW <sub>th</sub> ) |
|--------------|----------------------------|-----------------------------|
| Hotels       | 622.3                      | 435.6                       |
| Domestic     | 86.4                       | 60.4                        |
| Industrial   | 324.3                      | 227.0                       |
| Institutions | 4.1                        | 2.8                         |
| Total        | 1037.0                     | 725.9                       |

Table 14: Sector of application and capacities

#### 2.3.2 Systems in operation

In Ghana, there are two main systems in operation, that is, the direct thermosyphon and direct pumped systems. The dominant system is the direct pumped system. However, the configuration and usage are different. For instance, the solar water heating system with an installed capacity of 37.8kW<sub>th</sub> at the Royal Senchi Resort located at Akosombo, E/R, is used to preheat cold water before entering a boiler to be heated with LPG to the required temperature. In the case of HPW (Fresh and Dry) Company at Adeiso, E/R, the system is used directly to dry the fruits when the temperature attained is sufficient but when the required temperature is not attained, the water from the solar heating system is further heated with diesel and biogas to the expected temperature. Figure 1 depicts the two main systems in operation in the country.



Figure 1: a) Pumped systems with backups at Royal Senchi Resort b) Pumped system with backups at HPW.

There are other systems such as the ones installed at Anita hotel, Ejisu, Ashanti region and African Reagent Hotel, Accra where each storage tank is fitted with heat exchangers

which is used to increase the temperature of the hot water if the desired temperature is not attained using electricity from the national grid. Apart from the pumped systems with backups, there are other pumped systems in operation without backups such as those installed for domestic purposes.



Figure 2: Pumped system with internal heat exchangers a) at Anita Hotel, Ashanti. b) at African Reagent Hotel, Accra. c) at Airport View Hotel.



Figure 3: Pumped system with a central backup at Tema International Hotel, Tema.

The other system in operation is the thermosyphon system. Among the sites surveyed, the largest was the  $20.7 kW_{th}$  system installed at Wynca Sunshine Agric, Boankra in the Ashanti region of Ghana.



Figure 4: Thermosyphon systems for domestic uses

| S/N | Name                              | Address                             | Collector<br>Area<br>(m <sup>2</sup> ) | Tank<br>volume<br>(I) | Capacity<br>(kW <sub>th</sub> ) | Purpose of installation                  |
|-----|-----------------------------------|-------------------------------------|----------------------------------------|-----------------------|---------------------------------|------------------------------------------|
| 1   | Afrikoko<br>river front<br>resort | P. O. Box AB 353,<br>Akosombo       | 17.7                                   | 1400                  | 12.4                            | Hot water preparation                    |
| 2   | Axim Beach<br>Hotel               | Axim W/R                            | 27.9                                   | 2200                  | 19.5                            | Hot water preparation                    |
| 3   | Champion<br>Int'l Hotel           | P. O. Box N 150,<br>New Tafo-Kumasi | 3.8                                    | 300                   | 2.7                             | Hot water preparation                    |
| 4   | Dwe Guest<br>House                | Okwenya, E/R                        | 6.3                                    | 500                   | 4.4                             | Hot water preparation                    |
| 5   | Jirapa Hain<br>Polyclinic         | Jirapa U/W                          | 2.1                                    | 200                   | 1.4                             | Hot water preparation                    |
| 6   | BSR                               | Oyarifa, BSR                        | 4.2                                    | 400                   | 2.9                             | Hot water preparation                    |
| 7   | K. K.<br>Residence                | Akosombo, Eastern<br>Region         | 2.1                                    | 200                   | 1.5                             | Hot water preparation                    |
| 8   | Koforidua<br>polytechnic          | Koforidua, Eastern<br>Region        | 2.0                                    | 150                   | 1.4                             | Hot water<br>preparation for<br>research |
| 9   | Koforidua<br>polytechnic          | Koforidua, Eastern<br>Region        | 2.1                                    | 200                   | 1.5                             | Hot water<br>preparation for<br>research |
| 10  | Lambussie<br>Polyclinic           | Lambussie U/W                       | 2.1                                    | 200                   | 1.4                             | Hot water preparation                    |

Table 15: Thermosyphon systems in operation in Ghana.

| 11    | Marbon<br>Hotel                 | P. O. Box 3039,<br>Danyame/Santasi<br>Roundabout, Near<br>Nagies School | 8.8   | 600    | 6.2  | Hot water<br>preparation |
|-------|---------------------------------|-------------------------------------------------------------------------|-------|--------|------|--------------------------|
| 12    | Nandom Ko<br>Polyclinic         | Nandom U/W                                                              | 2.1   | 200    | 1.4  | Hot water preparation    |
| 13    | New town<br>Junction            | Akrade E/R                                                              | 2.1   | 200    | 1.5  | Hot water preparation    |
| 14    | Nodan Hotel                     | Fumesua A/R                                                             | 10.1  | 800    | 7.1  | Hot water for bathing    |
| 15    | Wa West<br>Wechua<br>Polyclinic | Wechua U/W                                                              | 2.1   | 200    | 1.4  | Hot water preparation    |
| 16    | Wynca<br>Sunshine<br>Agric      | off Accra -Kumasi<br>road near Ejusu                                    | 29.5  | 2325   | 20.7 | Domestic use             |
| 17    | XI Lodge<br>East Legon          | Nii Afotey Brutu II<br>Road Adjiringanor<br>East Legon, Accra           | 3.8   | 300    | 2.7  | Hot water for bathing    |
| Total |                                 |                                                                         | 128.6 | 10.375 | 90.0 |                          |

Table 16: Pumped systems in operation in Ghana.

| S/N | Name                           | Address                             | Collector<br>Area<br>(m²) | Tank<br>volume<br>(L) | Capacity<br>(kW <sub>th</sub> ) | Purpose of installation |
|-----|--------------------------------|-------------------------------------|---------------------------|-----------------------|---------------------------------|-------------------------|
| 1   | African<br>Reagent Hotel       | P. O. Box CT<br>6143,<br>Cantonment | 132                       | 9000                  | 92.4                            | For hot water           |
| 2   | Anita Hotel                    | Ejisu off<br>Kumasi                 | 57.2                      | 3900.0                | 40.0                            | For hot water           |
| 3   | Airport View<br>Hotel          | Airport<br>Junction,<br>Accra       | 45.6                      | 3000.0                | 31.9                            | For hot water           |
| 4   | Brookvale<br>Hotel             | P. O. Box<br>2266, Accra            | 3.6                       | 300.0                 | 2.5                             | For hot water           |
| 5   | Brookvale<br>Hotel             | P. O. Box<br>2266, Accra            | 17.6                      | 1200.0                | 12.3                            | For hot water           |
| 6   | BT/E14C<br>Adweso<br>Koforidua | Adweso<br>Koforidua                 | 3.6                       | 300.0                 | 2.5                             | Domestic use            |
| 7   | Emefs estate<br>1              | Nungua<br>Accra                     | 2.4                       | 200.0                 | 1.7                             | Domestic use            |
| 8   | Emefs estate<br>2              | Nungua<br>Accra                     | 2.1                       | 200.0                 | 1.5                             | Domestic use            |
| 9   | Energy Bau                     | P. O. Box<br>231, Aburi             | 4.4                       | 300.0                 | 3.1                             | For hot water           |

| 10    | HPW Fresh &<br>Dry Company<br>Ltd | P. O. Box AO<br>Adeiso<br>Eastern<br>Region               | 316.0 | 450000.0  | 221.2 | Process heat for<br>fruit drying |
|-------|-----------------------------------|-----------------------------------------------------------|-------|-----------|-------|----------------------------------|
| 11    | Kuatom<br>Estate                  | Ayi Mensah                                                | 36.0  | 3000.0    | 25.2  | Domestic use                     |
| 12    | Mariam Hotel                      | Tamale                                                    | 6.3   | 500.0     | 4.4   | Hot water for bathing            |
| 13    | Modern City<br>Hotel              | Tamale                                                    | 6.3   | 500.0     | 4.4   | Hot water for<br>bathing         |
| 14    | Nim Avenue<br>Hotel               | Tamale                                                    | 24.7  | 1950.0    | 17.3  | Hot water for bathing            |
| 15    | Noble House<br>Hotel              | Next to<br>Georgia<br>Hotel, off<br>Asokwa<br>Interchange | 11.7  | 800.0     | 8.2   | For hot water                    |
| 16    | Pescourt<br>Hotel                 | Opposite<br>Dansoman<br>market                            | 3.6   | 300.0     | 2.5   | For hot water                    |
| 17    | Planters<br>Lodge & Spa           | Dixcove<br>Road,<br>Tarkoradi                             | 18.1  | 2700.0    | 12.7  | For hot water                    |
| 18    | Roobinhood<br>Hotel               | P. O. Box<br>16053, Plot<br>43A, Spintex                  | 11.7  | 800.0     | 8.2   | For hot water                    |
| 19    | Royal Modak<br>Hotel Kwahu        | Kwahu<br>Pepease.<br>Eastern<br>Region                    | 38.0  | 3000.0    | 26.6  | Hot water for<br>bathing         |
| 20    | Royal Senchi<br>resort            | P. O. Box 27,<br>Akosombo                                 | 54.0  | 8000.0    | 37.8  | Preheat water                    |
| 21    | Tema<br>International<br>Hotel    | Tema comm.<br>6                                           | 51.9  | 4100.0    | 36.3  | Hot water for<br>bathing         |
| 22    | Tyco city<br>hotel                | P. O. Box<br>639, Sunyani                                 | 61.6  | 4200      | 43.1  | Hot water preparation            |
| Total |                                   |                                                           | 908.4 | 498,250.0 | 635.9 |                                  |

#### 2.3.3 Collector types used

From the data gathered, the collector types installed are the evacuated tube and flat plate representing 57% and 43% respectively.



Figure 5: Types of solar collectors used in Ghana a) Flat Plate b) Evacuated tubes

#### 2.3.4 Imported systems

Countries of origin of solar water heating systems into the country include China, Turkey, Germany, United States of America, Israel, South Africa, United Kingdom, Greece and Australia. Figure 6 gives the percentages of imported system from different countries. The manufacturing companies whose products were identified include Chromagen, Solahart, Wagner & Co, Wet Sola and Aquasol.



Figure 6: Share of imported solar thermal systems by country of origin

#### 2.3.5 Local production

Currently, there are no manufacturing companies involved in solar water heating systems production and its components at the national level.

## 2.4 Customers and Main Applications

Hospitality and accommodation sector is the major user of the solar water heaters with just a few installations for industrial, institutional and domestic uses. The major applications are hot water for bathing and dish washing. Other applications include industrial process heating for fruit drying and others for exhibition and research purposes. Table 17 presents the major customers and the uses of solar water heating installations. Most of the installations are in the urban centres with few in the rural areas of the country.

Table 17 Customers and Main Applications of solar water heating systems

| Customers                               |                | Main Application                                           | Distribution of Systems |
|-----------------------------------------|----------------|------------------------------------------------------------|-------------------------|
| Hospitality<br>accommodation<br>hotels) | and<br>(Mainly | Preheating and heating water for kitchen and bathing       | Urban                   |
| Institutions                            |                | Hot water heating for research<br>purposes                 | Urban                   |
| Households                              |                | Heating water for bathing                                  | Urban                   |
| Industrial                              |                | Process heat for fruit drying and<br>hot water preparation | Rural and Urban         |

## 2.5 Cost

The cost of solar water heating systems and components in Ghana varies depending on the country of origin and the company that manufactured it. The price also depends on the type of system that has been installed i.e. direct or indirect and thermosyphon or pumped systems. Some cost information and analysis has been given below.

#### A Typical Single Family house

Assuming a medium hot water demand of 50/ per day, a single-family size of 4 people will demand 200/ of hot water daily. The average price for a 200/ cost for such system is shown in Table 18.

Table 18: Cost of a solar water heating system for a single family.

| Description of                        | Unit Price (V             | Unit Price (VAT inclusive) |                              |                            |  |  |  |
|---------------------------------------|---------------------------|----------------------------|------------------------------|----------------------------|--|--|--|
| system                                | Pumped<br>System<br>(GH¢) | Pumped<br>System (€)       | Thermosyphon<br>System (GH¢) | Thermosyphon<br>System (€) |  |  |  |
| Flat Plate (2.2 m <sup>2</sup> )      | 1800                      | 394.7                      | 1800                         | 394.7                      |  |  |  |
| Evacuated Tubes (2.5 m <sup>2</sup> ) | 2750                      | 603.1                      | 2750                         | 603.1                      |  |  |  |
| Controller                            | 500                       | 109.6                      | 500                          | 109.6                      |  |  |  |
| Installation                          | 500                       | 109.6                      | 500                          | 109.6                      |  |  |  |
| Electrical Fittings                   | 800                       | 175.4                      | 800                          | 175.4                      |  |  |  |
| Pipe                                  | 550                       | 120.6                      | 450                          | 98.7                       |  |  |  |
| Pump (1.5 HP)                         | 1500                      | 328.9                      | -                            | -                          |  |  |  |
| Total for Flat Plate                  | 5650                      | 1239.0                     | 4050                         | 888.2                      |  |  |  |
| Total for Evacuated<br>Tubes          | 6600                      | 1447.4                     | 5000                         | 1096.5                     |  |  |  |

The exchange rate as at 08/09/2015 is €1=GH¢4.56 (Source: Bank of Ghana)

The cost of a typical large scale commercial installation of a pumped system of a flat plate collector area of 132 m<sup>2</sup> and storage tank volume of 9000 litre is estimated at €66,370.00

## 2.6 Companies involved

#### 2.6.1 Companies involved in the production or assembling

Currently, there are no companies involved in solar water heating systems production and assembling at the national level.

#### 2.6.2 Companies involved in import of solar water heating systems

Table 19 below shows the list of companies involved in import of solar water heating systems.

| Name of                                                   | Address                                                               | Phone no.<br>(+233)              | Email                                             | Webpage                             | Contact<br>person |
|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|---------------------------------------------------|-------------------------------------|-------------------|
| MP TEC Solar                                              | 89 Guggisberg<br>Ave, Accra. P.<br>O Box 18533<br>Korle-Bu,<br>Accra. | 020844129<br>3                   | info@mp-<br>tec.de                                | www.mp-<br>tec.com                  | Margaret          |
| Franerix<br>Solutions Ltd                                 | House No. C¤<br>Kiwi Drive,<br>Emef's Estate,<br>Lashibi,<br>Ghana    | 054271952<br>1                   | franerix@<br>yahoo.co<br>m                        | www.franerix<br>.com                | Philip Kwahin     |
| Solarviva-<br>TECH Ghana                                  | NO. F471/2<br>TROAS<br>CRESCENT,<br>OSU. BOX<br>1988 ACCRA            | 024768249<br>5                   | svtech.chr<br>is1@gmail<br>.com                   | www.tianbao<br>-pv.com              | Chris             |
| Alpha High<br>Technologies<br>Ltd                         | Achimota New<br>overhead                                              | 024474595<br>0                   | alphahighl<br>imited@g<br>mail.com                | www.alphahi<br>ghltd.com            | Sarah<br>Agyemang |
| Encol Limited                                             | P. O. Box<br>14841,<br>Kumasi,<br>Ghana.                              | 057643863<br>2<br>024926693<br>2 | energycol<br>@gmail.co<br>m                       | www.encoleq<br>uity.com             | Edward<br>Amoah   |
| Speed<br>Technologies<br>Limited<br>(Nature<br>Pal)(2007) | RND Plaza,<br>Spintex road,<br>Baatsona,<br>Accra                     | 023733133<br>7                   | <u>service@s</u><br><u>peed.com.</u><br><u>gh</u> | www.myspee<br>dtechnologie<br>s.com | James Aguh        |
| Milky-way<br>Energy<br>Limited                            | Agbogba,<br>atomic<br>roundabout.                                     | 054256551<br>3                   | info@milk<br>ywayener<br>gy.com                   | www.milkyw<br>ayenergy.co<br>m      | Truth<br>Godagoe  |

Table 19: Companies involved in import of solar heating systems

| Ghana<br>(2012)                      | Tob herbal                                                                               |                                  |                                                |                                                  |                            |
|--------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------|
| (2012)                               | around Grace<br>Filling Station                                                          |                                  |                                                |                                                  |                            |
| African Trade<br>Logistics<br>(2009) | BOX CT 9195,<br>Cantonments,<br>Accra                                                    | 026474554<br>8                   | nanaagye<br>nim@hot<br>mail.com                | Africantradel<br>ogisticsghana<br>.com           | Nana<br>Agyenim<br>Boateng |
| Quadsolar<br>Company                 | Santasi-<br>Kumasi                                                                       | 024933677<br>3<br>020748080<br>7 | quadsolar<br>@gmail.co<br>m                    | www.quadsol<br>ar.org                            | George<br>Appiah           |
| Wilkins<br>Engineering               | HNO. B135/22<br>Obonu<br>Crescent.<br>North<br>Kaneshie. P.<br>O. Box KA<br>9414, Accra. | 020277001<br>4                   | sales@wil<br>kinsengin<br>eering.co<br>m       | <u>www.wilkinse</u><br>ngineering.co<br><u>m</u> | Albert                     |
| Energy Bau                           | Near Peduase<br>Lodge                                                                    | 024355576<br>6                   | asante@e<br>nergiebau<br>-<br>sunergy.d<br>e   | www.energie<br>bau.de                            | William<br>Asante          |
| Power world                          | P. O. Box<br>DS2300<br>Dansoman,<br>Accra.                                               | 020814999<br>8<br>030223515<br>4 | <u>andrewet</u><br>wire@yah<br>oo.com          | www.powerw<br>orld.com.gh                        | Andrew<br>Etwire           |
| Solar light                          | 12 Faanofa<br>Road,<br>Kokomlemle/P<br>. O. Box<br>11241, Accra<br>North, Ghana          | 030223434<br>9<br>024435351<br>1 | <u>mawuli@s</u><br><u>olar-</u><br>light.com   | www.solar-<br>light.com                          | Mawuli Tse                 |
| Dizengoff,<br>Ghana                  | North<br>Industrial<br>Area, box<br>3403 Accra.                                          | 030222181<br>5/31/63/65          | <u>info@dwa</u><br>g <u>h.com</u>              | <u>www.dizengo</u><br>ffgh.com                   | Edmond                     |
| Eco-solar<br>and<br>construction     | AJ 14 Alajo,<br>Accra                                                                    | 024848239<br>2<br>027579114<br>3 | md@ecos<br>olarconstr<br>uction.co<br><u>m</u> | www.ecosola<br>rconstruction<br>.com             | Richard<br>Addae           |
| Dawig<br>Energies                    | Teshie<br>Nungua, Accra                                                                  | 024442219<br>1                   | Dawigene<br>rgy.dt@g<br>mail.com               | -                                                | David<br>Tukuru            |

## 2.6.3 Companies involved in the installation of solar water heating systems

Table 20 below shows the list of companies involved in installation of solar water heating systems

| Name of company                   | Address                                                                        | Phone no.<br>(+233)      | Email                                                               | Webpage                          | Contact<br>person     |
|-----------------------------------|--------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|----------------------------------|-----------------------|
| MP TEC Solar                      | 89 Guggisberg<br>Ave, Accra. P.<br>O Box 18533<br>Korle-Bu,<br>Accra.          | 0208441293               | info@mp-<br>tec.de                                                  | www.mp-<br>tec.com               | Margaret              |
| SV - TECH<br>Ghana                | NO. F471/2<br>TROAS<br>CRESCENT,<br>OSU. BOX 1988<br>ACCRA                     | 0247682495               | <u>svtech.ch</u><br>ris1@gma<br>il.com                              | www.tian<br>bao-<br>pv.com       | Chris Schandorf       |
| Alpha High<br>Technologies<br>Ltd | Achimota New<br>overhead                                                       | 0244745950               | alphahigh<br>limited@g<br>mail.com                                  | www.alp<br>hahighItd.<br>com     | Sarah<br>Agyemang     |
| Brighten<br>Ghana<br>Consult      | No. 48 White<br>House Oyarifa,<br>Adenta, Accra.                               | 0208277382<br>0277400007 | <u>isaac@bri</u><br>ghtengha<br>naconsult.<br>com                   | www.brig<br>htenghan<br>a.com    | Isaac Darko<br>Mensah |
| Miracle Plus<br>Ventures          | East Legon,<br>Accra                                                           | 0201440144<br>0246585872 | <u>mpvghan</u><br><u>a@gmail.c</u><br><u>om</u>                     | -                                | Felix Agyiri          |
| Seli<br>Technologies<br>Ghana     | Community 9<br>Main Road,<br>Tema. P. O Box<br>TN 1501 Teshie<br>Nungua Estate | 0265090112<br>0243902831 | eugene.se<br>litechnolo<br>gies@gma<br>il.com                       | www.selit<br>echnologi<br>es.com | Eugene<br>Noamesi     |
| Rabai<br>Enterprise               | Location: Md<br>1413, Ashale<br>Botwe Down,<br>Accra.                          | 0570604548               | info@rab<br>aienterpri<br>se.com/<br>rickybrow<br>n73@gma<br>il.com | www.rab<br>aienterpri<br>se.com  | Ricky Brown           |
| Dawig<br>Energies                 | Teshie Nungua,<br>Accra                                                        | 0244422191               | Dawigene<br>rgy.dt@g<br>mail.com                                    |                                  | David Tukuru          |
| T &J Services<br>limited          | Amanfrom,<br>Kasoa toll<br>booth, Accra                                        | 0200715959               | info@tnjg<br>hana.com                                               | Tnjghana.<br>com                 |                       |
| Yemanuel<br>company Ltd           | New white house Nkawkaw                                                        | 0541765068               | yemanuel<br>@yahoo.c<br>om                                          | -                                | Emmanuel              |

| Table 20: Companies involved in th | e installation of solar heating systems |
|------------------------------------|-----------------------------------------|
|------------------------------------|-----------------------------------------|

| Classic solar<br>energy<br>solutions Itd          | Near Anyinam<br>lodge Bruno<br>Estates, Obuasi                                                | 0249257770               | Oharaaid<br>oo1889@<br>gmail.com                     | -                                          | Emmanuel<br>O'Hara      |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------|--------------------------------------------|-------------------------|
| Encol<br>Limited,2008                             | Sofoline-<br>Kumasi                                                                           | 0576438632<br>0249266932 | energycol<br>@gmail.co<br>m                          | <u>www.enc</u><br>olequity.c<br>om         | Edward Amoah            |
| Speed<br>Technologies<br>Limited<br>(Nature Pal)  | RND Plaza,<br>Spintex road,<br>Baatsona, Accra                                                | 0237331337               | <u>service@</u><br>speed.co<br>m.gh                  | www.mys<br>peedtechn<br>ologies.co<br>m    | James Aguh              |
| Milky-way<br>Energy<br>Limited<br>Ghana<br>(2012) | Agbogba,<br>atomic<br>roundabout.<br>Tob herbal<br>Centre, around<br>Grace Filling<br>Station | 0542565513               | <u>info@mil</u><br><u>kywayene</u><br><u>rgy.com</u> | www.milk<br>ywayener<br>gy.com             | Truth Godagoe           |
| African Trade<br>Logistics<br>(2009)              | BOX CT 9195,<br>Cantonments,<br>Accra                                                         | 0264745548               | nanaagye<br>nim@hot<br>mail.com                      | Africantra<br>delogistics<br>ghana.co<br>m | Nana Agyenim<br>Boateng |
| Quadsolar<br>Company                              | Santasi-<br>Kumasi                                                                            | 0249336773<br>0207480807 | quadsolar<br>@gmail.co<br>m                          | www.qua<br>dsolar.org                      | George Appiah           |
| Willma Eng<br>Gh. Ltd                             | Adenta-Accra                                                                                  | 0243634491               | -                                                    | -                                          | Agyemang                |
| Wilkins<br>Engineering                            | HNO. B135/22<br>Obonu<br>Crescent. North<br>Kaneshie. P. O.<br>Box KA 9414,<br>Accra.         | 0202770014               | sales@wil<br>kinsengin<br>eering.co<br>m             | <u>www.wilk</u><br>insengine<br>ering.com  | Albert                  |
| Energy Bau                                        | Near Peduase<br>Lodge                                                                         | 0243555766               | asante@e<br>nergiebau<br>-<br>sunergy.d<br>e         | www.ene<br>rgiebau.d<br>e                  | William Asante          |
| Power world                                       | P. O. Box<br>DS2300<br>Dansoman,<br>Accra.                                                    | 0208149998<br>0302235154 | andrewet<br>wire@yah<br>oo.com                       | www.pow<br>erworld.co<br>m.gh              | Andrew Etwire           |
| Solar light                                       | 12 Faanofa<br>Road,<br>Kokomlemle/P.<br>O. Box 11241,<br>Accra North,<br>Ghana                | 0302234349<br>0244353511 | <u>mawuli@s</u><br><u>olar-</u><br>light.com         | www.solar<br>-light.com                    | Mawuli Tse              |
| Dizengoff,<br>Ghana.                              | North Industrial<br>Area, box 3403                                                            | 0302221815/<br>31/63/65  | <u>info@dwa</u><br>gh.com                            | <u>www.dize</u><br>ngoffgh.c               | Edmond                  |

|                                  | Accra.                |                          |                                    | <u>om</u>                                |               |
|----------------------------------|-----------------------|--------------------------|------------------------------------|------------------------------------------|---------------|
| Eco-solar<br>and<br>construction | AJ 14 Alajo,<br>Accra | 0248482392<br>0275791143 | md@ecos<br>olarcnstru<br>ction.com | www.ecos<br>olarconstr<br>uction.co<br>m | Richard Addae |

## **3 POLITICAL SUPPORT MECHANISMS**

To support and promote Renewable Energy (RE) security in the country, the Government of Ghana (GoG) through an Act of Parliament enacted the RE Act, 2011 (Act 832). The object of the Act is to provide for the development, management, utilisation, sustainability and adequate supply of renewable energy for the generation of heat and power and for other related matters in an efficient and environmentally friendly manner. The Ministry of Energy is mandated to provide policy direction for the achievement of the objectives of the Act. To execute the work packages necessary in fulfilment of the objectives of the Act, the roles of some key related agencies are discussed.

#### Key Provisions of the Act

The Act provides the fiscal incentives and regulatory framework to encourage private sector investments. These includes

- A) Feed-in-tariff scheme under which electricity generated from RE sources would be offered a guaranteed price.
- B) Purchase obligation under which power distribution utilities and bulk electricity consumers will be obliged to purchase a certain percentage of their energy required from electricity generated from RE sources.
- C) Net Metering (distributed generation) under which RE generated on site may be delivered to the local utility to offset the cost of electricity provided by the utility.
- D) Off-grid Electrification aims at promoting mini-grid and stand-alone RE systems for remote off-grid systems.
- E) Woodfuels under which aims to promote efficient production and utilization of woodfuel use for cooking.
- F) Renewable Energy Fund is to provide the incentives for promotion, development and utilization of RE resources.
- G) Establishment of Renewable Energy Authority to own, implement and manage RE assets on behalf of the state.

#### Institutional framework in Place with Clear Roles and Mandates

- A) Energy Commission: Technical regulation and licensing for RE electricity generation, transmission and distribution;
- B) Public Utilities and Regulation Commission (PURC): Economic regulation and setting tariffs for electricity including the RE Feed-in-Tariff.
- C) Environmental Protection Agency (EPA): Environmental regulation and permitting.
- D) Ghana Investment Promotion Centre (GIPC): Assist and facilitate incentives for private sector investments.

Besides the RE Act 2011, the following Acts have also been enacted to promote the sustainable development of RE:

- A) Energy Commission Act 1997, (Act 541) to promote the development and efficient use of RE
- B) Public procurement Act 2003, (Act 663) an economic instrument to promote direct investment in the RE
- C) Ghana Investment Promotion Council Act 2013 (Act 865); provides tax incentives for investments located outside industrialized centers.
- D) Value Added Tax 2013, (Act 870); this provides exemption for RE energy equipment imported in parts into the country.

However the RE Act is silent on specific targets for each of the technologies defined under the RE umbrella.

Solar energy exploitation in the country is receiving a greater attention in recent times. Currently, 2015, a total of 5MW of solar energy has been installed with 3.5MW already connected to the national grid. In the installation of water heaters, individual homes, hotels and few industrial set ups have been undertaken. The full installation of such facilities is part of the national grand target to increase the installed capacity to 10% by 2020. At this stage, very little data is available at the national level in terms of installed capacity of solar water heaters.

## **4** TEST AND RESEARCH INSTITUTIONS

The table below shows the name of research and training institutions involved in Solar Thermal Technologies.

| Name of Institution                                                 | Description                                                                                                                                                   | Address                                                                    | Phone number                                                           | Contact Person/Email                                                                                        | Webpage                                         |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Centre for Renewable<br>and Energy, Kumasi<br>(CREK)                | Support for<br>Renewable energy<br>businesses,<br>Research,<br>Development of<br>renewable energy<br>and energy<br>efficiency<br>applications and<br>Training | Kumasi Polytechnic P.<br>O. Box 854, Kumasi                                | 233-24-6450842                                                         | Ing. Edem Bansah<br>Email:<br>Info.crek@kpoly.edu.gh                                                        | www.crek.kpoly.edu.gh                           |
| Institute of Tropical<br>Agriculture (KITA)                         | Training,<br>Consultancy,<br>Research and<br>Development.                                                                                                     | P. O. Box 293, UST,<br>Kumasi                                              | 233-24-4108268 233-<br>24-3235017                                      | Dr. Noah Owusu –Takyi.<br>email:<br>admin@kitaghana.org                                                     | www.kitaghana.org                               |
| The Energy Center,<br>College of Engineering,<br>KNUST - Kumasi     | Multidisciplinary<br>Research and<br>Development at<br>the KNUST.                                                                                             | The Energy Center ,<br>College of<br>Engineering,<br>PMB<br>KNUST - Kumasi | 233-26-6755479 233-<br>32-2042270                                      | Ato Quansah<br>email: tec@knust.edu.gh                                                                      | <u>www.energycenter.knust.edu.g</u><br><u>h</u> |
| Kumasi Institute of<br>Technology, Energy and<br>Environment (KITE) | Research and<br>Training                                                                                                                                      | P. O. Box KS 6534,<br>Kumasi-Ghana                                         | 233-30-2256800 233-<br>32-2033824 233-24-<br>4340734<br>233-24-4340736 | Ishmael Edjekumhene -<br>Project Manager<br>email:<br>iedjekumhene@kiteonline<br>.net ; info@kiteonline.net | http://www.kiteonline.net                       |

Table 21: Test, Research and Training Institutes

| College of Agriculture<br>Education, University of<br>Education, Winneba,<br>Mampong Campus    | Teaching, research<br>and training in<br>agriculture and<br>related services                              | College of Technology<br>Education UEW -<br>Mampong Campus<br>P.O.Box 1277,<br>Kumasi, Ghana        | 233-32-2053602<br>233-32-2050331 233-<br>32-2053616 | Principal<br>Email:<br><u>registrar@ksi.uew.edu.gh</u>                                               | http://www.uew.edu.gh/campu<br>ses/college-agriculture-<br>education        |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Energy Systems<br>Engineering<br>Department                                                    | Training, research<br>and developing<br>innovative<br>sustainable<br>renewable energy<br>systems.         | Energy Systems<br>Engineering<br>Department<br>Koforidua Polytechnic<br>P.O.Box kf 981<br>Koforidua | 233-24-1463736                                      | Divine Atsu.<br>E-mail:<br>atsud22@yahoo.com                                                         | www.koforiduapoly.com.edu.gh                                                |
| Crop Research Institute<br>(CRI) - Council for<br>Scientific and Industrial<br>Research (CSIR) | Research and<br>training                                                                                  | P.O. BOX 3785,<br>Kumasi, Ghana                                                                     | 233-32-2060396<br>233-32-2060389                    | The Director<br>Email:cridirector@cropsr<br>esearch.org :<br>directorsecretary@cropsr<br>esearch.org | www.cropsresearch.org                                                       |
| University of Energy<br>and Natural Resources,<br>Sunyani                                      | Research,<br>Monitoring and<br>Evaluation of<br>Installed thermal<br>systems in hotels,<br>buildings etc. | Department of Energy<br>and Environment                                                             | 233-24-0161157                                      | Dr. Nana Sarfo<br>Agyemang Derkyi Email:<br>nana.derkyi@uenr.edu.g<br>h :<br>nanasaaafo@yahoo.com    | http://uenr.edu.gh/soe/depart<br>ment-of-energy-and-<br>environmental-engin |

| University of Cape<br>Coast          | Research, Teaching<br>and Training | The Director<br>DRIC<br>University of Cape<br>Coast<br>Cape Coast<br>Ghana                        | 233-33-2133172,<br>233-33-2133173<br>233-24-4280629 233-<br>24-4693747 233-20-<br>8214443 | The Director         | http://ucc.edu.gh/                  |
|--------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|-------------------------------------|
| University of Ghana                  | Research, Teaching<br>and Training | Department of<br>Agricultural<br>Engineering University<br>of Ghana P.O.Box LG<br>25 Legon, Accra | 233-30-2500381                                                                            | pad@ug.edu.gh        | http://www.ug.edu.gh/agric-<br>eng/ |
| University of<br>Development Studies | Research, Teaching<br>and Training | P.O.Box TL 1350<br>Tamale, Ghana                                                                  | 233-37-222078                                                                             | registrar@uds.edu.gh | http://www.uds.edu.gh/              |

## **5 SOLAR DRYING MARKET**

## 5.1 Systems in Operation

Solar drying is widely used in Ghana for different applications. This technology is well known in Ghana especially in the Agricultural sector as far back as 1990. The solar dryers were used as pilot projects in drying of fish and other Agricultural products. Most of the systems that are used in Ghana at the moment are locally manufactured and there is no standard to the design and construction. Different designs have been constructed and are in operation in different parts of the country. Companies and institutions design and construct the solar dryers to meet their demand and these designs are not readily available in the market. However the Engineering Directorate of the Ministry of Food and Agriculture (MoFA) has two designs which they construct and give to farmers groups. These two types are the Rectangular and the Triangular tent dryers. These dryers are constructed from imported materials. Figure 7 shows the dimensions of the MoFA Top Vent Rectangular solar dryer, which have been constructed for farming groups in Ghana.



Figure 7: Design of the MoFA Top Vent solar Dryer (Source: TECA (http://teca.fao.org)

As stated earlier there are no national standards to classify the size of the solar dryers in the country. It can clearly be seen that there are small-scale and large-scale solar dryers that are in used in Ghana. The small-scale drying at smallholder scale are for individual farmers who can afford the system and research institutions such as KNUST, CREK-Kumasi Polytechnic, Koforidua Polytechnic, UENR, UCC, UDS, UEW, KITE, KITA, University of Ghana, CSIR-Kumasi, College of Agricultural Education-Mampong Ashanti and others for the purpose of academic work and training for farmers. Figure 8 illustrates some of the range of smallholder scale solar dryers that are currently in operation in the farms and the research centres. For the research applications, the most predominant types are the direct, indirect and mixed mode passive systems. There are also the direct, indirect and mixed mode passive and active systems are illustrated

in Figure 8a, b and c. There are pilot hybrid solar drying systems in some research institutions.



Figure 8: a) Mixed mode solar dryer at Koforidua Polytechnic, b) Direct solar dryer and c) indirect solar dryer

Individual farmers who can afford small dryers usually use it in their farms and Figure 9 shows the variations in these constructions. Generally most of these farmers use direct solar dryers in their farms.



Figure 9: Different solar dryers for smallholder farmers

Most of the farming groups and associations use the commercial/industrial solar drying systems. There are several of these locally constructed dryers around the country especially the farming communities such as Eastern, Brong Ahafo, Ashanti, and the three Northern regions. Most of the large-scale solar dryers in operation are the tent type. The sizes of these commercial available solar dryers vary and are shown in the figures below. Most of the large units are the initiative of MoFA through the support of donor agencies. The sizes of dryers from MoFA are 16x36ft and 20x40ft and can dry up to 2 tons of maize within a harvesting period.



Figure 10: Large scale maize solar dryer by MoFA- inside and outside view

Figure 10 is a large-scale solar drying system installed for a group of farmers at Alavanyo in the Afram Plains district in the Eastern Region for the drying of maize. Figure 11 a is a large scale solar dryer at Nkoranza in the Brong Ahafo region for drying maize whilst Figure 11 b is also a large solar dryer at Mampong Akuapem in the Eastern Region for drying plant parts.



Figure 11: a) Tent type solar dryer at Sekyedumase and b) house solar dryer at Mampong

Figure 12 shows one of the large-scale solar dryers that were piloted at Silwood farms. This test solar air collector at Silwood farms is one of the many examples of pilot solar drying systems that have been carried out in the country. This system is located at Pokoase in the greater Accra region.



Figure 12: Test solar air collector dryer at Silwood farms-Pokoase

## 5.2 Main Applications

Most of the farmers in Ghana are peasant and small-scale farmers; hence depend on the traditional planting season in the country. There are a lot of postharvest losses within the harvesting season. This calls for postharvest technologies to handle these losses. Solar dryers are one of the technologies in Ghana to handle this situation. The harvesting season and the main agricultural products that are dried are shown in Table 22below.

| CROP         | DAYS/YEARS TO FIRST | HARVESTING | SEASON             |
|--------------|---------------------|------------|--------------------|
|              | HARVEST             | PERIOD     |                    |
| Mango        | 3-5 years           | 2-3 months | May-October        |
| Banana       | 1-2 Years           | 2-3 months | Year round         |
| Watermelon   | 75-95 days          | 1-2 months | Mid May-August     |
| Tomato       | 75-90 days          | 2-3 months | Mid May-August     |
| Carrots      | 80-120 days         | 1-4 weeks  | Early April-August |
| Cabbage      | 65-120 days         | 1-4 weeks  | April-August       |
| Pepper       | 65-80 days          | 2-3 months | Mid May- August    |
| Eggplant     | 75-90 days          | 1-2 month  | Mid May-August     |
| Onion        | 140-180 days        | 1-4 weeks  | Early April-Sept.  |
| Lettuce      | 45-70 days          | 1-2 Weeks  | April-July         |
| Cowpea       | 80-90 days          | 2-3 weeks  | May-August         |
| Okra         | 50-60 days          | 4-6 weeks  | May-July           |
| Garlic       | 120-160 days        | 1-4 weeks  | October-March      |
| Cucumber     | 60-70 days          | 1 month    | April-July         |
| Sweet Potato | 90-150 days         | 1-2 months | April-September    |
| Corn/Maize   | 70-90 days          | 1-2 weeks  | March-June         |
| Cassava      | 180-270 days        | 1-4 weeks  | March-December     |
| Plantain     | 1-2 years           | 1-2 months | Year round         |
| Pawpaw       | 1-3 years           | 2-3 months | Year round         |

Table 22: Harvesting season for different crops in Ghana

Source: Fritz, 2013

The use of solar drying systems cut across various sectors in the country. But the major sectors that this market survey has identified are listed in Table 23.

| Sector         | Application/Usage                               |
|----------------|-------------------------------------------------|
| Agricultural   | Pepper, Maize, cowpea, cassava (chips & flour), |
|                | okra, fruits, potatoes                          |
| Plant Medicine | Herbs,                                          |
| Research       | Herbs                                           |
| Wood Industry  | Wood                                            |

| Table 23: | Sector | and | users | of | solar | dryers. |
|-----------|--------|-----|-------|----|-------|---------|
|           |        |     |       |    |       |         |

#### 5.3 Cost

The cost of postharvest technologies is one of the biggest issues that farmers in the country face because most of them are peasant farmers. Also because of the seasonal nature of the harvesting period the prices of food crops are very low within these periods leading to lower earnings.

Due to the variations in the design and construction of solar dryers in the country, prices also vary. Also due to variety of materials that are used in the construction, the cost of a

dryer constructed from imported material is different from that from local materials. Some of the imported materials for construction are Perspex, Acrylic, Polycarbonate sheet and some of the local materials are Galvanized copper plate, wood and others.

A typical mixed mode solar dryer by the Koforidua Polytechnic, having a chamber volume of  $0.754m^3$  with a collector area of  $1.854m^2$  cost GH¢1000 whilst large-scale rectangular tent dryers from MoFA made of Acrylics with size 16x36ft is priced at GH¢3200 excluding the concrete platform on which the tent is constructed.

For systems that have been constructed by MoFA for farmers groups, a bag (0.9tons) of maize cost GH¢2 to dry for members and GH¢5 to dry for non-members. The drying cost per ton of maize or any other food crop vary depending on the location across the country and the type of solar dryer used.

## 5.4 Customers

Ghana as a developing country in no doubt needs postharvest technologies for food sustainability. Solar drying is one of the technologies that can help achieve this goal. There have been pilot projects such as: solar maize dryer at Pokuase, Solar fish dryer at Tema and Solar wood dryers at Makoadze in the late 1990's. Though some of these pilot projects have been abandoned the current market survey shows that farmers in Ghana are very much interested in this technology. Agricultural sector, Plant medicine, Research Institutions and the wood industry are the currently the main users of solar dryers in Ghana. Table 24 shows samples of organizations and companies using solar dryers on a commercial scale.

| COMPANY NAME              | LOCATION             | APPLICATION       |  |
|---------------------------|----------------------|-------------------|--|
| Josma Agro Ind. Ltd       | Mampong-Ashanti      | Cassava chips,    |  |
| MoFA Farming Groups       | Alavanyo             | Maize             |  |
| CSRPM                     | Mampong-Akuapem      | Fresh plant parts |  |
| CSRPM                     | Ayikuma Farms        | Fresh plant parts |  |
| CSIR                      | Kumasi Crop Research |                   |  |
| MoFA Farming Groups       | Duayaw Nkwanta       | Maize             |  |
| MoFA Farming Groups       | Nkoranza Maize       |                   |  |
| Sekyedumase Farmers Group | Sekyedumase          | Maize             |  |
| Ningo Women Farmers       | Ningo                | Pepper and fruits |  |
| Advancement Project       |                      |                   |  |

 Table 24: Organizations and companies using large scale solar dryers

Agricultural Engineering Directorate of the ministry of Agriculture with assistance from GIZ and SIDA has undertaken 21 rectangular and triangular tent solar dryers' installations throughout the country.

## 5.5 Companies Involved

At the moment, research institutions and MoFA are involved in the construction of locally made solar dryers. There are a few other companies that help institutions to construct/install these solar dryers and their details are captured in Table 6.4 below.

| Company     | Address      | Phone     | Email           | Webpage        | Contact     |
|-------------|--------------|-----------|-----------------|----------------|-------------|
| Name        |              | Number    |                 |                | Person      |
| MoFA        | Agricultural | +233      | jypanni@yahoo.  | www.aesdmof    | Mr. Johnson |
|             | Engineering  | 302777789 | co.uk           | a.org          | Panni       |
|             | Services     |           |                 |                |             |
|             | Department,  |           |                 |                |             |
|             | Giffard Rd,  |           |                 |                |             |
|             | Accra.       |           |                 |                |             |
| CSIR-       | Box 3785,    | +233      | cridirector@cro | www.croprese   | Mrs. Evelyn |
| Kumasi      | Kumasi       | 244786192 | psresearch.org  | arch.org       | Kwarteng    |
| CSRPM       | Box 73,      | +233      |                 | www.csrpm.or   | Mr. Ernest  |
|             | Mampong-     | 244634087 |                 | g              | Akuamoah    |
|             | Akuapem      |           |                 |                |             |
| CREK-       | Kumasi       | +233      | Info.crek@kpoly | www.crek.kpol  | Mr. Edem    |
| Kumasi      | Polytechnic, | 200202020 | .edu.gh         | y.eud.gh       | Bansah      |
|             | Box 854,     |           |                 |                |             |
|             | Kumasi       |           |                 |                |             |
| Energy      | Koforidua    | +233      | atsud22@yahoo   | www.koforidu   | Mr. Divine  |
| Systems     | Polytechnic, | 241463736 | .com            | apoly.edu.gh   | Atsu        |
| Engineering | Box KF981    |           |                 |                |             |
|             | Koforidua.   |           |                 |                |             |
| KNUST       | PMB          | +233      | tec@knust.edu.  | www.energyce   | Mr. Ato     |
|             | Kumasi.      | 322063736 | gh              | ntre.knust.edu | Quansah     |
|             |              |           |                 | .ah            |             |

| Table 25. | Droduction/ | Accombly   | Organizations | in Chana  |
|-----------|-------------|------------|---------------|-----------|
|           | FIUUUCUUU   | ASSELLINIY | Organizations | III Ghana |

Most of the dryers in Ghana are locally manufactured products with a few exceptions of companies involve in importation of solar dryer components. These companies are listed in Table 26 below and Table 27 shows companies involved in solar dryers installation.

Table 26: Companies involved in the importation of solar dryers and components in Ghana.

| Company    | Address              | Phone Number    | Email     | Webpage    | Contact      |
|------------|----------------------|-----------------|-----------|------------|--------------|
| Name       |                      |                 |           |            | Person       |
| Dizengoff  | No.2 Feo Eyeo        | 0244310796/0277 | info@dw   | www.dizen  | Mr. Edmund   |
|            | street, North        | 565405          | agh.com   | goffgh.com |              |
|            | Industrial Area. Box |                 |           |            |              |
|            | 3403, Accra          |                 |           |            |              |
| Reiss & Co | C172/3 Lamp          | 0302256516      | ris@reiss | www.reissc | Mr. Peter    |
|            | Street, Akametso,    |                 | co.com.g  | ogh.com    | Gerard Wurff |
|            | Asylum Down. Box     |                 | h         |            |              |
|            | CT5064 Cantoment,    |                 |           |            |              |
|            | Accra.               |                 |           |            |              |

| Company  | Address      | Phone     | Email               | Webpage      | Contact |
|----------|--------------|-----------|---------------------|--------------|---------|
| Name     |              | Number    |                     |              | Person  |
| Precise  | Box TF447,   | +233      |                     |              |         |
| Creation | Trade fair,  | 264389487 |                     |              |         |
| Ltd      | Accra        |           |                     |              |         |
| MoFA     | Agricultural | +233      | jypanni@yahoo.co.uk | www.aesdmofa | Mr.     |
|          | Engineering  | 302777789 |                     | .org         | Johnson |
|          | Services     |           |                     |              | Panni   |
|          | Department,  |           |                     |              |         |
|          | Giffard Rd,  |           |                     |              |         |
|          | Accra.       |           |                     |              |         |

Table 27: Solar dryer installation companies in Ghana.

## 5.6 Know-how on solar drying

Most of the major academic institutions in Ghana are involve in some research work in solar drying technologies. However some are just pilot projects and not in the market. Table 28 shows the list of some of these institutions.

Table 28: List of institutions involved in research and technical training

| Company     | Address       | Phone     | Email           | Webpage       | Contact         |
|-------------|---------------|-----------|-----------------|---------------|-----------------|
| Name        |               | Number    |                 |               | Person          |
| MoFA        | Agricultural  | +233      | jypanni@yahoo.  | www.aesdm     | Mr. Johnson     |
|             | Engineering   | 302777789 | co.uk           | ofa.org       | Panni           |
|             | Services      |           |                 |               |                 |
|             | Department,   |           |                 |               |                 |
|             | Giffard Rd,   |           |                 |               |                 |
|             | Accra.        |           |                 |               |                 |
| CSIR-       | Box 3785,     | +233      | cridirector@cro | www.cropres   | Mrs. Evelyn     |
| Kumasi      | Kumasi        | 244786192 | psresearch.org  | earch.org     | Kwarteng        |
| CSRPM       | Box 73,       | +233      |                 | www.csrpm.    | Mr. Ernest      |
|             | Mampong-      | 244634087 |                 | org           | Akuamoah        |
|             | Akuapem       |           |                 |               |                 |
| CREK-       | Kumasi        | +233      | Info.crek@kpoly | www.crek.kp   | Mr. Edem        |
| Kumasi      | Polytechnic,  | 200202020 | .edu.gh         | oly.eud.gh    | Bansah          |
|             | Box 854,      |           |                 |               |                 |
|             | Kumasi        |           |                 |               |                 |
| Energy      | Koforidua     | +233      | atsud22@yahoo   | www.koforid   | Mr. Divine Atsu |
| Systems     | Polytechnic,  | 241463736 | .com            | uapoly.edu.g  |                 |
| Engineering | Box KF981     |           |                 | h             |                 |
|             | Koforidua.    |           |                 |               |                 |
| KNUST (The  | PMB, Energy   | +233      | tec@knust.edu.  | www.energy    | Mr. Ato         |
| Energy      | Centre,       | 322063736 | gh              | centre.knust. | Quansah         |
| Centre)     | College of    |           |                 | edu.gh        |                 |
|             | Engineering   |           |                 |               |                 |
|             | Kumasi.       |           |                 |               |                 |
| UENR        | University of | +233      | nana.derkyi@ue  | www.uenr.e    | Dr. Nana Sarfo  |
|             | Energy and    | 240161157 | nr.edu.gh       | du.gh         | Agyemang        |
|             | natural       |           |                 |               | Derkyi          |
|             | Resource      |           |                 |               |                 |
| UEW         | College of    | +233      | registrar@ksi.u | www.uew.ed    | Prof. Reynolds  |
|             | Technology    | 322050331 | ew.edu.gh       | u.gh          | Okai            |
|             | Education,    |           |                 |               |                 |
|             | Box 1277,     |           |                 |               |                 |
|             | Kumasi        |           |                 |               |                 |

#### 5.7 Awareness and Incentives

The Ministry of Energy and Energy Commission are responsible for the country's renewable energy policy development and have taken steps to develop energy policy and create incentives for renewable energy systems.

The Ministry of Food and Agriculture is fully aware of the solar dryer technology and has carried out some pilot projects in several parts of the country. The ministry in conjunction with Energy Commission and support from DANIDA has carried out tests on 3 solar dryers at Pokuase in the Greater Accra Region. These tests were research projects into the drying of crops, fish and wood products and were financed by DANIDA via the Danish Embassy in Ghana.

MoFA has organized farmers groups in different parts of the country to educate them on the benefits of postharvest technologies. As part of the training and awareness creation, 21 large scale solar dryers have been constructed at different parts of the country.

There is a general awareness of solar drying technologies but specific incentives for this technology is not available. The Renewable Energy Acts 2011(Acts 832) provides the fiscal incentives and the regulatory framework to encourage private sector investment. The key provisions pertaining to solar thermal technologies includes:

- A) Research and Development
- B) Renewable energy Fund
- C) Establishment of Renewable Energy Authority

In addition to these provisions, in the Value Added Tax 2013, (Act 870) there exist other fiscal incentives such as:

- A) Tax waiver on renewable energy systems imported into the country.
- B) Reduced tax on some renewable energy component import into the country.

As part of their programmes to educate students and the community about solar drying systems and their applications, academic and research institutions, through exhibitions, showcase systems that have been designed and constructed by students and staff. In this regard, Koforidua Polytechnic, CREK-Kumasi Poly, KNUST, CSIR and others are the main players.

## **6 SOURCES**

#### Ahiataku-Togobo W. (2014),

Renewable Energy Policy in Ghana. Available at <u>http://saudi-sia.com/wp-content/uploads/2014/12/WisdomAhiataku-GobiernoGhana.pdf</u> (Accessed: 10/06/15)

#### Danish Technological Institute (2002).

Test of Solar dryers in Ghana. ISBN 87-7756-658-0

#### Energy Commission (2015).

National Energy Statistics 2005-2014. www.energycom.gov.gh

#### Energy Commission (2015).

2015 Energy Supply and Demand Outlook for Ghana. www.energycom.gov.gh

#### GNPC (2015). Crude Oil liftings.

Ghana National Petroleum Commission. <u>http://gnpcghana.com/SitePages/ContentPage.aspx?ItemID=35&ItemTitle=Crude%20Oil</u> <u>%20Liftings</u> [Accessed: 01/08/2015]

#### Government of Ghana (2011).

Renewable Energy Act 832. Available at <u>http://energycom.gov.gh/files/RENEWABLE%20ENERGY%20ACT%202011%20%28ACT</u> <u>%20832%29.pdf</u> (Accessed: 10/06/15)

#### MOEP (2014).

Medium term expenditure framework (MTEF) for 2014-2016. A programme based budget estimates for 2014.

#### National Renewable Energy Action Plan Ghana.

Draft Policy Report June, 2015. NPA (2015). Historical Trend of Petroleum Products Prices- updated June 16, 2015. National Petroleum Authority (NPA). <u>www.npa.gov.gh/npa\_new/Downloads.php</u> . [Accessed: 01/08/2015]

#### SV-TECH Limited Ghana (2015).

A proforma invoice see attached document

**Vincent A. Fritz (2013).** Planting the vegetable garden. Southern Research Outreach Centre, University of Minnesota, Minnesota.

#### Well dried maize Ghana, (2014).

Available at http://www.youtube.com/watch?v=V98GjLFwFYM accessed on 05/07/2015

#### World Bank Group & CIF (2014).

Draft Scaling-up Renewable Energy Program in Ghana (SREP). Investment Plan for Ghana. A report presented to government of Ghana by the World Bank and Climate Investment Fund (CIF).